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§1. OBJECTIVES

The primary goal of the project was the development and proof of concept of
a biologically inspired topology optimization method for aerospace design.

§2. ACCOMPLISHMENTS

The objective set forth for this project has been fully attained. Indeed, the
biologically inspired design methodology developed in this project, hereafter named
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bioTOM, has been thoroughly assessed through a large number of test cases. The
test cases ranged from classical benchmark problems in topology optimization to
realistic engineering problems. These test cases proved the concept and showed
the well-suitability of bioTOM for aerospace design.

Next in this section, a brief account of the developed design methodology is
presented. This is followed by a summary of the test cases studied in this project.
The section ends with the main findings of the research.

1. bioTOM

As Richard Dawkins pithily puts it “Life is the execution of programs written
using a small digital alphabet in a single, universal machine language” [1]. The
programs that indirectly determines the entire developmental process of living
organisms are encapsulated in our DNAs. And the latter are evolved according to
Darwin’s laws of natural selection. Exploiting this genetic-evolutionary model for
engineering is the novel paradigm set forth in this work.

This sub-section starts with an outline of the elements of map L systems that
are relevant to the present work. The reader interested in the general theory of
map L systems may refer to [2] and the references in that book.

At the end of 1960’s, the eminent biologist Aristid Lindenmayer introduced
a novel type of grammar system, where the rewriting was carried out in parallel
[3, 4], rather than the sequential substitution in previous formal languages [5]. The
parallel rewriting system, thereafter named Lindemayer system (or L system for
short), was initially proposed to model the development of the branched topology
in plants. Over the years, however, L systems became an important scientific
theory in itself [2], with multiple ramifications ranging from the original model for
plant development, to the mathematics of formal languages, to computer graphics,
to music. Map L systems [2, 6, 7] extend the parallel rewriting in L systems to
planar graphs with cycles, called maps [8]. The maps are developed according
to cellular division rules that have originally been devised to model the cellular
division process in simple organisms.

Formally, a map is defined as a finite set of regions. Each region is bounded
by a sequence of edges and the edges intersect at vertices. Every edge is part of
the boundary of a region and the regions are simply connected. These maps are
analogous to cellular layers, where the regions represent the cells and the edges
their walls. To develop these maps, the Binary Propagating Map 0L-systems with
markers or mBPM0L-systems proposed by Nakamura, Lindenmayer and Aizawa
[2, 7] is selected—mBPM0L-systems are more powerful than similar context-free
map L systems [2]. The method is called binary because during the cell division
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the cells divide in two. It is propagating since cells cannot fuse or vanish. The
designation 0L systems refers to context-free parallel rewriting systems that do
not allow for region interactions. Finally, markers specify juncture points at the
edges where the cell can divide—the markers are analogous to attachment sites
for division walls during mitosis [2].

Mathematically, mBPMOL-systems consist of an alphabet Σ, an axiom ω and
a finite set of rules P . The alphabet is a finite, non-empty set Σ, whose elements
are called letters or tokens. An alphabet can, in general, contain any symbol as
letters. A simple example of an alphabet would be Σ = {A,B,C, ..., [, ],+,−}. An
axiom is a non-empty word of letters from the alphabet. The number of letters in
the word should be equal to the number of edges in the initial map. For example,
using the previous alphabet and for an initial map of four edges, ω = AABC
is an axiom. Each rule is of the form A → α, where the edge A ∈ Σ is called
the predecessor, and the string α, composed of symbols from Σ including special
symbols [, ], + and −, is called the successor. Using again the previous alphabet,
an instance of a rule would be B → A[−C]. So, when rewriting a word, every
occurrence of the letter B would be replaced by A[−C].

The symbols [ and ] specify makers for possible cell-dividing walls. Symbols
outside of the square brackets specify the number and type of edge subdivisions—
each subdivision with the same length. Inside the brackets the first symbol is
either + or −, placing the marker to the left or to the right of the predecessor
edge, respectively. The second symbol within brackets is always a letter. The
letters can carry an arrow over them to represent the local edge orientation of
the successor edges relative to the predecessor edge. An example of a rule with

orientation is:
→
A→

→
B
←
A[−

→
C]x.

The cell division process is effected in the derivation phase, where each cell is
scanned searching for matching markers. If in a cell there exist two markers in
different edges, and both markers carry the same letter and follow along the same
orientation, then, depending on division criterions explained below, a cell division
can be formed connecting these two markers. More than one pair of matching
markers can be found in one cell, however. In this case, and owing to the binary
character of the method, only one pair of markers is selected for connection and
the remaining markers are discarded.

The selection and validation of the edge pair is performed according to two
cell division criterions: (1) the angles in the divided cells must be larger than a
prescribed lower limit; (2) the areas of the offspring cells must be larger than a
predefined percentage of the parent cell. The first criterion prevents the creation of
cells with too narrow wedges angles, while the second precludes excessively slender
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or relatively minute offspring cells to form. When multiple markers are available,
the first pair to pass the two criterions above are selected and the rest are dropped.

The cellular division process explained above is best grasped with an example.
Consider, for instance, the alphabet Σ = {A,B, x, [, ],+,−}, the initial map or
axiom ω = ABAB and the production rules:

A → B[−A]x[+A]B

B → A

The symbols for which a rule is assigned—A and B in this example—are called
non-terminal tokens, whereas the remaining symbols are called terminal tokens.
The rules for these latter tokens are not listed because these tokens are constants;
for instance, a symbol x in a word is copied as x in the rewriting.

The derivation process starts with each edge of the initial map being assigned
a label—see figure 1 top—and a global orientation that defines the left (+) and
right (-) branching—the orientation is counter-clockwise in this example. Then
each edge is relabeled and divided according to the corresponding rule. Thus, in
this example, the edges labeled B are relabeled A and no sub-division takes place.
The edges labeled A are sub-divided into three new and equal segments. Consider,
for example, the edge A at the bottom. The first segment is labeled B, the second
x and the third again B. After the first segment, a marker A ought to be attached
to the right (the symbol − precedes the marker A within the first parenthesis),
but since the marker would lay outside of the map this action is voided. Moving
along the edge according to the global orientation, at end of the second edge x, a
marker A is placed at the left of the edge. Applying this rewriting process for the
remaining A, two markers are obtained, labeled A pointing to inside the initial
map. Both markers are of the same type and assuming the two aforementioned
criterions are satisfied the cell is divided by connecting the attachment sites of each
edge. The result is the new map in figure 1—first step. Iterating this cell division
process generates a sequence of maps that models the developmental stages of the
structural topology.

Remark 1. Note that the cell division would stop if, at a certain stage, all edges
were labeled with a terminal token. However, stopping only when all letters are
terminal tokens could lead to infinite iterations: for example, if x would be absent
from the previous rules. Thus a maximum number of cell divisions is specified and
the actual number of developmental stages for the topology generation is optimized
in the evolutionary algorithm.
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Remark 2. The cellular division process described above corresponds to the orig-
inal map L systems by Nakamura and Lindenmayer and Aizawa [2, 6, 7]. Here
it is modified slightly to allow for variations of properties, such as edge radius,
within the topology. The approach is analogous to changing the state in a tur-
tle interpretation of L systems [2] and essentially it provides a way to modify
the characteristics of the structure with rules. So, terminal tokens are introduced
that, when present in a rule, will change, by a quantum amount, some specific
properties of the topology. For example, the symbols * and / specify the change
of the radius of the edge by a quantum ratio δr. So the first rule in the previ-
ous example could now include these symbols as: A → ∗B[− ∗ A]/x[+ ∗ A]B.
With this new rule, at the second developmental stage would lead to the map:
ω2 = ∗A[−∗ ∗B[−∗A]/x[+ ∗A]B]/x[+ ∗ ∗B[−∗A]/x[+ ∗A]B]A ∗B[−∗A]/x[+ ∗
A]B ∗A[∗∗B[−∗A]/x[+∗A]B]/x[+∗∗B[−∗A]/x[+∗A]B]A∗B[−∗A]/x[+∗A]B
and the first edge A would have a radius δr ∗ r0 where r0 is an initial radius, the
first edge B would have a radius δ2

r ∗ r0 and so on. In this way, it is allowed the
control of the edge radius along with the developmental stages. Introducing more
tokens of this type allows the control of any desired design variable.

Remark 3. As explained in [2], the cellular division in living organisms entail two
stages: a division stage proper and a cellular dynamic stage. So after each cellular
division, actual cells deform according to forces acting on their walls. Because
structural topology is the only interest, this dynamic stage is modeled as Picard
iterations for the equilibrium of two forces acting on the map vertices: an elastic,
spring force on each edge of the topology and an “osmotic” pressure proportional to
the inverse of the area of each region. The elasticity constant of each edge and the
osmotic pressure constant are modified, and can, therefore, be evolved within the
topology, using the state rules explained in the previous remark. Also, to increase
the efficiency of the overall methodology, the maximum number of Picard iterations
is bounded to a small number.

Remark 4. The original map L systems deals with convex regions only [2, 6, 7]. In
this work, topology optimization is performed with regions that can be non-convex.
So to extend map L systems for maps with non-convex regions, a third criterion
is added for cellular division, where it is required the new edge dividing the parent
cell to remain inside the parent cell.

At the end of the division stages, a planar topology is defined. With this
topology, a finite element (FE) model can be formulated to calculate the fitness of
each design—the details of the FE model for each test case are explained below.
The fitness of each design can then be evolved using an evolutionary algorithm.
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Evolutionary algorithms [9, 10] are biological metaphors that produce high
quality designs by identifying, recombining and enhancing the best features present
in an adapting pool of replicators. Before the genetic encoding is explained, recall
the basic elements of evolutionary algorithms. In these algorithms, the evolution
starts with a population of individuals, each of which carrying a genotypic and
a phenotypic content. The genotype encodes the primitive parameters that indi-
rectly determine an individual layout in the population. Here they consist of the
parameters defining the map L system and the geometry and physical properties
of the object. The phenotype relates to the ensuing structural model: its topology,
geometry and physical properties. With the phenotype, the evaluation of the fit-
ness of each individual design is obtained using a physico-mathematcal model and
the finite element method. The fitness will vary from problem to problem, and in
the case of multi-objective optimization multiple functions are evaluated for each
individual. The evolutionary algorithm then advances the current population to
the next generation by applying selection, mutation and crossover operators.

Genome definition. Fixing an alphabet Σ, there are three classes of parame-
ters that affect the topology defined by the map L system in our variant of the
mBPMOL-system. The first is the axiom word ω, which has an effect on the
growth and dynamics of the developmental stages. The axiom is encoded as a
word defined by the same letters of Σ. The second class are the edge production
rules P . In keeping with the analogy with biological systems, the production rules
may be seen as the regulators that control the complex processes involved in the
production of cells, organs, limbs, etc. by parallel interpreting the DNA. Each
production rule of the map L system is encoded according to a master rule of the
form:

Y → X1X2 . . . Xn−1Xn

where Y is a non-teminal token and Xi denotes terminal, non-terminal or special
tokens. The number of slots in the rules, n, is decided by the user and is the same
for all rules—to avoid bracket mismatches, if Xi includes a bracket Xi = [±Ai]
is defined with Ai a terminal token or the non-terminal token x. Finally, the
remaining genome is filled in with parameters defining the geometry or physical
properties of the object such as initial edge thickness or initial edge spring stiffness
modulus.

In summary, the genome can be seem as a partitioned ribbon whose first part
is occupied by the letters of axiom, the second by the production rules and the
third by geometric and physical parameters pertinent to the body.

Multi-objective optimization In multi-objective optimization problems, there
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is a considerable number of candidate metrics for defining optimality. In the
present work, the most commonly adopted criterion of Pareto optimum is chosen
(see, for instance, [11]) as explained below.

The optimization problem can be stated as follows: Find the minimum of

{f1(x), . . . , fn(x)},

subject to
g(x) ≤ 0,

where x is the vector of design variables, fi is the i-th target or objective func-
tion and g is the constraint vector. In the present work, constraints are enforced
through penalization of the fitness values. A vector satisfying the constraint is
called feasible. A feasible vector ξ is Pareto optimal or nondominated if there is
no feasible vector x in a neighborhood of ξ such

fi(x) ≤ fi(ξ)

for all i = 1, . . . , n and for at least one i ∈ {1, . . . , n}

fi(x) < fi(ξ).

Hence a Pareto optimum is a point where around it you cannot measurably improve
some targets, without simultaneously worsening others. The set of nondominated
points is called the Pareto front.

With the criterion for optimality, the crowding distance is chosen to compute
the fitness function [12]. The crowding distance can maintain diversity in the
population and has good convergence properties.

Following the description of the biologically inspired method, an account of the
test cases carred-out in this project is presented next.

2. Test cases

To assess the suitability and efficiency of bioTOM for aerospace design, a num-
ber of test cases were selected and simulated. The results obtained in this assess-
ment are summarized in the following sub-sections.

2.1. Cantilever benchmark

The short cantilever problem is a classic benchmark for structural topology
optimization [13, 14, 15]. In this problem, a 2×1 cantilever in plane-stress and with
a load applied at the free extremity (figure 2) is optimized for minimum weight.
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Figure 1: First four steps in the cellular division process modeling the develop-
mental stages of the structure topology.

The Young modulus, E, the point load, P , the density, ρ and the cantilever width
w are all set to 1m, while the Poisson ratio, ν, is set to 0.3. These values do not
intend to represent any specific material, but rather to provide a simple, yet well
defined, benchmark problem to compare the performance of new methodologies
against other established approaches.

In words, the objective of this benchmark is to obtain the lightest cantilever’s
structure for a prescribed maximum deformation. Mathematically the problem
can be expressed as:

minimize W (x) (1)

such that Dmax(x)−Dlim ≤ 0

where W (x) is the cantilever’s weight nondimensionalized by the weight of the
rectangular cantilever 2 × 1. Dmax(x) is the maximum displacement and Dlim is
maximum displacement allowed, in this case Dlim is set to 220. Finally x is the
vector that encodes the Map L-system topology as explained previously.
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2

1

P=1

Figure 2: The 2× 1 cantilever benchmark.

The fitness value is evaluated with plane stress finite elements available in
the FE toolbox COMSOL. This software supports a scripting language similar to
MATLAB that is very useful to automatize the calculation of the fitness. Geometry
creation, meshing, solving and postprocessing, all can be done through scripting.
Some of the commands used are listed bellow.

• curve2, creates a 2D curve object in the form of a Bézier curve;

• elipt2, creates a solid ellipse/circle;

• meshinit, meshes the geometry using the Delaunay triangulation;

• femstatic, solves the stationary PDE problem with a nonlinear or linear
solver;

• postint, integrates expressions over subdomains, boundaries, edges, and
vertices;

• postmin, computes the minimum value of an expression.

A complete reference for the available commands can be found in the COMSOL
user’s manual.

This benchmark problem has one constraint and as mentioned previously con-
straints are enforced through penalization of the fitness values. Thus, the penal-
ization Pw is added to the fitness value in equation 2. Pw is given by:

Pw = C
(
emax(Dmax(x)−Dlim,0) − 1

)
(2)

with C = 1;
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The convergence history for the best individual in a generation is shown in
figure 3. Initially, the improvement between generations is fast but eventually it
flattens out as the best designs become more refined. After 60 generations the
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 = 0.26

Figure 3: Convergence of the bioTOM for the minimum weight optimization.

lightest cantilever geometry that satisfies the optimization 2 weights W = 0.26.
This means that with a proper structure, a cantilever with 26% of the mass of the
rectangular cantilever from figure 2 exhibits a maximum deformation smaller than
Dlim. The structure and the Von Mises stresses for this design are shown in figure
4. From these figures it can be seen how the material is placed such that there
are no unnecessary elements in structure, i.e., all elements withstand similar level
of stress. Also, it can be seen that the elements that are clamped are the thickest
ones. This is in agreement with what was expected given that at the cantilever’s
root the stresses are maximum.

Table 2.1 compares the results obtained with bioTOM against other the results
of methods found in the literature: using a bit-array representation [14, 15] or a
Voronoi-based representation [13], for the structure. The column Wmin demon-
strates that the optimal structure for the bioTOM represents a significant im-
provement with respect to the other methodologies. The column feasible shows
the percentage of feasible individuals for all generations. As the results of the
table shows, bioTOMhas a vital advantage over the Genetic Algorithmof creating
feasible desings. This is relevant because the efficiency of the genetic algorithm
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(a) (b)

Figure 4: (a) The optimal cantilever’s structure for the minimum weight optimiza-
tion after 60 generations. (b) The colormap shows the Von Mises stresses from 0
to 50 and the arrows represent the principal stresses. Converging pairs represent
compressible stresses and diverging pairs represent tension stresses.

improves with increased number of viable individuals. In the Genetic Algorithm,
the individuals are not viable, for instance, either because of connectivity prob-
lems, or the removal of loaded elements, whereas these defects are prevented in
bioTOM. For bit-array representations that ratio can be rather low as shown in the
results for [14] whereas for the bioTOM all the individuals are feasible. Another
performance measurement is the number of FE evaluations necessary until conver-
gence is achieved. For this problem, the number of FE evaluations necessary for
the bioTOM is at lest two orders of magnitudes lower than for the other methods.

Wmin feasible mesh FE evaluations

bioTOM 0.260 100 % N/A1 ∼ 300
Wang et al. [14] 0.325 17 % 20× 10 ∼ 20000
Balamurugan et al. [15] 0.340 N/A2 20× 10 ∼ 100000
Hamda et al. [13] 0.330 N/A2 20× 10 ∼ 16000
1Not Applicable
2Not Available

Table 1: Comparative analysis of several techniques for the minimum weight prob-
lem.
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2.2. MAV wing

In this second test case, the problem of dual optimization of mass and perfor-
mance of a flexible MAV wing is studied. The wing is modeled as a membrane sur-
face (latex rubber) reinforced with a stiffer material (carbon fiber laminates)—the
elastic properties for the wing materials are given in table 2.2. The latex membrane
determines the wing planform shape and the carbon reinforces the structure. The
goal is to simultaneously determine the wing’s shapes and structure layouts with
best mass and aerodynamic performance; the latter measured by the wing finesse:
L/D = CL/CD, where CL and CD are the lift and drag coefficients, respectively.

Rubber Carbon

Young Modulus [GPa] 2× 10−3 317.2
Poisson Coefficient 0.5 0.31

Table 2: Properties for the materials used on the wings

To better assess bioTOMagainst existing design methods, the present test case
is divided into four parts. In the first three, the shape is fixed and only the topology
is optimized. This allowed for a direct comparison between bioTOMand current
popular methodologies for topology optimization. Thus a rectangular planform is
chosen with a chord equal to c = 0.15 cm and a span equal to b = 0.30 cm—
corresponding to an area of A = 0.045 m2 and an aspect ratio (A = (b)2/A) of
2. In the fourth part, the versatility of bioTOM is explored by allowing wing’s
planform shape to vary, while keeping the wing area constant. For all cases the
undeformed shape of the wing is a flat plate and the final wing shape is solely the
result of the fluid-structure interaction., m, m2

The wing is positioned relative to the incoming flow at an angle of attack (α)
that is assumed to be fixed and equal to 3◦ for all cases.

The symmetry of the problem allows to reduce the computational mesh by
simulating only one side of the wing. At the symmetry axis, which corresponds
to the wing’s root, the structure is assumed to be clamped, i.e., zero deformation
and zero angular deformation. Figure 5 depicts the problem geometry for the
rectangular wing (a) and for the variable shape wing (b). The flow conditions
correspond to a Reynolds number of 105, a typical value for these kind of aerial
vehicles [16]. The Reynolds is defined as Re = V Lcρ

µ
, where Lc is a characteristic

length for the problem. For all cases Lc is set to be equal to the chord of the
rectangular wing, Lc = c = 0.15 m. The air properties are given below in the
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 30
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(a) (b)

Design domain

Figure 5: The geometry of the problem: (a) rectangular wing and (b) the wing of
variable shape. Both wings have the same planform area. The flow conditions are
the same for both cases. The computational domains are highlighted in red.

table 2.2 and correspond to the air properties for the standard atmosphere at sea
level. From these values the velocity of the flow can be readily calculated to be
V = 13 ms−1.

Viscosity [kg/sm] 1.785× 10−5

Density [kgm−3] 1.225

Table 3: Air properties at sea level for the standard atmosphere.

As previously explained, the topology generated by the Map L-system must
be given a physical interpretation. In this test case, the edges represent carbon
elements and the interior regions of the cells represent the latex membrane.

The relevant parameters for the Map L-system follow next.

• The initial map is bounded by the rectangle [0, 0.15]× [0, 0.15] which corre-
sponds to one half of the rectangular wing.

• The number of developmental stages, NLevels is an optimization parameter
in the range [3, 6].

• The alphabet Σ contains 8 letters excluding the terminal symbol x.

• The production rules have 8 tokens.
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• The special symbol ∗ and / are used to control the edges thickness.

• The equilibrium computation is bypassed.

For the fourth problem, the wing shape is also a design parameter and, as
such, it must be encoded in the individual’s genome. In this work the shape of the
wing is constructed from 2N parameters appended to the genome. The first N
elements consist on the coordinates (x, y) that define the wing leading edge (L.E.)
P = {P1, · · · ,PN} – see figure 7 where N = 5. The other N elements correspond
to the wing chords C = {c1, · · · , cN} at the spanwise coordinates given by the x
component of P. The trailing edge (T.E.) chordwise coordinates (y direction) are
simply given by

Qy = {P1y + c1, · · · , PNy + cN} (3)

and the x coordinates are Qx = Px. The leading edge and trailing edge coordinates
are then connected with splines to ensure smooth curves and these two curves are
connected at the root and tip by straight lines, forming the closed curve S. This
method is unbiased toward any particular kind of wing planform, and can generate
a large variability of wing shapes as figure 6 demonstrates.

Figure 6: Examples of several wing planforms generated randomly.

With the planform shape S determined, all the vertices in the Map L-system
topology are linearly interpolated such that the square [0, 0.15]× [0, 0.15] is trans-
formed into the shape S. The outcome is a smooth and complex topology as shown
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in figure 7(c). Since after this transformation the wing area andA are unspecified
values it is necessary to scale the geometry in order to obtain the final topology.
The wingA is also an optimization parameter encoded in the individuals genotype
and it is always within the range 0.5 ≤ A ≤ 10.

To obtain the desired values for area andA the scaling factors in the chordwise
direction, Xsf , and in the spanwise direction, Ysf are in general distinct, and can
be calculated as:

Xsf =
A

A0Ysf

Ysf =
b

b0

b =
√
AA

(4)

where b0 and b are the wingspans for before and after the scaling, respectively.
A0 and A are the wing areas for before and after the scaling, respectively. This
process is exemplified in figure 7

With the geometry so defined, it is possible now to build the structure model
and determine the wing deformation using the FE method for a specific wing load.
As mentioned above the edges of the Map L-system topology are interpreted as
Euler beams with square cross section made out of carbon laminate. The beams
are characterized by the material properties Ec, νc, ρc and cross section properties:
area Ac and moments of area Iy, Iz and J . As opposed to the cantilever problem
shown before, here the inner region of the Map L-system has a physical meaning:
the different cells represent latex shells characterized by the material properties
Em, νm, ρm and thickness tm. The shell thickness is the same for all the four
optimizations, tm = 0.1 mm, but the square cross section of the beams is not fixed.
As explained previously, edge properties can also be subjected to the Map L-system
production rules. That feature is used in this case to establish the dimensions of
the square cross section of each beam. In this case the Map L-system returns for
each edge the property thicknessRatio which is a value in the range [1/3, 3]. That
value is used to determined the actual beam thickness given by t0×thicknessRatio,
where t0 = 1 mm. Thus the beam thickness varies in the range [0.33, 3] mm.

The geometry modeling, meshing, solving and postprocessing are done through
scripting in COMSOL allowing for the automated study of the wing designs. A
study was performed to determine the mesh density necessary to attain mesh
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Figure 7: Example that shows how the wing of variable shape is ”build” from
the Map L-system topology and the shape S.(a) Map L systems topology, (b)
wing platform shape S, (c) wing showing the internal structure and (d) the final
topology with the correct area and A, after applying the scaling.

independence—see Figure 8.T ypically, in a 2GHz, 4.00 GB computer the FE
method solution is calculated after 2 seconds.

The procedure explained above is independent of the wing load. To obtain
the steady state deformation for the wing the aerodynamic pressure loads must
be calculated. There are many computational tools that can be used for this
calculation, such as, commercial or open source softwares that solve the governing
equations – conservation of mass and conservation of momentum, that govern the
incompressible viscous flows. These tools can be very accurate but are in general
computationally demanding due to the nonlinear nature of the conservation of
momentum equations and the necessity of dense meshes in the domain surrounding
the wing. Since the bioTOM requires thousands of these computations these tools
can not be used due to the prohibiting computational times. As an inexpensive
surrogate for the more accurate tools a Vortex Lattice Method (VLM) is used
here. The computational effort required by the vortex lattice method is almost
negligible when compared to the codes mentioned above given that it requires
only the meshing of the wing surface and the solution of a single linear system of

16



(a) (b)

(c)

Figure 8: (a) An example of a COMSOL mesh. (b) An example of a COMSOL
geometry. The colors represent the edge thickness. Dark red: thick beams, dark
blue: thin beams. (c) FE solution. The colormap depicts the wing deformation in
m for a constant load of 10 Pa

equations. So that the velocities are given by the gradient of the potential φ:

v = ∇φ, (5)

where the velocity potential is the solution of the Laplace equation

∇2φ = 0, (6)

and the boundary conditions are: velocity must tend to the approaching velocity
in the farfield

v→ {V cos(α), V sin(α)}, (7)

and the velocity normal to the wing surface must be zero.

∂v

∂n
= 0. (8)
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The pressure can be computed from the Bernoulli equation:

p∞ +
ρV 2
∞

2
= p+

ρV 2

2
, (9)

where V = |v|.
The denomination of vortex lattice method encompasses a myriad of methods.

This work uses a linear vortex lattice method as described in [17]. The vortex
lattice method approximates the continuous distribution of bound vorticity by
discretizing the wing into a paneled grid of N spanwise panels and M chordwise
panels as exemplified in figure 9, and placing a vortex ring upon each panel. The
vortex ring is created by four vortex filaments located at the edges of the panel.
Each vortex filament creates a velocity whose magnitude is assumed to be governed

z

x

y

j

i

nij

 ij

(a) (b)

Figure 9: (a) Example of the paneling of a generic wing with N = 5 and M = 3.
The black dots are the wing grid, and the red dots are the points where the vortex
is placed – collocation points. Three panels are show. (b) shows a typical panel
for which i = 2 and j = 3. nij is the normal vector to the panel ij and Γij is the
vortex strength [m2/s].

by the Biot-Savart law [17]. Furthermore, a control point is placed at the three-
quarter-chord point of each panel. The tangency condition is applied (i.e., the
wing becomes a streamline of the flow) by stipulating that the induced flow (from
the vortex rings) along the outward normal at each control point exactly cancels
with that caused by the free-stream velocity. The following system of equations
results:

a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
am1 am2 · · · amm




Γ1

Γ2
...

Γm

 = −


(V cos(α), 0, V sin(α)) · n1

(V cos(α), 0, V sin(α)) · n2
...

(V cos(α), 0, V sin(α)) · nm

 (10)
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Γi is the unknown circulation strength of each vortex ring, and m = N ×M . In
order to obtain this system of equations the panels must be relabeled in a sequential
manner from 0 to m = N ×M . For the structured grid that is easily done with
the aid of a variable K = (j − 1)×N + i. As an example, the panel in figure 9(b)
is relabeled from (2, 3) to 12. The elements in the matrix from equation 10 are the
influence coefficients, which are given by:

aij = (u0, v0, w0)ij · ni, (11)

where (u0, v0, w0)ij are the velocities induced at the i-th collocation point by the
j-th. The indices i and j are sequential indices, each one identifies a different
panel. The solution of the linear system (10) yields the strength circulation for
each panel. Further details and information can be found in the [17]. Before using
the code for the optimization, the code was thoroughly verified against analytical
solutions and reference numerical data [17].

At this point the means to calculate the wing deformation for any given out
of plane load and the means to determine the aerodynamic load for any given
wing geometry are defined. The following step is to incorporate these two solvers
in a fluid-structure interaction solver in order to obtain the steady state wing
deformation. Given that the FE method here used is the one implemented in
the commercial package COMSOL, and the vortex lattice method is coded and
compiled in FORTRAN, a segregated solver was used.

The segregated solver was implemented in MATLAB and consists of a fixed
point iteration with intermediate update. Thus the aerodynamic load is computed
first for the deformed wing and then the wing deformation is calculated for that
load and so on. The communication between the FE method and the vortex lattice
method is processed through ASCII files.

The loop continues until the stopping criteria are satisfied. In this case the
solver stops if the value of the finesse CL/CD converges or if the maximum num-
ber of iterations is achieved. The last condition is necessary to handle divergence
of the segregated approach, which was initially observed for the most compliant
structures—the large deformations lead frequently to unstable solutions. For most
of these cases a stable solution can be obtained if relaxation is used: the current
deformation is a linear interpolation between the deformation from the previous it-
eration and the one from the current iteration u = r*uNew + (1-r)*uOld. Where
r is the relaxation factor that varies between 0 and 1.

In pseudo code the aeroelastic solver can be written as:

ContinueLoop = true
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uNew = 0;

uOld = 0;

u = 0;

it = 1

while ContinueLoop:

P = computeWingLoad(u)

uNew = computeWIngDeformation(P)

if StopLoop == true:

ContinueLoop = false;

else:

ContinueLoop = true;

endif

it=it+1;

u = r*uNew + (1-r)*uOld;

uOld = uNew;

end while

where the relevant subroutines and variables are listed next.

• u, uNew and uOld are the current (relaxed) deformation, the latest deforma-
tion and the deformation form the privious iteration, respectively.

• P is the current aerodynamic load.

• ComputeWingLoad: returns the aerodynamic load for a given wing geometry
and deformation.

• computeWIngDeformation: returns wing deformation uNew for a given wing
load P.

• StopLoop: returns true if the one of the stopping criteria is safisfied. Returns
false otherwise.

Just as in the previous test case, it is necessary to define the objective vector.
In this test case, there are two goals: to minimize the wing mass, and to maximize
the wing aerodynamic performance as given by the finesse CL/CD. The finesse
for the deformed wing is calculated as explained previously. The mass of the
wing is calculated by integrating the density along the beam cross section or panel
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thickness as appropriated. Upon determine these two quantities the fitness of a
particular design is determined:

{F (x),W (x)}+ Pδ (12)

where F is the negative value for the wing’s finesse and W is the wing’s weight,
x is the vector of reals that encodes the genome and Pδ is the penalization for
maximum deformation, given by:

Pδ = 5
(
emax(δmax−δlim,0) − 1

)
The inclusion of this term is necessary given that for individuals with less stiff
elements the deformations can be very large, which is not desirable for several
reasons. In the first place the validity of the equilibrium equations solved in the
FE method might be compromised since they follow from the linear elasticity
framework which assumes small deformations. Secondly the wing with large de-
formations could provoke massive flow separations which would render the vortex
lattice method calculations invalid as remarked before. As for stress levels, they
are assumed to be small such that there is no risk of material failure and therefore
no stress constraint or penalization needs to be considered.
Methodology for the Genetic Algorithm with bit-array representation

For this methodology the wing structure is given by a quadrangular grid of
N ×M elements, where N and M are the number of panels in the chordwise and
spanwise directions, respectively. This is the same grid used for the vortex lattice
method which was previously explained. However, now each grid element also
represents a panel or shell as exemplified in figure 11. To each panel is assigned a
the value 0 or 1. The former indicates that the material of the panel is latex, and
the latter indicates the panel is made of carbon laminate.

The wing deformation is computed with the FE method using shell elements,
whose material can be latex or carbon laminate. The material properties are given
in table 2.2. An important difference between bioTOM and Genetic Algorithm is
that now the carbon laminate is in the form of panels and no longer in the form of
beams. The thickness of the carbon laminate panel is the same as the latex panels
tm = 0.1 mm.

The vortex lattice method is exactly as for the bioTOM as well as the aeroelastic
solver.

The optimization is performed with the Genetic Algorithm for witch the genome
is a vector of N ×M binary elements that determine the wing structure as ex-
plained above. Figure 10 exemplifies the decoding for the bit-array representation.
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1 1 1 1 1 1 1 1
1 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0
0 0 1 0 1 1 0

1 0 0 0 1 1 0 1
1 1 1 1 0 0 1 1
0 0 0 0 1 0 0 1
1 0 0 1 1 0 0 1

(a) (b)

1

Figure 10: Decoding step for the bit-array representation.(a) The genome; (b) the
resulting wing structure: white squares represent latex panel and the black squares
represent carbon panels.

Methodology for the gradient method with SIMP
Here the solid isotropic material with penalization (SIMP) method is briefly

outline. The interested reader may consult [18], [16]. For this method, the topology
of the wing is defined in a similar way to the bit-array representation. The main
difference is that to each panel is assigned a value that varies between 0 and 1.
This value, for a given panel i, 1 ≤ i ≤ M × N , represents the density variable
Xi, where the word density stands for the relative percentage of each material.
For example, a density value of Xi = 0 means that the panel i is made out of
latex membrane, a density value of Xi = 1 represents a panel made out of carbon
laminate and an intermediate value represents a theoretical inexistent material
that is a mix of both. The efficiency of this method increases when X is penalized
[18]. Penalization is accomplished by replacing the changing the density from Xi

to Xp
i , where p > 0 is the penalization power.

The usage of an inexistent material arises from the necessity of having a smooth
function that can be optimized using the gradient method. This is a theoretical
artifice that has been widely and successfully used in topology optimization [18].

Formally the problem can be stated as:

minimize F (x),x (13)

such that W (x) = −Wlim

where F and W are the negative of the finesse and the wing’s weight as defined
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previously. In this case the exact expressions for the mass constraint can be easily
obtained:

m =
N×M∑
i=1

mi (14)

where mi is the mass of the i-th panel which is given by

mi = Xi ·mc + (1−Xi) ·mm (15)

where mc and mm correspond to the mass of the carbon laminate panel and to the
mass of the latex panel, respectively. Replacing 15 in to 14 yields a linear equation
for the constraint.

m =
N×M∑
i=1

Xi ·mci + (1−Xi)mmi
(16)

which can be recast as:

(
1 1 · · · 1 1

)


X1

X2
...

XN×M

 =
m−N ×M ·mm

mc −mm

(17)

The optimization was done keeping the mass constant and maximizing the
finesse.

∂F

∂X
(18)

For a given X the finesses is calculated with the areoelastic solver explained previ-
ously. The only difference is that now, for the FE method calculation the material
properties for the shell elements are those of the fictitious material determined by
the Xi. In practical terms the stiffness matrix Ke of each finite element is given
by:

Ke = (Kc −Km) ·Xp
e + Km (19)

where Xe is the density of the element, and p is the nonlinear penalization power.
With the structure determined as exemplified in figure 11, the wing deforma-

tion is computed using the FE method implemented in MATLAB1. The grid for the
FE method consists in a triangular mesh that is obtained by bisecting each panel
diagonally as depicted in figure 11(c). For the results displayed next N = M = 30,

1The PIs thank Bret Stanford for providing the initial SIMP code.
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which yields 900 panels. These figures were dictated mainly because of compu-
tational limitations, ideally more elements would be desired for reasons of grid
resolution, since the distribution of membrane and carbon elements is dependent
on the size of the panels.

Here it should be pointed out a major difference between the bioTOM and the
other two methodologies: the mesh independence that characterizes the bioTOM.
Indeed, nowhere in the bioTOM formulation a mesh or ground structure is nec-
essary. That has a tremendous effect on the maximum resolution—in the sense
of the smallest element on the wing structure—that the structure can display.
For the non-bioTOM approaches such as these two the resolution is determined
by the grid, in this case with the mesh of 30 elements per side, the resolution is
150/30 = 5 mm, whereas for the bioTOM that value is only dependent on the
limits imposed by the user. As explained above the bioTOM smallest element can
be 0.33 mm. To obtain that resolution with a mesh such as the ones here used,
455 elements per side would be necessary, yielding a total of 207, 025 panels. A
grid this fine would be computational prohibitive.

(a) (b) (c)

Figure 11: Wing structure for the Optimization 1 (a) and Optimization 2 (b).
The grey colormap represent the density variable X. Black is for 1 and white is 0.
(c) depicts the triangular mesh for the FE method. In this example N = M = 8.

In the following, the results for the four optimizations are presented. First
it is shown the results obtained with the SIMP then the results for the Genetic
Algorithm with a bit-array representation and finally, it is presented the result for
the bioTOM. For reference, at this flight condition the finesse for a rigid rectangular
wing is equal to 2.49.

The optimization with SIMP ran for 100 iterations or until the finesse con-
verges. A typical convergence history is shown in figure 12.
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Figure 12: Convergence history for the finesse optimization.

Several values for the mass were studied spanning from a wing made out of
latex to a wing made out of carbon. For easy of reading, in the results below the
mass is represented by the percentage carbon laminate coverage.

As explained previously, the output of the minimization is the vector of densi-
ties X which requires post processing given that values between 0 and 1 represent
a fictitious material. This is a well know limitation of homogeneous methods and
there are several techniques to addresses this issue [16]. Here a post-processing is
employed by applying the transformation to the elements Xi:

Xi =

{
0 if Xi ≤ ε
1 if Xi > ε

(20)

where ε is a parameter controlled by the user. In the results that follow ε =
0.5 which corresponds to rounding the elements of X. This correction alters the
structure and the finesse as shown in figure 13, but maintain the correct trend. In
this figure the gray line refers to the results without postprocessing and is shown
just for reference since it represents fictitious structures. The “true” results are
shown in black. Figure 14 shows the best wing structure of all cases studied.
The optimum level of carbon laminate coverage was found to be approximate 30%
without postprocessing – figure 14(a). After the postprocessing – figure 14(a), the
percentage of carbon laminate decreases to 20% but the finesse remains almost the
same at 5.4 as shown in figure fg:bestSimp.

This figure clearly shows that there is a optimum level of carbon coverage such
that the wing is neither to stiff nor to compliant.
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Figure 13: The finesse variation with the carbon laminate coverage.

(a) (b)

Flow

Figure 14: Best wing structure. Only half of the wing is shown. The arrow shows
the flow direction.(a) Without postprocessing, (b) with postprocessing

In this segment, the results for the square wing optimized with the Genetic
Algorithm and the bit-array representation for the wing’s structure are presented.
The Genetic Algorithm ran for 100 generations of 200 individuals. Figure 16
shows all the individuals calculated during the simulations. The Pareto front is
highlighted in blue. The horizontal axis represents the designs finesse and the
vertical axis represents the wing’s mass. Given that the carbon coverage is a
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(a) (b)

Flow

Figure 15: The wing deformation for the best structure. (a) The color map shows
the wing deformation in m. The contours identify carbon laminate regions.(b)
Three different perspective views of the wing deformation. The arrows show the
incoming flow direction for orientation.
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Figure 16: Pareto front for Genetic Algorithm with the bit-array representation.

relevant parameter as demonstrated previously, that value can be read in the left
vertical axis.

There are nine designs in the Pareto front. Depending on design goals any of
these individuals can be selected. Three of these designs order form highest to
lowest finesse can be seen in figures 17, 18 and 19.
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Figure 17: Pareto front.

Figure 18: Pareto front.

Figure 19: Pareto front.

The results for the multiobjective bioTOM optimization for the square wing
follow next. These results were obtained with 100 generations of 200 individuals.
All individual whose fitness are in the range [1, 6]×[0.001, 0.007] are shown in figure
20. The Pareto front is displayed in blue. The imediate conclusion by comparing
to the results from the two previous results is that the bioTOM finds designs whose
finesse is as good as the ones for the SIMP, but as the mass decreases bioTOM
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Figure 20: Pareto front for Genetic Algorithm with the bit-array representation.

outperforms SIMP. Three different designs are shown in figures 21 to 23. Each
panel shows from left to right: the wing design with the carbon beams colored by
their thickness in mm, the steady-state wing deformation in m and the pressure
coefficient. This designs are striking for their simplicity. Indeed the evolutionary

Figure 21: Pareto front design: finess=5.40, mass=0.0026.

algorithm shows that very few to none beams are necessary within the wing. All
emphasis is in the beams at the edge of the wing. Figure 24 displays the structure
of the wing with carbon beams of different thicknesses for the design with the best
finesse.
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Figure 22: Pareto front design: finess=5.26, mass=0.0025

Figure 23: Pareto front design: finess=3, 53, mass=0.0023

Finally the results for the wing with a variable shape are shown. The optimiza-
tion was ran with a population of two hundred individuals and for one hundred
generations. Figure 25 shows all designs studied whose fitness vector falls in the
range [0, 10] × [0, 0.01]. Some Pareto designs are shown in figures 26-29. Each
of these figures depicts: the (a) the wing geometry or skeleton with the beams
thickness given by the colormap; (b) the wing deformation in meters; and (c)
the pressure coefficient distribution. All the figures assume the same color maps.
These figures are shown in descending order of finesse.

The amplification factor is not the same for every figure, or otherwise some
figures would be very small because the wing A differs from design to design,
hence the wing shapes can not be compared using these figures. Figure 30 depicts
the wing designs in the same scale. The labels in this figure show the wing aspect
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Figure 24: The actual wing structure showing the carbon beams with different
thicknesses.
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Figure 25: Pareto front and accumulated population at the one hundredth gener-
ation.

ratio, A.
The layouts on the Pareto front conveys a trend for increased “area coverage”

by the reinforcements as more mass becomes available. Thus, small mass Pareto
designs tend to concentrate their limited mass along critical axes, whereas with
more mass available the the number and spread of reinforcements increase. This
increase in area coverage with more mass available can be understood by noticing
that, at low mass, spreading this low amount of reinforcement throughout the wing

31



Figure 26: Pareto design: finess=8.87, mass=0.0054. (a) geometry. The color bar
represents the beams thickness in mm. (b) wing displacement in m. (c) pressure
coefficient.

box area would not strengthen any specific wing region. And would, as a conse-
quence, provide little stress relief on the wing box. By contrast, with increased
mass available, the topology can strengthen the critical axes of the structure and
also reduce the stress with reinforcements that work together to distribute the load
amon

3. Fighter wing box

This next test case consider the problem of the design of the wing box of a
generic aircraft fighter. As before, the topology generated by the map L systems
is a planar topology with no canonical structural meaning attached to it—in the
sequel, this topology is called the structure skeleton. To build a structure model
from this topology, first it is selected the following basic structural elements:

• Shear panels;

• Posts and caps for each shear panel.

• Upper and lower skin shells connected to the shear panels.

The shear panels are structural elements that can support shear stress and
extensional force along its edges. These elements have negligible bending stiffness
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Figure 27: Pareto design: finess=7.67, mass=0.0035. (a) geometry. The color bar
represents the beam’s thickness in mm. (b) wing displacement in m. (c) pressure
coefficient on the wing.

and axial membrane stiffness. The posts and caps are rod elements that connect
the shear panels and shells, and they have negligible bending stiffness. The upper
and lower skins are modeled as isotropic shells.

These basic structural elements are then combined into a structural model for
the wing box. The resulting wing box is simulated using the finite-element method
[19, 20, 21]. The final finite element model is explained and illustrated below for
the wing box structure of a generic aircraft fighter. In the present test case, because
of its widespread use in the aeronautical industry, the FE model was created and
simulated using MSC/NASTRANTM. This choice also highlights the versatility of
bioTOM in working with existing software, with minimum modification.

The specific steps leading to the finite element model of the wing box are
enumerated below.

1. Mesh generation. Given a layout, in this first step, a two-dimensional
mesh is generated that conforms with the planar topology—see figure 31.
For that purpose, an advancing front, Delaunay triangulation method [19] is
used. The result is a set of two-dimensional grid points, and the adjacency
matrices for the nodes, edges and faces of the discretized domain. In the
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Figure 28: Pareto design: finess=5.29, mass=0.0028. (a) geometry. The color bar
represents the beam’s thickness in mm. (b) wing displacement in m. (c) pressure
coefficient on the wing.

NASTRANTM card deck, the “GRID” points are written in the three dimen-
sional space by symmetrically placing the grid points above and below the
wing symmetry plane—the z-coordinate of each point is obtained accord-
ing to an interpolation function that accounts for the variation of the wing
thickness.

2. Shear panels. After the grid points have been created, as a second step,
the cards for the shear panels as “CSHEAR” elements are written. These
elements are specified as quadrilaterals using the grid points generated in
the first step. The thickness of each shear panel is a function of the edge in
the skeleton onto which the panel projects. In figure 32 it is shown the shear
panels for the mesh generated in the first step.

3. Posts and caps. In this third step, the shear panels defined previously
are strengthened with posts and caps. The latter are rods that are modeled
as “CROD” finite elements in NASTRANTM. Each post is placed at the
vertices of the skeleton and the caps run at the lower and upper edges of
the shear panels. The radius of each cap is the same for each edge of the
skeleton. The elements thus generated are illustrated in figure 33.
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Figure 29: Pareto design: finess=3.48, mass=0.0021. (a) geometry. The color bar
represents the beam’s thickness in mm. (b) wing displacement in m. (c) pressure
coefficient on the wing.

6.7 4.2 3.3 1.3 1.1

Figure 30: Individuals from the Pareto front. The label is the A of the wing.

4. Upper and lower skins. Finally, the wing box is closed with upper
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Figure 31: Skeleton (left) of wing box design and the generated mesh (right).

and lower skins. Both skins are modeled by triangular shell elements of
“CTRIA3” type in NASTRANTM with equal in- and out-plane stiffness. The
complete structural model is depicted in figure 34.

With the structural model, the analysis can be performed using NASTRANTM

to obtain the desired information on deformation, stress and mass of the structure.
Figure 35 shows the simulation result for the static aeroelastic problem of the trim
problem in a six-gravity maneuver—see §?? for details on the physical problem.

The geometry of the problem consist of a sweep and tapered wing with an
internal polygonal area whose boundary the structural elements cannot cross—
see figure 36. In this problem, the polygon area inside the planform represents
the area that delimits a generic aircraft subsystem. All components of the wing
are build with the same material with assumed properties: E = 1 × 107 psi and
ν = 0.33. The flight condition corresponds to the trim condition for a vertical, six-
gravity maneuver at sea-level and Mach number M = 0.7. The dynamic pressure
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Figure 32: Shear panel elements in the wing box model.

is q = 20 psi. The aerodynamic load is calculated using the Doublet-Latice Method
for interfering lifting surfaces in subsonic flow [22, 23]. Besides the aerodynamic
loads, a concentrated mass of 2000 lbm at x = 94.15 in, y = 47.05 in, z = −2.56 in,
a concentrated mass at the support point at the root: x = 40 in, y = 0 in, z = 0 in
and a concentrated load of 1000 lbf at the positive Oz-direction at the tip point
x = 135.31 in, y = 138.20 in, z = 1.51 in are considered. The distributed body
gravitational force field is also accounted for and an inertial, non-structural added
mass distributed over the wing is used to account for inertia effects: the “inertia
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Figure 33: Post and cap elements in the wing box model.

relief” from NATSRANTM.
The optimization was run with a population of two hundred individuals and

for fifty generations. In the runs, rules defined by six token slots, and symbols
controlling each of the following structure properties: post radius, cap radius,
skin thickness and shear panel thickness are used. The vector of design variables
comprised the mass of the structure and the maximum stress on the structure.
The latter is calculated among the maximum von Mises stress in the skins, the
maximum axial stress on the rods and the maximum shear stress in the shear
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Figure 34: Upper and lower skins and the final wing box model.

panels.
Figure 37 shows the Pareto front and all individuals calculated in the fifty

generations, whose normalized fitness vector fall in the unit [0, 1]2 square. The
normalization is effected using a reference mass of 1500 lbm and the allowable
shear stress for aluminum 12, 000 lbm.

A sample of Pareto designs is shown in figures 38–45. Each of these figures
depicts the skeleton on the left and the von Mises stresses on the deformed structure
at the right. The displacement is amplified for easy of reading—note that each
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Figure 35: Von Mises stress distribution for the wing box model.

figure assumes a different color map and different amplification ratio. These figures
are shown in descending order of mass, and both the normalized mass and the
normalized stress are shown in the caption as a percentage of their respective
normalizing factors.

The layouts on the Pareto front conveys again a trend for increased “area cov-
erage” by the reinforcements as more mass becomes available. Thus, small mass
Pareto designs tend to concentrate their limited mass along critical axes, whereas
with more mass available the number and spread of reinforcements increase. This
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Figure 36: Schematic of the wing-box horizontal projection. Coordinates
(x, y) of the geometry vertices: 1: (25.0000, 0.00000), 2: (123.222, 0.00000),
3: (135.313, 138.200), 4: (121.260, 138.200), 5: (93.2080, 15.7500),
6: (101.877, 25.7500), 7: (106.570, 59.3750), 8: (96.0300, 65.0000), 9:
(85.4890, 59.3750), 10: (80.7960, 25.7500). Length in inches.

increase in area coverage with more mass available can again be understood by
noticing that, at low mass, spreading this low amount of reinforcement through-
out the wing box area would not strengthen any specific wing region. And would,
as a consequence, provide little stress relief on the wing box. By contrast, with
increased mass available, the topology can strengthen the critical axes of the struc-
ture and also reduce the stress with reinforcements that work together to distribute
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Figure 37: Pareto front and accumulated population at the fiftieth generation.

Figure 38: Pareto design: mass = 95.4 %, stress = 17.2 %.
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Figure 39: Pareto design: mass = 41.1 %, stress = 20.5 %.

Figure 40: Pareto design: mass = 36.6 %, stress = 27.1 %.

the load among several members.
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Figure 41: Pareto design: mass = 35.6 %, stress = 28.5 %.

Figure 42: Pareto design: mass = 34.9 %, stress = 35.2 %.

This increased area coverage demonstrates, in passing, the gains of topologi-
cal optimization when compared to sizing optimization. Indeed, with more mass
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Figure 43: Pareto design: mass = 22.7 %, stress = 43.0 %.

Figure 44: Pareto design: mass = 21.8 %, stress = 58.9 %.

available, it is preferable to redistribute the reinforcements among several shear

45



Figure 45: Pareto design: mass = 16.5 %, stress = 82.9 %.

panels rather than increase the thickness of the existing layouts of the low mass
designs.

The figures also reveal a larger accumulation of structural reinforcements at
the leading-edge section of the wing, specially at the root section. This structural
buildup at the leading-edge/root is essential to strengthen the wing against the
aerodynamic pressure loads, which peak at the stagnation line close to the leading
edge.

4. Satellite adapter

The last test case in this summary, is the design of a structure for a Payload
Adapter and Deployer, PAD for short. The PAD’s function is to accommodate
multiple payloads into the payload bay. In this case the payloads consist in one
large satellite, and six small satellites. The PAD with the satellites assembled is
shown in figure 46.

Because the highest loads the PAD will experience occur during launching only
that stage is considered—after the payloads detached from the PAD its mission
has been accomplished and it is discarded. The exact loads experienced by the
structure are unknown, thus the conditions for this optimization correspond to
a worst case scenario in which the assembled structure—PAD plus the payloads,
experiences vertical and lateral accelerations 13 times grater than g.
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Figure 46: The assembled structure. 1: Large satellite; 2: small satellites; 3: the
PAD showing an initial design not optimized.

Figure 46 shows an initial design2 for the PAD. This design was determined
using just the designers experience, and no automatic optimization was performed,
apart from sizing by trial and error. This design weights 22 kg and satisfies all the
constraints and requirements.

The goal for present optimization is to reduce the mass of the PAD with-
out weakening the structure so that it can withstand the launching phase. For
aerospace applications, weight reduction is extremely important for several rea-
sons. In first place, cost reduction as at current prices hauling one kilogram into
a low earth orbit cost several thousand dollars. Secondly, the reduction of any
unnecessary weight allows for the inclusion of other payloads that can enhance the
mission, such as batteries, scientific instruments, etc.

2The PIs are grateful to Carol Hude for providing the initial design.
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The PAD is built from aerospace aluminum with the following material prop-
erties:

Density 2800 kg/m3

Young’s Modulus 71 GPa
Yield stress 572 MPa

Table 4: Material properties

There are several elements of the design are determined a priori . For example,
due to payload bay space constraints the geometric envelop for the PAD is well
defined—see figure 47. Also the positions of certain elements are constrained
such that the satellites can be attached to the PAD. These elements are shown in
figure 47 and are designated hereafter as the PAD’s “bare bones”.

Figure 47: The bare bones of the PAD. The elements onto which the satellites will
be attached are highlighted in color, red: large satellite, blue: six small satellites.

The large void areas in the three platforms (highlighted in yellow in figure 47)
are free to be “filled” with topologies produced by the Map L-system. The opti-
mization searches for the best structure generated by the PAD’s bare bones and
Map L-system. Furthermore, the thickness of every beam in the structure is also
a optimization variable.

Other than these geometrical constraints that can be easily fulfilled during
the geometry modeling, there are maximum stress and maximum displacement
constraints. The former must be satisfied to guarantee that the structure does not
fail—the latter assures that the deformed PAD will not interfere with the small
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satellites and possibly damage them, given that upon assembling gaps between
PAD and satellite are narrow. Formally, this problem can be stated as:

minimize W (x) (21)

such that σmax(x)− σlim ≤ 0

and δmax(x)− δlim ≤ 0

where W (x) is the PAD’s weight, σmax(x) is the maximum stress experienced
by the structure, σlim is maximum allowed stress level, δmax(x) is the maximum
displacement in the structure and δlim is the maximum allowed displacement. For
this problem the maximum allowed values are:

σlim =
σyield
n

(22)

δlim = 2.0 cm

where n is a safety factor equal to 1.5, and the σyield can be found in table 4.

The PAD’s structure can be seen as the assembly of many beams of variable
thickness. These structures can be modeled accurately with tridimensional finite
elements, however mesh generation can be complex and may require supervision
precluding the sought after automatization of the calculus of the fitness function.
Thus, as in the previous test cases, a simpler and less computational expensive
surrogate model is used to determine the fitness value. For the surrogate model
all the tridimensional beams are replaced by Euler beams that assume a linear
variation of stress in the transversal direction with the maximum stress located at
the external faces of the beam. This approximation is valid because all elements in
the PAD have a high ratio of length to thickness, and only small deformations are
considered. The usage of Euler beams simplifies the mesh generation greatly since
all geometric elements become lines, and reduces the solution time enormously.
The differences in the thicknesses of the beams are taken in to account trough the
area properties - area and area moments of inertia.

5. Map L-system topology

The PAD structure is formed by the PAD’s bare bones plus five different topolo-
gies determined by the Map L-system which occupy the voided areas in the three
platforms. The way the five maps – one for the top platform, and two for each of
the other two, are assembled onto the PAD’s bare bones is shown in figure 48.

The different Map L-system settings used in the generation of these topologies
are listed bellow.
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Map 1

Map 2

Map 3

Map 5

Map 4

Figure 48: This figure shows how the five different map L-systems are assembled
in the PAD bare bones

• Alphabet Σ has 6 letters excluding x.

• The production rules have 6 tokens.

• The number of developmental stages varies between 3 and 6.

• The equilibrium calculation is bypassed.

• Two of the initial maps have 6 edges and the other three have 4 edges. The
coordinates of the vertices in the initial maps are such that the Map L-system
topology fits in the PAD’s bare bones as shown in figure 48.
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The PAD must withstand a vertical and lateral acceleration 13 times greater
than g with the satellites attached onto it. For simplicity each the satellite is
replaced by a lateral and a vertical force of magnitude 13g.m where m is the
mass of the satellite. The mass of the large satellite is m1 = 50 kg and the mass
of each one of the small satellites is m2 = 5.25 kg. These forces are applied to
correspondent satellite center of gravity as shown in figure 49. These forces are
then transfered to the PAD as distributed forces (force per unit of length) and
moments. Furthermore body forces due to the structure’s own weight are also
considered.

13 g

13 g

L1

L2

Figure 49: Loads due to the satellites applied at the respective centers of gravity.

The calculation of this forces and moments due to the satellites weight is done
in a simple way. For example, all the effects caused by the presence of the large
satellite will be transfered to the its attachment points, in this case the ring in
the top platform. The vertical acceleration experienced by the satellite causes a
distributed load in the vertical direction, whose magnitude is calculated by dividing
the satellite’s weight at 13g’s by the perimeter of the ring. As for the lateral
acceleration experienced by the satellite its effect is twofold. In first place, it causes
a lateral distributed force whose direction is the same as the lateral acceleration
and whose magnitude is same as for the vertical force. Secondly, it also provokes a
twisting moment on the ring. This moment is simulated by applying a distributed
force onto the ring as shown in figure 50. The magnitude of this force is calculated
using the schematic in the same figure. The differential torque created by the force
distributed over the infinitesimal length dθR is dM = 2FRdθRsin(θ). This can
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Figure 50: The distributed force F is equivalent to the moment M . R is the radius
of the ring to which the large satellite is attached.

be readily integrated for the whole ring and the value of F obtained.

M =

∫ π

0

2FR2 sin(θ)dθ ⇒ F =
M

4R2
(23)

where the moment M is given by M = 13g ·m1 ·L1, where L1 is known. The loads
due to the smaller satellites are calculated in a similar manner.

With the tools presented above it is possible to study any PAD design encoded
in the vector x. After creating the PAD structure by assembling the PAD’s bare
bones and the several Map L-system topologies, the tridimensional PAD model is
analyzed via the FE method to determine the fitness of the individual. For this
weight minimization problem the fitness function is given by:

W (x) + Pσ + Pδ (24)

where Pσ and Pδ are the penalization terms for maximum stress and maximum
displacement, respectively. These terms are given by:

Pσ = 5
(
emax(σmax−σlim,0) − 1

)
Pδ = 5

(
emax(δmax−δlim,0) − 1

)
.

(25)

With this functional form for the penalization, structures for which the maximum
stress and/or maximum displacement are marginally higher than the limiting val-
ues are not very penalized.
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From the FE method solution the maximum stress and the maximum dis-
placement can be determined. The stresses on the Euler beams results from trac-
tion/compression and also from bending. To avoid complicated calculations to
determine the actual maximum tension on each beam, a conservative value for the
maximum stress in the structure is used:

σmax = |σmax,bending|+ |σtension| (26)

where the values σmax,bending, and σtension are readily available in the COMSOL
post-processing functions.The maximum displacement in the PAD (δmax) is also
calculated with the COMSOL postprocessing functions.

The mass is calculated by integrating the cross-sectional area along the beams
length. This calculation yields a conservative value for the PAD’s mass since it
takes into account the mass in the intersecting beams twice, as exemplified in
figure ??. It is shown ahead this can cause a difference of more than 15% between
the mass for the surrogate model and the mass for the real structure.

Figure 51: The calculation of the mass is conservative because the mass of the
cube highlighted in the intersection of the two beams is counted twice.

The bioTOM settings for the evolutionary algorithm for this single objective
optimization are listed below.

• There are 100 individuals per population.

• The initial populations were generated randomly.

• The Genetic Algorithm ran for 100 iterations or until no improvement was
observed.

• The new generations were formed by 5% elite individuals, 80% crossover
offsprings and 15% mutated individuals.
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• The crossover, selection and mutation operators are as explained above.

• The genome is encoded in vector of reals, Y, whose elements are vary between
0 and 1, just as it was described above, but now five different Map L-system
must be coded instead of just one plus the thickness for the PAD bare bones
elements. Figure 52 the structure of Y.

Map L-system 1 Map L-system 2 Map L-system 5 Bare Bones Thickness

Figure 52: The genome codification for the PAD.

The convergence history for the best design is depicted in figure 53.
As expected the curve flattens out as the “best” information in the genetic

pool becomes concentrated in one individual. After 70 generations only very small
improvements are observed from generation to generation.

Figure 53 also depicts the platforms structures for the best individuals in in-
termediate generations. An important conclusion for this particular case, and
perhaps a conclusion that goes against initial conceptions, is that the best struc-
ture is a rather simple one. One can see from these figures a constant reduction of
the number of beam elements for the best structure as the number of generations
increases, and at the same time the fine tuning of the beams thickness. Figure 54
shows the beams thicknesses for the same individuals as in the inserts in figure 53.

The optimal structure after the 100 generations is depicted in figure 55. The
relevant variables for this individual are listed below:

• the mass, massPAD = 15.4 kg, which represents a reduction of 30% in the
mass of the structure when compared to the initial design (22 kg);

• the maximum stress, σmax = 294 MPa is below the 300 MPa as required;

• and finally the maximum displacement, δmax = 1.6 cm, is also below the
limiting value of 2 cm.

In order to validate this results the optimal design was modeled in a more
realistic manner. The beams were modeled as tridimensional solid elements and
the satellites were included in the model to simulate the loads applied to the PAD
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Figure 53: Evolution of the best PAD design. The inserts depict the structure of
the platforms for some selected individuals, all of them the best of their respective
generation.

generations

Figure 54: The thickness of the beams for the same individuals as in figure 53.
The color represents the thickness value in meters.

more accurately. The satellites are assumed to be rigid and homogeneous masses
with dimensions such that their centers of gravity correspond to the ones from real
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(a) (b) (c) (d)

Figure 55: The structure of the 3 platforms for the best individual after 100
generations, and the assembled geometry. (a) top platform, (b) middle platform,
(c) bottom platform and (d) assembled structure.

satellites. The simulated geometry is depicted in figure 56.
The stresses and the displacements are is shown in figure 58. In this case

the Von Mises stresses were used as the failure criterion. The results show some
differences with respect to the surrogate model but in general the agreement in
the maximum values for stress and displacement and the location in the structure
where they occur is satisfactory, as seen in figures 58 and 57. Furthermore, the
realistic model also satisfies all the displacement and stress constraints. As for
the mass, and because of the reasons pointed above, its value decreased to 13 kg,
which represents a mass reduction of 41% from the initial design.

To finalize the PAD was redesigned3 in detail following what was learned from
the bioTOM. The final design for the PAD is shown in figure 59. In the end the
mass of the structure increased slightly to 13 kg however that still represents a
remarkable decrease of 41% in the mass with respect to the initial design.

§3. MAIN FINDINGS

In this work, a novel paradigm for aerospace structural-topology design was
introduced and assessed. This paradigm is inspired on the cellular division of
living organisms, which, similarly to engineering design, depends on their fitness
to survive or replicate. The following is a summary of the main findings of this
research:

3The author thanks again to Carol Hude for providing the final design.
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Figure 56: The tridimensional PAD structure with the satellites assembled.

1. bioTOM evolves engineering designs that are higher-performing than the designs
obtained with Genetic Algorithm. In test cases carried-out comparing the pro-
posed bioTOM and Genetic Algorithm, bioTOM consistently evolved higher-
performing designs. The main reasons for this improved design are twofold:
(a) the evolution-development (EvoDevo) paradigm, and (b) bioTOM gen-
erates a much larger proportion of feasible designs. The import of EvoDevo
paradigm derives from mainly for two reasons, it provides a more effective
searching of the design space and it provides designs with better resolution.
The former advantage can be easily grasped in the biological context, which
inspired bioTOM. Indeed, a mutation of a single cell would provide exceed-
ingly small variation in the design to be an effective agent of change in the
individual fitness (unless, that is, the design is so unstable that a vanish-
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Figure 57: The finite element solution simplified (Euler beams) model of the PAD.
(a) Stresses [Pa] calculated using equation 26, (b) the deformed structure [m].

(a) (b)

Figure 58: The finite element solution for the tridimensional model of the PAD.
(a) The Von Mises stresses [PA], (b) the deformed structure [m]

ingly small variation in its phenotype would lead to large variation in the
its associated fitness; a prospect that would be arguably of any use either
in biology or engineering.) The second advantage of EvoDevo allows for a
more effective search of the design space by providing fincreased definition
with smaller genes. A smaller gene in its turn allows for a more efficient
search of the design space. The other main advantage of bioTOM over Ge-
netic Algorithm is the fact that a much larger fraction of the population in
each generation is feasible (test case 1). One reason for that stems from the
network structure intrinsic to bioTOM but which has to be “learned” by
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Figure 59: The optimized PAD structure.

trial-and-error in the conventional Genetic Algorithm.

2. bioTOM evolves better designs than Genetic Algorithm in a fraction of the num-
ber of generations needed by Genetic Algorithm. This advantage follows from
the more effective search of the design space explained above using bioTOM
as compared with the Genetic Algorithm. Because this search is substan-
tially better that the conventional search with Genetic Algorithm, bioTOM
can obtain higher performing designs than Genetic Algorithm in one order
of magnitude less generations than Genetic Algorithm.

3. bioTOM evolves better designs than Genetic Algorithm using a fraction of the
number of genes needed by Genetic Algorithm. Again, this is a consequence
of EvoDevo model used in bioTOM. Indeed, the number of genes in living
organisms is only a minute fraction of the number of cells they regulate.
Thus the fact that the DNA encodes a program that develops organisms,
engenders a diversity of effective solutions that can be found and evolved in
a timely manner. This advantage was shown in this research to be equally
relevant in searching for optimal engineering designs as well.
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4. bioTOM evolves designs that are as high-performing as SIMP, when the condi-
tions suit SIMP, but provide better designs than SIMP overall. If a problem is
well posed, the sensitivity bounded and smooth, the fitness landscape convex
and the optimal topology relatively simple, then SIMP will converge to the
optimal design as the mesh is refined. The problem is that these conditions
are seldom met in real applications—they are not met even in the simplest of
the test cases above. It is nonetheless reassuring that bioTOM will generate
solutions that perform as well as SIMP when the conditions are propitious
for SIMP (test case 2). Overall, bioTOM will perform better because of
the increased resolution of the topology as explained above and because it
searches for global minima, instead of local minima as in SIMP.

5. bioTOM is more versatile than SIMP. As mentioned in the previous item, SIMP
requires a number of conditions for its adequate use. Because bioTOM do
not require these same conditions, it can be applied to a more varied class of
problems as compared to SIMP. For instance, bioTOM does not require the
a priori definition of the region, called design domain, over which the design
is sought, bioTOM does not require a regular fitness function or constraint, a
maximum stress is a case in point, bioTOM does not simulate empty space,
and bioTOM searches for global minima, instead of local minima in SIMP.
The latter is particularly relevant for engineering applications, where the
complexity and non-linearity of the constraints and objective functions lend
themselves to multi-minima problems. In these cases, the solution using
SIMP would greatly depend on the initial condition.

6. bioTOM is more easily integrates existing COTS software. In this research,
bioTOM was easily integrated with three different software: COMSOL, NAS-
TRAN and a in-house vortex lattice method code. By contrast, SIMP re-
quires the computation of sensitivities and these computations are not easily
implemented in COTS codes. For instance, these calculations could be im-
plemented using a general finite-differences approach. In this case, the price
of generality would be poor performance at best and inaccurate and diverg-
ing sequences of designs at worst. Alternatively, specific and exact gradient
calculation could be sought. However, such approach would be hardly inte-
grable with existing software, as it would require programing the sensitivities
for each objective function and for each different application. That could
only e accomplished with access to the source code of the COTS software—a
virtual impossibility in most cases.
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7. bioTOM provides better solutions for engineering design than conventional bio-
mimetics. Instead of mimicking extant biological structures for engineer-
ing design, as in biomimetic approaches, the proposed methodology seek to
model and simulate the EvoDevo mechanisms that led to the emergence of
those structures in the first place. This distinction is critical for engineering
design because the requirements, constraints and material available for living
organisms are utterly distinct from engineering design. And because there
are some applications for which no biological model exists, spacecraft design
is a case in point.

Although more studies are required to further validate and refine the method-
ology, the results reported in this work clearly demonstrate that, with expected
extensions and improvements, the methodology can play a key role in the design
of novel and better performing aerospacel structures. In fact, no one doubts the
prime role of EvoDevo in the evolution of the species. This research showed that
synthetic EvoDevo can be as consequential and beneficial for engineering design
as biological EvoDevo is for the evolution of natural organisms.
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Graduate student A.T LeBon was also a fellow with M. H. Kobayashi at
AFRL/WP during the summer of 2009. During this fellowship, Dr. Kolonay
and M. H. Kobayashi prepared the draft of a successful grant with AFOSR
in the area of Structural Mechanics. This interaction also provided an op-
portunity for M.H. Kobayashi to acquaint himself with NASTRAN.

5. Air Force Research Laboratory/Air Vehicles Directorate (AFRL/RB) 2008
Summer Researcher Program Fellowship. M. H. Kobayashi was a fellow
at AFRL/WP during the summer of 2008. In this interaction, two research
projects were planned and executed. The first project aimed at optimizing
the mechanism for a morphing wing technology. The mechanism was de-
sign and the results were published as an AIAA paper for the 50th AIAA/
ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Palm Springs, California. The second project investigated the
optimal design for the wing box of a generic fighter. The results of this re-
search were published in The Aeronautical Journal of the Royal Aeronautical
Society.

6. Class on Comparative Biomechanics. Another important interaction during
this period was the development and teaching of a new technical elective
course on Comparative Biomechanics for students of both Biology and En-
gineering Majors. The course was jointly developed by M. H. Kobayashi
and M. A. Butler, and was well received by the students, with fourteen en-
gineering students and three biology students enrolling in the class—this
enrollment is more than double the number of students that regularly enroll
in technical elective classes in engineering.

§7. NEW DISCOVERIES, INVENTIONS OR PATENT DISCLOSURES

Provisional patent 61/284,520 on bioTOM.
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§8. HONORS/AWARDS

1. American Society for Engineering Education Fellow at Wright-Patterson Air
Force Research Laboratory 2009 Air Force Summer Faculty Fellowship Pro-
gram.

2. Air Force Research Laboratory/Air Vehicles Directorate (AFRL/RB) 2008 Sum-
mer Researcher Program Fellowship.
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