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1. SUMMARY 
 

The main goal of this project was to develop an efficient clock synchronization scheme to ensure 

robust operation of wireless airborne networks in conditions of arbitrary network delays and 

absence of GPS (Global Positioning Systems). To cope with the Gaussian or non-Gaussian nature 

of the random network delays, a novel method, referred to as the Gaussian Mixture Kalman 

Particle Filter (GMKPF), is proposed herein to estimate the clock offset in wireless sensor 

networks. GMKPF represents a better and more flexible alternative to the Gaussian Maximum 

Likelihood (GML), and Exponential Maximum Likelihood (EML) estimators for clock offset 

estimation in non-Gaussian or non-exponential random delay models. The computer simulations 

illustrate that GMKPF yields much more accurate results relative to GML and EML when the 

network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as 

a mixture of several distributions. As deliverables, the set of Matlab programs used to implement, 

simulate and validate the performance of GMKPF together with simulation results are provided. 
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2. INTRODUCTION 
 

Future wireless airborne networks are envisioned to represent the next frontier of networking, to 

be pervasive and ubiquitous, and to provide a wide range of services and applications. This trend 

is underlined by a number of technological advances and demands. The rapidly growing demands 

for mobility and anywhere-anytime data access represent a major driving force behind the next 

generation of mobile wireless airborne networks. Recent technological developments mark also 

the departure of telecommunications systems from homogeneous networks to heterogeneous 

networks, from non-intelligent devices to smart devices, and from telephony-based services to 

multi-media services. In addition, recent advances in hardware and inexpensive wireless radio 

systems have made also possible the design of low-cost, low-power, and multi-functional sensor 

devices. When deployed in a large number across a geographical area, these sensor devices create 

a self-organized cooperative ad-hoc network that is perfectly fit for distributed sensing and 

automated information gathering, processing and communication. The upcoming years will very 

likely witness a growing demand for more intelligent sensor systems that will be networked with 

wireless local area networks (WLANs), Internet, satellite and Unmanned Aerial Vehicle (UAV) 

networks to create a global wireless airborne network with increased functionality and 

performance. 

In general, for distributed computing and networking systems, maintaining the logical clocks of 

the computers in  such a way that they are never too far apart is one of the most complex 

problems of computer engineering.  Whether it is the disciplining of computer clocks with the 

devices synchronized to a Global Positioning System (GPS) satellite or a Network Time Protocol 

(NTP) time server over the Internet, it is possible to equip some primary time servers for the 

purpose of synchronizing a much larger number of secondary servers and clients connected 

through a common infrastructure. In order to do this, a distributed network clock synchronization 

protocol is required through which a server clock can be read, the readings to other clients can be 

transmitted and each client clock can be adjusted as required. In such a distributed 

synchronization approach, the participating devices exchange timing information with their 

chosen reference at regular intervals and adjust their logical clocks accordingly.  
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A computer clock in general has two components, namely a frequency source and a means of 

accumulating timing events (consisting of a clock interrupt mechanism and a counter 

implemented in software). The implementation of the computer clock in the operating system and 

the programming interface differ between operating systems and hardware platforms. However, 

the basic source of timing is an uncompensated quartz crystal oscillator and the clock interrupts it 

generates. Theoretically, two clocks would remain synchronized if their offsets are set equal and 

their frequency sources run at the same rate. However, practical clocks are set with limited 

precision and the frequency sources run at slightly different rates. In addition, the frequency of a 

crystal oscillator varies due to initial manufacturing tolerance, aging, temperature, pressure and 

other factors. Because of these inherent instabilities, distributed clocks must regularly be 

synchronized to keep them running close to each other. 

The Network Time Protocol [22], [23] represents the most widely used clock synchronization 

protocol for large-scale networks with static topology such as the Internet. In NTP, the nodes are 

externally synchronized to a global reference time that is represented in the network by a set of 

master nodes or time servers that are referred to as layer-1 servers. The entire synchronization 

process assumes a hierarchical tree organization of the network nodes. Despite its wide-spread 

use in the synchronization of Internet, NTP is not appropriate for synchronization of wireless ad-

hoc sensor networks that are subject to severe energy-constraints, dynamic topologies caused by 

mobility and node  failures, and absence of GPS and global time references (due to either 

jamming, interferences, or absence of direct line of sight communication links). In addition, the 

service provided by NTP assumes continuous synchronization of all the network nodes with 

maximum accuracy and with no concern about energy consumption. However, NTP is not 

equipped with a mechanism to enable the local synchronization of a subset of nodes, and to keep 

the rest of the nodes switched to a power- saving (sleeping) state. Since listening continuously for 

the synchronization beacons is an energy-consuming operation, NTP cannot directly be applied to 

synchronization of energy-constrained wireless ad-hoc networks as is the case with wireless 

airborne networks and wireless sensor networks. 

These considerations illustrate the need for novel distributed and scalable synchronization 

protocols for wireless ad-hoc networks that in general must satisfy a series of requirements: 

energy-efficiency, robustness with respect to node mobility and link/node failures, and ability to 

guarantee the long-term network synchronization at local and global scales. 
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Clock synchronization is important for many applications such as Internet delay measurements, 

cellular networks, data security algorithms, Media Access Control (MAC) protocols like Time 

Division Multiple Access (TDMA), Internet Protocol (IP) telephony, ordering of updates in 

database systems, etc. Recently, with the advent of Wireless Sensor Networks (WSNs) and 

Wireless Airborne Networks (WANs), developing clock synchronization protocols that suit their 

specific requirements is becoming an important research problem. A large number of their 

applications require the clocks of the nodes to run synchronously on a common timescale. This is 

the case with applications such as data fusion, efficient duty cycling operations, acoustic 

beamforming, localization, security and object tracking. Unlike conventional networks, energy 

efficiency must also be taken into account for addressing the clock synchronization problem in 

WSNs and WANs. 
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3. METHODS, ASSUMPTIONS AND PROCEDURES 
 

During the last two decades, many clock synchronization protocols have been proposed such as 

[1], [2], [23], etc. NTP [23] is a protocol for synchronizing the clocks of computer systems over 

packet-switched, variable- latency data networks and it represents the Internet standard for time 

synchronization. It is a layered client- server architecture based on the User Data Protocol (UDP) 

message passing which synchronizes computer clocks in a hierarchical way using the offset delay 

estimation method. NTP’s sender-receiver synchronization architecture is widely accepted in 

designing time synchronization algorithms and consists of the same two-way timing message 

exchange mechanism targeted in this project. 

A protocol based on the remote clock reading method was put forward by [2], which handles 

unbounded message delays between processes. In [1], the time transmission protocol is used by a 

node to communicate the time on its clock to a target node, which subsequently estimates the 

time in the source node by using message timestamps and message delay statistics. For ad-hoc 

communication networks, the time synchronization protocol [8] represented one of the pioneering 

contributions in this area. The protocol is based on generating timestamps to record the time at 

which an event of interest occurred. The timestamps are updated by each node using its local 

clock and the time transformation method, where the final timestamp is expressed in terms of an 

interval with a lower bound and an upper bound. In the realm of wireless sensor networks, the 

clock synchronization protocols of particular note are Reference Broadcast Synchronization (RBS 

[5]), Timing Synch Protocol for Sensor Networks (TPSN [6]) and Time Diffusion Protocol (TDP 

[7]). RBS relies on simultaneous reception of broadcast pulses by several nodes transmitted by a 

common neighboring node after which the nodes exchange their timestamps and estimate the 

relative time offsets and skews. On the other hand, TPSN is based on the same sender-receiver 

paradigm as in NTP, like many other traditional clock synchronization protocols. The basic 

difference is that TPSN has been molded sufficiently to suit the requirements of wireless sensor 

networks. On the other side, TDP establishes a network-wide equilibrium time through an 

iterative, weighted averaging technique based on a diffusion of messages involving all the nodes 

in the synchronization process. 
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Clock synchronization between any two nodes is generally accomplished by message exchanges. 

Due to the presence of non-deterministic and possible unbounded message delays, messages can 

get delayed arbitrarily, which makes the clock synchronization very difficult [10]. The most 

commonly proposed non-deterministic network delay distributions are the Gaussian, exponential, 

Gamma, and Weibull probability density functions (pdfs) [9], [20], [25]. In general, it is difficult 

if not impossible to assess which distribution model may be fit to capture the network delay 

distributions in a given wireless sensor network (WSN). This is due to the fact that various factors 

might impact differently the distribution of network delays [17], [18]. The Gaussian pdf [12] and 

the exponential pdf [9] were also recently  proposed to model the network delays in WSNs. 

Herein, the maximum likelihood (ML) estimators for clock offset  estimation in the presence of 

Gaussian and exponential network delay distributions will be referred to as the Gaussian ML 

(GML) and exponential ML (EML), respectively. Reference [24] shows that GML and EML are 

quite sensitive to the network delay distributions. Therefore, one important problem that rises up 

is to design clock offset estimation schemes that are robust to the distribution of unknown 

network delays. 

To overcome these challenges, in this project a novel clock offset estimation method, referred to 

as the Gaussian Mixture Kalman Particle Filter (GMKPF), is proposed and thoroughly tested. 

Extensive computer simulations illustrate GMKPF’s merits of being robust and yielding very 

accurate clock offset estimates in the presence of arbitrary network delay distributions. The clock 

offset estimation framework adopted in this project is identical with the two-way message 

exchanges between two nodes, encountered in NTP [22] and TPSN protocol [24]. GMKPF 

combines the importance sampling (IS) based measurement update step with a KF (Kalman Filter) 

based Gaussian sum filter for the time-update and proposal density generation. Since GMKPF 

employs new observations and exploits the Expectation-Maximization (EM) algorithm to obtain 

the Gaussian Mixture Model (GMM), GMKPF is expected to exhibit better estimation 

performance when compared to GML and EML in general non-Gaussian/non-exponential delay 

models. Thus far, in the synchronization literature for WSNs, it appears that only very few 

preliminary and straightforward applications of standard Kalman filtering or general adaptive 

signal processing techniques were reported (see [14], [16] and [26]) to improve the mean square 

error (MSE) performance of protocols such as RBS [12] or TPSN [15]. 
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In this project, upon designing the GMKPF, a thorough performance analysis of GMKPF, GML, 

and EML in the presence of the two-way message exchange mechanism between two nodes and 

symmetric/asymmetric Gaussian, exponential, Gamma, Weibull network delay distributions is 

first carried out. The performance of GMKPF, GML, and EML is also simulated under the 

mixing of two different distributions: Gaussian and exponential, Gaussian and Gamma, Gaussian 

and Weibull, exponential and Gamma, exponential and Weibull, and Gamma and Weibull delay 

distributions, respectively. The computer simulation results corroborate the superior performance 

of the proposed method relative to GML and EML, and its robustness to general network delay 

distributions. Therefore, the proposed GMKPF method represents a high-performance and very 

reliable clock offset estimation scheme fit to overcome the uncertainties caused by the network 

delay distributions. 
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4. RESULTS AND DISCUSSION 
 

4.1. Problem Formulation and Objectives 
 

The two-way timing message exchange mechanism is a recently proposed clock synchronization 

scheme for wireless sensor networks [15], [24]. Under this mechanism, the synchronization of 

two nodes A and B is achieved through a number of N cycles. Each cycle assumes two message 

transmissions: one from node A to node B, followed by a reverse transmission from node B to 

node A. At the beginning of the kth cycle, the node A sends its time reading 1,kT  to Node B, 

which records the arrival time of the message as 2,kT , according to its own time scale. Similarly a 

time message exchange is performed from Node B to Node A. At time 3,kT  node B transmits 

back to node A the time information 2,kT  and 3,kT . Denoting by 4,kT  the arrival time at node A of 

the message sent by node B, node A would then have access to the time information ,j kT , j = 

1, . . . , 4 at the end of the kth cycle, which provide sufficient information for estimating the clock 

phase offset Aθ  of node A relative to node B clock. The message exchanges that take place 

between two generic nodes A and B are depicted in Fig. 1. 

 

Figure 1. (a) A message exchange between two nodes A and B that present only clock phase offset. (b) Multiple 
message exchanges between nodes A and B that present clock phase offset and skew. 

 

  



9 
 

Utilizing the derivation presented in [24], the differences between the kth up and down-link delay 

observations corresponding to the kth timing message exchange are given by 

2, 1,:k k k A kT T dU Lθ= − = + +  and 4, 3,k k k A kV T T d Mθ= − = − + , respectively. The fixed value d 

denotes the fixed (deterministic) propagation delay component (which in general is neglected 

0d ≈  in small range networks that assume RF transmissions). Parameters kL  and kM  stand for 

the variable portions of the network delays, and are assumed to be any distributions such as 

Gaussian, exponential, Gamma, Weibull or mixtures of two different distributions. 

Given the observation samples ,[ ]T
k k kU V=z , our goal is to find the minimum variance estimate 

of the unknown clock offset Aθ . For convenience, the notation :k Ax θ=   will be used henceforth. 

Thus, it turns out that we are looking to determine the estimator: 

 $ { | }l
k kx E x= Z , (1) 

where lZ  denotes the set of observed samples up to time l, 0 1, }, ,{l
l=Z z z zL . Since the clock 

offset value is assumed constant, the clock offset can be modeled as obeying a Gauss-Markov 

dynamic channel model of the form: 

 1 1k k kFxx v− −= + , (2) 

where F  is the state transition matrix for clock offset. The additive noise component kv  can be 

modeled as Gaussian with zero mean and covariance { }T
k kE v v Q= . The vector observation 

model follows from the observed samples and it assumes the expression: 

 
1 1
1 1

k k
k k k

k k

L
M

d x
d x

d x
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ + ⎦

+
+z n , (3) 

where the observation noise vector [ , ]T
k k kL M=n   accounts for the random delays. One can 

now observe that eqs. (2) and (3) recast our initial clock offset estimation problem into a Gauss-

Markov estimation problem with unknown states. 
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4.2.  A Composite Particle Filtering Approach 

 

Particle filtering is a sequential Monte Carlo sampling method built within the Bayesian paradigm. 

From a Bayesian perspective, at time k, the posterior distribution 0:|( )k kp x z  is the main entity 

of interest. However, due to the non-Gaussianity of the model (3), the analytical expression of 

0:|( )k kp x z  cannot be obtained in closed-form expression, excepting for some special cases like 

Gaussian or exponential pdfs. Alternatively, particle filtering can be applied to approximate 

0:|( )k kp x z  by stochastic samples generated using a sequential importance sampling strategy. 

Since the particle filtering with the prior importance function employs no information from 

observations in proposing new samples, its use is often ineffective and leads to poor filtering 

performance. Herein, we implement a slightly changed version of the Gaussian Mixture Sigma 

Point Particle Filter (GMSPPF) proposed in [21], and which will be referred to as a composite 

approach. This composite approach comes out from the utilization of another filtering technique 

producing a filtering probability density function used as importance function (IF) for the particle 

filtering. 

The GMSPPF is a family of methodologies that use hybrid sequential Monte Carlo simulation 

and a Gaussian sum filter to efficiently estimate posterior distributions of unknown states in a 

non-linear dynamic system. However, in our state space modeling, because of the linear model, 

we do modify this method further. Following [21], we will next describe briefly the general 

framework assumed by the GMKPF method, obtained by replacing the SPKF with a KF. We next 

outline the main features of the proposed approach. First, we remark that any probability density 

( )p x  can be approximated as closely as desired by a Gaussian mixture model (GMM) of the 

following form [11], 

 ( ) ( ) ( )

1

( ) ,( ) ( ; )
G

g g g
g

g

p xx x Pp α μ
=

≈ =∑ N , (4) 

where G stands for the number of mixing components, ( )gα  denote the mixing weights and 

( ),;x PμN  is a normal  distribution with mean µ and covariance P . Thus, the predicted and 

updated Gaussian components, i.e., the means and covariances of the involved probability 

densities (posterior, importance, and so on) are calculated using the Kalman filter (KF) instead of 

the Sigma Point Kalman Filter (SPKF) [19], [21]. Since the state and observation equations are 
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linear, the KF was employed instead of the SPKF. Therefore, the resulting approach is called the 

Gaussian mixture Kalman particle filter (GMKPF). In order to avoid the particle depletion 

problem in cases where the observation (measurement) likelihood is very peaked, the GMKPF 

represents the posterior density by a GMM which is recovered from the re-sampled equally 

weighted particle set using the Expectation-Maximization (EM) algorithm. 

In general for the particle filtering approach, the posterior density 0: 1:|( )k kp x z , where 

0: 0{ , , }k kxx x= L  and 11: { , , }k k=z z zL , constitutes the complete solution to the sequential 

estimation problem. Our objective is to generate samples from the distribution 0: 1:|( )k kp x z . For 

this purpose, we have collected N sets of samples ( ) ( ) ( )
0: 0{ , },i i i

k kx x x= L  with weights

( )   , 1 , .,i
kw i N…=  The particles ( ) ( )

1{ , }i i N
k k ix w =  approximate 0: 1:|( )k kp x z . Finally, the conditional 

mean state and the corresponding error covariance can be calculated: 

 ( ) ( ) ( ) ( ) ( )

1 1
, [ ][ ]

N N
i i i i i T

k k k k k k k k
i i

x w x w x x x x
= =

= Φ = − −∑ ∑ . (5) 

At the end of each recursion, the particles are resampled to ensure they occur with the same 

probability as the weights. 

The GMKPF combines the importance sampling (IS) based measurement update step with a KF 

based Gaussian sum filter for the time-update and proposal density generation. In the time update 

stage, GMKPF approximates the prior, proposal and posterior density function as GMMs using 

banks of parallel KFs. The updated mean and covariance of each mixand follow from the KF 

updates. In the measurement update stage, the GMKPF uses a finite GMM representation of the 

posterior filtering density 

 ( ) ( ) ( )

1
( | ) ( ; , )

G
g g g

g k k k k k k
g

x zp N x Pα μ
=

=∑ , (6) 

where G is the number of GMMs, ( )g
lα  are the mixing weights and ( ) ( )( ; , )g g

k k kN x Pμ  is a normal 

distribution determined from the gth KF with predicted mean k kxμ =  and positive definite 

covariance kP . This is recovered from the weighted posterior particle set of the IS based 

measurement update stage, by means of an Expectation-Maximization (EM) [13] step. The EM 

algorithm can be used to obtain Gaussian Mixture approximations from these particles and 
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weights. Through this mechanism, the EM-based posterior GMM further mitigates the “sample 

depletion” problem through its inherent “kernel smoothing” nature. The EM algorithm provides 

an iterative method to estimate θ  via 

 arg max ( | )p
θ

θ μ θ= , (7) 

with the Gaussian mixture specified by the parameter set 
(1) ( ) (1) ( ) (1) ( ), , , , , ,{ , , }G G G
l l l l l lP Pθ α α μ μ= L L L . Specifically, the EM algorithm is a two-step 

iterative algorithm which works as follows: given a ( )jθ , it finds the next value ( 1)jθ + via 

• E-step: ( ) ( )| {log ( )( |) | }pQ Eθ θ μ θ θ=j j  

• M-step: ( 1) ( )arg max ( )|j jQ
θ

θ θ θ+ =  

The reader is directed to reference [13] for more detailed explanations of the EM algorithm for 

GMM. Finally, the conditional mean state estimate and the corresponding error covariance can be 

calculated as follows:  

 ( ) ( ) ( ) ( ) ( ) ( )

11

  [ ( ), ( ) ]
G G

g g g g g g T
k k k k k k k k k

gg
lx P P x xα μ α μ μ

==

+ − −= =∑∑  (8) 

Below we provide a fairly pseudo-code for a GMKPF algorithm that is fit for estimating clock 

offsets in non-Gaussian delay models. 

Algorithm 

(1)  At time k-1, initialize the densities 

• The posterior density is approximated by 

( ) ( ) ( )
1 1 1 1 1 1

1

( | ) ( ; , )
G

g g g
g k k k k k k

g

p x x Pα μ− − − − − −
=

=∑z N  

• The process noise density is approximated by 

1

( ) ( ) ( )
1 1 1 1

1
( ) ( ; , )

k

i i i
g k k k v k

i

I

vp v Qβ μ
−− − − −

=

=∑ N  

• The observation noise density is approximated by 

( ) ( ) ( )

1
( ) ( ; , )

k

J
J j j

g k k k k
j

Rp γ μ
=

=∑ nn N n  
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(2) Pre-prediction step 

• Calculate the pre-predictive state density using KF, 1( | )g k kp x −z%  

• Calculate the pre-posterior state density using KF, ( | )g k kp x z%  

(3) Prediction step 

• the predictive state density using GMM, 1( | )ˆ g k kxp −z  

• Calculate the posterior state density using GMM, ˆ ( | )g k kxp z  

(4) Observation Update step 

• Draw N samples ( ) 1 },{ ; ,l
k l Nχ = L  from the importance density function, 

ˆ) )( | ( |k kk g kp xq x =z z  

• Calculate their corresponding importance weights:  
( ) ( )

1( )
( )

ˆ( ) ( | )
ˆ ( |

|
)

l l
k k g k kl

k l
g k k

p p
p

w
χ χ

χ
−=

z z
z

%  

• Normalize the weights: ( ) ( ) ( )

1

/
N

l l l
k k k

l

w w w
=

= ∑% %  

• Approximate the state posterior distribution using the EM-algorithm,  

( | )g k kp x z  

(5) Infer the conditional mean and covariance: 

• ( ) ( )

1

N
l l

k k k
l

x w χ
=

=∑  and ( ) ( ) ( )

1
( )( )

N
l l l T

k k k k k k
l

P w x xχ χ
=

= − −∑  

• Or equivalently, upon fitting the posterior GMM, calculate the variables in eq. 

(8). 
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4.3.  Implementation Aspects of GMKPF Algorithm 

 
GMKPF can be viewed as an efficient tool to perform probabilistic inference, i.e., to estimate the 

hidden variables (states or parameters) of a system in an optimal and consistent fashion given 

noisy or incomplete observations. Fig. 2 depicts a general framework for probabilistic inference. 

 

Figure 2. Probabilistic Inference 

 

A block diagram of GMKPF is represented in Fig. 3. 

 

 

Figure 3. Constitutive Blocks of Gaussian Kalman Particle Filter 

The Matlab functions and routines that have been used for implementing the GMKPF algorithm 
are depicted in Figs. 4 and 5. 
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Figure 4. List of MATLAB functions used to implement the Gaussian Mixture Kalman Particle Filter 

 

 

Figure 5. Main MATLAB Functions used to implement the Gaussian Mixture Kalman Particle Filter 
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4.4.  General Simulation Results 

 

In this section, computer simulation results will be offered to assess the performance of GMKPF, 

GML [24], and EML [24]-approaches for estimating the clock offset in wireless sensor networks. 

We consider a total of 10 delay models: asymmetric Gaussian, exponential, Gamma, Weibull, and 

mixtures of Gaussian and exponential, Gaussian and Gamma, Gaussian and Weibull, exponential 

and Gamma, exponential and Weibull, and Gamma and Weibull distributions. The reason for this 

study is to illustrate that the proposed method is robust, exhibits superior performance and can be 

applied to deal with any delay distribution. The stationary process kv  is assumed to achieve a 

given constant variance 1 4Q e= − . The number of particles and GMM are 100 and 3, 

respectively. 

Figs. 6-9 show the MSE (Mean Square Error) of the estimators assuming that the random delay 

models are asymmetric Gaussian, exponential, Gamma, Weibull pdfs, respectively. The 

subscripts 1 and 2 are used to differentiate the parameters of delay distributions corresponding to 

uplink and downlink, respectively. As an example, the parameters 1σ  and 2σ  in Fig. 6 denote 

the standard deviations of uplink and downlink asymmetric Gaussian network delay densities, 

respectively. The MSEs are plotted against the number of observations, ranging from 5 to 25. 

Note that the GMKPF performs much better (a reduction of MSE with over 100%) when 

compared to GML or EML. It is interesting to note that the MSE of GML exhibits better 

performance than EML in the asymmetric Gaussian delay model case and poorer performance in 

the presence of asymmetric exponential, Gamma, and Weibull delay models. The reason for this 

is that Gamma and Weibull delay models are closer to the exponential distribution than the 

Gaussian distribution. 
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Figure 6. MSEs of clock offset estimators for asymmetric Gaussian random delays (σ1=1, σ2=4) 

 

 

Figure 7. MSEs of clock offset estimators for asymmetric Exponential random delays (λ1=1, λ2=5) 
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Figure 8. MSEs of clock offset estimators for Gamma random delays (α1=2, β1=1) 

 

 

Figure 9. MSEs of clock offset estimators for Weibull random delays (α1=2, β1=2) and (α2=6, β2=2) 
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To further quantify the robustness of the estimators, we studied the performance of the GMKPF, 

GML, and EML under various network delay conditions, where the random delay models are 

mixtures of two distributions. For examples, in Fig. 10, we mix equally a Gaussian with an 

exponential delay model, each having a weight of 50%. This means that if 10 observations are 

received, 5 observations are Gaussian and the remaining 5 samples assume an exponential 

distribution. From Figs. 10-15, we observe that GMKPF clearly outperforms the GML and EML. 

In these cases, the GML presents better performance than EML if the network delay process is 

closer to a Gaussian. Otherwise, the EML exhibits better performance than the GML, while 

GMKPF outperforms both the GML and EML. 

 

 

 

Figure 10. MSEs of clock offset estimators for mixing of a Gaussian (σ1=1, σ2=1) and an Exponential (λ1=1, λ2=5) 
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Figure 11. MSEs of clock offset estimators for mixing a Gaussian (σ1=1, σ2=1) and a Gamma (α1=2, β1=2) 

 

 

Figure 12. MSEs of clock offset estimators for mixing a Gaussian (σ1=1, σ2=1) and a Weibull random delay (α1=2, 
β1=2 and α2=6, β2=2) 
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Figure 13. MSEs of clock offset estimators for mixing an Exponential (λ1=1, λ2=5) and a Gamma (α1=2, β1=5 and α2=2, 
β2=2) 

 

 

Figure 14. MSEs of clock offset estimators for mixing an Exponential (λ1=1, λ2=5) and a Weibull (α1=2, β1=2 and α2=6, 
β2=2) 
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Figure 15. MSEs of clock offset estimators for mixing a Gamma (α1=2, β1=5 and α2=2, β2=2) and a Weibull (α1=2, 
β1=2 and α2=6, β2=2) 
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4.5. In-Depth Assessment of GMKPF Performance 
 

• TPSN - clock offset model (1): (Asymmetric Gaussian) 

GMKPF conditions: Initial value: exponential ML value, 3-component GMM, 500 

particles, process noise variance: 1e-6, Monte Carlo Simulations: 200. 

The MSEs of clock offset estimators in the presence of asymmetric Gaussian delays are 

presented in Fig. 16. 

 

Figure 16. MSEs of clock offset estimators for asymmetric Gaussian delays 
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• TPSN - clock offset model (2): (Asymmetric Exponential) 

GMKPF conditions: Initial value: exponential ML value, 3-component GMM, 500 

particles, process noise variance: 1e-6. Monte Carlo Simulations: 200. 

The MSEs of clock offset estimators in the presence of asymmetric Exponential delays 

are presented in Fig. 17. 

 

Figure 17. MSEs of clock offset estimators for asymmetric Exponential delays 
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• TPSN - clock offset model (3): (Gamma) 

GMKPF conditions: Initial value: exponential ML value, 3-component GMM, 500 

particles, process noise variance: 1e-6. Monte Carlo Simulations: 200. 

The MSEs of clock offset estimators in the presence of asymmetric Gamma delays are 

presented in Fig. 18. 

 

Figure 18. MSEs of clock offset estimators for asymmetric Gamma delays 
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• TPSN - clock offset model (4): (Weibull) 

GMKPF conditions: Initial value: exponential ML value, 3-component GMM, 500 

particles, process noise variance: 1e-6. Monte Carlo Simulations: 200. 

The MSEs of clock offset estimators in the presence of asymmetric Weibull delays are 

presented in Fig. 19. 

 

Figure 19. MSEs of clock offset estimators for asymmetric Weibull delays. 
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• TPSN - clock offset model (1): (Gamma) 

GMKPF conditions: Initial value: exponential ML value, 3, 5, 7-component GMM, 500 

particles, process noise variance: 1e-6. Monte Carlo Simulations: 300. 

The MSEs of clock offset estimators in the presence of asymmetric Gamma delays are 

presented in Fig. 20. 

 

Figure 20. MSEs of clock offset estimators for asymmetric Gamma delays. 
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• TPSN - clock offset model (2): (Gamma) 

The total number of message exchanges in a network with 100 nodes and MSE=0.001 are 

as follows: 

2 ( 1 920 (100 1) 182160) 2TPSN EMLN N L− × × − == − =  

 2 ( 1) 2 30 (100 1) 5940TPSN GMKPFN N L− × × − == − =  

The number of timing messages vs. MSEs of clock offset estimators in the presence of 

asymmetric Gamma delays are presented in Fig. 21. Monte Carlo Simulations: 400. 

 

Figure 21. Number of timing messages vs. MSEs of clock offset estimators for asymmetric Gamma delays 
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• TPSN - clock offset model (1): (Weibull) 

GMKPF conditions: Initial value: exponential ML value, 3, 6, 10-component GMM, 500 

particles, process noise variance: 1e-6. Monte Carlo Simulations: 300. 

The MSEs of clock offset estimators in the presence of asymmetric Weibull delays are 

presented in Fig. 22.  

 

Figure 22. MSEs of clock offset estimators for asymmetric Weibull delays 
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• TPSN - clock offset model (2): (Weibull) 

The total number of message exchanges in a network with 100 nodes and MSE=0.001 are 

as follows: 

2 ( 1 220 (100 1) 399960) 2TPSN EMLN N L− × × − == − =  

2 ( 1) 2 30 (100 1) 5940TPSN GMKPFN N L− × × − == − =  

The number of timing messages vs. MSEs of clock offset estimators in the presence of 

asymmetric Weibull delays are presented in Fig. 23. Monte Carlo Simulations: 400. 

 

 

Figure 23. Number of timing messages vs. MSEs of clock offset estimators for asymmetric Weibull delays 
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5. CONCLUSIONS 
 

Time synchronization is a significant component in the deployment of wireless ad-hoc networks, 

and a number of fundamental operations, like data fusion, power management and transmission 

scheduling, require accurate time synchronization. Since the conventional NTP time 

synchronization protocol for the Internet cannot be directly applied to wireless sensor networks 

and wireless airborne networks, a number of synchronization protocols have been developed in 

this project to meet the unique requirements of these applications. 

This project developed a very general and powerful inference method for estimating the clock 

offset in wireless ad-hoc networks. The benefits of  the proposed synchronization method are in 

terms of improved performance and applicability to arbitrary random  delay models such as 

asymmetric Gaussian, asymmetric exponential, Gamma, Weibull, as well as to mixtures of these  

delay models. One negative aspect is the fact that analytical closed form expressions do not 

necessarily exist and in general it is hard to derive lower bounds in the presence of (unknown) 

non-Gaussian distributions. The project proposed a robust estimator based on the GMKPF that is 

capable of estimating the clock offset in arbitrary delay models, a result which might present 

applications in numerous wireless sensor networks applications with tight synchronization 

requirements [17], [18]. Computer simulations also show that the proposed method yields 

superior performance. 

The proposed statistical inference mechanism is quite general and can be practically applied to 

any modeling problem that can be phrased in terms of a state-space representation. The additive 

noise can assume arbitrary distributions, and the observation equation can be linear or nonlinear. 

In the presence of a nonlinear observation equation, a slightly more general modeling framework 

in terms of particle filters might have to be adopted to handle the nonlinearities. However, in our 

present study, the clock observation equations are linear equations; therefore, a bank of Kalman 

filters was sufficient to efficiently track the unknown clock offset parameters. We would like to 

emphasize that the proposed statistical inference engine could be applied to more general 

applications such the problem of joint synchronization and localization. In this scenario, one can 

perform two tasks, namely clock synchronization and localization of a target using the same set of 

signals/data samples. Therefore, one could expect high performance and very fast algorithms to 

be developed using the proposed statistical inference mechanism. Furthermore, the results of this 

project could be extended further to address the problem of joint synchronization, localization and 

tracking of a moving target, or for assessing the topography of a wireless network. 
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List of Symbols, Abbreviations, and Acronyms 
 

AO = Always On 

Adaptive Sync = Adaptive Synchronization 

CRLB = Cramer-Rao Lower Bound 

FTSP = Flooding Time Synchronization Protocol 

GPS = Global Positioning System 

ID = Identification 

iid = independent and identically distributed 

IP = Internet Protocol 

MAC = Medium Access Control 

ML = Maximum Likelihood 

MLE = Maximum Likelihood Estimator 

MSc = Master of Science 

MSE = Mean Square Error 

NTP = Network Time Protocol 

PBS = Pairwise Broadcast Synchronization 

PDF = Probability Density Function 

PhD = Doctor of Philosophy 

RBS = Reference Broadcast Synchronization 

RF = Radio Frequency 

ROS = Receiver Only Synchronization 

RRS = Receiver Receiver Synchronization 

RV = Random Variable 

SI = Sensor Initiated 

SRS = Sender Receiver Synchronization 

 TDMA = Time Division Multiple Access 
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TDP = Time Diffusion Protocol 

TPSN = Time Protocol for Synchronization of Sensor Networks 

UAV = Unmanned Aerial Vehicles 

UDP = Universal Data Protocol 

WAN = Wireless Airborne Network 

WLAN = Wireless Local Area Network 

wrt = with respect to 

WSN = Wireless Sensor Network 




