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ABSTRACT   
 
Lanchester’s equations are commonly used as the basis for force-on-force combat models, even if 
only as a metamodel for a more complex combat simulation. This report examines whether 
attrition is adequately modelled by such Markov processes. It shows that the distribution of 
historical battle casualties is consistent with that obtained when attrition is modelled as an Ito 
process. The additional Wiener term can be regarded as representing the impact of the wider 
environment on attrition rates. 
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Executive Summary    
 
Lanchester’s equations are commonly used as the basis for force-on-force combat models, 
even if only as a metamodel for a more complex combat model. These equations define a 
system with the strengths of the forces involved comprising its internal parameters. Many 
systems are adequately described using just their internal parameters, without 
consideration of any interactions between that system and its wider environment. 
However, it is apparent from the work on extending combat models based on Lanchester’s 
equations to include additional parameters such as morale, spatial force dispersion and 
movement, that such quantities do affect attrition rates. The inclusion of additional 
parameters also results in additional complexity and the loss of insight that a simple 
model provides. ideally what is desired is a means to include the effect of the wider 
environment on attrition rates without also increasing the model’s complexity. 
 
The standard model for the behaviour of stock prices in time assumes they are a 
continuous Markov process with a constant fractional drift rate. The Black and Scholes 
model of stock prices treats price volatility as resulting from the action of the rest of the 
market on the system comprised of the one stock price being modelled. Furthermore, it 
does not attempt to model the processes by which the market might affect the stock price, 
arguing that the mechanisms are too complex to model or are not known. 
 
Lanchester’s Equations are similar to the starting point for the derivation of the Black 
Scholes Equation. This suggests an obvious approach for including the effect of the wider 
environment in the evaluation of combat attrition rates, through the addition of a Wiener 
process, turning Lanchester’s Markov process into an Ito process. 
 
The present work has used an existing database of historical battle results to show that the 
frequency distribution of battle casualties is consistent with that expected when 
Lanchester’s equations are augmented to form an Ito Process rather than the conventional 
Markov Process. The additional Wiener term can be regarded as representing the impact 
of the wider environment on attrition rates. The shape of the casualty frequency 
distribution was not observed in the initial force strength distribution. This supports the 
contention that such distributions result from the attrition process itself and are not 
artefacts of the sampling or analysis procedure. 
 
The database used, and indeed all such databases, was shown to include an inherent bias 
which under-represents the number of small battles. While the effect of such bias was 
observed, by incorporating strata sampling concepts it was possible to confine the effects 
of such bias into a single stratum and a small number of data points, which can then be 
allowed for. 
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a,b attrition coefficients 
ai Independent model variables 
a(x,t) Variable drift rate 
Ai Co-ordinate transformation matrix 
A Lanchester Equation solution parameter 
bi Dependent model variables 
b(x,t) Variable variance rate 
B Lanchester Equation solution parameter 
c..k Arbitrary Exponents 
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dU Change in Internal Energy 
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dy/dt Rate of change of Y force strength with time 
f( ) g() Arbitrary functions 
I Combat intensity 
ln natural logarithm 
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1. Introduction 

A model of combat has long been sought, arguably since the time of Sun Tze half a 
millennium before the Christian era. However, prior to the early Twentieth Century all 
models that had been developed were essentially descriptive or narrative in nature. This 
changed with the advent of Lanchester’s model of air combat in 1914 [1], which was the 
first attempt to construct a mathematical model of combat. Lanchester’s equations have 
subsequently been used as the basis for most force-on-force combat models, even if only as a 
metamodel for a more complex combat simulation [2] [3]. 
 
Lanchester’s mathematical formulation of his model was incomplete. In addition to his 
two equations, it required processes to initiate combat, commit forces and allocate effort, 
arrangement of forces to carry out those decisions to facilitate a hierarchical decomposition 
of a battle into smaller sub-battles to which Lanchester’s Equations are then applied. 
Extensive research to develop mathematical formulations to replace those processes has 
subsequently taken place [4]. 
 
Combat between two sides of strength x(t) and y(t) is generally described by simple 
differential equations, such as those for Lanchester’s “modern” combat: 
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0
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dt
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      (1) 

 
which may be modified to include additional combat effects [4], or additional differential 
equations are sometimes added to describe the interaction of other parameters [5]. Indeed, 
Taylor [4] has expressed the belief that regardless of how a mathematical model of combat 
is constructed, the attrition of engaged forces should be expressible in terms of a series of 
coupled differential equations, which in general terms may be written as: 
 

 

 mnkj
j

mnki
i

bbyyxxg
dt

dy

bbyyxxf
dt

dx

,...,,...,,...

,...,,...,,...

111

111




     (2) 

 
where f( ) and g() are arbitrary functions of the independent variables xi and yi of sides X 
and Y as well as of the dependent parameters bi. 
 
The present work will examine the application of a common technique by which simple 
metamodels are developed from such systems of equations, before considering an 
additional approach for including the impact of the wider environment. Finally, it will 
compare observed casualty patterns in available historical data with a proposed attrition 
model. 
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2. Combat Metamodels 

A model can be considered as a representation of an actual situation that may be used to 
better understand that situation. Complex phenomena often require complex models if the 
model’s behaviour is to reproduce that of the real world. However, while such models 
produce reasonable agreement with real world results, they are less useful in 
understanding the functional dependence of the modelled quantities on the input 
parameters. In such cases it is useful to develop a (simpler) model of that model which, 
although providing lower fidelity results, is better at explaining the causes of those results. 
Such models are the metamodels. 
 
Metamodels described by systems of equations similar to those above (equation 2) are 
often developed using an ad-hoc unstructured approach such as dimensional analysis. In 
recent years a systematic treatment of the process for the development of such metamodels 
has emerged (intermediate asymptotic approximation) that provides a degree of rigour to 
the undertaking [6]. 
 
While the interested reader is referred to the work by Barenblatt [6] for a comprehensive 
treatment of the application of similarity principles, a brief summary is given below. It 
must be noted that the use of dimensional analysis in the study of similarity laws is only 
strictly correct for self-similar problems. However, previous work by the author [3] and 
others [2] provides some justification in the application of this approach in combat 
attrition modelling. 
 
2.1 Intermediate Asymptotics 

The relationship between an outcome of the model, and a set of input variables can be 
written as: 
 

 mk bbaafO ,...,,... 11       (3) 

 
where the variables a1,...ak have independent dimensions (the dimension of any of the a’s 
cannot be expressed as a combination of the dimensions of the other a’s), and the 
dimensions of the b1,...bm can be expressed in terms of products of powers of the 
dimensions of a1,...ak. In general k > 0 and m > 0. In the example system of equation 2, the 
model outcomes are the rates of change of the strengths of the forces engaged. 
 
The values of the a1,...ak can be independently varied, so that 
 

iii aAa '         (4) 

 
The dimensions of a and b1,...bm may then be represented as power monomials in the 
dimensions of  , for example: 1,... ka a
 

 
2 



 
DSTO-TR-2138 

     
     rk

p

r
k

p
j

aaO

aab jj

...

...

1

1




       (5) 

 
With the corresponding transformation of values: 
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Introducing the similarity parameters: 
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where the exponents of the variables are chosen so that the parameters  and 1,...m are 
dimensionless, enables equation (3) to be re-written as: 
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Barenblatt [6] shows that this in turn can be re-written in terms of a function of a smaller 
number of dimensionless variables, leading to the relationship: 
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Furthermore, self-similar solutions correspond to cases where the values of the variables 
b1,...bm tend to zero or infinity. Barenblatt [6] considers three cases: 
 
1. Type 1 metamodel. 
 
The function  tends to a non-zero finite limit as j tends to zero or infinity. In practice this 
means  can be replaced by its limiting expression, and hence f will be a product of power 
monomials whose values can be determined by dimensional analysis. 
 
2. Type 2 metamodel. 
 
The function  tends to the power law asymptotic expression: 
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as j tends to zero or infinity. The power law form of the limiting expression still leads to 
complete separation of variables, but with characteristic exponents which, in contrast to 
the type 1 metamodels, cannot all be determined by dimensional analysis. 
 
3. Type 3 metamodel. 
 
Power type asymptotic behaviour is not observed, and the function  has no finite limit 
different from zero. 
 
2.2 Structure 

Many physical systems conform to the requirements for type 1 or type 2 metamodel 
approximations. Systems that produce type 3 metamodels will not be considered further. 
Previous work has shown that combat attrition models result in type 2 metamodels [2] [3] 
with governing equations of the form: 
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For the cases of interest here, the metamodel can be written as a product of power law 
monomials, where some exponents may be unknown, of the internal parameters used to 
describe the system’s dynamics. 
 
 

3. Including the Environment 

It was noted above that metamodels of the intermediate asymptotic form use the system’s 
internal parameters to describe its dynamic behaviour. Many systems are adequately 
described using just their internal parameters, without consideration of any interactions 
between that system and its wider environment. This is a standard approach based on the 
assumption that the system can be defined in such a way that changes in its own internal 
parameters do not involve external interactions. One such example system is the motion of 
the earth and its moon. For most purposes only the properties of the earth and moon need 
to be considered. The gravitational effect of all other masses (its environment) can be 
ignored. 
 
However, there are also many systems where the interaction between the system and its 
environment cannot be neglected. In such cases, either a more extensive definition of the 
system must be used where the new system’s dynamics are independent of its 
environment, or a simple mechanism for the interaction between the system and 
environment developed. One such example system is the First law of Thermodynamics: 
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dWdQdU         (12) 
 
where the environment is treated as a heat source or sink (dQ) for the system’s internal 
energy U. 
 
The first approach is commonly used in combat modelling, which has been reviewed by 
Taylor [4], and adopted in most current generation military combat simulations [7]. This 
has the drawback that these system definitions are generally so complex as to require their 
own metamodels to provide insight and so do not simplify the problem. 
 
The second approach has also been used, to a lesser degree, in combat modelling where it 
represents losses due to non-combat processes such as disease, accident or reinforcements 
[8] and typically produces equations of the form: 
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More complex variants of Lanchester’s Equations generally produce better agreement 
between theory and the trends exhibited by historical data. However, the effect of the 
environment on combat outcomes is poorly understood [9]. 
 
In order to avoid developing complex models of the mechanisms for interaction between 
the system and its environment, which are often not understood anyway, a simple model 
of the effect of interaction with a complex environment is needed. This is not the 
oxymoron that it first appears to be. Such approaches have been used in financial 
modelling for some time and have their origin in the study of Brownian motion as a 
stochastic process. 
 
 

4. Stochastic Processes 

This section follows Hull’s approach [10]. A stochastic process is described by a variable 
whose value changes in time in an uncertain way. Such processes can be discrete, when 
the variable’s value can only change at specified fixed points, or continuous when the 
value can change at any time. Stochastic processes may also take continuous values, when 
the underlying variable can take any value within a specified range, or discrete values 
where only certain specified values are allowed. 
 
A Markov process is a particular type of stochastic process where only the current value of 
a variable is relevant for predicting its future evolution. A continuous time, discrete value 
Markov process has been demonstrated to produce a stochastic attrition model analogous 
to Lanchester’s deterministic equations. Most modern combat simulations use Markov 
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processes to describe attrition. The stochastic theory of attrition has been comprehensively 
explored by a number of workers and is readily accessible [11]. 
 
A basic Wiener process is a sub-type of Markov process in which changes to the value of 
the underlying variable during successive time intervals are normally distributed with a 
mean of zero and a variance of “1 per time interval”. Brownian motion is a Wiener process. 
A variable z follows a Wiener process if it has the following two properties: 
 

 Property 1: The change z during a small time period t is: tz    where  is a 
random number from a standardised normal distribution () with a mean of 0 and 
a variance of 1. 

 Property 2: The values of z for any two different intervals t are independent. 
 
A generalised Wiener process is similar to the basic Wiener process, with its drift rate of 0 
and variance rate of 1, in that its drift rate and variance rate may change with time. Such a 
process for a variable x has a stochastic differential of the form: 
 

bdzadtdx         (14) 
 
where a and b are constants and z is a basic Wiener process above. 
 
Finally, an Ito process is a generalised Wiener process in which the parameters a and b are 
functions of the underlying variable x and time t. 
 

ttxbttxax

dztxbdttxadx

 ),(),(
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
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      (15) 

 
with a drift rate of a(x,t) and a variance rate of b(x,t)2. The stochastic processes above have 
only considered systems with one stochastic variable. There is not an inherent limitation. 
Considering a system with two Markov variables x and y, it is straightforward to see that 
Lanchester’s Equations represent a special case of an Ito process with two coupled 
stochastic variables having variance rates equal to 0 and drift rates defined by equation 1 
above. 
 
4.1 Black Scholes Model 

The standard model for the behaviour of stock prices in time assumes they are a 
continuous Markov process with a constant fractional drift rate. Thus the stock price S 
with a drift rate of  is described by: 
 

dt
S

dS          (16) 

 
which is a system with one internal variable S and one internal parameter . In practice, 
stock prices exhibit considerable stochastic volatility. The Black and Scholes model of stock 
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prices [12] treats the volatility as resulting from the action of the rest of the market on the 
system composed of the one stock price being modelled. Furthermore, it does not attempt 
to model the processes by which the market might affect the stock price, arguing that the 
mechanisms are too complex to model or are not known. However, by invoking the central 
limit theorem they believe that the effect of this interaction can be modelled even when the 

echanisms are not known. This modifies equation 16 to an Ito process as: 
 
m

dzdt
S

dS          (17) 

nt in the evaluation of combat attrition rates. Following the Black Scholes 
pproach: 

 

 
The first term in this expression results from the interaction between the system’s 
underlying parameters, while the second results from the action of the wider environment 
on the system. The analytic solution for equation 16 is a single exponential distribution. 
Adding the Wiener term (equation 17) modifies this solution to a log-normal distribution. 
The similarity between this equation and the Lanchester Equations (equation 1) is clear. 
This suggests an obvious solution to the question of  how to include the effect of the wider 
environme
a
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ironment’s contribution, while the zi are Wiener 
rocesses which may be independent. 

 exponential components, albeit more complex than for the stock price 
odel above: 

 

 
and  and  are measures of the env
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The analytic solution to Lanchester’s Equations (equation 1) are monotonically decreasing 
functions with
m
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here: 
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This solution for both x and y reduces to a single exponential when the initial force ratio 
(x0/y0) equals the root of the relative effectiveness (R). The magnitude of A is a measure of 
how evenly the forces are matched, where A = 0 represents neither side having an 

 
7 



 
DSTO-TR-2138 

advantage and the combat is even. Provided A << B the contribution from the 
increasing exponential term in equation 19 will be small and can be treated as a 
perturbation. The leading term in this solution is then also a single exponential. The 
solutions can be considered as a dynamical system with a positive Maximal Lyapunov 

xponent [13] that increases with A. 

mbat models. A general closed 
rm analytic solution for equation 18 is still being sought. 

 

 

r that can be attributed to the effect of such terms can be 
und in the historical record. 

5.1 Historical Data 

of battle data that is representative of 
atterns observed in the population of all battles. 

ng only initial and final values 
f engaged force strengths is developed in the next section. 

r which it was compiled. Many of these have been  
reviously studied [15] [16], including: 

E
 
Provided A << B, the proposed attrition model (equation 18) also has a log-normal 
distribution as its first order solution for casualty values. Such a distribution would not be 
expected from force strength distributions, which are dominated by the distribution of 
initial values (x0, and y0). These are controlled by different dynamics and were first 
investigated by Richardson [14]. The conditions under which this approximation can be 
expected to hold will be examined in the next section, along with a number of issues 
concerning the use of historical data for comparison with co
fo
 

5. Historical Analysis 

Determination of whether Lanchester’s Equations (equation 1) need to be augmented by 
terms describing the effect of the wider combat environment, as proposed in equation 18, 
depends on whether behaviou
fo
 

Despite the large number of recorded battles throughout history, the number with usable 
data is small. Any compilation of battle data, being a subset of all battles, constitutes a 
sample. A useful database will have a sample 
p
 
To validate differential models of attrition, such as Lanchester’s equations, force and 
casualty levels for both sides intermediate to the starting and finishing quantities are 
required. That level of detail is rarely available and often does not exist. The author has not 
found a single instance where sufficient data of this type is available to carry out the 
examination proposed in section 4. An alternate method, usi
o
 
Some data compilations of battles throughout recorded history exist, and have been 
aggregated and used in previous analyses [15]. The component databases were put 
together by a number of workers for a variety of different purposes. The aggregate 
database covers a wide range of force ratios and while emphasising 20th Century battles, 
has reasonable coverage back to 1600. It emphasises land battles, but includes one air 
campaign. Most report just initial and final values, but some time correlated data is 
included. Inevitably, there are issues which must be understood when attempting to reuse 
such data for purposes other than that fo
p
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 potential bias in the battle narrative due to most accounts being written by the 

 personnel be included, 

uld 

d the effect of leadership, initiative, surprise, terrain and weather be 
included. 

5] is the best available source to carry out the proposed examination. 

nclusion that the database is little more than an aggregate of accidental sample 
atabases.  

their attributes recorded. 
he individual databases are themselves samples of that sample. 

 were the product of random sampling. This conclusion will be tested 
sing the database. 

18] has shown that the initial and final strengths for both 
ides of a battle are related by: 

 

victor or for propaganda purposes, 
 many reported results are qualitative or approximate, 
 many reported results must be incorrect, including dispute over which side won, 
 when determining force strengths should support or service
 when determining casualties should prisoners be included, 
 how should force strength be obtained from numbers of participating staff, sho

some form of force scoring such as the Quantified Judgement Method be used, 
 how shoul

 
While some of the authors of the database components have attempted to address some of 
these issues [16], especially questions of how to determine force strength and casualties, 
there remains a question regarding the accuracy of much of the original reporting, 
especially for battles prior to the 19th Century. Nevertheless, the database reviewed here 
[1
 
Hartley has argued that the individual datasets comprising the database are random 
samples, because they were independently derived [15]. This argument is similar to the 
inverse of Bootstrap sampling [17], which has been used to improve the accuracy of 
measures of sample statistical descriptors. A short account of sampling bias is given in 
Appendix A. Aggregation will improve the accuracy of statistical estimators, however, the 
outcome assumed by Hartley, that while the database is not a true random sample it can 
be treated as if it were effectively random, requires further consideration. It is difficult to 
avoid the co
d
 
The individual component databases are the product of the recursive application of the 
sub-sampling process. The population consists of all battles. This is first sampled to 
produce the set of all recorded battles. Many, especially smaller engagements, are never 
recorded. The requirement that both the initial and final values of forces strengths are 
known produces another sub-sampling stage to generate the set of all recorded battles 
with usable data. This sampling process also discriminates against smaller battles. Larger 
battles receive more attention and hence are more likely to have 
T
 
Even if the final sampling process was random, the process of recording history generates 
a bias towards larger battles. By stratifying the aggregate database according to battle size, 
the lowest stratum containing the smallest battles can be seen to be the most affected. 
Together with the improved accuracy from aggregation, strata other than the lowest can 
be treated as if they
u
 
Previous work by the author [
s
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and that this relationship is a result of Lanchester’s model for attrition (equation 1). 
Helmbold, and later Hartley [15], have shown that the data from an ensemble of different 
battles also follows equation 21. 
 
Lanchester’s Equations, and the proposed attrition equations (equation 18), describe the 
behaviour of a single system in time. However, the historical databases contain 
information about an ensemble of battles, each potentially with different values of attrition 
coefficients a and b. Should the results from such an ensemble follow the behaviour 
expected of a single system? 
 
Hartley [15] has examined this issue at length. He considered several hypotheses, rejecting 
all save the conclusion that the relationship between the data from an ensemble of 
different battles was a direct consequence of the form of the equations governing the 
attrition process. In other words, the behaviour governing an individual battle was 
reflected in the behaviour of an ensemble of battles. Indeed, Helmbold’s earlier work on 
the validation of Lanchester’s equations using historical data [16] found this applies to a 
number of different parameters including the defender’s advantage. 
 
Using Hartley’s conclusions, albeit more empirical than rigorous, and the random nature 
of the data samples for other than the lowest stratum, it is expected that the distribution of 
casualties during a battle (equation 18) should also be reflected in the distribution of 
casualties from an ensemble of battles. This conclusion will be supported, and less likely to 
be the result of artefact or data bias, if such patterns are only found in quantities affected 
by attrition (equation 18) and not in other quantities such as initial force strengths. 
 
The solutions (equation 19) to Lanchester’s Equations are monotonically decreasing and 
can be approximated as single exponential functions provided A << B. This 
approximation defines the region of validity for which log-normal solutions to equation 18 
can be expected. It corresponds to the condition that the two sides are not significantly 
mismatched in their combat potential. Just as the process of data sampling has an inherent 
bias towards larger battles, it also contains a bias towards more “even” battles. An attacker 
that recognises it is outmatched has the option to use its initiative and not attack. Similarly, 
a defender that recognises its inferiority usually tries to improve its position before 
accepting battle. Protagonists appear more willing to accept battle when they are evenly 
matched and have a better expectation of a favourable outcome. Battles with smaller 
values for A can therefore be expected to be over-represented in any data compilation. It 
is then reasonable to expect that the condition A << B will apply to more data in the 
dataset, consistent with the requirement for battle casualty data to exhibit a log-normal 
distribution. 
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5.2 Results 

The database contains a number of duplicate entries. One reason for this was to 
accommodate the different reporting of particular battles, including the identity of the 
winning side. The present work is not concerned with differentiating between winner and 
loser, which necessitates the removal of duplicate entries from the database. 
 
Most previous work on frequency distribution of force sizes and casualties has only 
examined total combatants or casualties [16]. The present work examines the applicability 
of equation 18 for attrition modelling and so must consider each side separately. Hence 
each battle will contribute two data points to the analysis. 
 
5.2.1 Force Size Distribution 

The frequency distribution of initial force sizes was determined by dividing the range of 
force sizes into intervals of 1000 and counting the number of times a force strength from 
the database occurred in each interval. This is shown on a logarithmic scale in Figure 1. 
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Figure 1: Force Size Distribution, and regression coefficient of determination 

This is observed to follow an inverse power law relationship, which might have been 
expected on the basis of previous work dating back to Richardson [14]. He found that the 
frequency distribution of casualties in wars followed an inverse power law. Such fractal 
relationships exhibit scale invariance. Hence it is not unreasonable to find similar 
relationships for other similar quantities, such as the force size distribution for battles. 
 
It should also be noted that the data progressively drops below the line of the linear 
relationship, obtained by regression analysis, for smaller force sizes. This is the behaviour 
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expected by the inherent data bias favouring larger battles from the application of 
sampling techniques described above. 
 
The database contains some 1500 force size entries. Extrapolating from the best fit line, 
excluding those entries affected by bias, indicates that an unbiased database covering the 
same domain should be expected to contain at least 1800 entries if small size battles were 
not underrepresented. 
 
It should also be noted that the distribution of initial force sizes does not exhibit any 
indication of the influence of a normal distribution. The completely different behaviour of 
the initial strength frequency and the casualty frequency supports the contention that such 
behaviour results from the attrition process and is not an artefact of the sampling or 
analysis procedure. 
 
5.2.2 Casualty Distribution 

The distribution of the natural logarithm of each side’s battle casualties was determined by 
dividing the range of observed logarithm  of casualty values into intervals of size 1, which 
is equivalent to the size for adjacent intervals having a ratio of 1.65. It results in an even 
spread of casualty values on a logarithmic scale which is necessary for the accurate 
representation of its distribution. The number of times the logarithm of the casualty value 
from the database occurred in each interval was then counted. This is shown in Figure 2. 
 
The frequency distribution forms a bell shaped curve, but with considerable stochastic 
variability across the peak. This limits the ability to determine what form the distribution 
takes, in particular whether it is consistent with a normal distribution. Table 1 contains the 
summary statistics for the logarithm of casualties from the database. 
 
Table 1: Log-Casualty Database Descriptive Statistics 

Database Statistic Value 

Number of Entries 1498 
Mean 7.485 
Mode 8.006 
Median 7.474 
Standard Deviation 2.003 
Skewness 0.105 
Kurtosis -0.153 
Minimum Value 0 
Maximum Value 13.693 

 
The cumulative casualty distribution was formed by summing the number of occurrences 
with casualties greater than the specified value and is also shown in Figure 2. The 
cumulative distribution for occurrences greater than the specified value was chosen as it 
confines the effect of data bias to a few entries at the lower end of the scale instead of 
incorporating the bias in all the data points. 
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Table 1 indicates that the data is slightly skewed towards higher casualties, which is what 
is expected from our consideration of data bias issues. The previous section has indicated 
that the database should contain at least 1800 entries, if there was no bias against smaller 
battles. This bias can be compensated for by calculating the curve that the distribution 
would follow, given that number of entries, assuming a normal distribution and using 
values for the mean and standard deviation chosen from the historical data. Given the 
logarithmic nature of the scale, the additional entries can be assumed not to change the 
distribution mean by much. However, they will influence the standard deviation more. 
Figure 2 also shows the theoretical cumulative frequency distribution assuming that the 
logarithm of casualty values are normally distributed, for a total of 1800 entries, a mean of 
7.5 and a standard deviation of 2.2. 
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Figure 2: Log-Casualty Distribution, Casualty Cumulative Distribution, and Theoretical 

Cumulative Normal Distribution 

The close agreement between the historical data and the theoretical distribution, except for 
the lowest database stratum where bias is expected to have produced under-
representation, is apparent. The relationship between historical data and theoretical result 
can be observed more readily by looking at the correlation between the two sets of values. 
 
Using standard statistical techniques [19], the correlation coefficient between the two sets 
of values, ignoring the lowest database stratum, was determined as 0.9965. This can be 
also be seen graphically by plotting the historical cumulative casualty distribution as a 
function of the theoretical expectation, as seen in Figure 3. Again ignoring the lowest 
stratum, regression analysis produces the best fit relationship shown, with a coefficient of 
determination of 0.9958. 
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R2 = 0.9958
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Figure 3: Force Size Frequency, and regression coefficient of determination 

One standard interpretation [19] of the coefficient of determination is that 99.58% of the 
variability in the cumulative log-casualty frequency distribution observed in the historical 
record can be explained by the variation in a casualty model with a log-normal 
distribution, such as that proposed in equation 18. 
 
This is consistent with the expectation from the hypothesis proposed in section 5.1. 
 
 

6. Conclusions 

Hartley’s historical battle database [15], which previously has been used to validate the 
fractal nature of Lanchester’s attrition equations by including spatial effects [3], has been 
used here to examine whether attrition is adequately modelled by a Markov process. It has 
been shown that the frequency distribution of battle casualties is consistent with that 
produced when attrition is modelled as an Ito process. The additional Wiener term can be 
regarded as representing the impact of the wider environment on attrition rates. 
 
This battle database, and indeed all such databases, was shown to include an inherent bias 
which under-represents the number of small battles. While the effect of such bias was 
observed, by incorporating strata sampling concepts it is possible to confine the effects of 
such bias into a single stratum and a small number of data points, which can then be 
allowed for. 
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The shape of the distribution resulting from the assumption of a controlling Ito process 
was not observed in the initial force strength distribution. This supports the contention 
that such distributions result from the attrition process itself and are not artefacts of the 
sampling or analysis procedure. 
 
The wider implications of the need to revise Lanchester’s Equations by the inclusion of 
Wiener terms below representing the impact of the larger environment on attrition rates 
requires further investigation. 
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Appendix A:  Bias in Sampling Theory 

Sampling systems are used to obtain estimates of properties of the population being 
studied, and will be judged by how good the estimates obtained are. A good sampling 
system will, on occasions, give an estimate which is far from the true value, just as a poor 
system may, very occasionally, give an estimate very close to the true value. A system is 
better judged by the frequency distribution of the many estimates which are, or could be, 
obtained by repeated sampling. A good system would give a frequency distribution with 
small variance, and mean estimate about the same as the true value. The difference 
between the mean estimate and the true value is called the bias. 
 
Bias may arise from a poor method of analysis, but more often from a poor choice of 
samples, or from the method whereby the measurement or counts are made or the samples 
are obtained. If the size of sample increased, or the data of two or more samples combined, 
then the bias will remain unaltered, but the variance will be reduced. Bias can normally 
only be detected and hence eliminated by careful examination of the whole sampling 
process from beginning to end. 
 
The basic concept in all sampling is the random sample. A sample of objects from a 
population is random if all the members of the population have an equal chance of 
appearing in the sample. It is very important to remember that this applies to all members 
of the population, exceptional as well as typical members. If random numbers, or a similar 
randomizing process are not used, then it is likely that all individuals in the population 
will not have equal chances of appearing in the sample. If there is any correlation between 
the quantity being measured and probability of appearing in the sample, the result may be 
biased, perhaps strongly. 
 
When sampling a heterogeneous population the precision achieved can be increased and 
the risk of bias reduced by dividing the population into sections, each relatively 
homogeneous, and sampling each section (or stratum) separately. Each stratum is then 
sampled independently, and estimates obtained for each. These can then be combined to 
give the estimate for the whole population. If entire groups of a heterogeneous population 
are excluded from a sample, there are no adjustments that can produce representative 
estimates of the entire population. However, if some groups are underrepresented and the 
degree of under representation can be quantified, then sample weights can correct the bias. 
 
When the population being sampled is extensive or complex, the practical problems in 
taking a simple random sample are great, and the time taken for even a small sample may 
be large. The time required to obtain a sample of a given size may be greatly reduced by 
carrying out the sampling in two stages. First the complete population may be divided 
into a number of distinct primary units or subpopulations, and from these a sample is 
taken. From each of these sampled sub-populations a secondary sample, or subsample of 
individuals is taken. 
 
Weakest of all sampling procedures, accidental sampling involves using what is available, 
and most convenient, as a sample pool. 
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