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Objectives 

This research focuses on multispectral analyzing of weak THz signals by carbon nanotube 
junction arrays. The junction arrays simultaneously determine the electromagnetic field 
frequency, polarization, and intensity. Our key idea involvoles combining of metallic and 
semiconducting carbon tubes in the same comb array. We exploit intrinsic phase-coherent 
properties of carbon nanotubes. This allows improving the analyzer sensitivity up to ~1 fW and 
reducing the intrinsic and parasitic noises by factor 10-10

2
. The suggested approach extends the 

analyzed spectral diapason from 0.5-7.5 THz covered by the semiconducting comb to 7.5-50 
THz covered by the metallic tube comb. Practical outcome of this work can be used for stand off 
detecting of concealed weapon, explosives, toxic substances, and fast moving projectiles. 
 
Practical implementations of multispectral analyzing by carbon nanotube junctions and 

current experimental studies 

Sensors of electromagnetic field are used in many areas of science and technology. These 
devices analyze the spectrum of electromagnetic waves reflected from various substances. Many 
chemical analytes, e.g., explosive or toxic materials have pronounced spectral features in the 
frequency range  0.5 50  

EF
  THz (see, e.g., Refs. [A-C] and the references there in). 

Therefore the THz spectral analysis can be effectively used for a stand off identification of those 
substances. Since the THz waves (T-rays) penetrate through clothing and paper, the security 
nanosensors are capable of identifying concealed metallic and ceramic objects. Known medical 
implementations of the T-ray detectors include monitoring the healing of human skin and of 
body wounds [4]. Most of T-ray detectors available now work in a narrow frequency range, and 
are bulky and costly.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This motivates an increased interest to nanoscale devices (nanosensors), which have better 
sensitivity and wider frequency range. The nanosensors are expected to be more effective, 
robust, cheaper in mass production, and durable [2,4,5,8,A-D]. The sensing principles exploit a 
general fact that electron transport in carbon nanotubes is strongly affected by external fields and 
environment [1-8,A-D]. The central element of the THz multispectral analyzer is a comb array of 
semiconducting and metallic carbon nanotubes. The comb is placed on a dielectric substrate (in 
current experiments it is SiO2). Each of the nanotube in the comb is controlled individually by 
the bias source drain and gate voltages. The bias voltage control provides an extra flexibility to 
the spectral analyzer setup since its sensitivity in the whole spectral range is optimized 
dynamically. The comb array consisted of two different types of carbon nanotube junctions: 

 

Fig. 1. A comb array of gated carbon nanotube junctions. The setup consists of two 
parts: the comb of semiconducting nanotubes is used for spectral analyzing of an 
external electromagnetic field in the diapason 0.5-7.5 Thz while the metallic 
nanotube comb works in the upper diapason 7.5-50 THz.   
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semiconducting tube junctions and the metallic tube junctions in the Tomonaga-Luttinger liquid 
(TLL) state. In this way one extends the analyzed spectral diapason from 0.5-7.5 THz covered by 
the semiconducting comb to 7.5-50 THz covered by the metallic carbon nanotube comb. Besides 
our method exploits intrinsic phase-coherent properties of carbon nanotubes which allows 
improving of the frequency resolution, and reducing of the intrinsic noises considerably. 

The relevant experimental work had been conducted at Georgetown University by the 
Prof. P. Barbara group. Active experimental research of carbon nanotube THz sensors had been 
conducted also in Japan by Y. Kawano (see Refs. [35-37]). In Fig. 2 we show their recent 
experimental data which suggest that the carbon nanotube junctions work as sensors of THz 
field. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

 

The authors of Refs. [35-37] fabricated and tested the carbon nanotube quantum wells which 
exploit principles the photon-assisted single electron tunneling. Their devices detect the external 
electromagnetic field signals as weak as ~1 fW in the frequency diapason 1-5 THz. Nevertheless 
the available spectral range obtained in works [35-37] is too narrow while their working 
temperature 10T  K is too low yet for many practical purposes. Therefore our work aimed at 
extending of the carbon nanotube sensor capabilities. We studied possibilities to widen the 
multispectral analyzer frequency diapason, to reduce the noise level, and to improve the detector 
sensitivity. 
 
Our research findings 

1. Sensing an electromagnetic field with photon-assisted Fano resonance in a two-branch 

carbon nanotube junction. 

A Fano electromagnetic field sensor 

In a typical setup one measures [2-6,8,A-D] changes of electrical characteristics of a single wall 

 

Fig. 2. (a) Experimental data by Y. Kawano et al. (see Refs. [35-37]). That group used 
semiconducting carbon nanotube junctions serving as a quantum well with the single 
electron tunneling. Their devices detect weak THz fields having minimal power as low 
as ~1 fW in the frequency range 1-5 THz. The plots above illustrate evolution of the 
single electron tunneling resonances under the THz irradiation. 
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carbon nanotube (SWCNT) section C attached to normal metal electrodes N 1   and N 2   (see the 
sketch in Fig. 3a where  V

SD
  denotes the source-drain bias voltage and  V

G
  is the gate voltage), 

which constitutes the nanotube junction (NJ). The NJs of various configurations are subject to 
extensive experimental and theoretical study [2-6,8,A-D]. In Fig. 3 the nanotube C resides on the 
substrate S and is coupled to the N electrodes via the Schottky barriers I arising due to 
differences of electron concentrations in C and N 1,2  . Because electron motion in the C section is 
quantized [9], the carbon nanotube junctions is quoted as a one-dimensional (1D) quantum dot. 
The quantized states formed inside the dot cause various resonances experimentally observed in 
transport characteristics of the carbon nanotube junctions  [1,2,5,6,8,9,10] and quantum dots 
[10,41]. A steady state quantum interference between localized electron states in C and 
continuum states in N electrodes results in sharp Fano peaks and dips pronounced in the electron 
transport characteristics [5,6,8,9] of the NJ nanodevices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In this part of work we studied the influence of an external electromagnetic field (EF) on 

the Fano resonance in an carbon nanotube junction. We will see that an external electromagnetic 
field induces photon-assisted tunneling processes across the nanotube junction. This strongly 
affects sharp quantum mechanical resonances taking place in the nanotube junction. The 1D 
nature of the electron transport in SWCNT is exploited to determine polarization of the 
electromagnetic filed. The above phenomenon is suggested for sensing an external THz signals. 
Theoretical model 

We consider a two-branch carbon nanotube junction exposed to an external EF. The junction is 
composed of carbon nanotube sections C ( )l r

  coupled to metallic electrodes N 1,2,3   via electron 
tunneling. Quantum interference between localized electron states in the carbon nanotube 
branches and continuum states in the metallic electrodes causes sharp Fano resonances. The 
sharp peaks are affected by an external a.c. field which induces tunneling processes accompanied 
by emission and absorption of photons. We will see that the photon-assisted tunneling results in 
appearance of satellite peaks in addition to the main Fano resonance. In this paper we implement 
an illustrative and tractable model, which describes the photon-assisted phase-coherent electron 
transport across a two-branch SWCNT junction. Despite its simplicity, our model adequately 
captures basic physical features of photon-assisted electron transport under the conditions of the 
Fano resonance. The SWCNT branches C ( )l r

  are presumed to be "clean", which implies that the 

  

Fig. 3. (a) A carbon nanotube junction 
(NJ). (b) A -sensor of the EF with 
electric field components Ex and Ey. 

Fig. 4. The stationary transmission coefficient T: 
(a) for different magnitude of the linewidth ; (b) 
for various field polarizations; (c) for various level 
energy differences ; and (d) for various total level 
energies  . 
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electron movement is ballistic ( i l(r)l L  , where  il   is the electron elastic mean free path and 

( )L
l r

 is the length of the nanotube section). The C ( )l r
branches are misaligned by angle     and 

are coupled to each other indirectly via the common normal metal electrode N 1 , as shown in Fig. 
3b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The   -shape of the nanosensor pursues a double purpose: (i) one measures the d.c. conductivity  
( , )GV V

SD G
  in each of the C sections independently; (ii) the 1D nature of electron transport in 

the C sections allows simultaneous independent measurement of components xE   and  yE   (see 
Fig. 3b) of the external electromagnetic field. The finite misalignment angle     assures that the 
a.c. bias  ( ), ( )l r t b

acV   [here indexes  ( )l r   refer to the left (right) branches of the   -sensor, while 

the indexes  ( )t b   are related to the top (bottom) Schottky barriers] is induced on the NJ s 
Schottky barriers by a certain projection of the electric field vector E ˆ ˆx yE x E y  .     

In the geometry of Fig. 3b one obtains , ( ) sin cosl t b
ac x yV E E    and  

, ( ) sin( ) cos( )r t b
ac x yV E E        . An arbitrary EF polarization  , ( ) , ( )l t b r t b

ac acV V   gives 

different probabilities of elementary photon-assisted tunneling in each of the two branches C l   
and C r .  

The inter-level spacing is estimated as  / 2hv L 
F

  [where  v
F

  is the Fermi velocity 

in the carbon nanotube, 58 10v 
F

 m/s, and  L   is the nanotube length,  
2 32 (10 10 )L      nm]. The level energies i  are controlled by changing the charge carrier 

concentration when applying the gate voltages  iV
G

  to C i . Since only one level i  supports the 
transport across the  i  -th dot (if either the inter-level spacing   or the level energy difference 
  is larger than the bias voltages V

SD
and V

G
, linewidth  , and temperature  T ), no intradot 

Coulomb interaction is present. In this way one neglects the charge accumulation on the 
nanotube sections, and accounts just for one type of the carriers. This is justified when

2max{ , / 2 } min{ , }e C    , i.e., when electron propagation inside the C-sections is well 

 
Fig. 5. A section of carbon nanotube, its crystal 
lattice structure, a Brilloin zone, and the 3d plot of 
electron energy versus momentum. 
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quantized and the NJ capacitance C  is not small. Though the above assumption is very simple, it 
allows deriving of tractable analytical expressions, which appears to be quite convenient for a 
qualitative and quantitative analysis. 
 

Photon-assisted Fano resonance 

For the sake of simplicity, we ignore the dependence of the tunneling matrix elements  sit   versus 
the energy variable  and electron momentum p . Besides, we assume that the tunneling matrix 
element  sit   is the same for all the junctions, i.e., sit t . Due to electron scattering on 
atomic defects and tunneling with rates  

i
  and  s   respectively, the dot energy levels acquire 

a finite linewidth  s  
i

, where   2 0s st N  , and  0sN  is the density of states in the 
s -th N lead. Our model assumes no direct interaction (neither Coulomb repulsion, nor tunnel 
coupling) between the sections C l   and C r  . The steady quantized states are coupled to each 
other rather indirectly via continuum electron states in the N leads. We will see that a finite 
external electromagnetic field produces series of sharp satellite singularities, which arise in the  
( )GV

SD
-curves in addition to the steady state resonances. The position and magnitude of the 

satellite singularities, which constitute the photon-assisted Fano resonance, are uniquely related 
to the parameters of the external electromagnetic field.  

Our calculation results for the steady state transmission coefficient   0    are presented 

in Fig. 4a-d. In Fig. 4a we plot  0   for 1l r   ,  1  ,  0.2  ,  0.05   (curve 

1),  0.25  (curve 2), and  0.6  (curve 3). One can see that  0   vanishes at   . 
One may also notice a well-pronounced double-peak singularity affected by asymmetry of the 
setup. The transmission becomes ideal [i.e.,  0 1  ] at     . Fig. 4b illustrates the 

effect of transmission asymmetry when t b
l r  . All the parameters used for calculations in 

Fig. 4b are the same as in the former Fig. 4a except 0.3   and 0.01r   (curve A),  
0.5r   (curve B), and 1r   (curve C). In Fig. 4c we show  0   for various level energy 

differences 0.02   (curve I), 0.2   (curve II), 0.8   (curve III). All other parameters 
are the same as before. In Fig. 4d we plot  0   for different values of the sum level energy  

0.5   (curve  ), 1   (curve   ), and  1.5    (curve  ). The partial transmission 
coefficient  m   for an arbitrary  m  -photon-assisted process is obtained from   0    with 
shifting the energy argument by  m  . 

The calculation results for the    -sensor conductivity  G   versus the source-drain bias 
voltage  V

SD
  (in units of   ) are shown in Fig. 6. For the sake of simplicity, we assume that the 

a.c. and d.c. biases are the same for all the Schottky barriers, which is the case for a symmetric 
NJ and  x yE E  . Then, in all the equations one sets  ( ), ( )l r t bV V

ac ac
  and  ( ), ( )l r t bV V

SD SD
. 

Fig. 6a shows the    -sensor conductivity for  0.1eV 
ac

  (curve 1),  0.2eV 
ac

  (curve 2), 
and  0.5eV 

ac  (curve 3). Other relevant parameters are 1l  ,  1r  ,  1  ,  0.07   
,  0.03   , and  0.4  . One can see that the a.c. EF induces series of satellite double-peak 
singularities, with positions and relative amplitudes depending on the EF intensity. When the 
intensity of the external EF is low, the photon-assisted tunneling signatures are weak: only a 
weak double-peak singularity appears at the bias voltages  ( ( )) /V e  

SD
  [see curve 

1]. Splitting between the main peak and the first adjacent satellite peak in this case is  / e . 
However, as the a.c. field amplitude  E

ac
  increases, the amplitude of the main peak decreases 
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while the satellite double-peaks become much sharper (see curves 2 and 3). We emphasize that 
here we neglected the non-equilibrium effects despite the a.c. field is strong. This is justified 
since     . The    -sensor conductivity at different     is presented in Fig. 5b, where 
curve A corresponds to 0.1  ; curve B to  0.4  , and curve C to  0.7  . Other 
relevant parameters are 1l r   ,  0.3eV 

ac
,  1  ,  0.07  , and  0.03  . 

 
Frequency range and sensitivity. 

Using the above data one may summarize the EF sensing method as follows: (i) the 
electromagnetic field frequency is readily extracted from splitting of the double peak structure 
(Fig. 5a); (ii) the field vector components  ,x yE   (see Fig. 3b) are determined by the ratios of the 
main and the satellite double peak heights; (iii) field polarization is obtained by comparing the 
satellite peak heights in the conductivities  lG   and  rG   of the two adjacent NJ branches. One 
utilizes the fact that an arbitrary EF polarization gives different sequences of peak heights in  

,l rG   of the two NJ branches  l   and  r . From a measurement, one determines ratios of the main 

and the satellite double peak heights   for each of the branches  ,x y  . Then, one finds  

,x yE   from two transcendental equations  2 2
1 0( ) / ( )J J     , where  ,x y  . The  x̂  - 

and  ŷ  -components of the a.c. electromagnetic field vector  E   are readily obtained from the 
universal dependence ,( )x y  . The function  ( )    [where  arctan( / )x y   ] is given in 
Fig. 6c.  

The sensitivity diagram in Fig. 6c is obtained for 10 
D

,  0.3  ,  1p 
F

,  1,k 
D

   
1  . One can see that the temperature broadening due to coupling of electrons to phonons 

significantly restricts sensitivity of the Fano nanosensor at high frequencies (which for the used 
carbon nanotube junction parameters are below 1.7 - 17 THz) and temperatures  7T     
(which corresponds to 80-800 K for the same device parameters). The above calculations were 
made under the assumption that the external field amplitude is weak. We have actually 
disregarded non-equilibrium effects along with the changes in the electron bandstructure due to 
the photon-assisted tunneling. However, the above assumptions become invalid if the 
electromagnetic field is strong. In the latter case, the non-equilibrium phenomena influence the 
nanosensor characteristics substantially. Strong electromagnetic field changes the electron 
distribution function f , affecting electron transport across the NJ directly. Besides, if the C 
section is longer than the electron diffusion length, it causes instability in respect to the 
appearance of inhomogeneous regions along C. In an experiment one may use SWCNT as the 
left (right) shoulders C ( )l r

 and Pd as the N leads. The stationary Fano resonance is tuned by 

applying the gate voltages ( )l rV
G

 to get an optimal value of  . The gate voltage influence is 
understood when one considers that the inter-level energy spacing / 2hv L 

F
 depends on 

the Fermi velocity  2 1/3( / )(3 )v m n 
F

. The electron effective mass m  and the electron 
concentration n   both can be tuned by applying appropriate gate voltages. The electron carrier 
concentration is altered by the gate voltage  V

G
  applied to the nanotube junction in the way 

[5,6,8,9] as shown in Fig. 3a. The effective electron mass is controlled using the split-gate 
configuration. The split gate voltage  V

SG
  affects the electron bandstructure of a "helical" 

nanotube already at  10E   V/  m (1 mV/Å). Other types of semiconducting nanotubes (e.g., 
zigzag) require stronger fields ( 0.2   V/Å) to induce a metal-semiconducting transition when a 
finite energy gap is opened in the electron excitation spectrum. For typical lengths  



 

8 
 

( ) 0.2 2L  
l r

   m of C ( )l r
 , one finds that  1 10     meV (0.24-2.4 THz). At these 

parameters, the  -sensor works in the THz frequency range at temperatures  1 100T     K. 
A correspondence between the field intensity and  ( ), ( )l r t bV

ac
  is obtained from a self-consistent 

numeric solution of Maxwell equations, completed by equations for electron spectrum, 
conductance, junction transmission, and the plot in Fig. 5c addressing the particular setup. 
Verification is made using calibrating measurements. In this way, the photon-assisted Fano 
resonance in the    -shaped junctions allows to determine the external electromagnetic field 
parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Indeed, the sketch in Fig. 3b is idealized. If the a.c field frequency is comparable to /c L , one 
needs no external antenna, since one may utilize the intrinsic antenna effect observed and 
described in Refs. [A] (see also references there in). However, if the a.c. frequencies lay well 
below /c L , i.e., when the EF wavelength becomes much shorter than the nanotube length, one 
needs an additional external antenna as schematically shown in Fig. 6d. By attaching external 
antennas, one improves the reception of electromagnetic signals if the electromagnetic field 
wavelength and the nanotube length do not match each other. The external antennas may be 
fabricated using lithography methods. Then they are electrically connected to the metallic 
electrodes of the  -junctions. In the geometry of Fig. 6d, the a.c. field components  xE  and yE  
are tuned independently by each of the antennas, and are transmitted to the corresponding branch 
of the -junction. 

The frequency range of the -sensor is determined by several factors. Along with the 
circuit noises and influence of the external environment, there are intrinsic sources of noise. 
They originate from temperature broadening  of the Fano resonance peaks due to the electron-
phonon coupling discussed in previous subsection. The magnitude of   depends on the 
temperature and on the coupling strength between the SWCNT sections and metallic electrodes. 
Another fraction of broadening is due to coupling of the nanotube to metallic electrodes. That 
mechanism depends mostly on the transparency of the Schottky barrier. The net broadening is 
also determined by the quality of interfaces and by the purity of the electrodes. 

Besides the broadening, one should also account for positions of the quantized energy 
levels n  and for the inter-level spacing  .  Both of them, n  and  , depend on the length of the 
SWCNT sections. The relevant frequency range corresponds to the THz domain ( EF   0.5-
50 THz, or, in terms of wavelength, EF   1 mm-5m). This means that the EF wavelength 

 

Fig. 6. Calculation results for 
the linear conductivity 
G(VSD) of the -sensor. (a) 
The G(VSD) -curves for three 
different external EF 
amplitudes Vac. The splitting 
between the satellite peaks is 

/ e  . (b) G(VSD) for three 
different field frequencies. (c) 
The universal dependence  = 
eVac/ versus =J2()/J2() 
where Jn is the Bessel 
function of order n. (d) The 
-nanosensor with antennas 
attached to the NJ-branches. 
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and the nanotube section size match each other just for shortest waves of the THz domain only. 
The range  EF   is limited by circuit parameters and by coupling to the external environment. 
Besides, there are additional restrictions having an intrinsic origin, as discussed in former 
section. The upper frequency limit (i.e. shortest wavelengths) is determined by maximal level 
energy difference  . The lower frequency limit depends upon coupling between the nanotube 
shoulders and the broadening due to electron-phonon interaction. The inter-electrode coupling 
depends on several factors including transparency and geometry of the Schottky barriers, and 
also purity of the normal electrodes. Since the elastic electron scattering on the atomic defects 
and on the adsorbed molecules (which stick to the nanotube sections[2-6]) contributes into the 
localized level width, it also affects the lower frequency limit (i.e., the frequency resolution of 
the nanosensor). 

Our work suggests that the carbon nanotube sensors have numerous advantages as 
compared to other types of devices. One important benefit is that the intrinsic properties of the 
nanotube sections are controlled by gate and source-drain bias voltages [5,6,8,9]. In this way, 
one alters the electron bandstructure and/or the charge carrier concentration. The electron 
bandstructure is affected by a transversal electric field [A-D] in a split gate configuration. 
Typical magnitudes of the electric field may be quite low [ 10E    V/  m or 1 mV/Å  for a 
particular class of 'helical' (n,1) nanotubes], or 0.01-1 V for other types of semiconducting 
nanotubes [5,6,8,9]. The charge carrier concentration and frequencies of quantum mechanical 
resonances are changed under the influence of a bias gate voltage [5,6,8,9]. Using the d.c. bias 
voltages  SDV   and GV , one insures perfect tuning of the carbon nanotube sensors as well as a 
prompt optimization of their working characteristics. Another advantage of NJs is presence of 
sharp intrinsic resonances in their transport characteristics. For such reasons the carbon nanotube 
sensors may be easily tunable and work with a good precision. 
 
2. Probing the intrinsic state of a one-dimensional quantum well with a photon-assisted 

tunneling. 

The THz diapason of the carbon nanotube spectral analyzers can be extended by fabricating of 
combs the metallic carbon nanotubes. The metallic nanotube combs sould be combined with the 
semiconducting nanotube combs as shown schematically in Fig. 1.  The metallic nanotube combs 
are furnished of single wall carbon nanotubes laid on a dielectric substrate. Each of the 
individual junctions in the comb consists of the single wall metallic nanotube     with emitter  
   and collector     electrodes attached to its ends (see sketch of a single junction in Fig. 7). The 
junction infact furnishes a quantum well with quantized energy levels formed inside. Depending 
on the tube properties, that setup (see Fig. 7) corresponds to various condensed matter systems. 
The single wall carbon  [ , ]n m   tube sketched in Fig. 5 is a rolled up atomic honeycomb 
monolayer formed by two sublattices A and B. The integer indexes  n   and  m   ( 0n m  ) 
of the rollup vector R R R1 2n m   actually determine the electronic bandstructure of the 
tube. In particular, if  3n m    ( being an integer) the tube is metallic while it is 
semiconducting or insulating otherwise [11]. The charge carriers in metallic tubes conform to the 
linear dispersion law  kk v  

F
  [where "   " corresponds to electrons (holes), and  v

F
  is 

the Fermi velocity]. A lot of discussions address the intrinsic state of metallic tubes where the 
Tomonaga Luttinger liquid state [14] (TLL) may presumably occur [12,13,15,16,17]. In contrast 
to semiconducting tubes, where a general consensus is achieved, unconventional features of the 
metallic tubes are not well understood yet. A lot of attention [12,13,15,16,17] is paid to the 
strong correlation effects, and to the one-dimensional transport of the electric charge carriers. 
Along with the TLL state [14] in metallic tubes [12,13,15,16,17] under the current elaboration 
there are models operating with non-interacting electrons while other models exploit coupling of 
the tube to the external environment[18].  Although there are indications of the TLL state in the 
shot noise[15] and in angle integrated photoemission measurements[16], present experimental 
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evidences are still indirect[18,19]. Therefore more efforts to clearly identify the intrinsic state of 
the one-dimensional quantum wells formed of metallic carbon tubes are required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Typical quantum well setup [5,6,B-D] is sketched in Fig. 7 where the 1D section is 
denoted as  . The bias voltage ecV  drops between the emitter ( ) and collector ( ) electrodes, 
while the gate voltage GV  is applied to the  n  ++Si substrate as shown in Fig. 7. The 
electrochemical potentials in  ,  , and   are denoted as  , ,e T c . The   and  electrodes are 
separated from the metallic tube section   by the interface barriers I shown in black in Fig. 7 
(a,b). The potential barriers emerge from differences between the Fermi velocities in the adjacent 
electrodes. In this part of work we suggest a method which identifies the quantized levels of 
charge and spin excitations in the Tomonaga Luttinger liquid state inside the 1D quantum well 
shown in Fig. 7(a-c). Our method exploits the fact that the electromagnetic field (EF) interacts 
with the charge excitations only, while the neutral particles remain unaffected. When a tunneling 
electron with energy   absorbs  n   photons of the external electromagnetic field, the intrinsic 
structure of the TLL state in  is pronounced in the multiphoton tunneling process probability. 
The photon-assisted tunneling (PAT) influences probability of the single electron tunneling 
(SET) which helps to elucidate the intrinsic state of the tube. In this paper we address quantum 
wells with long and short  sections. When the tube is long, the interlevel spacing  

/hv L 
F

  (v
F

  is the Fermi velocity,  L   is the tube length) is small. Therefore quantization 
of the electron motion inside     is negligible. In that case the local single electron density of 
states  ( )   inside     has a dip at zero energy 0  . We will see that such a dip is clearly 
visible in the photon-assisted and in the single electron tunneling characteristics which helps to 
identify the TLL state. In the opposite limit when the tube is short, the ballistic motion of the 
charged and neutral excitations inside   is quantized. During the tunneling, an electron splits 
into four  ,    -bosons (two density and two spin). The bosons populate quantized levels with 
different energies  ( )       . 

 

Fig. 7. (a) A quantum 
well (QW) composed 
of the 1D section T 
with emitter E and 
collector C electrodes 
attached. The potential 
barriers are shown in 
black at the E/T and 
T/C interfaces. (b) 
Energy diagram of the 
PAT process in the 
QW. (c) The split gate 
configuration of the 
QW. The right side 
inset shows how the 
electric field is applied 
to the T section.  



 

11 
 

The charge boson energy levels are detected with the photon-assisted tunneling (PAT, see 
Ref. [B]). We will see that the tunneling mechanism is sensitive to the emitter-collector  V

ec
  

and the gate  V
G

  voltages. Therefore the TLL properties are pronounced in the differential 
conductivity curves of the one-dimensional quantum wells. In measurements made on the same 
setup, the spin boson levels are fingered from Zeeman splitting  /H e

B
  when applying a 

finite d.c. magnetic field  0H  . The quantization of both the charge and spin excitations is 
proclaimed in the differential conductivity curves of the quantum well. 
 
The TLL tunneling density of states of a long QW 

If the metallic tube section     is long,  L v 
F T

  (where  / n  
T

  is the net tunneling 
time), the quantization inside     is negligible.  The level separation for typical carbon tube 
junctions [5,6,8-10] becomes indistinguishable when  3L     m. Strong electron correlations 
drive the electron system into the Tomonaga Luttinger liquid (TLL) state[12-19].  

A simple evaluation from the bandstructure calculations gives  0.005 0.03  
G

  
depending on directions of the rollup vector  R . The   E   shape is also controlled with  V

SG
  

utilizing the split gate configuration [A-C] as shown in Fig. 7(c). The electric field in that setup 
is perpendicular to the tube axis as shown in the right inset to Fig. 7(c). The split-gate setup 
allows driving the tube electron state from semiconducting to the metallic one. The transversal 
electric field induces a finite dipole momentum directed in perpendicular to the tube, which 
renormalizes  g   as well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The corresponding alteration of the Luttinger parameter  g   is evaluated using, e.g., results of 

Refs. [27-29]. It gives   1
0 /g g J V d v  

SG F
 . For a narrow-gap semiconducting     (see 

Ref. [30]) and for typical parameters of the tube quantum well, the split gate induced change is  
g g V 

SG SG
  where  0.01 0.05  

SG
  for different rollup vectors. If the transversal 

electric field  /V d
SG

  inside     is sufficiently strong, one induces a semiconducting-metal 

 
Fig. 8. (a) (a) Splitting of the zero-bias TLL dip in the differential tunneling conductivity 
(Vec) [in units of e2 vF N(0)] in a long CNT junction due to the photon-assisted tunneling. 
Spacing between the zero dip and adjacent satellite dips is / e . (b)The Coulomb staircase 
in the PASET current-voltage characteristics I(Vdc) versus reduced voltage Vdc (see text) of 
the CNT junction in the TLL state with g=0.4 under influence of the a.c. bias field with the 
amplitude eV(1)=3.4 (in units of  = e2/C) and for a symmetric junction ( = 0.5). Curve A 
corresponds to   = 4.7, curve B to  = 3.7 and curve C to  = 6.7.  
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transition [27-29]. The electronic properties of the tube then switch from a one-dimensional 
narrow gap semiconductor to the TLL. The time-averaged conductance  ( )V

ec
  of the long 

CNT junction exposed to an external electromagnetic field is computed using Maxwell equations 
combined with the Green function approach. We compute  ( )V

ec
  and the electric current  

( )I V
dc

  [ ( )tV V V  
dc ec

  is the reduced voltage,  ( ) /tV E e  
F

  is the SET threshold 
voltage] for the two cases of interest. One limit corresponds to  T    when the single-
electron tunneling is not essential [ 2 /e C  ,  e cC C C    is the net capacitance of the 
double-barrier junction,   e cC   is the emitter (collector) capacitance]. The current-voltage 

characteristics  ( )I V
dc

  [where  ( )tV V V  
dc ec

] in condition of the photon-assisted single-
electron tunneling (PASET) across the quantum well in the Tomonaga Luttinger liquid state are 
shown in Fig. 8(b). According to Ref. [23], the equilibrium shape of the  ( )I V

dc
  curves (quoted 

as Coulomb staircase) is extremely sensitive to the double-barrier junction's parameters such as 
barrier transparencies, capacitance, symmetry, purity of the carbon tube section, and the energy 
level spacing. The photon-assisted tunneling induced by the external electromagnetic field 
introduces additional features in those curves. We have computed PASET curves for a QW with 
a long   -section where the single electron tunneling takes place. The external  x̂  -polarized 
electromagnetic field induces an a.c. bias voltage across the junction as  (1) cosV t . The most 
remarkable elements of the  ( )I V

dc
  curves A-C in Fig. 8(b) are local dips which originate from 

an interference between the zero-energy TLL anomaly pronounced in equilibrium at  0    
[see Fig. 8(a)] and the photon-assisted single electron tunneling processes. The Coulomb 
staircase curve A in Fig. 8(b) corresponds to  4.7   , curve B to  3.7    and curve C to  

6.7    computed for  0.4g   . 
 
Identifying of the charge and the spin boson energy levels 

In a opposite limit when the   -section is short, the quantized energy levels are well resolved, 
since the condition  ,e c     is observed ( ,e c   are the      and      electron 
tunneling rates,  /hv L 

F
  is the interlevel spacing inside    ). In this Section we neglect 

by the single-electron tunneling (SET) contribution [23] (Coulomb blockade phenomena). That 
is justified when the temperature T is not too low,  ,e cT   . In that limit we use equation for 
electric current again but with a different spectral density function ( )Im   which now acquires 
a comb-like shape. Due to the spin-charge separation in the Tomonaga Luttinger liquid (TLL) 
there are two sets of quantized energy levels in a low-transparent quantum well with a short    -
-section. For the QW transparency  0.3T   (where  4 / ( )n n FT L v   ,  n e cL L L  ,  

eL  and cL  are the   and   thicknesses respectively,  58.1 10Fv     m/s) one gets  0.3n    
meV. For the tube length 3L  m one obtains spacing between the quantized levels as  

1    meV. The photon-assisted processes cause an additional splitting ~0.6 meV which 
corresponds to the a.c. bias frequency  1    THz. Following to Refs. [12,22], one defines the 
transmission coefficient as    2( ) | , |RT E i G L E  . We assume that coupling of the single wall 
tube segment     to the external   and   electrodes is weak. In this approximation we compute 
the local electron density of states  ( )   implementing boundary conditions [12] for the 
electron wavefunction inside a short carbon tube section   .  Then the quantized energy levels 
are firmly separated from each other and resolved. The charge   bosons populate the energy 

levels / /n Fhv n Lg n g      (where n  is integer number), while three other neutral     
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and    -boson energy levels have conventional values  ( ) /n Fhv n L n       . In the 
steady state, when the EF is off (i.e.,  0 

ec
), during the tunneling say, from   to  , an 

electron splits into four bosons as  e           , which assumes the energy 

conservation as   3 1 /n n n nE eV n g                 
ec    ( n   being the 

integer number).  That corresponds to a resonance tunneling through the quantized TLL states 
tuned by  V

ec
 . However, if the electromagnetic field (EF) is on ( , 0 

e c
 ), the resonance 

tunneling condition changes. That happens because the a.c. field acts on the charge    -bosons 
only, which absorb the EF photons during the photon-assisted tunneling processes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The photons do not excite the neutral     and     bosons since they do not interact with the 
external electromagnetic field. The a.c. field-modified resonance condition depends on both  V

ec
  

and     simultaneously 
   3 1 /n n n nE eV m n g m                     

ec  where n and m

are integer numbers. The external electromagnetic field splits the conductivity peaks selectively. 
Because V

ec
 and   are bound by the condition (aceson), this imposes a constrain on the net 

photon-assisted tunneling (PAT) resonant current through the quantum well. We extract g  and 
  from the d.c. PAT current-voltage characteristics. The splitting of the charged   boson 
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Fig. 9. Splitting of quantized levels due to the photon assisted tunneling and Zeeman 
effect as pronounced in the single electron density of states N() of a short CNT 
junction. (a) A free electron quantized level (solid curve) for which the charge + 
and spin +  bosons coincide splits by an a.c. electromagnetic field (with spacing 

/ e  ) and by a d.c. magnetic field (with spacing B /H e ) simultaneously. (b) 
The quantized levels of spin + and charge + bosons have different energies 

n n

    in the TLL state. The a.c. bias splits the charge boson levels (dashed curve 
on the right) while the d.c. magnetic field splits the spin boson levels (dotted curve 
on the left) only. The charge boson localized energy level  

n

  splits in the two 
satellite peaks with spacing 2 / e . Although the a.c. field has no influence to the 
neutral spin bosons, the spin level 

n

  splits [12] in two sublevels spaced with 

Z B /H e   (both in units of ) due to the Zeeman effect when a d.c. magnetic 
field 0H   is applied. 
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peaks by the a.c. field helps to identifying of the Tomonaga Luttinger liquid state. The method is 
illustrated further in Fig. 9 where we show a single peak in  ( )   corresponding to a quantized 
free electron energy level [see Fig. 9(a)]. For non-interacting electrons ( 1g  ) the same single 
level splits either by an a.c. field due to the photon-assisted tunneling phenomena with spacing  
m    ( m   being integer) or by a d.c. magnetic field with the Zeeman spacing  H

B . The 
situation is remarkably different in the Luttinger liquid state when  1g    and the charge     

and spin     levels have distinct energies  n n
    . Then one easily identifies the charge 

and spin levels merely by applying the a.c. field and d.c. magnetic field to the same quantum 
well. If a level splits with spacing  m    by the a.c. field only (showing no response to the 
d.c. field) then it certainly is a     charge boson level ( 1g  ). If it splits by the d.c. magnetic 
field [12] with the Zeeman spacing  H

B
  showing no response to the a.c. field, then it must 

be associated with the spin bosons   . However if the both a.c. and d.c. magnetic fields split 
the same level, then the level belongs to the non-interactive electrons ( 1g  ) as had been said 
above. In this way one perceives the charge and spin bosons in experiments when applying a.c. 
electromagnetic field in combination with the d.c. magnetic field to a carbon tube junction. An 
important requirement to the experimental metallic carbon tube quantum well samples is that 
they must be clean. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An electron-impurity scattering in real samples leads to a formation of additional pairs of combs 
with different periods. Then, an identification of the TLL state becomes possible with a mere 
generalization of the method described above. Ratio of the noise power to the mean current 
(Fano factor) is computed as  (1 ) /n nn n nF T T T     where the summation is performed 
over the conducting channels. Remarkably, the multiphoton absorption is pronounced in the 
noise spectra as well. In this way we suggest a method of the noise spectroscopy for studying of 
the photon-assisted tunneling into the TLL state. 

Phenomena considered in this part of work originate from a specific physics of the charge 
and spin carriers, behaving like a blend of four non-interacting bosons. The Tomonaga Luttinger 
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A

Fig. 10. (a) The contour plot  (Vec,V(1)
e,c) [Vec and the a.c. bias amplitude V e,c (1) being 

in units of /e]. (b)The Coulomb staircase in the PASET current-voltage characteristics 
I(Vdc) versus reduced voltage Vdc (see text) of the CNT junction in the TLL state with 
g=0.4 under influence of the a.c. bias field with the amplitude eV(1)=3.4 (in units of  = 
e2/C) and for a symmetric junction ( = 0.5). Curve A corresponds to   = 4.7, curve B 
to  = 3.7 and curve C to  = 6.7.  
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liquid state occurs inside the one-dimensional quantum well formed by a metallic single wall 
carbon tube. The TLL state is tested with applying of an external a.c. electromagnetic field and 
of a d.c. magnetic field simultaneously. The a.c. field splits the charge boson energy levels due to 
the photon-assisted tunneling while the d.c. magnetic field splits the spin boson levels due to the 
Zeeman effect. That allows a mere identification of the quantized energy levels associated with 
the charge and spin bosons forming the TLL state in relevant experiments. Besides, one also 
determines the quantized level spacing   and the TLL parameterg . The unconventional 
electronic and photonic properties of the metallic carbon tube quantum well can be utilized in 
various nanodevice applications including THz field sensors and nanoemitters. 

 
3. Directional photoelectric current across the bilayer graphene junction. 

Electromagnetic properties of the bilayer graphene [31-34] offer enormous opportunities for 
scientific research and various nanoelectronic applications. They emerge in spectroscopy of 
bound and scattering states, in the photon-assisted chiral tunneling and in direct probing of 
strong correlation effects. Potential applications include electromagnetic field (EF) spectral 
analyzers, receivers, detectors, and sensors[B]. The crystal lattice of the bilayer graphene [31-34] 
consists of four equivalent sublattices of carbon atoms while the charge carriers behave there as 
massive "chiral fermions"[31,34]. The chiral fermions (CF) in bilayer graphene have a finite 
mass  ,e hm , like conventional electrons (e ) and holes (h ) in metals and semiconductors [31-34]. 
The chirality relates the particles to certain sublattice and is responsible for various 
unconventional d.c. electronic and magnetic properties of the bilayer graphene [31]. In contrast 
to an ordinary tunneling through a conventional potential barrier, during the chiral tunneling 
(CT) an incoming electron is converted into a hole moving inside the graphene barrier in a 
reverse direction as indicated in Fig. 11a (Klein paradox[38,39]). This yields a finite 
transparency 0T   for incident electrons with energies E  below the barrier 0E U  ( 0U  is 
the barrier height energy) occurring [31] at finite particle incidence angles  0  . On the other 
hand, the steady state chiral tunneling is blocked ( 0T  ) in the longitudinal direction 0  .  
The angle-dependent transparency makes the chiral tunneling being attractive for various 
nanoelectronic applications [B]. The potential barrier in graphene can either be induced by the 
gate voltage  V

G
  from a Si gate slab or can be formed by three overlapping graphene sheets as 

shown in Figs. 9(c,d). According to Ref. [31], the d.c. gate voltage  V
G

  shifts the graphene 
barrier height, which controls the chiral tunneling. That process implies the wavefunction phases 
of electrons and holes being interconnected with each other in the graphene. The phase 
correlations during the chiral tunneling can also be directly tuned by applying of an external a.c. 
field. Controlling of the electron wavefunction phase by an a.c. field had not been accomplished 
yet and is the subject of this paper. The electronic properties are described by a spinor 
wavefunction ̂ , which components depend on the angle     between the electron momentum  
p   and the  x  -axis (see Fig. 11). Similar spinor description had formerly been used for Dirac 
fermions [38] and for relativistic quasiparticles in single-layer graphene [31,32]. This part of 
work is devoted to electromagnetic properties of a bilayer graphene junction shown in Fig. 11. 
One may expect that the differential tunneling conductance  ( , )V 

sd
  of "clean" samples 

depends on the angle     between the electric current j and the  x -direction (see Fig. 11). The 
whole shape of  ( )    versus the source-drain voltage  V

sd
  is very sensitive to properties of the 

bilayer graphene barrier. We begin with computing of the steady state  ( , )V 
sd

  curves for a 
graphene barrier biased by  V

sd
. The steady state results are then utilized for studying of the a.c. 

properties. When an external electromagnetic field (EF) is applied, it strongly affects the 
directional diagram of  ( , )V 

sd
. In particular we will see that the external electromagnetic field 
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induces a finite conductance in the straightforward direction ( 0  ), which had been blocked 
in the steady state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
That happens because the electromagnetic field affects the electron-hole phase correlations 
inside the graphene barrier directly. In the steady state, when the a.c. field is off, the electric 
current is fully suppressed at 0V U

sd
 (for typical gate voltage  1V 

G
 V and the SiO 2   

thickness  300d    nm one finds [32]  0 2U    meV). 
 
Photon-assisted chiral tunneling 

Here we examine influence of an electromagnetic field to chiral tunneling and discuss the 
intrinsic noise. For studying of the non-stationary electric current across the bilayer graphene 
junction we implement methods [21,22]. The graphene bilayer is modelled as two coupled 
gexagonal lattices consisting of four non-equivalent sites A, B and Ã, in the bottom and top 
layers respectively [see Fig. 11(a)]. For graphene junctions having finite dimensions, the motion 
of chiral fermions is quantized. The quantization imposes additional constrains on the directional 
tunneling diagram. Permitted values of the angle  n

   inside the graphene barrier are obtained 
from boundary conditions along the  y  -direction, so the  y  -component of the electron 
momentum  p ( , )k q     is quantized as  /nq n W   (where  W   is the barrier width), 

which gives  arctan / ( )n n kW      
   where  

 
Fig. 11. (a) Potential barrier in the bilayer graphene controlled by the gate voltage VG 
and exposed to the external electromagnetic field EF. The scattering states inside the 
barrier originate from conversion of an electron (e) to a hole (h). (b) Two coupled 
hexagonal lattices with non-equivalent carbon atomic sites A, B, A , and B  in the 
bottom and top layers respectively. (c) and (d) show two possible setups of the bilayer 
graphene junction. The external a.c. field induces the directional photon-assisted 
resonant tunnelling.  
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 2
02 / 1 cos2 / 2k m U         . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The external field not only splits the resonances, but also strongly affects angular 

dependence of the chiral tunneling. That happens because the a.c. field causes no influence to the  
ŷ  -component of the electron momentum  q   since the graphene barrier is effectively one-
dimensional. The time dependence  1 t  takes also place when the a.c. field modulates the 
graphene barrier width as  0 1 cosD D D t   . Splitting of the chiral tunneling resonances, 
and the angular redistribution of the electric current under the a.c. field influence is better 
pronounced for a finite barrier height  0 0U    and  0 1 cosU U U t   . From Eq. (phi) one 
can see that  0    if  0  . However, if  0   one may observe spectacular phenomena. 
In this case an external a.c. field induces a finite electric current for an almost normal incidence  

0   , which was inhibited when the field was off. When 0  , the a.c. field actually causes 
additional photon-assisted chiral tunneling resonances to engage. The directional photoelectric 
effect (DPE) may be realized in two scenarios. One scenario assumes that an electron beam 
having a finite angular width  0    enters the graphene barrier normally. A visible DPE can 
be achieved in the setup shown in Fig. 13(b) where the attached electrodes 1,3 are made of one-
dimensional conducting wires. If the wire is much narrower than the width of graphene stripe (
W W

w
), one may consider the electric current as a result of one-dimensional propagation of 

of electron along the trajectories under influence of the bias voltage. Such method formerly had 
intensively been used in numerous works devoted to point contact junctions. If the electric 
current is sufficiently weak, the electrons coming from the wire into the graphene stripe 
introduce a negligible disturbance into the electron spectrum inside graphene. The translational 
invariance inside graphene is well preserved. In an experiment one may use a STM tip for 
imaging of the electron wavefunction in carbon nanotube which show a periodic pattern. The 
electrode 1 emits electrons under a small but finite angle     (  ,  0  ) which 
trajectories are focused/defocused by the external electromagnetic field as indicated in Fig. 

 
Fig. 12. A steady state differential conductivity (,VSD) [ is the asimuthal angle, 
VSD is the source drain bias voltage in units of the graphene barrier height eU0] 
through the chiral barrier created by a bilayer graphehe pellet. 
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13(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The frequency dependence of the transparency is governed by the directional photoelectric 
effect. A significant directional photo-electric effect emerges even for a relatively long 
wavelength  1    mm -  0.01   m (which corresponds to the THz domain) if the condition 

0E U E    is met. The deviation angle  0arcsin[ / sin ]E E U      
inside the graphene barrier considerably increases giving    . This means that an ideal 
transparency taking place in the steady state at  0    is redistributed over the angle   after 
the a.c. field is applied. The transparency peaks are actually shifted from finite angles 0   to 
the normal incidence angle 0  . Another scenario involves an incident single electron which 
enters the graphene barrier strictly in the normal direction ( 0  ) under influence of a high 
frequency THz wave. In that scenario an electron absorbs a THz photon having the finite energy  
E   and momentum  q   along the y-axis. Then the electron deviation angle     just before 
entering the barrier is small,   . For instance taking 30  THz (which corresponds to 

the photon energy 3125 10 eVE 
   ) one gets  3/ 2 10q k    . The photoelectric 

effect is well pronounced for an electron with energy  32 10eE
  eV   after it gets inside the 

 

Fig. 13. The time averaged differential conductance  t t [in units of 0=  
(2e2/h)(2mU0)1/2] of a bilayer graphene junction exposed to an external 
electromagnetic field which modulates the barrier height U(t) = U0 + U1 cost. In Fig. 
11(c) one may notice a remarkably strong DPE at /U0 ≃ 1. This corresponds to curve 
1 in Fig. 11(d) where the peak spacing is determined by the graphene barrier length D.  
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graphene barrier. There if 0E U E    the deviation angle  

0arcsin[ / sin ]E E U       increases considerably, since the photon energy is 
pretty high, / 50eE E  , 0.1E    eV. Practically this means that one must set  0U    to 
get a strong photoelectric effect. In the above example the last condition also supposes that one 
should use  0 125U E    meV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Below we consider two most important field polarizations along the  x̂   and  ẑ   axes as shown in 
Figs. 9(a,b). The barrier transparency  ( , )T E    is affected by the a.c. field directly in either case. 
In particular, the barrier shape is modulated by the a.c. field polarized along the  x  -direction as 
sketched in Fig. 11(a), since   0 1 cos t     . On other side, if one applies an a.c. field 

polarized as E (0,0, )zE , it modulates the barrier height since   (0) (1) cosV V V t  
G G G

  [
(0)V
G

  is the steady state gate voltage,  (1)V
G

  is the a.c. field induced addition, see sketch in Fig. 
11(b)]. Then the a.c. field induced correction to the d.c. tunneling current is 

   
21

1 ,2 2 eV eVj e d t n n n           , where the transmission amplitude   1
,t    is 

obtained from corresponding non-stationary boundary conditions at 0x   and x D . 
Physically, the directional photoelectric effect (DPE) comes from an ingenuous influence of the 
external electromagnetic field to the electron-hole phase correlations during the chiral tunneling. 
Technically, modulation of the barrier height by the a.c. field shifts positions of the sharp peaks 
in the energy-dependent barrier transparency  T   . Besides, it also modifies the overall 
angular distribution of the electric current, so the electron-hole conversions occur with an 
additional phase shift. Numerical results for both the cases are presented in Fig. 14(b). 
Corresponding plots for the steady state differential conductance 0( )V

sd
 and for the photon-

assisted chiral tunneling conductance 1 1 0( ) /
t

V j V      
sd sd

 both indicate the 
angular redistribution of the photon-assisted chiral tunneling current across the graphene barrier. 
The steady state conductance curve  0   in Fig. 14(b) corresponds to  0 2U    meV while curve  

1   is computed for 1V 
G

 V and  1   THz. The DPE is well illustrated by the sharp 
scattering resonance taking place in  1( )V

sd
  [see the crisp peak at the incidence angle  

  
Fig. 14. (a) The contour plot (VSD,). (b) The 3d plot of (VSD,)  where the 
additional angular dependence is induced by an external a.c. field applied.  
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/ 16   and at the bias voltage 0 0.5V U 
sd

 in Fig. 14(b)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the a.c. field is off, the steady state tunneling at 0 0.5V   in the straightforward direction 
is suppressed [see the corresponding curve   0 V

sd
 for 0  ]. However, if one applies the 

a.c. field with frequency     and  E ( ,0,0)xE , it opens tunneling channels in the 
straightforward direction  0    as is evident from curve 1  in Figs. 12(b). In Fig. 14(b) we 
compare two time-averaged conductance curves  1 V

sd
 under influence of the a.c. field with 

two different polarizations along the x̂  (curve X) and ẑ  (curve Z) axes correspondingly. In 
either case the  1 V

sd
 curves show remarkable sharp peaks, which position however changes 

versus the field polarization. Although the above results are illustrative, they focus solely on the 
limit of a weak electromagnetic field 1 0U U .  

Intrinsic noise in the bilayer graphene junction originates as follows. The thermal noise 
comes from the phonons emitted in the electron-phonon collisions. Matrix element of the 
electron-phonon collisions according to Ref. [43, 44] is     cospp ppM p M x p    where 

pp   is the angle between initial and final states. The phase factor cos pp   plays quite a different 
role in the bilayer graphene compared to the single layer graphene [43] where it is rather  

 cos / 2pp    instead. In the latter case, the factor ensures suppression of the electron-phonon 
and electron-impurity collisions and the transport of the change carriers remains ballistic up to 
room temperatures. In contrast, thermal noise in the bilayer graphene devices is rather high at 

 

Fig. 15. (a) A setup consiststing of a graphene pellet G with ballistic transport of charge 
carriers. The angular distribution of the electric current is determined using carbon 
nanotube  electrodes 1-6 attached to the pellet. The pellet and the nanotubes are laid on 
the SiO2 substrate and are controlled by the gate voltage VG+VG

ac where the 2nd term is 
induced by the external electromagnetic field EF. The EF also causes an angular 
redistribution of the time-averaged electric current which can be used for determining 
the THz field amplitude, frequency, and polarization. (b) The time-averaged differential 
conductivity between the carbon nanotube electrodes 2 and 4 versus the field frequency 
 [in units of / e ] for different field amplitudes (curves A, B, C, and D). 
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room temperatures. Another intrinsic noise (Poisson noise) arises due to the "Zitterbewegung" 
effect, which is linked to a jittering motion of the change carriers when electrons are randomly 
converted to holes forth and back. That produces noise even in zero temperature limit. The noise 
is characterized by the Fano factor   1 /n nn n nF T T T   , where  nT   is the tunneling 
probability in the n -th channel and the summation is performed over all the conducting channels 
(in our setup this means just integration over the electron propagation angle  ). Our calculations 
show that the Poisson noise becomes extremally low at  0V U

sd
. 

In conclusion we computed the electric current across the bilayer graphene junction in 
conditions when an external electromagnetic field is applied. We have found that the threshold 
absorption of the external electromagnetic field strongly depends on the a.c. field frequency and 
amplitude. The electromagnetic field induces an ideal transparency of the graphene barrier in the 
longitudinal direction, which had been fully suppressed when the a.c. field was off. That 
directional photoelectric effect originates from an angular redistribution of the whole 
transparency diagram since the sidebands at finite angles are redirected to the normal incidence. 
An experimental observation of the spectacular directional optoelectric phenomena would 
provide a strong evidence for existence of the massive chiral fermions in the bilayer graphene. 
We emphasize that the threshold absorption emerges purely from a quantum mechanical phase 
shift, and not from an inelastic excitation by the a.c. field. That means no heating is involved 
during the absorption. The a.c. current induced by the electromagnetic field across the graphene 
junction has a sharp angular dependence, which potentially can be exploited in sensor 
nanodevices of the external electromagnetic field. The directional photoelectric effect in the 
double layer graphene junctions is a unique phenomenon which exists in that system and had not 
been noticed in other systems, like junctions composed of single layer graphene or of normal 
metals. Most intriguing feature is the switch between zero and finite conductance occurring 
without energy absorption. The phenomena considered above have a great potential for various 
nanoelectronic applications. 
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