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1 Introduction

Today, numerical optimization is the approach of choice for all but the simplest digital filter de-
signs. Most software used for optimization-based filter design can be roughly separated into two
categories. The first is the general-purpose solver (the fmincon and fminunc functions of the ubiq-
uitous Matlab Optimization Toolbox are prime examples), which assumes little about the problem
structure and permits almost any objective or constraints. This flexibility, however, is offset by
a great deal of inefficiency and is unsuitable for large problems. The second group is the custom
solvers, written to solve a specific problem or related set of problems. The classic Remez-exchange-
based Parks-McClellan [1] algorithm (function remez in Matlab) is still the premier representative
of this class, used to design optimal L∞ (minimax) filters. Another popular technique is the method
of least-squares, providing filters optimal in the L2 sense. The efficiency of these methods is tem-
pered by their inflexibility, as they severely restrict the available problem types.

Increasingly, custom methods are being developed that provide more flexibility, offering more
than just L2 and L∞ designs. In [2], iterative reweighted least squares (IRLS) was used to allow
general Lp norm design, with different values of p applied to the filter passband and stopband. Slow
convergence in some cases was later improved [3]. Another approach is to combine L∞ and L2
optimization methods. Peak Constrained Least Squares (PCLS) [4] is one such approach, where a
least-squares design is performed subject to an L∞ constraint. An equivalent unconstrained method
is to minimize a combined norm, formed as the convex combination of the L∞ and L2 norms [5].

Straddling the line between general solver and custom algorithm are tools designed to interface
to solvers of highly structured canonical problems. Important examples of structured problems in-
clude linear programs (LP), second-order cone programs (SOCP) [6], and semidefinite programs
(SDP) [7]. LPs, SOCPs, and SDPs are all convex optimization problems that can be solved by a
relatively new class of robust and highly efficient interior-point algorithms [8, 9, 10, 11]. Convex-
ity is important, as it guarantees a global solution when a solution exists. Linear programming is
limited to an objective and constraints that are all affine in the optimization variables. Even so, a
great number of filter design problems can be solved using LP. Early tools designed to automati-
cally generate linear programs from filter specifications include the FF design language [12] and
the METEOR program [13]. The qdes program [14] similarly produces quadratic programs (con-
vex quadratic objective, affine constraints) from linear-controller specifications. SOCP augments
LP with second-order cone constraints, which include convex quadratic constraints. The authors’
own Opt Matlab toolbox [15] provides filter-related data structures and a flexible interface to sev-
eral second-order cone programming (SOCP) engines. SDP further adds linear matrix inequalities,
which restrict variables or their affine combinations to the cone of positive-semidefinite matrices.
LMITOOL [16], though not filter-specific, provides a friendly interface to various semidefinite-
programming (SDP) engines. The restriction to a suitable one of these problem types leads more
efficiently to the solution while preserving a surprising amount of flexibility through the creative
combination of multiple constraints. A big advantage of this separation of high-level design and
low-level numerical solution is that new constraints and new constraint types can be added to an
existing design without the need to extend or retune (or deeply understand) the algorithm.

In this paper we show that SOCP can be used to optimize filters using an arbitrary number
of L∞, L2, and L1 constraints (including PCLS), as well as constraints on linear combinations of
the L∞, L2, and L1 norms. A alternate method of combining norms through linear combinations
of their unit balls is also presented, and it is shown that a vector norm introduced by Burdakov
and Merkulov [17], when extended to complex functions, is a special case that combines L∞ and
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L2. This norm is of interest because it has similar characteristics to the Lp norm, which cannot be
optimized using SOCP unless p∈{1,2,∞}. It is shown that there is a convenient duality relationship
between combining norms directly and indirectly through their unit balls, with the result that two
complete families of norms spanning from L1 to L2 to L∞ can be optimized using SOCP. Examples
are provided to demonstrate the different properties of these combined norms. A condensed version
of this work was presented in [18].

2 Problem Specification

The classic approach to filter design in the frequency domain is to minimize some norm ‖E‖ of a
weighted frequency response error E( f ) =W ( f )[G( f )H( f )−D( f )], where W is a real, nonnegative
weighting function, G is the equivalent frequency response of other (fixed) filters in cascade, H is
the frequency response of the filter being designed, and D is the desired frequency response. Both
E and G are in general complex-valued periodic functions of real optimization variables x. For
flexibility here a more general filter-design formulation is chosen:

min .
x

fT x
s.t. ‖Ek‖ ≤ δk, k = 1, . . . ,K.

Both the error functions and the norms can be different for each constraint. The bounds δk can be
constants or affine functions of the optimization variables. Other SOCP constraints can be added as
needed, but will not be considered here.

This paper will restrict its attention to FIR filters, so that the optimization variables x represent
the real and imaginary parts of the filter coefficients and any required auxiliary variables:

G( f ) = ∑
n

(x2n + jx2n+1)e− j2π f n.

This can also be written
G( f ) = Ψ

T ( f )x,

where Ψ( f ) is the vector of exponentials corresponding to frequency f . No assumptions are made
regarding coefficient symmetry. The restriction to FIR filters ensures that G and thus E are affine
functions of the optimization variables, and that ‖E‖ is a convex function of the optimization vari-
ables. IIR filter problems are nonconvex with multiple local minima and cannot, in general, be
directly optimized using SOCP or other convex methods. Iterative methods such as Steiglitz-
McBride [19] can be used to apply the methods presented here to IIR filters, as is done in [5]
and [20], among others. These methods solve a particular joint design of the FIR numerator and de-
nominator filters at each step. While they can produce reasonable filters, they do not truly optimize
the IIR frequency response [21].

Since FIR (and stable IIR) frequency responses have bounded magnitudes and are periodic with
period one they are effectively in L∞[0,1], the space of bounded complex-valued functions on the
interval [0,1]. This implies that they also belong to the space Lp[0,1] for any p≥ 1, and in particular
to the space L2[0,1] of finite-energy complex-valued functions on [0,1]. This largely removes the
need to consider pathological functions in the following analysis.

3 Second-Order Cone Programming

A powerful special case of convex optimization is second-order cone programming, or SOCP [6].
SOCP allows the minimization of a linear objective, subject to second-order cone (SOC) constraints,

2



which encompass linear and convex quadratic constraints. One standard formulation of a SOCP is

min .
x

fT x
s.t. ‖AT

k x+bk‖2 ≤ cT
k x+dk, k = 1, . . . ,K.

The number of linearly independent columns in Ak is Rk, the rank of the second-order cone. An
equivalent notation for a SOC constraint is the pair of constraints

‖Ax+b‖2
2 ≤ (cT x+d)2

0≤ cT x+d.

Although this form tends to be the most convenient for filter design due to the explicit inequality
constraints for some applications the dual problem [6]

max .
y

∑k(−dk bT
k )yk

s.t. (−ck, Ak)yk = fk∥∥([yk]2, . . . , [yk]Rk)
T
∥∥

2 ≤ [yk]1 k = 1, . . . ,K

is preferred. The primal and dual problems are equivalent in that any problem that can be expressed
in one form can be converted to the other via auxiliary variables. Most modern solvers iteratively
solve both problems simultaneously, so the choice of problem formulation is generally based on
convenience.

Although SOCP seems quite limited, with only one basic type of constraint, it can be used to
solve a wide range of problems using creative combinations of multiple constraints. A linear con-
straint results as a special case when Ak and bk are zero. Of specific interest here, SOCP can be used
to exactly constrain l1, l2, and l∞ norms of error vectors that are affine in the optimization variables.
Using discretization SOCP can be used to approximately constrain L1, L2, and L∞ norms of affine
error functions [6, 22]. Exact L2 formulations also exist [23] that do not require discretization. Any
constraint can also be used as the objective via an auxiliary variable:

min .
x,δ

δ

s.t. ‖AT
k x+bk‖2 ≤ δ .

The following sections briefly summarize how SOCP can be used to constrain the various norms of
an error function E : [0,1]×RN → C that is affine in the optimization variables, the dependence on
which is hereafter implicit.

3.1 L∞-Norm Constraints

For a function E the L∞ or Chebychev norm is defined as

‖E‖∞ , ess sup
f
|E( f )|.

Since the functions of interest (FIR transfer functions) are continuous and periodic, this reduces to

‖E‖∞ , max
f
|E( f )|.

For a function E that is affine in the optimization variables, the L∞-norm can be (approximately)
constrained using SOCP by discretizing the interval [0,1]. Letting {0, f1, . . . , fK−1,1} partition the
interval [0,1] (choosing fk = k/K is common), the set of rank-2 SOC constraints∥∥∥∥ Re{E( fk)}

Im{E( fk)}

∥∥∥∥
2
≤ δ , k = 0, . . . ,K

3



bounds the maximum value of |E( fk)| on the grid by δ , which can be a constant or an auxiliary
optimization variable. This will be written more compactly in the sequel as

|E( fk)| ≤ δ , k = 0, . . . ,K.

The spacing between the grid points must be chosen to limit violations of the bound between con-
straints to acceptable levels. Errors between the discretized approximation and the true norm can
be made arbitrarily small at the cost of an increased number of constraints. Often a looser grid is
used in the initial stages of a design to obtain rapid solutions, while a tight grid is used for the final
design. For an FIR filter of length N an approximate rule of thumb for the minimum grid spacing is
1/(20N).

If E is a real-valued function, representing a linear-phase filter, then using SOC constraints as
shown above results in a degenerate rank-1 cone. Using cones here is inefficient; instead use a pair
of linear constraints per frequency:

−δ ≤ E( fk)≤ δ , k = 0, . . . ,K.

3.2 L2-Norm Constraints

In contrast to the L∞ norm, which requires one constraint per discrete frequency, the L2 norm re-
quires only a single SOC constraint. The L2 norm is defined as

‖E‖2 ,

(∫ 1

0
|E( f )|2 d f

) 1
2

.

Since E was assumed affine in the optimization variables x, the result can be written as a positive
semidefinite quadratic form in x:

‖E‖2
2 = xT Qx.

The real, positive-semidefinite kernel Q can be factored as Q = ST S, reducing the right side to the
desired form:

‖E‖2
2 =(Sx)T (Sx)

=‖Sx‖2
2.

Thus an L2 constraint can always be represented exactly with a SOC, provided the integral can
be calculated exactly. In many cases this can be achieved using the random process formulation
of [23]. If not, the integral must be evaluated using a numerical method, perhaps the simplest being
a Riemann sum over a uniform partition { fk} of [0,1]. The resulting SOC constraint can be written

∑
k
|E( fk)|2∆ f ≤ δ

2,

where δ is a nonnegative constant or auxiliary variable. Compared to the L∞ norm it takes a tighter
grid to get the same level of approximation error using a Riemann sum, a rough rule of thumb being
∆ f ≈ 1/(40N). The choice of a small spacing has less impact since it does not increase the size of
the optimization problem itself.
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3.3 L1-Norm Constraints

The L1 norm is the trickiest of the norms to constrain using SOCP as well as the least common. One
application is in the design of communication filters to control intersymbol interference [24]. The
L1 norm is defined as

‖E‖1 ,
∫ 1

0
|E( f )| d f .

Approximating the integral directly as a Riemann sum does not result in a SOC. Instead, introduce
the real, nonnegative auxiliary function β : [0,1]→ R+ and consider the pair of constraints

|E( f )| ≤ β ( f )∫ 1

0
β ( f ) d f ≤ δ .

Due to the nonnegativity of β , this is equivalent to∫ 1

0
|E( f )| d f ≤ δ .

To discretize, choose a uniform partition { fk} of [0,1] and introduce the auxiliary optimization
variables {βk}. The following set of constraints then approximates the integral:

|E( fk)| ≤ βk, k = 0, . . . ,K

∑
k

βk∆ f ≤ δ .

As with the L∞ norm, linear constraints rather than SOC constraints should be used when E is real-
valued. Although this method introduces many new variables as well as constraints, the resulting
problem is quite sparse and can be efficiently handled by most available solvers. The L1 norm
is even more sensitive than the L2 norm to small values in its argument, and as such an accurate
approximation requires an even tighter grid of frequencies. A rule of thumb is ∆ f ≈ 1/(60N).

4 Combining Norms

Although pure L∞ and L2 solutions have been used in digital-filter design for some time and remain
the most popular in practice,1 in real world designs it is common to want to trade off the properties
of the different designs. One way to do this is to optimize the filter with respect to a norm that lies
in-between L2 and L∞ in some sense. The Lp norm, for example, is defined as

‖E‖p ,

(∫ 1

0
|E( f )|p d f

) 1
p

, p≥ 1,

and thus provides a continuum of norms from L1 through L∞. Although SOCP can handle only
p = {1,2,∞}, there are two related methods that can be used to combine two norms to form a
new norm. In each case a single scalar parameter controls the relative contribution from each of
the component norms. The first, the convex combination of norms denoted here as the α-norm,
already enjoys widespread use under various guises. The second, the convex combination of unit
balls, is an extended version of the recently introduced ε-norm [17]. The former enjoys better
theoretical justification in terms of typical system requirements, while the latter appears to more
closely approximate the Lp norm. Both will be described in turn, followed by the derivation of their
dual norms.

1The window method doesn’t count as a filter design technique.

5



4.1 Convex Norm Combinations—The α-Norm

The most straightforward way to combine the L2 and L∞ norms is through a simple convex combi-
nation. Letting α ∈ [0,1], the α-norm is defined here as

‖E‖α , α‖E‖2 +(1−α)‖E‖∞ (1)

This is essentially equivalent to the norm introduced in [5]. It is straightforward to verify the prop-
erties of a norm for the α-norm, as they all follow immediately from the properties of the L2 and L∞

norms. As noted in [5], the unconstrained minimization

min .
x
‖E‖α (2)

and the constrained minimization
min .

x
‖E‖2

s.t. ‖E‖∞ ≤ β

(3)

have the same solution space and are thus functionally equivalent. The latter problem has been
dubbed peak-constrained least squares (PCLS) in the literature [4] or simply constrained L2 design
[2]. An advantage of the unconstrained approach is that a solution is always obtained, as without
constraints there can be no infeasible region. The constrained approach, on the other hand, allows
the peak error to be explicitly fixed to meet given specifications. In any practical design there will be
many iterations, and so the choice is really between iterating α and iterating the peak-error bound
β . Either can be formulated as an SOCP: the α-norm can be minimized by the program

min .
x,δ ,β

αδ +(1−α)β

s.t. |E( fk)| ≤ β , k = 0, . . . ,K

∑
k
|E( fk)|2∆ f ≤ δ

2, δ ≥ 0,

(4)

where δ and β are nonnegative auxiliary variables, while the PCLS problem can be solved as

min .
x,δ

δ

s.t. |E( fk)| ≤ β , k = 0, . . . ,K

∑
k
|E( fk)|2∆ f ≤ δ

2, δ ≥ 0,

with β a constant and δ an auxiliary variable.
The usual justification for using PCLS stems from the observation that a small increase in the

peak error of a L∞-optimal filter frequency response usually allows a large reduction in the L2 norm.
Generally the peak sidelobes of an L2-optimal frequency response only exceed those of the L∞-
optimal response in a narrow spectral region near the transitions between passband and stopband.
PCLS allows these sidelobes to be controlled in an otherwise L2-optimal design. In terms of general
system parameters the L∞ bound controls the worst-case performance in the presence of unknown
spectral components, while the L2 norm determines the average performance; a natural tradeoff.
In the examples, it will be seen that filters optimized according to the combined α-norm retain
properties of both L∞ and L2-optimized filters.

Some properties of the α-norm can be derived from the definition and the properties of the Lp

norms. Clearly L2 and L∞ result as special cases of the α-norm with α = 1,0 respectively. The
norm is monotonically nonincreasing in α , that is ‖E‖α1 ≤ ‖E‖α2 for α1 ≥ α2, and is bounded
by its component norms: ‖E‖2 ≤ ‖E‖α ≤ ‖E‖∞. Both follow from the general Lp[0,1] relation
‖E‖p ≤ ‖E‖q for p≤ q.
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4.2 Convex Unit-Ball Combinations—The ε-Norm

In the previous section we showed that the α-norm is actually a family of new norms that can be
obtained through a direct convex combination of the L2 and L∞ norms. Another way to combine the
two norms is via their unit balls, defined by B(‖·‖) , {E : ‖E‖≤ 1}. A standard analysis result [25]
holds that a norm is uniquely identified by its unit ball, and that further any set that meets certain
conditions is the unit ball of a norm, implicitly defining the norm. There are various ways to state
the conditions, one of which is given in the following lemma:

Lemma 1. Let the closed bounded convex set B in a complex vector space X also satisfy

1. x ∈ B =⇒ e jφ x ∈ B, ∀φ ∈ [0,2π] (symmetry)

2. ∀x ∈ X ∃λ ∈ R : λ 6= 0,λx ∈ B. (absorbing)

Then B is the unit ball of the norm defined by

‖x‖, inf{λ ≥ 0 : x ∈ λB}.

Now, in the space L2[0,1] for 0 < ε < 1 consider the set

Bε = εB(‖ · ‖2)⊕ (1− ε)B(‖ · ‖∞)

, {εU +(1− ε)V : ‖U‖2 ≤ 1,‖V‖∞ ≤ 1}
(5)

a convex Minkowski sum of the unit balls of the L2 and L∞ norms. It is straightforward to show that,
since both unit balls necessarily meet the conditions of Lemma 1, so does their convex combination.
Thus we have implicitly defined a new norm with unit ball Bε , known as the ε-norm and denoted
‖·‖ε . Clearly for ε = 1 and ε = 0 this reduces to the L2 and L∞ norms, and so the ε-norm represents
a new family spanning the continuum between the two.

The ε-norm was first described in [17] as a family of vector norms on Rn. The definition
and two associated lemmas from that paper, extended here to L2[0,1], provide greater geometrical
insight into the properties of the ε-norm by directly incorporating the properties of the L∞ norm.
The proofs are deferred to the appendix.

Definition: For a function E ∈ L2[0,1] and 0 < ε < 1, define the ε-norm of E, denoted ‖E‖ε , as
the unique solution ν∗(E) of

h(ν ,E) ,
∥∥[|E|− (1− ε)ν

]
+

∥∥
2− εν = 0. (6)

The positive operator [ · ]+ is defined pointwise by [E( f )]+ , max{0,E( f )}.

Lemma 2. For any function E the pair of functions

Eε = e j∠E[|E|− (1− ε)‖E‖ε

]
+ (7)

E1−ε = E−Eε (8)

define the unique decomposition E = Eε +E1−ε called the ε-decomposition such that

‖Eε‖2 = ε‖E‖ε (9)

‖E1−ε‖∞ = (1− ε)‖E‖ε . (10)

Lemma 3. The unit ball of the solution to (6) is Bε .
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(1 − ǫ)ν

|E(f)|

0 1 f

(1 − ǫ)‖E‖ǫ

|E1−ǫ(f)|

|Eǫ(f)|

Figure 1: Graphical representation of the ε-decomposition.

This last lemma is included simply to verify that the ε-norm of [17] is indeed the same as
the norm implicitly defined in (5). Lemma 2 offers a convenient geometric interpretation of the
definition of the ε-norm as illustrated in Fig. 1, the plot of a representative function |E|. The dashed
line represents the value of (1−ε)ν in (6). The portion of |E| below the dashed line is a flat-topped
function with L∞ norm (1− e)ν , while the portion above the line is the function inside the L2 norm
in (6). When ν = ‖E‖ε the value of the L2 norm is ε‖E‖ε , the function above the line is |Eε |,
and the function below the line is |E1−ε |. Both Eε and E1−ε have the same phase as E and add
constructively. The relative “size” of Eε and E1−ε varies with ε; for ε = 1, E1−ε vanishes, as ε is
decreased, E1−ε grows at the expense of Eε .

For filter design purposes, we need a way to constrain the ε-norm of affine error functions. The
following set of constraints use the construction of the norm to together effectively bound ‖E‖ε by
ν :

‖U‖2 ≤ εν

‖E−U‖∞ ≤ (1− ε)ν ,

where U represents an auxiliary function implemented as a set of complex optimization variables
on the discretized set of frequencies. The ε-norm of the error can be approximately minimized via
the SOCP

min .
x,ν ,U

ν

s.t. ∑
k
|Uk|2∆ f ≤ (εν)2

|E( fk)−Uk| ≤ (1− ε)ν , k = 0, . . . ,K.

(11)

4.3 The Dual Norms of the α- and ε-Norms

The α-norm and ε-norm both span a continuum from L2 to L∞. To extend both through L1, recall
that the dual norm of Lp, 2≤ p < ∞ is Lq, where 1 < q = p/(p−1)≤ 2, and that L1 and L∞ are dual
norms. This suggests that the duals of the ε- and α-norms will similarly span a continuum from L2
to L1. This is verified by the following lemma.

Lemma 4. The dual norm of the ε-norm is given by

‖F‖D
ε = ε‖F‖2 +(1− ε)‖F‖1. (12)

8



0 1 2
0

1

2

 

 

0 1 2
 

 
ǫ-norm

α-dualǫ-dual
α-norm

LpLp

LqLq

x1x1

x
2

Figure 2: A graphical comparison of the unit balls of the Lp, ε-,
and α-norms in the first quadrant of R2.

The formal definition of the dual norm and the proof of this lemma are found in the appendix.
The lemma reveals that the ε-norm dual is a convex combination of the L2 and L1 norms. This

suggests a rather satisfying symmetry that is completed with the dual of the α-norm, ‖ · ‖D
α , whose

unit ball is a convex combination of the unit balls of the L2 and L1 norms:

B(‖ · ‖D
α) = αB(‖ · ‖2)⊕ (1−α)B(‖ · ‖1).

This norm cannot be defined in the form of (6), which depends on the properties of the L∞ norm,
but we can constrain it similarly with the pair of constraints

‖U‖2 ≤ αν

‖E−U‖1 ≤ (1−α)ν .

The preceding shows that the two methods for combining norms are intimately connected: an ε-
norm-style convex combination of unit balls of two norms has as its dual norm an α-norm-style
convex combination of the duals of the two norms. Together the ε-norm and its dual form a contin-
uum of norms connecting L1 to L2 to L∞, as does the α-norm and its dual.

Although it is difficult to visualize the unit ball of an infinite-dimensional norm, it is instructive
to consider the unit balls of the various norms in R2, representing a (very) coarsely discretized
problem. In Fig. 2, the unit balls for the ε-norm and dual and the α-norm and dual are compared in
turn to the unit ball of a coarse approximation of Lp,(1

2
|x1|p +

1
2
|x2|p

)1/p
.

Here p = 3.5, q = 1.4, ε = 0.5, and α = 0.7, chosen empirically to best match corresponding norms
visibly. In both plots the diagonal line, quarter circle, and square, representing the first quadrant of
the unit balls of L1, L2, and L∞, respectively, are shown for reference. Inspection reveals the ε-norm
to be a closer visual match to Lp than is the α-norm. This observation will be reinforced in the
examples.

4.4 Two More Combined Norms

So far the two combined norm/dual norm pairs {‖ · ‖D
ε ,‖ · ‖ε} and {‖ · ‖D

α ,‖ · ‖α} have been formed
by combining the L1, L2, and L∞ norms. We can form two more families of norms by forming the

9



convex combination of the unit balls of L1 and L∞, and by convex combination of the two norms
themselves. These two new families form a dual pair, and both span the whole range from L1 to
L∞. These norms do not resemble Lp in general nor do they include L2 as a special case. However,
they do have the advantage that they can be implemented using only linear programming when E is
real-valued.

Although limited to pairwise combinations of norms easily constrained using SOCP, the analysis
in this paper can be trivially extended to the convex combination of an arbitrary (but finite) number
of norms or unit balls, as well as to norms other than Lp.

5 Examples

In this section we present two examples. The first, a standard lowpass filter with reduced group
delay, is repeatedly optimized to illustrate the characteristic error responses corresponding to the
various norms. The second, a multiband filter, demonstrates the flexibility of the SOCP approach to
subject different regions of the frequency response of a filter to different norm constraints.

5.1 Example 1: A Lowpass Filter

A simple lowpass filter was optimized using the various combined-norm SOCP techniques pre-
sented in the previous section and compared to L1, L2, and L∞ optimizations as well as the general Lp

solution. The filter has 35 real coefficients with no symmetry and a reduced passband delay (relative
to a linear phase filter) of 10 samples, resulting in a complex frequency response. The passband and
stopband cover the intervals [0,0.1] and [0.15,0.5], with the remainder of the frequency-response
period defined by symmetry. An error weighting function W of one in the passband, four in the
stopband, and zero in the transitions was applied.

For reference, the filter was designed by minimizing the L1, L2, and L∞ norms of the error using
SOCP as described in Section 3. The magnitude and weighted error responses of the resulting filters
are shown in Fig. 3. Here we clearly see the classic characteristic responses of the three norms. The
L∞ design is equiripple across the entire band. The L2 design error peaks fall monotonically away
from the transition band, and only exceed the L∞ error close to the transition band. This is a primary
reason many argue against pure L∞ designs. The L1-optimized error falls off even faster, at a cost of
larger errors at the band edges. Qualitatively, L1 designs put emphasis on lowering the lowest errors,
L∞ designs put emphasis on lowering the highest errors, and L2 designs occupy a middle ground.

Now consider intermediate designs between the L2 and L∞ designs. Three methods have been
presented: a true Lp design using a general-purpose or custom solver, and minimizing the α and ε

combined norms using the SOCPs in (4) and (11). Each was performed for three intermediate values
and are shown in Fig. 4. The values of α and ε are given in the plots for reference only; there is no
known convenient mapping between these parameters and the closest approximating value of p. The
values were chosen empirically to achieve a good visual match between the various design methods
for comparison purposes. As one might expect, the Lp designs provide a smooth transition from L2
to L∞, with the slope of the error rolloff gradually decreasing as the overall error level increases. The
peak error is still at the transition, but the gap between the highest and lowest error peaks shrinks
as p increases. Comparing the Lp plots to the corresponding α-norm designs, we see that the error
peaks of the latter no longer fall off monotonically. Instead we have an equiripple region starting at
the transition that grows with decreasing α . The equivalent constrained formulation of (3) suggests
why: since the largest error ripples typically occur near the transition, the peak-error constraint is
active in this region. Away from the transition, the peak constraint is inactive, and the response
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Figure 3: L1, L2, and L∞-optimized FIR filter responses.

resembles a pure L2 response. Thus the effect of combining the L2 and L∞ norms in this way is
to partition the frequency axis into L2 and L∞ regions. The ε-norm, on the other hand, like the Lp

norm, smoothly transitions from equiripple errors to L2-type errors everywhere on the frequency
axis as ε is increased from 0 to 1, and generally has no equiripple errors for ε > 0 (although the
lowest error peaks are very nearly equal in height). Visually, at least, the ε-norm designs provide a
good approximation of true Lp designs.

To compare norms between L1 and L2, the same design was also optimized using the duals of
the norms from the previous example. A representative design using each of the three dual norms
is shown in Fig. 5. Although the comparison is less obvious here, the ε-norm dual provides a closer
approximation to the Lp norm for 1 < p < 2. Again the α-norm shows a band-partitioning effect:
near the transition the peak error is higher and falls off faster like an L1 design, while near the
Nyquist frequency the slope is much flatter like an L2 design.
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Figure 4: Mixed L2/L∞-optimized filters.
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Figure 5: Mixed L1/L2-optimized filter responses.

5.2 Example 2: A Multiband Filter

To demonstrate the flexibility of SOCP-based design, a 75-complex-tap nonlinear-phase FIR filter
was designed with four passbands and four stopbands. Each passband was designed to approximate
a different delay, while the error in each stopband was constrained using a different mixed norm:

min .
x

‖Epb‖2

s.t. ‖Esb1‖α ≤ 10−40/20

‖Esb2‖ε ≤ 10−40/20

‖Esb3‖D
α ≤ 10−50/20

‖Esb4‖D
ε ≤ 10−50/20.

The passbands occupy the intervals [0,0.05], [0.25,0.3], [0.5,0.55], and [0.75,0.8] with a single
passband weighting function of unity on the intervals and zero elsewhere. The desired response on
the passbands is unity gain with delays of 37, 36, 35, and 34. The stopbands occupy the intervals
[0.07,0.23], [0.32,0.48], [0.57,0.73], and [0.82,0.98], each with a weighting function of unity on
the corresponding interval and zero elsewhere. This was solved using the following SOCP program
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Figure 6: Multiband filter response.

(the horizontal lines delineate the different norm constraints):

min .
x,δ ,δ1,γ1,{U2,k},{β3,k},δ4,{β4,k},{U4,k}

δ

s.t. ∑k |Epb( fk)|2∆ f ≤ δ 2, δ ≥ 0

∑k |Esb1( fk)|2∆ f ≤ δ 2
1 , δ1 ≥ 0

|Esb1( fk)| ≤ γ1, k = 0, . . . ,K

αδ1 +(1−α)γ1 ≤ 10−40/20

∑k |U2,k|2∆ f ≤ ε210−40/10

|Esb2( fk)−U2,k| ≤ (1− ε)10−40/20,k = 0, . . . ,K

∑k |U3,k|2∆ f ≤ α2
D10−50/10

|Esb3( fk)−U3,k| ≤ β3,k, k = 0, . . . ,K

∑k β3,k∆ f ≤ (1−αD)10−50/20

∑k |Esb4( fk)|2∆ f ≤ δ 2
4 , δ4 ≥ 0

|Esb4( fk)| ≤ β4,k, k = 0, . . . ,K

εDδ4 +(1− εD)∑k β4,k∆ f ≤ 10−50/20.

Here ε , α , εD, and αD are constants, and δ , δ1, γ1, {U2,k}, {β3,k}, δ4, {β4,k}, and {U4,k} are auxiliary
variables. Although this is a much more complicated specification than one is likely to encounter
in practice, it translates to only about 35 lines of Matlab code to solve using the Opt toolbox [15].
The resulting magnitude responses of the filter and the overall error are shown in Fig. 6. The same
characteristics seen in the previous example can be seen here in the multiple stopbands.
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6 Conclusions

In this paper we demonstrated the ability of SOCP to constrain more interesting FIR filter error
norms than the usual L∞, L2, and L1. In particular, the vector ε-norm was extended and shown to
be related to a direct norm combination, and it was shown that these combining techniques in fact
generate three different norm/dual norm pairs that can be constrained with SOCP. The examples
provide a qualitative comparison of the resulting filter responses to true Lp designs. The real strength
of SOCP is not its ability to solve these particular unconstrained optimizations, although it can do
so efficiently. Rather, it lies in the tremendous flexibility it provides, allowing an arbitrary number
of constraints of the sort presented here while at the same time enforcing a uniform structure that
allows for efficient solution.
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A The ε-Norm

Definition: For a function E ∈ L2[0,1] and 0 < ε < 1, define the ε-norm of E, denoted ‖E‖ε , as the
unique solution ν∗(E) of

h(ν ,E) ,
∥∥[|E|− (1− ε)ν

]
+

∥∥
2− εν = 0. (13)

Proof. We must show that ν∗(E) exists, is unique and possesses the properties of a norm, namely

1. ‖E‖ε ≥ 0 (Positivity)

2. ‖E‖ε = 0 ⇐⇒ E = 0 (Positive definiteness)

3. ‖γE‖ε = |γ|‖E‖ε (Homogeneity)

4. ‖E +F‖ε ≤ ‖E‖ε +‖F‖ε . (Triangle Inequality)

To show existence and uniqueness, first note that h(ν ,E) is a continuous, monotonically decreasing
function of ν . For any ν > ‖E‖∞/(1− ε), we see that h(ν ,E) = −εν < 0, and since h(0,E) =
‖E‖2 ≥ 0 as well, there must exist a unique solution ‖E‖ε , v∗(E). The positivity of v∗(E) is
guaranteed by the positivity of the L2 norm. Positive definiteness (in the sense of Lp) follows directly
from (13) and the positive definiteness of the L2 norm. Homogeneity follows from the relation
h(|α|ν ,αE) = |α|h(ν ,E), which implies that h(|α|ν∗(E),αE) = 0 and ν∗(αE) = |α|ν∗(E). To
show the triangle inequality we use the triangle inequality for the L2 norm and the fact that [E +
F ]+ ≤ [E]+ +[F ]+ (in a pointwise sense):

h(ν∗(E)+ν
∗(F),E +F)+ ε(ν∗(E)+ν

∗(F))
=
∥∥[|E +F |− (1− ε)(ν∗(E)+ν

∗(F))
]
+

∥∥
2

≤
∥∥[|E|− (1− ε)ν∗(E)

]
+ +

[
|F |− (1− ε)ν∗(F)

]
+

∥∥
2

≤
∥∥[|E|− (1− ε)ν∗(E)

]
+

∥∥
2 +
∥∥[|F |− (1− ε)ν∗(F)

]
+

∥∥
2

= h(ν∗(E),E)+h(ν∗(F),F)+ ε(ν∗(E)+ν
∗(F))

= ε(ν∗(E)+ν
∗(F)).

Thus, h(ν∗(E)+ν∗(F),E +F)≤ 0, and from the monotonicity of h(ν ,E +F) in ν we have ν∗(E +
F)≤ ν∗(E)+ν∗(F) as desired.

Lemma 2. For any function E the pair of functions

Eε = e j∠E[|E|− (1− ε)‖E‖ε

]
+ (14)

E1−ε = E−Eε (15)

define the unique decomposition
E = Eε +E1−ε (16)

called the ε-decomposition such that

‖Eε‖2 = ε‖E‖ε (17)

‖E1−ε‖∞ = (1− ε)‖E‖ε . (18)
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Proof. The support of Eε is restricted to the set I∗ = I∗(E) , { f : |E( f )|> (1− ε)‖E‖ε}. By con-
struction we have (16), (17), and (18), and thus the ε-decomposition exists. When E = 0 uniqueness
is clear, so let E 6= 0 and choose a function V 6= E1−ε such that ‖V‖∞ ≤ (1− ε)‖E‖ε . Uniqueness
then follows by showing that for U = E −V we have ‖U‖2 > ε‖E‖ε , violating (17). Using the
inner-product notation ‖U‖2

2 = (U,U) we have

‖U‖2
2 = ‖E−V‖2

2 = ‖Eε +E1−ε −V‖2
2

= ‖Eε‖2
2 +2ℜ

{
(Eε ,E1−ε −V )

}
+‖E1−ε −V‖2

2

> ε
2‖E‖2

ε +2ℜ
{
(Eε ,E1−ε −V )

}
since ‖E1−ε−V‖2

2 > 0 results from positive definiteness. Now consider the remaining inner-product
term

2ℜ
{
(Eε ,E1−ε −V )

}
=
∫

t∈I∗
2ℜ
{

Eε( f )
(
E1−ε( f )−V ( f )

)∗}dt

=
∫

t∈I∗
2
(
|E( f )|− (1− ε)‖E‖ε

)(
(1− ε)‖E‖ε −ℜ

{
V ∗( f )e j∠E( f )})dt.

The first factor in the integrand is just 2|Eε( f )| and thus is positive on I∗ (and zero elsewhere). The
second factor is nonnegative on I∗ from the restriction on V . Since the integrand is everywhere
nonnegative the integral is also, thus ‖U‖2

2 > ε2‖E‖2
ε and the decomposition is unique.

Lemma 3. The unit ball of the ε-norm is a convex Minkowski sum of the unit balls of the L2 and L∞

norms:

{E : ‖E‖ε ≤ 1}= εB(‖ · ‖2)⊕ (1− ε)B(‖ · ‖∞)

, {εU +(1− ε)V : ‖U‖2 ≤ 1, ‖V‖∞ ≤ 1}.
(19)

Proof. By Lemma 2 a suitable εU = Eε and (1− ε)V = E1−ε will always exist given ‖E‖ε ≤ 1.
It remains to show that for any U and V such that ‖U‖2 ≤ 1 and ‖V‖∞ ≤ 1, we have ‖εU +(1−
ε)V‖ε ≤ 1. Apply the ε-decomposition to get E = εU + (1− ε)V = Eε + E1−ε , then using an
argument similar to the proof of Lemma 2 we have

ε
2 ≥ ‖εU‖2

2 = ‖Eε +E1−ε − (1− ε)V‖2
2

= ‖Eε‖2
2 +‖E1−ε − (1− ε)V‖2

2 +2ℜ
{
(Eε ,E1−ε − (1− ε)V )

}
≥ ε

2‖E‖2
ε

which completes the proof.

Lemma 4. The dual norm of the ε-norm is given by

‖F‖D
ε = ε‖F‖2 +(1− ε)‖F‖1. (20)

Proof. The dual space X∗ of a complex Banach space X is the space of all bounded complex linear
functionals on X . The dual space is also a Banach space, with norm [26]

‖ f‖D , sup
‖E‖≤1

| f (E)|. (21)

The space of all complex-valued square-integrable functions on [0,1] forms a Banach space with
either the L2 or ε-norms. We use the definition of the ε-norm unit ball to write the ε-norm dual as

‖ f‖D
ε = sup

‖U‖2≤1
‖V‖∞≤1

∣∣ f (εU +(1− ε)V
)∣∣.

18



Since f is linear and both the L2 and L∞ norms depend only on the magnitude of their argument,
suitable U and V functions can always be found such that∣∣ f (εU +(1− ε)V

)∣∣= ε| f (U)|+(1− ε)| f (V )|

yielding
‖ f‖D

ε = ε sup
‖U‖2≤1

| f (U)|+(1− ε) sup
‖V‖∞≤1

| f (V )|. (22)

The ε-dual norm is thus the convex combination of the dual norms of L2 and L∞. By the Riesz
Representation theorem, all bounded linear functionals on the space Lp[0,1] can be represented
as the inner product f (E) = (E,F), where E ∈ Lp[0,1] and F ∈ Lq[0,1] for q = p/(p− 1). The
functional f is thus fully represented by the Lq[0,1] function F . Hölder’s inequality further tells us
that |(E,F)| ≤ ‖E‖p‖F‖q, so that the dual norm of Lp is Lq. Rewriting (22) in terms of F yields

‖F‖D
ε = ε sup

‖U‖2≤1
|(U,F)|+(1− ε) sup

‖V‖∞≤1
|(V,F)|

= ε‖F‖D
2 +(1− ε)‖F‖D

∞

and applying the known result for Lp completes the proof.
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