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Abstract

Matrix-assisted pulsed laser deposition was used to deposit poly(methyl methacrylate)

on silicon wafers and sodium silicate glass slides for the purpose of making optical di�users.

After deposition, the re�ectance of the coated substrates was measured as a function of

scattering angle. We found that the angular dependence of the re�ectance could be de-

scribed as the sum of two functions. First, a Gaussian describes the specular re�ection of

the underlying substrate that has been broadened by passage through the �lm. Second, a

cosine function describes the re�ectance contribution from the �lm itself. We found that by

increasing the thickness of the deposited �lm that we could eliminate the specular re�ection

to obtain Lambertian di�users. Since we can control the surface roughness by adjusting the

ratio of the two matrices in laser-processing, this deposition technique o�ers the possibility

of producing a wide range of di�users of di�erent types.

1 Introduction

Di�users are important optical elements that can be used to improve lighting in photography[1], to
protect sensitive optical elements from damage[2], and to control lighting in display applications[3].
A di�user is characterized by its ability to e�ectively distribute radiant energy from an incident
source in the far �eld. As a speci�c example, a re�ecting Lambertian di�user follows a cosine
law for the irradiance, and thus appears the same regardless of viewing angle.
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Figure 1: SEM micrographs of PMMA deposited on Si wafers. These are typical of the �lms used
in this study. In (b) we see a polymer spheroid that appears frequently in these �lms.

We have fabricated di�users using matrix-assisted pulsed laser deposition[4] in which a reso-
nant infrared laser is utilized[5]. In this technique, the material to be deposited (guest) is dissolved
in an appropriate solvent (matrix, host) and the solution is frozen and then placed in a vacuum
chamber. A focused pulsed laser is incident upon the target and the resulting plume is intercepted
by a substrate where a thin �lm collects. Recent results indicate that the surface roughness of
the deposited �lms may be controlled in the range of roughly 30 nm to 1000 nm by adjusting the
composition of the matrix[6]. We have utilized this feature to deposit rough polymer �lms that
readily di�use incident 532 nm CW laser light.

2 Results and Discussion

The matrices used in this study were binary mixtures of methanol and toluene, in the ra-
tios 80M:20T or 90M:10T by weight unless otherwise indicated. The deposited polymer was
poly(methyl methacrylate) (PMMA), chosen for its wide applicability and good optical properties
in the visible and near-UV. Neither methanol nor toluene is a good solvent for PMMA, but mixed
in the right ratios, these two miscible solvents are very e�ective in dissolving the polymer[7].
However, in this study, mixtures that were poor solvents were deliberately chosen to facilitate the
deposition of rough �lms on glass and silicon substrates[6]. A free-running Er:YAG laser (2937
nm, 350 µs) was used for the deposition and the �uence was 3.1 J

cm2 . The repetition rate was
10 Hz and the spot size was approximately 0.04 cm2. The beam was rastered by a computer-
controlled mirror and the target was rotated at about 0.5 Hz. Prior to each deposition, the
chamber was evacuated to a base pressure of about 1 Pa. The total �lm thickness is estimated
to be about 1.5 - 2 µm, based upon earlier measurements where we obtained a deposition rate
of 50-60 nm/minute with similar conditions.

Readers who are more familiar with UV-MAPLE may �nd the �uence used in the deposition
experiments to be somewhat high as typical values in UV-MAPLE are about one to two orders
of magnitude lower. However, since we are using an mid-IR laser, we can expect the absorption
coe�cient to be about one or two orders of magnitude smaller than that which is characteristic
of the UV. In MAPLE, the nature and quality of the deposited �lms often depend directly on the
energy per unit volume[8], or the product of �uence and absorption coe�cient. Therefore, since
infrared absorption coe�cients are much smaller in the IR than the UV, we can expect the laser
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Figure 2: Simpli�ed schematic of scattering experiment.

�uence to be correspondingly larger.
Scanning electron micrographs of �lms deposited using 90M:10T solvent mixtures are dis-

played in Fig. 1. Similar images for a 80M:20T matrix may be found in Ref [6]. The surfaces are
very rough and have been measured by atomic force microscopy to be in the range of 500-600 nm
(RMS). For our scattering measurements, a simple re�ectometer was constructed and is shown
in Fig. 2. A 100 mW CW 532 nm laser beam was chopped (Stanford SR 540) and attenuated
by a neutral density �lter (17 mW) and was normally incident upon the di�user. Films that were
deposited on silicon re�ected and scattered all of the incident radiation back into the half-space
that contained the optics. A Thorlabs DET 110 photodiode was used to monitor the relectance
as a function of angle. A computer-controlled rotation stage was used to adjust the position of
the detector and the output was fed into a Stanford SR830 DSP lock in ampli�er. The equip-
ment was interfaced through National Instruments LabView software and the data acqusition was
automated.

A typical scattering result is displayed in Fig. 3a. Two distinct contributions to the re�ectance
are evident as is described in Ref [9]. One is described by a Gaussian function centered on 0
degrees and the other by a Cosine. The line in Fig. 3 is a �t to a composite re�ectance function
that has the form:

R(θ) = Ae
−( θ

θ0
)2
+B cos(θ). (1)

The �rst term is due to the specular re�ection from the underlying substrate that is broadened
due to passage through the �lm. The second term arises from re�ection o� of the surface of
the rough �lm and is associated with a Lambertian di�user, i.e. a surface that appears the
same independent of viewing angle. The ratio of these two terms depends on the thickness
and, as shown in Fig. 3b, for thick �lms the Gaussian term disappears, leaving only the Cosine
term. In this case, the �lm has become thick enough to eliminate the specular re�ection from
the underlying substrate entirely. Here, the �lm was deposited in 4 parts and the scattering
measurement was performed after each one. The �rst two segments were 10 minutes long, while
the third was 6 minutes and the fourth four minutes long for a total deposition time of 30 minutes.
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Figure 3: (a) Typical result for deposited �lm with �t to composite re�ectance function (Eqn. 1)
and (b) evolution of re�ectance with sample thickness for PMMA �lm deposited upon Si (100)
substrate. In (a) the �tting coe�cients A and B are 0.387± 0.006 and 0.630± 0.01 respectively.
In (b), for the rightmost curve A = 0.

Figure 4: Re�ectance for three �lms. Film 1 (100 nm RMS roughness) is PMMA deposited from
a 50M:50T matrix. Film 2 is PEG deposited using a methanol matrix (200 nm RMS roughness).
Film 3 is PMMA deposited using an 80M:20T matrix (500 nm RMA roughness).
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In addition to altering the re�ectance by increasing the �lm thickness, we can control the
surface roughness, and by extension the re�ectance, with the selection of both the guest materials
and/or the host. In Fig. 4, we show the re�ectance for three di�erent �lms of similar thickness
(~300 nm). The �rst has a surface roughness of about 100 nm and is deposited from a 50M:50T
matrix with 1% PMMA by weight. Second is a polyethylene glycol �lm deposited from a methanol
matrix (2 wt % PEG) with a surface roughness of about 200 nm. Finally, the last �lm is deposited
using an 80M:20T matrix (1 wt% PMMA) and has a roughness of about 500 nm. This �gure
shows that it is possible to use other materials for the �lms and to target di�erent re�ectance
pro�les by altering the matrix composition with PMMA.

3 Conclusion

Thin �lms of PMMA deposited by matrix-assisted pulsed laser evaporation have been character-
ized for their use as optical di�users. By controlling the thickness and surface roughness of the
�lms, they could be tailored with the properties of a Lambertian di�user. As studies with other
polymers deposited by this technique have also shown the ability to control their thickness and
surface roughness by careful choice of solvent/guest pairings and laser energy, we believe this to
be a general process not limited to PMMA.
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