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Modifying Sensitivity/Specificity for Sensors Using 
Positive and Negative Predictive Power Measures 
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M. A. Vidulich, V. S. Finomore  
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Abstract — In the collection of data from sensors in the field, 
the u ncertainty in  th e d ata may comp romise th e ab ility to 
accurately p redict th e s tate of a s ystem. H erein th e s tandard 
signal detection theory problem is examined when nonstationary 
effects may occur in the data from th e sensors. The use of PPP 
(positive predictive power) and NPP (negative predictive power) 
adds a ne w view point on how  to modify  se nsitivity an d 
specificity mea sures in  d ecision making involving multiple  
sensors. Th is is  es pecially t rue when s tationary p roperties in 
received data may be violated.   

I. INTRODUCTION  

In standard signal detection theory (SDT) analysis, the 
presumption is usually that the process acts in a stationary 
manner. The noise processes which permeate the data may be 
presumed to be Gaussian with a constant mean and variance.  
In real applications, however, the actual uncertainty modeled 
via randomness may act more like a stochastic process with a 
time varying mean and standard deviation. These variations in 
the first and second statistical moments commonly occur, e.g. 
when sensors heat up, cool down, or have other time 
variations. The sensors may even fail.  If the quality of data 
are changing from the sensors, one must modify the decision 
making process to account for uncertainty induced by a 
compromised time varying data stream.  This paper will 
examine decision making when the quality of data are 
adapting with time and use measures such as PPP or NPP to 
improve upon current decision-making methodologies based 
on static assumptions.  

II. BACKGROUND MATERIAL 

 
(2.A) Definition of a Stochastic Process 
 
Figure (1) portrays the concept of a stochastic process [1].  
The x axis is the independent variable, time. The vertical axis 
is for the dependent variable of the stochastic process 

y(t). This stochastic process may have a first moment (mean 
(t)) which changes with time. The square root of the second  
 
  
moment (standard deviation (t)) also may vary with time.  
These variations are portrayed in Figure (1) on the vertical 
axis in the form of probability density functions which 
changes temporally.  

 
       Figure (1) – A Rendering of a Stochastic Process 
 
The basics of signal detection theory will be discussed next. 
 
(2.B) – A Signal Detection Theory Framework 
 

 
      Figure (2) – Confusion Matrix for Statistical Test   
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Figure (2) portrays a confusion matrix for a binary detection 
task. In Figure (2), let H denote the number of hits, CR is 
correct rejects, FA denotes false alarms and M represents the 
number of misses. The standard definitions that will be used 
here are described in equations (1- 4) [2]: 

Sensitivity  =   Sn   =     
MH

H


                              (1)     

Specificity    =  Sp =  
FACR

CR


                              (2)  

Positive Predictive Power   =  PPP  = 
FAH

H


                (3) 

Negative Predictive Power  =  NPP  = 
MCR

CR


              (4)                              

(Note Sn  PPP and Sp  NPP from equations (1-4).) 

(2.C) The Use of PPP and NPP to Assist in Decision Making 

Figure (3) shows the typical statistical test for a binary 
detection task and the appropriate parameters to discern 
 
 

 
 

Figure (3) – Classical Binary Decision Making with Optimality   

objects with the signal to noise ratio d’ and bias parameter c 
as noted. In the medical diagnostics area physicians now 
highly embrace the concepts of PPP and NPP rather than just 
using d’ and c for several important reasons: (1) The data 
properties may change with time with d’ and c adapting [3,4]. 
Also, (2) d’ and c are variables calculated with a static 
analysis, however, the underlying system may experience 
dynamic changes requiring modification of the decision 
making process. Evidence of nonstationary behavior in 
decision making is pervasive in the literature on experimental 
psychology.  
 
(2.D) – Extant Data in Human Decision Making. 

In the literature, there is extensive evidence indicating that 
human decision making is a time-varying process. In studies 
on fatigue or vigilance, this effect is seen quite often. For 
example [3-5] it is shown that d’ in Figure (3) may vary with 

time, but PPP and NPP may remain constant. Also in [6, 7] 
evidence suggests that dynamic changes occur in decision 
making, especially in studies in vigilance and fatigue. In [4] it 
was shown that PPP may be constant (performance feedback 
provided) but NPP may decrease with time. Thus PPP more 
specifically delineates what types of decisions have higher 
credence. This is a stronger result than what is provided by 
the typical static measures from signal detection theory and 
has achieved high acceptance in the medical community [10]. 

III. SOME KEY CLASSICAL RELATIONSHIPS 

To relate the terms in equations (1-4) to some of the well 
known quantities in statistical testing for binary hypotheses, 
the elements of figure (2) can be described via [8]: 

            yspecificit
FACR

FA



 1                      (5) 

 
or                                specificity = 1  -   α                           (6) 

 
  and        ysensitivit

HM

M



 1     = power of the test   (7) 

 
  with                                  sensitivity = 1 – β                       (8) 
 
Note, also in Figure (3):                                                        (9)                     
 
  (3.A)    Optimality Measures for decision making 

Three types of optimality in decision making are briefly 
discussed herein. The first two types of decision making can 
be developed using the d’ and c values in Figure (3).   

Optimality Test -1 – Neyman-Pearson (fix α, minimize β) 

From Figure (3) and the classical maximum likelihood 
ratio test, it is well known [2] that using a decision rule based 
on the likelihood ratio is optimal in the Neyman-Pearson 
sense. This means for a fixed α (type 1 error), the minimum 
type 2 error (β in Figure (3)) is realized. The decision rule 
employs the ratio of the probability density functions in Figure 
(3). The decision rule is to select choice H1 over choice H0 if 
(threshold = unity in Figure (3)): 

                            = (f1/f0) > Threshold    =  1               (10) 

The second and well accepted test of optimality involves 
the area under the ROC (receiver operator characteristic) 
curve. 

Optimality Test 2 – Area under an ROC curve 

In the fields of medical decision making and diagnostisity 
in general, a concept called “discriminability” is highly touted 
in these fields.  Herein a brief description of the ROC curve is 
provided to be instructive. Figure (4) shows the ROC curve as  

 


 01'


d
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Figure (4) - The ROC (Receiver Operator Characteristic) Curve 

a plot of sensitivity versus 1-specificity. The area under the 
ROC curve (discriminability) accounts for the general ability 
of a statistical test to include the two types of errors (misses 
and false alarms). It represents an overall measure of the 
efficacy of the test. This is precisely what PPP and NPP can 
bring to the decision making process.  

From Figure (4), the efficacy of the test (discriminability) 
is the total area under the ROC curve which is desired to be 
maximized. It should be pointed out that ROC curves are not 
arbitrary functions and have certain restrictive properties.  

The next optimality test will generalize signal detection 
theory to dynamic systems which is appropriate if the 
moments (t) and (t) have time variations.  

Optimality Test 3 - The Wald Sequential Test 

The classical Wald sequential algorithm test involves two 
types of optimality and provides an entry into dynamic 
decision making [9].  Figure (5) portrays a dynamic decision 
making situation in which the ROC curve may be changing 
with time. 

 
Figure (5) – Adapting ROC curves as System Parameters Vary 

In Figure (5) the d’ and c parameters may vary with time 
and the goal is to adjust the decision rule, accordingly. To 
complete this background information, the optimal Wald 
sequential decision test can be briefly described as follows [9]: 

A statistical measure γ(t) (likelihood ratio) is computed in real 
time (Wald test), where 

A(t) =   


1

log      <   γ(t)    <     

1

log   =  B(t)    (11)                         

The decision rule is: If the determined γ(t) > B(t), then select 
hypothesis H1 in Figure (3). However, if γ(t) < A(t), then 
choose H0.  If neither these conditions are true, then collect 
more data. 

    The beauty of the Wald test is that if α or β vary with time, 
then the statistical parameters A(t) and B(t) adjust accordingly.  
The decision making process then modifies. It is shown [9] 
that the Wald test still maintains two types of optimality: (1) It 
is still Neyman-Pearson optimal in the sense that  for a fixed α 
(type 1 error) then β (type 2 error) is minimized, as well as (2) 
the algorithm will converge in minimum time to a decision. 
What this means is that a decision is reached in about 50% of 
the time [9] as compared to a static maximum likelihood 
decision making process with constant values of α and β.  
Thus dynamic decision making with time varying variables 
has significant advantages over static methodologies. 

       Finally, the concepts of PPP and NPP can now be 
generalized into dynamic decision making employing the 
background materials developed so far. 

IV. ADAPTING DECISION MAKING WITH PPP AND NPP 

Additional facts on the derivation and relationships of PPP 
and NPP to dynamical statistical hypothesis testing are 
detailed here. A brief description of the pertinent steps will be 
presented here. Equations (12-19) now show key relationships 
between the classical quantities CR, M, H, and FA from Figure 
(1) to the PPP and NPP parameters as well as sensitivity (Sn) 
and specificity (Sp).  

                              









NPP

NPP
MCR

1
                                    (12) 

                                                                                         

                          





 


NPP

NPP
CRM

1                                      (13) 

                                                                     
                         










PPP

PPP
FAH

1
)(                                      (14) 

                                                                     
                         






 


PPP

PPP
HFA

1
)(                                      (15) 

                                                                        

                          
Sp

Sp
FACR




1
)(                                       (16)                      

                                                                       

                             
Sp

Sp
CRFA




1
)(                                    (17) 

                                                                       

                                
Sn

Sn
MH




1
)(                                    (18) 

                                                                              

                            
Sn

Sn
HM




1
)(                                  (19) 
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The following key result has its details contained in Appendix 
A and can be described via Theorem 1: 

Theorem 1: Sensitivity (Sn) and specificity (Sp) can be 
related to PPP and NPP through the following formula: 

     


































 NPP

NPP

PPP

PPP

Sp

Sp

Sn

Sn

1111
       (20)  

Proof:  Appendix A derives the result in equation (20). 

The second major result is to extend the Wald sequential test 
from equation (11) into a form for the use of PPP and NPP. 
With this dynamic decision making criterion the Neyman-
Pearson property of optimality is still preserved and the 
minimum time for a decision to be made is still left intact.  
Theorem 2 presents this main result: 

Theorem 2: 

The equivalent to the Wald sequential test of equation (11) can 
be written in terms of PPP and NPP via the following method: 

The optimal Wald sequential algorithm can be modified to 
include the PPP and NPP terms. For the test statistic γ(t) 
(likelihood ratio)  in equation (11),  the new regions for 
testing now include: 

 
        















 






 






 

NPP

NPP

PPP

PPP 111
log


      <  γ(t)  <    

         log

































 NPP

NPP

PPP

PPP

111 
              (21) 

Proof:  Appendix B outlines the derivation of equation (21).  
Equation (21) is equivalent to equation (11) and still preserves 
the two types of optimality as enjoyed by the Wald sequential 
test. 

Remarks:  The formulation (21) has new advantages over 
prior methods. It is known that the parameters d’ and c of 
Figure (2) may vary with time. From equation (21) it is seen 
that the decision parameters α and β are known apriori. Also 
the experimental parameters PPP and NPP adapt with time 
since the d’ and c values are known to change but are easily 
measured in real time. Thus by using equation (21) rather than 
(11) provides a dynamic decision making procedure which can 
be modified with time having an emphasis on the time varying 
PPP and NPP variables.  The result in equation (21) still 
enjoys the same optimality properties as in the Wald 
sequential algorithm in equation (11) but is cast within the 
framework of the PPP and NPP variables.  

V.  SUMMARY AND CONCLUSIONS 

Sensitivity and specificity using a PPP and NPP 
formulation demonstrate that a dynamic Wald-type sequential 
algorithm can be synthesized depending only on the PPP, 
NPP, α and β values.  From equation (20), several new 
viewpoints on dynamic decision making can be obtained. For 
example, if PPP may be constant and NPP may be decreasing 
(cf. [4]), then both sensitivity and specificity may change. 

This because from equations (1,3) PPP and Sn are different 
quantities. The new viewpoint allows us to drill down on the 
decision making when overall measures like (d’, c, Sn and Sp 
may be changing with time.  Also, the new dynamic decision 
making algorithm presented herein preserves the two types of 
statistical optimality provided by the Wald method but uses 
more modern procedures such as PPP and NPP.  
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Appendix A – Derivation of Equation (20) 
 
Starting with the equation (4), multiplying through by 
(CR+M) yields: 
                    (CR+M) NPP =  CR                                      (A.1) 
or                CR (1-NPP) = M (NPP)                                 (A.2) 
which gives rise to the following two relationships: 
                             










NPP

NPP
MCR

1
                                 (A.3) 

                             





 


NPP

NPP
CRM

1                                  (A.4) 

Starting with equation (3), multiply through by (H+FA) to 
yield: 
                             (H+FA) PPP = H                                (A.5) 

or                        H (1-PPP) = FA (PPP)                          (A.6) 
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which arrives at  the following two relationships: 
                           










PPP

PPP
FAH

1
)(                                     (A.7) 

                            





 


PPP

PPP
HFA

1
)(                                  (A.8) 

To continue, start with equation (2) and multiply through by 
(CR+FA) to yield: 
                    Sp (CR + FA)  =  CR                                     (A.9) 
or:               CR ( 1 – Sp ) = Sp FA                                  (A.10) 
which results in the following relationships: 
                                       

Sp

Sp
FACR




1
)(                        (A.11) 

                                      
Sp

Sp
CRFA




1
)(                         (A.12) 

Finally, starting with equation (1), multiplying through by 
(H+M) yields: 
                         Sn (H+M) =  H                                       (A.13) 
 
or                     H (1-Sn) = Sn (M)                                   (A.14) 
 
which gives rise to the following relationships: 

                   
Sn

Sn
MH




1
)(                                 (A.15) 

Sn

Sn
HM




1
)(                                (A.16) 

To now develop the dependency between PPP, NPP, Sn and 
Sp, set CR=CR using equations (A.3) and (A.11) yielding: 


















 Sp

Sp
FA

NPP

NPP
M

11
             (A.17) 

Now set M=M in equations (A.4) and (A.16) which results in: 







 







 

Sn

Sn
H

NPP

NPP
CR

11                 (A.18) 

Following the same procedure by setting H=H in equations 
(A.7) and (A.15) which yields: 

















 Sn

Sn
M

PPP

PPP
FA

11
             (A.19) 

Finally setting FA=FA in equations (A.8) and (A.12) results 
in the following relationship: 








 







 

Sp

Sp
CR

PPP

PPP
H

11             (A.20) 

The relationships (A.17)-(A.20) can be further reduced. 
Computing the relationship (CR)/H from both equations 
(A.18) and (A.20) yields: 








 







 








 







 



Sp

Sp

PPP

PPP

NPP

NPP
Sn

Sn

H

CR

1

1

1

1

          (A.21) 

Cross multiplying implies the following classical dependence 
between PPP, NPP, Sn and Sp: 

  





 






 








 






 
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To check why this is true, similar calculations can be made 
using both equations (A.17) and (A.19) for (FA)/M: 
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Cross multiplying implies the reciprocal of equation (A.22) is 
true which further validates this approach because if things 
are equal, their reciprocals should also equate: 
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Appendix B – The Wald Algorithm for PPP and NPP 
 
Starting with the Wald test of equation (11), where α and  
β are known or measured (possibly time varying). 
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where, from equations (6) and (8) 
 

                                α = 1 - Sp                                           (B.2) 
 and                        β = 1- Sn                                            (B.3) 

 
Thus the Wald optimality criterion (B.1) can be written: 
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But it is known that             
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Also starting with equation (B.5) yields:     
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Which can be written as:                      
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Hence the optimal Wald sequential algorithm can be 
modified to include the PPP and NPP terms as follows: For 
the test statistic γ(t) assuming constant α and β values with 
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NPP and PPP possibly changing with time, the new regions 
for testing now become: 
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Updated Studies in Approximate Entropy involving Fractional Noise and Fatigue Data 
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1- 711 HPW AFRL/RH, WPAFB, Ohio 45433 
2- Wright State University, Dayton, Ohio 45435 

                                             
Abstract 

New applications of approximate entropy are currently ongoing and being analyzed with innovative 

and novel data being generated within AFRL.  This paper reviews some extant studies in the area of 

Human Machine studies and describes the basics of this powerful use of an information theoretic 

measure. The goal is to detect if the state of a human may have been compromised by fatigue, or other 

stressors, utilizing noninvasive sensory measurements. 

 

I. Introduction 
 

New investigations at the 711 HPW WPAFB have been focused on the use of a measure of 

uncertainty in data termed “approximate entropy.”  This new interest in research in the USAF involves 

studies of humans under fatigue induced by loss of sleep [1] or other stressors including emotional stress 

[2]. Herein will be presented some of the basics of the concepts underlying the calculation of approximate 

entropy. Prior work in this area [3] has considered determining when loss of consciousness would occur 

during high acceleration stress. The study in [3] was based on an exogenous physical stress (G or 

acceleration forces) on a human. In [4], however, a mental trauma involving cognitive stress (a high 

workload task) was also investigated using the approximate entropy measure. Periods of high and low 

task difficulty could be gleaned from the performance of the subjects and the approximate entropy 

measure. 

 
II. Principles of Approximate Entropy 

 
The concepts involving approximate entropy are simple. In Figure (1) a signal s(t) = s1(t)  is  

compared to itself displaced one sample s(t+t) = s2(t).  The entropy is the normalized amount of disorder 

between the two adjacent signals s1(t) versus s2(t) or s(t) versus s(t+t). If the approximate entropy is low, 

this disorder is minimal. If this disorder or variation is high, then the normalized entropy may reach 

values of 1.0 or larger. In references [3] and [4] more technical details are included. Appendix A includes 
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reference [3] involving physical stress on humans for informative purposes. Appendix B includes 

reference [4] with a cognitive stress investigation. 

 
 

 
Figure (1) – Determination of the Approximate Entropy Measure 
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Appendix A – Reference [3] included for information purposes 
 



APPROXIMATE ENTROPY-AN ASSESSMENT TOOL FOR SYSTEM COMPLEXITY AND 
UNCERTAINTY 

 
D. W. Repperger1, W. B. Albery1, L. D. Tripp2 

 
 

1 Air Force Research Laboratory, AFRL, WPAFB, Ohio 45433, USA 
2 General Dynamics, Dayton, Ohio, 45433, USA 

 
 

Abstract: For complex systems and interactions, a means of determining the quality of 
information in a time series involving data generated from a human-machine system is 
investigated.  This recent numerical analysis method, widely accepted in the medical 
field, termed “Approximate Entropy” can provide a compelling means of uncovering 

irregularity in data of all types. Changes in the state of a human-machine system can be 
quickly gleaned in real time, on line.  Application of this measure is investigated on 

tracking performance data when the human-machine system is known to be 
compromised in a performance sense.  

 
Keywords: Computational methods, classifiers, entropy, discriminations, dynamic behavior.  

 
1. INTRODUCTION 

 
Many complex Human-Machine systems may have a sudden change in state and it is desired to 
detect, in real time, whether a measured or derived signal may now differ from its prior situation. 
Traditional statistical measures (mean, standard deviation or other moments) cannot always capture 
the change in some signals because of the complexity of the underlying system dynamics.  Pioneered 
by Pincus (1991-2), discussed in Pincus and Kalman (1997) and in numerous publications, an 
interesting new measure has been developed to help detect changes in the “regularity” of a time series 
termed “Approximate Entropy” (ApEn).  By comparing a time series with itself, over time, this 
measure of system irregularity has found applicability in the medical field for discerning differences 
in heart beat either due to sleep cycle or disease, Yeragani, et al. (1998) and Pincus (1992).  This 
procedure has applicability in distinguishing hormonal changes, Gevers, et al.  (1998), mood swings, 
Pincus (2003), and in other complex applications involving very intricate signals. Other applications 
include EMG and tremor distinction (Morrison and Newell, 2000), EEGs (Bruhn et al., 2000), 
recognizing epileptic activity (Diambra, et al. 1999) and for discerning cocaine addiction (Newlin et 
al., 2000). Generalizing this concept even further, Sugihar (1990), it is now possible to determine if 
the underlying complexity of a system state may have changed when viewed within the context of a 
control system by observing some key output data.  This methodology has particular interest in 
identifying if the underlying dynamics of a process may or may not exhibit chaotic behaviour and to 
predict this possibility. 
 
Approximate entropy is based on the simple principle that if a time series signal can be compared to 
itself (heart beat data, for example) and the amount of  the disorder in a comparison or change 
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(entropy) between relative time shifts of these data is increasing, this is probably an indication of 
some change in state. This differs from traditional correlation measures, since they are not based on 
information theory concepts and may require fixed implicit models.  The use of ApEn is model 
independent and only depends on the real time data series.   There are at least four reasons why 
approximate entropy provides new information about system complexity not normally derived from 
typical statistical measures (first and second order moments): 
(1) If data are noisy, the approximate entropy measure can be compared to the noise level in the data 

to determine what quality of true information may be present in the data. 
(2) If the data have an artifact, this does not impact the approximate entropy measure as much as it 

would affect typical first and second order statistical moments from the data. 
(3) Approximate entropy can be designed to work for small data samples (n < 50 points) and can be 

applied in real time, on line. Thus changes in the state of a physical process may be quickly 
determined. 

(4) For pure stochastic processes, approximate entropy will become practically infinite.  
Thus, the quality of the information in a signal can then be quantitatively evaluated by comparing the 
entropy level of the measured signal with its underlying (non random) signal component. 
 

To test the concept of approximate entropy on performance data, an extensive database exists 
involving pilots performing cognitive tasks while simultaneously being subjected to high acceleration 
stress, Tripp (2001).  The volunteer subjects were required to perform both a math computation task 
as well as manual tracking in a position-control mode. Data were recorded prior to the event of loss of 
consciousness, during the period the subjects went unconscious, and afterwards in the post recovery 
period. The approximate entropy measure was calculated on the tracking data to quantify, objectively, 
the amount of disorder in the subject’s response during different time epochs of the experiment.  

 
2. EXPERIMENTAL SCENARIO 

 
At the Air Force Research Laboratory, WPAFB, Ohio, the data presented here partially involved a 
three axis motion simulator that is used to determine a pilot’s response to acceleration stress. The 
system shown in Figure 1 has a 5.8 meter radius with a large spherical cab and can create a force of 
20 G at a rotational velocity of 56 RPM. Such a system weights 163,000 kilograms. 
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Figure 1 – The Dynamic Environment Simulator to Produce Acceleration Stress
 

 
3. OBJECTIVE 

 
The objective is to test if the measure of uncertainty or irregularity known as approximate entropy can 
be a valuable tool in assessing whether a pilot is compromised in a cognitive sense. The underlying 
assumption is that under high acceleration stress conditions, human data are extremely more variable 
and thus should show higher entropy. In addition, if the time rate of increase of entropy is positive 
going into the loss of consciousness event and negative coming out of the loss of consciousness event, 
then the rate of change of approximate entropy may be a valuable prediction tool to ascertain shifting 
cognitive state.  Also, if the rate of change of approximate entropy is decreasing, this may be a 
valuable indicator that the mission capability of the pilot has returned to a normal level and the effect 
of the untoward event (unconsciousness) may no longer impact the mission effectiveness of the pilot. 

 
4. HYPOTHESIS 

 
The null hypothesis that we wish to reject is that the approximate entropy metrics (magnitude and 
time rate of change of ApEn) will not significantly vary during known changes of the cognitive state 
of the pilot being stressed. Only the performance tracking data will be used to ascertain the cognitive 
state of the pilot. 

 
5.   METHODS 

 
Data from 16 USAF pilots/subjects were collected as they performed a compensatory tracking task 
and carried out a math computation exercise in a large centrifuge motion simulator. These subjects 
performed these tasks under high acceleration stress. The acceleration stress increased until the 
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subjects became unconscious (GLOC or G loss of consciousness). There were 3 or 4 data days for 
each subject. 

 
6. APPARATUS 

 
Two centrifuges were used in this study.  The DES centrifuge at WPAFB was described in section 2 
of this paper. A second centrifuge at Brooks Air Force Base, Texas was employed to generate similar 
acceleration profiles. The same performance tasks (math computation and manual tracking) were used 
with both motion simulators on qualified human subjects. 

 
7. EXPERIMENTAL DESIGN 

 
Both genders of healthy USAF pilots/subjects participated in this experiment. The end point condition 
was the loss of consciousness. A recovery period followed the GLOC event. 

 
8. RESULTS 

 
Figure 2 shows the stressor (lower plot - G acceleration level versus time) and the root mean square 
tracking error (upper plot in Figure 2) for one subject on the first of his four days when data were 
collected. The events of pre-GLOC (prior to G loss of consciousness), the period of complete 
incapacitation, and the post recovery period are indicated.  Figures 3a-b is a similar plot of the 
approximate entropy function versus time with some of these same event markers noted based on 10 
second intervals of the data.  One observes in Figure 2, from the performance data (top plot of Figure 
2), that prior to the GLOC event, a pilot’s behaviour was manifested by a high variation in the 
tracking error signal. Coming out of the GLOC event, in the same diagram, high variability in the 
tracking error also exists for 40 or more additional seconds. Eventually the data show a reduction in 
the variability (t > 100 seconds) as the pilot returns to a cognitive state, typical of normal tracking. 
Hence, disorder (high levels of approximate entropy) in the tracking error signal seems related to a 
compromised cognitive state of the pilot. 
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Figure 3b – Subject 1 – Day 1 – Side View of Approximate Entropy
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The appendix describes, in a succinct manner, important technical aspects of this measure, approximate 
entropy, as compared to alternative metrics involving time series data. With reference to Figures 3a-b, the 
approximate entropy ApEn is plotted versus time on the x axis. One thing is clear, i.e. prior to the GLOC 
event and during the post GLOC event, that the absolute value of ApEn and the magnitude of the rate of 
change of ApEn with respect to time are extremely high. In Figures 3a-b, the almost zero value of ApEn 
near the fifth time epoch (t = 50 seconds) needs to be explained. Referring to Figure 2, during the time 
period (t  [25,35]) seconds, the RMS tracking error is constant (worst case) because the subject is 
unconscious. There is little variation in his relative behavior (as measured by tracking performance, 
which is not changing), hence ApEn  0 in this interval. Therefore to use a measure such as ApEn to 
predict or indicate the likelihood of the pilot to become unconscious, one must take into account the 
magnitude of ApEn as well as it’s time rate of change.  Figure 4 depicts a majority voting classifier 
system that could use this information to predict the cognitive state of the pilot using as inputs ApEn 
measures and tracking performance. Since brevity must be the style in this paper, we only report on the 
data analysis measure of ApEn with respect to the known cognitive state of the pilot. 
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Figure 4 – A Majority Voting Scheme to Predict the Pilot’s Cognitive State
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Table 1 illustrates the mean () and standard deviation (SD) values of ApEn and its time derivative 
fifteen seconds prior to the GLOC event. Also in Table 1 are these respective values 100 seconds post 
GLOC for comparison purposes. The data are averaged across 16 subjects with 3-4 data days for each 
subject. Figure 5 illustrates these mean and SD values averaged over the 16 subjects and for those data 
days with pre GLOC data at 15 or more seconds prior to the incapacitation event.  

 
Table 1 –ApEn and its time derivative 15 seconds Pre GLOC and 100 seconds Post GLOC 


Pre GLOC                         Post GLOC 

ApEn      (d/dt) ApEn       ApEn   (d/dt) ApEn 
    SD           SD            SD             SD 

.43    .07   .013  .006      .32   .13     .01    .006 
 

Table 2, displays the results of a one-way ANOVA, one factor for Magnitude of ApEn and Table 3 
displays these values for the magnitude of the time rate of change of ApEn.  Please note the time samples 
are one second apart for the data displayed in Figure 2. Figure 6 shows the results of the JMP (developed 
by the SAS Institute) analysis for comparison of means (Tukey-Kramer test). 
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        Table 2 – One Way ANOVA for Mag. of ApEm 
Source  DoF    Squares  Mean Squares F Ratio    Prob>F 
GLOC      1      0.2887          0.2887        20.7408    <.0001 

Error       70     0.9742          0.0139 
C. Total   71     1.2629 
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Table 3 – One Way ANOVA for Mag of d/dt (ApEn) 

Source  DoF    Squares  Mean Squares   F Ratio  Prob>F 
GLOC      1      0.00024      0.00024           6.3978    .0137 

Error       70      0.0026       0.000037 
C. Total   71      0.00284 
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Figure 6 – JMP Analysis for  d/dt (ApEn) Data – Pre and Post GLOC.
 

 
9. DISCUSSION 

 
Preliminary results indicate that prior to GLOC the approximate entropy function is both high and 
shows increasing positive rates with respect to time.  In the recovery period, the approximate entropy 
function seems to show decreasing rates as the pilot’s variability in his performance seems to be more 
reduced. The overall results of this study across all 16 subjects with three to four days of testing for 
each subject are reported. 

  
10. CONCLUSION 

 
A study of the efficacy of using approximate entropy to predict the cognitive state of the pilot is 
conducted on human subjects known to be compromised in a performance sense due to loss of 
consciousness. Studies are ongoing to predict the loss of consciousness prior to the event by 
examining the rate of change of approximate entropy in real time, on line, using other signals such as 
physiologically based data including oxygen perfusion to the subject’s brain, etc. 
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APPENDIX from [3] – TECHICAL DETAILS REGARDING APPROXIMATE ENTROPY 

 
Approximate entropy is sometimes termed a “regularity measure” which quantifies the 
unpredictability of fluctuations in a time series, e.g. in instantaneous heart rate signal. High levels of 
ApEn (highly irregular) reflect the likelihood that “similar” patterns of observations will NOT be 
followed by additional “similar” observations. Thus a more complex process has high levels of ApEn 
and small values of ApEn imply predictable (repetitive) patterns are inherent in the data. Uncertainty 
(or high system complexity) is related to high levels of ApEn. 
 
Conversely, low values of ApEn indicate predictability of a time series. Given a series of s(t)  
measurements (for this case n < 50)  s(1), s(2), … s(n), equally spaced in time,  the ApEn of this data 
series depends on two key parameters: m and r.   m is an integer that represents the length of 
compared runs (a window or how many data samples the two series differ)  and r, effectively, 
represents a filter. Typically m = 1 or 2 which distinguishes the two series and r is a tolerance 
measure (criterion of similarity). The next steps provide the procedure to compute the ApEn versus 
time: 
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Step 1: Form a sequence of vectors  x(1),  x(2), .., x(n), where each x(i)=[s(i), s(i+1), …,s(i+m-1)].  
 
Step 2: Use the sequence x(1), x(2), …, x(n) to construct, for each i, 1<i<n-m+1, Ci

m( r ) =  (the 
number of x(j) such that d[x(i), x(j)] < r) / (n-m-1).  The distance metric d satisfies: 

 
 d[x(i),x(j)]  =  max  |s(i+k-1) - s(j+k-1)|                                               (A.1)   

                                  for k=1,2,…,m 
 

Hence d represents the distance between the vectors x(i) and x(j), given by the maximum of their 
respective scalar components. The next step defines the logarimithic entropy measure: 

 
Step 3:                                             n-m+1 

          m( r ) = (n-m+1)-1    ln Ci
m(r)                                                                    (A.2)                 

                                                        i=1 
resulting in 

                      ApEn = m( r ) - m+1( r )                                                        (A.3) 
 

We now show a relationship of ApEn to some of the objective means of quantifying chaos in 
nonlinear dynamical systems.   Three popular means of quantifying chaos are briefly discussed here 
which include (1) Lyapunov Exponents, (2) Embedding Dimensions, and (3) K-S Entropy.  Large 
values of ApEn can be related, e.g., to a positive Lyapunov exponent.  
 
(1) Lyapunov Exponents: 
In a chaotic system, the Lyapunov Exponent represents the exponential rate of separation of adjacent 
trajectories.    Consider a nonlinear system near a fixed point (x0) where: 
 

                   d/dt x(t) = f(x(t))                                                                     (A.4) 
 

Taking the Taylor series expansion near x0 results in: 
 

d/dt x(t)= 0 = f(x) = f(x0) + (x-x0) df/dx +...                                          (A.5) 
 

Define a new variable z=x-x0. Then proximal to the fixed point:  d/dt z(t) = z [df/dx] |x0 which has 
solution: z(t) = z(0) e t, where the Lyapunov exponent  = [df/dx]|x0 is a characteristic value of the 
fixed point. Thus two adjacent trajectories are attracted to each other if they approach the fixed point 
and  <0. However, if two adjacent trajectories repel each other, then  > 0 and this is typical of 
chaotic behaviour. Thus if the average Lyapunov exponent is positive near a fixed point, this is a 
viable definition of chaotic behavior since nearby trajectories have exponential divergence in phase 
space (Hilborn, 1994). 
 
(2)Embedding Dimensions:  The embedding dimension is the number of points necessary to predict 
the next point in the time series and is an objective measure of system complexity. Thus highly 
complex systems would have a high measure of embedding dimension and this may indicate the 
potential for chaos (Williams, 1997). 

 
For K-S Entropy:  The Kolomogorov-Sinai entropy (Kolmogorov, 1958) deals with the probability 
that a given trajectory point falls within some particular region of state space. Thus a chaotic system 

Approved for public release; distribution is unlimited



19 
 

would have a high entropy measure since it may have a nonzero high level of probability of accessing 
different areas of the state space. Pincus (1991) has shown the distinction between ApEn and K-S 
entropy by noting that the K-S entropy measure (a theoretical construct) can be defined via: 

 
For K-S Entropy:        

 

lim      lim    lim [m( r ) - m+1( r )] = t h()                                 (A.6)     
                                      r0   m  n                                                                 

 
where h() is the K-S entropy. Choosing t=1 shows the relationship and distinction between ApEn 
and the K-S entropy measure.  In other words, the K-S entropy is a theoretical construct which 
requires r to be near zero, and m and n to be large in value. ApEn, on the other hand,  may have r 
nonzero (but small) and finite values of m and n.  Thus ApEn is more applicable to real world 
situations and data that are collected in an experimental scenario. Other methods also exist for 
quantifying chaos include fractal dimension and correlation dimension (Hilborn, 1994).    
 
Finally, we describe, and show by example, how the calculation of ApEn can be conducted online in 
real time for data consisting of finite samples. To physically understand the key parameters r and m, 
Figures 7a-b displays a time series, where s(t) is the signal of interest. The signal s(t) has two 
constituent signals s1(t) and s2(t) derived by shifting the data one data sample (m=1) over a 12 sample 
time epoch (n=12).  s2(t) is just one data sample (m=1) shifted to the right from s1(t).    Hence, the 
tolerance variable r would be gleaned from the difference between s1(t) and s2(t) as indicated in Figure 
7b (plotted on different and exaggerated  vertical scales for illustrative purposes). Thus the 
approximate entropy value depends heavily on the n, m, and r values as well as the regularity of the 
signal s(t) over the interval in which it is being examined.  
 
In conclusion, a relationship between the Lyapunov exponent and the prior procedure using ApEn 
shows a further hidden connection of the proposed method to nonlinear dynamics. One can derive the 
Lyapunov exponent from real data (Wolf, et al., 1985) and it is desired to distinguish the situation of 
chaos from possible measurement error in a time series (Sugihar and May, 1990) using real time 
measurements. To show how to employ the Lyapunov exponent method with real data, the 
assumption is first made that the data are sampled equally in time. The data samples s(t0), 
s(t1),s(t2),…,s(tn) are labelled s0, s1, s2, …, sn. If  is the constant time 

 
interval between samples, then for some integer n, the following relationships exists: 

 
                           tn – t0 = n                                                                        (A.7) 

 
Now a system will behave chaotically if the divergence of nearby trajectories are showing exponential 
changes in their differences, i.e. 

 
                              d0 = | xj – xi|                                                                      (A.8)      

 
                           d1= | xj+1 – xi+1|                                                                   (A.9)  

 
                             d2 = | xj+2 – xi+2|                                                                 (A.10) 

                              …………………………………….               
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                             dn = | xj+n – xi+n|                                                               (A.11) 

 

                           

Figure 7b – Constituent signals s1(t) and s2(t) derived from s(t).

Time in seconds
0

Time series = s1(t) and s2(t)

t = Time in seconds
0

Time series = s(t)

s1(t)

s2(t)

s1(t)

s2(t)

Figure 7a – Original Signal s(t) to be analyzed versus time.

r = threshold

 
is assumed to exponentially increase (on the average) as n gets larger. The assumption is really that:  

 
                           dn = d0  e

n                                                                (A.12) 
 

and the quantity  can be determined via 
 

                    =  (1/n)  ln  (dn/d0)                                                         (A.13) 
 

and if    is positive, then the behavior would be chaotic. A graphical means to determine this effect is 
to make a log plot of the respective difference ratios (dn/d0) and determine if the line that best fits the 
data has a nonzero slope. 
 
If the slope of the line is nonzero (and statistically different from zero) then   0 and the data either 
represent a chaotic system (>0) or an attractor (<0), the latter of which would indicate convergence 
to a fixed point.  Hence  is similar to the Lyapunov exponent. 
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                        Appendix B – Reference [4] included for information purposes 
 

 
            A Real-Time Measure to Study Dynamic Interactions with a Visual Display 

 
                               D. W. Repperger and J. J. Skelly 
 
Abstract:  As operators interrelate with complex systems, such as those that occur 
in flying or operating aircraft, the true performance and interaction is of a dynamic 
nature. However, most analyses of human interface systems employ the 
assumption that the display is static and does not change with time.  This paper 
will consider a real time measure (approximate entropy) to study and evaluate 
human-machine interaction as events in the environment change in a dynamic 
sense. The experimental paradigm to evaluate the efficacy of the proposed real 
time measure will be borrowed from studies investigating the effects of spatio-
temporal structure on cognition.  
 
Keywords: Dynamic behavior, entropy, man-machine interfaces, nonstationary. 
 

1. INTRODUCTION 
 

In many physical systems, the presumption that a static environment captures the essence of the 
performance of the human-machine interaction is extremely limiting.  This is equivalent to the 
assumption of linearity.  In linear systems, the transient response has commonalty with the steady 
state response through key parameters, such as eigenvalues.   However, for nonlinear systems, this is 
not the case and most human interactions with complex systems are more typically nonlinear.  In a 
companion paper, Repperger, et al. (2004), a real-time measure of entropy or disorder has been 
employed to analyze data from an experiment when it was known that pilots became unconscious and 
their behaviour changed dramatically.  The real time measure of approximate entropy (ApEn - Pincus 
and Viscarello (1992), Gevers et al. (1998), and Pincus (2003)) has been embraced by the medical and 
psychological communities to show that certain changes in real time data can indicate an alteration in 
the medical or psychological state of a patient. This is not unlike humans interacting with dynamical 
systems, when they become overloaded and task performance changes, accordingly. This study will 
consider the real time measurement of irregularity in data (approximate entropy) as applied to key 
performance parameters from a spatial-temporal investigation on human perception. It is known that, 
in scenarios of the data to be presented, human performance can be compromised by the procedure at 
which information is displayed to the operator.  This is true for two, almost identical performance 
tasks to be offered, where the complexity of the task (bits) and rate of presentation (bits/second) are 
identical for both tasks, but their dynamic attending characteristics differ.  From a Fitts’ Law 
perspective (Fitts, 1954) the two tasks provide identical difficulty but it will be shown in the sequel 
that the performance of the subjects is markedly dissimilar. The only distinction between the tasks is 
that they require different dynamic attention resources from the human subjects. This experimental 
platform is ideal for evaluation of the ApEn metric which may be able to discern differences in 
operator responses, when Fitts’ law would not be able to make such a fine distinction. 
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A powerful paradigm to investigate the effects of dynamic information structure on human 
performance can be seen in the works of Skelly and colleagues (Skelly (2003), Skelly et al. (2000), 
and Jones and Skelly (1993)). To briefly summarize the results of some of their studies relevant to this 
investigation, the environment of an operator is made to change both in a temporal and/or spatial 
sense with respect to a visual display.  The timing and spatial display of this information to the 
operator may affect a viewer’s ability to allocate attention among items within a single stream of 
information events or among multiple information streams.   Hence these spatio-temporal structural 
properties may serve to facilitate or interfere with attending to the specific arrival time or location 
associated with dynamic visual stimuli. The underlying thesis is that goal directed targeting of 
attention may not be entirely voluntary, i.e. attentional targeting may be influenced by joint structural 
properties associated with dynamic stimuli, and thus, attention may be involuntarily controlled, at 
least in part by the design of the display dynamics. This dynamic attending approach is a biological 
view on how we allocate our attentional resources to dynamic information in the environment. There 
are three basic assumptions in this dynamic approach to understanding how humans interact with 
complex systems: (1) Attention is controlled, in part, by the combined spatial-timing structure of 
dynamic visual information, (2) Attentional energies are stimulated and “synchronized” with certain 
invariantly occurring dynamic space-time structures, and (3) The focus of the attention may speed up 
or slow down when there are abrupt accelerations or decelerations. It has been clearly demonstrated 
that certain spatial-time patterns are productive for the transfer of information from the display to the 
operator and other patterns can be very counterproductive for this task. 

 
2. OBJECTIVE 

 

The objective in this investigation is use the experimental platform involving dynamic attending with 
the approximate entropy measure on performance data involving a discrete sequence of tasks. A 
causality will be shown between the ApEn metric and the information compatibility (dynamic 
attending) of the presentation of data to the operator.  The ApEn metric can be calculated in real time 
when the dynamic aspects of the display may change. Both the operator and experimenter are blind to 
the active display characteristics and how it evolves with time.  

 

3. HYPOTHESIS 

 

This study will show the effectiveness of the approximate entropy metric to identify when the display 
dynamics may change. The goal is to reject the null hypothesis H0 at an  level of 0.05 such that: 

 
       H0: There is no change in the approximate entropy measure during extreme high and low periods of 

information incompatibility (dynamic attending). 
 

4. METHODS 

 

Data from eight USAF subjects/contractors were collected as they performed a time estimation task. 
Two levels of information compatibility (dynamic attending) were presented to the subjects. These 
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difficulty levels were kept blind from both the experimenter and the subjects. Figure 1 illustrates the 
visual scene in which the subjects make estimates of the time perception.  

 

Figure 1 – Time Estimation Task
 

In Figure 1, the subject sees a pattern of stimuli being presented (small circle) in a certain timing 
pattern. The small circle traverses the larger circular pattern (the large circle is actually hidden) until 
the small circle changes color. After this color change, the subject has to estimate the time for the next 
appearance of the circle as being either “early”, “late” or “on time” in comparison to the prior timing 
pattern. The subject responds with a mouse cursor as to one of the three choices (early, late or on 
time).  From the works of Skelly et al., Table 1 displays the four possible paradigms that are known to 
produce different levels of dynamic attention or discordancy.  Going down the table is in a direction 
of increasing task difficulty as determined from prior studies. 

 

Figure 2 portrays an hypothesized trial from one possible set of runs. The task may be easy for a 
certain period of time and then, without notice to the subject or experimenter, the tasks may enter a 
region of increased difficulty for some period of time. Finally the task set may decrease its level of 
difficulty. The opposite sequence may also occur. The presentations of the task difficulty levels are 
counter balanced in the data presented here to eliminate confounding due to fatigue or ordering 
effects.  Also in Figure 2 is a presumed plot of the variable, approximate entropy, drawn on the same 
time axis.  The conjecture is that as the 

 

Table 1 – Four Types of Dynamic Attending 

 

Task Condition Difficulty Level 

Equal Time 
Equal Space 

Easiest Task- 
Level 1 

Equal Time Next Most Difficult 
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Unequal Space Task – Level 2 

Unequal Time-
Unequal Space 

Third Most 
Difficult Task – 

Level 3 

Unequal Time – 
Equal Space 

    Most Difficult 
Task – Level 4 

 

 
difficulty of the task increases, the entropy would increase, accordingly. The entropy is evaluated by 
the degree of error made by the subjects as they respond to the question of whether the last 
appearance of the circle was either early, late, or on time. There are five levels of error (zero error, + 
one unit and + two units of error) that a subject can make. The approximate entropy depends on the 
absolute value of the level of the error made by the subject. 

Figure 2 – An Example of The Temporal Presentation of Tasks

0 Time in 
seconds

Task

Difficulty

Low

Medium

High

Approximate

Entropy Curve

 

 
5. APPARATUS 

A PC-based Borlan C program operated in DOS was employed to generate the experimental scenario 
and collect data. Data analysis was accomplished with MATLAB with statistical analysis conducted 
with JMP 4.0 (SAS Institute). Figure 3 shows the facilities at the Air Force Research Laboratory to study 
dynamic attending issues. Figure 4 portrays one of the subjects in an early pretraining run. 
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Figure 3 – Experimental Setups to Perform Time Estimation Testing  
 

6.  EXPERIMENTAL DESIGN 
 

Both genders of healthy USAF subjects/contractors participated in this experiment. This research had the 
goal of correlating the approximate entropy measure with the task difficulty of the underlying dynamical 
experimental conditions the operators were being exposed to. One data run of the training, the easy or 
hard task consisted of 64 trials.  Frequent breaks  

 

Figure 4 – Subject Running During the Time Estimation Task  
 
 

were given to the subjects so that they spent no more than 60 minutes performing the testing each day.  
The dependent measure is the error (between the real world and the perceived value) in correctly 
classifying the differences in the time estimate when the last circle should appear.  The approximate 
entropy measure was derived from this error signal in real time as described in the appendix.  Errors 
are assigned as one unit if the subject guessed “On Time” when the actual stimulus was either early or 
late. An error of two units could be recorded if the subject responded “Late” when the actual stimulus 
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was early.  The reverse situation would also produce two units of error, if it occurred. Other cases of 1 
error unit were also possible. 

 
7. RESULTS 

 

We report data from eight subjects who have completed at least one training day and two additional 
data days of the time estimation testing.  The analysis of the data is conducted as a within-subjects, 
full factorial design. There are two analyses to describe. The first analysis deals with the empirical 
performance results based on the errors accumulated.  The second analysis deals with the use of the 
approximate entropy metric to distinguish the subject’s response during the presentation of three 
levels of task difficulty (dynamic attending). 

 

7.1    PERFORMANCE RESULTS 

 

Similar to the work reported earlier by Skelly and colleagues (Skelly (2003), Skelly et al. (2000) and 
Jones and Skelly (1995)), we describe some basic tests on the data collected in this study. Figure 5 
shows performance data from one of the subjects during three independent testing regimes. The 
absolute value of the error signal is plotted on the y axis, the trial number is on the x axis.  
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In Figure 5, for the first 64 trials (training run), the subject made one error of time judgment during 
this event.  This was the final training run and subjects were required to have over 95% correct time 
judgments prior to entering into the latter phases of testing.  During the training and data runs, 
subjects had 5 brief breaks. The total duration of a run was 19 minutes to complete all 64 trials.  After 
completion of the training run, the subjects would either perform an “easy” task for 64 trials or a 
“hard” task.  The distinction between easy or hard task was defined by Dr. Skelly (different 
techniques of dynamic attending) and was randomly presented to the subjects in blocks of 64 trials.  
In Figure 5, the easier task was presented prior to the more difficult task. In Figure 5, the number of 
errors was found to be: 
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Training Task:  1 error in 64 trials. 

Easy Task:        9 errors in 64 trials. 

Hard Task:       18 errors in 64 trials. 

Of course, if a subject received the treatments easy and then hard on one data day, then he must also 
receive the reverse order of hard and easy on the next data day to counterbalance the experimental 
conditions. It should be emphasized that the task complexity (bits) and the bit rate of presentation of 
information (Fitts’ law or bits/second) were identical for the easy and hard tasks. It was only the 
dynamic presentation of the information that was different between the tasks.  Since brevity must be 
the style here, the first analysis deals with performance in terms of the number of errors that occurred.  
This is determined versus the levels of task difficulty exhibited in Table 2. The mean and SE of the 
number of errors across all 8 subjects accumulated during the 64 trials is displayed. A one-way 
ANOVA on the difference of means of the dependent measure of errors in time perception across the 
task difficulty levels is provided to examine the efficacy of the experimental scenario to elicit a 
performance change.  

Table 2 – Mean and SE of Errors Observed 

Training               Easy Task                  Hard Task 

Mean   SE            Mean   SE               Mean     SE 

1.91    1.35           9.64    1.35             20.54    1.35 

 

Table 3 illustrates the results of a one-way ANOVA (t-test of means – all pairs Tukey-Kramer) based 
on JMP 4.0 analysis (SAS Institute, 2004). 

 

Table 3 – One Way ANOVA for Errors 
Source       DoF  Squares Mean Squares F-Ratio    Prob>F 
Task Level   2     1928.8        964.394        48.045    <.0001 

Error           30     602.2           20.073 
C. Total      32     2530.96 

 
  Figure 6 displays the output of the comparison of means of errors across all 8 subjects which clearly 
(with the one-way ANOVA results of Table 2) demonstrates the efficacy of the experimental 
paradigm to elicit a performance change as predicted by the prior works of Skelly et al. 
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Figure 6 – Distribution of Errors for the Three Levels of Task Difficulty as Defined by Skelly et al. 

Errors

 

 

7.2    RESULTS FROM ApEn ANALYSIS 

 

A second goal of this investigation was to show the efficacy of the ApEn metric to demonstrate that 
the disorder in the operator’s response is also affected in a dynamic time sense. The platform for the 
experimental design (dynamic attending) discussed in section 7.1 clearly provides an investigational 
scenario to manipulate the disorder in the response of the operator in terms of task difficulty.  A plot 
of the ApEn versus time is shown in Figure 7 for one subject and the three runs: training, the easy 
task, and the hard task. The Appendix describes the implementation issues for the generation of the 
ApEn calculation portrayed in Figure 7.  Other technical details on the ApEn for the use of 
determination of irregularity in real time empirical data can also be found in Repperger, et al., 2004, 
published in this same conference proceedings. In Figure 7 it is noted that three different levels of 
ApEn seem to appear at each level of task difficulty. Table 4 shows the results of averages of the 
ApEn metric over the 8 subjects. The averages across subjects were conducted for the mean ApEn 
value during the 64 trials within the same task difficulty interval as indicated in Figure 7. 
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Figure 7 – Side view of ApEn Plot versus trial number for one subject.

Training
Hard Task

Easy TaskApEn

Trial Number = Time

 

   

Table 4 – Mean and SE of ApEn Calculated 

Training               Easy Task                  Hard Task 

Mean   SE            Mean   SE               Mean     SE 

0.074  0.02           0.182  0.02             0.247    0.02 

 

Figure 8 illustrates  a three dimensional plot of the ApEn function versus time for the same data as 
displayed in Figure 7 with the third axis representing r = the threshold window as discussed in the 
appendix.  

Figure 8 – ApEn Plot versus Trial Number and r = Threshold Window

ApEn

r = Threshold W
indow

Trial Number

Training

Easy Task

Hard Task

 

 

Table 5 illustrates  the results of the one-way ANOVA (t-test between means – Tukey-Kramer) based 
on JMP 4.0 analysis (SAS Institute, 2002) for the ApEn metric in Figures 7-8. 
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Table 5 – One-Way ANOVA for Magnitude of ApEn 
Source       DoF  Squares Mean Squares F-Ratio    Prob>F 
Task Level   2     0.3031       0.1515          21.16       <.0001 

Error           30    0.2148        0.0072 
C. Total      32    0.5179 

 

Figure 9 portrays the JMP 4.0 analysis output as discussed in Table 5 for a one-way ANOVA on the 
dependent measure of magnitude of ApEn during each of the three levels of task difficulty considered 
in this experimental study. 

 
8. DISCUSSION 

 
Tables 3 and 5, presented in section 7, clearly show that the efficacy of the experimental paradigm to 
elicit a performance change as well as the ability of the ApEn metric to provide sufficient sensitivity 
to sense this change. Clearly all the levels of different dynamic attending  
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Figure 9 – Distribution of Means of ApEn values over levels of Task Difficulty Across 8 Subjects.
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difficulty can be distinguished either through the performance changes observed or via the ApEn 
metric which can be developed online in real time. 
 
In summary, a preliminary study has been conducted in time estimation when the dynamic display has 
a known change in dynamic attending capability, but with identical task complexity and complexity 
rate.  The efficacy of the approximate entropy measure to capture and characterize this dynamic 
change has been evaluated. This important real time measure (ApEn) provides a valuable means of 
describing how humans deal with complex systems which may have characteristics that vary with 
time. 
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9. CONCLUSIONS 
 

Studying dynamic displays is a difficult task. This preliminary study looked at a measure of this 
interaction in terms of the disorder of the response of the subjects (entropy measure).  Additional 
studies will examine display conditions and the ability of this measure or other metrics to capture the 
true dynamic interaction of the operator within a changing dynamic environment. 
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                             APPENDIX of [4] - DETAILS REGARDING IMPLEMENTAION OF THE ApEn METRIC 
 

Following the other reference (Repperger, et al., 2004, published in [3]), the choice was made of m=1, 
n=10, and the window r was adjusted to be approximately 25% of the standard deviation of the data, 
as suggested by Pincus and Viscarello (1992). The difficulty in implementing the ApEn measure is 
because this is a discrete task, rather than a continuous time series sampled at a uniform sampling 
rate.  To convert this time estimation experimental paradigm into a procedure amenable to analysis 
using the ApEn metric, one needs to look at the error signal, e.g. as it appears in Figure 5.  The kind 
suggestion2 was made that to convert a sequence of discrete tasks into a means amenable for 
calculation by the ApEn metric, it is only necessary to concatenate the error trials versus time, as 
shown in Figure 5. The ApEn analysis considers the sequence of 64 x 3 = 192 trials as a single time 
series. The independent variable is the trial number (1-192). The dependent measure is the absolute 
value of the error signal (which is 0, 1, or 2 units). The ApEn analysis was applied to the data by 
treating the sequence of 192 trials as 192 uniform samples of time data.  Since the ApEn analysis is 
independent of the sampling time, it does not impact the analysis procedure used here. 
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Abstract—An important problem in computer vision is to
determine the orientation of a rigid body in an image. This
can be accomplished by matching points or line segments that
naturally appear on the object. Several elegant and computation-
ally fast algorithms based on the singular value decomposition
and quaternions have been introduced to solve this problem.
In this article, the authors first examine the important special
case of identifying the attitude of 2D objects and introduce a
particularly elegant solution based on the mathematical structure
of the complex plane. Motivated by this simple solution to the
2D case, a new derivation of the 3D case based on the polar
decomposition is presented. This derivation is in many ways more
natural than previous derivations, particularly when the model
and data contain no noise.

Index Terms—Absolute orientation, least squares, polar de-
composition.

I. INTRODUCTION

A fundamental problem in computer vision is the determina-
tion of the orientation of a rigid object. An effective approach
to this problem is to match a set of points on the object with the
corresponding points on a model. In particular, the following
mathematical problem appears in a number of references [1]-
[6].

Two point sets {ai} and {bi} of N vectors in the plane or
in 3-space are related by

bi = Rai + t + ni (1)

where R is a rotation matrix, t is a translation vector, and ni

is a noise term. The set {ai} corresponds to the location of
several specified points on a model of the object while {bi}
represents the corresponding points on the object in an image.
The goal is to determine R and t to minimize

F (t, R) =
N∑

i=1

‖bi − (Rai + t)‖2 (2)

where ‖ · ‖ is the standard 2-norm. The vector t and rotation
matrix R represent the location and orientation of the object in
the image. The problem of matching line segments, although
more complicated, results in essentially the same type of
optimization problem [2].

Several approaches to this problem have been described
in the literature including matrix-based solutions such as the

singular value decomposition (SVD) [1]-[3] and quaternion-
based solutions [4],[5]. In the next section, we introduce a
new proof for the 2D case based on simple properties of
complex numbers. In particular, it is shown that the solution
for the orientation of the object is given by the polar form
of a particular complex number. In Section III, this solution
motivates a natural solution to the general 3D problem based
on the polar decomposition of a particular matrix. In fact, the
polar decomposition is the obvious solution when no noise is
present in the problem. After solving for the case when there
is noise in the data, we provide a new proof that the same
solution holds when there is noise in both the model and the
data. Lastly, conclusions appear in Section IV.

II. SOLVING THE PLANAR CASE USING THE
COMPLEX PLANE

A popular solution to the orientation problem is based on
the singular value decomposition (SVD). However, as one
would expect, the much simpler 2D case does not require
the sophistication of an SVD, not only because of the smaller
dimension size, but more importantly, because of the commu-
tativity of the rotation operation. In this case, it is convenient to
formulate the problem in terms of complex numbers. Suppose
that a =

[
ax ay

]T
and b =

[
bx by

]T
are vectors

in the plane. If we write these vectors in complex number
notation as a = ax + jay and b = bx + jby , then the inner
product a · b of the two vectors is given in complex number
notation as Re(a∗b) where a∗ denotes the complex conjugate
of the complex number a and where Re(z) denotes the real
part of z. Furthermore, the norm squared ‖a‖2 of the vector a
is given by |a|2 = a∗a, and the rotation matrix corresponding
to a counterclockwise rotation of θ radians is given by the
complex number ejθ. Based on this formulation, the goal is to
minimize the objective function

F (t, ejθ) =
1
N

N∑

i=1

|bi − (ejθai + t)|2 (3)

where the complex number t and the real number θ ∈ [0, 2π)
represent the position and orientation of the object, respec-
tively. Since determining the optimal t0(θ) for a given θ is
a routine least squares calculation, we merely state the result
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that
t0(θ) = b̄− ejθā (4)

where b̄ = 1
N

∑N
i=1 bi and ā = 1

N

∑N
i=1 ai. We define

ãi = ai − ā and b̃i = bi − b̄ and say that {ãi} and {b̃i}
are the unbiased versions of {ai} and {bi}, respectively. It
then follows that

F (t, ejθ) = 1
N

∑N
i=1 |b̃i − ejθãi|2

= 1
N

∑N
i=1

[
|b̃i|2 + |ãi|2 − 2Re((b̃i)∗ejθãi)

]
.

(5)

Since 1
N

∑N
i=1

[
|b̃i|2 + |ãi|2

]
is fixed by the data, we want to

maximize Re
[(

1
N

∑N
i=1(b̃i)∗ãi

)
ejθ

]
with respect to θ, which

is clearly achieved by choosing

θ = − arg
( N∑

i=1

(b̃i)∗ãi

)
= arg

( N∑

i=1

ã∗i b̃i

)
(6)

where arg(z) denotes the argument of the complex number
z and has range [0, 2π). The location and orientation of the
object is then given by (4) and (6), respectively.

Another approach, that will serve as a guide in the next
section to solve the 3D case, is to write

F (t, ejθ) = 1
N

∑N
i=1

[
|b̃i|2 + |ãi|2

]
− 2Re(c∗ejθ)

= 1
N

∑N
i=1

[
|b̃i|2 + |ãi|2

]
− |c|2 − 1 + |c− ejθ|2

(7)
where c = 1

N

∑N
i=1 ã∗i b̃i. We thus want to minimize |c−ejθ|2,

which is clearly achieved by θ = arg(c) or, equivalently, θ =

arg
( ∑N

i=1 ã∗i b̃i

)
.

III. SOLVING THE GENERAL CASE USING THE
POLAR DECOMPOSITION

A popular approach to solving the 3D case is based on
quaternions [4], [5]. While quaternions are a generalization
of complex numbers, the complex number approach of the
previous section more naturally leads to a matrix solution based
on the polar decomposition. We begin by reformulating the
problem in matrix notation by letting A =

[
a1 · · · aN

]
,

B =
[

b1 · · · bN

]
, and N =

[
n1 · · · nN

]
. Equa-

tion (1) then becomes

B = RA + teT + N (8)

where e =
[

1 · · · 1
]T . The optimization problem then

becomes to minimize

F (t, R) = ‖B − (RA + teT )‖2F (9)

subject to R being a rotation matrix where ‖ · ‖F denotes the
Frobenius norm, which is given by the square root of the sum
of the squares of the matrix elements.

A. The Noise-free Case

We first examine the simplest possible case, i.e., when no
noise is present. In this ideal case, we have an exact equality,
which can be written in matrix form as

RA + teT = B (10)

where e =
[

1 · · · 1
]T . The translation term t can be

found by post-multiplying (10) by 1
N e to obtain

t = b̄−Rā (11)

where ā = 1
N

∑N
i=1 ai and b̄ = 1

N

∑N
i=1 bi. Writing Ã =

A−āeT and B̃ = B−b̄eT , we have RÃ = B̃ or, equivalently,
ÃT RT = B̃T . Lastly, pre-multiplying both sides by Ã gives

ÃÃT RT = ÃB̃T . (12)

We assume that the 3× 3 matrix ÃB̃T has full rank. Then the
unique polar decomposition of ÃB̃T = PQ is given by the
left hand side of (12) where P = ÃÃT is positive definite and
Q = RT is an orthogonal matrix. Since P = ÃÃT is positive
definite, it follows that the determinants of ÃB̃T and Q have
the same sign so that R = QT is a rotation matrix if and only
if det(ÃB̃T ) > 0. If det(ÃB̃T ) < 0, then R is a reflection
matrix and the orientation problem is ill-defined.

The polar decomposition is a natural solution to the problem
when no noise is present. Before continuing to the more
general case, we observe that the solution is particularly simple
when Ã has the property that ÃÃT = kI . In that case, we
merely scale ÃB̃T to obtain an orthogonal matrix. An example
of this occurs when the columns of A correspond to the vertices
of a platonic solid. Unfortunately, choosing a data matrix so
that Ã has this property may result in a numerically unstable
solution when noise is present.

B. Noise in Only the Data

We now return to the problem formulated in (9), which can
be rewritten as

F (t, R) = ‖teT − (B −RA)‖2F . (13)

The optimal solution for t for a fixed rotation matrix R is
given by the pseudoinverse solution

t = (B −RA)(eT )+ =
1
N

(B −RA)e (14)

so that it follows that t is once again given by (11). Substituting
this expression into (13) gives

‖RÃ− B̃‖2F = ‖Ã‖2F − 2tr(B̃T RÃ) + ‖B̃‖2F
= ‖Ã‖2F + ‖B̃‖2F − 2tr(ÃBT R).

(15)

Applying the slip-in/slip-out method, we can write our objec-
tive function as

‖RÃ− B̃‖2F = ‖Ã‖2F + ‖B̃‖2F − ‖ÃB̃T ‖2F − ‖R‖2F
+‖ÃB̃T ‖2F − 2tr(ÃBT R) + ‖R‖2F

= ‖Ã‖2F + ‖B̃‖2F − ‖ÃB̃T ‖2F − n

+‖ÃB̃T −R‖2F .
(16)
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Note the similarity of (16) with (7). The first four terms in
the last equality of (16) are independent of R, so our problem
becomes the optimization of ‖ÃB̃T −R‖2F .

Note the special structure of this final version of the
optimization problem. We seek an orthogonal matrix that is
closest to the 3× 3 matrix ÃB̃T . More generally, we consider
the problem of determining

U0 = arg min
U∈O(n)

‖M − U‖F (17)

where M is an n× n full rank matrix. We solve this problem
by first examining two special cases. First, suppose M is a
diagonal matrix: M = diag(d1, . . . , dn). Then

‖M − U‖2F = ‖D − U‖2F
= ‖D‖2F + ‖U‖2F − 2tr(DU)

=
n∑

i=1

d2
i + n− 2

n∑

i=1

diuii. (18)

Since
∑n

i=1 d2
i and n are fixed, we need to maximize∑n

i=1 diuii. Since −1 ≤ uii ≤ 1, we have that∑n
i=1 diuii ≤ ∑n

i=1 |di| and it follows that U0 =
diag(sgn(d1), . . . , sgn(dn)) ∈ O(n). Furthermore, if D is
positive definite, i.e., if di > 0 for i = 1, . . . , n, then U0 = I .

For our second case, suppose that M is symmetric. Then
we can write M as M = V DV T where V ∈ O(n) and D =
diag(d1, . . . , dn). We then have

‖M − U‖F = ‖V DV T − U‖F = ‖D − V UV T ‖F (19)

where the second equality in (19) follows from the fact
that the Frobenius norm is invariant under pre- and post-
multiplication by orthogonal matrices. By the first case, it
follows that the optimal U0 ∈ O(n) is given by V T U0V =
diag(sgn(d1), . . . , sgn(dn)), i.e., the optimal orthogonal ma-
trix is given by U0 = V diag(sgn(d1), . . . , sgn(dn))V T . For
the important case when M is symmetric positive definite, this
becomes U0 = I .

We are now ready for the general case when M is an
arbitrary full rank n×n matrix. In this case, we can write M
in its polar form: M = PQ where P is symmetric, positive
definite and Q ∈ O(n). Then ‖M − U‖F = ‖PQ − U‖F =
‖P − UQT ‖F , which is minimized over U ∈ O(n) by the
orthogonal matrix U0 where U0Q

T = I , i.e., U0 = Q.
We thus conclude that the optimal solution for determining

the orientation of the object in question is given by the
orthogonal matrix R = QT where PQ is the unique polar
decomposition of ÃB̃T . We note that when the polar decom-
position has been mentioned in the literature as a solution,
it has primarily appeared as an afterthought of the SVD
solution. While these solutions are arguably equivalent, the
SVD solution does not appear to be as natural as the polar
decomposition solution. It is important to note once again that
R is a rotation matrix if and only if det(Q) = 1; otherwise,
R is a reflection matrix.

C. Noise in Both the Model and Data
We next examine the case when there is noise in both the

model and the data. In particular, we consider the following
problem described in [6], given here with slightly different
notation. Suppose we have two sets of N noisy observations
given by two 3 × N matrices A and B. We assume that the
correspondence problem has already been solved so that the
corresponding points are in the same order in A and B and that
the translation of the object has already been determined. Our
problem then is to find a rotation matrix R and perturbations
δA and δB which satisfy

R(A + δA) = B + δB (20)

such that ‖δA‖2F +‖δB‖2F is minimized. The perturbations δA
and δB correspond to noise in the model and data, respectively.
This problem, presented in slightly different notation, was
solved by Goryn and Hein in [6], but the solution presented
there relies heavily on the introduction of some non-obvious
substitutions. We present a more natural and intuitive deriva-
tion. We begin by first noting that unlike δB, the term δA ap-
pears in (20) as RδA, suggesting that it may be better to rewrite
the cost function as ‖δA‖2F + ‖δB‖2F = ‖RδA‖2F + ‖δB‖2F ,
where equality follows from the fact that R is orthogonal. Next,
equation (20) can be written as RδA − δB = −(RA − B).
We thus want to minimize ‖RδA‖2F + ‖δB‖2F subject to
RδA− δB = −(RA−B).

The scalar version of the preceding problem statement
suggests a solution to this constrained optimization problem.
In the scalar case, we want to minimize x2 + y2 over the
scalars x, y, z subject to the constraint ax + by = f(z) where
f(z) = −cz + d and where a, b, c, d are fixed parameters.
Geometrically, for a fixed z, the constraint can be interpreted as
the equation of a line and the optimal solution over x, y would
then correspond to the point on that line which is closest to
the origin. We then want to choose z to place the line as close
to the origin as possible, which is achieved by minimizing
|f(z)| = |cz − d|. Once this is done, the optimal x and y can
be determined. This suggests minimizing the norm of RA−B
in the non-scalar case.

We now present a formal derivation of the solution for the
non-scalar case. The constraint (20) in the general case can be
written in matrix notation as

[
1√
2
I −1√

2
I

] [
RδA
δB

]
=
−1√

2
(RA−B) (21)

where the 1/
√

2 term is included so that the rows of the
matrix on the left are not only mutually orthogonal, but are
also normalized. This suggests augmenting the matrix so that
it becomes orthogonal:

1√
2

[
I −I
I I

] [
RδA
δB

]
=

1√
2

[ −(RA−B)
RδA + δB

]
. (22)

Since the Frobenius norm is invariant under multiplication by
orthogonal matrices, we have that the cost function ‖δA‖2F +
‖δB‖2F is given by

‖RδA‖2F +‖δB‖2F =
1
2
‖RA−B‖2F +

1
2
‖RδA+δB‖2F , (23)
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which is clearly minimized by setting δB = −RδA and
minimizing ‖RA−B‖2F over the family of orthogonal matrices
R so that R is determined in the same manner as before.

IV. CONCLUSION

In this article, we have presented the polar decomposition
as the natural method for solving the absolute orientation
problem. Previously, the polar decomposition approach was
mentioned in the literature as merely an afterthought of the
SVD approach. The polar decomposition method for the 3D
case was motivated by a complex number approach to the
2D case, which is interesting in its own right. Lastly, we
have provided a simpler and more natural proof that the same
solution also holds for a noisy model.
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