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ABSTRACT

This article discusses a practical problem faced in operational atmospheric forecasting and data assimila-

tion, and efforts to improve forecast quality through the choice of quality control parameters. The need to

utilize as much data as possible must be carefully balanced against the need to reject observations deemed

erroneous because they are far from the background value. Alleviation of forecast bias in the middle at-

mosphere for a global atmospheric prediction system is attempted via improvement of the quality control and

bias correction of the satellite radiance data; in particular, the sensitivity of the analysis to the satellite ra-

diance outlier check parameters for the Naval Research Laboratory’s three-dimensional variational data

assimilation system [Naval Research Laboratory Atmospheric Variational Data Assimilation System

(NAVDAS)] is investigated. A series of forecast experiments are performed with an extended-top (0.04 hPa

or ;65 km) version of the U.S. Navy’s Operational Global Atmospheric Prediction System (NOGAPS) for

the month of January 2007. The experiments vary the prescribed radiance observation error variance for the

Advanced Microwave Sounding Unit-A (AMSU-A) and the tolerance factors for the AMSU-A and

NAVDAS quality control processes. The biases of geopotential height, temperature, and wind in the

middle atmosphere are significantly reduced when the observation error limit for the highest-altitude

AMSU-A channel (i.e., 14) is relaxed from 0.95 to 3 K and the tolerance factors for the AMSU-A and

NAVDAS quality control processes are relaxed from 3 to 4. The improvement is due to assimilation of more

high quality AMSU-A radiance data from the highest-peaking channel.

1. Introduction

The goal of atmospheric data assimilation is to de-

termine the best estimate (analysis) of the current state

of the atmosphere, given a prior estimate of the current

state (background, typically a 6-h forecast from a nu-

merical model), and current observations of the atmo-

sphere. This study is concerned solely with microwave

satellite radiances, which can be used to infer the tem-

perature structure of the atmosphere (in concert with

other conventional and satellite radiances). Polar-orbiting

satellite observations are somewhat irregular in time

and space, are sparse compared to the numerical model

state, and have both systematic errors (biases) and ran-

dom errors. The forecast models that provide the back-

ground information are dynamically consistent, but they

also have biases, particularly in the stratosphere. The

challenge of data assimilation is to transfer information

from the scattered locations and times of the observa-

tions to the model grid, while preserving the physical,

dynamical, and numerical consistency that is essential to

making consistently good weather forecasts.

This study addresses a practical problem faced in the

assimilation of radiance data obtained from the Ad-

vanced Microwave Sounding Unit-A (AMSU-A, a cross-

track microwave radiometer for temperature sounding)

instruments aboard National Oceanic and Atmospheric

Administration (NOAA) satellites in the Naval Research

Laboratory’s Atmospheric Variational Data Assimila-

tion System (NAVDAS; Daley and Barker 2001a,b), the

operational three-dimensional variational data assimi-

lation system at the Fleet Numerical Meteorology and

Oceanography Center (FNMOC).1 There are two parts
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1 On 23 September 2009, after the manuscript was written, the

NAVDAS was replaced at FNMOC by NAVDAS-AR, a global

4DVAR system based on accelerated representer algorithms, to-

gether with an upgraded version of the NOGAPS forecast model

extending to 0.04 hPa.
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to NAVDAS: the data preparation algorithms that form

the differences between the observations and the back-

ground (innovations), and the solver that turns innova-

tions into corrections, which are added to the background

to form the analysis. Throughout this study, references

to NAVDAS may indicate either the entire NAVDAS

system, or simply the solver that takes innovations and

produces corrections; context will make it clear which is

the correct meaning.

Data assimilation procedures typically begin with qual-

ity control (QC) procedures to mitigate errors in the

observation data. Our QC procedures for AMSU-A ra-

diances include elimination of redundant data, screening

of known bad satellite channels and low-peaking chan-

nels over land–sea ice, gross error checks for unphysical

values, an innovation outlier check (controlled by the

AMSU-A tolerance factor) to eliminate data that are

statistically unlikely given the forecast, and a buddy

check (controlled by the NAVDAS tolerance factor) to

eliminate data that are statistically unlikely given the

neighboring observations (Baker and Campbell 2004;

Baker et al. 2005). Details of the QC procedures are

given in appendix A.

Data assimilation systems require an accurate, un-

biased background, in our case a 6-h model forecast. If

the model atmosphere is biased, valuable observations

can be rejected by the QC procedures when the in-

novation magnitude exceeds a prescribed limit. For ex-

ample, if the model background is systematically too

cold with respect to the observations, good observations

warmer than the background (warm tail) will be dis-

carded, while bad observations colder than the back-

ground (cold tail) will be retained, because the global

distribution of innovations is assumed to be approxi-

mately Gaussian and centered on zero. Thus, the ob-

servations will not do as good a job of warming the

model, and some very bad cold observations will have

a disproportionate negative effect. In addition, the bias

correction of satellite radiances, which is performed after

the initial QC but before the innovation outlier check and

buddy check, can be adversely affected by the initial QC,

and can adversely affect the results of subsequent QC.

If the innovation limit is relaxed excessively, however,

significant errors can be introduced and the forecast skill

can be degraded. Innovation limits must be set properly,

which is difficult to do objectively because currently

most data assimilation systems are bias blind, designed

only to correct random error rather than systematic error.

Development of true bias-aware bias correction algo-

rithms is an active research topic (see, e.g., Dee 2005).

In addition to imperfect observations and imperfect

forecasts, data assimilation systems require a third source

of information: the observation and background error

covariance matrices. These error covariances determine

the relative weights given to the forecast and the obser-

vations, and are used to spread information from ob-

served quantities and observation locations throughout

the entire space of the model. For this study, we used the

background error covariances specified in NAVDAS.

For some experiments the observation error variances

for AMSU-A radiances were modified, which affects the

relative weights of the background and observations in

determining the analysis. Interested readers are referred

to appendix B for a brief description of variational data

assimilation or to Daley and Barker (2001a,b) for more

details.

For stratospheric data assimilation, a major source of

bias is model error, and observation bias (Dee 2005) is a

complicating factor. To improve middle-atmospheric fore-

casts with an extended-top version of the Navy Opera-

tional Global Atmospheric Prediction System (NOGAPS;

Hogan and Rosmond 1991), Kim (2007) introduced im-

proved middle-atmospheric physics with an additional

gravity wave drag parameterization, which has a great

impact on the middle atmosphere. The present study ad-

dresses the other component of the forecast system (i.e.,

the data assimilation system); in particular, the interac-

tion of QC and bias correction of microwave radiances

in NAVDAS in the middle atmosphere.

The sensitivity of the analysis to the satellite radiance

innovation outlier check in the middle atmosphere is

investigated using AMSU-A radiance data. A series of

forecast experiments are performed varying three pa-

rameters: the observation error variance prescribed in

operational NAVDAS, and the tolerance factors for

both the AMSU-A innovation outlier check and the

NAVDAS buddy check. The observation error variance

includes satellite instrument error, error in the radiative

transfer model, and error of representativeness. It helps

to determine how closely NAVDAS will draw to an

observation relative to the background: the larger it

is, the less influence the observations have on the anal-

ysis. The innovation limit is defined as a tolerance factor

multiplied by the observation error standard deviation,

and is the threshold for the innovation outlier check in

the AMSU-A data preparation algorithm (appendix A)

and the buddy check in the NAVDAS solver. In some

experiments, relaxed innovation limits are applied to all

AMSU-A channels; in others, they are applied only to

the highest-peaking middle-atmospheric channel (chan-

nel 14; Fig. 1). Our hypothesis is that the relaxed limits

will allow more good radiance data to pass the inno-

vation outlier check and be available to correct the

model bias, because the default limits allow only a small

percentage of available data from channel 14 to be

assimilated.
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Our results show that the forecast bias in the middle

atmosphere can be mitigated when the parameters are

selected in certain combinations that allow more data to

pass the innovation outlier check, but selectively for

high altitudes. [Note that Auligné and McNally (2007)

explored the interaction between bias correction and

QC, and discussed the influence of residual outliers and

an asymmetric QC. The present study investigates the

impacts of changes in the data outlier check for the

NOGAPS/NAVDAS QC procedures on the bias cor-

rection in terms of actual forecast bias in the strato-

sphere.] Section 2 describes the details of the experiments.

The results are presented and discussed in section 3.

Further remarks are given in section 4. Appendix A de-

scribes the details of the bias correction–quality control

procedure and appendix B provides a concise descrip-

tion of the analysis equations used for the NOGAPS/

NAVDAS system.

2. Experimental setup

A version of the NOGAPS/NAVDAS system with its

top raised from 4 hPa (;40 km) to 0.04 hPa (;65 km)

is used for this study. The horizontal and vertical reso-

lutions of the forecast model are T239 (triangular spec-

tral truncation at wavenumber 239, or ;0.58 in latitude)

and L42 (42 levels), respectively. A similar extended-top

research version of NOGAPS was used earlier by Kim

and Hogan (2004), but the version used here includes

the FNMOC operational physics package, which does

not include adequate middle-atmospheric physics. The

radiance bias correction (appendix A) method follows

the operational one (Baker and Campbell 2004; Baker

et al. 2005), which is based on Harris and Kelly (2001)

except that only two predictors (850–300- and 200–50-hPa

geopotential height thicknesses) were used. Surface skin

temperature and total-column water vapor were not

used because channel 14 is insensitive to both water and

the surface (see appendix B for more information). The

full FNMOC operational dataset was used. It did not

include any stratospheric observations other than ra-

diosondes and AMSU-A radiances. The coefficients for

the radiance bias correction were obtained from a pre-

vious research run for 0000 UTC 5 December–20 De-

cember 2006. The coefficients were not updated in time

during the forecast experiment in order to eliminate the

potential feedback effect that can occur between QC and

bias correction (Auligné and McNally 2007). (Note that

the Met Office successfully uses nonadaptive bias cor-

rection, manually updating the coefficients every few

months.) For each experiment, cycling data assimilation

was run from 0000 UTC 20 December 2006 to 1800 UTC

31 January 2007. Five-day forecasts were launched once

a day from the 0000 UTC analysis, starting at 0000 UTC

27 December 2006.

The sensitivity experiments include one or more of

the following modifications:

1) an increase in the AMSU-A QC tolerance factor

from 3 (default value) to 4, denoted respectively as

A3 and A4;

2) an increase in the NAVDAS tolerance factor from 3

(default value) to 4, denoted respectively as N3 and N4;

3) an increase in the observation standard deviation (s)

for AMSU-A channel 14 from 0.95 K (default value)

to 3.0 K, denoted respectively as Sd and S3; and

4) an increase in the AMSU-A QC tolerance factor to 4

for the highest-altitude AMSU-A channel (i.e., ch14)

only, denoted as A4(14).

The default set of parameters, currently adopted for op-

erational NOGAPS, can be thus denoted as A3N3Sd and

the set with maximum relaxation as A4N4S3.

3. Results and discussions

a. Control run

Figure 2 shows an example of the global distribution

of the satellite radiance data obtained from each step of

the bias correction procedures for AMSU-A channel 14

FIG. 1. Weighting functions at nadir for the AMSU-A instrument

on the NOAA satellites for the U.S. Standard Atmosphere, 1976.

The highest peaking channel (14) is sensitive to temperatures at

altitudes as high as about 60 km and as low as about 25 km, with

peak sensitivity near 40 km.
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in the NOGAPS/NAVDAS system (see appendix A for

details) for the control run, with the default values of

the observation error variance and the default tolerance

factors. Channel 14 is the highest-peaking channel cov-

ering the highest altitudes near the model top of 0.04 hPa

or ;65 km (see Fig. 1). The observed radiance data are

collected for the 6-h windows centered on 0000 UTC

12 January 2007. The collected data (Fig. 2a) are further

sampled (Fig. 2b) to remove redundant data. As noted

earlier, the default error tolerance factors for the AMSU-A

and NAVDAS routines and the default observation error

variances are 3, 3, and 0.95 K, respectively. The loca-

tions of the rejected data are shown in Fig. 2c. After

various QC procedures, including the innovation outlier

check controlled by the innovation limit for AMSU-A,

the accepted data are shown in Fig. 2d.

As summarized in Table 1 (see case A3N3Sd), the

data usage rate is overall quite low (note the usage rate

comes after step 2 in appendix A and corresponds to

Fig. 2d). The data from NOAA-15 are rejected entirely

due to the failure of channel 14. The total usage rates of

the sampled data for NOAA-16 and -18 after the initial

QC are 52.5% and 41.5%, respectively. Figure 2f presents

the background radiances calculated from the forecast

model, which are collocated with the quality controlled,

bias-corrected observations (Fig. 2e). Figures 2g and 2h

show the difference between the observation and the

model background, before (Fig. 2g) and after (Fig. 2h)

the bias correction. The latter (Fig. 2h) is also referred to

as the innovation, which is the key information needed

for the data assimilation. The most strikingly problem-

atic feature is the large amount of good observation data

that has been rejected by the QC process (Fig. 2c).

Figure 2 also includes the corresponding histograms.

The sampled radiance data are centered and peaked

around 251 K with rough symmetry with respect to the

mean (Fig. 2b), but become rather asymmetric after

the QC process (Fig. 2d) with an increased amount of

higher-temperature data centered around 273 K. The

bias correction process shifts the distribution to lower

temperature (to around 239 K) by about 12 K while

approximately maintaining its original shape (Fig. 2e).

The innovation (Fig. 2h) is quite different from the initial

difference (Fig. 2g). The initial bias (Fig. 2g) is approx-

imately in normal distribution with respect to the mean

value of 11 K (meaning the observations are systemat-

ically warmer than the background). The innovation

(Fig. 2h) is severely skewed to the negative side, implying

colder observation data, although their magnitudes are

much smaller than that of the initial bias (Fig. 2g). The

peak of the distribution is centered on 22 K (Fig. 2h),

which shows that the mean innovation on this day dif-

fered by 2 K from the mean innovation of the 15-day

training set used to create the radiance bias correction

coefficients. Due to the 2-K bias, the 3-s innovation

limit cuts off a relatively large portion of the negative

(left) flank of the data, which could have been useful for

bias correction, simultaneously violating the assumption

of normally distributed observation errors (appendix B).

One possible strategy to mitigate this effect is to com-

pute standardized regression coefficients on the training

set for radiance bias correction, and subtract the mean

innovation of the day before applying the coefficients;

however, our software considers innovations serially,

which made it difficult to use that strategy in this study.

(Because there is QC that happens after the bias cor-

rection step, it may be that the innovations that went

into the regression have a systematic difference from the

innovations at the bias correction stage, which is another

possible explanation for the 2-K difference, but we think

this is unlikely.)

Figure 3a displays a scatterplot of the quality con-

trolled innovations (Fig. 2g) versus the bias-corrected

innovations (Fig. 2h) for channel 14 of NOAA-18’s ra-

diances, color coded by latitude. The 3s innovation check

excludes data outside of the box (63 3 0.95 K). The

quality controlled innovations are largely skewed toward

the positive (due to cold model background) whereas

the bias-corrected innovations are well centered with

respect to zero. The latitudinal distribution reveals that

most of the data in the northern polar areas (represented

by red crosses) are thrown out, as is a significant amount

of data in the tropics (greenish crosses).

Next, we verify selected forecast fields against analysis

fields obtained from the control run of the extended-top

system. We compare the 3-day forecast started from

 
FIG. 2. Global distribution of the NOAA-15, -16, and -18 satellite radiance data obtained from each step of the bias correction

procedure for AMSU-A channel 14 with the default set of parameters (A3N3Sd) in the NOGAPS/NAVDAS system. The data are

collected from the control experiment for the 6-h windows centered on 0000 UTC 12 Jan 2007. (a) Original collected observed; (b) further

sampled observed; (c) observed rejected by QC; (d) quality controlled observed; (e) quality controlled and bias-corrected observed; (f)

model-background computed; (g) initial quality controlled and scan corrected, observed minus background; and (h) bias-corrected

observed minus background (i.e., innovation) radiances. Note that (h) is not a bell curve because the left tail was cut off by the uncentered

innovation limit.
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0000 UTC 12 January 2007 with the analysis at 0000 UTC

15 January 2007. Comparison of the analyzed (Fig. 4a)

and forecast (Fig. 4b) zonal-mean zonal wind reveals

significant bias in the high latitudes in the upper strato-

sphere and over the South Pole in the lower stratosphere

(Fig. 4c), although they compare relatively well overall.

The corresponding temperatures (Fig. 5) reveal a level

of bias that is somewhat similar to the wind counterpart,

notably the cold model bias in the northern polar upper

stratosphere (Fig. 5c). Unlike the wind bias, however,

the significant (warm) bias around 10 hPa is widespread.

The large positive zonal wind bias, found in the northern

stratosphere over high latitudes (Fig. 4c), is associated

with the large cold bias in the upper stratosphere near

the North Pole (Fig. 5c) through the thermal wind

relation. This bias cannot be alleviated systematically

by data assimilation because a large amount of the

observation data in the northern polar region has been

rejected by the QC process (Figs. 2c and 3) and is thus

not available to influence the analysis.

The skill of the stratospheric forecast for January 2007

is given in Fig. 6 in terms of the root-mean-square

(RMS) error for the geopotential height (Fig. 6a), tem-

perature (Fig. 6b), and vector wind (Fig. 6c). The skill

scores were calculated with respect to self-analysis, as is

conventionally done in global data assimilation. Higher

skill (lower RMS error) means that the forecast agrees

better with the analysis, but not necessarily with the real

atmosphere. The errors grew in time, as expected, and

the skill was worse at higher altitudes, consistent with

the larger errors shown in Figs. 4 and 5. The largest er-

rors for the height and wind were found in the Northern

Hemisphere at 1 hPa, while those for the temperature

were in the tropics, also at 1 hPa (see the temperature

error in Fig. 5c).

b. Experimental runs with relaxed innovation limits

We investigate here whether forecast skill can be im-

proved by adjusting the QC process in order to make

more data, presumably of good quality, available for as-

similation. The innovation limits were relaxed based on

the assumption that the default set of parameters un-

desirably rejects potentially useful data during the QC

process. Experiments with the combinations of the error

tolerance factors for AMSU-A and NAVDAS, which are

changed from 3 to 4, and the observation error changed

from the default value of 0.95 K to 3.00 (see Table 2)

were performed. Changing the assumed observation

error variance itself had a larger impact than changing

the tolerance factors in expanding the allowed innova-

tion range (see Fig. 7). Moreover, because the AMSU-A

quality control is performed first and its final product,

the innovation, is fed into the NAVDAS process, the

impacts of the NAVDAS tolerance factor are usually

smaller than those of AMSU-A tolerance factor.

Figure 8 compares the number of satellite radiance

observations and data usage rates for the 6-h window

centered on 0000 UTC 12 January 2007 (see Fig. 2) from

all experiments. The number of observations increases

when the innovation limits are relaxed. In particular,

the forecast with all parameters relaxed (A4N4S3) in-

creased the number of observations almost by 50% in

TABLE 1. The number of satellite radiance observations (after

step 2 in appendix A) for the AMSU-A channel 14 centered at 0000

(63 h) UTC 12 Jan 2007 and the corresponding usage rates for

each satellite and experiment (experiment A3N3Sd corresponds to

Fig. 2d). The data from NOAA-15 were excluded due to the failure

of channel 14, which demonstrates that a satellite instrument can

fail anytime, uncontrollably degrading data assimilation with sat-

ellite data.

Expt Satellite

No. of radiance

observations

Usage rate

(%)

Pre-QC NOAA-15 5456 0

NOAA-16 2280 0

NOAA-18 8414 0

Sum 16 150 0

A3N3Sd NOAA-15 0 0

NOAA-16 1198 52.5

NOAA-18 3488 41.5

Sum 4686 29.0

A3N3S3 NOAA-15 0 0

NOAA-16 1374 60.3

NOAA-18 4329 51.5

Sum 5703 35.3

A4N3Sd NOAA-15 0 0

NOAA-16 1393 61.1

NOAA-18 4332 51.5

Sum 5725 35.5

A4N3S3 NOAA-15 0 0

NOAA-16 1405 61.6

NOAA-18 4277 50.8

Sum 5682 35.2

!
FIG. 3. A scatterplot of the quality controlled (i.e., initial) departures (Fig. 2g) vs the bias-corrected

innovations (Fig. 2h) for channel 14 of NOAA-18 radiances, color coded with respect to the latitude, with

the (a) default (A3N3Sd, i.e., s 5 0.95; 23s ; 3s, corresponding to Fig. 2) and (b) maximum-relaxed

(A4N4S3, i.e., s 5 3.00; 24s ; 4s) ranges of the innovation limit. The rectangular box represents the

radiance data available for the bias correction. The left and right sides of the box are drawn to represent

the end of the data points.
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comparison with the default case (A3N3Sd). Figure 9

shows the rejections (left panel) and the quality con-

trolled radiances (right panel). In comparison with the

control case, A3N3Sd (Figs. 2c and 2d, respectively),

much less of the data is rejected for the relaxed case

(A4N4S3; bottom panel) especially over the southern

Atlantic Ocean (west of Chile), Southern Africa, the

subtropical Pacific, and the Southern Ocean. We com-

pare the scatterplots of the control case (Fig. 3a) and this

relaxed case (A4N4S3; Fig. 3b). The relaxed case clearly

includes more data in all latitudes.

The changes of A3 to A4 and Sd to S3 both increase

the number of observations by 22% (Table 1). A greater

number of observations available for the bias correction,

however, does not necessarily guarantee improved fore-

casts in the middle atmosphere. Figures 10 and 11 compare

among the cases the RMS errors of the geopotential

height, horizontal wind, and temperature of the 3-day

forecasts at 1 hPa (Fig. 10) and at 10 hPa (Fig. 11) for

January 2007. The errors for A4N4S3, which include the

greatest number of observations, are consistently worse

than the control (A3N3Sd). The errors from A3N3Sd and

A3N3S3 are, overall, smaller than those from other cases

(except for those cases that relax channel 14 only, which

will be described later).

Increasing the amount of observational data can in-

troduce radiance data of poor quality, which likely ex-

plains the degradations noted above. The forecast model

is known to be significantly biased in the upper strato-

sphere, so we subsequently restricted the innovation limit

changes to channel 14, whose weighting function peaks

around 40 km and is sensitive between 30 and 55 km

(see Fig. 1), and repeated the forecast experiments.

The results reveal significantly reduced RMS errors for

January 2007 (Figs. 10 and 11) regardless of the tolerance

factor for NAVDAS or the observation error variance

[see any A4(14) cases], with a notable exception of the

temperature bias at 1 hPa in the tropics (Fig. 10c). Use

of more high-altitude data improved the quality of the

innovation vector and reduced the bias. This suggests

that the default set of the tolerance factors and the ob-

servation error, which were calibrated for the operational

version of NOGAPS/NAVDAS with its top at 1 hPa, are

generally effective only at pressures greater than 1 hPa

(lower in height). The same set of parameters is not

optimal (probably too small) for the higher levels be-

tween 1 and 0.1 hPa or above 50 km.

Figures 12 and 13 show the time series of the RMS

height errors at 1 hPa (Fig. 12) and 10 hPa (Fig. 13) from

the 3-day forecasts for the entire month of January 2007.

Figures 12 and 13 show an initial spinup period for all

experiments. While the errors for the different experi-

ments in the Northern Hemisphere do not differ sig-

nificantly from one another, the errors in the Southern

Hemisphere are dramatically reduced in the stratosphere

for the experiments in which only channel 14 is relaxed

(denoted by brown and black dashed–dotted lines).

Figures 12 and 13 clearly demonstrate that the selective,

additional upper-stratospheric data, which became avail-

able with the relaxed limits, are beneficial. The additional

data alleviated the model error in the stratosphere and,

thus, improved the forecasts of the middle atmosphere

in the Southern Hemisphere.

Figures 14 (zonal wind bias) and 15 (temperature bias)

confirm that relaxing the AMSU-A tolerance factor only

for channel 14 (Figs. 14c and 15c; cf. with Figs. 4c and 5c,

respectively) is more effective in reducing the model

bias. In particular, the wind bias in Fig. 14c resembles the

typical bias found in large-scale models, and the tem-

perature bias in Fig. 15c is significantly smaller than other

cases especially around 10 hPa throughout the latitudes.

Table 3 summarizes the bias for the zonal wind and

temperature fields in terms of the maximum value of the

bias fields (forecast minus analysis), the minimum value

of the bias fields, and the difference between the two, for

the zonal mean zonal wind (three columns in the left

from left), and similarly for the zonal temperature (three

columns in the right). Note that the A4(14) experiments

show considerably smaller zonal wind [(UF 2 UA)max 2

(UF 2 UA)min] and temperature [(TF 2 TA)max 2 (TF 2

TA)min) errors than does the control. Table 3 confirms

that the largest reductions of the extreme wind and

temperature errors are found in cases with the AMSU-A

error tolerance factor relaxed for channel 14 only, con-

sistent with Figs. 10 and 11.

4. Further remarks

From a data assimilation perspective, atmospheric

forecast skill should respond positively to an increase

in the quantity and/or quality of the observational data;

however, careful quality control (QC) is needed to see

a benefit from an increased quantity of satellite radiance

data. The present study demonstrates that more radiance

 
FIG. 4. The (a) analysis, (b) forecast, and (c) forecast minus analysis of the zonal-

mean zonal wind, obtained from the NOGAPS control run (A3N3Sd). The 3-day

forecast started from 0000 UTC 12 Jan 2007 is verified by the analysis at 0000 UTC 15

Jan 2007.
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FIG. 5. As in Fig. 4, but for the temperature.
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data can be beneficial with the selected middle-atmospheric

channel (channel 14) of the AMSU-A instrument. The

simple methodology used in this study can be applied to

any similar bias-blind bias correction algorithms that

use fixed-observation errors and tolerance factors. It can

also be applied to radiance data from any source [e.g.,

the Special Sensor Microwave Imager Sounder (SSMIS),

which covers altitudes approaching 80 km].

There are a number of factors chosen in this study that

can be further improved. First, the modified Harris–

Kelly bias correction does not include a predictor in the

middle atmosphere. One could add, for example, a 30–

10-hPa-thickness predictor, which was considered in an

early draft of the Harris–Kelly paper. As was mentioned

in section 3a, applying innovation limits centered on the

mean innovation of the day, rather than zero, should

improve the analysis in the upper stratosphere. Adap-

tive bias coefficient updating could be used as well, as it

is in the operational data assimilation at FNMOC. Our

study focused on the impacts of channel 14, the highest-

peaking AMSU-A channel (Fig. 1), but other channels

(e.g., 13) also cover high altitudes and may need to be

included in future studies. Variational bias correction

systems are used in some operational centers to auto-

mate the bias correction procedure, but they are not typ-

ically used on stratospheric channels such as AMSU-A

channel 14 (Dee and Uppala 2008). The radiative trans-

fer algorithm we used did not incorporate the Zeeman

splitting effect for the highest-peaking microwave chan-

nel, although its effect is less than 1 K for channel 14 and

negligible for lower-peaking channels.

Furthermore, we investigated only one month in bo-

real winter. It would be of interest to repeat the exper-

iments for other seasons, and for sudden stratospheric

warming events. This study focused on the middle at-

mosphere in terms of RMS errors. Our results are mixed

at lower levels, depending on geographic regions and

altitudes. We are currently investigating a means of sys-

tematically limiting the parameter modifications to a se-

lected geographical area (e.g., the Southern Hemisphere,

where we obtained the most improvement) to retain the

upper-level improvement while leaving the lower levels

unaffected.

FIG. 6. The RMS errors of the NOGAPS control (A3N3Sd)

forecasts averaged for January 2007 for the (a) geopotential height

(m2 s22), (b) temperature (K), and (c) vector wind (m s21) at 1 and

10 hPa in the Northern Hemisphere (NH; 208 ; 808N), Southern

Hemisphere (SH; 208 ; 808S), and tropics (Trop; 208S ; 208N).

TABLE 2. The innovation limit values for each experiment, with

respect to the given observation error (s 5 0.95 or 3.00) and tol-

erance factors (3 or 4) for the AMSU-A and NAVDAS quality

control procedures. The innovation limit is defined as the toler-

ance factor times the observation error. See Fig. 7 for a graphical

comparison.

Expt s

Innovation limit

for AMSU-A

Innovation limit

for NAVDAS

A3N3Sd 0.95 3s 5 2.85 3s 5 2.85

A3N3S3 3.00 3s 5 9.00 3s 5 9.00

A3N4Sd 0.95 3s 5 2.85 4s 5 3.80

A3N4S3 3.00 3s 5 9.00 4s 5 12.00

A4N3Sd 0.95 4s 5 3.80 3s 5 2.85

A4N3S3 3.00 4s 5 12.00 3s 5 9.00

A4N4Sd 0.95 4s 5 3.80 4s 5 3.80

A4N4S3 3.00 4s 5 12.00 4s 5 12.00
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Finally, for the first analysis of each month-long exper-

iment, we used the FNMOC stratospheric analysis above

10 hPa, which is based on the National Environmental

Satellite, Data, and Information Service’s (NESDIS) Ad-

vanced TIROS (Television Infrared Observation Satel-

lite) Operational Vertical Sounder (ATOVS) temperature

retrievals; these retrievals were not used after the initial

analysis, and thus the stratosphere may not be repre-

sented adequately in the analysis. Normally, the strato-

spheric jet should have a vertical tilt with height toward

the equator, as seen in climatological wind averages

(see, e.g., Kim 2007). Because we used the operational

physics extended vertically without adding proper middle-

atmospheric physics (unlike Kim 2007), our model back-

ground may deviate significantly from reality. This vertical

jet tilt is, therefore, not represented in both analyses

(Fig. 4a) and forecasts (Fig. 4b), and the ‘‘error’’ or ‘‘bias’’

we define in this study may not properly represent true

value. Under these conditions, introducing more radiance

data of good quality for the bias correction may not effi-

ciently improve the bias in the stratosphere. Gravity-wave

drag can alleviate this bias if properly parameterized or

calibrated, and can help properly simulate the vertical

jet tilt (Kim 2007). We plan to repeat the experiments

with improved middle-atmospheric physics to validate

this argument.
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APPENDIX A

The Bias Correction/Quality Control Procedures for
AMSU-A Radiance Data in NOGAPS/NAVDAS

We list here the procedures related to the AMSU-A

bias correction and quality control processes. Note that

these procedures are serial—applied to one observa-

tion at a time—so that the entire distribution of the

innovations of the day is not known at the time of the

innovation check. The innovation check is therefore

not relative to the mean bias-corrected innovation

of the day, but relative to zero. More details can be

found in Baker and Campbell (2004) or Baker et al.

(2005).

1) Data are read in and downsampled by a factor of 4 or

5 by skipping beam positions (Fig. 2a).

2) Data are further downsampled to a user-controlled

density of about one radiance observation per channel

FIG. 7. The ranges of the departure temperature limit (given in Table 2), set by the ob-

servation error (s) and tolerance factors, for each experiment and QC algorithm (AMSU-A

or NAVDAS). The ‘‘d’’ in ‘‘Sd’’ represents the default value of 0.95 for s. See the text for

details.
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per 165 km 3 165 km area (1.58 3 1.58 at the equator)

per hour (Fig. 2b).

3) QC checks related to bad beam position, bad zenith

angle, high terrain (higher than 850 hPa), and bad

surface skin temperature are applied.

4) Scan correction is applied (a single offset at each

beam position), which is obtained from the training

run for the bias coefficients. It is a 15-day global av-

erage at each beam position minus the 15-day global

average of the two center beam positions.

5) The radiative transfer (RT) model [version 6 of the

Radiative Transfer Model for TOVS (RTTOV-6)] is

called at all of the unflagged observation locations,

and if it fails, a QC flag is set. The RT model gives

the background brightness temperatures, a subset of

which appears in Fig. 2f.

6) Land and sea ice QC is applied using the model fields.

Selected channels are rejected based on the fields of

view, which can consist of land, ocean, sea ice, or

land–snow.

7) The model-based bias predictors (850–300- and

200–50-hPa thicknesses) are computed at each un-

flagged observation location, and are multiplied

by the so-called air mass coefficients, which were

calculated from the previous 15 days of innovations,

and then summed with the scan-corrected bright-

ness temperatures to form the bias-corrected bright-

ness temperatures, a subset of which appears in

Fig. 2e.

8) Gross temperature and gross innovation checks,

emissivity, cloud liquid water content, and scattering

checks are performed, followed by the innovation

check (a.k.a. a rogue or outlier check).

9) Any observation location that got flagged in (3)–(8)

is plotted in Fig. 2c.

10) Any unflagged observations are plotted in Fig. 2d.

11) Unflagged observed brightness temperatures from

(7) are plotted in Fig. 2e.

12) Unflagged background brightness temperatures

from (5) are plotted in Fig. 2f.

13) The background brightness temperatures are sub-

tracted from the observed brightness temperatures

to form the scan-corrected innovation (Fig. 2g).

FIG. 8. Graph of (a) the total number of satellite radiance ob-

servations for the AMSU-A channel 14 at 0000 (63 h) UTC 12 Jan

2007 and (b) the corresponding usage rates for each experiment.

FIG. 9. (a),(b) As in Figs. 2c and 2d, but for A4N4S3.
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14) The background brightness temperatures are sub-

tracted from the bias-corrected observed brightness

temperatures to form the final innovation (Fig. 2h)

that is presented to the three-dimensional variational

data assimilation (3DVAR) scheme, along with the

rest of the innovation vector formed by other ob-

servation types.

APPENDIX B

A Description of the Analysis Equations for
NOGAPS/NAVDAS

a. Basic theories of three-dimensional variational
data assimilation

Given N observations of a scalar variable x with known

observation error «n 5 xn 2 x, which is random, unbiased

FIG. 10. RMS errors of the 72-h forecasts for January 2007 for the

(a) geopotential height (m2 s22), (b) vector wind (m s21), and (c)

temperature (K) at 1 hPa in the Northern Hemisphere (NH; 208 ;

808N), Southern Hemisphere (SH; 208 ; 808S), and tropics (Trop;

208S ; 208N).

FIG. 11. As in Fig. 10, but at 10 hPa.
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(h«ni 5 0), and normally distributed, the probability of

an error «n can be expressed by

p(«
n
) 5

1
ffiffiffiffiffiffi

2p
p

s
n

exp
�«2

n

2s2
n

� �

; s2
n 5 h(x

n
� x)2i5 h«2

ni.

(B1)

If N 5 1, the most probable value of x is the x that was

observed (i.e., x 5 x1). For N . 1, the joint probability

that «1 lies between «91 and «91 1 d«91, «2 lies between «92
and «92 1 d«92, . . . , and «N lies between «9N and «9N 1 d«9N
is simply the product of the individual probabilities, p,

assuming that the «n are independent. We will mainly be

concerned with the case N 5 2, so that

p(«
1
, «

2
) 5 p(«

1
) 3 p(«

2
)

5
1

2ps
1
s

2

exp � 1

2

«2
1

s2
1

1
«2

2

s2
2
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. (B2)

The probability is a maximum when the term inside

the braces is a minimum. We can pull out that term,

using the definition of «n 5 xn 2 x to write a quadratic

cost function, which we will subsequently minimize to

find the most likely x given x1 and x2. We rewrite x1 as y

and x2 as xb to define and minimize the scalar cost

function J as

J(x) 5
1

2

(x
b
� x)2

s2
b

1
(y� x)2

s2
y

" #

,

dJ

dx

	

	

	

	

x5x
a

5�
x

b
� x

s2
b

1
y� x

s2
y

 !
	

	

	

	

	

x5x
a

5 0. (B3)

Solving for xa and rearranging terms yields

x
a

5 x
b

1
s2

b

s2
b 1 s2

y

( y� x
b
). (B4)

The analysis (xa) is equal to the background or prior

(xb) plus the weighted innovation (y – xb). If the back-

ground value is perfect, sb 5 0 and xa 5 xb. If the ob-

servation is perfect, sy 5 0 and xa 5 xb 1 1(y 2 xb) 5 y.

FIG. 12. Time series of the RMS height errors at 1 hPa from the 72-h forecasts for January 2007 for the

(a) NH and (b) SH.
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If the background and observations are equally uncertain,

sb 5 sy and xa 5 ½(xb 1 y). We rewrite J in anticipation

of going from a scalar x to a vector x:

J(x) 5
1

2
[( y� x)R�1( y� x) 1 (x

b
� x)P�1

b (x
b
� x)],

(B5)

where R 5 sy
2, Pb 5 sb

2. Here, R is the variance of the

scalar observation y, and Pb is the variance of the scalar

background estimate xb. Then, the solution can be ex-

pressed as

x
a

5 x
b

1 P
b
(P

b
1 R)�1( y� x

b
). (B6)

Now let the vector x be of length K. For each com-

ponent of x, there is one background value xb and (as-

sume for now) one observation yk (N 5 2), so that there

are two sources of information for each of the many

different variables listed in x. We let Pb be the back-

ground error covariance matrix, which relates forecast

errors for a given variable and location to other forecast

variables and locations:

P
b

5

s 2
b1

c
b1b2
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b
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c
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Note that although this matrix is reasonably sparse, it

has many nonzero off-diagonal elements, making it non-

trivial to invert. Similarly, we let R be the observation

error covariance matrix, which is typically taken to be

diagonal. We write down the probability distributions,

assuming eb and ey are independent (a good assumption):

p(e
b
,e

y
)5 p(e

b
)3 p(e

y
)}exp � 1

2
(eT

b R�1eb1 eT
y P�1

b ey)

� �� �

.

(B8)

As before, we define a quadratic cost function, whose

minimization will find the most probable (maximum

likelihood) analysis:

FIG. 13. As in Fig. 12, but for 10 hPa.
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FIG. 14. The 72-h forecast minus analysis result of the zonal-mean zonal wind for

(a) A4N3Sd, (b) A3N4Sd, and (c) A4(14)N3Sd (cf. with Fig. 4c).
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FIG. 15. As in Fig. 14, but for the temperature (cf. with Fig. 5c).
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J(x) 5
1

2
[(y� x)TR�1(y� x) 1 (x

b
� x)TP�1

b (x
b
� x)].

(B9)

We set the partial derivative of J with respect to each

component equal to zero, and solve for xa:

x
a

5 (P�1
b 1 R�1)�1(P�1

b x
b

1 R�1y). (B10)

Rewriting using the Sherman–Morrison–Woodbury iden-

tity yields

x
a

5 x
b

1 P
b
(P

b
1 R)�1(y� x

b
). (B11)

For some conventional observations like a tempera-

ture measurement from a weather balloon, y and xb are

the same variable, although the background values typi-

cally will have to be interpolated to the observation lo-

cations. For other observations, such as the microwave

radiances discussed in this study, a more complex forward

operator H is needed to convert between observational

and model variables. Here, H can include horizontal,

vertical, and temporal interpolation; radiative transfer;

integration; or any function relating an observed vari-

able to model quantities. Thus, in (B11), we need to in-

clude the full-forward operator and its Jacobian H (the

partial derivatives of H with respect to all of its inputs)

as follows:

x
a

5 x
b

1 P
b
HT(HP

b
HT 1 R)�1[y�H(x

b
)]. (B12)

b. Application to NAVDAS

Here, we relax the earlier assumption that we have

one observation for each model variable and location,

so H will be a rectangular matrix with dimensions K 3 M,

where K is the number of observations (typically

;300 000 for operational NAVDAS in 2007) and M is

the dimension of the model state vector (typically

30 000 000 for operational NOGAPS in 2007). Equation

(B12) is the equation for three-dimensional variational

data assimilation solved by NAVDAS (Daley and Barker

2001a,b). Essentially, it consists of a weighted, covarying

least squares fit between the forecast and the observed

data. Because of its size, we do not explicitly form the

full Pb matrix, although we can calculate any given el-

ement we need. The solution of (B12) can be broken

down into three steps.

First, we compute the innovation vector [y�H(x
b
)].

For microwave radiances, this includes interpolation and

solving the radiative transfer equations to obtain the

forecast values in radiance space. The observed radi-

ances must be bias corrected; we use a method based on

Harris and Kelly (2001). Linear regression of 15 days

of raw innovation data using 850–300- and 200–50-hPa

thicknesses as predictors yields a constant plus two co-

efficients for each channel of the AMSU-A instrument.

For scan bias, the difference between the 15-day mean at

beam positions x and the two center beam positions is

subtracted from beam position x for each instrument.

We apply this simple scan bias correction to the current

observations in each channel and, then, apply the lin-

ear regression coefficients as follows to form the bias-

corrected innovations:

[y
s
� (c

o
1 c

1
p

1
1 c

2
p

2
)]�H(x

b
), (B13)

where ys is the scan-corrected observation and co 1 c1p1 1

c2p2 are the linear regression coefficients times the pre-

dictors, forming the bias-corrected observation. Next, we

solve the following linear system for z using an iterative

method (preconditioned conjugate gradient descent):

TABLE 3. The biases in the zonal-mean zonal wind and temperature fields in terms of the difference between the maximum and minimum

field values of the model bias (i.e., forecast 2 analysis). The cases A3N4Sd, A4N3Sd, and A4(14)N3Sd correspond to Figs. 14 and 15.

Expt (UF 2 UA)max (UF 2 UA)min

(UF 2 UA)max –

(UF 2 UA)min (TF 2 TA) max (TF 2 TA) min

(TF 2 TA)max –

(TF 2 TA)min

A3N3Sd 29 214 43 7.4 28.7 16.1

A3N3S3 22 215 37 7.8 28.2 16.0

A3N4Sd 21 215 36 7.5 29.9 17.4

A3N4S3 19 214 33 7.7 26.9 14.6

A4N3Sd 24 214 38 8.8 211.3 20.1

A4N3S3 22 213 35 7.0 210.0 17.0

A4N4Sd 24 215 39 11.4 211.4 22.8

A4N4S3 23 210 33 9.3 210.5 19.8

A4(14)N3Sd 17 28 25 6.1 28.6 14.7

A4(14)N3S3 18 28 26 6.6 28.9 15.5

A4(14)N4Sd 18 29 27 6.5 28.8 15.3

A4(14)N4S3 17 29 26 6.7 28.9 15.6
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[HP
b
HT 1 R]z 5 y�H(x

b
). (B14)

Note that the right-hand side of (B14) is (B13), the bias-

corrected innovation vector. This step is the most time-

consuming and memory-intensive part of NAVDAS.

Finally, we perform a postmultiplication step to obtain

the correction, which is added to the background xb to

form the analysis xa:

x
a

5 x
b

1 P
b
HTz. (B15)

Like any least squares method, the analysis is sensitive

to outliers, implying that the proper quality control and

bias correction of data are essential. Quality control can

include gross error checks, buddy checks, self-consistency

checks, and statistically based checks (rogue checks).

Appendix A describes the details of these checks. The

reader is referred to the main text for application and

discussion of these concepts.
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