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Abstract  

In this report, we examine distributed estimation of the average power of a random signal in 
wireless sensor networks. Due to stringent bandwidth/power constraints, each sensor quantizes 
its observation into one bit of information and sends the quantized data to a fusion center, where 
the signal power is estimated. We firstly introduce two fixed quantization (FQ) schemes, with the 
first using a single threshold and the second employing a pair of symmetric thresholds. The 
maximum likelihood (ML) estimators associated with the two FQ schemes are developed and 
their corresponding Cramer-Rao bounds (CRBs) are analyzed. We show that the FQ approach, 
especially the second one, can achieve an estimation performance close to that of a clairvoyant 
estimator using unquantized data, if the optimum quantization threshold is available; however, 
the optimum threshold is dependent on the unknown signal power and as the threshold deviates 
from its optimum value, the performance degrades rapidly. To cope with this difficulty, we 
propose a distributed adaptive quantization (AQ) approach by which the threshold is dynamically 
adjusted from one sensor to another, in a way such that the threshold converges to the optimum 
threshold. Our analysis shows that the proposed AQ approach is asymptotically optimum, 
yielding an asymptotic CRB equivalent to that of the FQ approach with optimum threshold. 

1. Introduction 

Wireless sensor networks (WSNs) have attracted much attention over the past few years. 
Composed of a large number of small, low-cost sensors with integrated sensing, processing, and 
communication abilities, WSNs can accomplish a variety of tasks including environment 
monitoring, battlefield surveillance, target localization and tracking, and many more [1], [2]. 
Bandwidth and power constraints are two primary issues that need to be addressed in network 
design and algorithm development, as limited communication bandwidth is shared across the 
entire network and, meanwhile, the sensors are often powered by irreplaceable batteries. As 
such, a major challenge of the WSN research is to design bandwidth and power efficient signal 
processing algorithms for network processing tasks such as estimation, detection and tracking.  

In this report, we consider distributed estimation of the signal power from one-bit quantized data. 
This problem arising from other applications such as spectrum sensing whose objective is energy 
detection and estimation. The problem is to estimate a scale parameter associated with the sensor 
observations. Specifically, suppose we have N spatially distributed sensors, each sensor making 
an independent and identically distributed (i.i.d.) observation nx   from a certain distribution, 

)(xpX , with zero mean and unknown variance 2σ . 

The problem of interest is to design one-bit quantization strategies, { })(⋅nQ , to convert { }nx  into 
binary data { }nb  which are forwarded to a fusion center (FC), and to find an effective estimate of 
the standard deviation or scale parameter, σ , from { }nb  at the FC. Such a problem finds 
important applications, for example, in cognitive radios where a group of secondary users 
collaboratively measure the power of a primary user signal for opportunistic spectrum usage [3]–
[5], and in many other sensor network applications such as detection and estimation which need 
to collect the statistics of a signal/observation noise for the algorithm design, e.g. [6], [7]. When 
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a quantization strategy is given, maximum likelihood (ML) estimation of σ  using quantized data 
was considered in [8]. In this paper, we consider joint quantization and estimation, examine the 
impact of quantization on the estimation performance, and develop a new adaptive quantization 
(AQ) approach for the estimation of σ . 

Specifically, two fixed quantization (FQ) schemes are firstly introduced in this report, where a 
single threshold and a pair of symmetric thresholds are employed, respectively. Theoretical 
analysis shows that the FQ scheme using dual thresholds has a better estimation performance, 
yielding a Cramer-Rao bound (CRB) that is about one half of that of the FQ scheme with a single 
threshold. Also, by choosing an optimum quantization threshold, both FQ schemes are able to 
achieve an estimation performance close to that of a ML estimator using unquantized data (also 
referred to as “clairvoyant estimator” in this paper). Specifically, for Gaussian distribution, the 
estimation variance of the FQ with a single threshold is within about 3 times that of the 
clairvoyant estimator, and the estimation variance of the FQ with a single threshold is within 
about 1.5 times that of the clairvoyant estimator. 

Although the FQ approach provides a comparable performance to the clairvoyant estimator while 
requiring only one bit information from each sensor, its problem lies in that the optimum 
quantization threshold is dependent on the unknown parameter to be estimated, which is not 
usable in practice. Also, as the threshold deviates from its optimum value, its performance drops 
rapidly. To cope with this difficulty, we propose an adaptive quantization (AQ) approach which, 
with sensors sequentially broadcasting their quantized data, allows each sensor to adaptively 
adjust its quantization threshold. We design our AQ scheme by resorting to the ML estimator and 
a relationship between the optimum threshold and the unknown parameter found by an analysis. 
Our analysis shows that our proposed AQ scheme is asymptotically optimum, which yields an 
asymptotic CRB equivalent to that of the FQ approach with optimum threshold. 

2. Approaches Taken 

We firstly discuss the fixed quantization approach for distributed estimation, followed by the 
distributed adaptive quantization approach. 

2.1 Distributed Estimation - Fixed Quantization with Single Threshold 

We employ a common threshold τ  for all sensors to quantize the observations into one-bit 
information: 

{ }τ−= nn xb sgn                                                                      (1) 

To facilitate our analysis, we express nx  as 

                                                                 nn vx σ=                                                                         (2) 

where nv   denotes a random variable having the same distribution as nx   but with zero mean and 
unit variance, σ  is the unknown scale parameter to be estimated. It can be readily shown that the 
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probability mass function (PMF) of nb   is given by 

nn b
V

b
Vn FFbP −−= 1))/(())/(1();( στστσ                                               (3) 

where )(xpV  and )(xFV  denote the probability density function (PDF) and the cumulative 
distribution function (CDF) of nv , respectively. Since { }nb  are i.i.d., the log-PMF or 
loglikelihood function is 

{ }∑
=

−+−=
N

n
VnVnFQS FbFbL

1

)]/(log[)1()]/(1log[)( στστσ                            (4) 

The ML estimate and CRB associated with this scheme are given in the following proposition. 

Proposition 1: For the FQS scheme, the ML estimate of σ  is given by 

)/1(
ˆ

1 NBFV −
= −

τσ                                                                     (5) 

                                                                                                where 1−
VF  denotes the inverse of the CDF, ∑

=

=
N

n
nbB

1

. Furthermore, the CRB for any unbiased 

estimator based on { }nb  is 

)/(
))/(1)(/(1)( 22

4

στ
στστ

τ
σσ

V

VV
FQS p

FF
N

CRB −=                                          (6) 

We see that the CRB depends on the quantization threshold τ . Specifically, for the Gaussian 
distribution, the optimum quantization threshold is ◦ σ57.1 . To better evaluate the performance of 
the FQS scheme, we compare it with the ML estimator using unquantized data (also referred to as 
“clairvoyant estimator”), which provides a lower bound on the achievable estimation 
performance of all rate-constrained methods, and serves as a benchmark for evaluating the 
efficiency of the proposed quantization schemes. It is easy to derive (the derivation is 
straightforward and hence omitted  here) that for the Gaussian observations, the CRB for any 
unbiased estimator based on the unquantized data { }nx  is given as 

N
CRBNQ 2

)(
2σσ =                                                               (7)   

     where we use the subscript NQ to stand for no quantization. Clearly, we see that the minimal 
CRB achieved by the FQS scheme using the optimum quantization threshold is only about 3 
times that of the clairvoyant estimator using unquantized data. Nevertheless, from Fig. 1, we 
observe that the performance of the FQS scheme degrades rapidly as the threshold  deviates from 
its optimum value σ57.1 . Note that without any prior information of the true σ , the optimum 
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choice of the quantization threshold is arbitrary because the optimum threshold minimizing the 
CRB is dependent on the unknown parameter σ . 

2.2 Distributed Estimation - Fixed Quantization with Dual Thresholds 

Our previous analysis for FQS (i.e., the CRB is an even function of the threshold) motivates us to 
consider a symmetric quantization scheme using a pair of symmetric thresholds ◦τ , which is 
defined as 

⎩
⎨
⎧ ≤≤

=−=
    otherwise       1

 if       0
)|sgn(|

ττ
τ n

nn

x
xb                                          (8) 

Intuitively, this quantization scheme is able to achieve a better performance as compared with 
the FQS scheme because the quantized bit, nb , reveals more information about the signal 
variance by locating the absolute value of the observation. For this dual thresholds based 
quantizer, the PMF of nb   is given as 

nn b
V

b
Vn FFbP −−−= 1)1)/(2())/(22();( στστσ                                   (9) 

It follows that the log-likelihood function is 

[ ]∑
=

−−+−=
N

n
VnVnFQD FbFbL

1

]1)/(2log[)1()]/(22log[)( στστσ                       (10) 

where the subscript FQD (Fixed Quantization with Dual thresholds) represents the current 
scheme. We have the following result regarding its ML estimate and CRB. 

Proposition 2: For the FQD scheme, the ML estimate of σ is given by 

))2/(1(
ˆ 1 NBFV −
= −

τσ                                                           (11) 

      The CRB for any unbiased estimator based on { }nb  is given by 

)/(
))/(1)(1)/(2(

2
1)( 22

4

στ
στστ

τ
σσ

V

VV
FQS p

FF
N

CRB −−=                                (12) 

For the Gaussian distribution, the optimum threshold τ  is σ48.1  and the corresponding minimal 
CRB achieved is only about 1.5 times that of the clairvoyant estimator. Also, from Fig. 1, we can 
see that the FQD scheme outperforms the FQS scheme at all thresholds. This can be intuitively 
justified since the FQD scheme produces a binary bit that contains more information about the 
observation and the unknown parameter associated with the observations. 
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Fig.1: CRBs of the FQS and FQD schemes vs. στγ /= , 100=N . 

2.3 Distributed Estimation - Adaptive Quantization 

As we can see from previous analyses, both FQ schemes are very sensitive to the choice of the 
quantization threshold τ : the estimation performance of the FQ schemes degrades sharply as τ  
deviates from their optimum values. However, the optimum threshold is dependent on the 
unknown parameter σ  to be estimated, which is not usable in practice. To cope with this 
difficulty, we propose a data-dependent distributed adaptive quantization (AQ) approach by 
which the threshold is dynamically adjusted from one sensor to another, in a way such that the 
threshold converges to the optimum threshold. 

We adopt the following assumptions for the AQ approach: 

A1 We assume each sensor sends its quantized data to the FC sequentially with the help of a 
scheduling algorithm. 

A2 While each sensor transmits, the other sensors can listen to the transmission due to the 
broadcasting nature of the wireless channel. To focus on the quantization problem, we assume 
that the quantized data are received without errors (by using, e.g., a strong error correction code). 

For the AQ approach, each sensor, say sensor n, finds its quantization threshold, nτ , by using the 
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quantized data { } 1
1

−
=

n
kkb  received from previous sensors. We firstly employ the ML estimator to 

compute nσ̂ , where nσ̂   denotes an estimate of σ  at sensor n based on { } 1
1

−
=

n
kkb . The threshold nτ   is 

then calculated according to the στ ∝opt  relationship established by the FQ analyses, e.g., for 
Gaussian observations, στ 57.1=opt  if a single threshold quantization scheme is adopted or 

στ 48.1=opt  if a pair of symmetric thresholds are adopted. In this section, we only consider the 
AQ approach employing a pair of symmetric thresholds, i.e. each sensor quantizes its 
observation using the form of (8), as it yields better estimation performance. The details of the 
AQ scheme is described as follows. 

We firstly generate two quantized bits 1b  and 2b  for initialization. For sensor 1, we use an 
arbitrary positive threshold, say 11 =τ , to generate 1b : 

)|sgn(| 111 τ−= xb                                                              (13) 

Then, 1b  is sent to the FC and all other sensors. Upon receiving 1b , sensor 2 computes 
1

12
11 −ΔΔ= bbττ , that is, Δ= 12 ττ  if 11 =b  and Δ= /12 ττ  if 01 =b , and uses it to generate 2b , 

where Δ  is a stepsize whose choice will be discussed shortly. Also, we assume that the initial 
threshold 1τ  and the stepsize Δ  are known to all sensors. Based on the received 1b  and 2b , 
sensor 3 finds the ML estimate of σ  as 

),,,;(maxargˆ 212133 ττσσ σ bbL=                                               (14) 

where 

∑
=

−−+−=
2

1
21213 ]]1)/(2log[)1()]/(22log[[),,,;(

k
kVkkVk FbFbbbL στστττσ                 (15) 

denotes the log-likelihood function of σ  given binary observations 1b , 2b  and the associated 
thresholds 1τ  and 2τ , where 2τ  can be recovered from 1

12
11 −ΔΔ= bbττ . The stepsize Δ  used by 

sensor 2 should be large enough such that 1b  and 2b  have different discrete values. Otherwise, it 
can be shown that 3σ  obtained above is either infinity or zero (depending on the values of 1b  

and 2b ), which should be avoided. Although there is always a non-zero probability for 1b  and 2b  

to have identical values, the probability can be made practically small by choosing Δ  
sufficiently large. In addition, if for a chosen Δ , the first two quantized bits are still of an 
identical value, the following sensors can keep adjusting the threshold by 1

1
−

+ ΔΔ= nn bb
nn ττ  until a 

binary bit of a different value is generated, at which point the quantization process is switched to 
use the ML estimator. 

The threshold 3τ  is then computed as 
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33 σ̂μτ =                                                                           (16) 

where μ  is the coefficient of the relationship between the optimum threshold optτ  and the 
unknown parameter σ  for the corresponding FQ approach. In general, for sensor n, it first 
recovers the previous thresholds { } 1

1
−
=

n
kkτ  from the received quantized data { } 2

1
−
=

n
kkb , which can be 

computed straightforwardly in a recursive manner. After obtaining { } 1
1

−
=

n
kkτ , sensor n computes its 

current threshold nn σμτ ˆ= , where nσ̂  is given by 

{ } { } ),;(maxargˆ 1
1

1
1

−
=

−
== n

kk
n
kknn bL τσσ σ                                             (17) 

where 

{ } { } ∑
−

=

−
=

−
= −−+−=

1

1

1
1

1
1 ]]1)/(2log[)1()]/(22log[[),;(

n

k
kVkkVk

n
kk

n
kkn FbFbbL στσττσ               (18) 

is the log-likelihood function of σ  given { } 1
1

−
=

n
kkb . 

The ML estimator at the FC to find the final estimate of σ  from the received quantized data 
{ }Nbbb ,,, 21 …  is given by  

{ } { } ),;(maxargˆ 11
N
kk

N
kkAQ bL === τσσ σ                                                 (19) 

Note that unlike the FQ schemes, the ML estimators generally admit no closed-form solution, 
and a searching algorithm has to be utilized. Nevertheless, the computational complexity is 
moderate since only one-dimensional search is involved. We have the following result regarding 
the CRB of the proposed AQ approach. 

Proposition 3: For continuous noise distribution )(xpV , as N increases, the CRB of the proposed 
AQ scheme converges to the CRB of the FQ scheme using the optimum threshold, i.e. 

);()( στσ optFQDAQ NCRBNCRB →                                            (20) 

Note that we multiply the CRBs on both sides by a factor N because we have to properly 
normalize the CRBs, otherwise both terms vanish with an increasing N, and the claim loses its 
meaning. This result indicates that our AQ scheme adaptively finds the best threshold by 
learning from prior transmissions. Without any prior knowledge of the unknown parameter, the 
proposed AQ scheme is able to asymptotically achieve a CRB which is attained by the FQD 
scheme with an optimum threshold. 

3. Results 
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We firstly examine the information loss of the FQ and AQ schemes relative to the ML estimator 
using unquantized data. The concept “information loss” is defined as the ratio (in dB) of the 
CRB for the proposed scheme to the CRB for the clairvoyant estimator using unquantized data: 

)(
)(

log10
σ
σ

NQ

basedQ

CRB
CRB

IL −=  

where we use the subscript Q-based to represent any quantization scheme. Note that although, 
for the AQ scheme, an exact computation of the CRB is impossible, nevertheless, it can still be 
evaluated numerically by Monte Carlo integration. 

We set 1=σ . Fig. 2 shows the information loss of the FQ and AQ schemes as a function of the 
number of sensors, N. It can be seen that the information loss of the FQ schemes is independent 
of the number of sensors, N. Also, when the optimum thresholds are used, i.e. 57.1=τ  for FQS 
and 48.1=τ  for FQD, the FQ schemes incur a moderate information loss, which is about 5dB 
for FQS and 2dB for FQD. However, the FQ schemes are very sensitive to the value of τ ; as the 
threshold τ  becomes more apart from the optimum value (even not too far apart), the 
performance of the FQ schemes degrades significantly. As for the AQ scheme, the information 
loss decreases with an increasing N. This is because the AQ scheme benefits from the previous 
transmissions by adaptively choosing a proper quantization threshold. Also, we observe that the 
information loss of the AQ scheme approaches that of the FQD scheme with optimum threshold, 
i.e. 48.1=τ , which corroborates our previous claim in Proposition 3. 

The mean square errors (MSEs) of the ML estimators for the FQD and AQ schemes are included 
and compared with the corresponding CRB in Fig. 3, where we set 1=σ . For the AQ scheme 
and the FQD scheme with optimum threshold 48.1=τ , it is observed that the MSEs approach 
the CRBs within a moderate number of sensors, N. However, this is not true for the FQD scheme 
with a non-optimum threshold 3=τ . In this case, the ML estimator needs much more sensors to 
converge to its corresponding CRB. As we also see from this figure, the performance of the AQ 
scheme approaches that of the FQD with optimum threshold ( 48.1=τ ) while without knowing 
any prior information of the unknown parameter σ . 

We plot the MSEs of the ML estimators for the FQ schemes as a function of στγ /=  in Fig. 4, 
where we set N = 100 and 1=σ . It is seen that the ML estimators achieves its asymptotic 
performance with moderate number of sensors (N = 100) when the ratio γ is around its optimum 
value. 
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Fig. 2 Information loss of the FQ and AQ schemes relative to the ML estimator using 
unquantized data.  

 

Fig. 3: MSEs and CRBs of the FQD and AQ schemes. 
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Fig. 4: MSEs and CRBs of the FQ schemes versus γ , 1=σ , 100=N  

4. Potential Applications 

The problem of power estimation from multi-sensors’ observations was considered in the paper. 
In particular, we assume each sensor makes an independent observation from a certain 
distribution with zero mean and unknown variance. The objective is to estimate the standard 
deviation associated with the distribution in bandwidth/power constrained wireless sensor 
networks (WSNs). Two fixed quantization (FQ) schemes and an adaptive quantization (AQ) 
scheme were proposed and their corresponding MLEs were developed. CRB analyses show that 
the FQ schemes are able to achieve an estimation performance close to that of the clairvoyant 
estimator using unquantized data when the optimum quantization thresholds are employed. A 
drawback of the FQ approach is that its estimation performance is sensitive to the quantization 
threshold, whose choice is always tricky in practice since the optimum thresholds are dependent 
on the unknown parameter. The proposed AQ scheme, in contrast to the FQ approach, can 
effectively address this problem. Our analysis shows that the proposed AQ approach is 
asymptotically optimum. Without any prior knowledge of the unknown parameter, it yields an 
asymptotic CRB equivalent to that of the FQ approach with the optimum threshold. Simulation 
results were presented to corroborates our claims. 

While we considered only the 1-bit (per sample) quantization case, our AQ approach can be 
extended for multi-bit quantization. Consider, for example, AQ-FS. Instead of using a 1-bit 
quantizer to just take the sign of the difference between the current observation nx and 
quantization threshold nτ , a multi-bit quantizer (either uniform and non-uniform) can be used to 
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quantize nnx τ−  and provide finer adjustment of the subsequent quantization threshold. This 
multi-bit AQ-FS effectively uses a number of stepsizes (as opposed to a fixed stepsize in 1-bit 
AQ-FS) determined by the number of bits used for quantization. Extensions of AQ-VS are also 
possible and will be reported elsewhere. 

5. Project Assessment 

We have completed the major work for the proposed tasks, namely, low-rate quantizer design, 
collaborative signal estimation of signal power for intelligent wireless sensor networks. The 
developed techniques and methods are ready to be delivered. 
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Appendix: Statement of Work 

Collaborative Spectrum Sensing and Signal Processing (Li) 

Power constraint is an important design objective since cooperating CUs are often mobile and 
powered by battery. On the other hand, cooperation requires message exchange among the 
cooperating CUs. This causes additional bandwidth overhead that needs to be minimized; 
otherwise, it will eat up the bandwidth gain provided by dynamic spectrum access. To address 
these issues, we consider collaborative sensing, where each CU quantizes its measurement of the 
spectrum usage, by employing a specially designed low-rate quantizer (e.g., 1 to a few bits per 
measurement), before sharing it with the other CUs. Our proposed approach will build on the 
adaptive quantization (AQ) technology, our recent research result funded by the ARDEC, 
originally introduced for distributed estimation in a wireless sensor network. At 1 bit per 
measurement, our AQ approach has been found to yield nearly identical performance to the case 
where the cooperating nodes share unquanitzed observations, therefore providing a compelling 
solution in power- and bandwidth-constrained environments. Specific research subtasks to be 
addressed in this work include the following.  

1.1 Adaptive quantization for power estimation: While we will build on our previous research on 
AQ, existing AQ techniques were developed for the estimation of a position parameter (i.e., the 
mean of the random observation) and, therefore, cannot be directly applied to the estimation of 
the power, which is a scale parameter that requires a symmetric quantizer (in contrast, our 
previous AQ techniques are all asymmetric). As the quantizer structure is different, we have to 
develop different schemes to adaptively change the quantizer thresholds from one CU to another.  

1.2 Distributed estimation algorithms: A most general spectrum sensing approach (without 
requiring excessive prior knowledge of the PU, e.g., its modulation format, waveforms, etc.) is to 
obtain an accurate estimate of the power within a given frequency band and compare it with a 
threshold (i.e., the power or energy detector). We will develop distributed and collaborative 
power estimation techniques using quantized observations for reliable spectrum sensing. We will 
consider both high-performance parametric estimators, which require knowledge of the statistical 
distribution of the measurements, and robust non-parametric estimators, which require no such 
information and are more versatile (though some performance loss is expected). 

1.3 Collaborative spectrum sensing algorithms: The power estimates as obtained in the previous 
task need to be processed by a detection algorithm which functions based on some detection 
criterion, e.g., the Neyman-Pearson criterion. We will develop effective distributed detectors for 
collaborative spectrum sensing in the Neyman-Pearson sense, which minimizes the probability of 
missing (i.e., the event of declaring no spectrum “white space” when there is one) for a given 
probability of false alarm (the event of claiming the presence of spectrum white space when 
there is none). We will also consider in the detection process the effects of fading and 
interference, which are ubiquitous in a wireless environment.  
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Abstract 
In this project, we propose to use a cross-network cognitive relay technique to mitigate the co-
channel interference (CCI) in infrastructure communication networks. In the proposed network, 
relay stations (RS) equipped with cognitive radio are deployed near the boundary of an 
infrastructure network to construct a complementary ad hoc network. Specifically, cellular 
network is selected as an example of infrastructural network. The base station (BS) and RS in 
each cell operate in the same spectrum band as primary and secondary transmitters, respectively. 
Once an interference limited mobile station (MS) requests an RS for assistance, the RS senses 
the spectrum band and accesses a spectrum hole to forward its received signal (and interference) 
to the MS. At the receiver of the MS, optimum combining is employed to combine the original 
signal received from the BS and the relayed signal to cancel the CCI. The system performance is 
analyzed in terms of the outage capacity and the average capacity considering the impact of the 
availability of cognitive relay channels and the link quality between RS and MS. The location 
and coverage radius of RS are designed based on the requirement of the RS-MS link quality. 
Finally, simulation results are given to validate the theoretical analysis and to show the capacity 
improvement due to the CCI cancellation with the assistance of cognitive relay. 

In addition, we conduct network performance analysis for cognitive radio network with two 
different access protocols. One is TDMA for the primary network and slotted ALOHA for the 
secondary network. The other is slotted ALOHA for both primary network and secondary 
network. Simulation results are shown to validate the theoretical analysis. 

 

INTRODUCTION 
In a network centric environment, a great challenge is to accommodate and manage different 
network architectures and access protocols for different quality of service (QoS) requirements. 
Cognitive communication is a promising technology to sustain the coexistence of multiple 
networks devoid of comprehensive frequency planning. This research will focus on the hybrid 
network architecture in the cognitive and network centric communication systems.   

Infrastructure networks and ad hoc networks are two most popular network architectures in both 
military and commercial communications. In an infrastructure network, there is a central node, 
which centrally control the resource allocation and all the subscriber nodes only communicate 
with the central node. Since the transmit power of the central node is limited, the cover area of an 
infrastructure network is limited. Many infrastructure networks must be deployed and frequency 
reuse is used for the seamless coverage. Therefore, the cross-network co-channel interference 
(CCI) is unavoidable in infrastructure networks. Cellular network is a typical infrastructure 
network and its performance is degraded a lot due to the CCI, also known as inter-cell 
interference (ICI). 

In ad hoc networks, there is no central node and each pair of nodes communicated with each 
other through one or more hops.  Since the communication range of each node is very small, ad 
hoc network is suitable for high-density small-range communications. In this project, we will 



propose a hybrid network, which use some ad hoc networks as complement cognitive radio 
networks to help a cellular network cancel the ICI. 

As has been known, many techniques were proposed to mitigate the ICI. However, the 
conventional methods usually compromise spectral efficiency in order to reduce the ICI, such as 
reducing the frequency reuse factor, spreading spectrum and frequency hopping [1]–[3]. To 
mitigate the ICI without reducing the the spectral efficiency of cellular systems, single input and 
multiple output (SIMO) or multiple input and multiple output (MIMO) techniques with optimum 
combing was proposed [4], [5]. The performance improvement obtained in SIMO and MIMO 
systems through optimum combining has been analyzed and simulated by many researchers [6], 
[7]. However, the space and resource limit is a major obstacle in practice for the deployment of 
multiple antennas at an MS. 

Multi-hop relay is a promising technique for cellular systems to enhance throughput and extend 
coverage [8]. Its basic idea is to employ relay stations (RS) between base stations (BS) and MS 
to improve the performance of signal transmissions. The RS communicate with MS through an 
ad hoc network. A hybrid cellular-ad hoc network is thus constructed [9][10]. Two types of relay 
schemes have been proposed for cellular systems. One is the conventional relaying scheme 
without cooperative diversity, where the MS can only received the signal forwarded by the RS. 
This type of scheme is used only for path loss compensations, or to divert traffic from possibly 
congested areas to lower traffic areas. The other is the cooperative relay scheme, where the MS 
can receive both the signals originally transmitted by the BS and forwarded by the RS [11]. 
When the BS and the RS transmit in orthogonal channels (different time slots or frequency 
bands), the MS can combine the two signals to obtain the diversity gain. It is interesting to notice 
that the combination of the received signals from BS and RS can also be used to cancel the ICI, 
which is similar to the SIMO system with two receive antennas. However, the use of relay 
generally requires additional time or frequency resources for the communications between RS 
and MS. 

As have been reported, most radio systems do not utilize all the assigned frequency bands all the 
time [12]. The unused frequency bands are called spectrum holes. Cognitive radio technique is 
recently proposed to improve the spectrum utilization by allowing secondary users to access the 
spectrum holes [13]. The concept of cognitive relay is proposed by several researchers for 
different scenarios [14]–[16]. The primary idea is to use cognitive radio nodes as relay to assist 
the communications of primary nodes. Since the relay nodes cognitively utilize the spectrum 
assigned to but unused by the primary nodes, it doesn’t incur additional resource consumption. 
The use of cognitive relay in cellular systems was considered in [17] and the paper only 
considered a noise-limited environment without ICI. It assumes that the RS utilizes the spectrum 
hole in ultra-high frequency (UHF) band or industry, industrial, scientific and medical (ISM) 
bands and no interference exists between the RS-MS link and BS-MS link. 

In this project, we propose a cognitive-relay based hybrid cellular-ad hoc network by applying 
the cognitive radio technique in the relay network to mitigate the ICI. In the proposed scheme, 
several RS equipped with cognitive radio are deployed around each cell’s boundary. The RS and 
MS both receive the signal from the home cell BS and ICI from other co-channel BS in the 
downlink channel. Instead of using other bands as in [17], we assume that the cognitive RS in 
each cell operate in the spectrum band assigned for the primary downlink communications (i.e., 
BS-MS links) in the cell. If an interference-limited MS requires relay from RS, the RS will sense 
the spectrum band and find an unutilized channel to amplify and forward its received signal and 



interference to the MS. The MS combines the received signals and interferences from BS and RS 
to perform the ICI mitigation. We study the outage capacity of the MS in the proposed hybrid 
network and identify two parameters which impact the system performance. One is the 
availability probability of the cognitive relay channel and the other is the link quality between 
the RS and MS (determined by path loss and ICI). Theoretical models are formulated to quantify 
and derive the two parameters. The locations and coverage of RS are designed based on the 
requirement of the link quality between the RS and MS. Theoretical and simulation results are 
provided to show the effectiveness of the proposed scheme. 

In addition, at the end of the project, we analyzed the network throughput of cognitive radio 
networks. Media access control (MAC) issue plays a critical role in the cognitive radio network 
design. We considered cognitive radio networks with two different access protocols. One is 
TDMA for the primary network and slotted ALOHA for the secondary network. The other is 
slotted ALOHA for both primary network and secondary network. Simulation results are shown 
to validate the theoretical analysis. 

APPROACH TAKEN 
1. System Model 

 

We consider a downlink fading channel in a multi-cell network, where each cell is interfered by 
NI co-channel cells. Different users in one cell are allocated with orthogonal channels to avoid 
intra-cell interference, such as using time division multiple access (TDMA), code division 
multiple access (CDMA) or orthogonal freqeuncy division multiple access (OFDMA). However, 
the use of the same channel in different cells may cause ICI. The home cell is denoted as Cell 

0 and the interference cells are from Cell 1 to NI . Correspondingly, the base stations (BS) are 
denoted as BS 0 to NI . 

 

To help MS against the ICI, several RS are deployed around the cell boundary of each cell. RS 
and MS are equipped with two types of radio functionalities. One is the primary radio to 
communicate with BS. The other is the secondary radio, or called cognitive radio, for 
opportunistically communications between RS and MS. For the downlink transmission, RS and 

MS receive signals from all BS through the primary radio. If a MS suffers from strong ICI and 
has a low quality link with BS, it will need the assistance from RS. One of the RS is selected to 
be the MS’ associated RS and it will relay its received signal to the MS through cognitive radio. 
Specifically, it will first sense the spectrum band allocated to the primary radio to detect a 
spectrum hole (vacant channel). Many existing spectrum sensing techniques, such as energy 
detection, likelihood detection and so on, can be applied for the detection [18], [19]. Once a 
spectrum hole is detected, the RS will cognitively adjust its radio parameters to communicate 
with the MS through the spectrum hole. This is called cognitive relay. Fig. 1 illustrates our 
proposed cellular network with cognitive relay. 

 

A MS may operate in noise-limited regime or interference-limited regime. Generally, the 



operation condition is quantified in terms of the interference-to-noise ratio (INR), 2/σψ ICIP= , 

where  is the power of the ICI and  is the power of the background noise [20]. If ICIP 2σ ψ  > 1, 
the ICI dominates over noise. When ψ  >> 1, the system is regarded as interference limited. In 
this paper, we assume that all the BS have the same transmit power. The ICI power of a MS is 
totally determined by its location and increased with the increase of its distance to the home cell 
BS. Therefore, we simply classify the MS with 0rr ≤  as noise-limited MS and the MS with 

as interference-limited MS, respectively, where 0rr > r   is the distance between the MS and its 
home BS and  is a given threshold.  0r

 

 
Fig. 1 The cellular system model with cognitive relay 

 

We assume that only interference-limited MS will request the cognitive relay and all the RS are 
interference-limited since they are deployed near the cell boundary. The RS should be 
appropriately deployed so that each interference-limited MS is covered by at least one RS. The 
location and coverage of RS will be discussed in the next section. 

 

To simplify the model, the background noises at the interference-limited MS and RS are 
assumed to be negligible. The received signals of an interference-limited MS and its associated 

RS through the primary radio are written as 



yb,m = Ptb gb0 ,mhb0 ,m x0 + Ptb gb i ,mhb i ,m xi
i=1

N I

∑  
 

(1) 

∑
=

+=
I

ii

N

i
ixhgPxhgPy

1
r,br,btb0r,br,btbrb, 00

 
 

(2) 

respectively, where  is the transmit power of each BS.  is the desired signal transmitted tbP 0x

from the BS of the home cell to the MS and , withix INi ,,2,1 L= , is the ICI signal from the BS 
of Cell i, i.e., the ith BS. and  are complex Gaussian-distributed random variables to 
represent the flat fading channels of the ith BS-MS link and BS-RS link, respectively , which are 
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for , where is the reference channel gain at the distance of 1 m.  and 

 are the communication distances of the ith BS-MS link and BS-RS link, respectively. 

Notice that .  is the path loss factor.                 
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After receiving the signal with ICI, the MS sends a relay request to its associated RS. The RS 
then detects the spectrum band to sense if there is a vacant channel. If no channel is found, the 
request is discarded. Otherwise, the RS amplifies and relays its received signal, including the 
desired signal and ICI, to the MS through the vacant channel following AF relay protocol. The 
received signal at the MS through this cognitive relay channel is 
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where α  is the power amplify factor of the RS, which is assumed to be fixed over small-scale 
channel fading (i.e., fixed-gain relay) and calculated as [21], [22] 
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where  is the transmit power of the RS.  and are the propagation path loss and small-
scale channel fading between the RS and the MS. Similarly, 
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where is the distance between the MS and its associated RS. The received signal in (5) 
contains two parts of ICI,  and .  is the ICI intentionally transmitted from the RS to 
the MS, which will be used to cancel the ICI at the MS and  is the inevitable ICI transmitted 

by other BS over the relay channel. 

m,rd

1mr,I 2mr,I

m,b

1mr,I

2mr,I
~

i
h  is the small scale fading of the relay channel between 

the ith BS and the MS. ix~   is the signal transmitted by the ith BS over the relay channel. Notice 
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~

i
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h ix

is orthogonal to primary channels. 

 

The ICI, , exists in the cognitive relay channel because that the RS can only detect if a 
channel is occupied by primary radios in its own cell, but cannot detect if it is occupied in 
neighboring co-channel cells. Correspondingly, the transmission of RS will also cause ICI to MS 
in neighboring co-channel cells. To protect the primary communications in neighboring cells, we 
have to constraint the transmit power of RS so that its interference to neighboring cells is 
tolerable. This constraint is quantified in terms of the ratio between the maximum ICI power 
caused by the RS and the minimum signal power in neighboring cells and written as 
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where  is the minimum distance from the RS to MS in neighboring cells and R   is the cell 
radius. λ   is the allowed interference-to-signal ratio (ISR) at the MS. Assuming that each RS 
always transmits with the maximum power, we have 
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The received signals of the MS from BS and RS, i.e., (1) and (5), can be represented in a vector 
form as 
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At the receiver, the two received signals will be combined to cancel the ICI and improve the 
system performance. The combination output is 
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where  is the combining vector. To maximize the SIR, the optimum combining vector is given 

by [6] 
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2. Outage Capacity Analysis 

 

Outage capacity is an important measure of a communication system, especially in a slow fading 
channel environment, where the delay requirement is small compared to the coherent time. The 
definition of outage capacity is written as [23] 
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where C  is the outage capacity, ε  is the target outage probability.  is the outage 
probability with a threshold capacity C , which is calculated as 

)( thout CP

th

})(Pr{)( ththout CCCP ≤=  (17)γ

( )γC γ   calculated as where  is the instantaneous capacity with a given SIR 

  

(18)
)1()( 2logγ +C = γ

 

Considering an interference-limited MS in our cellular system model, if the MS fails to request 
the relay, the instantaneous SIR is 
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If the MS obtains the help of relay and conducts the optimum combining at the receiver, the 
instantaneous output SIR is 
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, which is the reciprocal of the RS-

MS link gain (the power amplify factor at the transmitter of the link multiplied by the channel 
gain). We thus use δ   to quantify the RS-MS link quality. 

 

The outage probability of the MS with cognitive relay is 
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where γγ ≤=CP )Pr()( thocthout2, = γ ≤ γCP 12 th
th −= Cγ,  and p   is the 

availability probability of the cognitive-relay channel, which will be discussed next section. 

 

3. Availability Probability of the Cognitive-Relay Channel. 

 

We establish a model to derive the availability probability of the relay channel, p , which is an 
important factor impacting the outage capacity. Assuming that there are   orthogonal channels 
allocated to each cell and the user number in each cell is   with 

cN

uN cu NN ≤ . Each user is 
randomly allocated with one channel for communications with BS. Different users’ channels are 
orthogonal. The loading factor is defined as the ratio between the user number and the available 
channel number, 
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It is worth noting that each user doesn’t occupy the allocated channel all the time. In other words, 
there is an activity factor β   for each user, which is the probability that the user is active. 



Therefore, the probability that there are K   vacant channels unoccupied by the primary 
communications is 
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The number of interference-limited users is denoted as . If all the MS are uniformly 
distributed in the home cell,   is calculated as 
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where   is the area of a whole cell and   is the area of the interference-limited part of the cell. iS

 is the interference-limited threshold distance and R   is the cell radius. Notice that   must 
be round to the nearest integer. 
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The probability that there are M  active interference-limited users requesting cognitive relay 
channels is 
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M K   available vacant channels. The   active interference-limited users will compete for the 

K   channels are randomly allocated to the M   users, the probability that one Assuming that the 

relay channel is available for a given user is 
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By averaging over all K and M, the average availability probability of the cognitive-relay 
channel for a given user is 
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4. Interference Analysis and Avoidance: Location and Coverage of RS 



 

As mentioned in Subsection III.A, the effectiveness of cognitive relay depends on the link 
quality between RS and MS. Therefore, we need to carefully determine the location and 
coverage of RS so that the RS-MS link quality is good enough. We assume that the RS-MS link 
can be regarded as perfect if 

ξδδ ≤> }Pr{ 0  (26)

 is a threshold, which indicates the quality requirement of the RS-MS link. where 0δ
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The maximum transmit power of an RS is constrained by its interference. By inserting (11) to 
(27), we have 
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determined only by the location of the RS. Therefore, (44) gives the maximum distance a RS can 
reach if the RS’ location is given. In other words, for an RS at a given location, its coverage 
radius is calculated as 
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5. Performance analysis of cognitive radio networks with different access protocols 
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Fig  2. Cognitive radio network model 

 

Besides the link performance analysis above, we also did network performance analysis for 
cognitive radio networks. In this part, we consider a cognitive radio network composed of a 
primary network and a secondary relay network, as shown in Fig. 2. This network model is 
abstracted from the above cognitive relay network. The performances of the cognitive radio 
network with two types of access protocols are analyzed. One access protocol is TDMA for 
primary network and slotted ALOHA for secondary network (TDMA/AlOHA). The other is 
slotted ALOHA for both primary network and secondary network (ALOHA/ALOHA).  

 

We assume that there are   primary users and  secondary users in the network. The packet 
generation probabilities of each primary user and secondary user are 

pN sN

pσ  and sσ , respectively. In 
the TDMA/ALOHA network, we assume that secondary users can only access the network when 
the primary users are silent in a time slot. Therefore, the performance of TDMA primary network 
will not be impacted by the access of the secondary network. By using the Markov chain theory, 
we obtain the throughput of the secondary network as 
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In ALOHA/ALOHA network, we assume that the primary users will emit a larger transmit 
power than that of the secondary users. The access of the secondary will inevitably reduce the 
throughput of the primary network. The throughputs of the primary network and the secondary 
network are 
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 Simulation Results 
 

Simulation results are presented in this section to validate the theoretical analysis and 
demonstrate the performance advantage of the cognitive-relay based cellular systems. In the 
simulations, we consider the ICI from six nearest interference cells using the same frequency 
band as the home cell, as shown in Fig. 1. Without loss of generality, we set the cell radius 1=R . 
We consider an urban area cellular network and assume that the path loss factor is . The 
reuse distance , i.e., the distance between BS 0 and neighboring co-channel BS, is determined 
by the cluster size N and calculated as [25] 
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For convenience, we establish a polar coordinate system with BS 0 as the pole and the line from 
BS 0 to BS 1 as the polar axis. The location of BS 0 is thus represented as  and the 



location of BS i    is )
3

)1(,( π−iD  for 6,,2,1 L=i . The location of a MS is represented as ),( θr  

and the location of a RS is represented as ),( θ ′′r . 

 

First, we investigate the system performance when the cognitive relay channel is always 
available, i.e., p = 1. Fig. 2 shows the outage probability of an MS at  (the cell boundary) 
with different 

)0,(R
δ . It is noted that the case of ∞→δ is equivalent to that no relay is available and 

the case of 0=δ  represents that the RS-MS channel is perfect. Theoretical and simulation 
results are both illustrated for these two extreme cases and match very well. The results indicate 
that the use of cognitive relay improves the system performance significantly when the RS-MS 
link is perfect. Simulation results for 01.0,1.0,1=δ  are also shown to compare with the two 
extreme cases. It is shown that the performance improvement is degraded with the increase of δ . 

 
Fig. 2 Outage probability of a MS at the cell boundary when relay is available  
(δ  indicates the RS-MS link quality. N = 3) 

 

To quantify the impact of δ   on the system performance, Fig. 3 and Fig. 4 illustrate the 
degrading factor of the outage capacity for MS at different locations ( 0,6.0,8.0,= =θRRRr ) 
when N = 3 and N = 7, respectively, where the degrading factor is quantified as 
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The target outage probability is set to 1.0=ε . It is seen that when 01.0≤δ , the decrease of 
outage capacity is less than 5% for any r   and . Therefore, we select N 01.00=δ in (26) so that 
the effect of δ   is negligible. 

 



 
Fig. 3 Impact of δ  on the outage capacity ( 1.0=ε , 3=N ) 

 
Fig. 4 Impact of δ  on the outage capacity ( 1.0=ε 7, =N ) 

 

 



Fig. 5 Coverage radius of RS at different locations 

 

dB20= −λ  and the probability in (26) is Assume that the tolerable ISR of neighboring MS is 
1.0=ξ . The coverage radius of RS at different locations ),( θ ′′r  can be calculated following 

(30). Since the variation of  for different cR θ ′  is small, we simply approximate that the RS with 
the same ′  has the same coverage radius, which is set to r
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θ
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Fig. 5 illustrates the numerical results of the coverage radius for different r′   and cluster size N. 

It is seen that the coverage radius is increased with the decrease of r′   and the increase of N. 
Appropriate RS’ locations are selected according to Fig. 5 to cover the interference limited area. 
For example, assume that the interference limited distance threshold R8.0r0 = , i.e., all MS with 

  require the assistance of RS. If the cluster size N = 3, to maximize the coverage area 
and make sure that the cell boundary is covered, we deploy RS at 

Rr 8.0>
R9.0r =′ . The corresponding 

coverage radius is . To cover all the interference limited area, the required RS number 
is about 

RRc 1.0≈

⎤ 28=c⎡ 2/2 ′ Rrπ . If N = 7, we deploy RS at Rr 8.0=′  to make sure that the RS is in the 
interference-limited region. The corresponding coverage radius is about . The 
required number of RS is about 6. 

R45.Rc 0≈

 

Further, we illustrate the availability of the cognitive relay channel in cellular systems and its 
effect on the outage capacity. Assume that the number of channels allocated to each cell is 32. 
Fig. 6 shows the availability probability p   as a function of the loading factor ρ   with the 
activity factor 9.0=β  and Fig. 7 shows p    as a function of 1β  with =ρ . Different threshold 
distances for interference-limited operation ( RRRr ,7.0,6.0 8.00 = ) are considered. It is seen that 
p   is decreased with the increase of ρ , the increase of β   or the decrease of . The reason is 

that the increase of 
0r

ρ   and β   both reduce the opportunity to have vacant channels and the 
decrease of  increases the number of interference limited MS, which compete for the vacant 
channels. 

0r



 
Fig. 6 Cognitive relay availability probability vs. loading factor 

 
Fig. 7 Cognitive relay availability probability vs. activity factor 

 

Fig. 8 shows the outage capacity of MS at different locations in a cognitive-relay based cellular 
network as a function of the channel availability probability p. The cluster size is N = 3 and the 
outage probability 1.0=ε . As described above, we assume that the considered MS are in the 
coverage area of an RS so that the RS-MS link can be regarded as perfect, i.e., 0=δ . From Fig. 
8, we see that if the relay channel is always available, i.e., 1=p

0=p

, the cognitive relay improves 

the capacity of the MS at cell boundary by about three times compared with the system without 
relay, i.e., . The improvement is decreased with the decrease of p. However, even when p  
is decreased to 0.7, the improvement brought by the cognitive-relay based ICI cancelation still 
doubles the capacity of MS at cell boundary. 



 
Fig. 8 Outage capacity of MS with cognitive relay as a function of p 

 

Considering Fig. 6, Fig. 7 and Fig. 8, we conclude that the cognitive relay provides great 
opportunities to improve the capacity of cellular systems by mitigating the strong ICI near the 
cell boundary, especially for systems with relatively low traffic loads. 

 

Finally, we show the throughput performance of cognitive radio networks with different access 
protocols. Fig. 9 shows the total network throughput of  a TDMA/ALOHA networks. Since the 
secondary network will not impact the primary network, the employment of the cognitive radio 
increases the throughput of the overall network. Fig. 10 and Fig. 11 show the throughput of the 
primary network and secondary network in an ALOHA/ALOHA network, where the transmit 
power the primary users is 10 times larger than that of the secondary users. It is seen that the 
access of secondary users reduces the throughput network noticeably when the primary traffic 
load is high. Therefore, the ALOHA/ALOHA protocol is only suitable for cognitive radio 
network with a very low traffic load in primary networks.  

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Lb=3 Np=10 Ns=10,20,30 R=2

 

Traffic Load

Th
ro

ug
hp

ut

 

Theo S Ns=30
Siml S Ns=30
Theo S Ns=20
Siml S Ns=20
Theo S Ns=10
Siml S Ns=10
Theo TDMA S
Siml, TDMA S

 
Fig. 9 Total network throughput of TDMA/ALOHA cognitive radio network 



 
Fig. 10 Throughput of the primary network in an ALOHA/ALOHA network 

 

 
Fig. 11 Throughput of the secondary network in an ALOHA/ALOHA network 

POTENTIAL APPLICATIONS 
The proposed hybrid network with cognitive relay technique can be applied to various existing 
infrastructure networks, including commercial cellular networks and military networks to reduce 
the co-channel interference and improve the capacity. 

.  

PROJECT ASSESSMENT 
 

This subtask (Adaptive architecture and access protocols) consists of several research steps and 
components. 



 
1. QoS Comparison of different network architectures: We investigate and compare the QoS 

performance of infrastructure networks and ad hoc networks, as described in Section I.  
2.  Relay/cooperative communication across networks with different architectures: We 

proposed a hybrid network with cognitive relay. Specifically, an ad hoc relay network is 
deployed around the boundary of an infrastructure network to enable the cancellation of 
co-channel interference. The details are shown in Section II.1-3 

3. Interference Analysis and Avoidance: The interference between the primary 
infrastructure network and secondary ad hoc network is analyzed. The details are shown 
in Section II.4 

4.  Adaptive channel access protocols: We analyzed the throughput of cognitive radio 
networks with different access protocols. The details are shown in Section II.5. 
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Appendices 

Appendix A. Statement of Work 

Adaptive architecture and access protocols: 

This task will focus on the adaptive network architecture and access protocols with 
scalable QoS in the cognitive and network centric communication systems.  The 



multiple objectives include the real-time network selection, adjustment of network 
architectures, and access protocols and the cooperation between networks. Specific 
subtasks of this research are listed below.  

- Adaptive network architecture with scalable QoS: The contractor shall develop 
analytical models to characterize and classify network architectures, including 
infrastructure networks, ad hoc networks and mesh networks, for different QoS 
requirements and channel environments. Network selections and adaptive network 
reconfigurations will be investigated for different network architectures.  

- Relay/cooperative communication across networks with different architectures: 
They contractor shall develop multi-network relay protocols to realize 
relay/cooperative communication across networks with different architectures.  The 
contractor shall establish a model to analyze the performance of the multi-network 
relay, including utilization, delay, and reliability.  

- Adaptive channel access protocols: The contractor shall explore and compare 
various multiple access techniques, including CDMA, TDMA, OFDMA techniques, 
fix and random access protocols for different network architectures.  The coexistence 
problem of different access techniques resulted from different network architectures 
shall be investigated. Interference avoidance algorithms will be developed for access 
protocol designs. Interference modeling and modeling algorithms will be based on the 
research results from task of spectrum sensing and signal processing. 
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Abstract 
The broad deployment of wireless technologies has brought many opportunities to emerging 
ubiquitous services. In the mean while, in order for successful implementation of emerging 
ubiquitous services, new challenges are arising that need to be addressed. In this year’s work, we 
focused on the following research tasks: (1) we developed a service oriented trusted framework 
for regulating the access of the network information; (2) we designed and developed both a 
centralized architecture as well as a fully decentralized enforcement mechanism; and (3) We 
designed an on-node trusted component and developed a fully decentralized position verification 
mechanism, NORM, utilizing neighbor node observation in decentralized architecture. Further, 
in NORM, we developed three schemes, namely, Neighbor Examination (NE) scheme, Neighbor 
Verification (NV) scheme, and Neighbor Localization (NL) scheme, to perform position 
verification for location-based service access and help to enhance the node verification for secure 
access. Finally, we introduced the concepts of communal policies to enforce the proper access of 
the network information. This trusted ubiquitous service-oriented network architecture, which 
utilizes a policy-based approach to access the network information, can provide situation-aware 
services of different networks. 

1. Introduction 
The broad deployment of wireless technologies has brought many opportunities to emerging 
ubiquitous service. In addition, the rapid development in wireless technologies such as GPS, 
GSM, WiFi (802.11), and RFID have enabled a host of new service-oriented applications. This 
opens up the opportunities for using services from different devices in different situations. 
However, extensive deployment of service-oriented applications without safeguards may be 
dangerous if misused by adversaries. Thus, one of the main challenges in ubiquitous service is 
sharing the right resources with the right party at the right time. In particular, it is desirable to 
develop mechanisms, which provide safeguard and only allow the network resources to be 
accessed by the right party at the right time. 

We first developed a service oriented trusted framework for regulating the access of the network 
information. The proposed service oriented trusted infrastructure is generic and targets for any 
networks. We designed and developed both a centralized architecture as well as a fully 
decentralized enforcement mechanism. There are two phases in our access control model: 
verification and authorization. In a centralized architecture, a central server performs verification 
and authorization and stores the results in a centralized database, while in a decentralized 
approach, the verification and authorization are performed at each network device and the results 
are only available to the network device itself.  

We then proposed an on-node trusted component and developed the Neighbor ObseRvation 
Mechanism (NORM), which performs position verification for location-based network resource 
access and helps to enhance the node verification for secure access. The traditional approach for 
position verification is to use a centralized server that contains all the location information and 
can thus verify the position of the client. This kind of approach inherently introduces an issue 
related to the location privacy. And consequently, network devices may be tracked by the central 



 
Fig.1 Centralized architecture 

server. In addition, due to environmental constraints, the deployment of a central verification 
server is not always possible, especially in military tactical fields. As opposed to the traditional 
centralized location verification methods, we propose NORM, which is a decentralized 
mechanism to perform position verification based on the observation from the neighboring nodes 
of the client. NORM is a software component deployed in each node, and can assist information 
processing and position verification in autonomous systems. We investigate NORM under two 
adversarial models, a naive adversary and a sophisticated adversary model. We further develop 
three schemes, namely, Neighbor Examination (NE) scheme, Neighbor Verification (NV) 
scheme, and Neighbor Localization (NL) scheme, to detect the abnormal location caused by both 
adversarial models.  
Finally, we introduced the concept of communal policies to the service-oriented network architecture. 
In our proposed trusted framework, wireless devices must adhere to the communal policies when 
requesting services. We present trusted policies for communal access and regulations over the 
service-oriented architecture. We also describe the policy formalism for accessing the ubiquitous 
services. 

2. Approach Taken 
2.1 Task 1: Development of a Trusted Infrastructure for Regulating the Access of the 
Network Information 
We present an overview of our service oriented trusted infrastructure, which targets for any 
wireless networks. We first present a centralized architecture for network information access 
control. We then turn our focus to a decentralized policy enforcement approach. In our model, 
the information access control involves two phases, verification and authorization. The 
verification phase performs authentication of the client, i.e., the wireless device requests the 
location information. The location-based access of the network information will then be 
authorized based on communal policies.  

Centralized Architecture: In a centralized approach, the wireless localization is performed in a 
central server. The localization process is conducted continuously and the results are stored in 
the database as depicted in Figure 1. In the area of interest, the base stations will report the signal 
readings of a wireless device back to a localization server. The localization server contains solver 
that has the data processing and analysis capabilities to estimate the positions of wireless 
devices. A management entity, namely the Access Control Manager (AC Manager), performs 
verification and authorization before accessing the information stored in the database. The AC 



 
Fig. 2 Decentralized architecture. 

Manager can reside within the localization server as shown in Figure 1 or operate separately in a 
centralized manner but can access the database remotely. A set of access control rules will be 
disseminated and stored in the AC Manager.  
As illustrated in Figure 1 when a wireless device MA wants to obtain the information of another 
wireless device MB, first it sends a request message to the AC Manager with its ID and current 
position. As evidenced by the numerous possible security threats due to node ID compromise or 
identity based spoofing attacks [1], we note that it is not enough to verify a wireless device just 
based on its node ID. However, the position information is relatively harder to falsify without 
being detected. The advantage of the centralized architecture is that it can easily prevent identity-
based attackers from accessing the information by comparing to the complete position 
information stored in the central database. If a match is found, then the wireless device MA is 
authenticated. Next, based on the verification status, the AC Manager consults with the access 
control policies stored in the rule set and decides whether to send the exact information as 
requested (e.g., the real coordinates of the position) or adjust the resolution of the information 
(e.g., the room or floor level location resolution is returned.). 
One drawback of the centralized approach utilizing AC Manager is that the server contains all 
the information and inherently introduces an issue related to the user’s privacy. Consequently, 
wireless devices may be tracked by the central server. Next, we present our decentralized policy 
enforcement for location access control, which achieves user location privacy by not requiring 
interaction between a wireless device and a central server. 

Decentralized Architecture: In order to build a decentralized infrastructure, wireless devices 
are equipped with the localization capability. Various localization methods can be applied in the 
solver. One simple approach is to use the multilateration strategy. When a wireless device 
collects signals from three or more base stations, it can position itself by applying the 
multilateration calculation [2]. The location information will then be stored in the database 
within the wireless device. As shown in Figure 2 the functionalities of information access control 
will be distributed to each wireless device, which forms a decentralized trusted computing base. 
The access control policies will be disseminated to each wireless device and examined by the AC 
Manager that resides in each wireless device. Although we use the same name AC Manager, we 
replace the central entity of AC Manager with a distributed set of AC Managers. Structurally, all 
these AC Managers are generic, support the same set of communal policies, and all must be 
trusted to interpret correctly any rules they might operate under.  



 
Fig. 3 Decentralized enforcement via AC Manager's trusted computing module 

The access control policies need to be supported by enforcement mechanisms local to the 
wireless devices. It is therefore necessary to develop an on-node trusted computing base in each 
wireless device that enforces the policies. As depicted in Figure 3, the AC Manager implements 
the trusted component in each wireless device. It contains several logical components including 
verification, authorization, and rule set. Conceptually, the AC Manager can be viewed as a 
safeguard when the request first coming in. 
When a wireless device receives a request for information, the AC Manager on the wireless 
device performs verification, which is the same as in the centralized approach. However, in the 
decentralized enforcement, the AC Manager does not have a central database that can be used to 
verify the client’s ID and position. Instead of introducing the traditional cryptographic 
authentication methods on the wireless device [3], [4], we focus the node verification based on 
its location and propose a node location verification mechanism, Neighbor ObseRvation 
Mechanism (NORM), which utilizes observations from neighboring nodes, to enhance the 
identity based authentication methods. Next, the AC Manager evaluates the request along with 
the verification results and checks it against the access control policies stored in the rule set. If 
the client's credentials don’t permit the privilege level of the request, then the AC Manager will 
either try to find a permissible modification of the request that adapts to the access control policy 
and authorize the access of the granted location information, or reject the request if such a 
modification is not feasible.  
2.2 Task 2: Neighbor ObseRvation Mechanism (NORM) 
NORM is a software component deployed in each node. Comparing to prior position verification 
techniques[5,6], the main advantage of NORM is that it does not require special hardware, 
deployment knowledge, or a central verification center. NORM performs position verification of 
a node in a fully distributed way, depending on the spatial consistency relationship inherited 
between a node and its neighbors. We next describe three detecting schemes we developed in 
NORM. For illustration purpose, we use the example when a node SB needs to verify the reported 
location of the node SA. 



 
Figure 4: Illustration of two adversarial models: a naive adversary and a sophisticated 
adversary model. 

Adversary Model: In our work, we consider two adversarial models, a naive adversary and a 
sophisticated adversary model. In both models, the adversary claims the position of the 
compromised at P, while its true position is at P0, As shown in Figure 4, the compromised node 
SA’s true location is at P0, but the adversary claims its position is at P. 

For a naive adversary, it either sends an arbitrary neighbor list or reports neighbors of the 
compromised node consistent with their reported location P. Whereas for a sophisticated 
adversary, it reports the true neighbors around the compromised sensor’s true position P0 to trick 
the system. For instance, in Figure 4, the naive adversary at the node SA reports P as the position 
of SA and sends nodes {S5, S6, S7, S8, S9} around location P as neighboring nodes of SA, whereas 
the sophisticated adversary sends the true neighbors of SA, {S1, S2, S3, S4}, around location P0. 

If a node is compromised, it will not respond to any verification requests for confirming the 
observation of other nodes. Further, we define an Anomaly Distance (AD) as the distance 
between the reported location and the true location (i.e. AD = ||P−P0||). We want to design 
position verification schemes that can detect the abnormal location when AD exceeds certain 
distances. 
Neighbor Examination (NE) Scheme: The NE scheme performs position verification based on 
the direct response from neighbors of the node under verification, i.e., SA. The node SB issues a 
special verification request to each neighbor, Si, with i = 1, 2, ...N (N is the total number of 
neighbors), reported in the neighbor list of the client SA, and asks whether it has SA in its 
neighbor list. When the Si receives the request, if Si has SA in its neighbor list, Si confirms and 
reports its current position Pi back. If Si is compromised by the adversary, based on our adversary 
model, Si will keep silent and does not respond. We then define the neighbor examination 
probability Pex as  
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N
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=
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where K is the total number of neighbors that responds to the request from SB. If  Pex > α  where 
α is the confidence level, SB determines that SA passes the neighbor examination. A naive 
adversary, who sends an arbitrary neighbor list or reports neighbors around location P when 
lying about the location of the compromised node, will thus result in Pex < α and fail the neighbor 
examination scheme. 



 
Figure 5: Illustration of the Neighbor Localization (NL) scheme. 

Neighbor Verification (NV) Scheme: Like in the NE scheme, SB first issues a special 
verification request to each neighbor, Si with i = 1, 2, ...N, reported in the neighbor list of the 
client SA, and asks whether it has SA in its neighbor list. When the node Si receives the request, if 
Si has SA in its neighbor list, Si confirms and reports its current position Pi back. Based on the 
reported positions of the responded neighbors, SB then needs to conduct further neighbor 
verification. Given that the neighboring nodes of SA must be within the communication range RA 
of SA, the distance between the estimated locations of SA and its neighbor ||PA − Pi|| should be 
within RA for an honest node. SB could complete the position verification of SA if ||PA − Pi|| < RA 
for all i = 1...K.  
However, since there are localization errors from the location estimation process, we define  

||PA − Pi|| < RA + r, 
where r is a random variable introduced by localization errors. We may assume localization 
errors are Gaussian. Under this assumption, r also follows a Gaussian distribution with mean µ 
and variance σ. Thus the probability that PA and Pi are neighbors is given by 

Pr(Pi) = Pr(r > (||PA − Pi|| − RA)) = 1 − F(||PA − Pi|| − RA), 
with F(r) as the Cumulative Distribution Function of r, 
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Further, we define the neighbor verification probability Pve, which is the joint probability that all 
Pi, i = 1...K, are the neighbors of PA as: 
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We then set a confidence level β such that if Pve >β, we declare that SA passes the Neighbor 
Verification scheme. Otherwise, the reported location information of SA is declared as 
compromised. 

Neighbor Localization (NL) Scheme: The NL scheme utilizes the location of SA’s neighboring 
nodes to estimate the position of SA and further to verify the reported position of SA. The 

estimated position P
!

 of SA  is expressed as: 
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where K is the total number of responded neighbors to SB, (Xi, Yi) is the position of the ith 
neighbor. Under the normal situation, the distance between the node SA’s true location P0 and the 



estimated location P
!

 from NL scheme should be small [11, 12]. However, if SA is compromised, 

the distance between the reported location P of SA and P
!

 should be large. 

As illustrated in Figure 5, the distance between P0 and P
!

is much smaller than the distance 

between P and P
!

. Therefore, we define a Maximum Tolerable Distance (MTD) as the threshold 

of declaring the abnormal location in NL scheme. In particular, let D = ||P - P
!

||. If D > MTD, 
NL scheme declares the location reported by SA is compromised. 
 
2.3 Task 3: Authorization and Policy Formalism 
In our proposed trusted framework, wireless devices must adhere to the communal policies when 
requesting information/service. In this section, we present the main functionality of the AC 
Manager to perform authorization, which evaluates the policy and authorizes the access of the 
location information. We also describe the policy formalism for accessing the 
information/service. 
The AC Manager implements three main functionalities, namely Matching, Adaptation, and 
Application. First, AC Manager matches the request to the rule set. A location request may 
satisfy one or more policies in the rule set. The AC Manager will then return the information 
based on the matching that provides the finest granularity of the information/service that is 
permitted according to the client’s credentials. 

However, if the client’s credentials do not permit the privilege level of the request. For example, 
if MA requests for point-level location information of MB, but its credentials only allows it to 
access the room-level location information of MB based on current policies. The AC Manager 
modifies the request to adapt to the access control policy and authorize MA to access the room-
level location information of MB. On the other hand, the available information may be in a finer 
granularity than the location request. One example is that MA only needs to know at which floor 
that MA is located. The AC Manager could then reduce the spatial accuracy, protect the location 
privacy, and meet the requirement of the location request. Finally, if an adaptation is not feasible, 
the location request is rejected at the authorization phase. 
Moreover, the application function is used to impose the usage of the information/service 
returned to the client. Two important aspects are: retransmission and retention. The application 
of retransmission defines whether the client is permitted to share the obtained information with 
other wireless devices. Retransmission aims to prevent unauthorized usage of the 
information/service. Whereas the application of retention defines the duration that the returned 
information is valid. Further, in order to prevent frequent location requests from the same client, 
which may be used to derive the moving track of a wireless device, the AC Manager keeps a list 
of the clients and records their request time as part of the application function.  
Turning to examine the policy formalism, the wireless devices should be able to interpret the 
policies and update them as needed. Hence, policies should be expressed in an easy to 
understand manner and can facilitate rule integration, consistency checking and conflict 
resolution. 



 
Figure 6: Prototype: system components in the centralized approach. 

3. Results 
3.1 Trusted Infrastructure for Regulating the Access of the Network Information 
To evaluate the feasibility of our centralized architecture for policy enforcement, we integrated 
the AC Manager into a real-time indoor localization system [7]. The system components for the 
prototype is shown in Figure 5. During the localization process, a wireless device sends packets. 
Some number of Landmarks (i.e., traffic observers or base stations) observe the packets and 
record the RSS (Received Signal Strength) readings. Each landmark forwards the observed RSS 
from the wireless device to the Server. The Server collects the complete RSS vector for the 
wireless device and sends the information to a Solver instance for location estimation. The 
Solver instance performs the localization and returns the location estimate of the wireless device 
back to the Server. The Server stores the location estimate to the database and displays it in GUI. 

When a wireless device sends a request to the Server to access the location information of 
another wireless device, the AC Manager performs verification and authentication before 
granting the access to the location information. Once the AC Manager grants the access, the 
requested location information is fetched from the database and sent back to the client device. 
We prototyped the centralized approach in both a 802.11 (WiFi) network as well as a 802.15.4 
(ZigBee) network in a real office building environment. 

 
3.2 Simulation Results of Neighbor ObseRvation Mechanism (NORM) 
In our simulation setup, we deploy 200 to 500 sensors randomly in a 350m × 350m square field. 
The communication range of the node is modeled to follow a Gaussian distribution with mean at 
30m and standard deviation as 2m. Under this setup each node can observe average number of 
neighbors ranging from 4 to 11. Further, we simulate the localization error of a node by 
modeling the localization errors of the X and Y coordinates to follow a Gaussian distribution with 
zero mean and standard deviation of 3m. This corresponds to the localization error with a median 
of 3m and can range from 0 to 11m, which is inline with previous experimental findings [8-10]. 



 
Figure 7: Naive Adversaries: Receiver Operating Characteristic (ROC) curve for impact of 

anomaly distance. 

 
Figure 8: Sophisticated Adversaries: Receiver Operating Characteristic (ROC) curve for 

impact of Anomaly Distance. 

We then randomly choose nodes that are compromised by adversaries. The default percentage of 
compromised nodes is set to 0.1. Based on our adversary model, a compromised node will keep 
silent when receiving special verification requests. To evaluate the effectiveness of NORM, we 
vary Anomaly Distance (AD), percentage of compromised nodes, network density and 
localization error in our simulation study. 

Impact of Anomaly Distance (AD): Figure 7 presents the Receiver Operating Characteristic 
(ROC) curve under various Anomaly Distance (AD) when the Neighbor Examination (NE) 
scheme is used to detect abnormal locations caused by naive adversaries. We observed that NE 
scheme can achieve detection rates over 95%when the FPR is less than 10%. For the case of AD 
= 25m, which is less than the average communication range (i.e., 30m) of nodes, the detection 
rate (DR) is above 90% when the FPR reaches 5%. Further, the detection rate achieves 99%when 
the false positive rate is 5%for the case of AD = 40m. Moreover, we found that the larger the AD 
is, the higher the detection rate can achieve. Specifically, by examining the condition of False 
Positive Rate( FPR) = 0.05 the detection rate increases from 91% to over 99% when AD 
increases from 25m to 40m.  
Figure 8 presents the ROC curves under various Anomaly Distance when NV and NL schemes 
are used respectively to detect the abnormal locations caused by sophisticated adversaries. Both 
NV as well as NL schemes present similar detection performance to NE scheme when AD ranges 
from 25m to 40m: the detection rate increases with the increasing of the Anomaly Distance. In 
particular, the detection rates are above 92% when the FPR is 5% for both NV and NL schemes 



 
Figure 9: Impact of network density. 

under the case of AD = 25m. The detection rates are close to 100% when the FPR is 5% for both 
NV and NL schemes under the case of AD = 40m. This indicates our position verification 
schemes are effective in detecting abnormal locations caused by both naive as well as 
sophisticated adversaries. We further observed that NV scheme outperforms NL scheme when 
FPR is below 5%, whereas NL scheme outperforms NV scheme when FPR is above 5%. 
Therefore, we can choose proper detection schemes according to the application tolerance to the 
false positive rate. 

Impact of Network Density: By varying the number of nodes from 200 to 500 in our simulated 
networks, we evaluated how the network density impacts the performance of NORM. In this 
setup, each node can observe in average 4 neighbors for the deployment of 200 sensors and 11 
neighbors for the deployment of 500 sensors in the network respectively. Figure 9 presents the 
detection rate versus number of nodes under all three schemes. We observed that the detection 
rate increases with the increasing of network density. In particular, when the number of sensors 
increases from 200 to 500, the detection rate increases from 85% to 98% for NV scheme, from 
90% to 99% for NE scheme and from 83% to 98% for NL scheme respectively, under the 
condition of FPR less than 10%. Further, we found that NV scheme outperforms NL scheme 
when the number of sensors is small (e.g. 200), whereas the NL scheme outperforms NV scheme 
when the number of sensors is large (e.g. 500). Since NL scheme relies on positions of neighbors 
to estimate the location of a node, the denser the network, the more accurate the position 
estimation can become and thus the higher detection rate NL scheme can achieve. Hence, based 
on different network density, we can choose different schemes to perform position verification. 
Impact of Percentage of Compromised Nodes: We vary the percentage of compromised nodes 
in the network to evaluate the robustness of NORM when large number of nodes is compromised 
in the network. Figure 10 presents the relationship between the detection rate and the percentage 
of compromised nodes. The false positive rate is set at 10% and the Anomaly Distance equals to 
30m. 



 
Figure 10: Impact of Percentage of Compromised Sensor Nodes in Network. 

 
Figure 11: Impact of Localization Error of Sensor Nodes. 

As shown in Figure 10, the detection rates of the three schemes drop gradually from above 
98%to 80%as the percentage of compromised nodes increases from10%to 60%. A key 
observation of this experiment is that the performance of NORM is still over 80% even when the 
percentage of compromised nodes is extensively large (i.e. 60%), which indicates that NORM is 
robust in detecting abnormal locations under the situation when large number of nodes are 
compromised. 

Impact of Localization Error of Nodes: We further examine how the localization error can 
impact the performance of NORM. In this experiment, we vary the standard deviation of the 
localization error of the X and Y coordinates of a node from 1m to 5m. We note that 1m standard 
deviation corresponds to a mean localization error of 1.3m, whereas 5m standard deviation 
corresponds to a mean localization error of 6.3m. The Anomaly Distance is maintained at 30m 
and the false positive rate is set to 5% and 10% respectively. 

Figure 11 presents the detection rates of all three schemes versus the standard deviation. We 
observed that overall the detection rates are decreasing when the localization error is increasing 
for all three schemes. And the detection rates of NL and NV schemes can approach 100% no 
matter the FPR is 5% or 10% when the mean localization error is around 1.3m with a 
corresponding standard deviation of 1m. Interestingly, we found that NE scheme is not as 
sensitive as NV and NL schemes to the localization error. Specifically, the decreasing of the 



detection rate of NE schemes is about 1%, whereas it is 4% for NL scheme and 8.5% for NV 
scheme when the mean localization error ranges from 1.3m to 6.3m. This is because NE scheme 
does not use the positions of nodes (i.e. neighboring nodes) directly, and thus the performance of 
NE scheme is more stable under various localization errors than other schemes that rely on the 
positions of nodes. 
3.4 Policy Formalism 
The following are two examples of rules to access the location information specified in plain 
English. The pseudo code implementation of R1 is presented in Figure 12.  

•Rule 1: (1) allow access to both the current as well as the past 30 minutes location 
information, (2) the location accuracy is at room-level, (3) the location information is 
forbidden to be shared with other devices once obtained by a client device,  (4) the 
location information is valid for 60 minutes, and  (5) the access frequency of the location 
information is 30 minutes. 

 
• Rule 2: (1) allow access to the current location trace and the duration of the trace is 1 
hour, (2) the location accuracy is at point-level, (3) the location information is allowed to 
be shared with other devices once obtained by a client device, (4) the location 

 
Figure 12: Pseudo code implementation of Rule 1. 



information is valid forever, and (5) the access frequency of the location information is 2 
hours. 

 
Figure 12 illustrates how the AC Manager performs authentication in terms of matching, 
adaptation, and application. To enforce Rule 1, Matching() is used to apply the room-level 
resolution, and Adaptation() adapts the location information from the point level to the room 
level. Finally, Application() enforces the usage of the location information with retransmission 
and retention setting to FORBIDDEN and 60 minutes respectively.  

3.5 Demonstration 
Figure 13 and 14 present the screen captures of our demonstration of a simulated ubiquitous 
service-oriented architecture by using communal policies. Figure 13 shows the service request 
and response of a soldier, while Figure 14 shows the service request and response from a 
commander. We can see that the commander who has a higher privilege is allowed to access all 
kinds of networks, whereas a solider can only access the legacy networks.  



  
(a) Commander                              (b) Commander, Returned Results 

Figure 14: The service request and response from a commander 

 

 
(a) Soldier in Region A                    (b) Soldier in Region A, Returned Results 

Figure 13: The service request and response of a soldier 

 

4. Potential Applications 
The proposed ubiquitous service-oriented architecture is flexible and scalable, and can be applied 
potentially in various Army applications using wireless networks to support Army’s net-centric 
warfare environments.  

5. Project Assessment 
Our work in this year has met the SOW objectives. The following is the related publications for 
our subtasks: 

• Yingying Chen, Konstantinos Kleisouris, Xiaoyan Li, Wade Trappe, Richard P. 
Martin, "A Security and Robustness Performance Analysis of Localization 
Algorithms to Signal Strength Attacks," ACM Transactions on Sensor Networks 
(ACM TOSN), Volume 5, Issue 1, February 2009. 



• Yingying Chen, Jie Yang, Xiuyuan Zheng, Venkataraman Swaminathan, "NORM: A 
Decentralized Location Verification Mechanism for Wireless Sensor Networks", in 
Proceedings of 26th Army Science Conference, Orlando, FL, December 2008. 

• Yingying Chen, Jie Yang, Fangming He, "A Trusted Infrastructure for Facilitating 
Access Control Location Information", in Proceedings of IEEE MILCOM, San 
Diego, CA, November 2008. 
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Appendices 

Appendix A: Statement of Work 
 
Task 1.3 Ubiquitous service oriented network architecture 
This task aims to design and develop a ubiquitous service-oriented network architecture that can 
provide situation-aware services of different networks. This research task proposes a trusted 
service-oriented network architecture which utilizes a policy-based approach to access the 
network information.  
 

1.3.1. Formalizing communal policies: to provide situation-aware services in ubiquitous 
computing, we propose a layered trusted architecture with service layer, virtualization layer 
(integrated network service layer), and data layer. We will develop algorithms and trusted 
policies for communal access and regulations over the service-oriented architecture. The access 
control policies will be prototyped in the central processing manager, sensor nodes (e.g. motes), 
and cognitive devices. 
 

1.3.2. Development of a graphical user interface (GUI) and backend integration: We will develop 
a friendly GUI to demonstrate the usage of the trusted framework prototype with the 
implementation of communal policies at back end. The GUI needs to be integrated with the QoS 
network architecture layer and the spectrum sensing layer to get real-time feeding of data.  
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