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Abstract 
Localization of mobile sensors such as service robots in tactical mobile sensor networks is 
important because the location of mobile sensors is a critical input to many higher-level tasks, 
such as intruder detection, tracking, monitoring and geometric based protection. In this year’s 
work, we focused on the following research tasks: (1) we developed and deployed a prototype 
of the localization system in the ECE Dept. at Stevens for both 802.11 (WiFi) networks as well 
as 802.15.4 (ZigBee) networks to localize the mobile sensor nodes; (2) we investigated the 
performance of wireless localization using signal strength on commodity hardware embedded in 
mobile robots. Our work relies on trace-driven analysis using an extensive experimental 
infrastructure; (3) we developed a technique to detect the co-moving transmitters through 
similarities of the received signals; and (4) we investigated to perform initial intrusion detection 
using signal variations.  

 

1. Introduction 
Technology trends have reduced the cost of wireless networking to the point where it can be 
added to nearly every computing device, such as the mobile robot. Indeed, wireless networking 
devices include laptops, PDAs, small sensors, active RFID tags, and even cameras and printers. 
The inclusion of wireless networking in such a broad range of devices opens an opportunity for a 
new computing service: positioning devices in physical space. A generic service of this kind 
would enable a host of additional applications, ranging from such diverse areas as asset 
management, disaster recovery, inventory tracking, geometry-based routing, and perimeter-based 
security. Using the same wireless traffic for both communication and positioning would provide 
tremendous cost and deployment savings over an independent localization infrastructure. 

We developed and deployed a prototype of the localization system in the ECE Dept. at Stevens 
for both 802.11 (WiFi) networks as well as 802.15.4 (ZigBee) networks to localize the mobile 
sensor nodes. Our localization system works with anchor-based approach. The service robots 
and sensors will be localized by a localization server, which responses to report the position 
information periodically to the service robots.  

Recent years have witnessed the development of a plethora of localization techniques. Compared 
to various physical properties of radio signal, such as Time of Arrival (ToA), Time Difference of 
Arrival (TDoA), Angle of Arrival (AoA), using the Received Signal Strength (RSS) [1]–[3] is an 
attractive approach to perform localization since it can reuse the existing wireless infrastructure 
and presents a tremendous cost savings over deploying localization-specific hardware. Therefore, 
we investigated the performance of wireless localization using signal strength on commodity 
hardware embedded in mobile robots. Our work relies on trace-driven analysis using an 
extensive experimental infrastructure based on our deployed localization system.  

Many location-aware applications benefit from higher level information about the movements of 
robots and sensors. One instance of such higher-level information is co-movement, which 
describes whether a set of mobile sensors are moving together on a common path. Co-movement 



information could be used to infer containment relationships and help to track multiple mobile 
sensors. In our work, we conducted initial investigation of detecting co-movement through 
correlated signal variations over time rather than directly measuring the signal difference 
between two transmitters. Moreover, we exploit Received Signal Strength (RSS) obtained from 
the existing wireless infrastructures for performing intrusion detection when the intruders or 
objects do not have any radio devices attached to them.  

2. Approach Taken 
2.1 Task 1: Localization System Prototype 
Our localization system prototype is designed with fully distributed functionality and easy to 
plug-in localization algorithms [4]. It is built around 4 logical components: Transmitter (robots 
or sensors), Landmark, Server, and Solver. The system architecture is shown in Figure 1.  
 

 
 
Robot: Any robots equipped with RF device can be localized. Often the application code does 
not need to be altered on a sensor node and robot in order to localize it. 
 
Landmark (Anchor): The Landmark component listens to the packet traffic and extracts the 
RSS reading for each robot or sensor. It then forwards the RSS information to the Server 
component. The Landmark component is stateless and is usually deployed on each landmark or 
access point with known locations. 
 
Server: A centralized server collects RSS information from all the Landmark components. The 
spoofing detection is performed at the Server component. The Server summarizes the RSS 
information such as averaging or clustering, then forwards the information to the Solver 
component for localization estimation. 
 
Solver: A Solver takes the input from the Server, performs the localization task by utilizing the 
localization algorithms plugged in, and returns the localization results back to the Server. There 

 

Figure 1: Localization testbed system components. 



are multiple Solver instances available and each Solver can localize multiple transmitters 
simultaneously. 

During the localization process, the following steps will take place: 
1. A robot sends a packet. Some numbers of Landmarks observe the packet and record the RSS. 
2. Each Landmark forwards the observed RSS from the transmitter to the Server. 
3. The Server collects the complete RSS vector for the transmitter and sends the information to a 
Solver instance for location estimation. 
4. The Solver instance performs localization and returns the coordinates of the transmitter back 
to the Server. 
 
If there is a need to localize hundreds of robots or sensors at the same time, the server can 
perform load balancing among the different solver instances. This centralized localization 
solution also makes enforcing contracts and privacy policies more tractable. 
 

2.2 Task 2: Localization Algorithms   
2.2.1 Lateration Based Algorithms 
Lateration-based algorithms [5-7], explicitly model the signal-to-distance effect on RSS. They 
estimate the position of the transmitter by measuring the distance to multiple anchors (i.e. access 
points). There are two phases in RSS-based lateration methods: the off line training phase and 
the runtime localization phase. During the off line training phase, RSS samples are collected at 
various known locations from multiple access points and distances are calculated from the 
known locations to anchor. The measured RSS readings and distances are then used to fit the 
signal propagation model based on the signal to distance relationship. During the runtime 
localization phase, there are two steps: ranging step and lateration step. In the ranging step, 
according to the measured online RSS from the wireless device and the fitted signal-to-distance 
relationship, the distances between the wireless device and multiple access points can be 
estimated. In the lateration step, we can estimate the location of the device according to 
estimated distances based on least squares methods. 

Non-Linear Least Square (NLS): Given the estimated distances di and known positions (xi, yi) 
of the ith access points, the position (x, y) of the wireless node can be estimated by finding 
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where N is the number of access points that used to estimate the location of the wireless node. 
Non-linear least square can be viewed as an optimization problem where the objective is to 
minimize the sum of the error square. 



 

 
Figure 2: A simple Bayesian graphical model 

Linear Least Square (LLS): The LLS is an approximation of NLS solution. It linearizes the 
NLS problem by introducing a constraint in the formulation and obtains a closed form solution 
of location estimation. Compared with NLS, LLS has less computational complexity. The 
location of the wireless device can be obtained by solving the form Ax = b with: 

where A is only described by the coordinates of access points, b is represented by the distances to 
the access points together with the coordinates of access points and x is the estimated location of 

wireless device. Thus, the estimated location ( , )x y
! !

 of the wireless device is given by x = 
(ATA)−1ATb. 

Bayesian Networks (BN): BN localization is a machine learning based algorithm that infers the 
distribution of the coordinates of the targeted node. It uses the Bayesian Graphical Model to 
encode the signal-to-distance relationship for localization [8]. Figure 2 shows the basic Bayesian 
Network used for our study. The vertices X and Y represent a location in a two-dimensional 
space; the vertex si is the RSS reading from the ith access point; and the vertex Di represents the 
Euclidean distance between the location specified by X and Y and the ith access point. The value 
of si follows the log-distance propagation model si = b0i + b1i *logDi, where b0i, b1i are the 
parameters specific to the ith access point. The distance Di = p(X − xi)2 + (Y − yi)2 in turn 
depends on the location (X, Y) of the measured signal and the coordinates (xi, yi) of the ith access 
point. The network models noise and outliers by modeling the si as a Gaussian distribution 
around the above propagation model, with variance τi: si ~ N(b0i + b1i *logDi, τ i). The initial 
parameters (b0i, b1i, τ i ) of the model are unknown, and the training data is used to adjust the 



specific parameters of the model according to the relationships encoded in the network. In 
general, there is no closed form solution for the returned joint distribution of the (X, Y) location. 
We use a Markov Chain Monte Carlo (MCMC) simulation approach to draw samples from the 
joint density. BN returns the sampling distribution of the possible location of X and Y as the 
localization result. 
2.2.1 Classification Based Algorithms 
Classification algorithms (i.e. matching algorithms), do not rely on a model of signal strength 
and distance relationship. Rather, they match RSS observations against an existing signal map. 
The term classification, as used in the machine learning sense, implies that the goal of the 
classifier is to map a potentially large input space into a much smaller space of labels. In the case 
of localization, the labels are a set of discrete (x, y) locations. 
RADAR: The RADAR algorithm is a classic scene-matching localization algorithm [1]. 
RADAR requires a signal map, which is a set of fingerprints with known (x, y) locations. Given a  
fingerprint with an unknown location, i.e., one to localize, RADAR returns the x, y of the closest 
fingerprint in the signal map to the one to localize, where “closest” is defined as the Euclidean 
distance of the fingerprints to each other in a N-dimensional “signal space” with N access points . 
That is, it views the fingerprints as points in an N-dimension space, where each access point 
forms a dimension, and returns the corresponding x, y of the closest point. 

Gridded-RADAR (GR): GR is an improvisation over RADAR where measurement area is sub-
divided into a regular grid and the signal map provided in the offline phase is interpolated over 
the entire grid. The online phase is similar to RADAR with the exception that the “closest” 
fingerprint in signal space is chosen from the interpolated signal map. This approach has an 
advantage of obtaining a much finer-grained resolution as the regions which are not covered by 
the signal map can also be returned as location estimates. 

ABP: Area Based Probability (ABP) utilizes an Interpolated Map Grid (IMG) to interpolate the 
signal map to cover the entire experimental floor. The floor is then divided into a regular grid of 
equal sized tiles. Because direct measurement of the fingerprint for each tile is expensive and 
prohibitive for fine-grained tiles, we use an interpolation approach. The goal of using an IMG 
fitting is to derive an expected RSS fingerprint for each tile from the data set that would be 
similar to an observed one. 

ABP returns a set of tiles bounded by a probability that the mobile device is within the returned 
tile set. The probability is called the confidence and it is adjustable by the user. ABP assumes the 
distribution of RSS for each landmark follows a Gaussian distribution with mean as the expected 
value of RSS reading vector s. The Gaussian random variable from each access point is 
independent. ABP then computes the probability of the mobile device being at each tile Li, with i 
= 1...L, on the floor using Bayes’ rule:  
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normalizes the probability and returns the most likely tiles/grids up to its confidence α [9]. In 



order to normalize for accuracy and stability results, we select the tile with the median 
localization error from the tile set. 

2.3 Task3: Detecting Co-Moving Wireless Devices 
The environment in which wireless communication takes place affects the received signal power 
(or signal-to-noise ratio). The key idea underlying our technique is exploiting shadow fading, 
signal attenuation due to objects blocking the path of communication. Two transmitters, such as 
the RF device embedded in mobile robots, in close proximity will be similarly affected by 
surrounding buildings, furniture, or passing people. Therefore, the observed signal power from 
these transmitters should be correlated. This similarity in signal strength in turn should also 
translate to correlations in localization errors. 

Our technique captures these similarities by calculating the correlation coefficient over a time-
series trace of signal strength or location coordinate values. The correlation coefficient measures 
the strength of a linear relationship between two random variables. Thus the correlation 
coefficient captures similarities in the changes of two values, even if the absolute values are 
different. Our method uses the Pearson’s product moment correlation coefficient [10], a 
preferred method for quantitative measures such as the RSSI traces used. For n samples each 
from two random variables X and Y , it is defined as  
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where Sx and Sy are the sample standard deviations. The correlation coefficient lies in the interval 
[−1, 1], where 0 indicates no correlation, +1 indicates maximum positive correlation, and -1 
indicates maximum negative correlation. We empirically determined a correlation coefficient 
threshold of 0.6; values that exceed this threshold indicate co-movement. 

Received signal strength, however, also significantly varies due to multi-path fading. It can 
introduce received signal strength changes of more than 20dB between locations separated only 
by half the wavelength of the carrier frequency, if no line-of-sight path to the transmitter is 
available. These variations render the similarities due to shadow fading difficult to detect. To 
address this challenge, our method calculates a moving average over signals, which acts as a 
low-pass filter to reduce or remove multi-path effects. Movement also helps detection of shadow 
fading similarities, because co-moving transmitters will experience received signal strength 
changes due to shadowing at similar points in time (e.g., two co-moving transmitters would pass 
a building corner at the same time). In our prototype, we have implemented our technique by 
monitoring the RSSI indicators reported for each packet reception by the receiver. RSSI has been 
shown to be a good indicator of channel quality; hence it should provide adequate information 
about fading patterns. RSSI is also available across all wireless technologies, which allows 
measuring co-movement across different transmitters.  
2.4 Task 4: Initial Intrusion Detection Using Signal Strength 
Although the radio signal is affected by reflection, refraction, shadowing and scattering, the RSS 
at wireless devices should be relatively stable if there is no movement or changes in wireless 
environments. On the other hand, the wireless environment will be affected if there is a presence 
of intrusions, for instance, an intruder standing or walking in a wireless environment will absorb, 
reflect, and diffract some of the transmitted power. Consequently, the RSS at wireless devices 



  
    (a)                                                              (b)  

Figure 4: Error CDF across algorithms in two different indoor environments. 

will be impacted and results in changes of RSS values. Therefore, based on the changes of RSS 
at wireless devices, it is possible to detect intrusion in wireless environments. 

3. Results 
3.1 Localization System Prototype 
A key contribution of the proposed localization system is its universal approach: it will integrate 
different hardware and software capabilities within a single localization framework. Moreover, 
we found that a centralized solution has critical advantages that are often overlooked in the 
literature. First, it makes cleaning and summarizing the traffic observations much easier. Second, 
it enables a variety of additional services, such as attack detection and tracking, to utilize the 
same underlying localization system. Finally, we believe that centralization makes enforcing 
contracts and privacy policies tractable. However, we will leave open the issues of privacy 

contracts and policy enforcement as future work. Figure 3 shows the localization testbed and the 
interface of the localization system. 

 
(a) System testbed                                        (b) Localization results on GUI 

Figure 3: Localization testbed and the GUI interface of the localization system  



 
Figure 5: Effectiveness of our method in terms of detection rate and false positive rate. 

 
3.2 Localization Results across Algorithms 
Figure 4 shows the localization performance of the algorithms for two different office buildings. 
For the ABP algorithms, the median tile error is presented, as well as the minimum and 
maximum tile errors. As in previous work, the algorithms all obtain similar performance, with 
the exception of BN which slightly under-performs the other algorithms. 

 

3.3 Initial Results of Detecting Co-Moving Wireless Devices 

To evaluate the performance of our approach, we examined the detection rate and the false 
positive rate of determining the co-mobile transmitters. Figure 5 depicts the detection rate and 
the false positive rate as a function of time with respect to each receiver for the IEEE 802.11 
network for both Slow Mobility as well as Walking-Speed Mobility experiments. 



 
Figure 6: Experimental setup when one or more intruders are present in the system. 

Figure 5 shows that in both the Walking-Speed Mobility and Slow Mobility experiments, our 
technique is able to detect all co-moving and non-co-moving pairs over all the data subsets 
accurately. We can also see that, increasing the observation time Ts improves the co-mobility 
detection rate while reducing the likelihood of observing spurious matches. We found that the 
mobility speed also has an impact on the time required to achieve high detection rate and low 
false positive rate. In the Walking-Speed Mobility experiment, it takes about 130 seconds to 
detect all co-moving data subsets. Whereas it takes around 370 seconds to achieve the same in 
the Slow Mobility experiment. This suggests that, with higher speed, more shadow fading effects 
can be observed within a shorter duration, leading to improved detection performance. The 
results of the Slow Mobility experiment represent detection performance of DECODE under 
challenging conditions.  
  

3.4 Initial Intruder Detection Using Received Signal Strength 
Experiment scenarios: In this study, we explore two representative types of intrusion events: 
static and moving. We define a static event when an intruder breaks in the area of interest and 
moves from one position to another, at each position the intruder stands still for a certain period 
of time. Whereas a moving event is defined for an intruder walking or running across the area of 

interest. In our experiments as shown in the Figure 6, the time interval between two consecutive 
intrusion events in a series of events is around 180 seconds. We note that there can be multiple 
intruders present in the system. Since multiple intruders will cause more changes in wireless 
environments and have bigger impact on RSS readings, the detection of the presence of multiple 
intruders is easier than an individual intruder. The detailed experimental setup of each scenario 
and behavior of the intruder are described below. 
Experimental Scenario 1: In this scenario, there are one transmitter and one receiver in the area 
of interest. The distance between the transmitter and the receiver is 9 feet. This scenario may 
represent a low density environment in office buildings since there is just one transmitter-
receiver pair which represents the wireless link between one wireless device and an access point. 
The receiver recorded packets for approximately 1560 seconds from the transmitter. There are 
three intrusion instances during this time period. For each instance, the intruder came in and 
stood at the center of the transmitter-receiver pair for about 120 seconds. 



   
Figure 7: Pattern profiling of different intrusion cases. 

Experimental Scenario 2: We increased the density of the devices in this scenario, which may 
represent the typical density in an office building environment in which there are many wireless 
devices communicate with access points. There are two transmitters and two receivers deployed 
at four corners of the 9 feet by 9 feet square area. There are four transmitter receiver pairs in 
total. Two receivers recorded packets for approximately 2400 seconds from two transmitters. 
There are nine intrusion instances including five static cases and four moving cases during this 
time period. For each static intrusion instance, the intruder stood at different locations (shown as 
B, C, D, G and F in Figure 1) for about 120 seconds, whereas the intruder went across the 
experimental area for each observed moving instance. 
Experimental Scenario 3: In this scenario, there are three transmitters and three receivers. The 
distance between two adjacent transmitter and receiver is 4.5 feet. There are nine transmitter-
receiver pairs in total. The duration of this experiment is about 1800 seconds including seven 
intrusion instances in total with three static cases and four moving cases. The intruder stood for 
120 seconds at three different positions (B, C, and D) for each static instance and went across the 
experiment area for each moving case. We envision there will be an increasing density of 
wireless devices deployed in our environments as the wireless networks become more pervasive. 
Thus, this set up with higher device density can help to analyze the impact of device density on 
diagnosing passive intrusion. In addition, wireless devices are usually not uniformly deployed. 
For instance, wireless devices (e.g., sensor nodes) can be deployed in a higher density in the 
sensitive area for asset protection and at the entrance or exit of the facility. 

Pattern Profiling:  By utilizing the data after filtering, we can explore various profiles to 
describe different intrusion patterns. In passive intrusion detection, it is essential to differentiate 
intrusion activities from random environmental changes. The critical property that a pattern 
profiling approach exhibits is that it can drive unclear or complicated situations into separate 
categories, which make it possible for further analysis based on categorized information. This 
largely helps for passive intrusion learning as we can systematically detect the intrusion and 
define its characteristics. 

The three patterns in Figure 7 (a) represent the RSS readings for three transmitter-receiver pairs, 
T6-R4, T6-R5, and T4-R5 respectively when the experimenter stood at positions B, C, and D 
respectively. In order to examine the changes of RSS clearly, we shifted the RSS readings by 15 



dBm for T6-R5 and by 30 dBm for T4-R5. We observed that there is an obvious change in RSS 
readings when the experimenter walked in and stood within the experimental area. Further, the 
results of the second experiment in Figure 7 (b) show that there is an obvious RSS pattern 
change for each moving instance. The key observation is that the RSS patterns when the 
experimenter is static are different from those when the experimenter is walking around. These 
results indicate that different RSS profiles can be established to distinguish the moving patterns 
of intruders. 
Moving Direction: When the intruder is moving around, determining the moving direction of the 
intruder is also an important task in our exploration as the resulting pattern can help to direct 
further defense strategies, e.g., turning on the surveillance camera in one part of the floor or 
directing the law enforcement officers to follow the direction that the intruders go to. Figure 7 (c) 
presents the RSS readings for three transmitter-receiver pairs, T4-R4, T5-R5, and T5-R6 
respectively when the experimenter walked from position A toward position E. In order to 
examine the changes of RSS clearly, we shifted the RSS readings by 20 dBm for T5-R5 and by 
35 dBm for T5-R6. By combining the RSS readings from multiple sources, i.e., multiple 
transmitter-receiver pairs T4-R4, T5-R5 and T5-R6, we can determine the moving direction of 
the experimenter based on the moving pattern delay in time series. The moving direction can be 
further calculated as the positions of receivers are usually known and the locations of the 
transmitters can be localized easily using the traditional localization methods [1, 8]. 

4. Potential Applications 
The research work in this subtask related to localization of sensors and robots has a high 
potential to be applied in location-aware military applications such as intruder detection, 
tracking, monitoring and geometric based protection. Further, the detection of co-moving objects 
can help to determine whether enemies are moving together or walking individuals so that to 
further infer the motives of enemy actions.  

5. Project Assessment 
Our work in this year has met the SOW objectives. The following is the related publications for 
our subtasks: 

• Gayathri Chandrasekaran, Mesut Ergin, Marco Gruteser, Rich Martin, Jie Yang and 
Yingying Chen, "DECODE: Exploiting Shadow Fading to DEtect CO-Moving 
Wireless DEvices", IEEE Transactions on Mobile Computing (IEEE TMC), 2009. 

•  Jie Yang and Yingying Chen, "Indoor Localization Using Improved RSS-Based 
Lateration Methods", in Proceedings of IEEE Global Communications Conference 
2009 Wireless Networking Symposium (Globecom 2009), Hawaii, USA, November, 
2009.  

• Gayathri Chandrasekaran, Mesut Ali Ergin, Jie Yang, Song Liu, Yingying Chen, 
Marco Gruteser and Richard Martin, "Empirical Evaluation of the Limits on 
Localization using Signal Strength", in Proceedings of the Sixth Annual IEEE 
Communications Society Conference on Sensor, Mesh, and Ad Hoc 
Communications and Networks (SECON 2009), Rome, Italy, June 2009. 



• Jie Yang, Yingying Chen, Victor Lawrence and Venkataraman Swaminathan, 
"Robust Wireless Localization to Attacks on Access Points", in Proceedings of the 
IEEE Sarnoff Symposium 2009, Princeton, NJ, April 2009. 
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Appendices 

Appendix A: Statement of Work 

A Heterogeneous Multi-Robot Multi-Sensor Platform for Intruder Detection 
 

Objective: 
 

In order to achieve autonomous deployment of mobile sensors such as service robots in tactical 
mobile sensor networks, it is critical that the service robots can obtain the position themselves 
and further to localize sensors, monitor their activities, and track the movements of sensors. 
Further, mobile sensor/robot networks are more effective comparing to static sensor network, 
particularly for scenarios in dynamic environments. Mobile sensor/robot networks have the 
flexibility to reconfigure themselves according to dynamic changes of the environment they 
operated within. They can carry load and deliver load to desired positions, and charge themselves 
at a home station if necessary. However, how to program the mobile sensors/robots to achieve 
autonomous controllable mobility is an open problem that has received much attention recently. 
One of the objectives of our research is to develop effective decentralized control algorithms for 
mobile sensors/robots to formation, to coverage, and to reconfigure, while maintaining 
connectivity of the network considering sensors/robots have limited communication range. 

After the deployment, a vast number of critical facilities must be protected against unauthorized 
intruders. A team of mobile robots working cooperatively can alleviate human resources and 
improve effectiveness from human fatigue and boredom.  Since the robots can work 
autonomously, they are able to interpret sensor readings and recognize the intruders 
responsively, which can alert the human monitor of suspicious activity. In this way, the robot 
teams reduce manpower requirements while also increasing effectiveness.  Based on the 
perception information, the robot can initiate a fast response to the situation by sending alert 
signals to a human operator, deploying a non-lethal weapon to capture the intruder, or 
autonomously tracking the movements of the intruder, etc. 
In this proposed research, we will address the above challenges such as localization/tracking of 
service robots/sensor nodes, deployment and reconfiguration of mobile sensor/robot networks, 
and intruder detection. The ultimate goal is to develop an integrated multi-robot and multi-sensor 
test bed with the capability of localization, reconfiguration, and intruder detection. 
 

Sub-Task2.1:  Robot/sensor localization and tracking (Chen) 
2.1.1 Localization of service robots/sensors: We will build a localization test bed with anchor-
based approach. The service robots and sensors will be localized by a localization server. The 
server will report the position information periodically to the service robots. 

2.1.2 Co-movement detection: With the ability of localization and mobility detection, we will 
investigate effective ways for object tracking. Especially we will study approaches to determine 
whether multiple robots/sensors are moving together.  



2.1.3 Intruder detection using sensor nodes: Based on the variation in signal strength at sensor 
nodes caused by intruder movement, the localization server will determine abnormal changes 
and alert the service robots for possible intruders.  
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Abstract 
We developed decentralized patrolling algorithms for multi-robot systems. We proposed a 
new motion synchronization method and used it in designing the decentralized control laws. 
The goal is for each robot to move along a subsegment of equal length in equal time interval 
with potential impacts. The impact law depends only on the time information. Specifically, 
“the time interval between two consecutive impacts” is exchanged when the robots meet. 
We also show how to apply the synchronization algorithm to the planar patrolling problem. 
Simulation results show the feasibility and robustness of our algorithm. We started to 
implement the algorithm on E-puck mini robots. 

1. Introduction 
In order to achieve autonomous deployment of mobile sensors such as service robots in 
tactical mobile sensor networks, it is critical that the service robots can position themselves 
and further to localize sensors, monitor their activities, and track the movements of sensors. 
Further, mobile sensor/robot networks are more effective comparing to static sensor 
network, particularly for scenarios in dynamic environments. Mobile sensor/robot networks 
have the flexibility to reconfigure themselves according to dynamic changes of the 
environment they operated within. They can carry load and deliver load to desired positions, 
and charge themselves at a home station if necessary. However, how to program the mobile 
sensors/robots to achieve autonomous controllable mobility is an open problem that has 
received much attention recently. The objective of our research is to develop effective 
decentralized control algorithms for mobile sensors/robots to formation, to coverage, and to 
reconfigure, while maintaining connectivity of the network considering sensors/robots have 
limited communication range. 
In this project, we developed a decentralized multi-robot patrolling algorithm. In particular, 
we first plan a complete coverage path, and then consider multi-robot system patrolling with 
potential impacts. We design impact laws (i.e.control laws when robots meet each other) to 
achieve motion synchronization by each robot moving along an equal-length subsegment in 
equal time-span on a line segment. The algorithm assumes simple information exchange, 
namely, the time span since the last impact, and assumes no knowledge of total number of 
robots, nor the total length of the line segment be known by the robots. While similar ideas 
appeared in literature, some distance measurement to critical points or priori knowledge 
such as the perimeter length or the total robot number is required. We relax such 
assumptions, and use only the information of robot interaction time and velocities in 
constructing the control laws. We also consider the scenario when multi-robot-impact (more 
than two robots) at the same point, which is ignored in previous work. Our algorithm is 
decentralized, and robots only communicate to their adjacent neighbors when they meet 
each other. It is robust to robot failures, in the sense that a removal or an addition of robots 
does not affect the patrolling goal and eventually every point of the patrolling path is visited 
with uniform frequency. 
 



2. Approach Taken 
We developed a decentralized control law to achieve synchronization in this project. The 
basic idea is that each robot in the system under motion moves in a constant velocity until 
impact happens (i.e., when they meet). Then, we define different updating law when 
different type of impact happens. ``Constant velocity" means that the robot moves along a 
straight line without any changes of the magnitude and the direction of its velocity. 

The flow chart of the algorithm is shown as in Figure 1. 
The decentralized control laws are design to be 

1. Face-face type updating law 

 
2. Face-tail type updating law 

 
3. Hit-boundary type updating law 

 
4. Multi-hit type updating law 

 
We apply the segment synchronization into a multi-robot area patrolling problem. Consider 
assigning an N homogeneous mobile robot system S to patrol a given 2D area, which has its 
patrolling interest uniformly distributed. We first partition the planar area into grids, and by 
finding a Hamiltonian path, we simplify the 2D patrolling problem into a 1D patrolling case. 
Patrolling in a 2D area is then converted to the problem of finding a Hamiltonian path. 
When a robot moves along the path, its sensor or effector covers the area eventually.  



 

 
Figure 1. Flowchart of the multi-robot synchronization algorithm. 

 

 

 



3. Results 

3.1. Matlab simulation results 
We implemented the algorithm and tested in Matlab. We implemented a Spanning Tree 
Coverage (STC) method. We assume that a single robot is with a sensing range of $D$, then 
partition the area into cells that each cell has the size of $2D\times 2D$. Then, by building a 
spanning tree according to the cell size, a Hamiltonian cycle visits all cells of the domain by 
following the tree around. An illustration of STC method is shown in Figure 2, in which the 
dotted line is the spanning tree, the arrowed path is a Hamiltonian cycle around the spanning 
tree. Note that a Hamiltonian path can be generated from the Hamiltonian cycle by breaking the 
circle at any point. 

The performance of the algorithm is shown in Figure 3, where an 6-robot system reaches 
synchronization on segment $[0,1]$. At time $t=0$, the position vector and velocity vector are    
[  0.0960 \ 0.2843\ 0.3708\ 0.5275\ 0.5456\ 0.9811 ] and [ -0.8706\ 0.0896\ 0.6728\ -0.7094\ -
0.6570\ -0.8639 ] respectively. We choose the parameter in (9) as $a_1=0.92$, and $a_2=-0.84$. 
The system tends to reach synchronization by its trajectory uniformly distributing along the 
segment. Each subsegment is [0, 0.167], [0.167, 0.333], [0.333, 0.5], [0.5, 0.667], [0.667, 0.833], 
[0.833, 1], each robot moves along an equal length subsegment, back and forth at the same speed 
$v_{ss}=1$, which can be seen in the figure as the slope of each single short line is all the same 
at time $t=6$. 

In Figure 4, we simulate the scenario that at time $t=$ 122.7s, a robot is suddenly taken out, 
which is illustrated as a vertical line from 0.5 to 0 at 122.7 sec. The other three robots will adapt 
to such dynamic change and reaches a new synchronization configuration by uniformly 
distributing along the segment, and the equal length subsegments are [0, 0.333], [0.333, 0.667], 
[0.667, 1]. 
In Figure 5, we demonstrate the case that 2 robots are added into the system at time point 202.4s, 
at $x_1=0.35$ and $x_2=0.6$ with the velocity $v_1=0.342$ and $v_2=-0.874$. It shows the 
system reaches a new synchronization configuration in about 15 seconds. 



 
Figure 2. A series of illustrations of Hamiltonian path that covers the whole area. a) A Hamiltonian path 

illustration. b) Another Hamiltonian path illustration. c) A Hamiltonian path in the environment with obstacles. 
d) An illustration of Hamiltonian cycle generated by STC method. 

 

  
Figure 3. Simulation result of 8-robot system synchronization on the segment [0,1] 



 
Figure 4. The system response when a robot is taken out at time t=122.7 sec 

 

 
Figure 5. The system response when two other robots are added into the system at time t=202.4 sec 

 

3.2. Webots simulation and E-puck robot experiments 
We started to implement the algorithm in Webots. Webots is a software platform for fast 
prototyping and simulating of mobile robots, and it facilitates the transfer of the developed 
algorithm to the real mobile robots. We plan to use E-puck mini robots for real robot 
experiments. The planned patrolling scenarios are shown in Figures 6 and 7. 

 



  
Figure 6. The initial configuration of mobile robot system 

 



 
Figure 7. The patrolling path of a multi-robot system. 

 



4. Potential Applications 
In this project, we present a solution to multi-robot synchronization on a line segment with 
sporadic communication, which does not require any information on the localization of 
robot. Instead, the robot updates its velocity mainly based on the time span between two 
consecutive impacts of robot. We then apply the synchronization to a planar patrolling 
problem, based on the notion of a Hamiltonian path. Our solution guarantees that each point 
in the area is visited with a uniform frequency. Simulation results validate our algorithm, 
and show the efficiency and robustness of the method. 

Potential applications of the results include autonomous deployment of multiple sensor and 
multiple robot networks for intruder detection. 

5. Project Assessment 
We have conduct research in developing decentralized deployment algorithms for multiple 
mobile robots in sensor network applications. The objectives relating to robot deployment 
proposed in the SOW have been met. We also in the process of implementing the algorithm 
on E-puck robot platform and tested it in our lab. A robot demonstration has been planned 
on Oct. 15 at Picatinny to run the algorithm on the real robots. Our future plan includes 
increasing the technology readiness lever of the project.  

The project generates a few ideas for future work, which include dynamic 
coverage/formation control of multi-robot multi-sensor networks. Also, the relationship 
between coverage and connectivity to meet different application scenarios needs to be 
further investigated. 

The project generates the following publication: 
Hua Wang and Yi Guo, “Synchronization on a Segment Without Localization: Algorithm 
and Applications”, IEEE/RSJ International Conference on Intelligent RObots and Systems 
(IROS), to appear, St. Louis, MO, Oct. 11-15, 2009. 
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Appendices 

Appendix A: Statement of Work 
2.2.A Heterogeneous Multi-Robot Multi-Sensor Platform for Intruder Detection 

 

2.2.1. Scope 
2.2.1.1.In this research, the contractor shall address the above challenges such as 
localization/tracking of service robots/sensor nodes, deployment and reconfiguration 
of mobile sensor/robot networks, and intruder detection. The ultimate goal is to 
develop an integrated multi-robot and multi-sensor test bed with the capability of 
localization, reconfiguration, and intruder detection.  

2.2.1.2.The following are the proposed tasks: 
2.2.1.2.1. Robot/sensor localization and tracking (Prof. Yingying Chen) 
2.2.1.2.2. Robot deployment and effective decentralized control (Prof. Yi Guo) 
2.2.1.2.3. Intruder detection (Prof. Yan Meng) 
2.2.1.2.4. Integration of multi-robot and multi-sensor platform (The Team) 

 

2.2.1.3.Robot deployment and effective decentralized control 
2.2.1.3.1. The contractor shall develop effective deployment algorithms for the 

mobile robot team to cover a bounded area, and to reconfigure themselves when 
detecting intruders.  The goal is to achieve maximum coverage of the robot 
team while maintaining connectivity of the robot network and avoiding 
collisions between team members.  

2.2.1.3.2. The milestones include: 
2.2.1.3.2.1.Decentralized deployment of mobile robots: effective 

decentralized deployment algorithms will be developed to ensure the 
robot network is always connected although the robots are in 
continuous motion. 

2.2.1.3.2.2.Effective coverage control: A secondary objective including 
formation, coverage while maintaining connectivity will be 
investigated and algorithms will be developed to achieve the 
secondary objective. Constraints such as collision avoidance will be 
also considered. 

2.2.1.3.2.3.Dynamic re-configurability: algorithms will be developed for the 
robot team to reconfigure themselves when detecting intruders. 

 

2.2.1.4.Integration of multi-robot and multi-sensor platform. An integrated multi-
sensor/multi-robot test bed will be developed in two phases. For phase 1 during the 
year of 2008-2009, a centralized localization server will be used to forward location 
information of sensor nodes and service robots to service robots, whereas the 
deployment, reconfiguration, and decision making of service robots are 
decentralized. For phase 2 during the year of 2009 – 2010, a totally decentralized 
integrated test bed will be implemented and demonstrated.    

 



2.2.2. Deliverables 
2.2.4.1.A comprehensive technical report of algorithms for four subtasks. 
2.2.4.2.A localization test bed that can localize and track transmitters including 
service robots and sensor nodes in a laboratory environment. 

2.2.4.3.A multi-robot test bed for autonomous deployment and effective decentralized 
control in a laboratory environment. 

2.2.4.4.A multi-robot test bed for intruder detection in a laboratory environment. 
2.2.4.5.Demonstration of an integrated test bed in a laboratory environment with a 
centralized localization server to forward location information to service robots, 
whereas the deployment, reconfiguration, and decision making of service robots are 
decentralized. 
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Part One: Dynamic Task Allocation among Robots 

Abstract 
In security defense tasks, multiple robots need work corporately to detect offensive intrusion to protect 
some sensitive areas.  In this project, we propose a distributed algorithm for a multi-robot system with 
some static sensors. The system concept is that static sensors sense intrusions and act as a cueing sensor 
to an ensemble of robots. These robots in turn engage the potential intruder, performing surveillance 
and/or neutralization of the intrusion. To minimize the intruder missing rate and average response time, a 
STAGS (Shame-level Task Allocation and Gap-based Self-deployment) method is proposed, which is a 
decentralized method without a central control unit.  To further improve the system adaptability under 
dynamic environments, a multi-objective optimization (MOO) method is proposed to adjust the system 
parameters of STAGS. Extensive simulation results demonstrate the effectiveness and robustness of the 
proposed algorithm in a dynamic intruder detection task. 

1. Introduction 
Security defense task is a complex problem, which aims to protect sensitive areas against offensive 
intrusion. Video surveillance system is one of the solutions for these tasks, which still require manned 
observation and can be quite costly for large areas.  Another alternative solution is to use autonomous 
multi-robot systems (MRSs) for intruder detection to reduce the overall system cost without 
compromising security.  
      In this project, we will describe an autonomous system consisting of cooperative mobile robots with 
some static sensors for security defense tasks. The system would utilize many relatively cheap sensors 
that can be used as a cueing sensor for an ensemble of robots to detect and track the movements of 
intrusion of any kind through a predetermined area or boundary. Through the use of mobile robots, the 
intruders can be tracked, intercepted, or neutralized.  While some robots are investigating the intruders, 
the remaining robots would self-deploy themselves to maximize coverage. Fig.1. illustrates our simulator 
for this problem. 
 

 
 
Fig. 1. A snapshot of the security defense problem simulator. The area to be protected is the blue solid circle. Seven 
robots are deployed on outer blue dotted circle (deployment circle). The communication range of each robot is 
represented by grey dotted circle. The red dots are intruders and blue dots are robots. 
 
    The objective of this system is to coordinate robots to minimize the missing rate and average response 



time to the intruders.  Missing rate is the percentage of intruders which successfully invade the protected 
area without being investigated by robots over all the intruders. Response time is the time period from the 
time of an intruder is detected by sensors to the time it is investigated by robots.  Intruders attack the 
protected area in a random manner which requires the robots to react in a real-time performance. 
    Extensive work has been proposed for multi-robot coordination for various applications, one paradigm 
is based on organization theory derived from human social behavior and psychology [1][5][10][16]. 
Another paradigm is bio-inspired algorithms [6][9][14]. Singh and Thayer [13] proposed a distributed 
multi-robot coordination method in a demining problem that mirrors the mechanism of the human 
immune system to modules of software architecture. Capability to learn unknown situations and react to 
the learned situations efficiently has been achieved. The model considers robots as B cells and mines as 
antigens, binding affinity between a robot and a mine is inverse proportional to the distance between 
them. When a robot finds a mine, it will stimulus nearby robots to come and help to diffuse the mine.  Wu 
et al. [15] proposed an immune system based multi-robot exploration approach, where robots are setup as 
B cells and the locations of robots in unknown area are antigens.  Based on robots’ mutually stimulus and 
suppress, each robot picks up a destination in the unexplored area. 

 Very few works have been directly addressed for security defense problems [11][12]. Machado [12] 
proposed a distributed MRS approach for patrolling in a complex environment based on a market 
economy approach.  In this project, we propose a STAGS (Shame-level Task Allocation and Gap-based 
Self-deployment) approach, which consists of a distributed shame-level based dynamic task allocation 
algorithm for intruder tracking and investigation, and a distributed gap-based self-deployment (DGSD) 
algorithm for self-deployment. Robots have to choose their own behaviors dynamically based on their 
current states and the environment.  The parameters in STAGS approach need to be defined.  To further 
improve the system robustness and adaptability to various environmental changes, a multi-objective 
optimization (MOO) method is applied to dynamically tune the parameters of the STAGS approach, 
where the two objectives are minimization of missing rate and average response time.     

2. The Decentralized STAGS Approach 

The STAGS approach consists of two parts: the first one is a shame-level based algorithm for dynamic 
task allocation, and the second one is the gap-based algorithm for self-deployment.   

2.1 A Shame-Level based Dynamic Task Allocation Algorithm 
Inspired by [8], a shame-level based algorithm is proposed to dynamically allocate robots to 

detected intruders. When sensors detect an intruder, the intruder’s information is broadcasted to 
all the neighboring robots. Then each robot develops a shame level for this detected intruder, 
which is inversely proportional to their distance to the intruder. The shame level is incremented 
until it reaches a threshold that causes the robot to respond. Once a robot starts to respond to an 
intruder, the robot would broadcast its decision to its neighboring robots so that the neighboring 
robots would suppress their shame levels to this intruder. In essence, other robots no longer 
“feel” the shame of not responding to the intruder, so that they can investigate other intruders or 
self-deploy themselves. 

 The shame level of a robot ir  on intruder jI  can be defined as:  
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 where iv  is the robot speed. ( , )i jd r I  is the traveling distance between ir  and jI . α is a constant 
factor.  ( , )j kp I r  is the shame-level suppression for kr on intruder jI , which can be defined as:   
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where β  is a constant representing the suppression level. 

2.2. A Decentralized Gap-based Self-Deployment (DGSD) Algorithm 
When some of the robots start tracking intruders, the rest of the robots should deploy themselves 

uniformly in the deployment circle to cover as much area as possible.  A gap-based algorithm is proposed 
here for this self-deployment purpose.  A gap is defined as the arc area generated by any two tracking 
robots and the center of the protected circle. The corresponding tracking robots are called gap builders, 
and robots within the gap is called gap members.  The gap members should be deployed uniformly within 
each gap.  Based on different situations of intruders and robots, a gap weight is assigned dynamically to 
each gap.  Gap weight GW  for each gap can be defined as:  
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where Gs  is gap G ’s angle in degree. IGn  and rGn  are  the number of intruders and robots within gap G , 
respectively. β  is a constant that adjusts the importance of IGn . A gap with a higher gap weight has a 
higher priority to cover.  In other words, more deploying robots should join in the gaps with higher 
weights.  Therefore, the objectives of gap-based method are: (1) deploy gap members uniformly within 
the gap; (2) switch gap members to a neighboring gap with a higher gap weight. 

Each gap has a DGSD process which runs periodically. The DGSD process contains a round-trip to 
pass information to all the gap members within the gap. The round-trip starts from a gap builder BR . BR  
generates a information pack containing its local information. The pack is delivered to the other gap 
builder 'BR  by passing through each gap member one by one locally.  During the delivering process, 
information pack is updated with gap member’s local information. So 'BR  has a full view of current 
status of the gap, such as number of gap members, where gap starts and ends, and gap size, etc. Base on 
this information,  'BR  is able to generate a proper deployment plan. The plan is delivered back to BR  
through local passing agents one by one.  It is worth to note that only local communication is needed for 
the robots for DGSD since the information is passed one by one instead of globally broadcasting.  

Gap builders also hold status information of two neighboring gaps so that it can notify a gap member to 
switch to a neighboring gap if the neighboring gap has a much higher weight. In this manner, critical gaps 
will attract more robots.   

Fig.2 shows an example for this DGSD process.  In gap1, DGSD process is started by gap builder 1R .  

1R  sends out the information pack to  2R , then 2R  sends the information to 3R . When 4R  (another gap 
builder) receives the information pack from 3R , it is notified that there are two gap members (robots) and 
three intruders in Gap1. Then 4R  updates the memory of 1Gw  and calculates proper deployment. Then, 
this deployment information is delivered back to 1R  through 3R  and 2R . As a result, 1R  updates the 
memory of 1Gw , and 2R  3R  deploy on stars. For other gaps, 5R  will switch to Gap1 from Gap2 because 
Gap1 has a higher weight.  7R  will stay in Gap3 to investigate intruder 4I . 
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Fig. 2. One example using the DGSD algorithm. 

  
 If a deploying robot cannot communicate with its neighbors due to its limited communication range, 

for example, its neighbors move away, this deploying robot will move in the direction till a proper 
neighbor is found and the package delivery can be continued. 

Fig.3 shows the block diagram of the STAGS algorithm. These two algorithms have mutual influence 
with each other. The shame-level based algorithm triggers robots to conduct intruder investigation.  
Meanwhile, the investigating robots would dynamically formulate gaps.   With the new gaps, the robots 
use the DGSD algorithm to deploy themselves within the gaps to corporately working with the 
investigating robots, which would further affect the performance of future investigation.  
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Fig. 3. The block diagram of the STAGS algorithm. 
 

2.3. Online Learning and Multi-Objective Optimization on Distributed STAGS Method 
Since the parameters of STAGS method need to be defined, due to the dynamic intruder behaviors, it is 

hard to find optimal parameters for all different situations.  Ideally, the solution should be self-adaptive, 



which requires the robot system to recognize and self-adjust for different situations. Meanwhile, the 
system should be capable to handle unknown situations with real-time performance.  To achieve these 
two features, a multi-objective optimization (MOO) method is proposed to dynamically adjust the 
parameters of the proposed distributed control models.    

Problem situation S  can be defined as: {intruders’ arriving rate, intruder’s speed, number of robots, 
robots’ speed}, where the intruders’ arriving rate is the frequency of the arrivals of new intruders.  

 A linear approach of exactly matching is applied to estimate the situation difference. If we 
define a situation pattern as 1 2{ , ,..., }i kS s s s= , where ks  are the parameters that describe situation k.   The 
matching can be estimated by the following equation: 
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where kd  is the difference upper bound for ks  and is setup as 10% for all situation perimeters.  The 
adjustment option A  is defined as: A = {shame-level threshold, shame-level suppression, deployment 
radius}. Deployment radius is the radius of the deployment circle as shown in Fig.1. 

To find an optimal set of parameters for STAGS method, an individual robot’s performance not only 
depends on its own parameter set, but also on the parameter sets of other robots and intruders. Due to the 
dynamic environment, the parameter setting has to evolve with the current environment status. Therefore, 
an online learning method is proposed here. Connected with sensors, the necessary situation information 
and the adjusted parameters of the STAGS algorithm are sent to all robots.  The learning process is 
evaluated based on two criteria: the intruder missing rate and the average response time to intruders. A 
good strategy should strike a balance between these two criteria.   

This is a multi-objective optimization (MOO) problem, where the objective function is no longer a 
scalar value, but a vector. As a consequence, a number of Pareto-optimal solutions should be achieved 
instead of one single solution.      NSGA-II [3] has been adopted for evolution, which is a popular and 
efficient evolutionary algorithm for solving multi-objective optimization problems.  In our work, 
simulated binary crossover (SBX) [2] and polynomial mutation [4] have been employed to generate 
offspring. After the offspring population is generated, the elitist crowded non-dominated sorting is used 
for selecting parents for the next generation.   

Different from single objective optimization algorithms, where often only one optimal solution is 
achieved, NSGA-II produces a set of Pareto-optimal solutions, i.e. in our case, the parameter sets that 
balance the intruder missing rate and the average response time, and then the parameter set with the 
lowest missing rate is selected as final adjustment option. We will analyze the solutions in discussing the 
simulation results using NSGA-II. The complexity of NSGA-II is 2( )O MN , where M is number of 
objectives and N is population size of each evolution. 

For each situation, NSGA-II requires some time to generate a mature result. However, the learning 
situation may change before sufficient evolution is reached.  To solve this problem, we further add a 
learning process protection and resume mechanism to the NSGA-II algorithm. Basically, when situation 
changes from S  to 'S , before system starts learning 'S , the learning process to S  is protected in 
memory, which can be resumed in the future when S happens again.  

The pseudo code of the acquired immune layer is summarized as followings: 

 

Step1.  Detect environment changes periodically. Get current situation currentS . 



Step2.  Match currentS  with previousS  which is the last detected environment situation. If the match is founded, 
go to step 4, otherwise, go to step 3. 

Step3. If learning on previousS  is not finished, protect previousS ’s learning process. Go to step 4. 

Step4.  If a { exS , exA } in memory matches currentS , use exA  to adjust the STAGS parameters. Otherwise, go to 
step 5. 

Step5. Start, continue or resume learning to currentS  using the NSGA-II method. When the learning process 
on  currentS  is finished, store { currentS , currentA } into memory. 

3. Results 
To evaluate the performance of the proposed model for intruder detection in a security defense task, a 

simulator is developed in Java, as shown in Fig. 1.  The environment is a 800x800 square area. The 
protected area is defined as a circle with the diameter of 200. Sensors are deployed uniformly around the 
circle and can detect a circle with the diameter of 750. New intruders’ initial locations are uniformly 
distributed on the boundary of the area that can be sensed by the sensors. It is assumed that new intruders 
appear following a Poisson distribution pattern as: 

 

 ( ) ( 0,1,2,....)
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= = =              (5) 

 
where ( )P X k=  is the probability that k new intruders arrive in each simulator iteration (the simulator’s 
basic time unit). The expectation of ( )P X is λ , so on average a new intruder appears on every 1/ λ   system 
iteration. 

3.1. Simulation Results of STAGS with Fixed Predefined Parameters 

To evaluate the performance of STAGS algorithm (S for shame-level based algorithm and D for gap-
based self-deployment algorithm), two simple algorithms are defined here: numb tracking (NT) algorithm 
where robots always track the closest intruder, and numb deployment (ND) algorithm, where robots are 
initially distributed uniformly on the deployment circle and return to their initial locations when the 
investigation jobs are finished. 

In this simulation, shame-level threshold=2.4, shame-level suppression=0.2, deployment-range=235, 
and 1β =  for the gap weight. Multiple simulations are carried on for different algorithm combinations 
NT+ND, S+ND, T+D, S+D under different situations. The missing rate and the average response time 
are listed in Table I. The results illustrate that S+D algorithm outperforms others.  Applying D algorithm 
brings little improvement when the team size is relatively small. This is because when the team size is 
smaller, robots have to track intruders most of the time so leave much less time to play self-deployment 
role. However, when the self-deployment time is longer enough, the advantage of applying two 
algorithms together becomes more obvious. 

 



 

3.2. Simulation Results of STAGS with MOO-based Online Learned Parameters 

jMetel software package is implemented in the simulator to realize NSGA-II algorithm. jMetel is a 
Java-based framework aimed at facilitating the development and experiment for solving multi-objective 
optimization (MOO) problems [7]. In our experiment, we configure NSGA-II’s evolution population size 
as 8.0 and the maximum evolutions as 8.0. Other parameters use default values in jMetel package: 
crossover probability is 0.9 and mutation probability is 1/(size of A ) which is 0.33. Dynamic cases for 
the perimeter defense problem are listed in Table II. Each time step T equals to 50,000 simulator iteration.  

To evaluate the system performance of STAGS method with the MOO-based online learned 
parameters, the simulation is conducted in two modes: predefined mode and MOO-learned mode. In order 
to provide a thorough comparison with the MOO-learned mode, we conducted multiple experiments of 
STAGS method with different predefined parameters. For each perimeters in A , three values are chosen 
in a reasonable range so that a total 27(3*3*3) experiments are conducted in predefined mode. The 
parameter ranges and values in predefined mode are defined as follows: 

 

Shame-level threshold: 1.2, 2.4, 3.6 ∈  [0, 4] 

Shame-level suppression: 0.2, 0.6, 0.8 ∈  [0, 1] 

Deployment-range: 145, 235, 285 ∈  [100, 350]. 

 

These perimeter ranges are also applied in the MOO-learned mode when NSGAII algorithm evolves to 
generate candidate parameter sets.  

 

TABLE I 
 SIMULATION RESULTS 

 
  NT+ND NT+D S+ND S+D 

RN=8, IR=8 

RS=4, IS=3.0 

MS 45.28% 46.96% 8.40% 6.72% 

RT 66.46 67.37 43.68 40.38 

RN=8, IR=8 

RS=4, IS=3.5 

MS 57.03% 55.76% 17.54% 15.63% 

RT 62.11 62.14 44.29 42.45 

RN=6, IR=8 

RS=4, IS=3.0 

MS 46.20% 45.14% 14.84% 14.34% 

RT 67.27 66.81 49.31 48.60 

RN=6, IR=8 

RS=4, IS=3.5 

MS 58.18% 57.18% 23.50% 22.64% 

RT 62.91 62.72 48.88 48.75 

RN=4, IR=8 

RS=4, IS=3.0 

MS 51.84% 50.40% 25.98% 25.81% 

RT 69.27 69.13 58.45 58.25 

RN=4, IR=8 

RS=4, IS=3.5 

MS 58.94% 58.85% 36.00% 35.77% 

RT 65.29 63.49 55.37 55.34 

 



 
 

Fig.5. and Fig.6.  show the simulation results of the intruder missing rate and average response time to 
the intruders for one case of the MOO-learned mode and 27 cases of the predefined mode. The results 
indicate that the performance of the MOO-learned mode is much better than all the experiments in the 
predefined mode on both criteria.  Some experiments in the predefined mode that perform closely to the 
MOO-learned mode are particularly studied. The main reasons for this are: (1) as a genetic approach, 
NSGA-II may end up with some local minimum sometimes; (2) some algorithm parameter sets can 
handle the test cases very well for some specific situations. For example, sometimes we found parameter 
sets with lower shame-suppression may perform better than others. However, this does not necessarily 
mean that those parameter sets are able to handle all possible situations efficiently. On the other hand, the 
MOO-learned mode can automatically self-adjust those parameter sets through self-learning.   

TABLE II 
DYNAMIC CASES FOR THE SECURITY DEFENSE PROBLEM 

 
 Environment change 

T 0 

Intruders’ arriving  rate = 8, Robot number = 8 

Robot speed = 4 

Intruder speed = 3 

T 1 Decrease robot number by 1 

T 2 Decrease robot speed  by 0.5 

T 3 Increase intruders’ arriving  rate by 3 

T 4 Increase intruder speed  by 0.5 

T 5 Increase robot number by 1 

T 6 Increase robot speed by 0.5 

T 7 Decrease intruder speed by 3 

T 8 Decrease intruders’ arriving  rate by 0.5 

T 9~16 Repeat  step 1~8 

T 17~24 Repeat  step 1~8 

T 25 Decrease robot number by 2 

T 26 No change 

T 27 Increase robot number by 2  

T 28 Decrease robot number by 1 
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Fig.5. The intruder missing rates of one case using MOO-learned mode and  27 cases using predefined 
mode.  
 

0 5 10 15 20 25
20

30

40

50

60

70

80

Cases in Stage Two

R
es

po
ns

e 
T

im
e

 

 

Predefiend Mode

MOO-learned Mode

 
Fig. 6.  The average response time of one case using MOO-learned mode and  27 cases using predefined 
mode. 
 

To support this statement, further simulations are conducted on a randomly changing environment. 
Situations are chosen randomly from 27 possible combinations of situation parameters, which are listed as 
followings: 

 

Robot number: 6,8,10 

Intruder coming rate: 6, 8, 10 

Robot speed/Intruder speed: 3/2.5, 3.5/3, 4./3.5. 

 



      Fig.7. and Fig.8. show the simulation results of the MOO-learned mode and the best case using 
predefined mode for missing rate and average response time, respectively.  The best case in predefined 
mode is selected from previous simulation, with the parameters of {Shame-level threshold: 2.4, Shame-
level suppression: 0.2, Deployment-range: 235}. Obviously, the MOO-learned mode still outperforms the 
best case using predefined mode. In addition, more experiences can be learned by the MOO-learned mode 
over time, which means that the advantage of MOO-learned mode would become more significant over 
time compared with the other mode. 
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Fig.7. The comparison of the intruder missing rates under a random changing environment using both 
modes. 
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Fig.8. The comparison of the average response time under a random changing environment using both modes.   

 

4. Potential Applications 
In this project, we propose a STAGS algorithm for intruder detection in complex security defense tasks. A 



shame-based approach is developed for dynamic task allocation among robots to track the detected 
intruders, and a gap-based method is developed for the self-deployment of remaining robots.  This 
STAGS algorithm is truly distributed, where only local communication among robots are needed and 
robots make their movement decisions only based on their local contextual information.  To further 
improve the system robustness and adaptation, a MOO-based online learning method is developed to 
dynamically adjust the parameters of the STAGS method.   The potential applications of the STAGS 
algorithm include situation awareness, security defense task, perimeter defense tasks, and security 
surveillance systems.  

5. Project Assessment 
This project has basically met the SOW objective, and the real world demonstration using the 
robotic platform will be conducted in an indoor environment to show the efficiency and 
robustness of the proposed approach for security defense tasks.  

The following papers have been published or submitted based on this project. 
1. Y. Zhang and Y. Meng, Dynamic Multi-Robot Task Allocation for Intruder Detection, 2009 IEEE 

International Conference on Information and Automation (ICIA 09). June 22-25, 2009, 
Zhuhai/Macau, China.  ( Finalist of best paper awards)  

2. Y. Zhang and Y. Meng, A Decentralized Multi-Robot System for Perimeter Defense, 2010 IEEE 
International Conference on Robotics and Automation. (submitted) 

3. Y. Zhang and Y. Meng, STAGS: A Distributed Multi-Robot Cooperation Approach for Complex 
Security Defense Tasks,  Journal of Intelligence and Robotic Systems, 2009.( submitted)  
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Part Two: Intruder Recognition and Tracking 

Abstract 
In this project, a multi-layer local constrained hierarchical network (LCHN) is proposed to represent the 
features for visual object appearance.  The connections of each node in this network are constrained by 
the local neighborhood of the node, which reflect the topology and dependencies of different parts of the 
object. Compared with a fully-connected network, the number of connections in LCHN is reduced while 
keeping spatial relationships of nodes. By applying a learning algorithm of minimizing contrastive 
divergence, this LCHN based model is able to learn complex feature structures from unlabelled data. 
More specifically, this model can provide hierarchical feature structures of the object of interest. The 
lower layer expresses more detailed appearance features while the higher layer represents more compact 
and abstract features. The experimental results demonstrate the efficiency of the learning capability of the 
proposed model and the feature hierarchy from the model for reconstruction. 

1. Introduction 
Learning and recognition of visual objects is a key problem in robot vision for various robot applications, 
such as robot navigation, search and rescue, service robots, etc..   Typically two steps are involved for 
object recognition:  the computation of a set of target features and the combination of these features. 
Template-based approaches exhibit excellent performance in the detection of a single object, including 
faces [1], cars and people [2]. However, for more generic object recognition with many objects, large 
inter-class and intra-class variations pose big challenges for efficient learning and recognition. Therefore, 
many methods have been proposed to study more robust feature structures for object representation and 
recognition. The part-based models like constellation model [3] represent the geometric relationship 
among different parts of the interested object. But the correspondence hypotheses number is usually large, 
which leads to expensive computational cost.    The models based on “bag of words” [4] [5] focus on 
learning the probability distribution of object parts as well as their dependency without considering the 
spatial connections.  

On the other hand, many statistic learning methods have been applied to capture the hidden structures 
of object features for classifications.  A linear SVM-based algorithm is proposed in [6] to automatically 
learn the discriminative components of face images. Principal components analysis (PCA) is applied in 
[7] to extract important features for online object learning and recognition.  K-nearest neighbor (KNN) 



method is proposed in [8] to classify objects based on their distances in the feature space. However, this 
method would become intractable when the dimension of features is large. Latent Dirichlet allocation 
(LDA) based method [9] tries to find the latent variables behind the data, but usually the model needs to 
be crafted carefully.  
   Hierarchical approaches to represent objects have become increasingly popular recently, which are 
inspired by the hierarchical nature of human visual cortex. According to Hubel and Wiesel’s theory [10], 
the cortex of human beings actually has hierarchical characteristics. The cortex consists of multiple levels 
with varied complexities. The bottom is simple cells that capture visual information from the 
environments directly. The processed signals are passed to the upper level consisting of complex cells, 
and then continue to hyper-complex cells. Each level deals with different complexities that represent 
different levels of the understanding about the environments. It is worthwhile to mention that the layer-
wise connections are local, which means that a cell of the upper layer can only receive information from 
one group of cells of the lower layer instead of all groups from the lower layer.  

The concept of feature hierarchy using multi-layer networks has been proposed in some work.  In [11], 
a two-level feature set is obtained by combining position- and scale-tolerant edge-detectors over 
neighboring positions and multiple orientations, and a ‘Standard Model’ is proposed to stack multiple 
level features. However, most multi-layer networks usually need supervised learning with huge labeled 
data, which is not always feasible for objects with many categories. Similarly in [12], two-layer feature 
architectures are constructed, and then features are clustered in a high-dimensional space for object 
classification. In [13], the compositionality of visual object is represented by probability distributions, and 
the composition relation, shape features, and class categorizations are fused together in a Bayesian 
network for object classification. Recently, several works demonstrate the advantages of training multi-
layer networks using unsupervised learning methods.  An energy-constrained learning algorithm [14] is 
used for multi-level encoder-decoder networks, and invariant feature hierarchies are learned for object 
recognition. The contrastive-divergence-based learning is proposed in [15] to train the deep belief 
networks and Restricted Boltzmann Machine (RBM).  

Inspired by the hierarchical architecture of visual cortex, in this paper, we propose a local constrained 
hierarchical network (LCHN) based model to learn the feature structures of objects. The LCHN consists 
of multiple layers and each layer represents different levels of features. The bottom layer works as the 
perception layer, which captures the most basic visual features. Then through the spatial-constrained 
connections between the bottom layer and its upper layer, the upper layer changes its own values 
according to the variations of the bottom layer. By passing this procedure upward, all layers adopt the 
variations of objects layer by layer. By applying the layer-wise learning algorithm proposed by Hinton 
[15], the hidden structures behind the visual features can be captured and expressed among the network. 
The proposed LCHN has the following advantages: 1) The spatial relationships and dependencies 
between object parts can be embedded into the network structures; 2) The hierarchy of the network 
provides different levels of descriptions on object features, which is usually very difficult for most 
algorithms of feature organization; 3) The unsupervised learning algorithm is applied for the network with 
the unlabelled data of different classes. 

2. Approach Taken 

2.1. The Local Constrained Hierarchical Network (LCHN) 

Inspired by the hierarchical structure of visual cortex, a local constrained hierarchical network (LCHN) is 
constructed, as shown in Fig.1.  
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Fig. 1. An example of a 3-layer LCHN. Local constraints are circulated by ellipses with dashed lines. 
Three pairs of are contained in this model using rectangles and each pair is trained as a Restricted 
Boltzmann Machine. 

 

   This example network contains 3 layers with 6, 4 and 2 nodes for layer 1, layer 2, and layer 3 (from 
bottom to top), respectively.  In layer 1, six nodes belong to two different local neighborhoods (the 
ellipses with dashed lines) and each local neighborhood has fully-connected mapping with its two upper 
nodes. In the middle layer, all nodes share the same local neighborhood and have connections with nodes 
of the top layer. The local neighborhood constraints reflect the relations among nodes. For example, if the 
neighborhood is decided by spatial relations of object patches, then patches 1-3 in layer 1 are constrained 
by the latent nodes 7 and 8 of layer 2. Patches 4-6 are decided by latent nodes 9 and 10. There is no 
connection between two groups in layer 1. However, all latent nodes of layer 2 belong to a single 
neighborhood, which reflects the spatial relations across the neighborhoods of the lower layer. 

Based on the above example, we proposed the following rules of constructing the LCHN:  
1) The LCHN has multiple layers. The number of layers depends on the problem. More layers mean 

more computational cost. For most object recognition problems, a network with 3 or 4 layers suffices.   
2) A layer only has connections with its adjacent upper and lower layers. The bottom layer is only 

connected with its next upper layer and the top layer is only connected with its next lower layer. The 
layer-wise connections are constrained by local neighborhoods of each pair of layers.  

3) The local neighborhoods can be determined by spatial distance, different features, or other factors. 
For visual objects, spatial distance is a good measurement for dividing local neighborhoods. The nodes of 
the same neighborhood have the same latent nodes of the upper layer. Different neighborhoods have no 
overlaps in the upper layer. In such a way, the number of connections is largely reduced compared with a 
fully-connected network. And neighborhoods of different layers reflect different scales of spatial 
relationships. The top layer with a single neighborhood represents the global features. 

4) The network is undirected with symmetric connections between layers. From the cortex system 
point of view, the bottom-up propagation is of learning or perception, which captures different levels of 
knowledge from the observation. While the top-down propagation is similar to inferences or 
imaginations, which estimates the observation from experiences.  

5) Once we have the network, next question is how to train the network to learn the patterns from the 
real data.  Basically, the state of a network depends on the values of nodes and the connection weights of 
the network.  Training a network means adjusting the values of nodes as well as the connection weights of 
the network through a learning algorithm using real data.  Generally it is difficult and computational 
extensive to train a multi-layer network as a whole. However the LCHN can be decomposed into a 
number pairs of layers according to their neighborhoods and each pair can be trained independently. As 
shown in Fig.1, three pairs are marked by rectangles. Consequently the whole learning process can be 
divided into several small independent learning tasks.    

For each pair, the lower layer can be called visible layer represented by V and the higher layer can be 
called the hidden layer represented by H. The state of a pair of layers can be defined as:  
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where ( )HVS , is the joint state of the visible layer V and hidden layer H. V
igs , is the value of node i of 

neighborhood g in the visible layer. H
jgs , is the weight of node j of the hidden layer that is connected with 

neighborhood g. VH
ijgw , is the connection weight between these two nodes. The overall state is the sum of all 

connection pairs over all neighborhoods. Equation (1) can be further written as: 
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where H
j

V
i ss represents the connection pair that belongs to the same neighborhood g. If both H

j
V
i ss are 

binary stochastic units, this pair turns into a Restricted Boltzmann Machine (RBM), which can be trained 
by an unsupervised learning algorithm of minimizing contrastive divergence. 

2.2. Restricted Boltzmann Machine 

     In the proposed LCHN, the layer pairs of each neighborhood can be treated as an RBM if all nodes 
have stochastic binary values. There are two layers for an RBM: a visible layer V and a hidden layer H. 
The state of an RBM can be defined by: 
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where iv and jh represent the binary states of visible node i and hidden node j, respectively. ijw  is the 

connection weight between node i and node j. ib and jb  are bias parameters. Given a data vector V, the 

hidden node j will turn into 1 with the probability of  
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Now the states of both visible and hidden nodes come from real data. Based on the values of hidden 
nodes given by (4), the visible data states can be recalculated or estimated as: 
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These values in equation (5) for visible nodes are reconstructed by the network, called reconstruction 
data. Using reconstruction data, the reconstructed hidden nodes can be calculated by applying equation 
(4) again. Now there are two sets of network states: the real data and the reconstruction data. Connection 
weights can be updated as:  
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Where ijwΔ represents the change of the connection weight ijw . ε is the learning rate.  
datajihv and 

reconjihv are the configuration products of visible and hidden nodes for real data and reconstruction data, 

respectively. Applying the learning rule of equation (6) to update the connection weights, the network 



will converge to the real data distribution. The similar rules can be applied for biases updates. This greedy 
learning algorithm is proposed by Hinton [16] and has been proved being efficient even though it is not 
strictly following the gradient of the log probability of the real data.   

2.3. Training LCHN Using RBMs 

    By modeling the connection pairs of the same neighborhood using RBMs, the proposed LCHN model 
turns into the stacks and combinations of RBMs. The LCHN model of Fig. 1 can be decomposed into 3 
RBMs. Therefore, by training the RBMs one by one, the whole network can be trained.  Since there is no 
overlap between different neighborhoods of the same layer, the RBMs of the same layer can be trained 
simultaneously.  Once the lower layer is finished, the training procedure can move up to the upper layer. 
This procedure continues until the top layer is trained. When the training moves up, the previous hidden 
layer turns into the visible layer. Also new neighborhoods are constructed based on the new 
neighborhoods. However, the learning procedure for RBMs is still the same. This procedure continues 
until the whole network is trained. 

2.4. Extend LCHN with Inter-Node Dependencies (LCHN-ID) 

    The proposed LCHN model can be extended by adding inter-node dependencies, called LCHN-ID. The 
nodes that belong to the same neighborhood usually have inter-node connections. For example, as shown 
in Fig. 2, suppose node 1-3 of layer 1 represent object patches, the connections between these nodes 
represent their inter dependencies. More specifically, the dependencies between the nodes represent how 
likely these patches will be observed together in the object.  
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Fig. 2 The 3-layer hierarchical network with neighborhood constrains and inter-nodes dependencies 
(LCHN-ID). 

 

After adding the inter-nodes dependencies, the energy of the corresponding RBM can be defined as: 
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All variables have the same definitions with Equation (3) and ikl  represents the connections between the 
visible nodes. However, there is no connection between the hidden nodes. Otherwise, the learning 
strategy of RBMs is not valid. But if the hidden nodes turn into visible nodes in the RBM of the upper 
layers, they can be connected with each other. For example, as shown in Fig. 2, node 7 and 8 of layer 2 
are independent when processing the RBM consisting of layer 1 and 2. And they become connected when 
the RBM of layer 2 and 3 is calculated since they become local neighbors. Similarly, the inter-node 
connections can be updated by equation (8). 
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where ε is the learning rate. datakivv and reconkivv are the configuration products of visible nodes for real 

data and reconstruction data, respectively. 

3. Results 
    The proposed LCHN model is evaluated on the MNIST [17] database of handwriting digits including 
60,000 training images and 10,000 test images. A four-layer network is constructed to learn the images. 
The bottom layer contains 28-by-28 784 nodes, which is the size of images, where each node corresponds 
to a pixel. All nodes are divided into 7-by-7 49 cells with each cell containing 4-by-4 16 neighboring 
pixels. The second layer keeps the same number of cells while each cell contains 3-by-3 9 nodes, which 
leads to the size of 441 nodes. Similarly, the third layer has 196 nodes with each cell having 2-by-2 nodes 
and the top layer has 49 cells with only 1 node inside a cell. So each layer has 49 cells with different 
number of nodes. The nodes population decreases from lower layers to higher ones since it is believed 
that the higher layers represent more abstract features with fewer nodes. 

Then the neighborhoods for each layer are generated. For the bottom layer, each cell is a neighborhood 
which leads to 49 neighborhoods. If every 4 close neighborhoods merge into the same neighborhood of 
the upper layer, then the second layer has 16 neighborhoods and each neighborhood has either 3 or 4 
cells. Similarly, the third layer has 4 neighborhoods and the top layer only has a single neighborhood. 

Once the neighborhoods of different layers are created, the cells of corresponding neighborhoods can 
be connected. The initial weights of connections can be random numbers. Firstly, the basic LCHN is 
trained by using the data of MNIST database. Only 10% size of the database is used, i.e. 6000 training 
data and 1000 testing data. The training data is divided into 60 trunks evenly. Each trunk with 100 data is 
fed into the network as a whole for one training procedure. After training, the network takes the testing 
data as inputs and generates reconstructions. Then, the back propagation (BP) is applied to tune the 
network to get more precise reconstructions. 

 Fig. 3 shows the reconstructions generated by LCHN before and after 50 times BP. The top image is 
the true data. The left side is the outputs of all layers from top to bottom before the BP tuning. The right 
side is the outputs after BP. Before the BP, the LCHN can roughly reconstruct the shape of input digits, 
although the quality is not good. But after BP, much better reconstructions can be achieved. 

The same procedure is applied to LCHN-ID with the same environments.  Fig. 4 shows that LCHN-ID 
can provide better reconstruction results. The left-bottom image is the reconstruction of LCHN-ID before 
BP, which is much clear than the same image provided by LCHN in Fig. 3. 

However, after fine tunings by a number of BPs, both models generate very similar results, as shown in 
the right-bottom images in Fig. 3 and Fig. 4. One reason to explain it is that after fine tunings, both 
models have been very close to the real pattern of the test data.  

Then a fully-connected RBM network is tested on the same data. This network has 5 layers with 784, 
1000, 500, 250 and 30 nodes. All nodes of each layer are fully connected with its upper and lower layers. 
Each layer pair consists of an RBM as well.  Fig. 5 shows the reconstructions of this network. After BP 
tuning, the similar results are obtained.   



 
Fig.6. The mean square errors of reconstructions on testing data. 

Fig. 6 shows the mean square errors of the reconstructions using three different models. It can be seen 
that the LCHN-ID provides the best starting point to tune the network. However, LCHN has the fewest 
number of nodes and connections, which leads to the fastest computation.  
 

Fig. 3. The reconstructions of LCHN. The top image is the real data. The left column is before BP tuning and the right one is 
after BPs. Each row represents the outputs of different layers from top to bottom. 
 

Fig. 4. The reconstructions of LCHN-ID. The top image is the real data. The left column is before BP tuning and the right one is 
after BPs. Each row represents the outputs of different layers from top to bottom. 



 

Fig. 5. The reconstructions of fully-connected network. The top image is the real data. The left one is 
before BP tuning and the right one is after BPs. 
 

 

Object Tracking using Swarming Particles  
Abstract:  
This project proposed a new object tracking algorithm that embeds swarming particles into generic 
particle filter framework to achieve more robustness and flexibility. Firstly a group of particles associated 
with potential solutions are initialized in a high-dimensional space. Then particle swarm optimization 
(PSO) is used to drive particles flying. The object is tracked when the particles reach convergence. This 
PSO-based algorithm contains resample, similarity measure, and integration together such that the 
degeneracy problem of particle filter can be avoided. Furthermore, a multiple feature model is proposed 
for object description to enhance the tracking accuracy and efficiency. The proposed algorithm is 
independent with specific objects and can be used for any free-selected object tracking. Some 
experimental results demonstrate efficiency and robustness of the algorithm. 
 
Simulation Results: 

 

 
                                                                          (a1)  (a2)                     (a3) 

 
                                                                          (b1)  (b2)                     (b3) 

 
                                                                          (c1)  (c2)                     (c3) 

 
                                                                          (d1)  (d2)                     (d3) 
Fig.1. An indoor tracking video experiments using PSO-PF, general PF and mean shift methods. First 
column (a1)(b1)(c1)(d1) shows the results of the proposed PSO-PF method,  the second column 
(a2)(b2)(c2)(d2) for a general PF method, and the last column (a3)(b3)(c3)(d3) for the mean shift method. 
From (a1) to (d1), the PSO-PF is capable of tracking the object with short occlusion. However the general 



PF lost the object when the object is occluded by cluttered backgrounds, as shown in (a2) and (d2). The 
mean shift lost the object at the very early stage and keeps drifting away in the whole process. 
 
For detailed information on the object tracking part, please refer to the attached paper.  
 

4. Potential Applications 
Inspired by the human visual cortex, a local constrained hierarchy network (LCHN) model is proposed to 
model the object features. One main reason to employ the multiple-layer networks is that this type of 
models is believed being capable to learn highly complex functions like perception, reasoning, etc., [18]. 
For LCHN and LCHN-ID, the spatial relations and dependencies of nodes are encoded into the 
connections between layers and inter-connections among nodes of the same layer. In such a way, the 
topology of the network is kept and the number of connections is reduced compare with fully-connected 
networks. 

The nodes of the proposed networks can be any type of feature detectors. However, if they have 
stochastic binary values, the network can be considered as a group of RBMs. Then a greedy learning 
algorithm can be applied on the network without supervision. This feature would make the learning 
process to be very convenient with lots of unlabelled data, which would also make the object recognition 
procedure to be more automatically compared to the supervised learning methods.   

However, there is still remaining work need to be conducted to fully understand and employ this 
hierarchical network. Besides using RBMs, other constraints and learning strategies will be investigated 
to make this model suitable for more complex problems. In this paper, we only evaluate LCHN approach 
on a simple object recognition application.  More complex and dynamic object recognition applications 
will be investigated in the future. For example, if the data are sequentially arriving with time-varied 
patterns, the online learning algorithm is necessary to catch up the pattern variations. Furthermore, the 
node populations for the layers and the connection topologies should be able to change adaptively 
according to dynamic environments. In the future, we plan to develop more powerful and efficient 
hierarchical neural network for object/pattern learning and prediction.   The major applications the 
object/pattern learning and prediction model and PSO-based object tracking algorithm include intruder 
detection under dynamic environment, security surveillance systems, situation awareness, and urbane 
search and rescue.  

5. Project Assessment 
This project has basically met the SOW objectives, although more theoretical improvements 
need to be conducted and more complex intruder detection case studies need to be conducted in 
the real world platform.   We are working on this part using bio-inspired hierarchical neural 
network based approach for complex object/pattern recognition right now, and will obtain some 
promising results in the continuing phase of this project.  
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