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[1] This research addresses the 45th Weather Squadron’s (45WS) need for improved
guidance regarding lightning cessation at Cape Canaveral Air Force Station and Kennedy
Space Center (KSC). KSC’s Lightning Detection and Ranging (LDAR) network was the
primary observational tool to investigate both cloud‐to‐ground and intracloud lightning.
Five statistical and empirical schemes were created from LDAR, sounding, and radar
parameters derived from 116 storms. Four of the five schemes were unsuitable for
operational use since lightning advisories would be canceled prematurely, leading to safety
risks to personnel. These include a correlation and regression tree analysis, three variants
of multiple linear regression, event time trending, and the time delay between the greatest
height of the maximum dBZ value to the last flash. These schemes failed to adequately
forecast the maximum interval, the greatest time between any two flashes in the storm.
The majority of storms had a maximum interval less than 10 min, which biased the
schemes toward small values. Success was achieved with the percentile method (PM) by
separating the maximum interval into percentiles for the 100 dependent storms. PM
provides additional confidence to the 45WS forecasters, and a modified version was
incorporated into their forecast procedures starting in the summer of 2008. This inclusion
has resulted in ∼5–10 min time savings. Last, an experimental regression variant
scheme using non‐real‐time predictors produced precise results but prematurely ended
advisories. This precision suggests that obtaining these parameters in real time may
provide useful added information to the PM scheme.

Citation: Stano, G. T., H. E. Fuelberg, and W. P. Roeder (2010), Developing empirical lightning cessation forecast guidance for
the Cape Canaveral Air Force Station and Kennedy Space Center, J. Geophys. Res., 115, D09205, doi:10.1029/2009JD013034.

1. Introduction

[2] The threat of lightning, both to life and property, is
well‐documented [Holle et al., 1992; Curran et al., 2000].
This threat varies throughout the life cycle of the thunder-
storm. During the mature stage of a storm [Byers and
Braham, 1949], lightning activity usually is a maximum;
the threat is obvious; and most individuals seek cover. It is
the period of thunderstorm initiation and dissipation, when
lightning activity is not obvious, that the majority of lightning
casualties occur [Holle et al., 1992]. This risk is especially
present in Florida, which receives more cloud‐to‐ground
(CG) lightning than any other state [Orville, 1994; Hodanish
et al., 1997; Orville and Huffines, 2001; Orville et al.,
2002]. The lightning threat is particularly acute during the

warm season months of May through September, the cli-
matological peak of Florida’s lightning.
[3] Considerable research has been done on forecasting

the onset of lightning at Cape Canaveral Air Force Station/
Kennedy Space Center (CCAFS/KSC) [Roeder and Pinder,
1998; Roeder et al., 2002]. This research focuses on light-
ning cessation, which has received little previous attention.
Specifically, we attempt to create an empirical lightning
cessation guidance product for CCAFS/KSC. Both installa-
tions are located in the eastern portion of Florida’s “lightning
alley” that crosses the central portion of the peninsula. The
most recent NLDN data (Figure 1) indicate that CCAFS/
KSC typically experience 5–15 CG strikes per square km
per year (S. Rudlosky, unpublished data, 2009). An earlier
climatology based on data from 1992 to 2005 indicated 4–
10 CG strikes per square km per year. These values are
smaller due to more data being used before two upgrades to
the National Lightning Detection Network [Cummins et al.,
1998, 1999, 2006]. The key point is that lightning poses a
significant threat to this portion of the state, which is one of
the most active regions in the country. With nearly 25,000
individuals and over $20 billion of facilities at CCAFS/KSC
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[Boyd et al., 1995], lightning safety demands accurate
forecasts for both lightning initiation and cessation.
[4] The United States Air Force’s 45th Weather Squadron

(45WS) is tasked with forecasting lightning at CCAFS/
KSC, among many other duties [Harms et al., 1999]. They
issue lightning advisories that alert personnel to the onset of
lightning and signal when the threat has passed [Weems et
al., 2001; Bott and Eisenhower, 2005]. The 45WS is rea-
sonably satisfied with the accuracy of their lightning initi-
ation advisories, although room for improvement exists.
However, knowing when to discontinue an advisory con-
tinues to be a major concern since after the fact evaluations
indicate that most are maintained too long. There is no
current objective guidance for canceling an advisory beyond
reversing the initiation criteria or forecaster rules of thumb
[Roeder and Pinder, 1998]. As a result, the 45WS keeps the
advisories active long enough to ensure that lightning has
ceased and it is truly safe to resume outdoor activities. The
45WS desires forecast guidance that will assess with a high
degree of confidence whether a particular flash is the last flash
of a given thunderstorm. This guidance would decrease the
advisory period while maintaining 45WS’ excellent safety
record. Effective guidance would reduce the amount of lost
manpower and produce a cost savings that is estimated to be
millions of dollars per year [Roeder and Glover, 2005].
[5] Several works have inferred lightning cessation based

on studies of lightning initiation [e.g., Wolf, 2006] or a
storm’s electric field [Marshall et al., 2009]. Wolf [2006]
indicated that reversing the initiation criteria of the 40 dBZ
radar reflectivity above the −10°C isotherm held promise for
forecasting cessation. Marshall et al. [2009] showed that the
surface electric field beneath a thunderstorm exhibited an
end of storm polarity oscillation during the storm’s decay
phase [Byers and Braham, 1949]. Although these works

describe interesting aspects of storm electrification, to our
knowledge only four previous studies specifically have ex-
amined lightning cessation, and all focused only on the last
CG strike. Hinson [1997] studied three storms in the KSC
area using radar data as the primary data source. He found a
lag time of ∼30 min between the last occurrence of 45 dBZ
reflectivity at the −10°C isotherm level and the last CG
strike. Holmes [2000] expanded the data set to 40 cases,
concluding that single and multicell storms had different
cessation behaviors. His greatest forecast skill was for single
cell storms. The third study, by Holle et al. [2003], focused
on evaluating the distance and times between successive CG
strikes. They found that the probability of another CG strike
within 3.2 km of a point within a 9.7 km outer warning ring,
and 5 min after the previous strike, was only 3.7%. While
promising, there was still a small likelihood of another strike
occurring 30 min after the previous strike. Finally, Roeder
and Glover [2005] conducted a proof of concept study
based on 58 thunderstorms. Interstrike times were fit to a log
linear curve that explained 75% of the variance. They
concluded that a statistical approach to forecasting lightning
cessation was a promising avenue of future research.
[6] This research seeks to develop statistical/empirical

guidelines for forecasting lightning cessation in the CCAFS/
KSC area. We expand on the previous cessation studies by
incorporating data from KSC’s Lightning Detection and
Ranging (LDAR) network [e.g., Lennon, 1975]. Also, instead
of only studying CG strikes, we consider total lightning,
both CG strikes and intracloud (IC) flashes. The number of
storms in our data set also is increased to 116 during the
warm seasons (May–September) of 2000–2005. The over-
arching goal is to develop cessation guidance that can
confidently and safely end a lightning advisory. This paper
is the culmination of several earlier reports [Stano et al.,
2006, 2008a, 2008b].
[7] We focus on the warm season months since it is the

climatological peak of lightning activity in central Florida.
Warm season storms also are less likely to be synoptically
driven and are more likely due to sea breeze activity and
general destabilization by surface heating. These conditions
produce scattered individual storms, not organized lines of
convection that are more typical during the cold season.
Cold season storms are much easier to monitor as they move
into and out of the 45WS’ area of interest. Since warm
season convection typically does not transition through the
45WS area of concern in this manner, forecasting their
lightning cessation is more complex.
[8] Section 2 describes the LDAR network and other

supporting data sets. Section 3 discusses our methodologies
and the characteristics of the 116 storms. Section 4 presents
our results, while conclusions are given in section 5.

2. Observation Networks

2.1. Lightning Detection and Ranging

[9] The LDAR network at KSC (Figure 2, circles)
[Lennon, 1975; Poehler and Lennon, 1979; Maier et al.,
1995; Britt et al., 1998; Boccippio et al., 2001] is a short‐
baseline system utilizing a time of arrival detection scheme.
Originally designed by KSC, the network consists of seven
sensors arranged in a hexagonal pattern. Each sensor is
located 6–10 km away from the controlling central receiving

Figure 1. Annual CG flash densities over east central
Florida (flashes km−2 yr−1) from 1992 to 2004. The KSC
region receives between 4 and 10 cloud‐to‐ground strikes
km−2 yr−1. The image covers 27.75°N–29°N and −81.55°W–
−80.4°W.
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site. LDAR is a passive observing system that operates at
66 MHz and a bandwidth of 6 MHz [Maier et al., 1995]. It
detects the very high frequency electromagnetic pulses
generated by individual stepped leaders and other phe-
nomena associated with lightning aloft. A single flash may
consist of hundreds or thousands of LDAR detections. As of
April 2008, LDAR was significantly upgraded, renamed the
Four‐Dimensional Lightning Surveillance System, and
ownership transferred to the 45th Space Wing [Murphy et
al., 2008]. However, the data analyzed in this study were
all from the original LDAR system, and so hereafter we will
refer to the data set as from LDAR, owned and operated by
KSC.
[10] LDAR detects most IC flashes and the upper portions

of CG strikes, with a detection efficiency greater than 90%
within 100 km of the network’s center [Boccippio et al.,
2001]. The efficiency improves to 99% when events occur
within 25 km of the network’s center [Maier et al., 1995;
Murphy et al., 2000]. It is important to distinguish between
individual LDAR source and flash detections. LDAR may
only detect 70% of individual sources within the network,
but the flash detection rate is close to 100%. LDAR data are

the key difference between this work and the previous
studies of lightning cessation [Hinson, 1997; Holmes, 2000;
Holle et al., 2003; Roeder and Glover, 2005].

2.2. Cloud‐to‐Ground Lightning Surveillance System

[11] KSC’s Cloud‐to‐Ground Lightning Surveillance
System (CGLSS) [Roeder et al., 2005; Boyd et al., 2005] is
a high‐performance, local CG lightning detection network
consisting of six Improved Accuracy via Combined Tech-
nology sensors [Cummins et al., 1998] (Figure 2, triangles).
They are similar to sensors employed by the National
Lightning Detection Network (NLDN) [Cummins et al.,
1998, 1999]. CGLSS has greater detection efficiency and
location accuracy than NLDN due to the sensors being
separated by only a few tens of kilometers [Boyd et al.,
2005]. CGLSS has 98% detection efficiency and 250 m
location accuracy, assuming all sensors are used in the
solution of the lightning location [Roeder et al., 2000]. The
primary purpose of CGLSS is to assess the likelihood of
induced current damage in the electronics of payloads, space
launch vehicles, and key facilities. Since LDAR loses
detection efficiency in the lowest 1 km of the atmosphere,
the CGLSS data are overlaid on the LDAR display to
confirm that a descending lightning flash actually became a
CG strike. For 45WS purposes, lightning advisories are
issued for any type of lightning.

2.3. Conventional Data

[12] WSR‐88D radar data from the National Weather
Service Forecast Office in Melbourne, Florida, were an
important secondary data set. The radar data were used to
accurately determine the locations of thunderstorms, asso-
ciate each lightning flash with its parent storm, and capture
the full lifecycle of each storm. This assured that the final
flash was properly assigned to the correct storm. The
Melbourne radar is located 1.13 km west and 47.32 km
south of the central LDAR receiver [Hinson, 1997; Holmes,
2000] (Figure 2, square). Level II archived data were
acquired from the National Climatic Data Center (http://has.
ncdc.noaa.gov).
[13] Morning radiosonde soundings from CCAFS

(KXMR) also were used. We calculated various wind,
moisture, and stability parameters from the soundings and
then determined if they were statistically correlated with
lightning cessation. Only morning KXMR soundings
between 1000 and 1500 UTC were utilized in order to
represent the atmosphere prior to the typical afternoon
thunderstorm initiation. This decision is consistent with
several previous studies [Neumann and Nicholson, 1972;
Lopez et al., 1984; Livingston et al., 1996; Brenner, 2004;
Shafer and Fuelberg, 2006].

3. Methodology

3.1. Storm Selection

[14] The storms comprising our data set were manually
selected by viewing displays of LDAR and radar data. This
manual approach, while time consuming, was the most
effective way to ensure that each flash was properly assigned
to its parent storm. The effective range of the LDAR net-
work determined our domain. It was confined to within
100 km of the center of the LDAR network (outer ring,

Figure 2. The research domain at CCAFS/KSC, where the
outer ring is 100 km from the center of the LDAR network
and the inner ring is at 60 km. Priority was given to events
occurring within 60 km, and no event was further than
100 km. Locations of the main observation networks are
shown for LDAR (circles), CGLSS (triangles), and the
WSR‐88D (square).
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Figure 2), with preference given to storms within 60 km
(inner ring, Figure 2). This inner ring assured that storms
would lie within the high detection efficiency regions of
both CGLSS and LDAR. Additionally, once a storm is
greater than 60 km from the center of the LDAR network,
the vertical error of the signal owing to the Earth’s curvature
becomes too large to effectively use three‐dimensional
LDAR predictors [Boccippio et al., 2001].
[15] Before individual storms could be selected, the

LDAR and CGLSS data were processed using two algo-
rithms made available by the 45WS. The first combined the
individual LDAR sources into flashes using temporal and
spatial criteria. Several flash‐creating algorithms were
available for use [Williams et al., 1999; Nelson, 2002;Wiens
et al., 2002; Thomas et al., 2003; Koshak et al., 2004; Lojou
and Cummins, 2005], and each had various pros and cons as
quantified by McCormick [2003] and Murphy [2006]. The
Nelson [2002] algorithm that we selected is an extension of
original code developed by Murphy et al. [2000]. The main
concern with any algorithm is uncertainty during high flash
rates. However, analyses have shown that the Nelson [2002]
approach is no better or worse than any other in this regard.
It has been used in several previous studies [McNamara,
2002; Nelson, 2002; Vollmer, 2002; McCormick, 2003].
Approximately 340 million LDAR‐observed sources were
processed during the study period of May–September 2000
to 2005.
[16] The second algorithm combined the LDAR flashes

with CG strike locations [McNamara, 2002]. This prevented
the IC component of a CG strike and the CG strike itself
from being counted as two separate flashes. With these steps
completed, the initiation point of each flash was displayed
with the radar data as described below. Only the flash ini-
tiation points were used to select candidate storms so that
the radar/source display was not cluttered with thousands of
other sources.
[17] The Warning Decision Support System–Integrated

Information (WDSS‐II) software [Lakshmanan et al., 2007]
was used to combine and visualize the radar and LDAR
flash initiation data. Our goal was to select only storms
whose lightning flashes clearly were associated with that
storm. This selection, although subjective, was the most
critical component. If flashes could not definitively be
associated with a particular storm, there would be no certainty
that the final flash of that storm had been captured and
that cessation had occurred. Automated approaches were
attempted, but no currently available method accurately and
consistently matched storms with lightning.
[18] Our subjective analysis limited the available storms

to study. As noted earlier, the initiation points had to
coincide with the radar‐observed location of a storm. Most
lightning in active storms was located near the storm’s core
(i.e., its greatest dBZ values). However, weaker or weak-
ening storms contained lightning that was more dispersed
throughout the cell or in the anvil region. Each selected
storm also had to be isolated from other storms to ensure
that flashes were assigned to the correct storm. Although
this requirement provided certainty that the final flash of
each storm was observed, fewer storms could be selected.
Cells often would grow in close proximity or merge, pre-
venting the determination of which storm generated which
flash. The isolated storms generally were weaker, shorter‐

lived, and exhibited less electrical activity than the popula-
tion of Florida storms.
[19] It is important to note that storms were not rejected

based on severity. A storm was rejected only if it was not
isolated such that we were unable to track all of the flashes
during the storm’s lifecycle. There were originally 142 storms
in our data set, consisting of severe and nonsevere storms as
well as multicellular and single cell storms. From this group,
26 were rejected, leaving a final data set of 116 storms. Six
of the 26 rejections were due to missing radar data. The
remaining 20 rejections, consisting of both severe and
nonsevere storms, were deleted because it was unclear
which storm produced which flash, thus preventing a
definitive determination of when cessation truly occurred.

3.2. Storm Characteristics

[20] Nearly 17 thousand flashes occurred in our 116 thun-
derstorms over 32 separate days. It is useful to describe
several characteristics of these primarily nonsevere storms.
Their intercloud flash rate ranged from 0.1 to 18 flashes
min−1, with a median of 1 flash min−1. The overall distri-
bution (not shown) was skewed, with the majority of storms
exhibiting fewer than 4 flashes min−1. These values are
much smaller than those of Montanyà et al. [2007], who
studied a severe hailstorm in northeastern Spain with a flash
rate of 92 flashes min−1. Similarly, Wiens et al. [2005]
observed flash rates of nearly 300 flashes min−1 in a super-
cell over the Great Plains. IC flashes comprised 95–100% of
Wiens’ storms total lightning activity. Their large IC per-
centage may be due partly to the flash creation algorithm
breaking a single flash into several flashes [Murphy, 2006].
Our 116 storms did not exhibit such large flash rates;
however, eight were severe thunderstorms, as defined by the
National Weather Service (i.e., hail greater than three
quarters of an inch in diameter, winds exceeding 93 km h−1,
or a tornado) such as observed by Wiens et al. [2005] and
Montanyà et al. [2007]. It was difficult to include severe
thunderstorms in our data set because many merged or were
in close proximity to other cells, making it impossible to
accurately determine which cell produced which flash. Thus,
few severe thunderstorms were included, resulting in lower
lightning flash rates.
[21] The LDAR network provides a three‐dimensional

analysis of lightning. We determined both the average ini-
tiation altitude (7.4 km) and average altitude of all sources
(7.8 km), with both parameters ranging from ∼7–9 km.
These values are less than the 8–11 km levels of maximum
source densities found by Carey and Rutledge [1998] who
observed the electrical and multiparameter radar‐derived
characteristics of a severe hailstorm near Ft. Collins,
Colorado, in 1995. However, current results are in close
agreement to the large peak of sources at 9 km with a
smaller peak at 6 km found by Vollmer [2002] who investi-
gated the horizontal extent of over 1 million lightning flashes
over a multiyear period based on altitude and atmospheric
temperature.
[22] The source altitude information was compared with

several environmental parameters, particularly the freezing
level height that defines the base of the storm’s mixed phase
region that is important to the charging process [Takahashi,
1978; Jayaratne et al., 1983; MacGorman et al., 1989;
Saunders et al., 1991]. The median freezing level height for
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this study was 4.5 km. 64 storms (55%) had an average
initiation altitude that was 2–4 km above the freezing level.
Initiation altitudes of the remaining storms were split, with
32 storms (28%) having an average initiation altitude less
than 2 km above, and 20 storms (17%) greater than 4 km
above the freezing level. No storm had an average initiation
altitude below the freezing level.
[23] Algorithms developed by McNamara [2002] and

Nelson [2002] allowed comparisons between intracloud
flashes and cloud‐to‐ground strikes. 96 of our storms (83%)
produced some CG activity, leaving 20 with only IC flashes.
Of these 20 storms, the total number of IC flashes ranged
from 3 to 205. Two storms produced only CG strikes, each

with six. The median percentage of CG strikes to IC flashes
was 14%, which is three times the value found by Wiens et
al. [2005]. Six storms exhibited a ratio greater than 50%.
[24] We also determined which type of flash was most

likely to initiate and end a storm. Of our 116 storms, 104
(90%) initiated with an IC flash, while 97 (84%) ended with
an IC flash. These values for our relatively weak storms are
consistent with the findings of MacGorman et al. [1989]
who studied two tornadic storms in central Oklahoma and
Williams et al. [1989], who studied air mass thunderstorms
producing microbursts near Huntsville, Alabama. Of the
96 storms with CG activity, 77 ended with an IC flash that
averaged 8.1 min after the last CG strike. The greatest delay
was 43 min. The remaining 19 storms with CG activity
ended with a CG strike, with an average delay between the
last IC and last CG of 9.4 min, and a maximum delay of
50 min.

3.3. Predictor Selection

[25] Our goal was to develop a statistical/empirical
guidance product for lightning cessation. We first calculated
100 possible predictors based on the lightning characteristics
just described as well as additional parameters from CGLSS,
the WSR‐88D, and KXMR soundings. These 100 predictors
were reduced to a smaller number by screening for colin-
earity. When a possible predictor was highly correlated with
others, the predictor with the highest correlation to our
predictand (described below) was selected. These tests for
colinearity reduced the number of possible predictors to 33
(Table 1). Discussions with the 45WS indicated that only
parameters available to them in real time would be useful,
since the flash creation algorithm could not be run in real
time. Therefore, we initially eliminated several LDAR flash
parameters including the average interflash time, flash rate,
and intercloud flash rate (denoted by asterisks in Table 1).
As substitutes, we included raw LDAR source data such as
the number of sources above 10 km. After deriving cessa-
tion guidance based on the available real time predictors,
several of the non‐real‐time predictors were reintroduced to
the predictor pool to develop an experimental regression
technique to test their effectiveness had they been available.
All of these results are given in section 4.

3.4. Predictand Selection

[26] The selection of the cessation predictand requires
explanation. We needed a predictand that would give a
specific time interval to wait after a flash occurred to know
with certainty that it was the last flash. That is, after seeing a
flash the forecaster would know how long to wait, without
another flash occurring, before safely ending the advisory.
Several predictands were investigated, but the maximum
interval (the greatest time between any two flashes in a
storm) was selected for the reasons stated below.
[27] Figure 3 displays three general distributions of

interflash times for the 116 storms comprising our data set.
The solid curve is the trend that is intuitively expected
(63 storms). That is, as a storm develops, its interflash times
are large (i.e., the left side of the curve). The storm then
exhibits peak lightning activity during its mature stage
[Byers and Braham, 1949] that is indicated by small inter-
flash times. Finally, as the storm reaches its dissipation
stage, lightning activity diminishes, and the interflash times

Table 1. Fifteen Lightning, Three Radar, and Fifteen Sounding
Candidate Predictorsa

Candidate Predictor

Lightning average interflash time intervalb (s)
time between the last two flashesb (s)
instantaneous storm duration from

first flash to presentc (min)
average flash horizontal extentb (km)
total sources for thunderstormc

average flash starting heightb (km)
storm over land or waterc

number of sources above 10 kmc

average source heightc (km)
average time between the last five

flashesb (min)
cloud‐to‐ground strike rated (per min)
total cloud‐to‐ground of the stormd

first flash intercloud or cloud‐to‐
groundd

delay between first intercloud and first
cloud‐to‐grounde (min)

percentage of intercloud to cloud‐to‐
groundb,e

Radar time from maximum VIL to final
flash (min)

maximum VIL of the storm (kg m−2)
maximum height of the maximum

dBZ for the storm (m)

Sounding convective temperature (K)
convective condensation level (hPa)
mean relative humidity through

1 km (%)
theta‐E lapse rate between 950 and

700 hPa
mean wind direction (1000–700 hPa)

(deg)
shear through 6 km (s−1)
shear through 500–200 hPa (s−1)
wet‐bulb zero level (hPa)
best lifted index (°C)
precipitable water (in)
altitude of the ‐40°C isotherm (hPa)
Showalter index (°C)
freezing level (m)
convective inhibition (J kg−1)
most unstable CAPE (J kg−1)

aThe 15 lightning candidate predictors are from LDAR and CGLSS, the
3 radar candidate predictors are from WSR‐88D, Melbourne, Florida, and
the 15 sounding candidate predictors are from Cape Canaveral, Florida, for
a total of 33 candidate predictors.

bCandidate predictors unavailable in real time.
cCandidate predictors available in real time.
dCandidate predictors using CGLSS data.
eCandidate predictors using both CGLSS and LDAR.
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increase. If lightning in every storm followed this cycle, the
time trend between the last few flashes would be relatively
easy to forecast, and our approach likely would have mir-
rored the log linear curve described by Roeder and Glover
[2005].
[28] Figure 3 shows that two additional lightning trends

comprised an important portion of our data set. Some storms
had no true building phase when the lightning activity
slowly increased. Instead, their interflash times are small
from the storm’s beginning and then exhibit the expected
decay (dotted line, 42 storms). This in itself would not
prevent use of the ending interflash times. However, the
third observed scenario (dashed line, 11 storms) shows a
typical spin‐up, but the storm suddenly stops producing
lightning, yielding a short interflash time even between the
last flashes. This sequence renders the time trend predicted
useless since the time between the last two flashes is small
and would lead to an underprediction of cessation wait
times.
[29] Figure 4 illustrates another problem encountered

when selecting a cessation predictand. It is a stylized example
of several storms in our data set. These storms initially
produce a rapid series of lightning flashes (e.g., first five
flashes) followed by a long delay. Then, two additional
flashes occur in close succession at the end of the storm.
This example exhibits two distinct time intervals. The in-
terval between the last two flashes, i.e., between flashes 6
and 7 is 2 min; however, the maximum interflash time of
10 min occurs between flashes 5 and 6. We next describe

the ramifications of using each of these interflash intervals.
We first assume that the time between the last two flashes
(2 min) is our last flash forecast. That is, 2 min is the time to
wait after every flash to decide if it was indeed the last one.
This 2 min interval works well for the first four flashes since
another flash always occurs within 2 min, thus resetting the
2 min wait time. However, a problem occurs after the fifth
flash. If the 2 min wait period were the only input, we would
end the lightning advisory at 7 min, which would be incorrect
since flashes six and seven occur at 15 and 17 min, respec-
tively. This choice would place personnel in danger since the
advisory would be canceled even though the lightning threat
has not ended. This uneven periodicity proved to be a major
problem in developing a cessation guidance procedure.
[30] The alternate choice is to forecast the maximum

interval between flashes, which in our hypothetical example
is 10 min. Using this interval, we correctly maintain the
lightning advisory between the fifth and sixth flashes. Our
forecast also waits long enough after the seventh (and last)
flash to safely end the advisory, giving confidence to the
forecasters using the scheme.
[31] The choice of whether to use the time between the

last two (or more) flashes or the maximum interval as the
predictand comes down to what information is known in
real time. Unlike initiation, the forecaster’s job for cessation
is not finished with the first flash. If all of the storms in our
data set had a gradual decay in lightning activity (dotted and
solid lines, Figure 3), the time between the last two (or few)
flashes would be an adequate predictand. The forecaster

Figure 3. Three common distributions of a storm’s interflash times. The majority of our storms had
the u‐shaped distribution (solid line). However, other storms either had a rapid initiation and slow decay
(dotted line) or slow initiation and rapid decay (dashed line) that made it difficult to use the time between
the last two flashes as the predictand.

Figure 4. Illustration supporting the use of the maximum time interval between flashes instead of the
time between the last two flashes. In 68% of the events, the maximum interval was greater than between
the last two flashes, making the former the superior predictand for forecasting lightning cessation with the
trade‐off of a smaller time savings.
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would calculate a time to wait between flashes to know with
certainty that when a flash was not followed by additional
flashes during that interval, cessation will have occurred.
However, Figure 3 shows that some storms in our data set
(dashed line) start with a gradual build‐up in lightning
activity, and then stop with no gradual decrease in activity.
This creates a problem if we try to use the time delay
between the last two flashes, since this interval is small.
Using the last two flashes time interval as the predictand for
these suddenly ending storms may underestimate the actual
time interval to safely wait for cessation. In other words, the
time to wait may be underestimated, causing our cessation
guidance to cancel an advisory too early.
[32] To avoid this uncertainty, we used the maximum

interval between flashes as our predictand. It does not
require the forecaster to know where in the sequence of
flashes the just observed lightning occurs. If the forecast
maximum interval has passed without another flash, the
forecaster can confidently end the lightning advisory. This
certainty comes with a trade‐off. By using the maximum
interval, the forecaster accepts an overforecast of the wait
time to cessation. Although this decreases the time savings,
safety considerations require that we accept greater forecast
certainty over greater time savings. If a scheme provides no

certainty that its prediction has relevance to lightning
cessation, it is of no use to the 45WS. Figure 5 shows the
distribution of maximum interval times for the 100 storm‐
dependent data set (described next), along with four outlier
maximum intervals of 16.4, 18.2, 18.7, and 27.8 min.
[33] We randomly selected 100 of the 116 storms to serve

as the dependent data set from which to develop cessation
guidance. The remaining 16 storms served as an indepen-
dent data set on which the cessation schemes were tested.
How the two data sets were distributed was a concern. If all
of the outliers had been in the dependent data set, each
scheme might provide a false sense of success. Conversely,
if all the outliers were in the independent data set, it likely
would cause our schemes to fail. The 16 independent storms
were analyzed to determine if they were a representative
sample of the 100 storms used to generate the equations.
Figure 6 shows that three of the 16 storms had outlier
maximum intervals of 11.1, 22, and 23.2 min, i.e., propor-
tionally more outliers than the dependent data. However, the
random selection of the dependent and independent data sets
slightly favors our schemes since four outliers are in the
dependent data as is the greatest outlier.
[34] To address the concern of basing our schemes on

only one random selection of dependent and independent

Figure 5. Distribution of the maximum interval time (minutes) for the 100 storms comprising the depen-
dent data set.

Figure 6. Distribution of the maximum interval time (minutes) for the 16 storms that are part of the
independent data set.
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data, a bootstrap analysis [Efron and Tibshirani, 1993] was
conducted by randomly dividing the 116 storms into
10 separate dependent and independent groups. The cessa-
tion schemes were redeveloped from each dependent set and
verified against the corresponding independent storms. The
bootstrap‐derived forecasts also were compared to those
from the current 45WS forecasts procedures.
[35] With the candidate predictors calculated and the

predictand chosen, we developed five potential schemes for
providing cessation guidance using the Statistical Package
for the Social Sciences (SPSS), version 11.5 for Windows,
distributed by SPSS, Inc. One predicts the natural logarithm
of the maximum interval. The natural logarithm was chosen
since distributions of the raw maximum interval were
skewed to the right (not shown), whereas multiple linear
regressions require a Gaussian distribution. Three additional
schemes, the correlation and regression tree analysis
(CART), event time trend (ETT), and percentile method
(PM), use the raw maximum interval. Finally, the fifth
scheme predicts the lag between the time of the greatest
height of the maximum dBZ of the storm (MZM) to the time
of the last lightning activity. It is the only method that does
not utilize the maximum interval in any way.

4. Results

4.1. Forecast Schemes

[36] Two terms must be defined before continuing. We
evaluated our schemes based on the accuracy and precision
of their forecasts. An accurate forecast predicts or over-
predicts the maximum interval. That is, a scheme is rewarded
for not ending a lightning advisory prematurely. A precise
scheme only slightly overpredicts or underpredicts the
maximum interval. Thus, a scheme may be very precise, but
if it forecasts the end of lightning prior to actual cessation it
is inaccurate. Table 2 will be utilized throughout this sec-

tion. It shows the basic results of each scheme when tested
on the 16 independent storms.
4.1.1. Correlation and Regression Tree Analysis
[37] An early ominous finding was low correlations

between each of the 33 predictors (Table 1) and the predictand
(maximum interval). This was manifest by the difficulty
of each scheme to predict the outlier values of maximum
interval (e.g., Figure 4). The correlation and regression tree
analysis (CART) [Brieman et al., 1984; Venables and
Ripley, 1997; Burrows et al., 2004] will be described first.
The first step was to create the tree using a recursive splitting
of nodes (i.e., decision points). The nodes are created based
on predictors in the dependent data set, and at each node,
additional subnodes, or children nodes, then are created. As
each node is created, SPSS determines whether the node
terminates to provide a final value for the predictand
(maximum interval). At this point, the decision tree likely
has overfit the data set. This leads to a “pruning” process in
which simpler trees are created by removing nodes of lesser
importance. From the set of “pruned” trees, an optimal tree
is selected that best describes the dependent data set, while
not overfitting the data.
[38] The simplicity of this scheme is a positive trait for use

in an operational setting since it does not require interpre-
tation of a multivariate regression model. Unfortunately,
although CART would be easy to implement operationally,
it only provided 56% accuracy and very little precision
(Table 2). The actual decision tree (Figure 7) shows the
cause of the poor accuracy. Of the seven termination nodes
giving the forecast maximum interval, only one is longer
than 10 min. This automatically causes CART to miss the
three longest maximum intervals in the 16 independent
storms. With this bias toward the shorter and more numer-
ous maximum intervals, the CART scheme does not provide
a safe cessation forecast.
[39] The CART analysis is heavily weighted toward the

time delay between the last CG strike and the last (and final)

Table 2. Summary Table of Basic Results From the Five Empirical Schemesa

Scheme

Correlation and
Regression

Tree (CART)

Sounding
Only

Regression
(SOR)

Sounding and
Storm Features
Regression
(SSR)

Experimental
Regression

(ER)
Event Time
Trend (ETT)

Lag Between Storm’s
Maximum Height
of Maximum dBZ

to Last Flash (MZM)

Percentile
Method
at 99.5%

(PM at 99.5%)

Percentile
Method
at 95%

(PM at 95%)

R2 – 0.08 0.295 0.54 – – – –
POD (%) 56 75 75 44 81 88 100 88
FAR (%) 44 25 25 56 19 12 0 12
Average error (min) −1.5 −0.17 0.2 0.1 −0.1 13.5 18.1 8.1
Median error (min) 0.3 2.3 2.4 −0.1 1.6 9.2 21.2 11.2
Greatest underprediction

(min)
19.6 15.9 11.5 13.4 12.9 6.5 – 8.2

Average underprediction
(min)

6.2 9.1 6.9 2.7 10.1 3.6 – 7.6

Median underprediction
(min)

3.2 9.8 7.2 0.8 10.6 3.6 – 7.6

Greatest overprediction
(min)

5.2 4.5 4.4 19.4 5.4 43.8 22.3 12.3

Average overprediction
(min)

2.2 2.8 2.7 3.7 1.6 15.9 18.1 10.4

Median overprediction
(min)

1.8 2.9 2.8 1.0 1.5 11.6 21.2 11.2

aThree schemes were based on regression models (sounding only regression (SOR), sounding and storm regression (SSR), and experimental regression
(ER)). Results from the event time trend (ETT) and two percentile method (PM) schemes also are shown. Note that the maximum height of the greatest
dBZ (MZM) lag predicts the actual time to the last flash and predicts the maximum interval between flashes.
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IC flash of a storm since three of the first four decision
nodes use this predictor (Figure 7). This choice specifically
addresses characteristics of individual storms. Two of the
final three predictors, shear through 6 km and the best lifted
index, are environmental parameters, suggesting that the
shear that can tilt an updraft and the available instability
contribute to lightning activity. The final node, storm
duration, is another storm specific parameter that appears in
several of the schemes discussed later. It is unfortunate that
the optimal decision tree (Figure 7) includes a predictor
(time delay between last CG and last IC) that is poorly
correlated to the maximum interval (R is −0.1). However,
none of the other predictors yielded better results. Of the
remaining predictors, instantaneous storm duration, had the
best correlation of R = 0.21. Operationally, use of this
predictor would require CART to be rerun as the storm
persists. Although the CART analysis hints that individual
storm predictors are the most effective to use, our scheme
was hampered by the predictors available in real time being
poorly correlated with the predictand (maximum interval).
[40] The decision tree shown in Figure 7 was the best of

several that were developed. The tree creation process was
repeated numerous times to help determine what parameters
would produce the best decision tree. They included using
different numbers of termination nodes as well as how easily
a node could split into additional children nodes. The low
correlation of the predictors to the predictand limited
CART’s versatility. While many variations were attempted,
none were accurate or effective.
4.1.2. Multiple Linear Regression Schemes (Sounding
Only Regression, Sounding and Storm Regression, and
Experimental Regression)
[41] Three variants of multiple linear regression

[Chambers and Hastie, 1992; Gardner et al., 1995; Wilks,
2006] were used to select the best combination of pre-
dictors for our cessation schemes. These were the experi-
mental regression (ER), sounding only regression (SOR),
and sounding and storm regression (SSR). SOR and SSR
were developed with the data available to the 45WS fore-
casters in real time. ER was developed as a “what if”

scheme to observe the effect of including parameters not
available in real time, such as intracloud flash rate and ini-
tiation altitude. Their inclusion attempts to include some
information about storm dynamics.
[42] The SPSS software uses a “forward conditional”

stepwise selection process with a test for backward elimi-
nation in developing the regression model. The first pre-
dictor variable selected produces the greatest reduction in
the residual sum of squares (or residual deviance (RD)), i.e.,
the predictor that explains the most variation in the maxi-
mum interval. The algorithm next selects the predictor that,
together with the first, further reduces the RD by the greatest
amount. At each step, the algorithm performs a backward
check to determine if the additional predictor causes any
previously selected predictor to become insignificant. If this
occurs, that predictor is removed. This process continues
until the RD can no longer be reduced by a significant
amount, or until no predictors remain.
[43] Multiple regression schemes were created for each of

the three variants. These schemes were based on adjusting
the p value threshold for determining which predictors were
chosen for the equations as well as the p value threshold for
determining when a predictor should be removed from the
regression model. The p value for allowing a predictor to be
chosen varied from 0.1 to 0.4 in increments of 0.05. Addi-
tionally, the p value for discarding a predictor varied from
0.15 to 0.45. Optimally, the p values should be relatively
small, indicating strong choices for the regression model.
However, with our data set, the regression variants per-
formed best under less stringent conditions. SOR had the
least strict values of 0.40 and 0.45, although this was partly
expected due to the sounding only parameters likely having
little relevance to lightning cessation later in the day. The
SSR and ER variants were better constrained with 0.25 and
0.30 used for the p value thresholds. The discussions below
of the three multiple linear regression variants describe the
best versions of each scheme. ER is the worst of all the
regression variants that were tested. Its equation (1) is given
below with the following definitions. The average interflash
time is the median of all times between each flash, storm

Figure 7. CART analysis for predicting the maximum interval. Each termination node gives the forecast
maximum interval (minutes) to wait before ending a lightning advisory.
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duration is the length of time between the first and last flash
in the storm, and the midlevel height is 7–9 km for the
number of midlevel LDAR sources.

LN Maximum Intervalð Þ ¼ 4:835

þ 0:006� Average Interflash Timeð Þ þ 0:017� Stormð DurationÞ
� 7:5� 10�5 � Number of Midlevel LDAR Sourcesð Þ
þ 6:84� 10�5 �Most Unstableð CAPEÞ
� 5:0� 10�5 � Average LDAR Source Heightð Þ
þ 7:14� 10�5 � CG Rateð Þ: ð1Þ

Table 2 shows a poor 44% accuracy and an R2 value of
0.54. However, ER does produce excellent precision. The
median error is only 0.1 min less than the maximum interval.
Although ER ends the advisories early, its high precision in
forecasting the maximum interval is a positive trait. This
suggests that if the non‐real‐time data could be acquired,
efforts should be made to refine this version of our multiple
linear regression schemes. Also, ER, the percentile method,
and event time trend (both described later), are the only
schemes to correctly forecast at least one of the three outlier
maximum intervals, while the percentile method is the only
scheme to forecast all of the outliers.
[44] The remaining two multiple linear regression

schemes are SOR and SSR, given by equations (2) and (3),
respectively, where CCL is the convective condensation
level.

LN Maximum Intervalð Þ ¼ 0:932þ 0:004� CCLð Þ
þ 0:007��40�C levelð Þ � 0:002�Windð DirectionÞ
� 0:011� Shear through 6 kmð Þ ð2Þ

LN Maximum Intervalð Þ ¼ 5:244þ 0:001� CCLð Þ
þ 0:017� Storm Durationð Þ � 0:021ð �Maximum VILÞ
� 0:008� Total CGð Þ � 0:043� Best Lifted Indexð Þ
� 7:3� 10�5 � Averageð LDAR Source HeightÞ
� 0:012� Shear through 6 kmð Þ: ð3Þ

SOR only uses prestorm environmental parameters derived
from the morning KXMR sounding. Our objective was to
determine if the prestorm environment alone could provide
information about how long lightning persists in a thun-
derstorm. SSR is similar to SOR, except that any of the
parameters available to forecasters in real time (Table 1)
could be selected. Aside from the possibility to select dif-
ferent predictors, the development of SSR was identical to
SOR.
[45] It is useful to discuss the predictors selected for the

above three equations. The first term on the right side of the
ER equation, the average interflash time, explains the most
variance. Although Figure 3 showed a class of storms with a
sudden end to lightning activity (dashed line), only 11 of our
116 storms exhibit this trend. These 11 storms require the
use of maximum interval to ensure safety. This suggests
that, should it be available in real‐time, average interflash
time may be able to account for the three trends seen in
Figure 3 due to ER’s high precision. It is interesting that
while ER could select any predictor, including those not
available in real time, the average interflash rate was the

only non‐real‐time predictor chosen. Although ER’s accu-
racy is poor, this single predictor markedly improves ER’s
precision compared to the other schemes (Table 2). This
suggests that the average interflash rate might serve as a
crude indicator of a storm’s dynamical and microphysical
processes.
[46] Storm duration explains the second most variance in

the ER and SSR approaches. It even becomes the lynch pin
of a separate scheme discussed later. Storm duration gives
insight into whether a storm is a short‐lived “pulse” storm or
part of a multicellular structure or associated with a charged
anvil cloud. Storm duration is an instantaneous variable,
changing as the storm produces more lightning.
[47] Two parameters shared by the ER and SSR schemes

are closely related, the number of midlevel sources (ER) and
the average LDAR source height (ER and SSR). The alti-
tude of lightning sources is related to the strength of the
storm’s updraft. More sources at higher altitudes suggest a
vigorous updraft and therefore a storm that is still intensi-
fying or in the mature stage. Thus, cessation is unlikely
when altitude values are high. Alternatively, high‐altitude
sources can come from anvil lightning, but this can be
discerned from lightning in a convective cell by using radar
observations.
[48] It is interesting to note that both ER and SSR include

a stability parameter, MUCAPE and best lifted index,
whereas SOR does not. SOR uses less direct measures related
to stability, the convective condensation level (CCL) and the
height of the −40°C isotherm. ER and SSR, which have
more dynamic predictors, can “afford” to include a less
useful stability parameter. Strong instability leads to stron-
ger updrafts and lightning activity, but is less useful for
cessation.
[49] SOR and SSR both share the shear predictor through

6 km, while no similar parameter exists in ER, possibly due
to similar information being embedded within the average
interflash time predictor. Although 6 km shear ranks last in
both SOR and SSR, it is a reasonable choice. With the
appropriate amount of shear, a storm can develop a tilted
updraft that will not “rain out” as quickly. This provides a
more intense updraft and a better opportunity for the storm
to rise above the freezing level with more hydrometeors
available for charging. The fact that SSR contains the
maximum vertically integrated liquid predictor supports this
hypothesis. Additionally, SOR curiously selects the wind
direction predictor. This may occur because storm devel-
opment in central Florida is governed by the sea breeze
during the warm season months. An easterly (onshore) wind
at CCAFS/KSC generally leads to weaker storms, while a
westerly wind enhances the east coast sea breeze front and
the probability of stronger thunderstorm development in the
area [Arritt, 1993].
[50] Finally, ER and SSR share one last similar predictor,

CG rate and total CG, respectively. These parameters were
not expected to be selected since it was assumed that the
LDAR observations would provide more information.
[51] To our surprise, SOR and SSR tie in accuracy (Table 2),

both yielding 75%. However, it is no surprise that SOR
yields poor results since there was little expectation that the
prestorm environment would provide much information
about cessation within a specific, future storm. We had
expected that allowing SSR to select any of the candidate
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predictors would provide improved forecasts. When com-
paring the underforecast and overforecast errors of both
regression variants, neither is promising. SSR only improves
SOR’s R2 value, 0.295 versus 0.08. These values suggest
that neither scheme can produce safe forecasts of lightning
cessation.
[52] The results indicate that all of the predictors in Table

1, while being the best available, are poorly correlated to the
maximum interval. Thus, no combination of predictors,
whether in the prestorm environment or during the storm,
has a significant chance of safely predicting lightning ces-
sation. Too much important information, such as micro-
physical activity, is not available. This may explain why ER
yields greater precision since its selection of average inter-
flash time may parameterize this information in some way.
In summary, the parameters available for the regression
schemes are not sufficient for forecasting cessation.
4.1.3. Event Time Trend
[53] Given the poor performance of the CART analysis

and all three regression schemes, we devised several other
methods as described in section 3. The event time trend
(ETT) was developed because storm duration (time from the
first to last lightning activity) was selected in the CART,
ER, and SSR procedures. Operationally, a forecaster would
have to update the forecast as the storm persisted over
longer times. Several trend lines relating storm duration to
maximum interval were developed (not shown). Equation (4)
describes the most successful version, where durations are
given in minutes.

Maximum Interval ¼ 5:0� 10�6 � Storm Duration½ �3
� �

� 0:001� Storm Duration½ �2
� �

þ 0:165�ð Storm DurationÞ þ 2:504: ð4Þ

In spite of its simplicity, ETT produces 81% accuracy. Also,
ETT, along with ER and PM, are the only procedures that
correctly predict one of the three outlier maximum interval
events in the independent data set. The storm duration pre-
dictor in (4) provides some insight into the nature of the
storm, including broad assumptions about its microphysical
structure. Small durations are associated with short‐lived
pulse storms with a brief charging period, while long dura-

tions indicate multicellular storms with greater charging or
storms with a long‐lived, charged anvil. ETT initially appears
to be the most balanced between accuracy and precision. That
is, it gives forecasters a modest level of confidence that ces-
sation has occurred, while simultaneously providing some
precision by not greatly overforecasting the maximum in-
terval. This is somewhat misleading since ETT produces a
few large underforecast errors that counteract larger over-
forecast errors. The underforecast errors are partly explained
by a scatterplot between storm duration and maximum in-
terval (not shown) that shows storm duration to be poorly
correlated with maximum interval. Although ETT success-
fully predicts one outlier, most of its success is due to the
majority of maximum intervals being small.
4.1.4. Lag Time From the Storm’s Maximum Height of
the Maximum dBZ to the Last Flash (MZM)
[54] Since the three maximum interval schemes described

above fail to predict all three outliers, we reconsidered our
decision to use it as the predictand. This reconsideration led
to the maximum height of the greatest dBZ (MZM) scheme
which developed a cubic relation between the maximum
height of the storm’s maximum dBZ value versus the time to
the last flash (Figure 8, equation (5)). MZM is the only
scheme that explicitly attempts to forecast a storm’s last
flash. It utilizes the time delay from when the greatest
reflectivity core reaches its highest altitude to the time of the
last flash. Equation (5) describes the period of time to wait
for additional lightning to occur after the most recent flash.
A drawback to MZM is that it must be recalculated when the
greatest dBZ value or its height changes, much like ETT
with the instantaneous storm duration. Similar approaches
were attempted using the number of CG strikes, IC flash
rate, and the percentage of CG to IC flashes (not shown).
However, none of the individual parameters had the forecast
utility of MZM.

Lag Time to Last Flash ¼ � 0:358� MZM3
� �� �

þ 5:561� MZM2
� �� �

� 14:14�MZMð Þ þ 19:93: ð5Þ

[55] A perceived advantage of the MZM scheme is that it
attempts to include storm dynamics by utilizing radar data.

Figure 8. Scatterplot of the greatest height obtained by the storm’s maximum dBZ (kilometers) versus
the time to the last flash (minutes). A cubic trend line is superimposed.
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Relatively intense storms have stronger updrafts [e.g., Byers
and Braham, 1949], and considerable previous research has
studied updraft characteristics, including their size [Auer and
Marwitz, 1968], vertical velocity [Battan and Theiss, 1970;
Marwitz, 1973; LeMone and Zipser, 1980; Xu and Randall,
2001], and temperature [Davies‐Jones and Henderson,
1973]. Furthermore, the electrification process is linked to
the storm’s updraft [Gunn, 1956; Paluch and Sartor, 1973;
Stolzenburg et al., 1998]. These studies indicate that a
storm’s updraft is an integral factor in producing lightning
and that much of the lightning is contained within this core
region [Carey and Rutledge, 1998]. We hoped that using the
lag time approach would address the problem of forecasting
the greatest maximum interval storms (the outliers). Since
lag time is unrelated to maximum interval, MZM might be
able to discern differences between the independent storms
(Table 2).
[56] The MZM scheme is partially successful (Table 2).

Its accuracy of 88% makes it the second most accurate
scheme. Its underforecast error also is small, with the
median error only 3.6 min, making it one of the most precise
schemes. The largest underforecast error is only 6.5 min,
which is half that of the next closest scheme, aside from the
Percentile Method described next. The trade‐off for good
accuracy (i.e., correctly ending an advisory at or after
cessation) and small underforecast error is a large median
overforecast time of 12 min and the greatest overall over-
forecast of 44 min (Table 2). Thus, the MZM scheme pro-
vides high confidence that an advisory will be canceled
safely after lightning cessation. However, the time savings
over current schemes is minimal.
4.1.5. Percentile Method (PM)
[57] The final scheme tested, the Percentile Method (PM),

also is the simplest. A scatterplot of maximum intervals for
the 100 dependent storms was prepared and then divided
into percentiles (Figure 9). The 16 independent storms then
were verified against these percentile values. Figure 9
clearly shows why the previous schemes poorly forecast
the outlier events. Since most of the dependent storms had a
maximum interval less than 10 min, the schemes were
skewed to underpredict the outliers.

[58] When applied to the 16 independent storms, the
99.5% percentile is the most successful, always ending
lightning advisories after cessation, and not before. The 95th
percentile version performs fairly well, with an accuracy of
88%. The major limitation of PM is that it produces very
large time errors. The 99.5 percentile version has a median
forecast error of 21.2 min, i.e., waiting 21.2 min too long to
end an advisory. However, PM is the onlymethod to correctly
wait for cessation to occur in all 16 independent storms,
including the outliers.
[59] PM’s large overforecast errors are not desirable, but

the scheme does have several desirable characteristics. First,
it is simple to implement. It does not require monitoring
individual storms to obtain input for an equation, and it does
not have to be recalculated as the storm evolves in time
(e.g., ETT and MZM). The forecaster simply selects which
percentile to use and applies it to all storms.
[60] This leads directly to another excellent trait, flexi-

bility. PM can be adjusted for risk. If the safety risk is not
stringent (i.e., when people outdoors are not involved), a
lower percentile can be used to reduce the length of lightning
advisories. However, when personnel safety is involved, the
99.5 percentile version offers excellent confidence that
lightning has ended. Additionally, since the scheme uses
one value every time without calculations, it can be used
during morning planning for afternoon activities. Lastly,
more storms can easily be added in the future to create a
more robust data set.

4.2. Bootstrap Analysis

[61] We next performed a bootstrap analysis [Efron and
Tibshirani, 1993] to determine if the verification scores
for the original 16 independent storms would change
appreciably if the composition of the dependent and inde-
pendent data sets changed. Ten different groups of depen-
dent and independent storms were created. Four groups had
105 dependent storms with 11 independent storms, while the
remaining six groups had 104 dependent storms with
12 independent storms. Using these ten new groups, each
cessation scheme was recalculated and evaluated.
[62] Results of the bootstrap‐derived equations (not

shown) confirmed our concerns about the utility of the

Figure 9. Maximum intervals (minutes) for the 100 dependent thunderstorms. The corresponding 50th
(4.17 min, solid line), 75th (7.5 min, long‐dashed line), 95th (15 min, short‐dashed line), and 99.5th
(25 min, dotted line) percentiles are superimposed.
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originally derived cessation schemes. Our original 16 inde-
pendent storms had three outlier storms. This was a favorable
configuration; yet aside from PM, the forecast results were
poor. When we performed the bootstrap analysis, the results
of each trial showed little improvement and more often, a
decrease in utility compared to the original versions. Much
of the decrease in utility was due to the placement of the six
outlier storms in the 116 storm data set, and whether they
were in the dependent or independent data sets. In all but the
PM scheme, the bootstrap analyses were in worse. The
bootstrap variations of PM were still affected by outlier
placement, but as a whole, maintained the accuracy of the
original PM scheme. When the majority of the outliers were
in the dependent data sample, the verification exhibited
modest improvements. The opposite was true if most of the
outliers were in the independent group.
[63] The 99.5 percentile version of the reconstituted PM

remains steady across all 10 bootstrap groups. The only
exception is when the most extreme outlier of ∼27 min is
included in the independent group. This produces smaller
wait times for each percentile and causes the PM to miss
both the 27 and 23.2 min outliers. In the nine other varia-
tions, the 27 min outlier is located in the dependent data set,
which increases PM’s forecast guidance time and improves
its accuracy, albeit with low precision due to large over-
forecast errors.
[64] Lightning cessation is difficult to forecast, and how to

deal with outliers is a major issue. Although the outliers
could be dismissed as irregularities in the data set, they
present the greatest threat to safety. We looked for any
identifying feature in the outlier storms. However, the out-
liers had no unifying characteristic based on the data
available since they consisted of both severe and nonsevere
storms as well as short‐ and long‐lived storms. Since safety
overrides all other concerns, maintaining that safety means
that we must overdesign our schemes so that the reasonably
successful ones, especially PM, achieve their success by
providing only a small time savings over existing 45WS
schemes.
[65] As noted earlier, an important point is whether our

116 storms are a representative sample of Florida storms.
Figures 5 and 6 show the distribution of the maximum
interval in our 100 dependent and 16 independent storms,
respectively. The issue with outliers is that most of our
storms have a maximum interval of ∼7 min. This biases any
scheme toward forecasting a small maximum interval. Our
selection process had to omit several stronger and longer‐
lived storms because it was unclear which storm produced
what lightning. Thus, we could not determine storm cessa-
tion. We reemphasize that storms were excluded because
they were not isolated, not because they were multicellular
or severe. This ensured that lightning flashes could be
assigned to the correct storm. A larger storm data set that
contains more intense storms is needed to fully evaluate
statistical approaches to cessation.
[66] Discussions with the 45WS about their real‐time

operations indicate that little emphasis is placed on storm
type, but rather the likelihood of a storm to redevelop. With
respect to a lightning advisory, the 45WS forecasters make
no distinction between a flash created by a severe thunder-
storm or a nonsevere storm. Thus, even if a storm produced
50,000 CG strikes in one hour, it would require the same

lightning advisory as a storm with one strike. The primary
reason a forecaster would be concerned about a storm being
multicellular is that the threat of redevelopment exists and,
thus lightning could continue to occur. The threat of rede-
velopment can be assessed from radar observations and
forecaster experience. Should a forecaster deem a storm to
be in a redevelopment cycle, the cessation characteristics
developed here would be invalid. Conversely, once a storm
no longer shows signs of redevelopment, our cessation
scheme can be applied.
[67] In summary, the bootstrap analysis showed that all of

the lightning cessation schemes, except PM, exhibited too
much uncertainty to be safely implemented. The dependence
on whether outlier events were included in the dependent or
independent groups was evident by the widely varying
accuracies. The results further reinforce the finding that the
schemes are too biased toward the large number of small
maximum interval storms.

4.3. The 45th Weather Squadron Verification

[68] The 45WS has used the end of lightning onset radar
thresholds [Roeder and Pinder, 1998] to end lightning
warnings, similar to that proposed by Wolf [2006]. How-
ever, the amount of time to wait until cessation remained
problematic. Likewise, the identification of end of storm
oscillations in electric field mill data [Marshall et al., 2009]
is difficult in an operational environment, especially since a
timeline of the field mill data is not readily available. In
addition, the best way to use the end of storm oscillation to
assess lightning cessation is not known. Should one wait a
certain time after onset, wait for a certain feature to occur
such as second zero crossing, or wait for other features?
With these questions, a statistical approach has operational
promise.
[69] Our final analysis compares results from the original

schemes described in section 4.1 against those based on
actual 45WS procedures. The 45WS has implemented a
three‐step method to forecast lightning cessation opera-
tionally adapted from the PM scheme. This procedure is
summarized in Table 3. If there has been no lightning from a
cellular thunderstorm for 15 min, forecasters consider can-
celing the lightning advisory unless redevelopment of the
cell is expected, for example, if interaction with a low‐level
boundary will occur. The wait time before considering
canceling a lightning advisory is increased to 30 min or
more if thick anvil or debris clouds from the thunderstorm
are in or near the lightning advisory area. This time depends
on the thickness of the anvil cloud and the previous light-
ning flash rate. Lastly, if the thick anvil or debris cloud is
over the 45WS electric field network, and all field mills
under and next to the cloud indicate less than 1000 V m−1,
forecasters consider canceling the lightning advisory 20 min
after the last lightning flash. This method is based on 45WS
experience where the few cases with times between light-
ning flashes longer than 15 min usually were due to thick
anvil or debris clouds. Thus, stratifying by isolated cellular
thunderstorms and thick anvil or debris cloud provides the
best combination of ending lightning advisories as soon as
possible while maintaining safety for the cases where longer
wait times are needed.
[70] At first glance, Figure 10 suggests that PM would be

the least favorable scheme for the 45WS to use since it
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provides little or no time savings. However, each of the
other schemes has a serious flaw in that the accuracies and
resulting lack of confidence that cessation has truly occurred
are unacceptable. The greatly improved wait times are due
to the bias toward our large number of storms with small
maximum intervals. This bias gives excellent time savings on
forecasts, but little confidence as to whether cessation has
actually occurred. Thus, implementing these schemes would
provide less safety than the current 45WS procedures and it
is safety that is the paramount concern for 45WS lightning
advisories. The PM provides accurate, objective guidance for
wait times since forecasters know that it will safely estimate
that lightning will have ended in a storm by waiting 15 min
after the last observed flash in most cases. The PM also
requires no calculations. This is particularly useful when a
large number of electrically active storms must be moni-

tored, as often happens during the summer. PM provides a
single wait time that can be applied to all storms of the day,
yielding a 5 min time savings over the 30 min wait time that
was sometimes is used by the 45WS. None of our 116 storm
samples exhibited a maximum interval greater than 30 min.
However, one should note that negative savings occur if
forecasters are confident with wait times less than 30 min,
although this is rarely the case. Indeed, the original motiva-
tion for this research was 45WS forecasters often exceeding
the original recommended wait times due to undocumented
performance and the resultant lack of confidence.
[71] Figure 11 shows the additional benefit to this oper-

ational version of the PM scheme. It contains the best fit
curve to wait times versus the probability that lightning will
occur after the previous flash. The R2 value is 0.9788. In an
operational setting, this is extremely useful to forecasters,
since the forecaster has the option to choose the desired
level of safety. This allows shortened lightning advisories
for less critical operations. Equation (6) describes the time to
wait in min (X) since the previous flash based on the desired
probability of assurance that no more lightning will occur
(P). The actual output in Figure 11 gives the probability that
another flash of lightning will occur based on the given wait
time.

X ¼ � ln 1� Pð Þ=1:3975½ �=0:226: ð6Þ

Although these initial results are encouraging, there certainly
is room for improvement. First, a larger data set with a wider
sample of storms as well as more real‐time parameters from
LDAR can be developed. This includes a storm selection
process that will yield more multicellular storms. Second,
the ability to merge raw lightning source observations into a
flash in real time was unavailable to the authors and the
45WS. However, faster algorithms now are available which
could allow new parameters, such as interflash time to be
included in the analyses. In addition, the relation between
lightning cessation and additional radar parameters such as
reflectivity values at particular isotherm levels should be

Figure 10. Comparison of the time (minutes) saved by each scheme compared to standard 45WS wait
times (gray, 15 min; white, 20 min; and black, 30 min). Each scheme’s accuracy is indicated at the top of
the bars. Positive values indicate that a scheme’s wait time is shorter than that of the 45WS, while
negative values indicate that the scheme waits longer than the 45WS procedure.

Table 3. A Summary of the Three‐Step Method Used by the
45WS to Determine How Long to Wait From the Previous Flash
to Consider Ending a Lightning Advisory Based on the Results
of the PM Schemea

Wait Time Since Last
Flash (CG or IC) (min)

Condition to Consider
Canceling Advisory

15 isolated thunderstorms with no
redevelopment expected;
extend if redevelopment
expected

20 thick anvil or debris cloud from
parent storm present
over field mill network,
and all field mills under and
adjacent to clouds are
<1000 V m−1

30+ thick anvil or debris cloud from
parent storm present; extend
based on cloud thickness
and amount of previous
lightning activity

aFlashes are cloud to ground or intracloud.
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explored [e.g., Wolf, 2006]. In particular, cloud micro-
physical processes during a storm must be examined to
determine hydrometeor configurations near the end of a
storm’s lifetime. This will require polarimetric radar data
which are now available at CCAFS/KSC. Finally, improved
displays of the 45WS electric field mill data, especially
timelines and automated algorithms might allow use of end
of storm oscillations to help forecast lightning cessation.
[72] A final point should be made about the ER multiple

regression scheme that uses predictors currently not avail-
able to the 45WS forecasters in real time. ER had the worst
accuracy of any scheme (44%, Figure 10), but it was very
precise with a median forecast error of only −0.1 min. That
is, while ER did not wait the appropriate time for cessation,
it usually forecast the proper maximum interval time. We
demonstrate this by adding 2 min and 5 min adjustments to
ER’s final results. With 2min added, ER’s accuracy increases
to 81%, and with a 5 min adjustment, accuracy increases to
94%. Obviously, using an adjustment value is not a safe way
to develop certainty in knowing that lightning has ended.
However, it points to the high precision of the scheme. This
suggests that when predictors such as used by ER become
available in real time, some form of the ER scheme could be
a way to dynamically forecast the wait for lightning cessa-
tion. This could be a powerful tool when combined with the
PM scheme. PM could provide a standard “climatological”
value to use for lightning cessation, while a real time ER
scheme could be used to make specific, dynamically based
cessation forecasts for individual storms.

5. Conclusions

[73] The goal of this research has been to develop statis-
tically and empirically derived lightning cessation guidance
that could be implemented by the 45WS at CCAFS/KSC in
Florida. The predictors that we considered were based on
LDAR observations, radiosonde data, and some radar‐
derived values. Our data set consisted of 116 thunderstorms
in which lightning flashes could be clearly related to a
particular storm from May–September 2000–2005. These

116 storms occurred on 32 separate days and produced
approximately 17 thousand flashes. We first investigated
several aspects of our 116 storms that have been seldom
described in previous studies. The time delay between the
first IC and first CG strike for our Florida storms (∼5–10 min)
was similar to that of Williams et al. [1989] and
MacGorman et al. [1989] in other areas of the country. We
also determined whether the first and last lightning activity
was IC or CG. For our 116 storms, 12 initiated with a CG
strike (10%) and 19 ended with a CG strike (16%). Finally,
we documented the total number of LDAR sources, source
heights, and flash initiation heights for our sample of storms.
[74] Five schemes for producing cessation guidance used

data available in real time, while a variant multiple linear
regression scheme included non‐real‐time data. Only one
scheme, the percentile method (PM), was found to have
appreciable utility. Aside from PM, the other schemes,
including two multiple regression variants (sounding only
regression (SOR) and sounding and storm regression
(SSR)), event time trend (ETT), maximum height of the
greatest dBZ (MZM), and the non‐real‐time multiple
regression experimental regression (ER), could not account
for outlier maximum interval events. These schemes pro-
duced a time savings compared to the 45WS wait times, but
at the cost of poor accuracies. A bootstrap analysis was
performed, and only PM maintained its ability to accurately
forecast cessation. The other schemes varied greatly in
accuracy based on the placement of outlier storms in either
the independent or dependent data sets. As a result, no
scheme besides PM would provide the 45WS forecasters
any confidence that lightning activity had truly ceased
within a given thunderstorm.
[75] The results showed a relation between accuracy and

overforecast errors of cessation wait times. As the accuracy
of a scheme increased, the median overforecast time errors
also increased (Table 2). This can be attributed to the dis-
tribution of the maximum interval between flashes in our
116 storm data set. 75% of the storms had a maximum
interval less than 7.5 min (Figures 5 and 6). The most
common forecast errors occurred with the three longest

Figure 11. The probability that additional lightning will occur after waiting the specified time (minutes)
after the previous lightning flash. This trend allows 45WS forecasters to determine the level of safety and
is based on the operational version of the PM scheme.
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maximum interval storms (11.1, 22, and 23.2 min, the
outliers) in our independent data set. Thus, the schemes
exhibiting high accuracies usually forecast longer intervals
in order to capture these outliers. This inevitably increased
the overforecast errors.
[76] It is important to note that the percentile method

scheme was successful at accurately waiting until cessation
had occurred before ending a lightning advisory. However,
the reader should be aware of several points. First the
schemes only are valid for warm season Florida storms
occurring between May to September. Additionally, the
results were derived from isolated thunderstorms that limited
the data set to 116 storms. While this data set is greater than
those of all previous cessation studies combined, a larger
data set is needed to provide a greater cross section of
storms. Lastly, while PM is accurate (i.e., waiting for ces-
sation to occur), it is not the most precise scheme. PM often
achieves its accuracy by overforecasting the actual wait time
until lightning cessation.
[77] While the ER multiple regression scheme was highly

inaccurate, it produced very precise forecasts of the maxi-
mum interval with a median forecast error of only −0.1 min.
When a 2 min or 5 min adjustment factor was added to ER’s
results, its accuracy increased from 44% to 81% and 94%,
respectively. Thus, ER was the only scheme that came close
to actually predicting the exact maximum interval and not
simply predicting a large maximum interval, like PM. This
would provide some benefit to the 45WS forecasters if the
needed predictors could be calculated in real time. Thus, it
would be possible to use the highly accurate PM scheme to
provide a general maximum interval wait time for all storms,
while an operational ER scheme could provide maximum
interval times for a specific storm. Combined, these two
schemes could reduce the time that a lightning advisory
must be maintained, and provide confidence that the last
lightning flash has indeed occurred.
[78] At the time of this writing, the 45WS had adapted the

PM scheme into its daily operations, starting during the
summer of 2008 in an evaluation mode. The 45WS previ-
ously lacked objective guidance to confidently end
advisories. As a result, the advisories were maintained
longer than necessary. The PM scheme provides the fore-
casters objective information about safely ending an advi-
sory. The 116 storms in this research show that the
maximum interval between flashes typically is less than
10 min, with no storm having a maximum interval greater
than 30 min. The PM scheme indicates that the upper limit
for a lightning advisory is ∼25 min, barring other observa-
tions that indicate storm redevelopment or possible charged
anvil or debris clouds. With this information the 45WS has
modified the PM based on experience and anecdotal
observations. This anecdotal review has resulted in the
provisional rule in Table 3. This provisional rule, combined
with the 45WS’ own experience, has shortened advisories
by an average of ∼5–10 min. This is a 22% improvement
over the original advisories. This time reduction can provide
a large cost savings when summed over all CCAFS/KSC
outdoor workers yearly. Improved understanding of lightning
cessation will have great economic and societal benefits at
many locations beside CCAFS/KSC, and is a topic that
deserves additional research.
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