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Abstract: We present genetic algorithms (GAs) as a decentralised topology 
control mechanism distributed among active running software agents to achieve 
a uniform spread of terrestrial unmanned vehicles (UVs) over an unknown 
geographical area. This problem becomes more challenging under the harsh 
and bandwidth limited conditions of military applications. Using only local 
neighbour information, a GA guides each UV to select a ‘fitter’ speed and 
direction among exponentially large number of choices, converging towards a 
uniform node distribution. In an observed occurrence of a threat situation 
during a mission where UVs are to spread uniformly over an unknown terrain, 
if the number of UVs change with time (e.g., losing assets due to hostile 
forces), the remaining units should reposition themselves to compensate the 
loss in area coverage. Our simulation software results show that GAs can be an 
effective tool for providing a robust solution for topology control of UVs in 
military applications. 
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1 Introduction 

Uniformly spreading autonomous mobile agents over an unknown terrain operating under 
the harsh conditions of military missions is a challenging task. To ensure military mission 
safety and success, it is desirable that mobile nodes such as terrestrial unmanned vehicles 
(UVs) are to employ local information in their limited wireless communication ranges 
without relying on global communication among mobile nodes, or the existence of a 
global controller. In our research, we use genetic algorithms (GAs) (Goldberg, 1989; 
Holland, 1995) as the tool to dynamically control a UVs speed and direction according to 
its local environment information (e.g., the number of neighbours, neighbours’ locations, 
positions of the obstacles, etc.) so that a uniform node distribution over an unknown 
geographical terrain is obtained. 
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Many military and commercial applications, such as search and rescue missions, 
minefield clearing, and self-spreading of assets under bandwidth-limited conditions, 
operating in difficult-to-access areas (e.g., building rubble due to an earthquake or 
obscured vision due to smoke), require uniform distribution of autonomous mobile nodes 
controlled by active running software agents over an unknown area. In these applications, 
a number of UVs can gather information from multiple viewpoints simultaneously, 
allowing the system of mobile agents to share information and understand the 
environment quickly and comprehensively. For example, a group of mobile agents 
equipped with video cameras could be sent into a disaster site, where the agents, running 
GA-based topology control algorithms, uniformly deploy themselves to cover the 
unknown terrain. While UVs provide video transmission, some of them may be 
physically blocked by debris or may fail to operate, in which case the other agents should 
re-position themselves to compensate for the lost area coverage. Note that the terms node, 
mobile node, mobile agent, and UV are used interchangeably throughout this paper to 
refer to the physical mobile entities in a mobile ad hoc network (MANET), each of which 
is running a bio-inspired topology control algorithm. 

The topology control of UVs using a decentralised solution over an unknown 
geographical terrain is a challenging problem since: 

1 the geographical area may change dramatically in a short time-span during an 
operation 

2 the number of mobile agents may change (increase or decrease) dynamically 

3 mobile agents do not have access to navigation maps nor to GPS devices but can 
only have limited information from local neighbours 

4 mobile agents are typically deployed into the terrain from a single entry point (more 
difficult to analyse than random or other types of initial distributions often seen in 
existing research). 

Using the results of our earlier research introducing a GA-based approach for topology 
control problems in MANETs (Sahin et al., 2008; Urrea et al., 2009), we present here a 
force-based GA (FGA) as a decentralised topology control mechanism distributed among 
active running software agents to achieve a uniform spread of UVs. Using only local 
neighbour information, a GA guides each UV to select a ‘fitter’ speed and direction 
among exponentially large number of choices, converging towards a uniform node 
distribution over an unknown geographical area. Consider a mission where UVs are to 
spread uniformly over an unknown terrain; in an observed occurrence of a threat 
situation, if the number of UVs changes with time (e.g., losing assets due to hostile forces 
or equipment malfunction), the remaining units should reposition themselves to 
compensate the loss in area coverage. Our simulation software results show that GAs can 
be an effective tool for providing a robust solution for topology control of UVs. 

The rest of this paper is organised as follows. In Section 2, we review prior research 
on the use of GAs on mobile agent deployment, target localisation in MANETs, swarm 
robotics, and statistical methods to extract probability distribution from unknown data 
set. In Section 3, we discuss the general properties of GAs and our distributed FGA. 
Section 4 and Section 5 present our simulation software and simulation experiment 
results for different configurations, respectively. 
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2 Related work 

Our FGA is inspired by the force-based node distribution in physics where each molecule 
attempts to remain in a balanced position and to spend minimum energy to protect its 
own position (Heo and Varshney, 2003). We used the discrete-time random walk model 
from Hokelek et al. (2008) to calculate the mean node degree for the hexagonal area in 
Urrea et al. (2007, 2008). The results from Sahin et al. (2008) are used for the FGA to 
calculate the fitness function for different numbers of mobile nodes in a hexagonal lattice. 

GAs have proven to be an efficient tool in different distributed robotic applications. 
In Chen and Zalzala (1995), a genetic approach is presented with distance-safety criteria 
for a mobile robot motion. An adaptive GA is proposed by Shinchi et al. (2000) to 
identify targets while avoiding obstacles. In Moreno et al. (2002), mobile robots are used 
with ultrasonic sensors to collect range-limited data from the environment. Unlike our 
FGA, this approach finds an optimal position using global map knowledge. 

Swarm robotics is another approach of using multi-robot systems collaboratively 
instead of single complex robots. Among several promising results, e.g., Tuci et al. 
(2006) illustrates a complex transporting problem requiring collaboration for small 
robots. Li et al. (2009) uses quantum probability in the chromosome coding strategy to 
adapt coalition formation into multi-robot systems. In Hsiang et al. (2003), an algorithm 
for distributing a swarm of primitive robots in an unknown geographical area is proposed. 
A hierarchical behaviour-based model in which several parameters are adjusted with a 
GA for tuning the parameters of a swarm to surround a target is proposed in Soto and Lin 
(2005). Naghsh et al. (2008) outlines the interactive use of autonomous robots and human 
beings in fire emergency settings. This study shows that a swarm of robots which are 
capable of working in fire fighting operations. Dependability, robustness, and reliability 
of the swarm-based systems for distributed safety critical systems are discussed in 
Winfield et al. (2006). 

Our FGA for self-spreading mobile nodes in a MANET differs from the cited 
approaches above in several aspects. We perform uniform distribution of nodes and their 
reconfiguration due to asset losses by using a very limited knowledge obtained from the 
neighbouring UVs. Another significant difference is that we assume no prior knowledge 
of the geographical area or the positions of the obstacles. Finally, our FGA is very 
resilient to agent losses since it is fully distributed without a central controller or any 
other type of privileged entities, and each agent uses only the local information available. 

3 Our distributed forced-based GA 

GAs are a class of stochastic search algorithms forming a subset of bio-inspired 
computation algorithms. GAs mimic the way biological trait information is transferred 
and improved under selection pressure. The desired phenotype traits (that is, those of 
individuals) are selected by the evaluation of a specified fitness (objective) function. 
Individuals with a higher objective function score are more likely to be selected for 
breeding process by the GA. The principal of survival of the fittest is the starting point of 
GAs, which is typically applied to problems where deterministic or heuristic methods are 
not present or cannot provide satisfactory results. GAs essentially is composed of a set of 
individual chromosomes (called the population) and biologically inspired operators that 
create a new (and potentially better) population from an old one. According to the theory 
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of evolution, only those individuals in a population who are better suited to the 
environment are likely to survive and generate offspring, thereby transmitting their 
superior genetic information to new generations (Holland, 1995; Mitchell, 1998). 

A GA is an iterative optimisation procedure. Instead of working with a single 
candidate solution in each iteration, it works with a number of candidate solutions (i.e., a 
population). Another important property of GAs is that it can work effectively with a 
randomly populated initial population in cases where there is a lack of information about 
the problem space. 

GAs are widely used for many applications from industry to research and 
development, including optimisation problems (e.g., data fitting, path finding, network 
traffic matrix calculation, etc.), financial problems (e.g., forecasting for stock market or 
gold prices, portfolio management, etc.), business management applications (e.g., 
scheduling, project management, task assignment), engineering problems (e.g., 
communication network design and optimisation, circuit boards design and optimisation, 
solving complex electromagnetic problems), and research and development applications 
(e.g., molecular and DNA modelling, curve fitting, etc.). However, one must be aware of 
the advantages and risks of applying GAs to a problem. The main advantage of GAs is 
their ability to quickly scan large problem spaces. The nature of GA provides a quick 
elimination of unsuitable solutions in the interested search space. On the other hand, one 
drawback of GAs is the need of computational power. The chromosome set and the 
objective function must be selected carefully because of their significant effects on the 
computational time and convergence to a final result. 

Inheritance, selection, mutation, and crossover are the main operators for GA 
implementations (Goldberg, 1989; Sivanandam and Deepa, 2008). A tournament is the 
most well-known selection methodology in GAs. It is performed between two individuals 
chosen from a population. Between the two selected ones, the winner of the tournament is 
the one with the better fitness, which is permitted to reproduce. Crossover is a genetic 
operator which carries the fitter chromosomes from one generation to the next. Two 
randomly chosen parents generate two new offspring by the crossover operation, 
therefore creating a new generation as explained in Sivanandam and Deepa (2008) and 
Urrea et al. (2007). A mutation operator is used to keep genetic diversity alive through 
generations, and prevents the GAs from getting stuck at local extreme points. 

Because GAs are stochastic in nature, they are not guaranteed to find the exact 
optimal solution. In practice, though, GAs often provides powerful solutions to certain 
classes of problems which prove intractable or too computationally intensive to be solved 
using classical deterministic or heuristic techniques. 

Figure 1 describes, in general terms, a simple GA process. First a population of N 
individuals is randomly generated and evaluated using a fitness function score. The 
population is then sorted by their fitness scores. Individuals are selected for breeding (i.e., 
tournament and crossover) with probabilities proportional to their fitness scores. The 
offspring are added to a pool composed of candidate solutions for a new population. The 
offspring in the pool are then evaluated and sorted again. Only the better performing 
individuals are accepted into the newly created population. Mutation occurs on randomly 
selected individuals except for the best individual in the population. The elite individual 
has the best fitness value in the previous population and is typically chosen for the newly 
created population without any genetic operator selection. Therefore, the fitness score in 
the new population is better than, or at least the same as, the previous one. The 
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population undergoes this process (without the initialisation step where chromosomes are 
chosen randomly) for many generations until some termination criterion is satisfied (e.g., 
convergence tolerance of the best individuals reaching a certain preset limit, satisfying a 
predefined fitness value, or reaching a limit on the number of generations). 

Figure 1 An example of operation flow in a GA (see online version for colours) 
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In our approach, a two-dimensional geographical area of (dmax × dmax) is composed of 
logical hexagonal cells, where a unique Cartesian coordinate pair (x, y) is assigned to 
each one of the cells. For example, in Figure 2, there are 64 hexagonal cells and seven 
mobile nodes, each of which can move into six different directions (i.e., D0 through D5). 
A wireless communication link between two mobile stations is represented by a vector 
whose dimensions are in terms of layers. One layer is equal to the centre-to-centre 
distance between two neighbouring cells. In general, for a mobile node in location (0, 0) 
and another mobile node in location (x, y), the link state between these nodes is <x, y> 
(i.e., <x–0, y–0>). For example, in Figure 2, for a mobile node N3 in location (3, 4) and 
another mobile node N1 in location (1, 6), the vector representing wireless link between 
these nodes is <2, –2>. 

A wireless link with the state of <x, y> (0 < x, y < dmax) between two mobile stations 
is called available if two nodes are communicating with each other; otherwise the link is 
said to be unavailable. If Rcom is a positive integer representing the communication range 
of a node, and R is the centre-to-centre distance between two neighbouring cells, a 
wireless link can be available only if R ≤ Rcom. The number of available links of a node is 
called its degree. In Figure 2, N3 communicates with N1, N2, N4, and N5 if Rcom = 3; 
hence, the degree of N3 is 4 for Rcom = 3 (the cells that are not within the transmission 
range of any MANET node are coloured in grey). 
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Figure 2 An 8 × 8 hexagonal area partitioned into logical cells (Rcom = 3) 

 

In our model, each mobile node can move into one of the six neighbouring cells directed 
by its running software agent within the area boundaries. A mobile node uses the total 
force applied to it by the neighbouring nodes located in its communication range to 
decide the next direction and speed. In a similar approach given in Heo and Varshney 
(2003), where each molecule attempts to remain in a balanced position and to spend 
minimum energy to protect its own position, the optimal location is deterministically 
calculated as: 

,
2 ( | |)

| |

i j
i j i j n n

n com n n i j
n n

p pDxf R p p
p pμ

−
= − −

−
 (1) 

where µ is the expected density (the average number of nodes required to cover an entire 
area when the mobile nodes are deployed uniformly), D is the local density (the number 
of nodes within the communication range), and i

np  is the location of ith node at time step 
n. 

The force between two nodes depends on the distance between them and the number 
of other nodes within their communication range (i.e., the force from a closer neighbour 
is greater than the farther one). The total force applied to a node by its neighbours can be 
used as the fitness of the corresponding mobile node. A smaller fitness shows a better 
position for a mobile node since it indicates that the total force applied to it by its 
neighbours cancels each other. The mean node degree ( N ) is shown to be an effective 
measure indicating the number of neighbours to construct a fitness function for a given 
total number of nodes, communication range, and a geographical area as shown by Urrea 
et al. (2009) and Hokelek et al. (2008). N  is the expected number of neighbours to 
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maximise the coverage. Therefore, using N , we can calculate the total force applied to a 
mobile node n as follows: 

0 0

( ) .( | (( ) ( )) |
k k

com i j
i j

F n N R x x y y
= =

= − − + −∑∑  (2) 

where k is the total number of neighbours, (x, y) is the current coordinate value for the 
node, and (xi, yj) is the location of a neighbour node. 

In our FGA, a mobile node gathers information about its neighbouring nodes’ speed, 
direction, and location, and then, using the fitness function defined in equation (2), 
proceeds to run the FGA to generate new chromosomes representing candidate solutions 
for the next generation. These candidates are ordered according to their fitness values 
from the lowest to the highest. The lowest fitness corresponds to the solution representing 
the least amount of force applied to a node, and hence, the best one among the candidate 
solutions for that generation. 

The software agent in each mobile node runs FGA for g generations, and then selects 
the chromosome with the best fitness value. The goal of each mobile node is to find a 
location where it is at equilibrium with respect to the total force applied to it by its 
neighbours. Suppose each node checks r possible positions and speeds for each 
generation. A mobile node ends up checking a total of (r. g) possible outcomes for g 
generations. Let us assume that the nodes can move at speeds up to v (i.e., it can move 
over v cells at a time). In this case, there are (6. v) possible locations at the end of the first 
movement, (36. v2) for the second movement, and (6. v)g for the gth movement. In total, 

there are up to 
0
(6. )

ig

i
v

=∑  possible locations after g movements. Instead of calculating 

each possible solution, each node runs the FGA for r chromosomes until reaching g 
iterations. Consequently, the node adapts the fittest solution at the final iteration as its 
next direction and speed as imposed by FGA. 

4 GA simulation software 

We implemented a simulation software system in Java to study the effectiveness of our 
distributed GA-based algorithms for a uniform distribution of knowledge sharing agents. 
Eclipse SDK© version 3.2.0 was used as the development environment, and Mason, a fast 
discrete-event multi-agent simulation library core developed by George Mason 
University ECJLab, was used for the GUI interface. 

The simulation software implementation has more than 4,000 lines of algorithmic 
Java code. To avoid possible inefficiencies, we developed our algorithms without using 
any existing GA libraries. Our design philosophy was to build a GA-based application to 
which a programmer can easily add new features (e.g., different types of crossover, or 
different rules for tournament, etc.) and new evolutionary computation approaches. Our 
simulation software was implemented such that it runs as a multi-agent application which 
imitates a real-time topology control scenario. As a result, the observations from our 
simulation software match closely to those from the real testbed experiments reported by 
Dogan et al. (2009). 
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In our simulation software, a user can provide inputs for the following parameters: 

1 N: total number of mobile nodes 

2 Rcom: communication range 

3 Tmax: maximum number of iterations 

4 type of initial deployment 

5 dmax: size of the geographical terrain 

6 type of GA-based application. 

Figure 3 Graphical user interface for our GA simulation software system (see online version for 
colours) 

  
(a) (b) 

 
(c) 
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Sample screen shots of our user interface are shown in Figure 3. In Figure 3(b) an initial 
deployment of 100 UVs starting from the north-west sector is displayed. Each UV can 
only communicate with the other mobile agents located within its range of 
communication, Rcom. Currently, there are three different initial deployment strategies for 
the mobile nodes: 

1 start from the north-west corner 

2 place the nodes randomly over the terrain 

3 start from a given coordinate (e.g., the centre). 

The north-west initial deployment represents a more realistic approach of the topology 
control problem for the UVs compared to the other deployment possibilities over an 
unknown terrain. For example, in an earthquake rescue, mine clearing, a military mission 
in a hostile area, or a surveillance operation, all mobile nodes may be forced to enter the 
operation area from the same vicinity. 

The software also has the ability to run experiments using an initial mobile node 
distribution with a given set of initial conditions that have already been created for 
previous runs (i.e., the initial data for each mobile agent includes a starting coordinate, 
speed, and direction). This ability is important since each experiment is repeated many 
times to eliminate the noise in the collected data. The mobile agents can move with one 
of three different speeds (i.e., fast, slow, or immobile) to any of the six possible directions 
in the hexagonal lattice. Our simulation software also provides the capability for a user to 
collect data without using GUI. Figure 3(c) shows the resulting network area coverage 
(NAC) values in real time to provide information about the performance of the GA-based 
algorithm. 

5 Simulation experiment results 

To evaluate the performance of our FGA, we consider a scenario in which a team of UVs 
enter an unknown geographical area without any prior information and a global control 
unit. Each UV has a limited communication range (Rcom), and, hence, can only be aware 
of its neighbours and runs its own GA-based software application. Our main target is to 
keep the network fully connected among the mobile agents while covering the 
geographical terrain uniformly under realistic conditions such as arbitrary obstacles in the 
terrain, stoppages due to malfunctions and hostile attacks toward one or more mobile 
nodes (i.e., either isolated or concentrated losses). Our distributed FGA aims to provide 
each node with a near-optimal number of neighbours. 

The behaviour of our distributed FGA may be modelled statistically so that we can 
extract the patterns in the data collected from simulation experiments. This model then 
can be a useful guide to predict behaviour of our FGA for similar experiments. 

Statistical model is defined as a set of mathematical equations describing the 
behaviour of an object study in terms of random variables and their associated probability 
distributions. It is mathematically thought of as a pair of (X, P) where X = (x1, x2,..., xn) n 
is the number of observations is the set of possible observations and P is the set of 
possible probability distribution on X (McCullagh, 2002). 
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The data set includes NAC values for different number of UVs (N = 100, 200, and 
300) with a fixed maximum communication distance (Rcom = 10) for dmax = 125. The 
basic statistical model of NAC is obtained using statistical inference which deals with the 
problem of inferring properties of an unknown distribution from the data generated by 
that distribution. All probability distribution functions for continuous random variables 
have a form of: 

1 . ( )
. ( )r

x l
c A s c

−
Θ  (3) 

where a ≤ x ≤ b, l is range, a and b are integers, Θ(s) is the actual shape of the probability 
density function (pdf), Ar(s) is the area under the function (i.e., l represents the location 
parameter which has the effect of translating the pdf or x-axis, c is the scale parameter 
that expands the scale of x-axis, and s is the shape parameter governing the actual shape 
of the characteristic function, Θ). 

Scale parameter is also named as measures of dispersion. This metric presents 
information about how ‘spread out’ the values are around the central tendency of the 
random variables. Let us assume that we have a functional τ(F) (also denoted by τ(X) 
when X is a random variable with distribution F) defined over a sufficiently large class of 
symmetric distributions which is closed under changes of location and scale. We shall 
require τ  to be non-negative and to satisfy: 

( ) | | . ( )    ( ) ( )   aX a x a X b x bτ τ τ τ= > + =for 0 and for all  (4) 

A non-negative functional τ satisfying equation (4) will be called as a measure of 
dispersion if and only if it satisfies in addition τ(F) ≤ τ(G) whenever G is more dispersed 
than F as given by Bickel and Lehmann (1976). 

Shape parameter is also called as measures of shape. It is calculated as 

3
1 3/2

2
,

μ
γ

μ
=  

where μi is the ith central moment. 
Each of our simulation experiments was run for Tmax = 700 time units, and was 

repeated for 50 times so as to avoid transient results from the natural non-deterministic 
behaviour of our distributed FGA. At the beginning of each experiment all UVs were 
located at the north-west corner of the given geographical terrain as seen in Figure 3(b). 
In order to get a fair comparison for experiments with different number of nodes, the 
communication range and the hexagonal area were fixed at Rcom = 10 and 15, 625 cells 
(125 × 125), respectively. 

To evaluate the performance and effectiveness of our distributed FGA, we execute 
the combination of two types of military applications. First UVs are deployed in a hostile 
region where some mobile nodes can be lost during and after deployment. In this 
application, they are two events that affect the deployment of the mobile agents. Some 
nodes can lose their communication functionality due to malfunction, whereas others are 
destroyed due to enemy attacks. These affected nodes are considered out of the 
experiments after that point. As a consequence of such as events, the remaining nodes 
must reconfigure their positions to compensate the missing area coverage due to lost team 
members. 
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In a second application, mobile agents intentionally stop communicating with the 
neighbouring nodes during short periods of time to go unnoticed by adversary forces and 
avoid being the target of enemy attacks. Following such silent modes, all mobile agents 
resume transitions again. This military scenario was applied into our simulation software 
as follows. The UVs did not use any communication with their neighbours at the 
beginning of their mission to ensure that there are no hostile forces in the area they 
entered. After T = 100, the mobile agents start communicating with their mobile 
neighbours located in their communication range, so that the FGA was initiated by each 
UV. 

Figure 4 shows the frequency of the normalised NAC for N = 100 UVs from T = 0 to 
T = 700. The improvement in NAC through the time for the experiment as the nodes 
perform our distributed FGA can be easily seen in Figure 4. Initially, NAC is very low 
since all UVs are at their initial positions of north-west corner of the area [Figure 4(a)]. 
The frequency is 50 for T = 0, meaning that all 50 experiments start with a low NAC 
value. As time progresses and coverage improves, frequency of higher NAC values is 
observed. For example, in Figure 4(b), higher NAC values are achieved by more 
experiments at time T = 400. Since there are not enough UVs to cover the geographical 
area for N = 100, NAC value and its frequency do not improve from T = 400 to T = 600. 
Figure 4(d) represents the frequency of NAC after two hostile attacks. 

For the experiments shown in Figure 4(a)–Figure 4(d), the parameters of scale, 
location, and skew are shown in Figure 5(a)–Figure 5(c), respectively. The standard 
deviation (σ) reaches its highest value at T ≈ 230 in Figure 5(a). However, σ is always 
high for the case of 100 nodes. Figure 5(b) illustrates the average network coverage in 
percentage for our FGA. The boost in NAC can be seen after T = 100 when our FGA 
starts running. Furthermore, after each hostile attack at T = 400 and T = 600, the 
operational UVs successfully readjusted their position and speed to reoccupy the  
area under attack. There is no obvious effect of malfunctioned nodes in  
Figure 5(a)–Figure 5(c). The skew is high in Figure 5(c). In fact, since we cannot see any 
known distribution in Figure 4(a)–Figure 4(d), Figure 5(a) and Figure 5(c) have large 
oscillations. We can confirm that 100 nodes were not enough to uniformly cover the 
terrain. However, our FGA performed well to obtain the maximum coverage after each 
hostile attack. 

The frequency of NAC for N = 200 nodes from T= 0 to 700 are displayed in  
Figure 6(a)–Figure 6(d). The UVs reach the maximum area coverage at time T = 400 as 
the frequency of high NAC values are observed in Figure 6(b). A Gaussian distribution 
shape is observed after 50 runs. Figure 7(a)–Figure 7(c) support the normal distribution in 
Figure 6(a)–Figure 6(d). However, we still observe more deviation and skew than 
Gaussian distribution in Figure 7(a) and Figure 7(c). The UVs using our distributed FGA 
move successfully around the obstacles and reoccupy the empty areas after hostile attacks 
as seen from Figure 7(a) through Figure 7(c). Compared to the case of N = 100, we see 
much improved results for N = 200 since there are more UVs to increase the area 
coverage. 

Figure 8 (a)–Figure 8(d) shows the results for N = 300 from T = 0 to T = 700. The 
UVs spread out the entire terrain less than T = 400 units. The figures show a normal 
distribution supported by Figure 9(a)–Figure 9(c). In Figure 9(a), σ converges to a stable 
value (≈0.5). After each hostile attack (T = 400 and T = 600), σ value increases indicating 
a non-Gaussian distribution, however, NAC goes back to the normal distribution after a 
certain time. Figure 9(c) represents the skew and indicates the quick recovery after each 
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hostile activity. Since the largest number of UVs are used (N = 300), the overall best 
results are obtained for this case. 

Figure 4 Frequency of network area coverage (NAC) for N = 100 (a) T = 0 (b) T = 400  
(c) T = 600 (d) T = 700 (see online version for colours) 

  
(a) (b) 

  
(c) (d) 

Figure 5 Standard deviation, mean, and skew for NAC experiments in Figure 4 (see online 
version for colours) 

  
(a) (b) 

 
(c) 
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Figure 6 Frequency of network area coverage (NAC) for N = 200 (a) T = 0 (b) T = 400  
(c) T = 600 (d) T =700 (see online version for colours) 

  
(a) (b) 

  
(c) (d) 

Figure 7 Standard deviation, mean, and skew for NAC experiments in Figure 6 (see online 
version for colours) 

  
(a) (b) 

 
(c) 
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Figure 8 Frequency of network area coverage (NAC) for N = 300 (a) T = 0 (b) T = 400  
(c) T = 600 (d) T =700 (see online version for colours) 

  
(a) (b) 

  
(c) (d) 

Figure 9 Standard deviation, mean, and skew for NAC experiments in Figure 8 (see online 
version for colours) 

  
(a) (b) 

 
(c) 
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Figure 10 (a)–Figure 10(b) shows the screen captures after the second hostile attack at  
T = 600, and the recovery of NAC at T = 700 for N = 200 nodes. Large circles and UVs 
with a cross on them in Figure 10(a)–Figure 10(b) indicate the UVs communication range 
and failed/destroyed by hostile attacks, respectively. Dark grey regions represent the 
areas covered by at least one node. The crosshatch square represents the region where 
enemy attacks take place. At T = 401 and T = 601, the first and second hostile attacks 
destroy 25% of the UVs in the given geographical area, as shown in Figure 10(a). The 
remaining UVs keep performing FGA, and readjust their positions in less than 100 time 
units for a near uniform coverage as shown in Figure 10(b). 

Figure 10 Screen shots after hostile attack and after recovery (a) T = 600 (b) T = 700 (see online 
version for colours) 

  
(a) (b) 

6 Concluding remarks 

In this paper, we presented the application of GAs to topology control of UVs. Our FGA, 
inspired by the equilibrium of the molecules in physics, adjusts the speed and direction of 
each UV using only local information. 

Two sets of military applications were considered as experimentation scenarios, 
namely hostile attacks, where considerable percentage of UVs become unavailable, and 
operation under silence mode, which requires intermittent stoppage of communication 
during a mission. Our simulation software results show that GAs can be an effective tool 
for providing a robust solution for topology control of UVs in both types of military 
applications. 

Future work will include a formal analysis of FGA performance in various different 
operational conditions. 

Decision Support Systems for Unmanned Vehicles -Inderscience-

IN PRESS



   

 

   

   
 

   

   

 

   

    Design of genetic algorithms for topology control of unmanned vehicles 17    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Acknowledgements 

This work has been supported by US Army Communications-Electronics RD&E Center. 
The contents of this document represent the views of the authors and are not necessarily 
the official views of, or are endorsed by the US Government, Department of Defense, 
Department of the Army, or the US Army Communications-Electronics RD&E Center. 

This work has been partially supported by the National Science Foundation grants 
ECS-0421159 and CNS-0619577. 

References 
Bickel, P.J. and Lehmann, E.L. (1976) ‘Descriptive statistics for nonparametric models: III. 

Dispersion’, The Annals of Statistics, Vol. 4, pp.1139–1158. 
Chen, M. and Zalzala, A. (1995) ‘Safety considerations in the optimization of the paths for mobile 

robots using genetic algorithms’, 1st Intl. Conf. on Genetic Algorithms in Engineering 
Systems: Innovations and Applications, pp.299–306, Sheffield, UK. 

Dogan, C., Sahin, C.S., Uyar, M.U. and Urrea, E. (2009) ‘Testbed for node communication in 
MANETs to uniformly cover unknown geographical terrain using genetic algorithms’, 
AHS’09: Proceedings of The NASA/ESA Conference on Adaptive Hardware and Systems, 
pp.273–280, San Francisco, CA. 

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, 
Addison-Wesley, New York, NY. 

Heo, N. and Varshney, P.K. (2003) ‘A distributed self spreading algorithm for mobile wireless 
sensor networks’, Wireless Communications and Networking, Vol. 3, pp.1597–1602. 

Hokelek, I., Uyar, M.U. and Fecko, M.A. (2008) ‘A novel analytic model for virtual backbone 
stability in mobile ad hoc networks’, Wireless Networks, Vol. 14, pp.87–102. 

Holland, J.H. (1995) Hidden Order: How Adaptation Builds Complexity, Addison-Wesley,  
New York, NY. 

Hsiang, T.R., Arkin, E.M., Bender, M.A., Fekete, S. and Mitchell, J.S.B. (2003) ‘Online dispersion 
algorithms for swarms of robots’, Proceedings of the 19th Annual Symposium on 
Computational Geometry, pp.382–383, San Diego, CA. 

Li, Z., Xu, B., Yang, L., Chen, J. and Li, K. (2009) ‘Quantum evolutionary algorithm for  
multi-robot coalition formation’, Proceedings of the 1st ACM/SIGEVO Summit on Genetic and 
Evolutionary Computation, pp.295–302, Shanghai, China. 

McCullagh, P. (2002) ‘What is a statistical model?’, The Annals of Statistics, Vol. 30,  
pp.1225–1310. 

Mitchell, M. (1998) An Introduction to Genetic Algorithms, MIT Press, Boston, MA. 
Moreno, L., Armingol, J.M., Garrido, S., Escalera, A. and Salichs, M. (2002) ‘A genetic algorithm 

for mobile robot localization using ultrasonic sensors’, J. of Intelligence and Robotic Systems, 
Vol. 34, pp.135–154. 

Naghsh, A.M., Gancet, J., Tanoto, A. and Roast, C. (2008) ‘Analysis and design of human-robot 
swarm interaction in firefighting’, Proceedings of the 17th IEEE International Symposium on 
Robot and Human Interactive Communication, pp.255–260, Munich, Germany. 

Sahin, C.S., Urrea, E., Uyar, M.U., Conner, M., Hokelek, I. Bertoli, G. and Pizzo, C. (2008) 
‘Genetic algorithms for self-spreading nodes in MANETs’, GECCO ‘08: Proceedings of the 
10th Annual Conference on Genetic and Evolutionary Computation, pp.1141–1142, Atlanta, 
GA. 

Shinchi, T., Tabuse, M., Kitazoe, T. and Todaka, A. (2003) ‘Khepera robots applied to highway 
autonomous mobiles’, Artificial Life and Robotics, Vol. 7, pp.118–123. 

Decision Support Systems for Unmanned Vehicles -Inderscience-

IN PRESS



   

 

   

   
 

   

   

 

   

   18 C.Ş. Şahin et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Sivanandam, S.N. and Deepa, S.N. (2008) Introduction to Genetic Algorithms, Springer-Verlag 
Berlin Heidelberg, New York, NY. 

Soto, J. and Lin, K-C. (2005) ‘Using genetic algorithms to evolve the control rules of a swarm of 
UAVs’, Proc. Intl. Symposium on Collaborative Technologies and Systems, pp.359–365,  
St. Louis, MO. 

Tuci, E., Gross, R., Trianni, V., Mondada, F., Bonani, M. and Dorigo, M. (2006) ‘Cooperation 
through self-assembly in multi-robot systems’, ACM, Transactions on Autonomous and 
Adaptive Systems, Vol. 1, pp.115–150. 

Urrea, E., Sahin, C.S., Uyar, M.U., Conner, M., Hokelek, I. Bertoli, G. and Pizzo, C. (2007) 
‘Uniform MANET node distribution for mobile agents using genetic algorithms’, Proc. of Int. 
Conf. on Artificial Intelligence and Pattern Recognition, pp.369–376, Orlando, FL. 

Urrea, E., Sahin, C.S., Uyar, M.U., Conner, M., Hokelek, I. Bertoli, G. and Pizzo, C. (2008) 
‘Simulation experiments for knowledge sharing agents using genetic algorithms in MANETs’, 
Proc. of the 2008 Int. Conf. on Genetic and Evolutionary Methods, pp.85–90, Las Vegas, NV. 

Urrea, E., Sahin, C.S., Uyar, M.U., Conner, M., Hokelek, I. Bertoli, G. and Pizzo, C. (2009)  
‘Bio-inspired topology control for knowledge sharing mobile agents’, Mobile Ad Hoc 
Networks, Elsevier, Special Issue on Bio-Inspired Computing, Vol. 7, No. 4, pp.677–689. 

Winfield, A.F.T., Harper, C.J. and Nembrini, J. (2006) ‘Towards the application of swarm 
intelligence in safety critical systems’, Proceedings of the 1st Institution of Engineering and 
Technology International Conference on the System Safety, pp.89–95, London, UK. 

Decision Support Systems for Unmanned Vehicles -Inderscience-

IN PRESS


