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Channel Diversity in Random Wireless Networks
Kostas Stamatiou,Member, IEEE,John G. Proakis,Life Fellow, IEEE,and James R. Zeidler,Fellow, IEEE

Abstract—The goal of this paper is to explore the benefits of
channel diversity in wireless ad hoc networks. Our model is that
of a Poisson point process of transmitters, each with a receiver
at a given distance. A packet is divided in blocks which are
transmitted over different subbands determined by random fre-
quency hopping. At the receiver, a maximum-likelihood decoder
is employed to estimate the transmitted packet/codeword. We
show that, if L is the Hamming distance of the error correction
code and ǫ is a constraint on the packet error probability, the
transmission capacity of the network is proportional to ǫ

1/L,
when ǫ → 0. The proportionality constant depends on the
code selection, the packet length, the geometry of the symbol
constellation and the number of receive antennas. This result
implies that, at the cost of a moderate decoding complexity, large
gains can be achieved by a simple interference randomization
scheme during packet transmission. We also address practical
issues such as channel estimation and power control. We find
that reliable channel information can be obtained at the receiver
without significant rate loss and demonstrate that channel-
inversion power control can increase the transmission capacity.

Index Terms—Frequency hopping, interference diversity, bit-
interleaved coded modulation (BICM), Poisson point process

I. I NTRODUCTION

T He study of random wireless networks has recently
gathered a lot of attention in the research community [1].

The main theme of this work is the use of tools from
stochastic geometry in order to characterize the performance
of an ensemble of networks, for different physical, medium
access control and network layer strategies. A central modeling
assumption is that the network consists of a Poisson point
process of transmitters, and each transmitter (TX) has a
corresponding receiver (RX) at a given distance. A popular
metric that quantifies the network performance is the trans-
mission capacity, defined as the maximum spatial density of
transmissions, multiplied by their rate, such that a constraint
on the packet error rate is satisfied [2].

In the majority of existing papers (see overview in [1]),
interference from concurrent transmissions is considered as
noise and an outage probability approach is taken to model
packet successes: Given the TX locations and the channels
between the TXs and the reference RX, which are assumed
to be constant during the transmission of a packet, a packet is
successfully received if the signal-to-interference-ratio (SIR)
is larger than a certain threshold. In information-theoretical
terms, assuming the TXs are sending symbols from a Gaussian

Manuscript created June 3, 2009; revised January 24, 2010; accepted May 8,
2010. The associate editor coordinating the review of this paper and approving
it for publication was M. Uysal. This work was supported by the MURI Grant
W911NF-04-1-0224.

K. Stamatiou is with the University of Notre Dame, Notre Dame, IN 46556.
J. G. Proakis and J. R. Zeidler are with the University of California San Diego,
La Jolla, CA 92037.

alphabet, a packet reception occurs when the channel mutual
information is at least equal to the desired information rate [3].

In this paper, as in [4], we take an alternative approach
and explore the impact of channel randomizationwithin the
transmission of a packet. Our motivation stems from the well
known fact that channel diversity can be exploited through
error correction coding in order to yield performance gains.
Specifically, we consider a physical-layer scheme based on
random frequency hopping (FH), bit-interleaved coded mod-
ulation (BICM) [5], and maximal ratio combining (MRC) to
exploit spatial diversity at the RX. FH is preferred over Direct
Sequence (DS) Spread Spectrum (SS) as the multiple-access
(MA) scheme primarily because DS-SS suffers from the near-
far problem in the decentralized environment of an ad hoc
network [6]. Moreover, it is known that FH combined with
coding exploits frequency diversity, if the hopping distance is
larger than the coherence bandwidth of the channel fading,
and interference diversity, as the set of interfering TXs over
each dwell is potentially different. FH also simplifies the MA
protocol, as no coordination is required between different TX-
RX links. Regarding the choice of coding and modulation
strategy, BICM is spectrally efficient and well suited for fading
and interference channels, as the diversity order is determined
by the Hamming distance of the employed convolutional
code [5]. Finally, MRC only requires channel state information
at the RX, which is desirable given that the transmission
subband changes frequently across time.

We analyze the performance of the aforementioned scheme
in terms of the codeword/packet error probability and evaluate
the transmission capacity. Since an averaging over different
channel states takes place within a packet, the information rate
of the typical TX-RX link is upper-bounded by the ergodic
capacity for which we provide tight upper and lower bounds.
We also address practical physical-layer issues such as channel
estimation, power control (PC) and channel correlation, and
assess their effect on the performance via simulation.

A. Related work

Several papers have dealt with the performance analysis of
coded FH systems under MA interference, as well as partial-
band interference (see, e.g., [7], [8] and Chapter 12 of [9]).
A common feature of such systems is that the performance
can be dramatically improved if the decoder is aware of the
interference levels across the codeword. If a Reed-Solomon
(RS) code is employed, the decoder declares an erasure when
a symbol has been “hit”; in the case of soft-decoding, the
metrics in the Viterbi decoder are weighted by the respective
SIRs. In [10], RS coding combined with FSK modulation
is considered in a Poisson field of interferers and the im-
pact of the code rate on the information efficiency, i.e., the
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product (packet success probability)× (transmission distance)
× (rate), is explored. More recently, [11] has extended the
work in [10] to accommodate differential unitary space-time
modulation and unknown fast time-varying channels.

The use of spread-spectrum (SS) communication for ad hoc
networks is discussed in [6]. The authors make an argument
against interference averaging which they define as “. . . using
DS-SS or fast FH1 to proportionally reduce the interference
level” and advocate hopping at the packet level, or interference
avoidance (IA), as the preferable MA scheme for ad hoc net-
works. While the near-far problem of DS-SS in a decentralized
environment is clear, it is not obvious why slow FH might
be preferable to fast FH, apart from the fact that slow FH
potentially induces less overhead in terms of code acquisition
and synchronization.

B. Contributions

This paper demonstrates that considerable gains in terms
of network capacity are possible by combining FH during
packet transmission and error correction coding of modest
complexity. IfL is the Hamming distance of the convolutional
code employed at the TX,λ is the density of TXs andM is
the number of subbands, we show that, asλ/M → 0, the
codeword error probability follows the power lawη( λ

M )L,
η > 0. This leads to the conclusion that, forǫ → 0, where
ǫ is the constraint placed on the codeword error probability,
the transmission capacity is proportional toǫ1/L. The propor-
tionality constant depends on the selected code, the codeword
length, the geometry of the symbol constellation, as well as
the termN2/b, whereN is the number of RX antennas and
b > 2 is the propagation exponent. We also derive upper and
lower bounds on the ergodic capacityC of the typical TX-
RX link. Specifically, we show thatC > b

2 log2

(

µN2/b M
λ

)

,
whereµ > 0 is an appropriately defined constant.

Practical physical-layer issues are discussed such as chan-
nel estimation, PC and channel correlation. We demonstrate
via simulation that, with an acceptable rate loss due to the
transmission of pilot symbols, the channel fading and the
interference power can be accurately estimated for decoding.
With respect to PC, it is shown that channel inversion can
actually enhance the capacity, since the error correction code
protects the RX from the deep fades of its nearby interferers.
Finally, the impact of the channel correlation is assessed as the
number of subbands and/or the number of dwells is decreased
and it is shown that the gains compared to slow FH are still
significant.

C. Paper organization and notation

The rest of the paper is organized as follows. Section II
introduces our system model in detail. In Section III we derive
the statistics of the SIR and determine the performance of
the decoder under perfect CSI. The transmission capacity is
defined and evaluated in Section IV. Section V discusses
practical physical-layer considerations and Section VI presents
our numerical results. Section VII concludes the paper.

1Fast FH refers to hopping on the order of a symbol or a few symbols,
while slow FH, or interference avoidance, refers to hopping at the packet
level.

TABLE I
COMMONLY USED SYMBOLS

Symbol Meaning

R Distance of typical TX-RX link
λ Density of TXs
M Number of subbands
N Number of RX antennas
b Path-loss exponent (b > 2)

α = 2/b Stability exponent
Lb Number of information bits per packet
Mc Number of bits per constellation symbol
Rc Rate of convolutional code
Td Number of data symbols per dwell
Tp Number of pilot symbols per dwell
D Number of dwells
L Hamming distance of convolutional code
Pl Probability of length-l error event
wl Number of length-l error events
Pe Probability of packet error
C Ergodic capacity of typical TX-RX link
τǫ Transmission capacity under constraintPe = ǫ

A real (circularly symmetric complex) Gaussian random
variable (r.v.)x with mean0 and varianceσ2 is denoted as
x ∼ N (0, σ2) (x ∼ CN (0, σ2)). A central chi-square r.v.x
with parameter1/2 and n degrees of freedom is denoted as
x ∼ χ2

n. In is then× n identity matrix.(·)T and(·)H denote
the transpose and conjugate transpose operations, respectively.
[X]n,t denotes the(n, t) element of matrixX and[x]n denotes
the nth element of vectorx. The symbol “≃” is employed to
denote asymptotic equality of two functions. A list of symbols
commonly used throughout the paper is provided in Table I.

II. SYSTEM MODEL

A. General

We consider a network of TXs, each with a RX at a fixed
distanceR and random orientation. The locations of the TXs
are determined according to a homogeneous Poisson point
processΠ = {zi} ⊂ R

2, i ∈ N, of densityλ. The TXs send
packets to their corresponding receivers concurrently and in a
synchronized manner. Typically, the locations of the nodes are
constant for at least the duration of a packet.

The bandwidth is divided intoM subbands. The channel
between a typical TX-RX pair over a subband comprises flat
Rayleigh fading and path loss according to the lawr−b, where
b > 2 is the propagation exponent2. We assume that the
coherence bandwidth of the fading is equal to the width of
a subband, while the coherence time is at least equal to the
duration of adwell, which will be defined shortly. We also
consider an interference-limited scenario, i.e., the TX power is
sufficiently large that additive noise at the RX can be ignored.
Initially, we assume that the TX power is the same for all
TXs. Issues of PC to compensate for long-term fading, e.g.,
shadowing, are discussed in Section V.

Assume that a packet corresponds toLb binary information
bits, b1, . . . , bLb

, which are the input to a convolutional

2The constraintb > 2 is required in order for the interference power to be
finite [1], [12].
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encoder of rateRc < 13. The bits c1, . . . , ck′ , . . . , cLb/Rc

of the output codeword are interleaved and Gray-mapped to
symbolsx1, . . . , xk, . . . , xLb/(RcMc) from a complex PSK or
QAM constellationX of size |X | = 2Mc , zero mean and
unit average power. We assume that the one-to-one interleaver
mappingk′ ↔ (k, jk′), wherejk′ = 1, . . . , Mc is the position
of ck′ in the symbolxk, is known at the RX. Next in the TX
chain, the symbol sequence is divided inD = Lb/(RcMcTd)
groups4 of size Td and each group is transmitted in a dwell,
over a subband which is randomly5 selected with probability
1/M . If we denote the data symbols of thedth dwell,
d = 1, . . . , D, as xT

d , the sequence{xT
d }Dd=1 constitutes

a packet. For convenience, we assume all transmissions are
synchronized at the dwell level (the issue of asynchronous
transmissions is discussed in Section V).

Consider the typical TX, located atz0, and its corresponding
RX, both specified by index0, i.e., TX0 and RX0. If RX0 is
equipped with an antenna array of sizeN ≥ 1, the received
data matrix in dwelld is6

Yd,0 = hd,0x
T
d,0 + Rb/2

∑

i6=0

ed,ir
−b/2
i eiφihd,ix

T
d,i, (1)

wherehd,0 ∼ CN (0, IN ) is the fading vector between TX0
and RX0; ed,i is the indicator of the event that the TX located
at zi (denoted as TXi) and at distanceri from RX0, occupies
the same subband as TX0 in dwell d, i.e.,P(ed,i = 1) = 1/M
and P(ed,i = 0) = 1 − 1/M ; hd,i ∼ CN (0, IN ) is the
fading vector between TXi and RX0; xT

d,i is the group of data
symbols transmitted by TXi in dwell d; and φi is a random
phase, uniformly distributed in[0, 2π), which models the
phase offset between the RX0 and TXi. Note that the subscript
d in the fading vectors indicates that, in general, depending on
the coherence time, these may vary independently from dwell
to dwell.

Let Wd,0 denote the interference term in (1). Since the
elements ofxd,i are zero-mean and independent, the same
holds for the elements ofWd,0. Moreover, provided that
[xd,i]t is selected from a PSK constellation of unit power,
eiφi [hd,i]n[xd,i]t ∼ CN (0, 1), n = 1, . . . , N , t = 1, . . . , Td.
Given {ed,i, ri}, it follows that [Wd,0]n,t ∼ CN (0, Id,0),
where Id,0 ,

∑

i6=0 ed,ir
−b
i is the interference power seen

by RX0 in dwell d. In the case of QAM constellations, we
approximate[Wd,0]n,t as Gaussian for the sake of tractability.

RX0 can obtain knowledge ofhd,0 and Id,0 with the help
of pilot symbols which are transmitted at the beginning of the
dwell. Presently, we assume that they are perfectly known; a
straightforward channel estimation algorithm is presented in
Section V.

3We assume that the encoder is trellis-terminated [13], i.e., it is forced to
start from and end at the zero-state. This results in a small rate loss which is
not taken into account.

4For convenience, we assume thatLb/(RcMc) andD are integer.
5In reality, the hopping pattern is determined pseudorandomly and is known

at the RX. The model of random FH is convenient for analytical purposes.
6We assume that the average received powerR−b per antenna is known at

RX0. We have taken it into account in the interference portion of the received
signal because it is convenient in terms of notation.

B. Equivalent channel model and decoding

The reference RX performs MRC, i.e., it evaluates the

product
h

H

d,0

‖hd,0‖2 Yd,0. From (1), we have

hH
d

‖hd‖2
Yd = xT

d +
hH

d

‖hd‖2
Wd, (2)

where we have omitted the index 0 in order to simplify the
notation. Denoting thetth columns ofYd andWd asyt and
wt, respectively, we have the following equivalent channel
model for data symbolxk, k = (d−1)Td +1, . . . , dTd, which
is transmitted in dwelld

yk = xk + wk, (3)

where yk =
h

H

d

‖hd‖2 yt and wk =
h

H

d

‖hd‖2 wt. Since wt ∼
CN (0, IdIN ), it follows that wk ∼ CN (0, γ−1

k ), given the

equivalent SIRγk = ‖hd‖
2

Id
, where, by definition,d = ⌈ k

Td
⌉.

The r.v.ad = ‖hd‖2 is chi-square distributed with2N degrees
of freedom, i.e.,ad ∼ χ2

2N . In addition, due to the fact that
the locations of the inteferers in each dwell are a realization
of a Poisson point process with densityλ/M , it is known that
Id is an α-stable r.v. with stability exponentα = 2/b [12],
[14]. Its moment generating function (mgf) is [12]

ΦI(s) = E[e−Is] = e−
λδ
M

sα

, s > 0, (4)

where

δ , πΓ(1 − α)R2 (5)

andΓ(ζ), ζ > 0, denotes the gamma function. The sequence
{yk, γk}DTd

k=1 is the input to the decoder which decides that
the codeword̂c was transmitted according to the simplified
maximum-likelihood (ML) criterion [5, Eq. (9)]

ĉ = argmin
c

Lb/Rc
∑

k′=1
k′↔(k,jk′ )

γk min
x∈X

j
k′

c
k′

{

|yk − x|2
}

, (6)

whereX jk′

ck′
denotes the set of constellation symbols that have

bit ck′ at positionjk′ , jk′ = 1, . . . , Mc. The weighting of each
distance metric by the respective SIR reflects the confidence
of the decoder in that metric. Note that the summation is over
the bit indexk′, which corresponds to a unique pair(k, jk′ )
through the interleaver mapping.

III. A NALYSIS

This section is devoted to the performance analysis of de-
coder (6). In order to round out the analysis, in Section III-D,
we also derive upper and lower bounds to the ergodic capacity
of channel (3). Since the scheme presented in Section II
induces an “averaging” over different channel states within
the packet, the ergodic capacity is an upper bound to the
information rate of the typical TX-RX link.



4

A. Decoder performance

The codeword (or frame) error probability (FEP) of decoder
(6), Pe, is upper-bounded as [13]

Pe ≤ Lb

∑

l=L,L+1,...

wlPl, (7)

wherePl is the probability of a length-l error event, or pairwise
error probability, andwl is the number of length-l error events.
The minimum length of an error eventL, i.e., the Hamming
distance, as well as the weight distribution{wl} depend on
the particular code employed.

We now assume that, due to random interleaving, the
sequence ofl symbols that correspond to a sequence ofl coded
bits encounterindependentSIR conditions (this assumption is
discussed in Section V). From [5], [15],Pl can be upper-
bounded by

P̄l =
1

π

∫ π/2

0





1

Mc2Mc

∑

(x,x′)∈X

Φγ

( |x− x′|2
4 sin2 θ

)





l

dθ, (8)

where Φγ(s) = E[e−γs], s > 0. (The time indexk has
been removed as it is of no consequence.)(x, x′) are all
possible Mc2

Mc nearest-neighbor pairs inX which have
complementary bits in positionj, j = 1, . . . , Mc, e.g., for
QPSK constellations with Gray mapping, all such pairs are
at the minimum constellation distancedmin. Note that, in the
limit of large E[γ], the bound is tight, i.e.,̄Pl ≃ Pl [5].

From (7), a further upper bound toPe is

P̄e = Lb

∑

l=L,L+1,...

wlP̄l. (9)

The evaluation ofP̄l in (8) is possible by numerical integra-
tion, provided thatΦγ(s) is known. The derivation ofΦγ(s)
is the topic of the following subsection.

B. Statistics ofγ

The probability density function (pdf) ofγ is given by the
following lemma.

Lemma 1 The pdf of the SIRγ is

fγ(x) =
1

(N − 1)!

e−
λδ
M

xα

x

N
∑

n=1

|βN
n |
n!

(

λδ

M
xα

)n

, (10)

x > 0, where

βN
n =

n
∑

m=1

(−1)m

(

n
m

)

(αm)N , n = 1, . . . , N (11)

and (αm)N , αm . . . (αm−N + 1) is the falling sequential
product.

Proof: The cumulative distribution function (cdf) ofγ,
Fγ(x), is by definition

Fγ(x) = P(a ≤ xI) =

∫ +∞

0

Fa(xy)fI(y)dy, (12)

where

Fa(x) = 1− e−x
N−1
∑

n=0

xn

n!
= 1− Γ(N, x)

(N − 1)!
, x > 0 (13)

is the cdf of a and Γ(ζ, x) =
∫ +∞

x e−ttζ−1dt, x ≥ 0, is
the incomplete gamma function. Substituting (13) in (12) and
taking the derivative, the pdf ofγ is given by

fγ(x) = − 1

(N − 1)!

∫ +∞

0

dΓ(N, xy)

dx
fI(y)dy

=
xN−1

(N − 1)!

∫ +∞

0

fI(y)yNe−xydy

=
(−1)NxN−1

(N − 1)!

dNΦI(x)

dxN
, (14)

where we have used the identitydΓ(ζ,x)
dx = −xζ−1e−x [16,

p. 951] and the Laplace transform property7

fI(y)yN L←→ (−1)N dNΦI(s)

dsN
.

From the identity for theN th derivative of a composite
function [16, Eq. (0.430.1), p. 24], after some algebra we
obtain

dNΦI(s)

dsN
= s−Ne−

λδ
M

sα
N
∑

n=1

βN
n

n!

(

λδ

M
sα

)n

(15)

with βN
n given by (11). From (15) and (14)

fγ(x) =
1

(N − 1)!

e−
λδ
M

xα

x

N
∑

n=1

(−1)NβN
n

n!

(

λδ

M
xα

)n

. (16)

In order to derive (10) from (16), we need to show that
(−1)NβN

n ≥ 0. Once again, using the identity for theN th

derivative of a composite function,βN
n can be written as the

following derivative evaluated atx = 1:

βN
n =

dN (1− xα)
n

dxN

∣

∣

∣

∣

x=1

(17)

From (17), the following iterative relation can be proved for
N ≥ 2

βN
n =

N
∑

m1=1

(

N
m1

)

βm1

1 βN−m1

n−1 . (18)

By successive application of (18), we obtain

(−1)NβN
n

N !
=

N
∑

m1=1

· · ·
N−mn−2−···−m1

∑

mn−1=1

(−1)m1βm1

1 . . . (−1)mnβmn

1 ,

wheremn = N−mn−1−· · ·−m1. Due to (11),(−1)NβN
1 =

(−1)N+1α(α − 1) . . . (α − N + 1). Sinceα = 2/b < 1, it
follows that (−1)NβN

1 ≥ 0. Therefore,(−1)NβN
n ≥ 0 for

n = 1, . . . , N .
As expected, increasing the spatial diversity orderN in-

creases the value offγ(x), as more positive terms are added
to the polynomial in (10). Eq. (10) enables the numerical
evaluation ofΦγ(s) using Gauss-Laguerre quadrature for any
s > 0.

7This identity is also employed in [17], in order to derive the ccdf ofγ.
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C. Approximations

The numerical evaluation of̄Pl from (8) does not provide
insight on how the decoder performance depends on the
system parameters. In this section, we examine the decoder
performance whenλ/M → 0, i.e., the interferer point process
in each dwell is sparse. This implies that the network is
operated in a regime of small FEP, i.e., typicallȳPe ≤ ǫ,
with ǫ ≤ 0.1.

Let B(ζ1, ζ2), ζ1, ζ2 > 0 denote the beta function. Our
main result is stated in the following proposition.

Proposition 1 If λ/M → 0, then P̄l = η( λ
M )l + o

(

(

λ
M

)l
)

,

where P̄l is defined in (8) andη is a positive constant.
Moreover,

P̄l ≃
24αl−1

π
B

(

αl +
1

2
, αl +

1

2

)(

αB(N − α, α)

d2
X

λπR2

M

)l

(19)
where

d2
X =





1

Mc2Mc

∑

(x,x′)∈X

1

|x− x′|2α





−1

. (20)

Proof: Omitting the terme−
λδ
M

xα

in (10), an upper bound
to Φγ(s) for all s > 0 is

Φγ(s) =
1

(N − 1)!

N
∑

n=1

|βN
n |
n!

(

λδ

M

)n ∫ +∞

0

xαn−1e−xsdx

=
1

Γ(N)

N
∑

n=1

|βN
n |
n!

(

λδ

M

)n

s−αnΓ(αn)

=
αB(N − α, α)

Γ(1− α)

(

λδ

M

)

s−α

+
1

Γ(N)

N
∑

n=2

|βN
n |
n!

(

λδ

M

)n

s−αnΓ(αn). (21)

Eq. (21) is derived by successively applying the identityΓ(ζ+
1) = ζΓ(ζ) to show that

|βN
1 | = α(1− α) . . . (N − 1− α) =

α

Γ(1− α)
Γ(N − α)

and the definition of the beta function

B(N − α, α) =
Γ(N − α)Γ(α)

Γ(N)
, (22)

whereΓ(N) = (N − 1)!. From (21) and (8), we can see that

P̄l = η
(

λ
M

)l
+o
(

(

λ
M

)l
)

, for λ/M → 0, with η appropriately
defined.

Note that the bound in (21) is tight asλ/M → 0. Ignoring
the higher order terms and recalling the definition ofδ in (5)

Φγ(s) ≃ Φγ(s) ≃ παR2B(N − α, α)s−α λ

M
. (23)

Substituting (23) in (8)

P̄l ≃
(

παR2B(N − α, α)d−2
X

λ

M

)l
4αl

π

∫ π/2

0

(sin θ)2αl dθ,

where d2
X is defined in (20). Employing the identity [16,

p. 412]
∫ π/2

0

(sin θ)2αl dθ = 22αl−1B(αl + 1/2, αl + 1/2)

we obtain (19).
Remarks:Proposition 1 states that forλ/M → 0 the

Hamming distance of the convolutional code determines the
diversity order, i.e., the slope of the curve of̄Pe vs. λ/M in
log-log coordinates. This result is reminiscent of the perfor-
mance of BICM in a Rayleigh fading channel with AWGN.
The difference is that, in the context of an inteference-limited
random network, the average signal-to-noise ratio is replaced
by N−1

eff , whereNeff = λπR2

M is the expected number of TXs
in the transmission range per subband.

Eq. (19) also reveals that MRC introduces an array or
coding gain through the factorB(N − α, α)L. To obtain
further insight, we examine the trend of the beta function for
large N . By Stirling’s approximation, for largeζ we have
Γ(ζ) ≃

√
2πζζ−1/2e−ζ , therefore

Γ(N − α)

Γ(N)
≃ N−α

(

1− α

N

)N−α− 1

2

eα.

However, it is easy to verify thatlimN→∞

(

1− α
N

)N−α− 1

2 =
e−α, so, from (22),B(N − α, α) ≃ Γ(α)N−α. As a result,
for largeN , the coding gain is proportional toN−Lα.

A final observation is that, similarly to [5], the parameter
d2
X is the harmonic mean of the minimum squared Euclidean

distance between the nearest-neighbor pairs defined in Sec-
tion III-A, raised to the stability exponentα.

D. Ergodic capacity

The ergodic capacity of (3) is

C =

∫ +∞

0

fγ(x) log2(1 + x)dx. (24)

A closed form expression appears hard to obtain due to the
complicated nature of (10); nevertheless, the integral can be
evaluated numerically with Gauss-Laguerre quadrature. The
following proposition provides upper and lower bounds onC.

Proposition 2 The ergodic capacity of (3) is upper-bounded
as

C < C̄ = log2

(

1 + NΓ

(

1

α
+ 1

)(

M

λδ

)1/α
)

(25)

and lower bounded as

C ≥ C =
1

α
log2

(

M

eΓλδ

)

+
HN−1

ln 2
, (26)

whereΓ = 0.577 . . . is the Euler-Mascheroni constant and

Hn =







n
∑

k=1

1

k
n ≥ 1 (27)

0 n = 0



6

is thenth harmonic number. This bound is tight, i.e.,C ≃ C
for λ→ 0. A looser lower bound is

C =
1

α
log2

(

NαM

eΓλδ

)

. (28)

Proof: The upper bound is derived by noting thatE[γ] =
E[a]E

[

1
I

]

= NE
[

1
I

]

, so, for N = 1, E
[

1
I

]

= E[γ]. Setting
N = 1 in (10), we have

E

[

1

I

]

=
λδα

M

∫ +∞

0

xαe−
λδ
M

xα

dx =

(

M

λδ

)1/α

Γ

(

1

α
+ 1

)

.

By applying Jensen’s inequality8 on (24), we obtain (25).
For the derivation of the lower bound, we employ the

inequality ln(1 + x) > ln x for x > 0. Combining (14) and
(24) and integrating by parts, we obtain

((N − 1)! ln 2)C = (−1)N

∫ +∞

0

xN−1 (ΦI(x))
(N)

ln xdx

= (−1)N
N−2
∑

k=0

(−1)k
[

(ΦI(x))
(N−k−1) (

xN−1 ln x
)(k)
]+∞

0

−
∫ +∞

0

(ΦI(x))
(1) (

xN−1 ln x
)(N−1)

dx. (29)

For convenience, the notation(ΦI(x))(n) has been adopted
to denote thenth derivative of ΦI(x) and likewise for the
other functions. After some algebra, we can show that, for
k = 1, . . . , N − 1, N > 1,

(

xN−1 ln x
)(k)

= (N − 1) . . . (N − k)xN−k−1 ln x

+ xN−k−1
∑

(l1,...,lk−1)

(N − l1) . . . (N − lk−1), (30)

with the summation taken over all permutations of the vector
(l1, . . . , lk−1), lj = 1, . . . , k, j = 1, . . . , k − 1. When k =
N − 1

(

xN−1 ln x
)(N−1)

= (N − 1)!(lnx + HN−1), (31)

whereHn is defined in (27). From (15) and (30), we can show
that the first term in (29) is zero. Hence

C =
λδα

M ln 2

∫ +∞

0

xα−1e−
λδ
M

xα

lnx dx +
HN−1

ln 2
,

from which (26) follows by use of [16, Eq. (4.331.1), p. 602].
Since the harmonic number is lower bounded as [19]

HN > ln N + Γ +
1

2(N + 1)
,

for N ≥ 2, we have that

HN−1 = HN −
1

N
> lnN + Γ +

1

2(N + 1)
− 1

N
> log N.

The latter inequality holds because, forN ≥ 2, 1
N − 1

2(N+1) <
1
2 < Γ, ∀N ≥ 2. As a result, a looser lower bound to the
capacity is (28).

Eq. (28) shows thatC is a linear function oflog2

(

M
λδ

)

, with
slope1/α = b/2 and a constant termlog2 N − Γ

α log2 e.

8Jensen’s inequality was also employed in [18] in order to derive an upper
bound to the ergodic capacity, albeit in a slightly different context.

IV. N ETWORK METRICS

Having evaluated the performance at the link level, we
now turn our attention to network-wide metrics. The network
thoughput per unit area is defined as the spatial density of
successful transmissions multiplied by their rateRcMc, i.e.,

τ = λ(1 − Pe)RcMc.

Similarly to [2], the transmission capacityτǫ is defined as
the maximum network throughput per unit area such that a
constraintPe = ǫ is satisfied, i.e.,

τǫ = λǫ(1− ǫ)RcMc, (32)

whereλǫ is the maximum contention density. A closed-form
expression forλǫ may be obtained by noting that, forǫ→ 0,
the Hamming distance error events dominate the FEP, i.e.,
Pe ≃ P̄e ≃ LbwLP̄L. From Proposition 1, we find that

λǫ ≈
( ǫ

K

)1/L d2
XM

16ααB(N − α, α)πR2
, (33)

where

K ,
LbwL

2π
B(αL + 1/2, αL + 1/2). (34)

The maximum contention density is therefore proportional to
ǫ1/L, as ǫ → 0. This result is a manifestation of the channel
diversity harnessed through FH and coding at the expense of
spectrum. As seen from (33) and (34), the proportionality
constant depends, among other system parameters, on the
selected code, i.e.,L and wL, the codeword lengthLb, the
geometry of the symbol constellation and the number of RX
antennasN . SinceB(N − α, α) ≈ N−α for increasingN ,
it also follows thatλǫ is proportional toNα, which is in
agreement with the scaling law derived in [17].

As a final note, the network throughput is upper-bounded
by τ̄ = λC, whereC is the link ergodic capacity given by
(24). Bounds on̄τ may be obtained by employing the results
of Proposition 2.

V. PHYSICAL-LAYER CONSIDERATIONS

This section discusses various physical-layer issues with
respect to the system model presented in Section II. The
influence of these on the decoder performance is assessed via
simulation in Section VI.

A. Channel estimation

In this subsection, we discuss the important issue of how
the decoder obtains estimates ofhd and Id in the dth dwell.
Assume that a header ofTp pilot symbols, selected from a
complex PSK constellation of zero mean and unit power, and
known at the RX, is transmitted at the beginning of the dwell.
If this header is denoted aspT

d , then, similarly to (1), the
received pilot matrix is

Yd = hdp
T
d + Wd

whereWd = Rb/2
∑

i6=0 ed,ir
−b/2
i eiφihd,ip

T
d,i and [Wd]n,t,

n = 1, . . . , N , t = 1, . . . , Tp are i.i.d. with [Wd]n,t ∼
CN (0, Id), given Id.
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An estimate ofId is

Îd =
1

N(Tp − 1)

∥

∥

∥

∥

(

IT −
1

Tp
pdp

H
d

)

Y
T
d

∥

∥

∥

∥

2

,

obtained by finding jointly the ML estimators ofhd andId [20,
p. 182] and multiplying the latter by the factorTp/(Tp − 1)
in order to remove the bias. Intuitively, the estimate of the
interference power is obtained by projecting the received
signal onto the subspace which is orthogonal to the pilot
data p. Assuming that the estimate ofId is accurate, i.e.,
Îd ≈ Id, the minimum mean-square error (MMSE) estimate
of hd is [20, p. 391]

ĥd =
1

Id + Tp
Ydp

∗
d.

Definingǫd = hd−ĥd, it holds thatĥd ∼ CN
(

0,
Tp

Id+Tp
IN

)

,

ǫd ∼ CN
(

0, Id

Id+Tp
IN

)

and ĥd, ǫd are independent. We can
see that the estimate ofhd is accurate ifTp ≫ Id.

Following the estimation ofhd and Id, the RX performs

MRC, i.e., it evaluates the productĥ
H

d

‖ĥd‖2
Yd. From (1), we

have

ĥ
H

d

‖ĥd‖2
Yd = xT

d +
ĥ

H

d

‖ĥd‖2
(

ǫdx
T
d + Wd

)

.

Lumping the channel estimation error term with the interfer-
ence, we can show that the equivalent channel model follows
(3), with the SIR defined as

γk,csi =
ad

Id

(

1 +
1 + Id

Tp

)−1

.

The sequence{yk, γk,csi}DTd

k=1 is the input to decoder (6).
A consequence of channel estimation is the loss of infor-

mation rate by a factor Td

Td+Tp
, due to the transmission of the

pilot symbols in each dwell. This factor must be taken into
account when evaluating the transmission capacity.

B. Correlation of the interference

Eq. (8) is based on the assumption that the coded bits en-
counter independent SIR conditions across the span of an error
event in the decoder. The assumption is justified if, (a) there is
a sufficient number of dwells9 such that, due to interleaving,
these bits will be transmitted on different dwells, and (b) the
SIRs are independent across dwells. The latter assumption is
reasonable if the number of frequencies is sufficiently large.
As shown in [21], the temporal correlation of the interference
in a fixed Poisson network of TXs and Rayleigh fading isp/2,
wherep is the random access probability. In this paper, random
access is achieved via random FH, i.e.,p can be substituted
by 1/M .

9This is also related to the length of the codeword.

C. Synchronization

The assumption of synchronization between different TX-
RX pairs in the network facilitates the analysis, as the interfer-
ence power is the same throughout each dwell. We anticipate
that the results of our analysis will also hold in the case
of asynchronous transmissions, provided that the interference
power can be estimated accurately. This may necessitate the
insertion of more pilot symbols throughout the dwell and,
consequently, the loss of rate. The study of these issues is
beyond the scope of the present paper.

D. Power control

In [2], it was shown that channel-inversion PC increases the
outage probability in a random network with fading. In order
to examine the effect of PC in the context of this paper, we
assume that the typical TX-RX link is subject to lognormal
shadowing, i.e., the transmitted signal is multiplied by a r.v.
S = 10σsξ/10, whereξ ∼ N (0, 1) and, typically,σs = 6 −
8 dB. Note thatS (like the node locations) is assumed to be
a “long-term” r.v., i.e., it is constant for at least the duration
of a packet slot.

In order to take shadowing into account in the analysis of
Section III, the definition of the constantδ in (5) for the case
of channel-inversion PC must be modified asδpc = πΓ(1 −
α)R2

E[(SαS′−α], where S models the shadowing between
TXi and RX0 and S′ models the shadowing between TXi

and its corresponding RX. In the absence of PC, we have
δnpc = πΓ(1 − α)R2

E[Sα]S′−α, whereS′ now denotes the
shadowing between TX0 and RX0. Therefore, in the case of
no PC,Pl in (8) is conditioned on the realization ofS′ and
the expectation of the former with respect to the latter must
be taken in order to obtain the unconditional probability of
codeword/packet error.

VI. N UMERICAL RESULTS

In this section, we present numerical results for a network
with default parametersR = 1 m, M = 100, Mc = 2 (QPSK),
N = 2 andb = 4. Six convolutional codes with rateRc = 1/2
are considered, with memory, minimum Hamming distances
and distance spectra listed in Table II (see [22] for more
details). In all plots, the upper bound to the pairwise error
probability P̄l is evaluated by (19).

In the simulations, we generate a new network realization
for every transmitted packet. The network area is selected
such that, on average, there are60 interferers per subband. At
the TX, we employ a block interleaver of vertical dimension
equal to the number of bits per dwellMcTd and horizontal

TABLE II
OPTIMUM RATE 1/2 CONVOLUTIONAL CODES

Encoder Memory L wL, . . . , wL+4

Enc1 1 3 1,1,1,1,1
Enc2 2 4 2,0,5,0,13
Enc3 3 5 1,0,6,0,16
Enc4 3 6 1,3,5,11,25
Enc5 5 8 2,7,10,18,49
Enc6 7 10 1,6,13,20,64
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Fig. 1. FEP vs.N−1

eff
for the codes in Table II. The solid (dotted) lines depict

(9) with error events up to lengthL+4 (L) taken into account. The theoretical
result is slightly optimistic in the case of Enc6. This is attributed to the impact
of channel correlation within the packet, the effect of which becomes more
apparent as the span of the error events becomes larger (QPSK,Lb = 800,
D = 40, Td = 20, N = 2, b = 4, perfect CSI).

dimension equal toD, such thatD consecutive codeword
bits are guaranteed to be transmitted on different dwells. The
coherence time of the fading is taken to be equal to the
duration of a packet. In this manner, we can compare the
scheme proposed in this paper with the slow-FH (IA) scheme
advocated in [6].

In Fig. 1, we plot the FEP vs.N−1
eff (recall thatNeff is the

expected number of TXs in a disc of radiusR per subband)
for the codes listed in Table II andLb = 800. The upper
bound (9) is plotted with a solid line, when error events up to
length L + 4 are taken into account, and with a dotted line,
when only the Hamming distance error events are taken into
account. As expected, for each code, the two curves converge
asNeff → 0. We also simulate the performance of the codes
by dividing the packet inD = 40 dwells of Td = 20 QPSK
symbols. Fig. 1 demonstrates that the dotted curve is quite
accurate forPe < 0.01.

In Fig. 2, we investigate for what range of values ofM chan-
nel conditions across dwells can be considered independent.
We obtain the FEP of Enc4 via simulation for different systems
which have the sameNeff but varyingM . It is observed that,
for M ≥ 20, full diversity can practically be attained, as the
simulated curves are very close to the theoretical one which
is derived based on the assumption of independent channels.
The simulated FEP in the case of slow FH is also shown for
comparison. Note that, givenNeff , the performance of slow
FH does not depend onM ; its diversity order is always one.

In Fig. 3, we plot the maximum contention densityλǫ,
evaluated by (33), vs.L, for the set of parameters of Fig. 1
and different values of the ratioǫ/wL. Note that, forǫ/wL =
0.001, increasing the diversity order of the code from3 to
8, results in a tenfold increase ofλǫ. The gain comes at an
increase of the decoder memory from1 to 5.

Fig. 4 presents the results of Proposition 2 on the link
ergodic capacity for two different values ofN . As expected,
(25) and (26) become tight asNeff → ∞ and Neff → 0,
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P

Fig. 2. FEP vs.N−1

eff
for Enc4 andM = 4, 20, 100. As M decreases the

diversity order decreases, as the fading and interference across dwells become
more correlated. The simulated performance for slow FH is also shown for
comparison (QPSK,Lb = 800, D = 40, Td = 20, N = 2, b = 4, perfect
CSI).
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Fig. 3. Maximum contention density vs.L for different values ofǫ/wL

(R = 1 m, QPSK,Lb = 800, N = 2, b = 4, perfect CSI).

respectively. In Fig. 5, we employ the channel estimation
scheme of Section V and examine the effect of imperfect CSI
via simulation, whenLb = 500, D = 25 andTd = 20. As Tp

is increased the performance loss is reduced, at the expense of
information rate, e.g., atTp = 10, the rate-loss factor is2/3.

Finally, in Fig. 6, the simulated FEP of Enc2 and Enc4
are plotted vs.N−1

eff , for a channel with lognormal shadowing
(σs = 6 dB) and shadowing-inversion PC or no PC. For small
Neff , PC introduces a substantial gain, e.g., for Enc4 atN−1

eff =
10 dB, this gain is an order of magnitude. The reason for this
is that the detrimental effect of shadowing to RX0 is canceled
and, at the same time, the interferer process is sparse enough
such that the code protects RX0 in the unlikely event of a large
interfering power from a nearby interferer (this occurs when
deep shadowing afflicts the channel between that interferer and
its respective RX). Theoretically, we can see this with the help
of Jensen’s inequality: Given that all shadowing variables are
i.i.d., by the definitions ofδpc and δnpc in Section V-D, we
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Fig. 5. FEP vs.N−1

eff
for Enc1 and different values ofTp. For Tp = 5 and

a rate-loss factor of20% there is a1 dB penalty compared to the perfect-CSI
case (QPSK,Lb = 500, D = 25, Td = 20, N = 2, b = 4).

have thatδl
pc = E[Sα]lE[Sα]l < E[Sαl]E[Sα]l = δl

npc. Hence,
from Proposition 1, PC should perform better in the small FEP
regime, which is verified by Fig. 6. On the other hand, as
the network becomes very dense, the diversity in the received
signal is lost and the decoder is overwhelmed by an increased
interference level due to PC. This is more apparent for Enc2
than Enc4, since Enc2 has a smaller Hamming distance. On
a final note, we observe that, in the case of PC, there is good
agreement between the theoretical FEP evaluated by (9) and
the simulation results.

VII. C ONCLUDING REMARKS

In this paper we considered FH during packet transmission
and coding, as a physical-layer scheme for random wireless
networks with uncoordinated transmissions. We demonstrated
via analysis and simulation that the transmission capacity
scales asǫ1/L, whereǫ is the constraint placed on the packet
error probability andL is the code diversity order. A byproduct
of our analysis was the derivation of a compact expression
for the pdf of the SIR in a Rayleigh fading andα-stable
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Fig. 6. FEP vs.N−1

eff
for Enc2 and Enc4 with/without PC (QPSK,Lb = 500,

D = 25, Td = 20, N = 2, b = 4, perfect CSI,σs = 6).

interference channel, when the RX performs MRC. Upper and
lower bounds on the ergodic capacity of this channel were also
derived.

Employing a simple channel estimation algorithm based on
the transmission of pilot symbols at the beginning of each
dwell, we showed that the performance degradation due to
imperfect CSI is reasonable, at a rate loss of the order of
20%. The effect of channel-inversion PC was also investigated
for a channel with lognormal shadowing, and PC was shown
to be beneficial ifλ/M is sufficiently small. In conclusion,
we believe that, given the gains in terms of network capacity
at moderate encoding/decoding complexity, even for a small
number of subbands, this scheme merits consideration despite
the increased overhead compared to a slow FH system.
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