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Chapter 1 

Summary 

1.1    Objectives 

The objective of this project was to develop and demonstrate, in challenge problems selected by 
DARPA DSO, techniques for managing uncertainty in complex dynamical systems. Out of the 
original three-year program, the first two phases were executed. Each of these phases was divided 
into tool development as well as meeting challenge problems to demonstrate the convergence of 
these tools in concerted efforts. 

More explicitly, the overarching goal of the project was to develop tools and workflows for quan- 
tifying and managing uncertainty in ways that would perform orders of magnitude faster than 
Monte Carlo sampling with controlled, provable scaling (preferably linear in the system size). The 
challenge problems were designed to demonstrate progress toward this ultimate goal. 

The focus of Phase I was to show that the techniques selected and developed could be applied 
correctly to systems of many particles. The two challenge problems for this phase were: 

• Self-assembly: Obtain an interaction potential such that a system of particles in a box would 
spontaneously assemble into a honeycomb structure and compare this to a benchmark solution 
from the literature [9, 10]. 

• Phase diagram: Obtain the phase transition temperature of a noble gas physisorbed on a 
graphite substrate, demonstrating that the team could correctly extract complex emergent 
behavior of a system of 10,000 particles. 

Apart from the further development, selection, and implementation of mathematical tools for un- 
certainty quantification, Phase II included the following challenge problems: 

• Phase diagram with uncertainty: Show orders-of-magnitude speed-up over Monte Carlo sam- 
pling in the quantification of uncertainty in a complex, uncertain system. The system chosen 
for this challenge was a monolayer of carbon monoxide (CO) on graphite in the presence of an 



1.2.   SUMMARY OF ACCOMPLISHMENTS 
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Figure 1.1: Summary of main results for the self-assembly problem. 

uncertain level of argon impurities. The system exhibits a complex phase transition f 12] and 
the task was to calculate the transition temperature, including its uncertainty, as a function 
of the uncertain argon concentration. 

Surveillance: Design search strategies for 50 simulated unmanned aerial vehicles (UAVs) look- 
ing for a stationary target in a complex terrain using noisy sensors with uncertain footprint. 
The strategies had to exhibit shorter search times than straightforward lawnmower patterns 
while still satisfying constraints on detection (lower bound) and false alarm (upper bound) 
probabilities. 

1.2    Summary of accomplishments 

The performance requirements from the Phase I and II challenge problems were met, and in some 
cases surpassed by orders of magnitude above the required acceleration. Here we summarize the 
accomplishments directly related to the challenge problems. Chapter 2 summarizes the tools de- 
veloped, organized by themes. 

Phase I self-assembly challenge 

• As shown in appendix C.l and reference [J3], the team first developed several relevant metrics 
for lattice quality and then applied trend optimization using ridge regression ([J3] and [11]) to 
obtain solutions superior (in terms of robustness of the self-assembly) to the benchmark [10]. 



1.2.   SUMMARY OF ACCOMPLISHMENTS 

The most robust solutions were particularly counterintuitive in that the resulting interaction 
potential was purely repulsive. The team also showed that extending the interaction to 
anisotropic potentials can yield much more robust self-assembly, even of structures that were 
identified in the literature as impossible to obtain through central potentials ([J9] and [10]). 

• The self-assembly problem also exposed the team to the state of the art in molecular dynamics 
simulation algorithms and, in particular, to the different approaches for simulation of systems 
of particles with noise, typically due to contact with a thermal bath. This spurred the 
development of a completely novel approach to simulating noisy systems that preserve the 
specific structure of the noise in a controlled manner [ J2]. In other words, this is the stochastic 
equivalent of variational integrators, with the difference that instead of preserving energy (as 
in the widely used Verlet algorithm [4]) they preserve the invariant measure. 

• Other mathematical results related to the self-assembly challenge are a proof that central 
potentials cannot yield certain structures when the system is not confined to a fixed-volume 
box [J9] and several provably-correct metrics for quantifying the distance between simulation 
results and target lattices (appendix C.2 and [Jl 1]). Finally, several tunable lattice quality 
measures were developed (appendix D.2 and [J12]). These can be selected to emphasize 
different desired qualities in the target lattice (e.g., shape vs. density) and can be used for 
self-assembly as well as for phase diagram computations. 

Figure 1.1 summarizes the main results for the self-assembly challenge problem. 

Phase I phase diagram challenge 

• In appendix E.l [J17] the team developed a new class of Hidden Markov Models, the finite- 
rank optimal-prediction (FRO) model, for quickly learning the dynamics of a system. This 
new tool was used to learn from MD simulations of helium atoms physisorbed on graphite the 
dynamics of a coarse variable relevant to the phase transition (the potential energy per atom). 
The transition is then associated with metastability in the spectrum of the Markov model. 
The team showed that it is faster to directly learn when the spectrum exhibits metastability 
than to directly simulate the system until it settles into its stationary distribution. The 
method was later extended into reference [C4], where it was applied to fast decentralized 
control over networks through the construction of multiple local Markov models. 

• Model order reduction was approached from the point of view of data clustering and stochastic 
modeling. A Markov matrix whose state space is the possible size of clusters can be learned 
from the simulation of molecular systems at specific conditions, such as temperature, density 
and pressure with prior belief. The expectation value of an invariant distribution of learned 
Markov matrix indicates the phase transition of the molecular dynamics system qualitatively 
while the second largest eigenvalue modulus can be used as a quantitative indicator. As a 
consequence, the stochastic reduced order model not only reduces the order of the system 
based on the choice of coarse variable but also provides an insight of macroscopic properties. 
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Figure 1.2: Summary of phase I results for the phase diagram problem. 

Heuristic graph decomposition Bayesian estimation is shown to be more reliable and robust 
than maximum likelihood estimation because it reflects prior information on the system. 

a Two orders of magnitude acceleration over Molecular Dynamics 10,000 atom baseline was 
achieved by running a reduced size system of only 100 particles. To assess the error in the 
phase transition temperature determined using lower number of atoms in MD simulation, 
convergence of the phase transition temperature was studied using numerical and analytical 
methods. 

a In reference [Jl] the team builds on the Coarse Molecular Dynamics technique [1] to obtain 
the order-to-disorder transition temperature of krypton physisorbed on graphite. The team 
obtains 5x acceleration compared to standard MD measurements of fluctuations of the to- 
tal energy. The CMD technique falls under the umbrella of the more general equation-free 
methods, in which the macroscopic evolution of a system is simulated by doing short bursts 
of microscopic-level simulations compatible with the required macroscopic state. Initializ- 
ing such microscopic systems is called lifting, and doing it efficiently is an area of active 
development (see appendix B.7 and [J8]). 

a A parallel effort for the krypton problem (appendix D.l) was to extend the use of quenching 
simulations [5] by developing pattern boundary detection methods to separate high and low 
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Figure 1.3: Summary of Phase II results for the phase diagram problem. From left to right: system 
snapshot showing pinwheel structures around argon impurities (blue); flip moves used in Ising-type 
model; heat capacity curves for different impurity concentrations; acceleration in calculation of the 
transition temperature for Monte Carlo (blue) and PCM (red). 

density regions that appear spontaneously in first order phase transitions. 

Figure 1.2 summarizes these results. Note that, in order to obtain a good match with the experi- 
mental results from the literature for the case of helium, the team had to add a quantum-mechanical 
correction to the classical potential used in the simulations. This correction, based on Feynman's 
quasi-classical potential, went beyond the asymptotic approximations from [14] that were used in 
the theoretical calculations of reference [2]. 

Phase II phase diagram with uncertainty challenge Appendix D.3 [J21] focuses on the low 
temperature phase transition for carbon monoxide (CO) physisorbed on a graphite substrate. 

• The team first developed an Ising-type model for the system that accurately captures the 
phase transition in the presence of an uncertain concentration of argon impurities. 

• Since in the simulations the number of argon impurities had to be an integer, the team 
had to extend the Polynomial Chaos-based Probabilistic Collocation Method [3] to the case 
where the uncertain parameters can only take integer values, leading to a rare application of 
Krawtchouk polynomials. PCM allowed the team to calculate the mean and variance of the 
phase transition temperature 2000 times faster than Monte Carlo sampling [J21]. 

• The team's result settled the scientific question of whether the ground state of CO on graphite 
is head-to-head ordered or head-to-tail ordered in favor of the latter. Furthermore, the team 
showed that formation of pinwheel regions of CO around argon atoms are at the origin of the 
anomalous effect of stabilization of the low-temperature phase [J21]. 

Figure 1.3 shows the system, a typical configuration in the Ising-type model, a representative 
hip move (molecule rotation) in the computational procedure, the variations in the specific heat 
vs. temperature curves, and the comparative acceleration of PCM over Monte Carlo. 
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Phase II surveillance challenge Appendix A as well as references [J4, J6, J13, J18, J19], 
[C5], and [6] contain extended reports on results relevant to the surveillance challenge problem. 
Figure 1.4 shows the search area used by the team to compare the performance of the algorithms 
developed in the project with that of both standard and "smart" lawnmower search patterns that 
take into account the prior distribution for the single target. The challenge included the following 
constraints, so as to make the different algorithms comparable: 

• There is a single, immobile target to be found. 

• The vehicles' sensors have a small footprint compared to the total search area (0.1% for 
one sensor, 5% for the whole swarm) and their dynamics must be constrained (speed and 
acceleration limits). 

• The sensors are noisy: at each observation, a sensor has a probability of detection Sd < 1 and 
false alarm Sfa > 0. 

• The terrain includes foliage. If the target is in the foliage, it is undetectable. The algorithms 
must be able to conclude that the target is undetectable after a finite time. 

• The algorithms as a whole must exhibit a global probability of detection above a given thresh- 
old Pa.global and false alarm rate below a given threshold Pfa,giobal- 

Under these constraints, the algorithms compete for lowest median detection time. 

As shown in figure 1.4, two different lines of attack yielded successful practical search strategies: 
Spectral Multiscale Search (SMS), Greedy Spirals, and Dynamic Greedy Search (DyGS). Each uses 
a very different approach and has its own strengths. These strengths treat different axes of the 
problem and could in the future be combined into a unified approach to control a swarm of UAVs 
performing autonomous search missions. Both methods achieved almost 2x reduction in median 
search time compared with smart lawnmower. 

Spectral Multiscale Search, or SMS (appendix A.l and [J13]), which combines a novel application 
of the Neyman-Pearson lemma [J6] with a Lyapunov method, is a fully-autonomous approach 
that flexibly dictates the required control forces on the whole swarm at every time step. Given 
the prior distribution for the single target, the method evaluates how much the time-integrated 
coverage differs from the prior, using a specially-designed weighted measure that yields a naturally 
multiscale approach. The method spontaneously spreads out the vehicles, initially covering the 
large-scale features of the prior and then filling in the smaller scale details. As shown in figure 1.4, 
this method can take into consideration both uniform and nonuniform priors. The vehicles avoid 
the foliage when possible, but spontaneously fly over it when needed to cover a different region. 

Figure 1.4 also shows the ROC (Receiver Operating Characteristic) curves associated with the SMS 
decision algorithm [J13]. For a given sensor quality (i.e., for given parameters sj and Sfa) these 
curves show graphically the effect of taking repeated measurements in an area and help determine 
how much coverage is needed before the global constraints Pa.global and Pfa,giobai are satisfied. 

Dynamic Greedy Search, or DyGS (appendix A.2 and [J4]), is made of two parts: a grid-free decision 
algorithm and a trajectory planner.   The trajectory planner is based on a specially-developed 
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Figure 1.4: Top left: search area used for the simulations. The gray zones mark the foliage and 
the shades of red mark the prior distribution for the target. The dots mark 5000 target positions 
sampled from the prior. Also shown is the lawnmower baseline and the improved algorithms SMS, 
Greedy Spirals, and DyGS (see text). The bottom shows an approach combining helicopter model 
trajectory segments and roadmap planning for near-real time control of UAVs over Fort Benning. 



1.3.   ORGANIZATION OF THE REPORT 

method for optimizing dynamically the path to take in a computationally tractable manner while 
still producing realizable trajectories. It is based on the use of a library of elementary trajectory 
segments that individually satisfy the vehicle dynamics and can be interlocked to produce large 
scale roadmaps (see also section 2.3.1). 

Even though the challenge problems focused on the detection of a single target, the team identified 
that the need to detect multiple targets would naturally arise in the future, and the necessary 
mathematics to treat this problem in a computationally-efficient manner had to be developed. 
Appendix A.4 (see also [C5]) develops such tools. The approach is novel in that it makes efficient 
a computation that in its original form is computationally intractable. 

1.3    Organization of the report 

The summary of accomplishments presented above focuses on the convergence of the different tools 
selected and developed as applied to the solution of the Phase I and Phase II challenge problems. 
In contrast, chapter 2 summarizes other tools that were mostly preparation for Phase III and were, 
for the most part, not used directly in the solution of the Phase I and Phase II challenge problems. 

For published results we include the reference to the appropriate journal or conference proceedings, 
while for results that are submitted or in preparation we include the full drafts or internal reports as 
appendices. The appendices are mostly self-contained, and as such the citations in the appendices 
refer to their own bibliographies, and not to the report's main bibliography. 
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Chapter 2 

Other tools developed 

This project deals with the quantification and robust management of uncertainty in complex sys- 
tems. In view of the goal of a real-time demonstration, many tools were developed with the goal 
of supporting fast, decentralized analysis of the situation, as well as efficient design of vehicle 
trajectories compatible with complex dynamics. 

In this chapter we describe some of the tools developed. As these focused on improving different 
aspects of the problem, the tools are very heterogeneous, and fall broadly in the following three 
categories: 

• Graph theoretic methods for system analysis and uncertainty quantification 

• Decentralized estimation 

• Design of dynamics 

2.1    Graph theoretic methods for system analysis and uncertainty 
quantification 

In order to make a system of many interacting components tractable, the system must be analyzed 
and divided into weakly connected components such that each individual component is of reasonable 
size. However the automatic detection of such components is a difficult task. Appendices B.5 
and B.6 [J14, J15] focus on the analysis of such systems using graph-theoretic techniques to obtain 
both weak connections as well as causal chains. The latter are important for predicting the flow of 
information, and therefore uncertainty propagation, through such a system. 

Similar methods were applied in reference [C3], where waveform relaxation was used to simulate 
a system with weakly connected components. This method was further extended in [J24] (see 
appendix B.l) into a unified, scalable approach to uncertainty quantification. Further uncertainty 
quantification techniques are compared in appendix B.2 

11 



2.2.   DECENTRALIZED ESTIMATION 

Another use of graph-theoretic techniques is the application of diffusion maps to detect slow vari- 
ables in a system [J22]. Once such slow variables have been found, an equation-free approach can 
be used to accelerate the simulation of the system (see [Jl, J8] and [1, 13, 15]). 

Finally, reference [J23] uses the connectivity of a network to do global filtering of noisy measure- 
ments. 

2.2 Decentralized estimation 

In anticipation of future challenges where many vehicles are collaborating in an environment with 
limited communication (or, equivalently, to extend life in power-limited wireless networks), several 
tools were developed to deal with decentralized estimation. 

• For large networks and, in particular, for networks where the connectivity is changing dy- 
namically), stochastic multiscale consensus was developed [C2]. Here each node decides at 
random whether to simply pass along a measurement received from a different node or to do 
a computation on it. The act of passing information along produces long scale connections 
that accelerate the convergence of consensus algorithms. 

• For the problem of searching for a target, appendix B.3 deals with the issue of several different 
noisy sensors having to make a decision as to whether the target has been detected based on 
the limited information they have shared up to that point. 

2.3 Design of dynamics tools 

The area of design of dynamics encompasses both the design of systems that will spontaneously 
behave in a desired way as well as simplifying computations on complex systems so the problem of 
assigning tasks becomes tractable. 

Examples of design of systems that spontaneously behave as desired are given in appendix C, where 
the self-assembly tools are described in detail. A related problem is that of targeted activation [Cl], 
where the dynamics of the system are exploited to minimize the required energy input to obtain 
global reconfigurations. 

For simplifying computations in systems with many independent actuators, a good example is the 
fast reconstruction of wavefronts for telescopes with adaptive optics (see [8] and [7] for experimental 
validation). Also, see appendix B.4, where a connection to the problem of self-localization is made. 

2.3.1    Control optimization of vehicles with obstacle avoidance 

With the goal of developing efficient methods to control vehicles with complex dynamics in en- 
vironments with obstacles, a general framework was developed for integrating the dynamics and 
optimizing the motions of mechanical systems. The resulting algorithms are superior to standard 

12 



2.3.   DESIGN OF DYNAMICS TOOLS 

methods in numerical robustness and efficiency, and can be applied to many types of vehicles such 
as simple helicopters and hovercraft. 

The general approach is based on a combination of standard optimal control techniques and classical 
search and dynamic programming methods. These methods stand on top of a robust numerical 
representation of the underlying vehicle dynamics derived using the theory of discrete mechanics. 
The main results can be summarized as: 

• structure-respecting geometric discretization of mechanical systems with symmetries, internal 
actuated shape, and nonholonomic constraints 

• discrete optimal control formulation that respects the geometric structure 

• combining the derived local optimal control techniques with global search methods in order 
to guarantee near-globally optimal solutions 

• extending the basic motion planning framework to handle more specific tasks such as time- 
varying goal state, maximizing sensor coverage, deploying multiple vehicles to maximize in- 
formation about a goal with uncertain dynamics multiple vehicles 

L3 



Chapter 3 

Personnel supported 
UTRC Personnel: Marco Arienti, Andrzej Banaszuk, Emrah Biyik (intern from Rensselaer 
Polytechnic Institute), Sergei Burlatsky, Chaohong Cai, Konda Reddy Chevva, Sorin Costiner, 
Razvan Florea, Thomas Frewen, Jong-Han Kim (intern from Stanford University), Robert LaBarre, 
George Mathew, Jose Miguel Pasini, Tuhin Sahai, Sergey Shishkin, Troy Smith, Amit Surana. 

Sikorsky personnel:    Mark Lutian. 

Academic consultants: Michael Dellnitz (Paderborn), George Karniadakis (Brown/MIT), Ioan- 
nis Kevrekidis (Princeton), Sean Meyn (UIUC), Gleb Oshanin (Universite Pierre et Marie Curie). 

University of California, Santa Barbara: Igor Mezic, Marko Budisic Bryan Eisenhower, 
Symeon Grivopoulos, Alice Hubenko, Yueheng Lan, Ryan Mohr, Gunjan Thakur. 

AIMdyn:    Caroline Cardonne, Vladimir Fonoberov, Sophie Loire. 

California Institute of Technology: Jerrold Marsden, Houman Owhadi, Nawaf Bou-Rabee, 
Philip Du Toit, Katalin Grubits, Marin Kobilarov, Sujit Nair. 

Stanford University:    Sanjay Lall, Matthew West, Jong-Han Kim, Sunhwan Lee, Laurent Lessard, 
Tzu-Chen Liang. 

Princeton University:    Ioannis Kevrekidis, Thomas Frewen. 

Yale University:    Ronald Coifman, Yoel Shkolnisky, Amit Singer. 

Plain Sight Systems:    Fred Wagner. 

14 



Chapter 4 

Publications 

4.1    Journal papers 

[Jl] M. A. Amat, M. Arienti, V. A. Fonoberov, I. G. Kevrekidis, and D. Maroudas. Coarse 
molecular-dynamics analysis of an order-to-disorder transformation of a krypton monolayer 
on graphite. J. Chem. Phys., 129:184106, 2008. 

[J2] N. Bou-Rabee and H. Owhadi. Geometric Langevin algorithm. Submitted. Preprint available 
at http://arxiv.org/abs/0712.4123, 2009. 

[J3] P. Du Toit, K. Grubits, S. Costiner, and J. Marsden. Fast generation of potentials for 
self-assembly of lattices. Submitted to Physical Review E, 2009. 

[J4] P. Du Toit, M. Kobilarov, and J. Marsden. Search with under-actuated vehicles and uncer- 
tain sensors. In preparation, 2009. 

[J5] P. Du Toit, I. Mezic, and J. E. Marsden. Coupled oscillator models with no scale separation. 
Physica D, 238:490-501, 2009. 

[J6] V. A. Fonoberov, G. Mathew, A. Hubenko, and I. Mezic. A uniform coverage search strategy. 
In preparation, 2009. 

[J7] V. A. Fonoberov, I. Mezic, and A. Banaszuk. Spatial and orientational ordering of interacting 
agents on corrugated substrates: Order-N calculation of phase diagrams for submonolayers 
of Kr, 4He, and CO on graphite. In preparation, 2009. 

[J8] W. Gear, D. Givon, and I. G. Kevrekidis. Constrained dynamics lifting. In preparation, 
2009. 

[J9] S. Grivopoulos. No crystallization to honeycomb or Kagome in free space. J. Phys. A: Math. 
Theor., 42:115212, 2009. 

[J10] S. Grivopoulos. Some extensions of the Cucker-Smale flocking model. In preparation, 2009. 

15 



4.2.   CONFERENCE PAPERS 

[Jll] S. Grivopoulos, G. Matthew, G. Thakur, M. Budisic, and I. Mezic. Tools for design of 
potentials for particle self-assembly. Submitted to SIAM J. Appl. Math., 2009. 

[J12] K. Grubits. Lattice quality assessment tools and their applications. In preparation, 2009. 

[J13] A. Hubenko, V. A. Fonoberov, G. Mathew, and I. Mezic. Spectral multi-scale search. In 
preparation, 2009. 

[J14] A. Hubenko and I. Mezic. Graph decomposition for biological networks. In preparation, 
2008. 

[J15] Y. Lan and I. Mezic. Unfolding cell regulation network anatomy through graph decomposi- 
tion. In preparation, 2008. 

[J16] Y. Lan and I. Mezic. Linearization at large of nonlinear systems. In preparation, 2009. 

[J17] S. P. Meyn and G. Mathew. Learning macroscopic dynamics for optimal prediction. In 
preparation, 2009. 

[J18] R. M. Mohr and I. Mezic. Designing search dynamics robust under sensor uncertainty: 
robust ergodic search algorithms. In preparation. UCSB confidential preprint, 2008. 

[J19] S. Nair and J. E. Marsden. Collision avoidance and surveillance with autonomous vehicles. 
In preparation, 2009. 

[J20J S. Nair, S. Ober-Blobaum, and J. E. Marsden. The Jacobi-Maupertuis principle in varia- 
tional integrators. In preparation, 2009. 

[J21] T. Sahai, V. A. Fonoberov, and S. Loire. Uncertainty as stabilizer of the head-tail ordered 
phase in carbon monoxide monolayers on graphite. To appear in Phys. Rev. B, 2009. 

[.122] A. Singer, R. Erban, I. G. Kevrekidis, and R. R. Coifman. Detecting intrinsic slow variables 
in stochastic dynamical systems by anisotropic diffusion maps. Submitted to Proc. Nat. 
Acad. Sci., 2009. 

[J23] A. Singer, Y. Shkolnisky, and B. Nadler. Diffusion interpretation of nonlocal neighborhood 
filters for signal denoising. SIAM J. Imaging Sci., 2:118-139, 2009. 

[J24] A. Surana and A. Banaszuk. Scalable uncertainty quantification in complex dynamic net- 
works. In preparation, 2009. 

4.2     Conference papers 

[Cl] B. Eisenhower and I. Mezic. Actuation requirements in high-dimensional oscillator systems. 
In Proceedings of the American Control Conference, Seattle, 2008. 

16 



4.3.   INVITED SESSIONS 

[C2] J.-H. Kim, M. West, S. Lall, E. Scholte, and A. Banaszuk. Stochastic multiscale approaches 
to consensus problems. In Proceedings of the 4 7th IEEE Conference on Decision and Control, 
pages 5551-5557, Cancun, Mexico, 2008. 

[C3] G. Mathew, S. P. Meyn, and A. Banaszuk. Waveform relaxation and graph decomposition. 
In Proceedings of the 18th International Symposium on Mathematical Theory of Networks 
and Systems, Blacksburg, Virginia, 2008. 

[C4] S. P. Meyn and G. Mathew. Shannon meets Bellman: Feature based Markovian models for 
detection and optimization. In Proceedings of the 47th IEEE Conference on Decision and 
Control, pages 5558-5564, Cancun, Mexico, 2008. 

[C5] S. Nair, K. Reddy, H. Owhadi, and J. Marsden. Multitarget detection using Bayesian learn- 
ing. Submitted to the 48th IEEE Conference on Decision and Control, 2009. 

4.3    Invited sessions 

The following invited sessions and minisymposia were organized with AFOSR support and contain 
AFOSR-funded papers: 

• SIAM Conference on Applications of Dynamical Systems 2007.  Minisymposia: Uncertainty 
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Spectral Multi-Scale Search 

Alice Hubenko*, Vladimir Fonoberov*, George Matthew*, and Igor Mezic§ 

January 22, 2009 

Abstract 

We present a search algorithm for single or multiple searchers that finds a stationary target 

in presence of uncertainty in sensor radius. The considered uncertainty condition simulate the 

influence of the changing environment that occur in practical applications. Uncertainty in sensor 

radius sets this problem apart from the usual search and surveillance problem setting. Given PD 

and PFA, the algorithm minimizes search time to find the target with probability of detection at 

least PQ and probability of false alarm at most PFA- We prove that the algorithm discovers the 

target with the desired efficiency. Computer simulations show that our algorithm has excellent 

performance when compared with Billiard search which is a type of random search. Form the 

design of the algorithm, it follows that the search time is inversely proportional to the number of 

searchers participating. 

1    Introduction 

Study of search problems as formalized mathematical models started more than 60 years ago, for a 

survey see [1]. During World War II mathematical theory was applied for the first time to locate Ger- 

man submarine threats in the Atlantic. Since its first applications search theory developed somewhat 

detached from practical applications. Our theory stands out from this trend because it uses realistic 

dynamics to model movement of searchers and in addition it is, apparently, the first model in literature 

that incorporates uncertainty in sensor radius that is a significant factor that affects search missions in 

real life. An extensively studied setting that is similar to ours, see [2], [6], is when a target is located 
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'Department of Mechanical Engineering, University of California, Santa Barbara, CA 
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somewhere in a region that is partitioned into a number of cells. The probability distribution for 

the targets position (i.e., the probability that the target is in any particular cell), and the detection 

function of our sensor (i.e., the probability of detection versus effort spent searching a cell, given that 

the target resides in that cell) are given. The goal is to maximize the probability of detection of 

the target, assumed that amount of total effort available for the search is fixed. A major drawback 

of this problem is its discrete setup, that would require perfectly functioning sensors. Besides, the 

theoretical solutions given to this problem assume that the search effort is infinitely divisible between 

cells and result in trajectories that would be physically hard to follow. Recently, several application 

oriented algorithms have been developed for similar problems. [8] presents a receding-horizon cooper- 

ative search algorithm that jointly optimizes routes and sensor orientations for a team of autonomous 

agents searching for a mobile target. The algorithm in [8] reduces the continuous search problem 

to an optimization on a finite graph. In [11] a framework for cooperative search using UAV swarms 

is described. The algorithm in [11] sweeps the area with UAVs Hying side-by-side in straight lines. 

Unfortunately, both algorithms of [8] and [11] do not take into account changes in the environment 

that may occur. The changing environment (such as wind or fog) may alter the effective radius of 

the sensor. This would lead to leaving parts of the area completely uncovered and would reduce the 

performance of the search algorithm. We consider the search problem where a stationary target is 

placed in an area A that contains foliage F that the sensors can not penetrate. We consider the a 

priori distribution of the location of the target known (if it is not given we assume it to be the uniform 

distribution). The searchers move through the area A in continuous motion and use a circular sensor 

to scan the area. Our goal is to minimize search time in the presence of uncertainty in sensor radius 

while keeping the probability of detection of our algorithm above threshold PD and probability of 

false alarm of the algorithm below threshold PFA- In our Spectral Multi Scale (SMS) algorithm we 

utilize the Neyman-Pearson lemma, that is central in binary hypothesis testing theory, to design the 

decision making rule, that allows the searchers to quickly locate target suspects as they cover the area. 

The algorithm puts some of the searchers in rechecking mode to take some additional measurements 

at target suspects positions. This strategy ensures that the probability of false alarm is within the 

required threshold. We use the H~l coverage strategy described in Section 3 to cover the area A. 

We tested the SMS algorithm with 50 searchers for different a-priori target distributions, each time 

making 5000 independent simulations. Our computer simulations show that besides demonstrating 

superior robustness in presence of uncertainty the SMS search vastly outperforms Billiard search when 

searchers start out in random directions and move in straight lines, reflecting when they reach the 

border. The median absolute deviation of SMS search time is 1.5 times smaller than that of Billiard 
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search; median search time of SMS search is 1.6 times smaller than that of Billiard search; median 

detection time of SMS search 1.7 times smaller than that of Billiard search. Another important ad- 

vantage of the SMS algorithm its effective use of assets: the search time is inversely proportional to 

the number of searchers. So, for example, if we have two searchers instead of one, the expected search 

time is half of what we would expect with one searcher. 

2    The decision making strategy 

Let us consider the problem where N searchers are moving inside a search area A in R2 with the 

objective to detect a point-like target. We assume that each searcher has a circular sensor with radius 

at most. S. We will consider various scenarios for uncertainty in sensor radius. The target can be either 

in the search area A or in the foliage F where the searcher can not detect it. We assume that with 

probability a the target is in F and with probability 1 — a the target is in S = A \ F. We assume 

that the probability distribution of location of the target is known. The probability of detection for 

a single measurement, s^, is the probability of getting a reading 1 on our sensor, assuming that the 

target is within the sensing area. The probability of false alarm for a single measurement, sja, is the 

probability of getting a reading 1, assuming that the target is not within the sensing area. Note, that 

for any sensor s^ > s/a- The studies on real-life sensors indicate that as s^ increases, so does sja. 

We denote by PMD the probability of declaring that the target is in foliage, assuming that the 

target is in S. We denote by PFA the probability of detecting the target in S, assuming that the 

target is not in that location. In the simulation setting it translates to the following, as seen in [5]. 

Denote the number of realizations of the whole search scenario NR, the number of times the algorithm 

declared rinding target and the target was not there Nf A, the number of times target was detectable 

(in S) No, and the number of times the target was detectable but the algorithm declared that it is in 

the foliage NMD- 

PFA =   lim   ——- 
NR-+OO   iVR 

PMD =    lim   -—- 
NR-KX>   ftp 

During the course of the algorithm the searcher moves in S, taking measurements with frequency 

/. For easier description of our decision making procedure, let us first assume that the searcher moves 

around 5 in steps. In each step the searcher is allowed to make several independent measurements with 

his sensor. Assume that at each step the searcher takes no independent measurements, and declares 
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detection of target if at least 70 + 1 of the measurements are Is. The Neyman-Pearson criterion (see 

[4]) allows us to find no and 70 that maximize the probability of detection while the probability of 

false alarm stays under some prescribed bound (PFA)- The Neyman-Pearson lemma (see [4]) implies 

that the optimal TIQ and 70 are the solutions to the following optimization problem. 

PFA = P[k>l0} + pP{k = l0} =    £    (^)4a(l-W*~* + p(^)*/°.(l-*/a) (1) 
k=-W+l 

i-PMD = P[k>-ro]+pP[k = jo]=  f;  (^ykAi-sd)n"-k + P(^)s}°(i-sdr-^    (2) 

We first find minimal 70 satisfying (1) when p = 0. Because at this point no is unknown, 70 = 7o(no) 

is a function of no. Next, from the equation (1) we find p = p(no). Finally, we substitute 7o(no) and 

p(no) into (2) and find the minimal no for which the equation still holds. Taking no measurements 

at each location guarantees that probability of missed detection of the algorithm will be less or equal 

than PMD it does not guarantee however that the probability of false alarm of the algorithm is less 

or equal than PFA- Taking no measurements will be a preliminary criteria in our decision making 

algorithm: if at least 70 + 1 readings are Is the searcher will assume that there is a target suspect 

at that location. To achieve probability of false alarm less or equal than PFA the searchers will take 

additional measurements. 

We denote by Tstop the stopping time of the algorithm. The probability of false alarm for one step 

is the probability of detecting the target in S when the target is not in that location. Denoting the 

total number of steps taken by N, we can express the upper bound p/a for probability of false alarm 

for each step as follows. 

(\-Pfa)N = \-PFA (3) 

Prom equation (3) we get 

Pfa = 1 - (1 - PFA)
7
^ (4) 

Pfa provides an upper bound for the probability of false alarm for each step needed for the algorithm 

to achieve probability of false alarm at most PFA- The probability of missed detection for one step 

is the probability of declaring that the target is in foliage when the target is 5. Denoting pmd upper 

bound for probability of missed detection for each step, we get 
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tin 

Pmd = l-(l-PMD)m^ (5) 

Pmd provides an upper bound for the probability of missed detection for each step. Using the Neyman- 

Pearson criterion again, we obtain the constants 7ij and 71, that will be used by the algorithm in making 

the final decision, ni will be the upper bound on the number of measurements that the searcher may 

take at one step. From Neyman-Pearson lemma (see [4]) we have 

Pfa = P[k> 7l] +pP[k = 7l] =     £     (7)S/«(1-S/a)"I"fc + />("1
1)S/a(1-S/a)"1"'1 (6) 

fc=71+l 

1 " Pmd = P[k > 71] + pP[k = 7l] 
fc=7l + l 

*)«?(i-«„)"»-*  (7) 

Summary of parameters and variables 
N number of searchers 

Sd probability of detection for a single measurement 

Sfa probability of false alarm for a single measurement 

Pmd probability of missed detection for one step 

Pfa probability of false alarm for one step 

PMD probability of missed detection of the algorithm 

PFA probability of false alarm of the algorithm 

Tstop stopping time of the algorithm 

/ frequency of the sensor measurements 

Q probability for target to be in foliage (0 < a < 1) 

S upper bound of the radius of the sensor 

A the search area 

F foliage 

To find n\, we find minimal 71 = 7(ni) satisfying (6) when p = 0. Next, from the equation (7) 

we find p = p{n\). Finally, we substitute 71 and p{n\) into (7) and find the minimal n\ for which the 

inequality still holds. 

The decision making algorithm 
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Figure 1: ROC curves 

1. At each step the searcher takes no measurements. If the number of Is is less or equal than 70, 

the searcher decides that the target is not within the sensing area, and makes another step. 

2. If the number of Is is greater than 70, the searcher starts making additional measurements, 

stopping after at most n\ measurements. After each additional measurement the searcher checks 

whether or not the ratio of Is is smaller than (71 + l)/n\. If yes, the searcher decides that the 

target is not within the sensing area and makes the next step. If no, the searcher makes an 

additional measurement. If the searcher has made n\ measurements and the ratio of Is is 

greater than (71 + \)/n\, he declares that the target is detected. 

3. If no detection occurs until time Tstop, the searcher stops and declares that the target is in the 

foliage. 

In figure 1 we present performance plots of our decision making algorithm. Fixing constants no, 

«d and Sfa we can compute all corresponding pairs PFA> PMD using equations (1) and (2). For fixed 

8d and Sfa each color represents a constant no, shown on the picture. The pairs sj , s^a that we use 

are characteristics of real-life sensors computed in [7]. 

An estimate for the stopping time of the algorithm can be obtained as follows. 

I stop 
fS2N    W (M 
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Figure 2: Search area 5 with foliage (grey), prior (red) and 5000 random targets 

3    H~l coverage 

In SMS search we use design of motion described in [3] for n searchers to achieve optimal coverage 

of the prescribed domain. The heart of the coverage method is a Lyapunov-based control design 

utilizing an H~x Sobolev space cost function. The method in [3] allows to design optimal dynamics 

for searchers with the goal to cover any part of a given area S. For instance, if the location of the 

target is described by a probability distribution V, the part of S where V > 0 has to be covered. We 

tested the motion design, included in SMS search, for 50 searchers and area 5 shown on figure 2, with 

foliage is shown in grey. We tested the problem in case when the prior probability distribution of 

the target V is uniform and in case when the location of the target corresponds to prior distribution 

shown in red (higher probability corresponds to darker shade in figure 2). As illustrated in figure 3 

and 5, the H~l coverage motion design of SMS search guarantees superior coverage according to prior 

of the target in both uniform and non-uniform cases. Note that searchers move with realistic second 

order dynamics. As seen in figure 5 the motion of the searchers depends on the probability of the 

target being in a certain part of the area: the high-probability regions are always covered better. By 

covering S according to a probability distribution V H~l coverage saves time by not going to regions 

\vhere the probability distribution of the target is 0. There is a potential drawback in H~l coverage 

if V contains several high peaks. In that case the searchers will cover the regions close to peaks much 

more than needed to guarantee the desired precision threshold for SMS search. A clever way to avoid 

over-covering the area is to use log(T') instead of V. Figure 6 illustrates the reduction of peaks using 

logarithm by showing two different cross-sections of V and log(P). Figure 7 shows the area that has 
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Figure 3: The area S covered by searchers shown in blue (uniform prior) 

5000 targets (3629 targets not in foliage) 

0      200     400     600     800     1000     1200     1400 

Figure 4: Typical coverage of logCP) > 0 by 50 searchers 

Figure 5: Typical coverage of V > 0 by 50 searchers 
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Figure 6: Reduction of high peaks in V (dashed), by replacing it with log(P) (solid line) 
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Figure 7: Search area S with of logCP) > 0 shown in red 

Figure 8: Typical coverage of log(P) > 0 by 50 searchers 
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to be covered after taking logarithm of the prior. As illustrated in figure 8, after reducing high peaks 

we avoid visiting certain areas too many times and the coverage of the desired parts of S becomes 

more even. 

4    Spectral Multi Scale Search (SMS search) 

Assume that we have n searchers and an area A where a single target is located. A may contain 

foliage F which the sensors can not penetrate. If the target is in the foliage it is undetectable for 

the searchers. We use a decision making strategy based on the Neyman-Pearson lemma, that was 

described in Section 2, and compute constants no, 70, n\ and 71 for given PFA , PMD, sja and sj. 

We use a measurement history map to keep track of target suspects: we divide the area S into small 

enough cells, and keep record of sensor measurements for each cell. At the beginning of the algorithm 

the belief map and the list of target suspects have no records. There will be two main modes for each 

searcher: explore and recheck. After deployment, all searchers start out in explore mode. 

1. In explore mode the searchers cover the search area using H~l coverage dynamics and update 

the measurement history map. When the number of measurements at a location becomes no we 

check if the number of detections at the location exceeds 70: if yes, the location is added to the 

list of target suspects. Starting from the most likely targets (locations that have the highest ratio 

of positive measurements), each target suspect is assigned to an available neighboring searcher 

in explore mode. The searcher that has been assigned a target suspect changes his mode to 

rechecking, and moves to the location of the target on a straight line with maximum speed. 

2. In recheck mode, the searcher has to perform no measurements flying above a target suspect posi- 

tion. After finishing the measurements, the searcher switches to explore mode. After rechecking, 

if the ratio of detections to the number of measurements exceeds ^L, we keep the location in the 

list of target suspects, otherwise we remove it from the list. 

3. When the number of measurements at a location becomes n\, we check if the number of detections 

at the location exceeds 71: if yes, we declare that the target is found and stop the search. 

4. If the algorithm reaches stopping time Tst0p, without declaring a detection, the algorithm declares 

that the target is in the foliage. 

We tested the SMS search algorithm for 50 searchers on a rectangular area A shown in figure 2. 

Foliage is shown in dark grey and the prior distribution of the target is shown in red. Each searcher 

ID 
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Figure 9: Histograms of SMS search for non-uniform prior and log-non-uniform prior 
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Figure 11: Proof that the algorithm stays within the desired probability thresholds 

has a fixed uncertain sensor range that changes periodically with a fixed period. The probabilities of 

detection and false alarm for a single sensor are Sd — 0.8 and sja — 0.2 respectively. The goal is to 

minimize search time while satisfying requirements Po.group > 0.9 and PFA,gr<mp < 0.1. In figure 11 

we show that Po.group and PFA,gr<mp converges above and below the required limits, respectively, as 

the number of realizations of SMS search increases. We tested the SMS algorithm in 5000 experiments 

with randomly generated targets for uniform prior, shown in figure 4, and in case of non-uniform prior, 

shown in figure 2. In figure 9 we compare histograms of 5000 experiments of SMS search performed 

on S with non-uniform prior shown in figure 2 and with log-non-uniform prior shown in figure 7. The 

search and detection time statistics, also presented in figure 9, show that the median search time of 

SMS applied to non-uniform prior is 15% bigger than in case of log-non-uniform prior and the median 

absolute deviation of SMS detection time applied to non-uniform prior is 40% bigger than in case of 

log-non-uniform prior. The histogram of SMS search performed on S with uniform prior is in figure 10. 

In figure 12 the median of the search time is shown as a function of the number of realizations of SMS 

search. Using H~l coverage on non-uniform prior (see figures 2, 5) results in a median search time as 

compared with H~l coverage for uniform prior (see figure 3). Taking logarithm of the non-uniform 

prior (see figures 8, 7, 6) helps to reduce the median search time even further. 

The resulting median detection time was 203 sec, median search time was 400 sec, median absolute 

deviation (MAD) was 229 sec. 

12 

32 



A.l.   SPECTRAL MULTI-SCALE SEARCH 

1400 

1200 

| 1000 

1 
S    800 
xz 

I    600 
c 
.2 
I    400 

200 

0 

Non-uniform prior 
Log non-uniform prior 
Uniform prior 

<£Z^ 
10 10 10 

Number of realizations 

Figure 12: Median search time of SMS algorithm 

5    Conclusions 

In this paper we explore performance of search algorithms in presence of uncertainty in sensor radius. 

The introduced SMS search algorithm demonstrates excellent performance in presence of uncertainty 

as shown in the table below. We designed the SMS algorithm maximizing its effective use of assets: 

the search time is inversely proportional to the number of searchers. 

Comparison of SMS search under different conditions 

Algorithm Median Detection Time Median Search Time Median Absolute Deviation 

SMS (no uncertainty) 169 sec :S(« sec 226 sec 

SMS 203 sec 400 sec 229 sec 

Billiard search 587 sec 1190 sec 534 sec 

In the above table we compare statistics for SMS search without uncertainty, SMS search with 

periodically changing uncertain sensor radius, and Billiard search when searchers start out in ran- 

dom directions and move in straight lines, reflecting when they reach the border. We ran computer 

simulations of SMS search conducting 5000 independent experiments for each scenario. Computer 

simulations show that Median Detection Time, Median Search Time and Median Absolute Deviation 

of SMS search in presence of uncertainty are very close to the corresponding SMS search data without 

uncertainty in sensor radius. 
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The median absolute deviation of SMS search time is 1.5 times smaller than that of Billiard search; 

median search time of SMS search is 1.6 times smaller than that of Billiard search; median detection 

time of SMS search 1.7 times smaller than that of Billiard search. 
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1    Overview 

Achieving the Surveillance Milestone requires the design of trajectories for aerial vehicles with 
uncertain sensors moving over a large complex terrain so that the time to locate a stationary target 
on the ground is significantly less than the time required by straightforward lawnmower trajectories. 
Because the individual sensor measurements include non-zero probabilities for both missed detection 
and false alarm, and the sensor footprint size is uncertain; the final statement provided by the search 
algorithm as to the location of the target cannot be provided with absolute certainty. Rather, the 
final declaration of the target location must meet confidence thresholds specified a priori for the 
probability that the stated target location is correct. In this report, we present the Dynamic 
Greedy Search (DyGS) algorithm for dynamically generating vehicle trajectories that achieves 
this Surveillance Milestone while ensuring that the method is robust to sensor failure, and is easily 
implemented for vehicles with complex dynamics and for regions with arbitrary foliage distributions. 
The DyGS algorithm achieves a 1.9 times speed-up over lawnmower methods. 

Two essential components of the DyGS search strategy presented here are a dynamic trajectory 
generation algorithm and a precise sensor decision algorithm. 

The trajectory generation algorithm provides dynamically updated trajectories that seek to 
maximize the probability of finding the target while ensuring consistency with the modeled dynam- 
ics and limited control authority of the vehicles. A hallmark of the DyGS search strategy is that 
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it requires no modification to handle vehicles with under-actuated or complex dynamics. Further- 
more, the algorithm can be applied to real vehicles in which an accurate model of the dynamics is 
not known, and only recorded maneuvers of the real flight dynamics are provided. 

The sensor decision algorithm takes as its input the history of measurements obtained during 
the search up to the current time. Given these raw inputs, the decision algorithm must decide when 
the search may be terminated and a declaration of the target location can be provided that satisfies 
the specified thresholds of ceorrectness. A classical approach to dealing with measurement data is 
to sample the incoming measurements onto a spatial grid, and then to calculate the probability for 
the target to be located at each cell in the grid. Here, we use a grid-free approach that instead stores 
the measurements as raw atomistic data so that inferences of the target location are made using 
the raw measurements in their most precise form. This approach has several advantages in that it 
removes approximation errors incurred by gridding, maximizes the use of information received in 
an information-theoretic sense, and also forgoes the need to impose a grid and a consequent scaling 
on the search domain that is not intrinsic to the problem. In practice, imposition of a grid can lead 
to ambiguity and ill-conditioned interpretation of the probabilities in each cell. 

2    The Surveillance Milestone 

We now provide a precise description of the Surveillance Milestone problem. In order to assess the 
efficiency of various search algorithms we have developed a specific test problem against which all 
the methods may be benchmarked. However, an important point is that the DyGS search algo- 
rithm is generally and easily applicable to arbitrary search domains and foliage distributions, and 
the specific domain used here is simply an example case. In particular, the search domain need not 
be a simply connected region. 

The Search Domain: 

1. The search domain, D, is a golden rectangle with an area of 1 square kilometer. 

2. Regions of the search domain are designated as foliage as indicated in Figure 1. 

3. A probability density / with support on D provides the probability density for finding the 
target at each location in the search domain. Since there is exactly one target to be found, 
JDfdA = 1. Target locations are sampled from this probability density function. 

The Vehicle Model: 

1. Fifty vehicles, each equipped with a single sensor, are available to search the domain. 

2. The vehicles are initially deployed at rest on a 5 by 10 grid with 5m spacing in the lower left 
corner of the domain. 

3. The dynamics of the search vehicles are modeled as a simple double integrator: 

x = u (1) 

where x is the location of the vehicle in the plane, and u is a control force that must be chosen 
subject to the constraints that the maximum allowed magnitude of the velocity vector is 10 
m/s, and the maximum allowed magnitude of the acceleration vector is 5 m/s2. 
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Figure  1:   The search domain shown here is used to benchmark search algorithms in the Surveillance 
Milestone. Green areas represent foliage in which the target can hide without being seen by the sensors. 

The Sensor Model: 

1. Each sensor takes a measurement every 0.5 seconds. 

2. During a measurement, the area scanned by the sensor is circular and lies directly below the 
vehicle. The radius of the area scanned by the sensor changes every 50 seconds and is chosen 
uniformly from the interval 5m to 10m. 

3. If the target is outside the foliage and inside the small circular area scanned by the sensor, 
then the sensor reports with probability 0.8 that the target has been seen. In other words, 
the sensor probability of detection, pd, is 0.8. 

4. If the scanned area includes regions without foliage and the target is not in these open regions, 
then with probability 0.2 the sensor reports seeing the target, i.e. the sensor probability of 
false alarm, pfa, is 0.2. 

5. For all other cases, the sensor reports that the target was not seen. 

6. When the sensor reports seeing the target, the exact location of the target is provided. If 
the sensor provides a false alarm, a location inside the open region inside the scanned area 
is randomly generated and returned. This location is stored by the sensor measurement 
generator and returned during future false alarms for cases when the scanned area includes 
this location. 

7. With each measurement, the sensor also provides the exact location of the vehicle. 

Information Available to the the Search Algorithm: 

1. The search algorithm is provided with the exact geometry of the search domain and foliage, 
the probability distribution of the target locations, and the lower and upper bounds for the 
radius of the circular area scanned by the sensor. 

2. At each timestep (every 0.5 seconds), the algorithm is provided with measurements from each 
of the sensors. The measurement data includes the precise location of the sensor, and one of 
the following statements: 

(a) No target was seen, 
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(b) The target was seen at the location (xm,ym). 

Information Provided by the Search Algorithm: 

1. At each time step, the search algorithm must provide trajectories along which the sensors 
must move. The trajectories must be consistent with the specified vehicle dynamics. 

2. The algorithm must terminate the search and provide a final declaration of the target location. 
This declaration must be one of the following: 

(a) The target is in the foliage, 

(b) The target is in the open area and is located at the position (x,i,yd)- 

Benchmarking Search Algorithms: 

1. NT represents the number of target locations that are sampled from the target probability 
density. We choose NT = 5000. 

2. For each target location, the search algorithm is run until the search is terminated and a 
declaration of the target location is made. The time taken to perform the search is recorded. 

3. After all NT searches have been conducted, the correctness of the declarations is checked. 
Let 

ND :=     (Number of detectable targets) The number of target locations in the 
open region, 

NFA      :=    (Number of false alarms) The number of declarations stating that the 
target was at a specific point in the open region that were not correct, 

NMD    :=     (Number of missed detections) The number of declarations stating that 
the target was in the foliage when the target was in fact in the open 
region. 

Then compute 

PFA     '•—    JZY     (Algorithm probabilty of false alarm), 

PMD    :=    T$T    (Algorithm probabilty of missed detection). 

The algorithm is considered sufficiently correct if PMD and PFA are both less than 0.1. 

4. If the algorithm is sufficiently correct, then the median search time of all the NT search times 
is computed. 

5. Sufficiently correct search algorithms are ranked by comparing their median search times. 

The Surveillance Milestone Problem Statement: 
Design a search algorithm so that the median search time computed using the methodology de- 
scribed above is less than the median search time computed for a search algorithm that uses 
systematic lawnmower type trajectories. 
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3    The Dynamic Greedy Search Algorithm 

As mentioned in the overview, the Dynamic Greedy Search (DyGS) strategy comprises two al- 
gorithms: a grid-free decision algorithm for storing measurement data and deciding when a final 
declaration as to the target location can be made, and a trajectory generation algorithm for dy- 
namically generating trajectories that are consistent with the vehicle dynamics and maximize the 
probability of finding the target. 

3.1    The Grid-Free Decision Algorithm 

The grid-free approach provides a method for storing and interpreting the measurement data in 
a manner that is computationally efficient while maximizing the utility of the raw measurements. 
The central data structure maintained by this algorithm is a list of suspect locations. Whenever 
a sensor reports that the target has been seen at a particular location, and this location has not 
previously been identified, this new location is added to the list of suspect locations. Associated 
with each suspect location in the list is a repository for all measurements that have ever been taken 
at locations that are less than the maximum possible sensor radius away from the suspect target 
location. Hence, along with the suspect location, we store every measurement that could possibly 
have included this location in its scanning area. With all the locally relevant measurements in 
hand, we can conveniently compute the local probability that the target is located at each suspect 
location in the list. For the case when the algorithm is told a priori that there is only one target, all 
measurements are globally dependent - a null measurement in one location increases the probability 
for positive measurements elsewhere in the domain. For this case, it is conceivable that we could use 
all the global measurement data to compute the probability that the target is located at each suspect 
location exactly; however, this procedure would require computationally expensive integrations and 
summations to compute the conditional probabilities. The approach presented here computes only 
a local probability but in a manner that uses the data precisely. Furthermore, the probabilities 
become precise for the case when the number of targets is not known and measurements separated 
by more than twice the maximum sensor radius are independent. 

The probability that the target is located at a suspect location is updated whenever a local 
measurement is received using a Bayesian update scheme.  Let {SJ}^ denote the current set of 

NS suspect locations. Let {TI^J^J denote all the NM measurements local to Sj that have been 
received up to the current time. Finally, let 7} denote the event that the target is in fact located at 
Sj. When a new suspect location is identified and added to the suspect list, the probability that the 
target is at this location is initialized to the value of the probability density function for the target 
distribution at this point. Then, the probability is updated using all measurements previously 
recorded. Since we are using the local approximation (that distant measurements are independent) 
we need only use nearby measurements to perform this calculation. As the search proceeds and 
more local measurements are received, the probability is further updated. The formula for updating 
the probability associated with suspect location Sj given a new measurement rn?k+l is: 
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PfT,lmM-= P(m\\ T3 ) • f(Sj)  k = Q 
3       l'~    P(m{+1 | 2) ) • f(sj) + P(m\ | ~ Tj ) • (1 - f(Sj)) 

P(•Li \Tj)-P{Tj\ m{) 
P( Tj | m>      ) := :     *+1 '   J        J       *'  fe = l,-..,NM-l. 

PK+i I 7) ) • P( T, | mi) 4- P(mi+1 | ~ T, ) • P( ~ 2} | m{) 

Remark 1: 
The uncertainties introduced by the sensor probabilities for false alarm and missed detections, as 
well as the uncertainty with respect to the sensor radius are accounted for in the right hand side 
in the following way: 
If the measurement mk+l did not observe the target, then 

P( mk+1 | Tj) — (1 — pa) • P(vehicle was in range of Sj) + (1 - Pfa) • P(vehicle was out of range of Sj). 

If the measurement m3
k+l did observe the target, then 

P( mk+l | Tj) = pd • P(vehicle was in range of Sj) + pfa • P(vehicle was out of range of Sj). 

The probability that the vehicle was in or out of range of the suspect location is determined 
by the specified uncertainty in the sensor radius. For the specified range of values for the sensor 
radius, and denoting the vehicle position during measurement m], as a^, we have rj. := ||x£ — Sj\\, 

P(vehicle was in range of Sj) 

and 

1 if r>k < 5 
2-0.2r{     if 5 < r^ < 10   , (2) 
0 if rj > 10 

P(vehicle was out of range of Sj) = 1 - P(vehicle was in range of Sj). (3) 

Making the assumption that measurements separated by more than twice the maximum sensor 
radius are uncorrelated (which is equivalent to assuming the number of targets is unknown) implies 
that we only need to consider measurements that are nearby the suspect location when performing 
the probability update. 

Remark 2: 
Notice that a separate probability space is assigned locally to each suspect location, and that each 
probability space is partitioned into only two possible events: the target is at Sj (denoted Tj) or 
the target is not at Sj (denoted ~ Tj). Since all the probabilities are computed locally, there is 
no requirement that the sum of all the probabilities at all the suspect locations is unity. In other 
words, we should not expect ^7=1 P(^) I mfc) = 1- What is guaranteed by construction is that 

P(T;|mi) + P(~7}|mi) = l. 

6 
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These local probabilities provide a sense for the most likely target locations based on local 
measurements only. 

At every timestep, the data structure described above provides a ranked list of the most likely 
locations where the target is hiding given the measurement history. What remains, is for the al- 
gorithm to determine when a target is located at a specific suspect location with sufficiently high 
probability that the search can be terminated and a declaration of the target location can be made. 
The algorithm must also be able to determine with sufficient confidence of correctness that the 
target is in the foliage. To effect these actions, we introduce three parameters: 
MinimumNumberOfMeasurementsToCheck, MinimumNumberOfMeasurementsToDeclare, and Maximum- 
SearchTime that we will now proceed to describe. 

Suspect Checking: 
The default behavior of the search vehicles is to browse the search domain and to gather measure- 
ments in regions where the target is most likely to be found. (More on how these search trajectories 
are generated is provided in Section 3.2). As the vehicles browse the domain, a list of suspect lo- 
cations and the local probability that the target is in fact at these locations is generated. If the 
local probability that the target is located at a particular suspect location rises above 0.5, and the 
number of measurements used to compute this probability is greater than or equal to Minimum- 
NumberOfMeasurementsToCheck, then the algorithm will command the most nearby search vehicle 
to fly directly to the suspect location to gather more measurements to check the status of the sus- 
pect. During this checking process, a count of the number of certain measurements (measurements 
obtained while the sensor is less than 5m away from the suspect location) is kept. This requirement 
effectively removes uncertainty due to the variable sensor radius. When the number of certain mea- 
surements reaches MinimumNumberOfMeasurementsToDeclare, the algorithm has sufficient data to 
determine the status of the suspect location. If more than half of the certain measurements indicate 
that the target is present, then the algorithm can terminate the search and declare that the target 
is located at the suspect location. Otherwise, the suspect location is flagged as checked, the search 
vehicle resumes browsing, and the search continues. 

Search Termination: 
The search algorithm proceeds with sensors simultaneously browsing and checking suspect loca- 
tions. The longer the search continues without uncovering the location of the target, the greater 
the probability that the target is located in the foliage. When the search time reaches Maximum- 
SearchTime, the search is terminated and a declaration is made that the target is in the foliage. 
Choosing larger values of MaximumSearchTime will provide greater confidence in the correctness of 
this declaration. 

Choosing Values for the Parameters: 
In short, the values of MinimumNumberOfMeasurementsToCheck, MinimumNumberOfMeasurementsToDe- 
clare, and MaximumSearchTime are chosen so as to minimize the median search time. In this way, 
freedom in the choice of the parameter values allows the search algorithm to be optimized for the 
specific search problem at hand. 

In practice, MinimumNumberOfMeasurernentsToCheck is chosen from the nominal set of values 
{2,3,4,5}, and then a simple search is performed to find the values of the remaining two parameters 
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so that the search time is minimized. 
It should be noted that for a given sensor p^ and pfa, the Neyman-Pearson Lemma provides 

a minimum number of measurements that are required to test the hypothesis that the suspect is 
indeed the target, and the number of positive measurements that are required in order to declare 
that the suspect is indeed the target with sufficient correctness. These theoretical results are 
helpful in guiding the choice of the parameters, however, in practice these choices tend to be too 
conservative. The freedom to choose and adjust the parameters allows the algorithm to exploit 
structure in the given problem. Inhomogeneous structure arises, for example, from the uneven 
distribution of foliage, the shape of the target probability distribution, the geometry of the domain, 
and the concentrated deployment location of the vehicles. All these factors introduce non-trivial 
effects that are not accounted for in a straightforward application of the Neyman-Pearson lemma 
that assumes a homogeneous structure and distribution of events. 

Finding optimal values of the remaining two parameters, MinimumNumberOfMeasurementsToDe- 
clare and MaximumSearchTime, proceeds very quickly because of the relatively simple functional 
dependence of the search time on the parameters. We choose the parameters as low as possible to 
decrease the search time, subject to the following constraints: 

Cl. Decreasing the stopping time increases PUD (The algorithm is too hasty to declare that the 
target is in the foliage). 

C2. Decreasing MinimumNumMeasurements increases PFA (The algorithm is too hasty to declare 
that the target is located at a suspect location). 

In practice, we sequentially decrease these two parameters as much as possible without violating 
the specified PFA and PUD- This is a simple bisection search that requires perhaps 5 to 10 runs 
on each parameter. Each run (which includes 5000 searches) takes 2 to 4 minutes on a cluster at 
Caltech. 

The main features of the sensor decision algorithm are summarized as follows: 

1. No grid is required. The original problem has no inherent grid and we do not impose one. 

2. We do not need to assign measurements to a grid. This process inherently introduces uncer- 
tainty that is not a part of the original problem. 

3. The final declaration of the target position is exact. It is either at that exact location or it is 
not. 

4. An optimized Neyman-Pearson criterion is used in the local binary hypothesis. 

5. Time is optimized while ensuring the constraints on PFA and PUD are satisfied. 

3.2    Dynamic Greedy Trajectory Generation 

We now describe the algorithm for dynamically generating trajectories that are consistent with 
the vehicle dynamics. In essence, the trajectories for each vehicle are chosen from pre-computed 
trajectory segments so as to maximize passage through regions of the domain in which the target 
is most likely to be found and that have not previously been visited. 
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Figure 2: The trajectory library consists of motion primitives that can be pieced together to generate a 
vehicle trajectory that is consistent with the dynamics and limited control authority of the vehicles. Elements 
in the trajectory library are shown in figures (a) through (e) in order to emphasize how the library allows 
for a range of motion that covers the multiple scales of the search domain. 

Library of Trajectories: 
Each sensor has a library of trajectories stored in memory. A trajectory consists of a list of 
waypoints where each waypoint is a triple (a:, y, d) describing the position and heading angle of 
the vehicle along the trajectory at time intervals commensurate with the frame rate of the camera. 
The library is pre-computed and can be stored in memory at the factory where the vehicles are 
manufactured. 

The library currently implemented in the DyGS algorithm has 205 trajectories. As shown in 
Figure 2, the library includes trajectories ranging from sharp left to sharp right turns and range in 
length from 12 seconds to 120 seconds. This library can be easily enriched with more trajectories or 
replaced with new trajectories without requiring any changes to the search algorithm. A guideline 
for choosing trajectories to include in the library, is that they should cover all scales of the search 
domain. 

Vehicle Constraints: 
By construction, the trajectories in the library satisfy the dynamic constraints of the vehicles. For 
the case when the dynamics is modeled with a double integrator, the trajectories are designed so 
that the vehicles always move at the maximum allowed velocity, and accelerations are only applied 
perpendicular to the direction of motion. 

Choosing Trajectories from the Library: 
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At each time step, each sensor is moved to the next waypoint along its current trajectory. If the 
sensor is at the end of its current trajectory, then the sensor must be assigned a new trajectory 
from the library. The sensor performs a scan through the trajectories in the library to determine 
which trajectory will maximize the time-averaged probability of the prior visited during the trajec- 
tory. Visits to locations in the foliage and outside the search domain are considered to have zero 
probability. Also, any location along the trajectory that has been previously visited more than 
MaxNumVisits times, is considered to have zero probability. MaxNumVisits is a parameter that is 
chosen to adjust the "thickness" of the coverage.1 

Computational Effort: 
The computational overhead required to implement this trajectory generation scheme is minimal 
since at each time step, the majority of sensors are simply moved to the next waypoint along their 
current trajectory. Computation is only required when a sensor reaches the end of its assigned tra- 
jectory. A search conducted by fifty sensors can be simulated 100 times faster than real time on a 
single modest CPU. The computational effort of the search is dominated by the decision algorithm 
(updating suspect lists etc.) and not the trajectory optimization. 

Extensions: 
The dynamic trajectory generation algorithm can be easily extended to more complicated dynamics 
by simply replacing the library; no changes to the code are necessary. For example, we have success- 
fully implemented search with vehicles whose dynamics is described by a simple three-dimensional 
model for under-actuated helicopter dynamics. The helicopters are modeled as rigid bodies with 
controls for forward and roll pitch of the main blades, as well as a yaw control from the tail blades. 
Conceivably, the trajectory generation algorithm can be applied to a vehicle in which an accurate 
model of the dynamics is not known; the trajectory library can be generated by recording the 
motion of the vehicle as it is driven through various maneuvers by an actual pilot. 

Robustness: 
Since the trajectories are dynamically generated, they easily and quickly adapt to sudden changes 
or updates in the prescribed search domain, foliage distribution, or initial target probability distri- 
bution. In contrast, the trajectories used in a systematic search strategy such as the lawnmower 
approach, are pre-computed and difficult to alter dynamically if new information about the search 
domain is provided or it becomes apparent that one of the sensors has failed. Moreover, lawn- 
mower styled trajectories become increasingly difficult to design for search domains with complex 
geometry and foliage distributions. The ability of the DyCS algorithm to dynamically update the 
trajectories and the resulting chaotic nature of the these trajectories affords them more robustness 
when faced with search domains that have complex geometries. 

4    Results and Conclusion 

A search method that uses systematic lawnmower styled trajectories was implemented for purposes 
of comparison with the DyGS algorithm. When applied to the test domain described in Section 2, 

'MaxNumVisits can be adjusted continuously through the positive reals via use of a coin. For example, to realize 
MaxNumVisits = 3.67 we ask if a random number in the unit interval is greater than 0.67. If yes, then choose 
MaxNumVisits = 3, otherwise choose MaxNumVisits= 4. 

II) 
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the lawnmower method achieves a median search time of 887.5 seconds. The median search time 
obtained for the DyGS algorithm is 458.5 seconds. We conclude that the DyGS algorithm achieves 
the Surveillance Milestone by producing a 1.9 times speed up over the systematic lawnmower search 
strategy. What is more, the DyGS algorithm provides robustness to sensor failure and to changes 
in the search domain geometry and foliage distribution. The DyGS algorithm is computationally 
fast, and can handle vehicles with complex, under-actuated, or even unknown vehicle dynamics. 

11 

17 



A.3.   COLLISION AVOIDANCE AND SURVEILLANCE WITH AUTONOMOUS VEHICLES 

A.3    Collision avoidance and surveillance with autonomous vehi- 
cles 

48 



A.3.   COLLISION AVOIDANCE AND SURVEILLANCE WITH AUTONOMOUS VEHICLES 

Collision Avoidance and Surveillance With Autonomous 
Vehicles * 

Sujit Nair and Jerry Marsden 
(nair<9cds.caltech.edu, marsdeiKQcds.caltech.edu) 

Control and Dynamical Systems 
California Institute of Technology 107-81 

Pasadena, CA 91125 

9 July 2009 

Abstract 

The main aim of this paper is two fold. First is to present a new technique 
for collision avoidance of mechanical systems and second is to demonstrate the 
role of collision avoidance to enhance surveillance. The traditional techniques 
for collision avoidance are based on shaping the potential energy [18] or by 
introducing gyroscopic forces into the system [6]. In this paper, we close the 
story by introducing kinetic shaping for collision avoidance in the spirit of the 
Method of Controlled Lagrangians [5, 1]. We also provide analytic guarantee 
for no collision under some mild conditions depending only upon the energy and 
momentum of the system as it enters into a collision avoidance mode. The cor- 
responding control effort is compared with known techniques. For an example 
vehicle model, it is shown that potential based collision avoidance methods arc 
the most control efficient. We then briefly discuss the dependence of collision 
avoidance control cost on vehicle models. In particular, for systems with effi- 
cient steering, we expect gyroscopic collision avoidance to be the most efficient. 
We then show how collision avoidance can be used to randomize surveillance to 
give efficient chaotic search algorithms. The results are illustrated using mul- 
tiple undcractuatcd hovercraft. Perhaps most interesting, using a mix-norm, 
the area surveillance by multiple hovcrcrafts is shown to approach optimality 
quickly compared to the time taken to survey 90% of the region. 

1    Introduction 

1.1     Overview 

The main goal of this paper is to introduce a new tool for collision avoidance and to 

demonstrate the role of collision avoidance in randomizing surveillance using multi- 
ple vehicles. We will also discuss quantities which can be used to evaluate quality of 

•This work was in part supported by DARPA DSO under AFOSR contract FA955O-07-C-0024. 
Approved for public release, distribution unlimited. 
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surveillance heuristics. In particular, we introduce a new kinetic shaping based col- 
lision avoidance controller and surveillance with arguably chaotic properties, similar 
to the billiard problem [15]. Collision avoidance is critical when managing multi- 
ple vehicles in an environment with obstacles. They have also been used recently 
[6] to demonstrate their role in simulating Hocking behaviour in addition to their 
intended task of avoiding collisions. The traditional potential based methods [18] 
and the recent gyroscopic force based methods [6] can be thought of as shaping 
the potential and the linear part of kinetic energy of the Lagrangian. In this paper, 
we complete the story of energy shaping based collision avoidance schemes by de- 
signing a collision avoidance controller by shaping the kinetic energy of the system. 
Using an example vehicle model and a scenario, we compare how the new technique 
fares with the previous two methods by evaluating the the L2 and L°° norm of the 
control effort. The former norm quantifies the fuel consumed and the latter norm 
quantifies the maximum acceleration the vehicle experiences in avoiding collision. 
We also note that kinetic shaping collision avoidance gives analytic guarantee for no 
collision under a mild assumption depending only upon the energy and momentum 
of the system as it enters into a collision avoidance mode. 

Surveillance using multiple vehicles is an important engineering problem with 
widespread applications. Traditionally, this task has been categorized into the static 
surveillance problem and dynamic surveillance problems. In the former, one needs 
to find the most optimal placement for sensors or cameras in an environment to 
maximize the area coverage [2, 8]. In the latter problem, one has sensors on dynamic 
objects like vehicles and maybe moving targets [3, 9]. The problem now is to design 
surveillance heuristics to guarantee target capture and tracking, i.e., to search and 
secure. The main research areas that come under dynamic surveillance are searcher 
coordination, flocking/formation control, role of communication topology and line of 
sight maintenance. Please see [11] for a detailed overview on the existing literature 
on these topics. In searcher coordination, the problem is to make sure no part of the 
region of interest is left out. The problem of searching for missing people trapped in 
mines falls in this category. In flocking and formation control, the goal is to make 
a group of vehicles move in a group to achieve a particular task like adaptive ocean 
sampling [7]. Whenever one has multiple vehicles, ensuring that the controller is 
robust to communication link losses is of upmost important. These problems fall 
under the communication topology category. The main aim is to demonstrate that 
whatever strategy one comes up with, the surveillance is not compromised because 
of noise or communication link breakages etc. Finally, when one has radio signals 
for intervehicle communication, it becomes important to make sure line of sight 
is maintained. See [11] for more references on this problem. In this paper, our 
focus will be on surveillance, i.e., we will not consider communication issues. Our 
main goal is to make sure the region is surveyed and that too in a "chaotic" or 
randomized manner. Such randomized searches are important in problems where 
one has mobile or "intelligent"' targets and we do not want the targets to predict the 
searchers path for evasion purposes [16]. In our case, we want our search effort to 
be distributed with respect to some probability density depending upon the apriori 
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belief for target distribution and at the same time appear "chaotic" enough to keep 
the targets from predicting the next location of the sensors. We will present our 
surveillance algorithm and demonstrate this property by comparing the mix-norm of 
our vehicle trajectories with those of ideal zero inertia vehicles used as a benchmark. 

1.2    Organization 

In §2, we introduce kinetic shaping collision avoidance controller and give an explicit 
formula for the case when the vehicle is a double integrator. In §2.2, we compare 
the controller cost for the kinetic shaping controller introduced in §2 with the tra- 
ditional potential based controller and with gyroscopic forcing based controller and 
interpret the results. In §3, we show how collision avoidance enhances surveillance 
and quantify its performance. In the same section, we discuss ideal vehicles and the 
mix-norm. In §4, we present some simulation results for the case of multiple under- 
actuated hovercraft surveying a circular region. We demonstrate that using collision 
avoidance, the hovercraft trajectories approach a uniform distribution quickly com- 
pared to the time taken to survey 90% of the region. We conclude this paper with 
a summary of the main results and a discussion in §5. 

2    Kinetic Shaping for Collision Avoidance 

Intervehicle collision avoidance and obstacle avoidance is one of the mast impor- 
tant issues in multivehicle tasks. The vast amount of literature focussing on this 
particular task bears testimony to this claim. Traditional methods based on po- 
tential design can be traced to the original works of Rimon and Koditschek [18]. 
The basic idea is to assign repelling potentials to obstacles and other vehicles and 
shape the potential energy of the moving vehicle accordingly. To get rid of some 
of the drawbacks of potential based collision avoidance, viz, global knowledge of 
obstacles etc, the authors in [fi] design gyroscopic forcing based collision avoidance 
schemes. One of the main advantages of this new approach is that it tends to avoid 
gridlocking. Moreover, it conserves the total energy of the system as the steering 
forces act perpendicular to the instantaneous velocity. This in turn implies that we 
can use the readymade energy function of the system as a Lyapunov function for 
stability analysis purposes. Moreover, the gyroscopic forces do not interfere with 
the global potential function designed for a particular control task. The gyroscopic 
force based collision avoidance is also completely decentralized. Each vehicle has a 
sensing radius and goes into a collision avoidance mode only when it senses other 
vehicles within its sensing radius. 

Gyroscopic based collision avoidance discussed in [6] can be thought of shaping 
the Lagrangian by introducing a term linear in velocity. For example, if (<ft) = 
q are generalized coordinates, then we can introduce gyroscopic forces into the 
system by adding the term G = £4=1 Ai(q)q' to the Lagrangian1. The gyroscopic 
forcing term responsible for collision avoidance acts in a direction "perpendicular" 

'Intrinsically, we are adding the action of the one form A = A,dq' on the tangent bundle to the 
Lagrangian. 
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to the instantaneous velocity. What this means is that the Euler-Lagrange term 

corresponding to G adds the term ( ^f - |4f) Qk to the right hand side of the 

Euler-Lagrange equation for the original Lagrangian in the i direction. It can be 
verified that the dot product of this term with q is zero, i.e., the gyroscopic forcing 
term is "perpendicular-' to the instantaneous velocity. Note also that if the one 
form Aidq' is closed, the gyroscopic forcing term is zero. Potential based collision 
avoidance discussed in [11] also shapes the potential energy part of the Lagrangian. 

But now, the resulting collision avoidance forcing term can be made to act either 
along the center lines of the vehicles as in [18], or in a direction perpendicular 
to the centerline or a combination of these two directions. In the same paper, it 
was observed in simulation examples that when the forcing term acts in a direction 
perpendicular to the centerline, it takes a much longer time for the vehicles to get 
out of collision avoidance mode. After studying the above two examples, one could 
ask if its possible to derive collision avoidance schemes by shaping the kinetic energy 
part of the Lagrangian. We provide an answer in positive in this section. 

The model we will be using in this section is going to be 

x = ur + uc • + UD (2.1) 

where 117- is the controller which takes the vehicles to a particular target location 

or achieve a particular task, uc is the collision avoidance controller and up is the 
dissipation controller linear in velocity. Each vehicle has a sensing radius r, and a 
collision radius rc, i.e., a vehicle senses another vehicles which is within a distance 
rs from it. If the distance between two vehicles is less than rc, its considered a 
collision. So our goal is to derive a collision avoidance scheme which guarantees that 
the distance between two vehicles is always greater than 2rc. The collision avoidance 
controller uc is nonzero only when the vehicle senses an obstacle or another vehicle 
inside its sensing radius. When the vehicle is in its collision avoidance mode, uj 

and UD are both set to zero. 

Figure 2.1:  Vehicle j within the radius of sensing r, of vehicle i. 
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Consider two vehicles in Rn whose controlled equations of motion are 

xi    =   UTI + uci + uDi (2.2) 

x2    =    UT2 + uC2 + UD2 (2.3) 

The Lagrangian for each of these vehicles are given by their respective kinetic en- 
ergies Lt = jx* x*. As stated before, when vehicles i senses another vehicle within 
its tolerance radius, it goes into a collision avoidance mode where 

uTi = 0;    uDi = 0 (2.4) 

In this collision avoidance mode, we would now like to choose the collision avoid- 
ance controller uci such that the resulting closed loop system consisting of the two 
vehicles is also a Lagrangian system with a Lagrangian which looks like a kinetic 
energy term. Consider the Lagrangian L given by 

L = i||x1-x2||
2(x? + ^) (2.5) 

This Lagrangian is regular as long as Xi ^ x2. The energy E corresponding to this 
Lagrangian is the Lagrangian itself and the momentum corresponding to translation 
symmetry is p = ||xi — x2||

2(x2 + x2.). We will show that for two vehicles following 
the Euler-Lagrange equations for this Lagrangian, the vehicles do not collide as long 
as their initial velocities are not equal and opposite to each other. More precisely, 
we have the following result. 

Theorem Consider two vehicles with configuration variables given by xi,x2 and 
following the equations of motion corresponding to the Lagrangian given by (2.5). 
If at £ = 0, we have xi(0) ^ X2(0) and x'i(0) + x'2(0) ^ 0, then the two vehicles 
never collide at any instant of time, i.e., x\(t) ^ X2(£) for all t > 0. Moreover, if 
EQ > 0 and po ^ 0 are the nonzero energy and momentum at t = 0 respectively, 

then ||xi - x2|| > y^£gj£ for all time. 

PROOF For the Lagrangian given by (2.5), the momentum p corresponding to 
translation symmetry and the energy E are conserved quantities. Assume that 
||xi — x2|| > 0. Then we have 

E0   =    I||x1-x2||2[||x1+x2||
2+||x1-x2||2] 

>    -||x1-x2||2||x1+x2||2 

4" 

1     IIPoll2 

4||x,-x2| 12 
( Assuming  ||xi - x2|| > 0) (2.6) 

Therefore, we get that if ||xi - x2|| > 0, then ||xi - x2|| > J%|p > 0. Thus, using 
continuity and the fact that Xi(0) ^ x2(0), we get that the minimum distance of 
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approach for the vehicles is bounded below by a quantity depending only on the 

values of energy and momentum at t = 0. • 

If we now use the equations of motion given by the Euler Lagrange equation 
corresponding to the Lagrangian (2.5), we have designed a collision avoidance con- 

troller which guarantees no collision as long as J ^E 
> r<"' Here, subscript s 

denotes the instance when the vehicles are within each others sensing radius and 
have sensed each other. At this instant, the only controller acting on the vehicles 
are the individual collision avoidance contoller derived from the Lagrangin (2.5). 
The final controller for the individual vehicle turns out to be 

uci = 

"C2 

1 

(xi -x2) 
1 

(X,        X.j) 

(-2(X, - X2)
T(X, - X2)X! 4- (xf + *f)(X] - x2)) 

(-2(xi - x2)
r(x, - x2)x2 + {xj + x|)(x2 - Xl)) 

(2.7) 

Figure (2.2) illustrates trajectories in the (xi,x2) plane for two vehicles in R 
with coordinates xi,,x2. The initial position is (0.5, 0) and various trajectories 
correspond to various initial velocities starting from this particular initial position. 

As shown, the trajectories never "collide' with the line Xi = x2 unless its initial 
momentum is zero in which case they collide in finite time. We have the following 
result. 

0.1 0 2 0 3 0 4 0 5 0< 0 7 OS 0 0 

Figure 2.2: TYajectories in (xi.ij) plane for two vehicles in R with positions given by ii,ia 
and corresponding to the Lagrangian given by (2.5). The initial position is (0.5,0) and the initial 
velocities are shown in the figure. 

Result    Consider two vehicles in R with positions given by Xi,x2 and following 
the equations of motion given by the Lagrangian (2.5).   If ±i(0) + x2(0) = 0 and 
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xi(0) j= x2(0), then 

zl(t) = zl(0)M-2~^-t (2.8) 

where z\(t) = xi(t) — x2(t) and zi(0) ^ 0 by assumption. Therefore, we have 
collision in finite time. 

PROOF Proof follows by writing down the equations of motion for the Lagrangian 
(2.5) in K using the variables 

Z\      =     X\ - X2 

z2   =   xi + x2 (2.9) 

and verifying (2.8). • 
We also have the following time to minimum approach result. 

Result Consider two vehicles in R with positions given by x\,x2 and following 
the equations of motion given by the Lagrangian (2.5). If E = 2L(0) > 0 and 
p = (xi(0) — x2(0))2 (Ai(0) + £2(0)) ¥" 0. the the vehicles approach their minimum 
distance at time Tmin = -f2 where 

c2   =    X- (2^(22(0) -fc) + sinh(2v^(*2(0)-fc))) 

C]    =   -2sfaz2(G) (1 + cosh(2v/a(22(0) - k)) 

where zuz2 are as defined above in (2.9) and k = cosh~'^"'w) - 22(0). 

PROOF    We have, 

L   =    -/^zl + zl) (2.10) 

P   =    & (2.11) 

If E > 0 and p / 0, we have jj^ = y-^1 ~~ *• This gives, 21 = -4- cosh(\/a(z2 — 

k)). Therefore, i\ = sinh(v/a(22-fc))i2 and 22 = -2v/atanh(v/a(22 — k))z2. There- 
fore, 

z2(t) = k+ —=Root(sinh(«) + 2 - 4(tci + c2) = 0) (2.12) 
Z\/a 

where 

c2   =    i (2v^(22(0) - fc) + sinh(2v^(22(0) - k))) (2.13) 

ci    =    -2s/az2{Q) (\ +cosh(2v/a(22(0) -it)) (2.14) 
4 

Now, 21 is minimum when z2 = k aX t = Tmi„. This implies, Tmi„ = —j2. • 
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2.1    Comparison with potential and gyroscopic forcing based con- 
trollers 

In this section, we will compare the performance of kinetic shaping collision avoid- 
ance controller with the traditional potential shaping based and the recent gyro- 
scopic shaping based controller. Figure 2.3 compares qualitatively the difference in 
trajectories for the three different collision avoidance schemes. In this figure, we 
have two double integrator vehicles in R2, initially located at (30, 0) and (—30, 0). 
Starting with zero initial velocities, their task is to swap their positions avoiding 
collisions. The controllers will be stated precisely in (2.17). The plot illustrates 
the trajectories as the vehicles swap their positions. We see that qualitatively, the 
trajectories for collision avoidance based on gyroscopic forcing and kinetic shaping 
are comparable. Whereas in the traditional potential forcing based controller, we 
see the typical spring-mass like bouncing back phenomena. We also see that gyro- 
scopic based collision avoidance starts steering the vehicles away from each other 
earlier on and performs a less aggressive maneuver compared to kinetic shaping 
based controller. 

Figure 2.3: Two vehicles swapping their positions. The three trajectories correspond to three 
different collision avoidance schemes. As can be seen, the trajectories for kinetic shaping and 
gyroscopic forcing based collision avoidance arc qualitatively comparable. 

Collision avoidance when n > 2 When we have more than two vehicles, there 
are atleast two strategies to handle this situation by essentially reducing it to a two 
vehicle problem. In the first case, each vehicle detects all the other vehicles within 
its sensor radius and treats the average state of its neighbours as another vehicle, 
thus reducing the multiple neighbour problem to a two body problem. This strategy 
is not new and seems to work in simulations. See [6] for example and references 
therein. The second alternative is for each vehicle to avoid collision with its nearest 
neighbour amongst. We will use the latter in all the simulations in this paper. It 
also appears that kinetic shaping based controller can be extended to n > 2 case by 
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considering a Lagrangian of the form 

1 
L = 

l<i<j<n 
*? + *?)) (2.15) 

without resorting to any of the heuristics discussed above. We will not be considering 
this scenario in this paper and rather focus on avoiding collision with the nearest 
neighbor and compare the performances between kinetic, potential and gyroscopic 
controllers. 

2.2    Cost comparison with potential and gyroscopic forcing based 
controllers 

Figure 2.4: Trajectories of 20 vehicles, each starting on the circumference and reaching its assigned 
target location with collision avoidance based on kinetic shaping controller. 

We now use a specific task to compare how our kinetic shaping based colllision 
avoidance compares with the potential and gyroscopic based controller. We choose 
the following scenario and use two norms to do the comparison. Consider n vehicles, 
each with a sensor radius of 2m, initial distibuted at an equal spacing on the circum- 
ference of a circle with radius 7m. We vary n from 10 to 20. At t = 0, these vehicles 
are assigned a random target position, again lying on the circumference. Figure 2.4 
shows a sample trajectory. The plot on the left shows the initial configuration and 
the plot on the right shows the projection of the trajectories in time onto the plane 
after the vehicles have reached their respective target locations. 

We choose the three different kinds of collision avoidance controller as discussed 
above to evaluate the performances of each. Specifically, we compare the cost func- 
tions given by /0 u2 and HuHoo (L2 and L°° norm of u) over 20 runs for each value 
of n and each collision avoidance scheme. Here, u is the sum ux 4- uc + UD- The 
former norm quantifies the amount of fuel consumed and the latter norm quantifies 
the maximum acceleration experienced by the vehicles. We illustrate the results in 
Figures 2.5, 2.6 and 2.7. 

For the cost comparison, we choose the following controllers. 

uTi = -M*< - *Tl) 
(2.16) 
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Here, xxi is the target point assigned to the ith vehicle, kr is the potential gain 
which drives the t'th vehicle to its target and kp is the dissipation gain. The only 
controller that varies is the collision avoidance controller ua- Let us denote the 
state of the nearest neighbour of the ilh vehicle by XM,XM. Then, we have the 
following expression for the collision avoidance controller for the ilh vehicle. 

(-2(XJ - xNi)
T(xi - xNi)x,- + (x2 + x^)(x, - xNi)) 

xa = -. TJ  (2.17a) 
(Xi - XNi)

2 

OR 

= fcpcexpCjj ji)(xi - xNi) (2.17b) 
||xi — xNil| 

OR 

= k9cexp(— —j:)ftxi (2.17c) 
ll*t -XNI|| 

Here, (2.17a),(2.17b) and (2.17c) correspond to kinetic shaping, potential shaping 
and gyroscopic shaping based collision avoidance controllers respectively, kpc, kgc 

are controller gains and A" is a constant skew symmetric matrix. Please see [11] for 
more details on the potential and gyroscropic controllers in (2.17). The parameters 
kr,ko in (2.16) are fixed and kp^kgc in (2.17) are chosen so as to keep the average 
minimum distances over 20 simulations to be around 2% of the sensor radius. This 
is illustrated in Figure 2.5. In our case of planar vehicles, the sensor radius is 2m 
and K is chosen to be 

0     1 
-1    0 

K = (2.18) 

As can be seen in Figure 2.6, for the gains corresponding to the minimum dis- 
tances in Figure 2.5, the collision avoidance based on potentials seems to have the 
least average control effort. Both, the kinetic based and gyroscopic based collision 
avoidance are comparable to each other and have a similar pattern. Even when one 
looks at the maximum acceleration norm Hulloo, as Figure 2.7 illustrates, collision 
avoidance based on potentials has the least maximum acceleration. From the above 
discussion, it appears that atleast for the particular task we have considered and the 
particular double integrator model for the vehicles, potential based collision avoid- 
ance seems to be the least expensive. Ofcourse, for different vehicle models, one 
needs to do a similar study and make conclusions. In our double integrator vehicle 
model, thrusting and steering were both equally expensive. For vehicles which have 
a cheaper way of gyroscopic steering as compared to ours, we expect gyroscopic 
based collision avoidance to perform better. One also needs to be a bit more careful 
when making these comparison. For example, it is known that using potential based 
techniques, it is observed that vehicles do get stuck in local extremums [6]. 
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Figure 2.5: The parameters in (2.16) and (2.17) are chosen such that the average minimum 
distance over 20 runs which any two vehicles approach are comparable for all the three strategies 
based on kinetic, potential and gyroscopic collision avoidance. The sensor radius for the vehicles in 
the numerical simulation arc all 2m. 

3    Randomized Area Surveillance Using Collision Avoid- 
ance 

In this section, we will demonstrate how collision avoidance can be used to enhance 
area surveillance by "randomizing"' them. We also make sure this is done in a 
decentralized and scalable manner and is independent of the search domain and 
its topology. The main motivation for such search strategies is to make sure that 
an adversary target is not able to predict the state of search vehicles in order to 
dodge them. This is in stark contrast to the conventional "lawnmover" techniques 
in which case a target can avoid detection by just following the lawnmovers. Some 
typical applications of randomized search strategies or policies are for example police 
patrolling and airport security systems [16]. 

The mix-norm We now make precise what we mean by "randomizing'' searches. 
Our main interest is two fold. One is to make sure the whole region is swept without 
any missed spots. Second, we need to do this such that the vehicle trajectories 
appear random to the targets. For the first case, the problem is more interesting in 
the case when the ratio of sensing radius to the area of the region is arbitrarily small. 
In this case, in order to quantify randomization, we use the mix-norm introduced 
in [13] in the context of fluid mixing. In the same paper, a scalar field is said to 
be well-mixed if its averages over arbitrary open sets are uniform. For the vehicle 
trajectory case, the basic idea is the following. We say that the trajectory of a 
vehicle is uniformly distributed in a region if the time average of a L2 function 
over the trajectory asymptotically approaches its space average with respect to the 
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Figure 2.6: Plot comparing tho total control cost to achieve a task using three kinds of collision 
avoidance, kinetic, potential and gyroscopic based. As can be seen, collision avoidance based on 
potentials seems to be having the least control effort. 

uniform distribution fi. It is known that this is a necessary and sufficient condition 
for ergodicity [17]. If Wt is the distribution which takes a function and evaluates 
its mean over the trajectory upto time t, then we demonstrate that once collision 

avoidance is introduced into the system, the distribution Wt approaces n when t for 
t much smaller than the time taken for the vehicles to survey 90% of the region. 
This is the sense in which our search is optimally randomized. Once the trajectories 
start approximating a uniform distribution, we expect the targets not being able to 
predict the future behavior of the vehicles. 

As an illustration, consider the plots in Figure .'5.1 and Figure 3.2. The first 
figure depicts Hilbert curves for indices n from 1 to 4 which are space filling curves 
in the limit n —> oo. And Figure (3.2) is a plot of the decay of mix-norm over these 
curves. We see that as the index increases, i.e., as the Hilbert curves gets closer to 
a space filling curve, the mix-norm decays at a faster rate. 

Benchmark vehicles Another way to see randomness is the following. The best 
surveillance one can achieve is using ideal vehicles with zero inertia hoping around 

instantaneously in the region such that their discrete trajectory points come from 
a uniform distribution. We are essentially comparing our vehicles with these ideal 

ones. When we say Wt approximates a uniform distribution, we mean that mean of 
samples of a function along the trajectory approaches the mean of samples of the 
same function along the same number of points chosen from a uniform distribution. 

Note that if we have apriori knowledge of target locations represented by a 
distribution, we can exploit this information further by combining collision avoidance 
with random way point assignment which are chosen from the apriori.   In this 
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Figure 2.7: Plot of the maximum acceleration a vehicle experiences versus the total number of 
vehicles in our task. Again, one can see that collision avoidance based on potentials has the least 
maximum acceleration. 

setting, we have a decentralized collision avoidance and a centralized "manager'', 
which keeps updating the waypoints for inidividual vehicles. The vehicles are free 
to decide how they approach the waypoints and what kind of collision avoidance 

they want to adopt. This is remniscent of the inner and outer loop philosophy in 
[10] for example. We briefly discuss this setting below. 

Problem Setting With Apriori Knowledge We have a region A, with maybe 

obstacles, which needs to be surveyed. The region A also has a probability distri- 
bution for events, i.e., there could be areas within A where events are more likely 

to happen. We also have a finite number of vehicles with a finite sensor radius. 
Consider a lattice L with / points which reflects the probability distribution for 
the events. See the figure below which illustrates a lattice for uniform and Gaussian 
probability distributions respectively for the case when the region A is circular. The 
lattice spacing is a function of the individual sensor radius. 

Consider Algorithm 1 below. The vehicles, labelled 1 ton are initially in some 
arbitrary locations. We assume that each vehicle has a set point controller which 
asymptotically takes it to a particular target location. 

Algorithm 1 Surveillance Algorithm A 

1: Assign n random points from L as target positions to the vehicles 
2: Once the n vehicles reach their individual point, select new points from L and 

assign them as target point to the vehicles 
3: Repeat this procedure until L is exhausted 

Throughout the steps above, we incorporate collision avoidance into the setting, 
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Figure 3.1: Illustration of Hilbcrt curves for indexes running from 1 to 4 

i.e., if in the process of reaching their respective target point two or more vehicles 
come close to each other, they go into a collision avoidance mode. This strategy 
has some advantages over the traditional lawnmover strategies. The manager only 
assigns target positions to the individual vehicles as opposed to complete individ- 
ual trajectory. Thus, we have a target assignment problem instead of a trajectory 
generation problem which works for a much broader class of regions. This is be- 
cause generating lawnmover trajectories for arbitrary regions is nontrivial [1]. Our 
method also has advantages when considering underactuated vehicles, for which we 
only need to design a set point controller as opposed to making them follow a partic- 
ular trajectory. The individual vehicles are free to choose how to reach their target 
positions providing the freedom to chose optimal controllers for example. 

It can be numerically verified that with this strategy the trajectories start ap- 
proximating a uniform distribution quickly compared to the time taken to survey 
90% of the region. Note that in this case, it is not very clear where this random- 
ization is coming from. We have a combination of random waypoint assignments 
as well as collision avoidance. To resolve this and to make precise the role of colli- 
sion avoidance, we instead consider the following scenario where there is no apriori 
knowledge. 

Problem Setting Without Apriori Knowledge We have a region A, with 
maybe obstacles, which needs to be surveyed and consider two cases. In the first 
case, one starts with random positions for the n vehicles and assigns them random 
initial velocities. This essentially determines the future of all the vehicles as the 
survey the area and we compute the mix norm of the trajectories. In the second 
case, one incorporates collision avoidance into the first case and again evaluates 
the mix norm of the trajectories. It turns out that once collision avoidance is 
incorporated, the mix norm decays at a much faster rate thus validating our claim 
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Figure 3.2:  Plot of decay of mix-norm over the hilbert curves for the indices in Figure 3.1. 

Figure 3.3: Illustration of a region A with a grid reflecting uniform and Gaussian probability 
distribution for target locations. 

that collision avoidance enhances the surveillance by randomizing it. 

Cumulative Area Coverage Computation To calculate the area covered, we 
distribute points from a uniform distribution in A and label them red. When a 
vehicle moves over it, we turn it green. Then the cumulative area coverage (CAC) 
is the ratio of green points to the total number of points. This way, we can take 
care of a broad class of surveillance regions and sensor sensing profiles. For example, 

calculating the exact area occupied by a finite number of circles with varying radii 
involves a nontrivial implementation of the inclusion exclusion principle. 

4    Simulation 

We now apply our surveillance strategy using vehicles which are simplified models 

for a hovercraft. The concrete situation is the following. Consider a circular region 
A with radius 50 m and 8 underactuated identical hovercraft as illustrated in Figure 
•1.1 with the following Lagrangian. 

L = -{mi2 + my2 + JO2) (4.1) 
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y-f 

Figure 4.1:  Model for an undcractuated hovercraft. 

The control force f\ acts on the center of mass and the control torque fa acts on the 
body at a distance r from the center of mass as shown in Figure 1.1. The equations 
of motion can be derived to be 

cos(60/, - sin(0)/2 

sin(0)/i+cos(0)/2 

-rh 
(4.2) 

In Appendix A, we show how to choose f\,f? to design set point controller, dissi- 
pative controller and gyroscopic force based collision avoidance controller for this 

particular hovercraft system. Using these controllers, we implement our surveillance 
strategy with collision avoidance. 

Figure 4.2:  Plot illustrating surveillance enhancement with collision avoidance. 

As shown in Figures 1.1 and 1.3, for our algorithm, the vehicles take about 30 

seconds to survey 90% of the circular region and it takes only about 2 seconds for 
the trajectories to approximate a uniform distribution. Please see Appendix B for 
details on how we compute the mix-norm for the hovercraft trajectories. 
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Figure 4.3: Plot of minx-norm of the vehicle trajectories and those of a uniform distribution. 
As can be seen, the two norms match pretty well after about 1 sec even though the time taken to 
survey 90% of the area is around 30 sec. 

5    Conclusions 

We now conclude this paper with a summary of the main results. We introduced 
a kinetic shaping based collision avoidance and compared its performance in the 
L2 and L°° norms with that of potential and gyroscopic based collision avoidance 
schemes. For the particular vehicle model we considered, it turns out that potential 
based collision avoidance were the most efficient. For other vehicles with more com- 
plicated dynamics, it could very well be that potential based collision avoidance is 
not the most efficient. For examples, vehicles in which thrusters are more expensive 
compared to steering, it is expected that gyroscopic forcing based collision avoidance 
will turn out to be cheaper. 

We also demonstrated the role of collision avoidance in efficiently randomizing 
surveillance similar to the billiard problem. The randomization was quantified using 
the mix-norm from fluid mixing literature. In our simulation, we showed that for 
our case of underactuated hovercraft, the trajectories approximate a uniform dis- 
tribution much earlier than the time taken to survey 90% of the region. We hope 
to analytically prove the decay of mix-norm for the hovercraft system in a future 
publication. We also demonstrated randomization in essentially decentralized man- 
ner. This is in contrast with ? ] where they achieve uniformization by optimizing 
a global cost function in a centralized manner. Merging the work in ? ] with ours 
will be an interesting future direction. 
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APPENDIX A 

6    Controllers for the underactuated hovercraft 

In this section, we will design potential, dissipative and gyroscopic force based con- 
troller for the hovercraft system. 
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Design of gyroscopic controller    Let S be a skew symmetric matrix given by 

(6.1) 

For the right hand side of (1.2) to be a gyroscopic force, the following equation must 
hold true. 

/ cos(0)/, - sin(0)/2 \ / x \ 
sin(fl)/, + cos(0)/2   1=51   y   1 . (6.2) 

Substituting for S from (6.1) in (6.2) and comparing the coefficients of x,y,0, we 
get the following conditions on entries of the matrix 5. 

s2   =   -«ircos(0) 

«3   =   —sirsin(0). 

Therefor, the only parameter we have for tuning the gyroscopic force is Sj. We now 
solve for /i,/2 in terms of s\ to get the final equations of motion with gyroscopic 
forcing as 

/ mx \ /        y-7-cos(0)0        \ 
I   my      =*i -x-rsm(0)i) . (6.3) 
\ JO ) \ rcos(0)i + rsin(0)y / 

One can readily check that the dot product of the right hand side of above equation 
with velocity vector is indeed zero. Equation (6.3) represents the most general 
gyroscopic forcing for the hovercraft. For our simulations in §1, we choose the 
parameter s\ to be a constant. 

Design of potential controller We design potential based setpoint controller 
for the hovercraft. Because of underactuation, we cannot make the hovercraft flow 
along an arbitrary potential field. Instead, we derive conditions on the possible 
potentials which one can use for a hovercraft. In (1.2), assume the right hand side 
is given by a poteltial V(x, y, 9), i.e., 

cos(0)/i - sin(0)/2 

sin(0)/i + cos(0)/2 

-rf2 

We can derive the following condition on V. 

dV • ,ndV 
rcos 0) —. 

oy 

(6.4) 

(6.5) 
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Using method of characteristics, we can show that the most general solution for the 
potential V in (6.5) can be found out to be 

V = V(x- rcos(6»),2/ - rsin(0)) = V(zuz2). (6.6) 

Using V as in (6.6), we can design controller which will asymptotically take the 
hovercraft to the desired set (21,22) = (^ldi^d)- This in particular implies that we 
can only guarantee that the hovercraft reach a neighbourhood of a desired target 
point (xd, yd) hi the plane without control over its final orientation given by 0. 

Design of dissipation controller In this case, we want to choose /i,/2 such 
that 

/ cos(0)/, - sin(0)/2 \ / x \ 
sin(0)/i + cos(0)/2      =-M   V      • (6-7) 

One can easily check that for the following choices for /i,/2, (6.7) is satisfied. 

h    =    -k(cos{e)x+sm(0)y) (6.8) 

h   =   -9 (6.9) 
T 

APPENDIX B 

Computing H~x norm Let f(t) € R2, t e [0,T] be the trajectory of the system 
upto time T. We need to compute how "close7' this trajectory is to a uniform distri- 
bution. To compute this, we take N samples with N sufficiently large, uniformly in 
time given by f(ti) where i e {0, • • • , N — 1} and U = TfryT. Denote this collection 
by 5/v = {/(f-i)}. Pick another set of N points chosen from a uniform distribution 
in the domain and denote this by UN = {u(U)} for i £ {0, • • • , N — 1}. Then we 
have 

,,0   1,2 v    IIE^1exp(-i(fc1/1«i) + fc2/2(^,)))||2 fRlm 
\\sN\\H->  =    ^  i + fcj + fcf       (6"10) 

Here, f\{ti) and h{U) are the x and y components of /(U) respectively. The mix- 
norm for UN is similarly computed. Note that ^Zi=i exp(—i (fci/i(tj) + kzhiU))) 
is just the Fourier component of the 6 distribution given by the samples of the 
trajectory f,(x,y) = £<«i 8(x - fi(U))S{y - f2(U)). 
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Multiple Target Detection using Bayesian Learning 

Sujit Nair. Konda Reddy Chevva, Houman Owhadi and Jerrold Marsden 

Abstract 

The need to develop fast, robust multiple target search algorithms has generated a lot of interest recently 

among scientists and mathematicians. In this paper, we develop a computationally efficient multiple target search 

strategy given a fixed number of search vehicles and fixed number of stationary targets in a region. Two different 

cases depending on whether the number of targets is known or unknown are considered. The search area is 

divided into cells. The belief map is updated using Bayes' theorem and an optimal reassignment (teleporting) of 

vehicles based on the values of the current belief map is adopted. Exact computation of the belief map update 

is expensive and often an approximation is needed. In this paper, we show that the Bayesian update can be 

exactly computed in an efficient manner by using the detection history in each cell and results from the theory 

of symmetric polynomials. 

I. INTRODUCTION 

Multi-target detection and tracking [I], [2], [3], [4] are important elements of a surveillance system. In 

multiple target detection and tracking problems, one is interested in determining the number as well as the 

dynamics of targets. Radar and sonar based tracking of objects for air traffic control and navigation are some 

of the applications of multi-target detection and tracking. In order to successfully detect and track targets, one 

needs to effectively extract useful information about the target's state from observations. 

In this paper, we restrict out attention to detection of an unknown number of stationary targets using 

measurements from a fixed number of search vehicles. Though we mainly focus on multi-target detection, 

tracking and detection are closely related areas with significant overlaps. We, therefore, begin with a brief review 

of the techniques for multi-target tracking and detection. One of the earliest techniques for multi-target tracking 

is the multiple hypothesis tracking [1], [2]. In multiple hypothesis tracking, one associates a set of detections of 

the target position with existing tracks. This association if successful leads to new tracks. Otherwise, the set of 

detections are deemed false alarms. Typically, Kalman filter type algorithms are used to update the existing tracks 

after association. Multiple hypothesis tracking suffers from some problems. For instance, some information is 

lost when the detections are generated from raw sensor returns. So if the targets rarely produce returns above 

the detection threshold, then the tracking algorithm fails to accurately track the targets. A more robust solution 

to multi-target tracking is called the track-before-detect [5] where raw sensor returns are available to the tracker. 

Sujit Nair, Houman Owhadi and Jerry Marsden are with Control and Dynamical Systems. Caltech. Pasadena. CA 91125, USA 
{nair,owhadi,marsden}8cds.caltech.edu 

Konda Reddy is with Control Systems. United Technologies Research Center. E. Hartford. CT. 06108. USA 
ChevvaKROutrc.utc.com 
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The above approaches suffer from two drawbacks. First, the above approaches are not recursive in nature. 

Secondly, if the target motion is complicated, then the above approaches have difficulty in modeling the target 

motion. Multi-target detection and tracking using a Bayesian perspective is a more promising and robust 

approach. This is the approach followed in this paper. Stone and coworkers [3] developed a mathematical 

theory of multi-target detection and tracking from a Bayesian point of view. Some early work in this area was 

done by Miller and coworkers[6], Kastella [7] and Mahler [8]. In the Bayesian approach, the multi-target state 

is a markov process. The Bayesian approach can handle complicated target dynamics. It also provides a solution 

that is recursive in nature. 

The problem of simultaneous detection and tracking of multiple targets can be formulated in the Bayesian 

framework. The problem can be solved, in principle, by exact computation of the Joint Multi-target Probability 

Density (JMPD) [7], [9] that accounts for the uncertainty about the number of targets and their states. The JMPD 

is a high-<iimensional quantity and its exact computation is almost impossible. A big challenge in multi-target 

detection and tracking research is to develop sophisticated numerical techniques to approximate the JMPD. 

Particle filter methods that provide a stochastic grid approximation to the exact solution of Bayesian state 

estimation have been proposed to approximate the JMPD for cases involving a large number of targets moving 

in two-dimensions [10], [11]. More recently, a unified approach to multi-target detection and tracking based on 

recursive approximation of the JMPD was presented in [12] where an efficient particle filtering scheme was 

proposed. 

Clearly, an important research theme in multi-target detection and tracking is the development of efficient 

computational techniques to approximate the exact solution of the Bayesian state estimate. In this paper, we 

consider the problem of detecting an unknown number of stationary targets. Since we only deal with detection, 

association is not a concern. Though the detection problem is simpler in nature than the tracking problem, we 

would like to emphasize that the exact computation of the Bayesian update becomes increasing challenging as 

the number of unknown targets and the grid size increases. The main motivation for this work is to develop 

fast, computationally efficient techniques for exact computation of the Bayesian update. 

The main contributions of the paper are as follows. We have demonstrated optimal Bayesian updates for 

detecting unknown number of targets in a given search region. The belief states of the system grow expo- 

nentially and usually cannot be solved exactly. However, we show that we can indeed solve the problem in a 

computationally efficient way by using the detection history in each cell. We also show that using Newton's 

identities from the theory of symmetric polynomials [13] helps us to exactly update the belief map. Newton's 

identities relate two different ways of describing the roots of a polynomial. They have applications in invariant 

theory and combinatorics and have connections to algebraic geometry. To the best of our knowledge, this is 

the first time that Newton's identities have been used in multiple target detection problems. 

The paper is organized as follows. In Sec. II we review the well known Bayes' theorem for calculating 

 2  
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conditional probabilities. In Sec. III. we formulate the search problem given a fixed number of search vehicles 

and targets. In Sec. IV. we propose a new way to calculate the belief map in a computationally efficient manner. 

We also present a novel application of Newton's identities from the theory of symmetric polynomials to exactly 

calculate the belief map. Simulation results are presented in Sec.V. 

II. CONDITIONAL PROBABILITY AND BAYES' THEOREM 

Conditional probability is the probability of some event given the occurrence of some other event. Let 

(£}, F, P) be a probability space where il, F and P have their usual meaning. Let A, Be F be two events 

with P(B) > 0. The conditional probability of A given B is defined as: 

where P(Af\B) is the joint probability. Similarly, the conditional probability of B given A is given as 

Bayes' theorem for conditional probabilities follows from equations (1) and (2), 

Probabilities P(A\B), P(A), P(B\A) and P(B) are usually referred to as, posterior, prior, likelihood and marginal 

respectively. More generally, if {A,} is a partition of A, then 

for any A, in the partition. 

III. PROBLEM FORMULATION 

The main problem we are interested in is the following: Given a search area with a fixed number of 

stationary targets and search vehicles, design computationally efficient strategies for detecting all the targets. 

More precisely, consider a search area that is divided into n cells as shown schematically in Fig. 1. Let V be the 

total number of search vehicles. We will consider two cases. In one case, the number of targets is known apriori. 

In the second case, the number of targets is not known. However, we assume that there is an upper bound f 

for the number of targets in the region. We assume that the targets are stationary. We adopt a simple model for 

the vehicle dynamics. At each lime step, the vehicles can jump to any other cell or remain in their current cell. 

Each cell can only be occupied by a single search vehicle and/or a single target. The vehicles detect a target 

with probability pj. We will also consider false alarms with probability pf. At each time step, the vehicles 

send their detection data, i.e., detect or no detect, to a central manager, that updates the belief map based on 

the vehicle measurements. The belief map is a vector of numbers, P(Tj), j = ],..., n, where P(7j) denotes 

the probability that the target is in cell j. The vehicles are then reassigned to new cells based on the updated 

belief map. There are several ways to reassign the vehicles to new cells. In this paper, we adopt an ideal policy 

where the vehicles are reassigned or teleported to cells that correspond to the maximum values of the belief 

map. Though this reassignment scheme is not entirely realistic, it provides lower bounds for the detection times. 
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Fig. I.    A schematic of the search grid with fixed number of search vehicles and 

In order lo illustrate the application of Bayes' theorem for the search problem, consider the simple case of 

a single target and a single search vehicle in a grid of size n. The essential idea is to update the belief map at 

each time step based on the measurements made by the vehicles. We assume that the initial target distribution 

is uniform, that is, P{Tjf = \/n for all / Suppose that the vehicle is in cell i and that 4 is the detection data. 

That is, 4 = 1 if the vehicle detects and 4 = 0 if the vehicle fails to detect. Then, given the detection data 4, 

Bayes' theorem can be used to update the belief map: 

Note that 

P(di\Tj)P{Tj)0 

ELi/>win)p(7i)° • 

P(di\Tj)    = pd    if 4 = 1    & i = j 

= P,   if 4 = 1   & t^tj 

= \-pd if   4=0 &    i = j 

= 1-/7/ if   4 = 0 &   ijtj 

(5) 

(61 

(7) 

(8) 

<<)) 

(10) 

The above formula can be easily extended to the case of multiple vehicles. Before we do that, we introduce 

some notation. P(A\B) stands for the usual conditional probability of A given B. Pfl},,...,!}.) denotes the 

probability of the event 7;, n...n7},. Here it is assumed that the indices I'I i'y are distinct. By D\Dj, we 

mean the detection data consisting of all cells except the i* cell. By Y.t"\P(Ai],--,Ait\B), we mean the sum 

over all P{Aiw...,Ajt\B) for ("k) ways of choosing indices ii i« from the set {1 n). 

One observes that if there are k targets, then the belief map consists of (J) numbers given by P{T, ,Tik). 

The number of computations required to update the belief map blows up exponentially as the number of cells 

and targets increases. For example, for a 50 x 50 grid with 5 targets, the belief map is of the order of 10'4. 

This is a very important consideration if a particular search strategy needs to be implemented in real time. In 
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the next section, we describe a simple, computationally efficient and exact method to update the belief map. 

This method is particularly attractive when the number of targets and grid size is large. 

IV. COMPUTATIONALLY EFFICIENT BELIEF MAP UPDATE 

In this section, we propose an alternative formulation where instead of having a belief map of size (J), we 

construct a belief map of size n by considering the history of detections/no detections in each cell. At each 

instant of time, vehicles make measurements about targets in their respective cells and report back to a central 

manager whether they have detected or not detected a target in their respective cells. For each cell, the total 

number of detections and total number of no detections is stored. Using this information, at each time step, 

the belief map is constructed as follows: If d, and m, are the total number of detections and no detections 

respectively in cell i up to that time, the detection data can be written as the following 2 x n matrix 

d\    ...    d„ 

mi    ...   m„ 

A. Known Number of Target Case 

We now consider the case when the number of targets is known apriori and is assumed to be k. For the 

detection data D, we can construct the belief map as follows: 

P(Ti\D,U=k) 

P(D\ThU =k)P{Tj\U =k) 

P(D\U = k) 

L{kll)P(D\Tt,Tj Th_„U=k) 

P(D\U =*) 

x £ P(Th TJk_l\T„U = k)P(Ti\U = k) 

(A) 

where U is the number of targets. The denominator can be written as 

P(D\U = k) 

Y,P(D\Th Th,U=k)P{Tj Th\U=k) 

(!) 
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Assuming the initial prior is uniform, we get 

P{T,\D,U =k) 

P(TJl,...,Th_l\ThU = k)P(1}\U=k) 
P(T, TJk\U=k) 

Z{kli)P(D\T„Tj Tik_„U=k) 

L{l)P(D\Tn Th,U=k) 

^ L{:)P(D\Tj Tu,U=k) 

L{tl,)P(WJj TJk_„U=k) 

L{:)P(D\Th Th,U = k) 

Therefore, assuming that the detections are independent of each other, we can write the above equation as 

P(Ti\D,U=k) 

Z.^PiDWTj Th_rU=k) 
—     pin \T)    "-"  

1   '' ''       L{-t)P(D\Tj Th,U=k) 

The main advantage of this formulation is that we have a very significant reduction in memory requirement 

as we are only storing In numbers at each stage instead of (J). We will later show how to exactly compute 

the numerator and denominator in the above equation using Newton's identities from the theory of symmetric 

polynomials that further leads to computational savings. 

B. Unknown number of Target Case 

In this case, we consider that the number of targets is unknown apriori. However, we assume that the 

maximum number of targets possible is f. This case is considerably difficult than the previous case where the 

number of targets were known apriori. The belief map update proceeds in the following manner: 

P(Ti\D) 

T 
=     £P(7)|D,c/=,)/>((/=,ID) 

L P(D\T„U = j)P(T,\U = j)P(U = j\D) 

£i P(D\U = j) 

£ P(D\ThU = j)P(Ti\U = j)P(U = j) 

p\ P(D) 

t  P(D\ThU=j)P(Tj\U = j)P(U=j) 

h LliP(D\U = l)P(U=l) 

_f>_ 
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Assuming uniform prior for P(U = j), we get 

P(Ti\D) 

L P(D\ThU = j)P(Ti\U = j) 

h      LLP(D\U = I) 

Ef=1/>(D17;,t/=;)/>(7;i</ = ;) 
LLP(D\U = D 

After a few manipulations, we get 

P(Tj\D) 

lJ=,^
1E(.!l)/'(0\0/|7-, Th_„U = j) 

LL-fcL^PW, TlT,u = i) 

Now, for both the single and multiple target case, we need to compute 

P(D\Th TipU=j) = f\P(Dl\Til T,JtU = j) 
1=1 

where D/ is the detection data corresponding to cell /. Define 

a, = P(D,\Ti T,l,U=j)=^'+d^pdJ(]-P<lr 

if / € {j,i|,...,iy} and 

b, = P(D,\Th 7^ = ;)=(d' + m')/7'(l-/vr' 

otherwise. Therefore, we need an algorithm to efficiently compute terms of the form 

Y,P(D\Til,...,TirU=j) 
0) 

=     lfl^(0/|7i Th,U=j) (12) 

=      Y,4H , aijlH^-.-bn (13) 

0 
This can be written as 

X>(D|7/, TirU = j) = P„       £       c,, Clj (14) 
I") l<ti<...<lj<n 

where Pg = b\...b„ and c, = j'- 

As one can see, computing P(Tj\D) involves a larger number of operations and can considerably slow down 

the belief map update. We are faced with the following problem. Given n numbers C\,...Cn and an integer k. 
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compute the symmetric polynomials 

h    = Y,       c<i-c4 <15) 
l<i1<...<it<n 

in an efficient manner? In the next section, we briefly review the theory of symmetric polynomials and show 

how the symmetric polynomials can be expressed in terms of the power sums using Newton's identities. This 

novel application of Newton's identities considerably reduces the number of computations needed to update the 

belief map. 

C. Symmetric Polynomials and Newton's Identities 

A symmetric polynomial on n variables x\,...,x„ is a function that is invariant to any permutation of its 

variables. That is, the symmetric polynomials satisfy 

/(.Vl, V2   .v„) =/(*i. x2 x„), (16) 

where v, = xx; and n being an arbitrary permutation of the indices l,2,...,n. The elementary symmetric 

polynomials Jt{x\, xi,..., x„) are given by 

J\(x\. *2,.. ., x„) = 
l</'<n 

h(xh X2,.. • , x„) — 
l<i<j<n 

h{xh xi,.. ., x„) Y,       x'xixk 
\<i<j<k<n 

Jn(X[- X2,.. ;Xn) = 
Ki<n 

The power sum Sp(x\, JT2,..., X„) is defined as 

Sp(xux2,...,xH) = ftx
p

k (17) 
*=1 

The relation between the symmetric polynomials Jk and the power sums Sp is given by Newton's identities. 

The first few identities are 

h    =   St (18) 

h   =   fffi-St) (19) 

h    =    ^(Sf-3S,S2 + 2S3) (20) 

j4    =    — (5t-6S?52 + 3^ + 85|53-6S4) (21) 
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In general. Ihe symmetric polynomials can be computed using the following determinant 

4* 
1 0 0 0 

lv, I 0 0 

s* 1* 1 0 

1 

t«l 

(22) 

fSk     rS*-l      jS*-2     X^k-l 

All of these identities can be computed very easily using any commercial symbolic package. The main 

advantage of writing it in this form is that computing S, is much cheaper as it involves vector processing. For 

example, if n = 100 and * = 4, the brute force implementation using four for loops takes around 25 seconds on 

a MacBook Pro laptop whereas using the Newton's identities, it takes only about 10 4 seconds! This clearly 

shows that one can get computational speed-up of orders of magnitude by using Newton's identities. 

V. SIMULATION RESULTS 

In this section, we provide simulation results for a grid of size 15 x 15. Note that the state space for the 

system is f2,5) for 5 targets. We choose 5 target at locations 43,77,99,155,216 at t = 0. The initial prior 

is assumed to be uniform. The values of pj and Pf are chosen to be 0.9 and 0.1 respectively. As shown in 

the Figure (2) , the belief map converges to the expected value in about 80 iterations. The optimal teleporting 

scheme gives lower bounds on the detection times and serves as a baseline against which other strategies can be 

compared. An immediate extension of this strategy is local optimal teleporting where each vehicle is moved to a 

neighboring cell with the maximum belief map value. This is ongoing work. Preliminary results suggest that the 

local optimal reassignment strategy performs satisfactorily. The vehicle dynamics are more realistic in this case. 

We have also examined the effect of the number of search vehicles and /v on the detection times. As 

expected, as the number of search vehicles increases, the detection time decreases with the number of search 

vehicles. One such simulation result is shown in Fig. 3. However, it is interesting to note that beyond a critical 

value of the number of vehicles, the detection time does not change much with the number of vehicles. Such an 

observation can provide guidelines in choosing the number of search vehicles for a given search mission. Figure 

4 shows the variation of the detection times with p,f. Once again, as expected the detection times decreases 

almost linearly with />,/. 

VI. CONCLUSIONS 

In this paper, we have demonstrated optimal Bayesian updates for detecting unknown number of targets in 

a region that is divided into cells. The belief states of the system grow exponentially and cannot be solved 

exactly. We develop a different formulation and show that we can indeed solve the problem exactly using results 

from the theory of symmetric polynomials and using the detection history. As future work, we will provide 

theoretical estimates of the detection times when the vehicles are optimally teleported. We will also compare 

local optimal vehicle reassignment with teleporting. 

7!) 



A.4.   MULTIPLE TARGET DETECTION USING BAYESIAN LEARNING 

Iteration #1 Iteration #20 
0.01 

0.005 

0 100       200 

Iteration #40 

0 100       200 

Iteration #82 

0.5 

I 
1 

0.5 

0 
100       200 100 200 

Fig. 2.    Evolution of belief map for a 15x15 grid. The cell number is plotted on the .r-axis and the belief map values are plotted on the 

y-axis. After the 82nd iteration, targets are detected at location 4.1.77.99.155.216. 
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1 Abstract 

Many large scale systems of interest (e.g. power systems, biological networks) are often composed 
of weakly interacting subsystems. We propose an iterative scheme that exploits such weak inter- 
connections to overcome dimensionality curse associated with traditional uncertainty quantification 
methods and radically accelerate uncertainty propagation in systems with large number of uncertain 
parameters. This approach relies on integrating graph theoretic methods and waveform relaxation 
with uncertainty quantification techniques like probabilistic collocation and polynomial chaos. We 
analyze convergence properties of this scheme and illustrate it on a power network. 

2 Introduction 

The issue of management of uncertainty for robust system operation is of interest in a large family of 
complex networked systems. Such systems typically involve a large number of heterogeneous, con- 
nected components, whose dynamics is affected by possibly an equally large number of parameters. 
Uncertainty Quantification (UQ) methods provide means of calculating probability distribution of 
system outputs, given probability distribution of input parameters. One of the most commonly used 
methods is Monte Carlo sampling (MCS), or one of its variants. Although MCS is straightforward to 
apply as it only requires repetitive executions of deterministic simulations of the system, typically a 
large number of such executions are needed as the solution statistics converge relatively slowly, e.g.. 
the mean value typically converges as O(lfvN) where N is the number of realizations [13]. Quasi 
Monte Carlo (QMC) methods on the other hand offer better convergence for moderate number of 
random parameters, the rate being 0(' "S

N ' ), where p is the number of random parameters in the 
system. However, while MCS suffer from poor coverage of the space being sampled. QMC methods 
often lead to incorrect density of the sampled points. Recently. Mezic [11] developed a new scheme 
known as DSample. which exploits ergodic dynamics to generate samples which do not suffer form 
such limitation: the sample points have proper coverage and correct density in the sample space. 
Most importantly the convergence of this method follows the fast 0(1/N) scaling, independent of p 
the number of random parameters. 

Generalized polynomial chaos (gPC) is another recently developed technique which belongs to 
the class of non-sampling UQ methods. In gPC, stochastic quantities are expressed as orthogonal 
polynomials of the input random parameters, and different types of orthogonal polynomials can be 
chosen to achieve better convergence (under certain circumstances, exponential convergence can also 
be attained) [12]. When applied to differential equations with random inputs, the gPC expansion 
is typically combined with Galerkin projection, such that the resulting set of equations for the 
expansion coefficients are deterministic and can be solved via conventional numerical techniques. 
However, stochastic Galerkin (SG) procedure can be challenging when the governing stochastic 
equations take a complicated form. To this end. high-order probabilistic collocation method (PCM) 
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has been developed [14]. PCM combines the advantages of both Monte Carlo sampling and gPC- 
Galerkin method. The implementation of a PCM algorithm is similar to that of MCS. i.e.. only 
repetitive realizations of a deterministic solver is required; and by choosing a set of sampling points 
based on the theory of multivariate polynomial interpolations, it retains the high accuracy and fast 
convergence of gPC expansion, similar to SG. In higher dimensions, however, the use of standard 
tensor products of one-dimensional quadrature points as sampling points leads to an exponential 
growth of the number of points. The work of [14], is a first systematical attempt to avoid using tensor 
product constructions. Instead it employs the so-called sparse grid [5]. to tackle problems with large 
number of random variables more efficiently. In addition, to deal with UQ in PDE systems, mutli 
element formulation of gPC and PCM have also been recently developed [7, 2]. 

As described above, while, there have been various efforts to overcome dimensionality curse asso- 
ciated with UQ methods, none of such extension exploits the underlying structure and dynamics of 
the networked systems. In fact, many networks of interest (e.g. power systems, biological networks), 
are often composed of weakly interacting subsystems. As a result, it is plausible to simplify and 
accelerate the simulation, analysis and uncertainty propagation in such systems by suitably decom- 
posing them. For instance, authors in control theory studied large-scale interconnected dynamical 
systems using graph theoretic decomposition of the system. These studies, however, concentrated 
mostly on questions of stability and robustness (see e.g. [15, 16]). In contrast Mezic et al. [10], 
introduced a framework for studying more general asymptotic behavior and uncertainty propagation 
in such multicomponent nonlinear systems. They showed that, the use of graph decomposition in 
conjunction with Perron Frobenius operator theory can greatly simplify the invariant measure struc- 
ture and uncertainty quantification, for a particular class of networks. While this approach exploits 
the underlying structure of the system, it does not take advantage of the weakly coupled dynamics 
of the subsystems. 

In this paper, we propose an iterative UQ approach that exploits the weak interactions among 
subsystems in a networked system to overcome the dimensionality curse associated with traditional 
UQ methods, and radically accelerate uncertainty propagation. This approach relies on integrating 
graph decomposition techniques and waveform relaxation scheme, with probablistic collocation and 
generalized polynomial chaos. Graph decomposition can be realized by spectral graph theoretic 
techniques to identify weakly interacting subsystems. Waveform relaxation, a parallelizable itera- 
tive method, on the other hand, exploits this decomposition and evolves each subsystem forward in 
time independently but coupled with the other subsystems through their solutions from the previous 
iteration. At each waveform relaxation iteration we propose to apply PC at subsystem level and use 
gPC to propagate the uncertainty among the subsystems. Since UQ methods are applied to rela- 
tively simpler subsystems which typically involve a few parameters, this renders a scalable iterative 
approach to UQ in complex networks. In an alternative approach the random differential equations 
can be transformed to a deterministic system, by employing a stochastic Galerkin projection. Sub- 
sequently, graph decomposition and waveform relaxation can be applied to accelerate simulation of 
this deterministic system, leading to uncertainty quantification in the original system. 

This paper is organized in six sections. In section 3 we set up the mathematical framework 
and state precisely the problem of uncertainty quantification. Section 4 deals with spectral graph 
decomposition while waveform relaxation is described in section 5. We give an overview of gPC 
and PCM methods, in the section 3. These techniques form the basic ingredients of the scalable 
approaches to UQ, which are discussed in section 7. We propose two such iterative approaches: the 
first one requires access to equations which describe the underlying dynamics of the system, while 
the other one treats the system as a black box. In section 8 we illustrate this iterative procedure on 
a simplified power system network and numerically analyze its convergence properties. Finally, in 
section 9 we summarize the main results of this paper and lay down some future research questions. 
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3    Uncertainty Quantification in Networked Systems 

Consider a nonlinear system described by as system of random differential equation 

x   =   f(x,U), (1) 

where, f = (/i,/a,"- ,fH) £ R" is a smooth vector field, x = (x\,X2,-" i^n) € R" are state 
variables and £ = (£1,62,- • • ,£P) e Rp 's P dimensional vector of uncertain parameters of interests. 
The solution to initial value problem x(to) = xn will be denoted by x(i;£). where for brevity we 
have suppressed the dependence of solution on initial time tn and initial condition XQ. The Jacobian 
J associated with system (1) is given by 

JM,t) = [af'••>S (2) 

and describes the linearized dynamics of the system about the solution trajectory x(f.;£). The 
average value of Jacobian along the solution for nominal value of parameters £„,, will be denoted by 

j     fto+T 

1   Jto 
(3) 

Let us also define a set of quantities 

* = (zu*2,--- •«d) = G(x) = (91 (x, ••• ,Srf(x))), (4) 

as observables or quantities of interests. The goal is to numerically establish the effect of input 
uncertainty of £ on output observables z. 

In what follows we will adopt a probabilistic framework and model £ = (&,&,••• ,£p) as a p— 
variate random vector with independent components in the probability space (i1,A,P), whose event 
space is il and is equipped with cr-algebra A and probability measure V. Without loss of generality, 
we would assume that these parameters (£1, £2. • • • , £p) are mutually independent of each other. Let 
Wi : Ti —y R+ be the probability density of the random variable &(u>), with r\ = Ci(fJ) C R being 
its image. Then. 

*(Q-f[viffl,   v?er (5) 

is the joint probability density of the random vector f = (£1, • • • ,£p) with the support, 

v 
r = JJr\cRp. (6) 

i=l 

Without loss of generality we would assume that Tt = [—1 l],t = 1, • • • ,p. Naturally, the solution 
for system (1) and the observables (4) are functions of same set of of random variables £, i.e 

x = x(t;0,        z = z(t,?) = G(x). (7) 

As described in the introduction,, this problem of uncertainty quantification in large systems (n » 1) 
with large number of uncertain parameters (p> 1) is computationally intensive. Recently developed 
UQ methods like Dsample [11] and sparse-grid based probabilistic methods [14] can handle this 
complexity to some extent. These methods however do not make use of the underlying structure 
and the dynamics of the system, which can be often be taken to an advantage. The goal of this 
paper is to develop scalable uncertainty quantification approaches which exploits this structure and 
dynamics. The key methodologies for accomplishing this are the spectral graph decomposition, 
waveform relaxation, and gPC and PCM, which are discussed in the subsequent sections. 
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4    Graph Decomposition 

The problem of partitioning the system of equations (1) into subsystems based on how they interact 
or are coupled to each other, can be formulated as a graph decomposition problem. Given the set of 
states x i, • • • , xn and some notion of dependence Wij > 0, i = 1, • • • ,n,j = 1, • • • ,n between pairs of 
states, a graph G = (V, E) can be constructed. The vertices Vj in this graph represent the states Xi 
and two vertices are connected with an edge of weight w^, if wtj between the corresponding states 
Xi and Xj is positive (or larger than a certain threshold). 

Different choices of the weight matrix W = [WJJ], would lead to different decompositions of the 
graph. For instance, Mezic et al. [10], proposed a horizontal-vertical decomposition (HVD) of the 
graph G based on the structural properties encoded in the Jacobian 2. associated with the system 
1. Specifically, in this case 

u»4i = I(|J«|), (8) 

where, I is an indicator function. Note wtj = 1 if state i affects state j, and Wij = 0 otherwise. 
The HVD of the graph is obtained by recursively identifying transient and recurrent non-null sets of 
the Markov chain corresponding to the weight matrix W, with weights given by (8). Vertically, the 
system is decomposed into a linear series of subsystems, where the subsystems above is influenced 
by the subsystems below but not vice versa. So. the input signal propagates unidirectionally from 
the bottom to the top. Horizontally, each subsystem is decomposed into independent groups with no 
edges connecting different groups. So, each group has its own input and output and are functioning 
independently. Each group in HVD is a connected component of the graph and HVD creates a 
partial ordering on the set of connected components. 

Another plausible partition of G is to assign the nodes into different components such that nodes 
in the same components are strongly coupled and nodes in different components are weakly coupled 
to each other. This requires a notion of coupling strength between nodes or states, which would 
depend on the nature of the problem; for our case, we propose to use 

v>ij = \\\Jij\ + \Jji\l (9) 

which measures the interdependence of states Xi and Xj on each other, corresponding to the linearized 
dynamics. The problem of decomposition can now be formulated as follows: we want to find a 
partition of the graph G with edge weights (9) such that the edges between different components 
have a very low weight and the edges within a components have high weight. The main tools for 
accomplishing this decomposition are graph Laplacian matrices. There exists a whole field dedicated 
to the study of those matrices, called spectral graph theory [19]. Note that in the literature, there is 
no unique convention as to which matrix is exactly called the graph Laplacian and how the different 
matrices are denoted. In the following we always assume that G is an undirected, weighted graph 
with weight matrix W, where tUy = Wji > 0. The unnormalized graph Laplacian matrix is defined 
as 

L = D-W, (10) 

where, D is the diagonal degree matrix whose ith diagonal entry d\ = J^. Wy. There are two other 
matrices which are called normalized graph Laplacians in the literature. Both matrices are closely 
related to each other and are defined as 

£,„,„   =   D-1'2LD-1'2 = I-D-l'2WD-1'*, (11) 
LTW   =   D-lL = I-D~lW. (12) 

The procedure to decompose the graph using graph Laplacian. is summarized below, details can be 
found in [19]. Given m. the number of components or subsystems. 

1 Construct the graph G = (V, E) by the procedure described above.   Let W be its weighted 
adjacency matrix. 
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2 Compute the graph Laplacian L. 

3 Compute the first m eigenvectors v\, • • • ,vm of L. 

4 Let V £ fP,xm be the matrix containing the vectors v i, • • • ,vm as columns. 

5 For i = 1, • • • n let «j 6 FP" be the vector corresponding to the i-th row of V. 

6 Cluster the points ut, i = 1, • • • , n in IP"- with the k-means algorithm into clusters C\, • • • , Cm. 

7 Output: Clusters A\,- • • ,Am with At = {j\Uj G C,}. 

Typically, m the number of weakly coupled subsystems (or components) in the system, is not known 
apriori. The spectral gap in the spectrum of the Laplacian can be used to identify m. For discussion 
on other methods, see [19]. We shall denote by 

A/i = {j : 3fc 6 At    &    3/ 6 A}, st skl > 0},    i = l,---,m, (13) 

the set of indices of the components (or subsystems) to which the i—th component (or subsystem) 
is weakly connected. 

In practise HVD and spectral decomposition can be combined: the connected components iden- 
tified in horizontal layers after HVD can be further decomposed into weakly interacting subsystems 
by using graph Laplacians. as described above. In summary the graph decomposition partitions the 
system into appropriate subsystems, allowing the application of waveform relaxation, an iterative 
scheme to accelerate simulation of a system composed of weakly coupled subsystems. 

5    Waveform Relaxation 

In this section we describe the basic mathematical concept of the Waveform Relaxation (WR) 
method. We consider dynamical systems which are described by a system of differential equations 
of the form (1). For purpose of discussion here, we would assume that the parameter values £ in the 
system (1) are fixed. The general structure of a WR algorithm for analyzing system (1) over a given 
time interval [0 T] consists of two major processes, namely the assignment partitioning process and 
the relaxation process [17, 18]. 

In the assignment-partitioning process, the system is partitioned into m disjoint subsystems of 
equations. This partition can be accomplished, for instance by the graph decomposition procedure, 
as described in the previous section. Without loss of generality, we can rewrite Eq. 1 after the 
assignment-partitioning process as: 

yi   =   Fi(yx,di(t),Ai,t) 
y2   =   F2(y2,d2(t),A2,t) 

ym    =   Fm(ym,dm(0,Am,t) (14) 

where, for each i'. = 1, • • • , m, 
F, = {fj : j e At}, (15) 

y* € W' is the subvector of x assigned to the t—th partitioned subsystem, i.e. 

yi(t)s{xj(t):jeAi}, (16) 

Ai(t) = {^:jeAi}, (17) 

and 
di(t)s{yA(t):ji6M}, (18) 

.-. 
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are decoupling vectors. It is clear that if the vectors dj(t) are treated as the input variables of 
the system described by Eq. 14. then the system can be easily solved by solving m independent 
subsystems associated with Fi, • • • ,Fm respectively. 

The relaxation process is an iterative process, which starts with an initial guess of the waveform 
solution of the original dynamical equations (14) in order to initialize the approximate waveforms of 
the decoupling vectors. During each iteration, each decomposed subsystem is solved for its assigned 
variables for t 6 [0 T] by using the approximate waveform of its decoupling vector. Two most 
commonly used types of relaxation are: Gauss-Seidel(GS) relaxation and the Gauss-Jacobi (GJ) 
relaxation. For the GS relaxation, the waveform solution obtained by solving one decomposed 
subsystem is immediately used to update the approximate waveforms of the decoupling vectors of 
the other subsystems. For the GJ relaxation, all waveforms of the decoupling vectors are updated at 
the beginning of the next iteration. The relaxation process is carried out repeatedly until satisfactory 
convergence is achieved. 

Let the superscript index / denote the WR iteration count. Then the general structure of a WR 
algorithm can be formally described as follows: 

• Step 0 (Assignment-partitioning process): Partition (1) into m subsystems of equations as 
given by (14). 

• Step 1: (Initialization of the relaxation process): Set 7=1 and guess an initial waveform 
{y?(0 : t € [0   T]} such that y?(0) = yw. 

• Step 2 (Analyzing the decomposed system at the I-th WR iteration): For each i = 1,••• , m. 

d',(t) = {yI
J;
l(t):jieK} (19) 

for the GJ relaxation, and solve for {yr(t) : t £ [0    T]} from 

yf = F,(y1',d,/(t),Ai,t), (20) 

with initial condition yf (0) = ym- 

• Step 3 (Iteration) Set 7 = 7 + 1 and go to step 2. 

Remarks 

1 A simple guess for {yj'(t)} is yj(t) = x<(0) for all t e [0    T\. 

2 In the actual implementation, the relaxation iteration will stop when the difference between the 
waveforms {y'(r) = (y\{t),--• ,y'm(t)) : t e [0,T]} and {y'~l{t) = (y[-\t), • • • ,y'„7l(t)) • 
t e [0    T]},i .e. sup(g|0    T| ||y;(<) - yi-t(t)\\, is sufficiently small. 

3 In analogy to the classical relaxation methods for solving linear or nonlinear algebraic equa- 
tions, it is possible to modify a WR algorithm by using a relaxation parameter u> € (0,2). By 
introducing w, the iteration equation (20) gets modified to yield 

yf=F<(yf,df(t),A<1t), (21) 

where. 
yI

i=yI
i-

1+u{yi-yI
i-

1). (22) 

Note the following two important characteristics of the WR Algorithm: 

1 The analysis of the original system is decomposed into the independent analysis of m subsys- 
tems. 

2 The relaxation process is carried out on the entire waveforms, i.e. during each iteration each 
subsystem is individually analyzed for the entire given time interval [0, T]. 

The conditions that guarantee the convergence of WR method have been analyzed in detail in [17]. 
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6    Uncertainty Quantification Methods 

As discussed in introduction. UQ methods can be classified as sampling and non-sampling based. 
In this section, we describe two such interrelated approaches: generalized polynomial chaos (gPC) 
and probablistic collocation method (PCM). 

6.1    Generalized Polynomial Chaos 

In the finite dimensional random space T defined in (6). the gPC expansion seeks to approximate 
a random process via orthogonal polynomials of random variables. Let us define one-dimensional 
orthogonal polynomial spaces 

H/*'"' = {v : Vk -> R : v e Bpan{tfi(&)}£o},       k = 1,... ,p, (23) 

where, {ipiitk)} denotes the polynomial basis from the so called Wiener-Askey polynomial chaos [12]. 
According to the Cameron-Martin theorem [21], the Wiener-Askey polynomial chaos expansion can 
approximate and describe all stochastic processes with finite second-order moment, which is satisfied 
for most physical systems. The Askey scheme of polynomials contains various classes of orthogonal 
polynomials and with their associated weighting functions which coincide with probability density 
function of different distributions. For example, uniform distributions are associated with Legendre 
polynomials, and Gaussian distributions are associated with Hermite polynomials. An important 
property of the Wiener-Askey polynomial chaos is orthogonality: 

I, MZk)1>j{Zk)iVk{Sk)dSk = 6u, (24) 

The corresponding P-variate orthogonal polynomial space in T is defined as 

W* = 0 W'"' (25) 
|d|<P 

where the tensor product is over all possible combinations of the multi-index d = (d\, cfo, • • • > dv) e 
Nv satisfying |d| = X^=1 dj < P. Thus, W£ is the space of N-variate orthonormal polynomials of 
total degree at most P. and its basis functions satisfy 

*<K)*jKM0de = £(t|(0«,(0) = St], (26) I, 
for all 1 <i,j< dim(Wjf) = M = ^Pp\v}'• where £ is the expectation operator. 

The major advantage of applying the gPC is that a random differential equation can be trans- 
formed into a system of deterministic equations. A typical approach is to employ a stochastic 
Galerkin projection, in which all the state variables ii,xj, • • • , xn are expanded in polynomial chaos 
basis with corresponding modal coefficients (ak(t)), as 

M 

^(U) = 5>*«*<(0>    fe = l,---,n. (27) 

Substituting, these expansions in Eq. (1). and using the orthogonality property of polynomial chaos 
(25), we obtain 

aJ-yA(xf(«,0,— ,«f(*,0,f,*)»i(Ow(OdS,    fe=l,-",n,    j = l,--.,M,       (28) 
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a set of deterministic modal ODEs, with initial conditions 

a*(0) = /xfc(0,O*j(Owtf)^,    fc=l,--,n,    j = l,---,M. (29) 

This system can be solved with any numerical method dealing with initial-value problems, e.g., the 
Runge-Kutta method. Similarly, the observable can be expanded in gPC basis, as 

M 

**p(U) = £^w*i(a k=i,--,d, (30) 

where. 

^ = /**(0*;(£)w(0^ = /9*(x(t,£))*j(aw(0^,    fc-l.— .d,    jml,...,M.       (31) 

Hence, once the solution to the system (28) has been obtained, the coefficients bj can be approxi- 
mated as 

&$« /»k(*f(*,0.---.^(*.C))*>(0w(€)de,    fc=l,---,d,   j=U-,M. (32) 

Such a Galerkin procedure has been used extensively in the literature. However, when (1) takes a 
complicated form, the derivation of Galerkin projection in (28). and subsequently the gPC approx- 
imation of the observable in (32), can become highly non-trivial, if not impossible. To circumvent 
this difficulty, probablistic collocation method has been developed. 

6.2    Probabilistic Collocation Method 

The collocation method is an alternative approach to solve stochastic random processes with the 
gPC. Instead of projecting each state variable onto the polynomial chaos basis, the collocation 
approach evaluates the integrals of form (31) by evaluating integrand at the roots of the appropriate 
basis polynomials. Two underlying concepts for the PCM are the orthogonal polynomial and their 
associated quadrature rule. Given a probability density function w(£) (let p = l,d = 1 for now), 
the PCM based on Gauss quadrature rule, approximates an integral of a function g with respect to 
density w(£). as follows 

/ 
g(OMOd£ n  Yl SinWi, (33) 

•'"i r.ecT 

where, 
Cl = {rk:ipv+l(rk) = 0,k=l,--- ,q+\), (34) 

is the set of Gauss collocation points with 04 being the orthogonal polynomials corresponding to the 
probability distribution w((,), as described in previous section. The weights Wi are given by 

wi = I  ,    tp[VL  My)dy- (35) 

The Gauss quadrature formula, which is a well-known numerical integration technique, yields an 
exact integration value for any function in a polynomial form of order less than or equal to 2q + 1. 
Other quadrature rules can be also be used, some of which have nested quadrature points. One such 
rule known as Clenshaw Curtis (CC) quadrature is described in the Appendix. 

For higher dimensional discussion (i.e. for p > 1), we would denote ID quadrature rule (Gauss 
or CC) along each random dimension as 

uli\g] = Yt
WlMnik),   i = i,--.P, (36) 
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where. lj is the accuracy level of quadrature formula, and m^ is the number of quadrature points 
corresponding to that accuracy level. Building on the ID quadrature formula, the full grid PCM 
leads to following cubature rule. 

J-iJ-i      J-i <?(6,--.?„M0# (37) 

~   /(/i,--- ,lP,p)\g] = (K ®Ul---Ul)\g\ (38) 
mi,   mij mip 

=    £ E "' £ W»* W**h • • • W<^< ^rhn," • , «Vfr) (39) 
ji=ljj=l     jv=\ 

To compute l{h,--- ,/p,p) we need to evaluate the function on the full collocation grid C(l,p) 
(where, 1 = (li, • • • ,lp)) which is given by tensor product of ID grids 

C(l,p)=C^x---xClp, (40) 

with a total number of collocation points being Q = 11' = I h- 'n tn's framework, therefore, for any 
t, the approximations to the model coefficients a* (see Eq. 27) and bj (see Eq. 30) can be obtained 
as 

a)(t) = / z*(t,0*j(flw(Ode* £ £---£(Wi>iWwa---WwJ**(<,rWl,---,rW|,)1 (41) 

and 

6j(t)= /»*(x(t,0)*j«)w(o«*X! £-£(wrw.wrw.-"wi-iJ*W«.n,i„—,%fc)). 
(42) 

Note to compute summations arising in above equations (41.42), the solution x(r.,ri,j,,- • • ,ri j ) 
of the system (1) is required for each sampling point (rj^,--- ,npjp) in the full collocation grid 
C(l,p). Thus, simplicity of collocation framework only requires repeated runs of deterministic solvers 
(without explicitly requiem access to the system equations), resulting in a faster algorithm than gPC. 

If we choose the same order of sampling points in each dimension, i.e. l\ = l^... ••• = /,, = /. 
the total number of points is Q = /''. Hence, the computational cost increases rather steeply 
with the number of uncertain parameters p. This problem can be circumvented by using different 
cubature rule. One such example is Smolyak rule which requires significantly smaller number of 
points while maintaining the same accuracy as full grid PCM. Smolyak's algorithm is a method 
first developed to handle high dimensional quadrature [4] and later extended to accomplish high 
dimensional interpolation [6]. Its basic idea is to use the solution to several low-dimensional problems 
to span the space and then linearly combine these to yield the solution to higher dimensional problem 
[5]. Grid generated using this rule is known as sparse grid; for further discussion, the reader is 
referred to the Appendix. 

7    Scalable Uncertainty Quantification Approach 

In this section we discuss how generalized polynomial chaos and probabilistic collocation method can 
be integrated with graph decomposition and waveform relaxation scheme, leading to scalable UQ 
approaches. We describe two such iterative approaches: the first one requires access to the equations 
which describe the underlying dynamics of the system, while the other one treats the system as a 
black box. 

!)1 
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7.1    Equation Based Approach 

The procedure of transforming a random differential equation to a deterministic system, by employ- 
ing gPC and stochastic Galerkin projection, was outlined in section 6.1. The deterministic set of 
ODE's so obtained describe the evolution of modal coefficients (see section 6.1 for details) and can 
be compactly written as 

a = H(a,«), (43) 
with the initial condition a(0) (see Eq. 29 as well), where. 

(44) 

(45) 

a = (a\ , a2,•• • i«ifi<h2i" • -aM.-" •,<,•• • ,an
u), 

11 = (*i ,hl-- •,Ajf,*?." •^2M,' •,/iiV • •,*&). 
and 

M 

/•(J^aJW^O,—,£«f(*)«i(0,f.«)«i(Ow(OdC,    fc-1,—,n,    j = l,--,M. 
i=l i=l 

(46) 
Note that order of the deterministic system (43) is nM, where M = ^ jffi' and is significantly greater 
than the order n of the original random system (1). However, by applying graph decomposition and 
waveform relaxation to the deterministic system (43). we can accelerate the computation of solution 
to the initial value problem stated above. The main assumption here is that if the system (1 is 
composed of weakly interacting subsystems, so would be the transformed system (43). In summary, 
the three step approach to UQ is: 

• Step I: Apply gPC and stochastic Galerkin projection to system (1) to obtain a deterministic 
system (43). 

• Step II: Apply graph decomposition (see section 4 for details) to identify weakly interacting 
subsystems in the system (43). 

• Step III: Apply waveform relaxation (see section 5 for details) to the decomposed system 
obtained in Step II. 

After these steps, one can evaluate the effect of uncertainty on observables as described in section 
6.1. One of the major limitation of the above approach is that, in order to accomplish step 1 we need 
access to the equations (1), which may not be readily available for large multicomponent systems. 
Moreover, even when equations are available, the Galerkin projection step may be very tedious, if 
not impossible. We describe an alternative approach in the next section, which treats the system 
more or less as a black box. 

7.2    Probabilistic Waveform Relaxation Based Approach 

In section 5 we described a deterministic waveform relaxation, in which the decoupling vectors 
are deterministic function of times. By incorporating UQ methods, we would extend WR to the 
probabilistic setting we are dealing with. Specifically, at each waveform relaxation iteration we 
propose to apply PCM at subsystem level and use gPC to propagate the uncertainty among the 
subsystems. Since UQ methods are applied to relatively simpler subsystems which typically involve 
a few parameters, this renders a scalable iterative approach to UQ in large networks. Moreover, like 
in PCM this method does not require access to the equations describing the system dynamics. 

Consider the i—th subsystem of the system (14), written as system of 1st order ODE's 

y\    =   Ffty4,d,(t),A,,t) 

y'2   =   Ffryu di{t), A<, t) 

F*,(yitdi(t),Aut) (47) 

10 
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where, y* = (3/1,3/21''' >V'N.) 
w't,h W> = M'l (where. | • | denotes the cardinality of the set) and dj(/) 

is the decoupling vector (18). Note that the i-th subsystem is directly affected by the parameters 
At and indirectly by other parameters through the decoupling vector. We shall denote by E1 C 
{£1,62,••• ,£P} the set of all parameters which directly or indirectly affect the i—th subsystem. 
Clearly, E< D A* and 

K = E! \ A* (48) 

will be the set of parameters which indirectly affect the 2—th subsystem. Also we shall denote by 

A< = |J A,, (49) 

Analogous to the P-variate orthogonal polynomial space introduced in section 6.1, we consider a 
P-variate space formed over the random parameter set H C {^1,^2, • • • ,£p} 

W£= (g) Wkd\ (50) 
|d|<P 

such that |d| = d\ +di-\ d/v < P. where N = \E\. Following this notation for the 2-th subsystem, 
we shall denote the polynomials belonging to W£, by *j,j = 1,•••Mi, where Mt = ^"fj^V' and 
Nt = |Ej|. In this polynomial space we seek polynomial chaos expansions of the form, 

M, 

yiP(<,E') = ^a'fc(t)*5(E1), (51) 
j=i 

where, the superscript i in the above variables, denote that the all variables correspond to the i—th 
system. We shall denote by yf (t,E') = {y\p,y2Pr • • , 3/j£) the vector of P-variate expansion for 
2—th subsystem. With such an expansion, we can rewrite each equation in the subsystem (47) as 

ilk    =    Ft(yi,yir(t,K)Aut),        fc=l,---,JV,. (52) 

where, we have expressed the decoupling vector as yiC(t,EJ.) = (y£(t',E-'1),-• • ,y?N (r-.E'*")). with 

^GA^and^^lMI- 
The full collocation grid C(l, n<) for the i—th subsystem will be represented as 

C(l,ni + nc
i) = C{o,ni) xC(m,<), (53) 

where, 1 = (o, m), 
C(o,n,) = C0

1
1x...xC^1 (54) 

is the collocation grid corresponding to parameters A,, with rij = \At\. 0 = (oi,--- ,o„,), and 

C(m,nJ) = C£,1x...x<4nJ, (55) 

is the collocation grid corresponding to parameters Ej-, with n£ = |EJ.| and m = (mi,--- ,mn<-). 
Since, the behavior of i—th subsystem weakly depends on the parameters E$\ we can take, 

max    rrij -C    max    o,t. (56) 
fc=l,•••,»! k=\,-" ,n, 

With this framework, we are ready to outline the second UQ approach: 

• Step I: Apply graph decomposition (see section 4 for details) to identify weakly interacting 
subsystems in the system (1). 

• Step II: Apply probabilistic waveform relaxation, which involves following sub steps. 

II 
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- Step 0 (Assignment-partitioning process): Partition (1) into m subsystems (obtained in 
Step I) leading to system of equations given by (14). Obtain, A*, Af E1 and EJ. for each 
subsystem, i = 1, • • • , m. 

- Step 1: (Initialization of the relaxation process with no coupling effect incorporated): Set 
/ = 1 and for each i = 1, • • • ,m. guess an initial waveform {y''(£) : t 6 [0 T}} such that 
y"(0) = y»i- so that, the decoupling vector becomes 

ylc(t) = iyh{0),--,yil,J0)),     ;fc€M,   Af» = |M|, (57) 

and solve for {y^t.A') : t e [0   T}} from 

yHF'fy.'jiW.A^), (58) 

with an initial condition y'(0) = yJ'fO) on a collocation grid C(o, ra<). Compute the gPC 
expansion over P-variate polynomial space W^. leading to 

A/, 

j,iP1(t,A') = £a«fc(t)*5(A'), (59) 

for k = 1, • • • , A/,. From now on we shall denote the solution vector of the i-the subsys- 
tem at 7-th iteration by yf = (y\p',• • • TV'N')- 

- Step 2: (Initialization of the relaxation process, incorporating first level of coupling effect): 
Set 1 = 2 and for each i = 1, • • • , m, set 

y£(t,A«) = (y£1(tIA*),-.-,y£n(t,A'»»)),        jteM,    tf„ = |M|,        (60) 

for the GJ relaxation, and solve for {y?(t,E') : t e (0    T}} from 

y? = Fi(y?,ji(t,Ai),A1,*)1 (61) 

with an initial condition y^(0) = y"(0), over a collocation grid C(\,nt + nf). From this 
obtain the P—variate expansions over the polynomial space W£, so that 

Mt 

yi
k
P2(t,Zi) = Y,ajk(tWj(i:

i),    fc=l,-..,A/i. (62) 

- Step 3 (Analyzing the decomposed system at the I-th WR iteration): For each i = 
1, • • • , m. set 

yfr(«,E,') = (yJ
,;('-1)(e,E^),---,yff!'"

1)(t,EJN")),       J*€M,    W„ = |M|,      (63) 

for the GJ relaxation, and solve for {yfc(t,E') : t £ [0   T}} from 

yf=F*(yf,Ji(t,E«))A1,t), (64) 

with initial condition yf(0) = y?(0) over a collocation grid (7(1, n* + n£).   Obtain the 
expansions, 

M, 

i/iP/(t,A') = ^a'(t(t)*}(A1),    fe = l,...,M1. (65) 

- Step 4 (Iteration) Set / = / + 1 and go to step 3. 

12 
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Note that in above approach. PCM is applied at subsystem level with the collocation grid C(l,n( + 
nc

t) (where, (1 = (o,m))with o = (oi,--- ,oTli) and m = (mi,--- ,m„<)) being sparse for the 
parameters which affect that subsystem indirectly (see condition 56). The table below, shows how 
much computational savings (see last column) can be obtained by using above framework, instead 
of full collocation over the entire parameter space. In the table, m be the number of subsystem. 
Pi will be number of parameters occurring in the i—th subsystem and / be the order of accuracy 
of collocation along each dimension for the collocation grid over the entire parameter space with 
p = YilLiPi parameters. Lets assume for simplicity of analysis, that o* = ls,i = l,-- ,ra, and 
mj = lc, i = 1,- • • ,nj and lr < /». /max denote the maximum number of waveform relaxation 
iterations. 

Subsystems & parameters Collocation parameters Full Collocation {TZF) Iterative (71/) 
m = 2,pi =5,i= 1,2 I ^— D, Ifi — D. Ijji == £ 9,765.625 2.006.251 5 

77! = 3,Pi = 5,7 = 1,,2,3 1 ^ 0. 1 s ^ Oj Ifji = ^ 3.0518e+10 96.009.376 300 

In the table above entries in third column are computed using formula Up = /'' which denotes the 
number of deterministic runs of the complete system (1). Similarly, the fourth column is obtained 
using 

m m 

Tit =! + £)/?* + /max(£T <g)i?'), (66) 
i=l i=\       jfr 

assuming /max = 10. and measures the total number of deterministic runs of the subsystems in- 
volved. Clearly, advantage of the iterative approach becomes evident as the number of subsystems 
and parameters in the system increase. Also note that this approach is parallelizable. and hence 
highly scalable. 

7.3    Some Remarks on two algorithms: 

1 There are number of parameters that need to properly identified to 

2 Analytical conditions under which these algorithms will converge, is not known and need to be 
established. These conditions would provide an We perform some experiments to numerically 
study the convergence behavior of probabilistic WR. 

3 Note that in both algorithm graph decomposition is applied to identify weakly interacting 
system, before waveform relaxation is initiated. It is assumed that this decomposition remains 
valid as the system evolves during relaxation process. However, the 

4 The full grid collocation used in above algorithm can be replaced by sparse grid collocation 
in a straightforward manner. With this, additional computational gain can be attained as 
sparse grid methods are computationally efficient compared to the full grid (see section ?? and 
Appendix A for further details). 

8    Example Problems 

In this section we illustrate the iterative procedure developed in previous section on a simplified 
power system network and numerically analyze its convergence properties. 

13 
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8.1    Stability Problem 

In order to illustrate the iterative algorithm proposed in section 7.2 and study its convergence 
behavior, we first consider a simple system, with two states (zi,X2)- 

ii    =    ax\+cx%-v\, (67) 

±2    =   cx\+bx\-V2, (68) 

where, a,b,c,i>i,t)2 are the parameters. Here the parameter c determines the coupling strength 
between two subsystems described by the two equations. It would be assumed that c, v\, t>2 are 
deterministic parameters, while a,b are uncertain with Gaussian distribution. The objective here is 
to determine the uncertainty in the stability of system, which can be quantified by looking at the 
distribution of Xmnx, the maximum eigenvalue of the Jacobian. 

*«.^-(5: a). <»> 
where, xio,Z20 is the equilibrium satisfying 

ax2
1Q + cxl„ - vi    =   0, (70) 

cx\n + bxl0 - v2    =    0. (71) 

Figures below show result of probabilistic waveform relaxation for different values of coupling pa- 
rameter c. For all cases, the ground truth is computed based on collocation on the parameter space 
(a,b) with / = 10. while /., = 5. /„, = 3 and P = 5. In all cases considered, the iterative approach 
converges to the ground truth, as shown by the histogram of Xmax (see figures ??), and its mean 
and variance (see figures ??). As the coupling strength increases, the number of iterations required 
for the convergence increases. 

9    Conclusion and Future Work 

In this paper we have proposed uncertainty quantification approaches which exploit the underly- 
ing dynamics and structure of the system. In specific we considered a class of networked system, 
whose subsystems are weakly coupled to each other. We showed how these weak interactions can be 
exploited to overcome the dimensionality curse associated with traditional UQ methods, and radi- 
cally accelerate uncertainty propagation in large systems. By integrating graph decomposition and 
waveform relaxation with generalized polynomial chaos and probabilistic collocation framework, we 
proposed two scalable iterative UQ approaches: equation based which requires access to the equations 
describing the underlying dynamics of the system, while the other one. which we called probabilistic 
waveform relaxation, treats the system more or less as a black box. The second approach is more 
practical as for most complex networked systems, it may be non trivial to obtain system equations, 
if not impossible. We illustrated the probabilistic waveform relaxation approach on a simple system 
with promising results. 

Many questions further need to be investigated. First of all. analytical conditions under which 
the two iterative schemes proposed in this paper converge, need to be established. The choice of 
collocation parameter /„, (see section 7.2) plays a critical role in how much computational gain can 
be obtained in probabilistic waveform relaxation; a systematic procedure for selecting this parameter 
is therefore crucial. Finally, this algorithm need to be tested on a larger system, to establish its true 
potential of being scalable. 

1 1 
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A    Sparse Grid Methods 

A.l    Clenshaw Curtis Quadrature 

ClenshawCurtis (CC) quadrature employs a change of variables £ = cosO and uses a discrete cosine 
transform (DCT) approximation for the cosine series, in order to compute the integral in Eq. 33. 
More precisely, the cosine series expansion 

oc 

g(cos 0) = ^ + VV cos(kO), (72) 
1      k=\ 

leads to 

/   0(Ou7(O#    =     /%(cos(0)Mcos(0))sin(0)d0 
J~\ Jo 

where, for A: = 0, • 

and 

v 
•^Wo + ^otW* (73) 

ak = - I   g(cos0)cos(k0)dO, (74) 
*" Jo 

Wk = /   w(co&O)cos(kO)sm0d0. (75) I' Jo 
Unlike computation of arbitrary integrals, Fourier-series integrations for periodic functions (like 
/(cos#))) in Eq (74), up to the Nyquist frequency k = p, are accurately computed by the p equally- 
weighted points 

C1
q = {rk:rk = coS(7r(k~1)),k=l,---,q+l}, (76) 

9 
except the endpoints. which are weighted by 1/2, to avoid double-counting. With this the integral 
(74) can be approximated as 

2 
a/c ~ - 

1 
^ + ^(-l)' + £^)cos(^^) (77) 

For most w(£), the integral (75) cannot be computed analytically. Since the same weight function is 
generally used for many integrands <?(£)• however, one can afford to compute these Wk numerically to 
high accuracy beforehand, like in Gauss quadrature. Note the following features of CC quadrature: 

1. Since, by definition the Chebyshev polynomials Tk(£). satisfy T)t(cos0) = cos(fctf) CC quadra- 
ture can be thought of as employing the expansion of the integrand (see Eq. 72) in terms of 
Chebyshev polynomials to compute the integral. 

2. In CC quadrature, the integrand is always evaluated at the same set of points, given by Cv 

(Eq. 76) regardless of probability density function. On other hand, in Gaussian quadrature, 
different density functions lead to different orthogonal polynomials, and thus different roots 
where the integrand is evaluated. 

3. For q = 2',i > 1, C\ C C/+1 (this would be the notation we would use for CC ID grid from 
now on, i.e. C] = C'(<)), the CC quadrature points become nested. Gaussian quadrature 
points lack this property. 

L5 
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4. The CC formula is less accurate, the (q + 1) point CC rule can provide an accurate result for 
integrating polynomial functions of order up to q. compared to 2q + 1 for Gauss. For practical 
purposes, however both method lead to comparable accuracy [3]. This is possible because 
most numeric integrands are not polynomials, and approximation of many functions in terms 
of Chebyshev polynomials converges rapidly. 

In summary, besides having fast-converging accuracy comparable to Gaussian quadrature rules. 
CC quadrature naturally leads to nested quadrature rules, which is important for both adaptive 
quadrature and multidimensional quadrature (cubature). There are other quadrature rules with 
nested properties, details can be found in [5]. 

A.2    Smolyak Quadrature 
Smolyak's algorithm is a method first developed to handle high dimensional quadrature [4] and later 
extended to accomplish high dimensional interpolation [6]. Its basic idea is to use the solution to 
several low-dimensional problems to span the space and then linearly combine these to yield the 
solution to higher dimensional problem [5]. Let 

Ai[5] = (^-^1_1)[P] (78) 

be the difference quadrature formula with. UQ = 0. In general, the difference are therefore quadrature 
formulas on the union of grids C^ U C^_ j, which is just C\ in nested case. Based on these difference 
formulas, Smolyak construction approximates the integral in Eq. (4) by 

S(l,P){g}=     Y    (Aj.SAl.-.-oA^M (79) 
IM<I+P-I 

where, |i| = i\ + 12 • +V This can be expressed in terms of £/{', as 

S(1,PM=    Y    (-i)'+p-|,M (j,!1,) «®<-®<M (80) 
I<III<J+I>-1 v      ' 

where. 

U-V"(|i| 
(p-l)l 

•/)!(P-Ii| + /)!' (81) 

is the factorial. From above equation we see that like full tensor-quadrature. Smolyak quadrature for- 
mulas are special tensor-product rule which are constructed from tensor products of one-dimensional 
quadrature formulas, but these are combined so that in only some dimensions quadrature formulas 
of high order are used while formulas of lower order are used in the other dimensions. One could 
also write above formula in recursive fashion, like 

i~\ 

S(l,p)[g] = £(Al ® S(l - k,p - 1))[5], (82) 
k=\ 

and 

S(l + l,p+l)\g\ =     Y    «®Ais---®
Al®W/+P-|i|M (83) 

I»I<'+P-I 

Note that to compute (79), we only need to evaluate function g over so called sparse grid, which is 
given by union over the pariwise disjoint grids 5,, x • • • x Sip, 

S(l,p)=     |J     Shx-.-xSip, (84) 
|l|<l+p-l 

Hi 
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where, x denotes the usual Cartesian product. For non nested case 

Sk = Cl, (85) 

while, for nested case 
Sk = Cl

k\C
l
k_1, (86) 

with C(' = 0. where recall C\ is a set of ID quadrature points corresponding to level k. Thus, 
unlike full grid (Eq. 40), the sparse grid is a union of several tensor products. Based on Eq. (80). 
an appropriate choice of vector i = («i,*2,• • • ,ip) gives level of accuracy in each dimension, from 
which the sparse grids are obtained by usual product i.e. <S,j x Si7 •• -Sip. In case the univariate 
formulas are nested, the sparse grids are also nested, i.e. 

S(l,p)cS(l + l,p). (87) 

The number of points Q in sparse grids S(l,p) are given by 

Q=     E     Pi,  -Pi,- (88) 
IHSI+p-l 

where, 
pk = Card(Sfc), (89) 

is the cardinality i.e. number of points in the set Sk. If m/ = 0(2') the order of Q is 

Q = 0(2fl"-1) (90) 

This shows that the dependence on dimension is much weaker on n the number of uncertain param- 
eters, compared to 0(2''') for full grid. Table 1 gives a comparison of the number of grid points in 
different schemes. 

1 For n > 5 the sparse grid methods prove significantly more advantageous than full grid. 

2 Nested quadrature rules lead to sparser grids compared to non-nested quadrature rule. 

3 The asymptotic accuracy of sparse grid method is comparable to that of full grid. 

More precise results on accuracy and convergence properties of Smolyak grids with different quadra- 
ture rules can be found in [5]; for multielement formulation of sparse grid see [2]. 

In summary, the Smolyak formula (Eq. 80) can be expressed as 

P-i P-P 

S(1,PM=    E    E'-'E^M. (91) 
|i|<l+p-ljl=l jn = l 

with, i = (»i,t2,--- ,ip),j =  (ji,J2,--- ,j,,)- and r„ = (rtljl,--- ,rirljn).    Again note that i = 
(ii>h,• • • ,iP) is vector specifying levels of quadrature formula in each dimension. For each ik, pik 

(see Eq.   89) denotes the actual number of points in the ID grid (Sk, see Eq.   85 or 86) in fc-th 
dimension; hence jk goes till ptk to cover all points in the grid in each dimension. 

For non nested case, weights are combined as follows 

Wli = Whh-WtrJp, (92) 

while in nested case, 
W»=        E        w(«i+«iWi",v(*«+fli.W«' (93) 

|i+q|<l+2d-l 

17 
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Random Dimension (n) Level (/) FG SG CC SG Gauss 
3 2 8 7 10 

3 27 25 52 
4 64 69 195 
5 125 177 609 
6 215 441 1710    ' 
7 343 1.073 1502 

5 2 32 11 16 
3 243 61 131 
4 1.024 241 746 
5 3.125 801 3376 
6 7,776 2.433 13.083 
7 16,807 6.993 45.458 
8 32,768 19.313 145,873 
9 59,049 51.713 440.953 
10 100.000 135.073 1.272,848 

10 2 1,024 21 31 
3 59.049 221 486 
4 1.048.576 1.581 5166 
5 9,765.625 8.801 42.101 
6 60,466.176 41,265 281,867 

20 2 1,048.576 41 61 
3 3,486,784,401 841 1871 
4 1.099,511.627,776 11,561 38.531 
5 95.367,431.640.625 120,401 600,226 

Table 1: Comparison of full gird and sparse grid PCM using different quadrature rules. In order 
to generate above table. m\ = I + 1 for Gauss, while m\ = 2,_1 + 1,1 > 1 (and m\ = 1,1 = 1) for 
nested CC univariate quadrature formula (see Eq. 36). This table has been partially taken from [9], 
with last column generated using ME-gPC code (see next section). 

18 
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with q e N" and 

- / Wki    if   q = l 

»(*+«M " \ W(fc+,_1)P - W(k+t.3),    if   q > 1, (94) 

where. s,r are such that rkj = r(/t+(,_1)r = r(fc+(J_2)». 
The weights can be precompiled in both cases, so that there is no practical difference concern- 

ing the overall cost of the quadrature formula. Note that Smolyak formulas can contain negative 
weights even if the underlying univariate quadrature formula have positive weights. Convergence 
is guaranteed, because values of the weights remain relatively small. For more details on stable 
numerical implementation of Smolyak quadrature, the reader is referred to [5], 
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lter=l lter=2 lter=3 
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Figure 1: Convergence of distribution, c = 0.1 

Figure 2: Convergence of mean and variance 
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Figure 3: Convergence of distribution, c = 1.0 
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Figure 4: Convergence of mean and variance 
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Figure 5: Convergence of distribution, c = 2.0 
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Figure 6: Convergence of mean and variance 
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Figure 7: Convergence of distribution, c = 2.8 

Figure 8: Convergence of mean and variance 
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B.2    Uncertainty propagation by various methods 
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Summary 

The main results presented in this work are summarized next. 

PDF Fitting for Uncertainty Propagation, Long Tail input PDFs, High 
dimensions, Unknown Unknowns. The approximation of PDFs of outputs of 
systems that depend on stochastic inputs can be used to estimate statistical measures 
of the outputs. These PDFs can be used to propagate further the uncertainty in 
complex systems. Computations of intermediate PDFs and merging of PDFs can 
provide large computational savings in uncertainty propagation (UP) computations 
for complex systems. Formulas that evaluate these computational savings are 
provided. Methods of fitting PDFs are illustrated on several UP problems as: a) 
Computation of phase change temperatures depending on 4 input parameters with 
long tail PDFs; b) In high dimension examples, PDFs with up to 2000 input 
parameters are effectively estimated; c) The effectiveness of estimating PDFs is 
illustrated for high dimension cases that also include unknown unknowns(inputs) with 
unknown PDFs. 

Optimized Interpolation for parameters and number of eigenvectors using 
probability weighted objectives is an interpolation procedure that combines a) a 
Nystrom kernel based interpolation approach with b) an optimization of the 
parameters of the kernel such that to minimize the difference between statistical 
measures of the interpolated function and of the data. This method was used in the 
response surface (RS) UP approach. 

Domain Exploration approaches, uniform domain covers, hierarchical stochastic 
covers for Optimization and UP. Finding positions of points that provide quasi 
uniform domain covers are important for designs of experiments, optimization, UP, 
interpolation, domain discretization, solving PDEs etc. Domain exploration 
approaches are more and more often used in industrial applications where an 
understanding of the space of possible designs is thought for, e.g., for regions of 
robust solutions, or for optimal solutions with respect to multiple objectives. Domain 
exploration approaches usually offer more information about the design space than 
optimization approaches. Finding good sets of sampling points is important for the 
efficiency of domain exploration approaches and for UP. It is desired to obtain the 
maximum amount of information about the design space using a smallest number of 
samples. Simple and robust hierarchical stochastic cover techniques are presented. A 
repelling particle method is illustrated where n points in a domain that act as 
repelling particles pushed by potentials that aim to enforce given properties such as 
uniform spacing. The particles may be denser in regions where given PDFs are higher 
(the PDFs are treated as separate potentials). Treatment of boundaries and constraints 
in searches and optimization is performed by three techniques: direct enforcing of the 
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constraint, using of boundary particles and using of boundary potentials that repel the 
particles towards the interior. We discuss a Hierarchical Architectural Optimization 
approach using these ideas. Results for Domain Exploration, Global Optimization and 
finding Multiple Local Minima by Adaptive Hierarchical Repelling Particle 
Techniques are demonstrated. In addition, it is demonstrated that the optimization 
will track the found local minima in a case when the objective varies continuously in 
time (or depending on parameters), i.e., the problem has a dynamic objective. 

A Generic Unstructured Multigrid (MG) Approach in High Dimensions is 
proposed that combines the presented domain covering approaches, with the 
interpolation approaches, and with known multigrid formulations. These generalize 
known MG techniques to sparse data in high dimensions and combine the efficiency 
of hierarchical structures with local iterations and with approximation of solutions by 
reduced models. 

A Hierarchical Richardson Approach for Model Extrapolation is suggested. 
Coefficients of a sequence of models are identified by system identification and 
extrapolated as in a Richardson procedure. Models may be decomposed into 
deterministic sub-models (e.g., trends) and stochastic sub-models (e.g., noise). Model 
extrapolation can be used for both deterministic and stochastic models, hence for UP. 
Large computational savings may be obtained by extrapolating a sequence of coarse 
model results to approximate fine model results. 

A Response Surface (RS) Uncertainty Quantification Approach is compared with 
MC, a Polynomial Chaos Collocation approach, and with DSAMPLE (an effective 
quasi MC technique) on the Kr Milestone Problem. Advantages and disadvantages 
of the RS approach are discussed. 

A Sum of Gaussians State Uncertainty Propagation method was demonstrated for 
a New England Power Grid model and the computational time savings using the 
proposed merging of PDFs approach is discussed. 

1. PDF Fitting for Uncertainty Propagation, Long Tail input PDFs, 
High dimensions, Unknown Unknowns 

The approximation of PDFs of outputs of systems that depend on stochastic inputs can be 
used to estimate statistical measures of the outputs. These PDFs can be used to propagate 
further the uncertainty in complex systems. It is shown that appropriate computations of 
intermediate PDFs can significantly reduce the complexity of uncertainty propagation in 
(UP) computations. Methods of fitting PDFs are illustrated on several UQ problems as: 
a) Computation of phase change temperatures depending on 4 input parameters with long 
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tail PDFs; b) In high dimension examples, PDFs with up to 2000 input parameters are 
effectively estimated; c) The effectiveness of estimating PDFs is illustrated for high 
dimension cases that also include unknown unknowns(inputs) with unknown PDFs. 

The main idea is to approximate the PDF(f) by fitting a histogram of f(x) as shown in 
the figure below. 

Multiple techniques have been applied such as sums of Gaussians and kernel density 
functions. For example, the PDF(f) may be approximated a by a sum of Gaussians or of 
other basis functions (such as rectangles), or a spline fitting a histogram etc. 

If the PDF(f) is smooth, then a small number of points may be sufficient to approximate 
it well. The approximation of the PDF(f) is an ID problem, although f(x) may depend on 
the variables x in high dimensions. Moreover, the fitting does not use the PDF(x). 
Even more, the PDF(f) may depend on many unknown unknowns with unknown PDFs. 
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PDF(T) Approximations by Kernel Density, Long Tail 4D 
The parameters and their PDFs are not used 
Works in high dimensions for any number of parameters and with 
unknown distributions; Works for unknown unknowns 
Model: T(x) = Gaussl * Reg1 + Gauss2 * Reg2  fitting MD data, x in 4D LT 

Histogram of Data 
PDF(T(x)) 

PDF(T) 
Approximations 
50K samples 

Convergence of Mean and Var 

50K samples: 
mean_T_reg MC = 106.65 
var_T_reg MC = 400.02 
mean T bin Hist = 106.65 
var_T_Wn Hist = 400.02 
mean TE ker GSS = 106.65 
var_TE_ker GSS =   400.31 

PDF (X T Bind), m OSSIt). k« BOX(b) 

i PDF(T) A 
Approximations .' 

' 500 samples      ; 

.A*. 
f»j•»• tin 
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PDF(T) for 500 Samples 
Histogram of T data 

tl..  III   I       M 

PDf ol T BliKr). h»r_0S9(e), k«r_BOX(b) 

• -V 

A 

J. V, 

Scaled Probab. Tc_E(b) v$ T_MC(r) 

P(x) 
„l 

T(x) 

Probability of p(x) for 
different x plotted for T(x) 
!!! T(x)=T(y) may accumulate 
2 different probabilities : 

p(x)*p(y)      for     x±y 

PDF(T) ~ Sum_x g(T(x), T) / N 
Sum of Boxes, Gaussians, Kernels 
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DARPA Kr Milestone 4 Gaussian PDFs (5000 samples) 
The PDF statistical measures reflect the Measures of the Samples 
The quality of the sampling is reflected in the quality of the PDF 
and they should have similar convergence rates, 
e.g., DS + PDF should converge faster than MC + PDF 
!! The time savings come when Uncertainty is Propagated using PDFs 

L 
PDF 01 T  Bln(r), k«t_QSS(c), ktr_BOX(b) 

mean MC = 
var    MC = 

mean PDFi 
var     PDF i 

110.13 
309.04 

= 110.13 
= 317.45 

Analytic results Vladimir: 
mean T An: 110.30 
var   TAn: 315.61 

The Kernel PDF (blue) is smoother 
than the Histogram (red) 
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High Dimensions, Unknown Unknowns 
2000 parameters (Normal PDFs) 
"unknown" parameters random (uniform) drive the mode switch 
500 samples,    10A(-3)   relative error MC vs PDF 
5000 samples, 10A(-4)   relative error MC vs PDF 

Histogram of T data 

500 samples 
mean MC = 186.53 
mean GSS PDF  = 186.54 

varMC = 1.9002e+005 
varGSSPDF= 1.9021e+005 

. „•  PDF of T Btn(r),K« GS&CI. k«r BOX(b) 

h 
1 

J 

5000 samples 
mean MC =    183.35711 
mean_PDF=   183.35707 

var MC=         185579.5 

\i     \ i              ! 

 i-            i var_PDF =        185542.8 

Propagation of PDFs in complex Systems 
Complexity reduction by merging PDFs 

The propagation of PDFs in complex systems by computations of intermediate PDFs 
and merging of PDFs can significantly reduce the complexity of uncertainty 
propagation in (UP) computations. The following schemes provide the computational 
time saving using PDF merging. 
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High Complexity of approximating PDFs by MC Quasi - IK,... 

PDF(x1) 
z=g(f(x1.x2)) 

N   nmblti 
N  umplM 

y=f(x1,x2) z=g(y) 

PDF(x2) 

PDF(z) 

A 
A 

T1   • Tim* to Mlmm POF(I) directly Irocn «l. >2 by MC   OMC.... 

T1 =( N variables ' N samples) *  (Tf + Tg)   j Tf. Tg - time to evaluate f, g 

Time Saving by Merging PDFs 

Besides computing y also compute PDF(y): 
Merge N variable PDFs into 1 PDF 

PDF(x1 z=g(f(x1,x2» 

PDF(z) 

A 
Reduce N var MC to 
1 var MC 

T1   > Time to estimate PDF(z) directly from x 1. x2 by MC / OMC,... 

T1 a ( N variables ' N samples) • (Tf • Tg)   ; T1, Tg = time to evaluate t, g 

T2 a Time to estimate PDF(z) from xl, x2 computing Intermediate PDF(y): 

T2 = ( N variables " N samples)- Tt  +  N samples " Tg, 

Time Savings in approximating PDF(z) •TI-TS « ( N variables -1) • N samples " Tf£4 
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Time Saving by Merging PDFs + Reducing MC to PDF Fitting 

Besides computing y also compute PDF(y): 
Merge N variable PDFs into 1 PDF + Replace MC for y by PDF Fitting 

PDF<*1> z=g(f(x1,x2)) 

PDF(z) 

A 
Reduce N var MC to 
1 var PDF Fitting 

T1   • Time 10 estimate PDF(z) directly tram x 1. »2 by MC   OMC.... 

T1 s ( N variables ' N samples)' (Tt « Tg)   ; Tf, Tg = lime to evaluate 1, g 

T2 = Time to estimate PDF(z) from xt, x2 computing intermediate PDF(y): 

T2 a ( N variables ' N samples) ' Tl   t N   PDFtit  ' Tg. 

Time Savings In approximating PDF(z) »T1-T2 * Tg • (N variables ' N samples -N PDFtit) 
25 

Time Saving by Merging PDFs + Reducing MC to PDF Fitting 

Besides computing y also compute PDF(y): 
Merge N variable PDFs into 1 PDF + Replace MC for y by PDF Fitting 

PDF(x1) 

A 
z=g(f(x1.x2)) 

N_varlebles 
N samples y=f(x1,x2) 

A 
PDF(x2)     Reduce N_var MC 

to N   var PDF Fitting 

PDF(y) 

A 
PDF(z) 

z=g(y) A 

T1   a Time to estimate PDF(z) directly tram il. x2 by MC / 0HC.... 

ti • ( N variables * N samples)' (Tl e Tg)   ; Tl, Tg a time 10 evaluate I. g 

T2 a Time to estimate PDF(z) from x1, x2 computing Intermediate PDF(y): 

T2 a ( N_vsrfable_PDFfrl> • Tl   . NPDFf it • Tg, 

Time Savings In approximating PDF(z) = T1 - T2 a 
Tf'(N variables • N samples • N variable PDFtit) • Tg • (N variables °N samples - N PDFjfc) 

2. Optimal Interpolation: Interpolation optimized for parameters and 
number of eigenvectors using probability-weighted objectives. 
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The presented interpolation procedure that combines a) a Nystrom kernel based 
interpolation approach with b) an optimization of the parameters of the kernel such that to 
minimize the difference between statistical measures of the interpolated function and of 
the data. This method was used in the response surface (RS) UP approach. 

Response Surfaces: Nystrom Interpolation with PDF weighted Optimization 
Fit functions using Eigenvectors of a Kernel as basis functions 

Given   the  values fix,)  of / at   the points   /j, xnl, 

approximate   fix)  and  derivatives  of /   at   x. 

I)   Kv=Av,     K    is a  kernel,    e.g..     K(x. v) = exp(-llA- vII" Iff') 

2)   v(x,) = — ^KUfX/Mx,)    eigenvectors    of   K 

3)   v(x) = — ^K(x,xl)v{xl) extend the eigenvectors usingK 

. M 

4)   f(x,)"^alvl(xl)  fit  f    by a   PDF weighted Optimization (see next) using a subset of eigenvectors 

^  5)   /(jr)-£«,i',U) extend /using extension of eigenvectors 3) 

Optimization Added to Nystrom 

°)   f(x) = ^-f^K(x.x,^l{x,)) 

a   a      N 

7)   dIf{x) = ^-r(Y/>,K(x,xlyvl(xl))   get derivatives of f  from derivatives of   K 
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Optimization of the RS to fit the data, the mean and var of the data 
The samples x are fixed, Find the RS, R(x) that best fits the data f(x) by varying the 
number of eigenvectors (M), kernel parameters (sigma), and coefficients (a) of the 
eigenvector expansion 

Nystrom:   Given    the  N values fix,)  of /at   the N points   lx, x„l, 

approximate   fix)   at    t. 

1) Kv = Xx\     K    is  a  kernel,    e.g..     Ku,.vl = exp(-lljr-.ylr! la1)    NxN 

M 

2) /(*,)" R(x,) = ^ulv,(xl)  approximate f using a subset of   M  eigenvectors  and  an  Optimization   as: 

3) O, = min(minll/-RII/ll/ll)    forM,    a. a. gives  good   mean  and   var   approximations 

4) 02 = min(mini£l/U,)-R(x,)I p(.r,)/(^p(JC,)+ wI var(f)- var(R)l 11 

minimizez   mean and variance errors using known PDFs 

5) O, = mini mini norm,   mean,   var,    PDF(RS)\\ 
U n       a 

insures R   converges   to f in   norm! and...PDF), where PDF(RS) is an approximation of   the histogram(f) 

6] Bootstarp approaches: compare N different RS's. each  for another subset of N-l  samples 

Several potential advantages of RS for uncertainty quantification 

1) The RS approach may work in large dimensions (10A2 - 10M ?) for RS a small 
number of "good" eigenvectors may be sufficient. The eigenvectors may represent 
well the reduced dimensionality of the data. 

2) The RS approach may be easily applied on general domains and on manifolds 

3) The RS approach may use a relatively small number of evaluation points (e.g., quasi 
uniform in high dimensions) 

4) The eigenvectors used in RS may depend on the problem - an advantage in 
approximating features of the surface 

5) The eigenvectors may have a local character (e.g., sums of Gaussians) hence may 
represent local features of surfaces 
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6) Error and convergence estimates based on eigenvectors and eigenvalues may be 
provided 

7) The RS approach is general: any probability distributions of parameters may be used 
for the RS 

8) The RS approach may also be used when unknown unknowns (with unknown 
distributions) are present (as shown in our approach, where about 10A4 random initial 
positions and initial velocities are present), (see the extrapolation approach that estimates 
models of noise). 

9) Extension/Extrapolation using eigenfunctions may have improved reliability for 
bounded functions. 

10) RS provide multiple alternatives/freedom in: selecting the kernels, evaluation points, 
handling convergence, handling high dimensions, handling general domains etc. 

Disadvantages of Eigenvector based RS Approaches 

An expensive diagonalization of a large matrix is required. The matrix may be sparse but 
it is not banded usually. Eigenvalue computing time and accuracy are major concern 
issues. Numerical instabilities may happen due to small eigenvalues, especially in 
schemes that involve division by the small eigenvalues (that often have large relative 
errors). This difficulty may be handled by the hierarchical RS approaches. The selection 
of the kernels and of parameters of kernels are not obvious. It is not easy to define local 
parameters, although the structure of the problem may require this, e.g., a Gaussian sigma 
should depend on the density of the data. 

3. Domain Exploration, Hierarchical Uniform Domain Covers for UQ. 
Hierarchical Architectural Optimization. 

Finding positions of points that provide quasi uniform domain covers are important for 
designs of experiments, optimization, UP, interpolation, domain discretization, solving 
PDEs etc. Domain exploration approaches are more and more often used in industrial 
applications where an understanding of the space of possible designs is thought for, e.g. 
for regions of robust solutions, or for optimal solutions with respect to multiple 
objectives. Domain exploration approaches usually offer more information about the 
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design space than optimization approaches. Finding good sets of sampling points is 
important for the efficiency of domain exploration approaches and for UP. It is desired to 
obtain the maximum amount of information about the design space using a smallest 
number of samples. Simple and robust hierarchical stochastic cover techniques are 
presented. A repelling particle method is illustrated where n points in a domain that act 
as repelling particles pushed by potentials that aim to enforce given properties such as 
uniform spacing. Treatment of boundaries and constraints in searches and optimization is 
performed by three techniques: direct enforcing of the constraint, using of boundary 
particles and using of boundary potentials that repel the particles towards the interior. 
The approach is used for Hierarchical Architectural Optimization. 

In the hierarchical stochastic covering approach, a domain is covered stochastically by 
non-intersecting balls of same radius. A sequence of covers of decreasing ball radii is 
used as shown below. Stochastic stopping criteria are proposed. 
Similar, using a particle repelling approach to cover a domain by repelling particles, for 
example repelled by Gaussian potentials of given width, a hierarchical cover is obtained 
by selecting Gaussians of different widths. 

Applications: 

1. UQ for selecting sampling points 

2. RS, Interpolation, Fitting 

3. Design of Experiments (DOE), Domain Exploration 

4. Global Optimization using hierarchical approaches 

Advantages: 
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1. Works in high dimensions 
2. Uniform full domain cover. 
3. Avoids meshing - griding 
4. Works on unstructured domains, manifolds 
5. Multiscale covering 
6. Handling of Boundaries, Constraints 
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Domain Exploration-DOE using Repelling Potentials and Particle Dynamics 
Particles driven by a repelling potential cover uniformly an unstructured domain 
Ronald Coifman (Yale), Mihai Putinar (UCSB) 

X(t+1) = X(t) - dt * grad(P(X(t)) 
direct: min(P(X(t)) 

Design of Experiments (DOE) Problem: 
Position K points uniformly inside a general domain. 

Approach: set K initial particles randomly inside the 
domain and drive them by a dynamics based on a 
repelling potential. The steady state provides a 
"uniform" covering solution. Handle boundaries and 
constraints by potentials. 

Advantages compared to other DOE techniques: 

1. Any number K of points may be distributed, even 
for very small K >= 2, in large dimensions. 

2. The distribution of points is uniform 
3. The domain may be unstructured (e.g., not a box) 

or a manifold 
4. Constraints may be handled by potentials. 
5. More efficient than Latin Hypercube on general 

domains and manifolds 
6. Additional structure may be imposed using interior 

potentials representing probabilities or regions of 
interest. 

5 

Quasi Uniform Distribution of Points by Repelling Potentials 
The Boundary Points are kept fixed 

Iniatial Particle Positions 

Iniatial Repelling Potential 

•, !". . 

Final Particle Positions 

Final Repelling_Potential 
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Exploration Approaches; Hierarchical Architectural Optimization  
Hierarchical Architectural Optimization finds best Configurations satisfying a set of Objectives and 
Constraints 

Goal: Build a Dictionary of Good Architectures/Designs/Configurations, 
e.g., for different costs, performances, weights, design options. 

How: 
Build a Hierarchy of Clusters: Poor Clusters are eliminated 
starting with Coarse Large Clusters 

Good Clusters are refined Hierarchically 

Elimination Criteria are added as new Constraints during 
the Optimization by Analysis of Solutions 

Continuous Optimization is performed only close to the set 
of best solutions 

Highlights of Results 
•Orders of magnitude savings in experimental 
work and time 
•Reliable Global optima for exhaustive 

Main techniques used: hierarchical searches (10000 times reduction in 
1. Hierarchical Optimization number of configurations) 
2. Elimination Criteria added adaptively .Very nign confjdence that best solutions have 
3. Global Searches tor Multiple Objectives h        f       d 
4. Local Continuous Optimization 

•Can search all possible discrete combinations 
in finite unstructured domains, (with no 
deterministic combinatorial algorithm) 

Domain Exploration, Global Optimization and Finding Multiple Local Minima 
by Adaptive Hierarchical Repelling Particle Techniques. 

The figure below illustrates a domain exploration and global optimization approach. 
The objective is changing in time (it rotates in this example) and presents two large 
local minima to be found and tracked in time. A hierarchy of optimizations is 
performed by a hierarchy of potentials. The potentials generate broad large step 
searches at start, in a global domain exploration phase, and then small step local 
searches close to local minima. Boundary constraints are implemented by boundary 
potentials, in this case, the boundary potential keeps the particles inside the circular 
domain. 
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Domain Exploration, Hierarchical Global Optimization and 
finding Multiple Local Minima for Time Dependent Objectives 

Two large local minima vary In time. 
The Hierarchy ol Optimizations Is performed by a Hierarchy of Potentials that generate broad large 
step searches at start (Domain Exploration phase) and then small step local searches close to local 
minima. 
The objective Is time dependent (It rotates In this example) 
Boundary Constraints are Implemented by Boundary Potentials. 

Potential for 43 particles 

:-6 

4. An Unstructured Multigrid Approach in High Dimension 

A Generic Unstructured Multigrid (MG) Approach in High Dimensions is proposed 
that combines the presented domain covering approaches, with the interpolation 
approaches, and with known multigrid formulations. These generalize known MG 
techniques to sparse data in high dimensions and combine the efficiency of hierarchical 
structures with local iterations and with approximation of solutions by reduced models. 

Multilevel approaches try to accelerate the solution of a problem by other problems on 
different levels, for example by coarser representations of the initial problem. 

The multilevel approaches comprise two main procedures: 

1) solvers of each problem on its level; 

2) inter-level transfers of data, variables, and operators. 
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Problem formulation: 

L(x,u) = b, x: points in /?", u unknown variables at x 

b known data at x, L: a general operator 

Inter- level Transfers 

Let X' and XJ be two sets of points 

The transfer  /'"'of   u1 ,b' fromX' to XJ is performed by Interpolation 

M'=/'V,   bJ=l,Jb' 

Coarse Level Operator 

Given the operator ll define the operator LJ by an approximation of   LJ =f'JL'lJ' 

Coarse Level  Problem (Full Approximation Scheme (FAS)) 

Given the level I approximate solution u' of Ll(X',u') = b' 

Define the level J term  bJ and level J problem formulation  by 

LJ(X\uJ)=bJ =LJ(XJj'Ju') + IIJ(b'-L!(X',u')) 

Update of Fine Level Solution 

The (FAS) correction of level  I solution u' by  level   J solution  u1 is: 

u' =u'aU+IJJ(UJ-IUu'M) 

Single Level Solvers, Single Level Relaxation 
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Iteratively update subsets of variables e.g., by local optimization or Newton approaches 
as follows. 

Problem formulation on a given level:  L(x,u) = b, 

x: points in R" indexed by /, X', 

u unknown variables at x,b known dataatx, L: a general operator 

Local update of solutions 

Let    XJ be a subset of the points X' 

The associated equations 

(1) LJ(XJ,uJ)-bJ are solved approximately fori/ by : 

an optimization or solver procedure (e.g., Newton) 

(2) The equation (1) is solved for different subsets of indices  J of I 

until a convergence criterion is satisfied (Block Newton Gauss-Seidel) 

If J = I then a direct solver may be used, e.g., on coarse  levels. 

This procedure is a block type  Gauss-Seidel  iterative relaxation procedure. 

A Local Interpolation Approach using a Partition of Unit 
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Let  X  be a finite  set of points and f:X —> R  with known values on X 

Let X1 be subsets of X indexed by the indices I 

Let g' approximate or interpolate f(x) on X', e.g.,  be local   interpolations/fits  of  f 

Let   p' be functions equal to 0 outside a set containing X1,   ^p' (X1 ) = \ 
i 

The interpolation/fitting has a local form: 

f(x)-g(x)=2>y 

g'   maybe computed  for example by a local regression or by local optimization 

g'   maybe  based on given basis functions 

Multigrid Schemes as particular cases of the suggested Multilevel Schemes 

Classical Multigrid (MG) FAS Schemes in low dimensions (up to 3 usually) on regular 
meshes are obtained as particular cases of the suggested multilevel schemes. 

For example, for uniform grids, an operator L can be a finite difference approximation of 
a differential operator; Relaxations may be Gauss-Seidel or block Gauss-Seidel or 
Newton-Gauss_Seidel relaxations, etc. 
The interpolations are based on local grid interpolations as in MG. 
Local refinement reduces to performing a local multilevel scheme. 
FAS schemes reduce to MG FAS schemes. 

128 



B.2.   UNCERTAINTY PROPAGATION BY VARIOUS METHODS 

Observation 
Suggested Unstructured MG Approach (that might work in High Dimensions) 
Use Sparse Sets of Points and Local Expansions for Interpolation and Derivatives 

P1 

P2 

Derivative and Interpolator!   Use 

an Expansion(e.g.,by Eigenfunclons) 

v'< »Continuous   v   < >v: 

k 

u'(xJ) = ^a,vy'(x1) 

k 

d,ul(xj) = ^aidJv,'(xj) 

Classic Low Dimension MG 

Structured Meshes of Points 

Interpolation/ Derivatives 
Use Meshes 

Defining Coarse Problems 

Fine level exact solutions transferred to 
coarse levels are solutions of the coarse 
level problems. 

Coarse level solutions do not change 
exact line level solutions 

Fourier Components 

The  MG   FAS (Full Approximation Scheme) 

1) P1:   F'(u') = t' 

2) P-:   F2(u2) = t 

3) u'=u'M+lUu2- 

Unstructured MG 

Unstructured sparse sets of Points 

Interpolation/Derivatives 
Use (Local) Expansions 

Same 

Same 

Same 

Basis Functions/ Elgenfunctions 

5. A Hierarchical Richardson Approach for Model Extrapolation 

A Hierarchical Richardson Approach for Model Extrapolation is suggested. Coefficients 
of a sequence of models are identified by system identification and extrapolated as in a 
Richardson procedure. Models may be decomposed into deterministic sub-models (e.g., 
trends) and stochastic sub-models (e.g., noise). Model extrapolation can be used for both 
deterministic and stochastic models, hence for UP. Large computational savings may be 
obtained by extrapolating a sequence of coarse model results to approximate fine model 
results. 
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Multilevel Extrapolation Builds and Extrapolates a Sequence of Models 
Richardson Type Extrapolation: 
Use a Sequence of Reduced Order Models for Speedup 

Algorithm: 
1) Find coefficients of a sequence of Models by System Identification 
2) Build models for the sequences of corresponding coefficients and do a Sys ID 
3) Extrapolate the models of the coefficients 

Build  FJx.C(n»: System Identificaon Model, for n particles,Qn\  are coefficiett 

E.g.. F.U,CrnJ>=£c»£,(.0 

Build models for CM  e.g..   QnhJ^flJit 

Build     C=limC(ni    e.g., C = D„ 

Build  F(x,C)rhe limit/extapolated model for large n 

E.g.,   FIX.ChY.C.MSM) 

Uncertain^ Management  Apply  th above procedure for Noise Models, e.g.. 

NoiseModefc DataF 
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Noise Models 
Build and Extrapolate a Sequence of Noise Models by Multilevel Extrapolation 

Apply   the   Multilevel Model Extrapolation   for   Noise Models: 

Find the models F by System Identification,  Define Noise as : 

Noise   =    Data - F 

Build Noise Models by System ID using for the Noise data 

Extrapolated 
Model 

37 

6.   Comparison of  Collocation, RS, DS, MC 

Applications to the Kr Phase Diagram Milestone 

A Response Surface (RS) Uncertainty Quantification Approach is compared with MC, a 
Polynomial Chaos Collocation approach, and with DSAMPLE (an effective quasi MC 
technique) on the Kr Milestone Problem. Advantages and disadvantages of the RS 
approach are discussed. 

Response Surfaces for Uncertainty Quantification 
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The Response Surface (RS) approach of uncertainty quantification (UQ) builds 
response surfaces (models) r(x) as approximations of desired outputs (responses) 
f(x) as functions of parameters x with known PDFs, p(x). In addition one may be 
interested in approximating the PDF off, see the diagram below. 

Uncertainty Quantification Problem: Given x, P(x), estimate f(x), P(f) 
Compare mean and var for MC, Col, DS, RS 

Given x, PDF(x) 
UQ Techniques: 
1)MC 
2) Collocation - Polyn Chaos 
3) DSample 
4)RS 

Get f(x), PDF(f) 

Different uncertainty measures of f(x) are approximated by corresponding measures of 
r(x), for example the mean or variance of fare approximated by the mean and variance 
of r. The RS approach may be effective when the evaluation of f(x) is expensive and a 
when good approximations r ~= f of f can be obtained by a small number of evaluations 
of f(x). From the point of view of UQ one is interested to approximate for example 
mean(r) ~= mean(f) or var(r) ~= var(f). The main tasks in the RS approach are: l) 
finding a relatively small number of sample points {x_i } and 2) finding a good 
RS/interpolation procedure that will use the samples {x_i } to build r such that r-= f and 
statistical measures of r will provide good estimates of the desired statistical measures of 
f.    The following sections will discuss an RS approach, in our case a kernel based 
interpolation procedure that was used in the numerical experiments; domain exploration 
approaches for building sample points (x_i (; techniques for fitting the pdf of the output 
p(f); and a comparison of the RS approach with Monte Carlo (MC), a Polynomial Chaos - 
Collocation approach, and the DSAMPLE. 

The 4 Uncertainty Quantification Approaches that have been compared, MC, 
DSAMPLE, RS, and Collocation, can be summarized as: 
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1) Monte Carlo:   perform number N of MC evaluations of T(E) for E generated 
by p(E) 

mean ~= sum( T(Ei)) / N 

2) DSample (Quasi MC) 

mean ~= sum( T(Ei)) / N 

3) Response Surface/Surrogate Build a Surrogate of T(E), e.g., using a basis of 
functions, (eigenfunctions), 

mean ~= sum( T(Ei) * p(Ei)) / sum( p(Ei) )   (use RS with Importance sampling) 

4) Collocation - Polynomial Chaos Evaluate T(E) at collocation points Ei, with 
given weights wi 

mean ~= sum( T(Ei) * wi) / sum( wi) 

The DSAMPLE approach is a new quasi MC approach developed by Igor Mezic 
(UCSB), presented in another chapter. 
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Uncertainty Quantification for the Krypton Milestone 

Parameters 

PD(E) PD(°) 

A [A 
MD Simulations 

RSand PDF 

RS   (E. T(E»tof 
200 «» 20 point* 

RS with Collocation points reproduces PC efficiency (up to 1300 samples) 
RS works with any number of samples, and may be effective in high dimensions too 

Nystrom with probabilities included in the objective; 
RS Optimization (by # of eigenvectors and sigma, Optimization is not used in this example) 
The RS results are close to the collocation results, 
RS advantage: any number of sampling points can be used (subset of the collocation points) 
RS disadvantage: numencal instability and difficulties related to eigenvalue computations (time and 
accuracy for diagonalization of large matrices). 

Truth is Analytic (VladHtffi'fcNimit MC(red), Col(Black), RS (blue), DS(green) 

101   102  103  104  105  106  107  108  109 10'° 10 10*   102  103  104  105  106  107  10°  109 1010 1CT 
2 
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RS is effective for a small number of samples, selected by DS 
The RS is Optimized (by N eigenvectors, sigma, a) 
RS results show a good upper trend and many "very good solutions" for tens of 

samples 

100 x 120 optimal solutions are generated (sets ot samples from 2 to 120 are generated 100 times. 
for each fixed set of samples the RS is optimized for N of eigenvectors, sigma. a) 
The mean and variance of the optimal RS are selected (and a blue point of the solution is shown,) 

MEAN 

101 icf irf id1 icf icf icT icf icf io10io11 

VARIANCE 

% 

^^L • 

10' 

1 
1M.il 
10"   '"SP 
10s      .* ^^^          ^V 

m' 
< 

—    •-*••- 

io' icf irixf tfitficfitf IO'IO'V 

New England Power Grid - State Uncertainty Propagation 

The propagation of state PDFs in Dynamical Systems by sums of Gaussians can be 
performed as in Extended Kaiman Filter approaches (see for example: Uncertainty 
Propagation for Nonlinear Dynamical Systems using Gaussian Mixture Models 
Gabriel Terejanu , Puneet Singlat, Tarunraj Singht. Peter D. Scottl AIAA Guidance. 
Navigation and Control Conference and Exhibit AIAA 2008-7472 ; 18 -21 August 2008. 
Honolulu, Hawaii) by the following algorithm: 

-    The initial state x(0) of a dynamical system x(t+l)=f(x(t)) has given 
PDF(x(0)) 

Propagate PDF(x(t)) as an approximation of a Sum of Gaussians: 

Gi(x(t)) = wi * fi * exp (- (x-mi)'SiA(-l) (x-mi)/2 ) ;    mi: mean,   wi: amplitude; 

Si: covariance matrix,   fi = 1 / ( det(Si )A(l/2) * (2pi)An/2 ) 
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Propagate means mi by the dynamical system x_mean(t+l) = f(x_mean(t)) 

Propagate covariance (width) using Jacobians (at means): 
Si(t+1)= (Df/Dx) Si(t) (Df/Dx)' 

Keep the weights wi constant or approximate them by an optimization 

The approach was applied to the New England Power Grid model (as in the paper: Global 
Swing Instability of Multimachine Power Systems; Yoshihiko Susuki, Igor Mezi'c, 
Takashi Hikihara; Proceedings of the 47th IEEE Conference on Decision and Control 
Cancun, Mexico, Dec. 9-11. 2008) as shown in the figures below. 

New England Power Grid 

jd/j + Pm, - GaEi — 2_^ E.Ej- 

Cy cos(J«\ Sj) + Bi&mifi*'- Sj)}. 

Damping      Mechanical       Internal .       Transfer impedance 
Inertia   Coefficient     |nput Power     Voltage    Gu + J^u between generators 

Global Swing Instability of Multimachine Power Systems 
Yoshihiko Susuki. Igor Mezi c, Takashi Hikihara 
Proceedings ot the 47th IEEE Conference on Decision and Control 
Cancun, Mexico, Dec. 9-11, 2008 
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New England Power Grid - State Uncertainty Propagation 

Propagate the PDF of the State of the system, PDF(x) = Sum of Gaussians 

x: 18 states;  propagation of 1 Gaussian with initial mean and Covariance 
Implicit ODE simulator ODE15S, 

Propagation of 
norm of mean of Gaussian 

Propagation of Norm of 
Covariance Matrix of Gaussian 

2 sec 
; 

200 sec ~P»*~- 
........   i, 

- 
..... iJ •»t 

The System tends to behave more and more deterministic (due to stability) 

A 

PDF merging for the New England Power Grid 

A combination of the proposed PDF merging approach with the propagation of sums of 
Gaussians approach is suggested in the next scheme. The large number of input PDFs 
may come from the loads of the grid, for example PDFs of grid loads of different cities. 
In this case, large computational savings can be obtained by an early merging of the 
many input PDFs into state PDFs (there are only 18 states), that are further approximated 
and propagated by sums of Gaussians as illustrated above. The first half of the scheme, 
the simulation for 140 input PDFs and generation of the 18 state PDFs was performed 
using DSample. The second half, although not computed, can be performed with the sum 
of Gaussians code for the NE Grid as illustrated above. The computational time savings 
can be estimated by the formulas provided in section 1. For example, assuming that about 
10An samples are needed for the initial simulations using the input PDFs to be merged 
into state PDFs, and that about 10A3 simulations are needed for the propagation of state 
PDFs, and that the simulation time used for merging the PDFs is short compared to the 
total timulation time, then the time savings would be of order IOA(n-3). 
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PDF merging for the New England Power Grid 

Combination of DS with State PDF Propagation 

DSAMPLE for 
140 parameters 

Short time 
simulation 
Merge PDFs 

Time Saving 
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PROBLEMS  

B.3    Approximate solutions for decentralized detection/estimation 
problems 
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Approximate solutions for decentralized 
detection/estimation problems 

DyNARUM report 

Jong-Han Kim 

1 Introduction 

We consider a class of decentralized detection/estimation problems, where multiple agents 
seek for the optimal decision rule or estimator for the global objective function, i.e., 
the objective function depends on every agent's performance. Each agent uses its own 
measurements, and we especially consider cases where the communication between agents 
is impossible. In this specific setting, the optimization problem is formulated and solved 
a priori by the mission center, then the optimal rule for each agent is implemented on 
the on-board softwares before the search mission begins. As mentioned, no inter-agent 
communication during the mission is allowed, therefore the only information available to 
an agent is the measurements taken by itself. 

2 Decentralized detection 

We describe the 2-agent decentralized detection problem as follows. 

LxLMxM 

minimize >J   /J  GyuKvu 
y       " 

subject to       K=K^®Km 

A<"»1 = 1 

Kin) eBL*\i for n= 1,2 

where C describes some cost definition, and A"(,1) represents the nth agent's decision 
matrix. The operator ® represents the Kronecker product of two matrices. 

Note that solving this problem is hard because of the nonconvexity due to the bilinear 
function and the Boolean constraints. So we explore a relaxation technique that solves 
the relevant problem easily, providing an acceptable bounds for the optimal cost. 

Defining the new variables x = [kj • • • kM gj ••• g\f l] and Z = xxT, where 

A(1) = [ki ••• km] and A'(2) = [gi ••• gin]- the problem is transformed to a 
semidefinite programming (SDP) with the rank-1 nonconvex constraint. Dropping the 
rank — 1 constraint yields the following SDP relaxation. 
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LxL MxM 

£ Ec- 
V         « 

Z\\       Z\i 

Z21    Z22 

Z\M 

ZlM 

subject to 

ZL\    Z12    • • •    ZLM. 

AZb = 1, AZ = lbTZ, bTZb = 1 

diag(Z) = Zb, 0 ^ diag(Z) < 1 

Zij ^ 0, Zjj < Za, Zij < Zjj 

where 

Zu + Zjj — Zij < 1 

zto 

A = hxL    •••    hxL 
OLXL    •••    Oixi 

for all i, j, i ^ j 

b = 02LMxi 
1 

•^Z.(2Af-l)+l,(j-l)t+t 
^L(2M-l) + 2,(j-l)t+i 

•^Z,(2M-l)+L,(j-l)L+i, 

OLXL    •••    0Lxt 0 
I LxL      • ••      I LxL 0 

2lM+l,(j-l)L+i      ^L(M + l)+l.U-l)L+i • 
ZLM+2.U-DL+i      ZL{M+l)+2,(j-l)L+i • 

'L\f+L,U~l)L+i      zi(A/ + l) + L,(j-l)L+i 

for ie {1 L), j £ {1 A/} 

Note that the SDP relaxation provides a lower bound. 

JSDP — J 

If. fortunately, the relaxed problem finds the optimum. Z'SDP, such that rank(Z|DP) = 
1, it suffices to prove that the above bound is tight and the relaxed optimum is equal to 
the true optimum, i.e., JSDP ~ *'*• 

Though the condition or the proof for the zero optimality gap is not known yet, it turns 
out that the relaxed problem successfully finds the true optimum in the major number of 
random numerical simulations. However it sometimes fails to find the rank —1 solution, 
resulting in a solution infeasible to the original problem. The following heuristic approach 
will help to find a suboptimal rank — 1 solution for such cases. 

Consider the following SDP. 

minimize        trace(ZTW) 

subject to       0 •< W < I 

trace(W0 = 2LM 

where the optimal value is equal to the sum of all the eigenvalues except the largest one. 

Note that W is obtained explicitly as W = UUT. where U = [1x2 "3 • • • U
2LM] • 

Uk represents the fcth singular vector of Z. Here, we are assuming that Z is known 
(from the previous iteration). Since Z orthogonal to such fixed W attains the minimum, 
augmenting this to the relaxation problem tends to pull the optimum to the set of rank —1 
matrices. 

Now augmenting the relaxed problem-with this heuristic, we get the augmented SDP 
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relaxation. 

LxL MxM 

V « 

Z2I 

Z\2 

Z22 

ZL\     ZLI 

Z\M 

Z2M 

ZLM 

+ trace(ZTW) 

subject to 

minimize 

subject to 

W is obtained from. 

tracetZ^W) 

(M W <l 

trace(lV) = 1LM 

where 7 is the convex feasible set of the SDP relaxation problem. 

Solving the augmented relaxation iteratively will give a rank-1 solution, hopefully find- 
ing the true optimum of the original problem, or at least providing a reasonable upper 
bound of the optimal cost. 

J% SDP -^ <r <J'A i JAUG 

A large number of numerical simulations are conducted in order to investigate the 
performance of the SDP relaxation and the augmented SDP relaxation. The random cost 
matrices with L = 4. and M = 4 are constructed by several different rules. Although 
the series of random simulations does not represent all the posibilities or can not prove 
anything, it provides an idea of how well the proposed schemes is going to perform in 
average sense. In summary, it was observed that in approximately more than 98% of the 
total proper trials, the SDP relaxation / augmented relaxation successfully found the true 
optimum. Even for the rest cases where it failed, the provided gap was fairly acceptable 
(about several % of the optimum value). 

3    Decentralized static estimation 

Decentralized static estimation problem described here is a natural counterpart of the 
decentralized detection case. Recall that the decision function of the detection problem 
maps a discrete measurement to a discrete decision variable, i.e., "fn(yn) '• {1,..., L} —> 

{1,..-,A/}. 
In the decentralized static estimation problem, each agent takes a noisy measurement 

vector yn 6 Rm" and the estimator function 7„(j/„) returns the optimal estimate u„ 6 Rd 

minimizing some global objective function. 

We consider the 2-agent decentralized static estimation problem. For a static state 
x G Rrf with its a priori statistics known asi~ Af(n, P). the mesurements y\ e R"" and 
2/2 £ R'"2. corrupted by the independent noise Wi ~ Af(0,Ni). are given to each agent 
respectively, i.e.. 

yi = AiX + Wi 

j/2 = Mx + W2 

Then the optimal estimate is found by. 

minimize       Ec(ui,«2tZ) 
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where un = 7n(j/n) >s the estimator of nth agent. 

If the function c(u j, u2, x) is convex quadrataic. it is known that there exists the optimal 
7„ which is linear. With the reasonable choice of the cost function c(ui,U2,x) = ||ui - 
x\\2 + ||W2 - x\\2 + S2\\ui - U2II2. the optimal estimator u* = 7,*(y„) = K\yn + 2* are 
found from the following relations. 

(l + S^iAiPAj + Ni) -&A1PAJ 0 
-S2A2PA\ (\+62)(A2PA% + N2) 0 

(l+62)»TAj -*V4 l + S2 

-PfAj {l + fi)ltTAf -s2 

0 \*r\ 'AiP] 
0 

-62 

l + fi 

Kl 

4 
= 

A2P 
T 

T 

For the simplest case with 5 = 0, the problem is decomposed into two independent 
problems. Then the solution corresponds to the well-known update formula. 

Kn = PAl(A„PAl + Nny
l 

z,t = (AlN^An + p-')-lp-ln 

or       u„ = n + PAl(AnPAl + Nny
l (yn - A„p) 

The optimal solution is also found from the following. 

minimize        \\(C + DKB)\ 

subject to 

where 2 = 

. Z> = 

w2 

I 
0 

,17 

N = 

0 " 
/ 

-SI 

A'l 
0 

Si 
II 

0 

0 
Si 

. B = B 

I! 

pl/2 

0 

(C + DKB) 

At    I    0 
A2    0    / 

+ Dz = 0 

0 
Afl/2 and C = C 

pi/2       0 
0      Af]/2 

This is a simple convex problem, whose optimal solution should be identical to the 
explicit result in the previous section. 

4    Next directions 

The relaxed decentralized detection problem, which provides a lower bound of the optimal 
cost, was studied. Then the relaxed problem is augmented and iterated to find a sub- 
optimal primal feasible solution. A series of random simulations demonstrated that the 
combination finds the true optimum in most cases, or at least provide a satisfactorily tight 
gap. We are interested in discovering the conditions under which the relaxed problem or 
the augmented iteration finds the exact optimum with zero bounds, and developing the 
proofs for such conditions. 

As a natural extension of the decentralized detection problem, we formulated basic 
frameworks for the decentralized static estimation problem. Under the convex quadratic 
cost and the affine estimator assumptions, we showed that the optimum is easily found. 
An interesting and realistic extension is the decentralized dynamic estimation problem 
(with limited inter-agent communication assumption), which we are currently putting our 
efforts to. 
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Reduced Order Representations for Efficient Computation 

Laurent Lessard 
Stanford University 

Motivation 

Consider a large distributed estimation problem with N agents that must estimate each other's positions. 
The optimal estimate can depend on global information structures, such as a densely populated NxN 
covariance matrix. 

Taking a simple example: we would like to estimate xi, Xi XN, and each agent takes a single 
measurement yi, = JC* + v*, where v is white noise with covariance a~, and the vector x has a normally 
distributed prior with covariance matrix C. 

In this case, the optimal estimate is the vector: *opt = C (C+crl)'1 >'- Our goal is to compute such 
quantities efficiently, in O(N)- This means that the total computation cost is proportional to the number 
of agents; adding more agents does not change the computational burden of each agent. Note that if we 
can also distribute the computation evenly amongst the agents and execute it in parallel, the estimation 
requires a constant 0( 1) cost. 

In order to achieve this, we perform certain basic computations. Namely, if w is an arbitrary vector of 
length N, we should know how to compute matrix multiplications and inverses: computing Cw or Clw 
in O(N). We consider problems in which C has a high degree of symmetry. Namely, it is shift-invariant 
(Toeplitz or circulant). We will show how to factorize such systems in a way that yields the desired 
computational speedup. 

Sparse Matrices 

An NxN sparse matrix is a matrix that contains O(N) nonzero elements. If P is sparse, Pw can be 
computed in 0{N). Also, for certain classes of P, F w can be computed in 0(M) as well. This is 
typically done with a multigrid method using a small fixed number of iterations. Such algorithms can 
be implemented in a distributed fashion. Note that P"1 is not sparse in general, and that iterative solvers 
never compute F explicitly. 

Circulant Factorization 

Circulant matrices are constant along each diagonal, and the diagonals wrap around. In other words, 
each column of a circulant matrix can be obtained by taking the previous column and applying a 
circular shift of one. All circulant matrices are diagonalized by the discrete Fourier transform (DFT) 
matrix. 

If the eigenvalues xk are generated by a rational function: 

Pd+Piz*+ •" + pm2T A, 
9o + 9i~* + rqnzl 
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where ^k = exp( ImkIN ) are evenly distributed on the unit circle, we can factor C as: 

Pa P\ 
:    Po 

c = Pm 

Po 
Pm • • • Po_ 

1' 

'/I I 

</" 
Qo 

'/: 

90 

Q 

where P and Q are sparse banded circulant matrices. The factorization C=PQ~l is very beneficial, 
because it allows us to compute Cw by first solving w=Qz, and then computing y=Pz- The total cost is 
O(N). We can compute C'w in O(M) similarly. Note that without this factorization, the cost would be 
O(MogA0, using an FFT method. 

This factorization is only exact when we are dealing with a rational eigenvalue distribution, as 
explained above. In the general case, we will seek an approximate factorization OPQA. For some 
classes of problems, we can find an optimal approximate factorization for C in the sense that we can 
trade off sparsity (width of the bands in P and Q) with solution accuracy (the error \Cw - PQ*w\). 

Example: wavefront sensing 

In wavefront sensing for adaptive optics, one encounters the von Karman power spectral density (PSD) 
for atmospheric turbulence in l-D: 

*w i 

(A-2 + l)^3 

The correlation between two points separated by a distance r can be computed by integrating and 
sampling the PSD. If we have an array of evenly spaced detectors with spacing zlr, the pairwise 
coefficients can be assembled in a Toeplitz matrix C. We would like to compute Cw efficiently for any 
w, but C's PSD is irrational so the eigenvalues distribution is as well. Using a Principal Axis 
optimization routine, we computed some low-order approximations for the eigenvalue distribution that 
minimize the mean-squared approximation error under white-noise inputs. In other words, we 
minimized EICw - PQ^wl2. See below for a figure comparing the PSD error in various rational 
approximations: 
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s, 
frequency k 

It turns out that in the limit of large N, this is equivalent to minimizing the Li error in the PSD's 
approximation. For example, the factorization we found in the (1,2) case using Ar=Q2 is: 

C 

Pi) Pi 

Pi Pi) 

l>\ Pi 

/'i 

Pi 

Pa 

-i -i 
90 9i '/-' 92 

9l 9b '/] 

92 9i 

92 90 

91 </•-• 92 9i 

9i 

92 

'/•• 

9i 
9o 

where p = [0.100126 -0.0301038] and q = [1.0000000 -0.650885 0.151518]. This case leads to an 
average error of about 2.5% in each component of the product Cw. This error does not depend on N in 
the limit, and in fact, the same factorization can be used for larger N (keep the same p and q, and extend 
the matrices). 

Using such a factorization is always O(N). If we wanted to do better than 2.5%, we could find a higher- 
order approximation. This would increase the amount of computation each agent has to do, but the 
computation required would always be independent of the number of agents, N. 

Conclusion 

We showed that a shift-invariant matrix can be factored as C=PQ'] using sparse matrices P and Q if the 
eigenvalues of C are rational functions on the unit circle. Such a factorization leads to fast distributed 
computation without any performance penalty. 

If the eigenvalues are not rationally distributed, we can look for a rational approximation. We showed 
an example of a distributed estimation problem where we could find optimal rational approximations of 
a given order. By varying the chosen order, we obtain a family of O(N) solvers that trade off 
computational accuracy and mean-squared error performance. 
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Abstract 

Contemporary systems biology presents science and engineering with many new challenges. 

Finding effective ways to study large networks of interacting components is one of the key tasks of 

this growing discipline. Because of their numerous applications in drug target design and bioreactor 
technology, metabolic networks are of special interest. These networks are usually modeled as 

dynamical systems on graphs. This approach allows to accurately simulate the network behavior in 
different conditions by solving large systems of differential equations with an even larger number of 

parameters. However as we attempt to analyze larger networks, the growing number of equations 
complicates numerical analysis. In the present paper we employ a horizontal-vertical decomposition 

(HVD) method that helps to analyze dynamical systems on graphs that have very large dimensions. 

We illustrate the HVD decomposition on metabolic networks of several single cell organisms. Using 

HVD decomposition we identify modular structure and polarity in the network, which in turn allows 

us to reduce the dimension of the problem. 

1    Introduction 

In modern biology and medicine there is a great need of understanding biological processes integrated 

in their system environment. The study of complex interactions in biological networks has grown into 

an independent discipline of systems biology important parts of which are mathematical modeling and 

dynamic simulation [18]. 

Even though presently the amount of experimental data is growing fast, quantitative measurements 

of many cellular components are still unavailable. Shortage of data in combination with biological com- 

plexity makes it very challenging to apply standard engineering methods for modeling, simulation and 
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mathematical analysis of biochemical networks [12]. The existing biochemical data measurements 

usually come from different experimental settings and are described on different levels of information 

quality, besides for most processes, quantitative information on reaction rates and molecular concen- 

trations is not directly accessible in vivo. [12]. In cases where the mechanistic details are unclear, it is 

necessary to fill in the gaps by suggesting simple mechanisms without having any kinetic parameters 

available [10]. If the dynamic behavior of a system is highly dependent on the value of (some of) the 

parameters, then accurate and reliable quantification of the parameters is essential for the develop- 

ment of predictive models [19]. Therefore being able to predict how values of certain variables of the 

biological system affect other variables is very important. 

In [11] Mezic introduced a horizontal - vertical decomposition method (HVD) to analyze asymp- 

totic behavior and uncertainty propagation in nonlinear dynamical systems on graphs. We illustrate 

the HVD decomposition on metabolic networks of several single cell organisms and assume that the 

dynamics of the system is described by a system of non-linear ordinary differential equation (ODE). In 

case of metabolic networks, the variables may represent, for instance, concentrations of the metabo- 

lites, and the equations describe how changes in concentrations depend on each other. Modelling 

metabolic networks as dynamical systems has many advantages. The dynamical system approach is 

very convenient to describe features like feedforward and feedback loops, and to study concepts of 

stability, robustness, homeostasis and adaptation. Homeostasis is one of the most typical properties of 

highly complex open systems. In dynamical system setting it means that when a disturbance occurs, 

interdependent regulation mechanisms make the system converge to a dynamic equilibrium. HVD 

allows us to extract valuable information on asymptotic dynamics of metabolic networks using its 

structure without precise estimates of the differential equations. 

Large genome sequencing projects made possible the reconstruction of complete metabolic and 

signaling networks for many organisms. In [14] Barabasi and his coworkers performed quantitative 

analysis of the topological properties of complete metabolic networks of 42 organisms, 25 of which 

were fully sequenced. These metabolic networks were reconstructed based on data deposited in WIT 

database, see [13]. We analyze qualitative features of metabolic networks from [14], using essentially 

the same model with the only difference that we do not represent the temporary substrate-enzyme 

complexes in the network. 
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2    Horizontal-vertical decomposition 

Metabolic networks are usually modelled as nonlinear dynamical systems on graphs. In our model 

vertices of the graph represent the metabolites (substances produced or used during metabolism) 

participating in reactions. Each reaction is catalyzed by a unique enzyme which we do not represent 

by a vertex. For each chemical reaction that takes place in the metabolism, the vertices representing 

reactants are connected to the products of the reaction. For example, if we have a reaction V\ + V2 = 

V3 + V4 it will be represented by the graph shown in figure 2. The connecting edges are directed and 

always point to the product of the reaction. We assume that there are no multiple edges in the graph. 

It means that there will be one edge going from vertex A to B even if there is more than one reaction 

involving reactant A and producing reactant B. As an example of such model, the graph shown in 

figure 1 is the metabolic network model of Chlamydia pneumoniae (C. pneumoniae). This graph has 

187 vertices (the number of substances in the network) and 652 edges. 

We assume that to each vertex of the graph belongs a variable which is the concentration of 

that metabolite and an ODE that describes how the change in concentration of a given metabolite 

depends on other metabolite concentrations. It is clear that a system of the 187 differential equations 

corresponding to this graph can be very complicated. However, using HVD decomposition we can 

reduce the dimension of the problem by revealing modular structure and polarity of the network. In 

[11] in Theorem 13 it was proved that 

Theorem 2.1 A dynamical system can be decomposed into k vertical levels, such that each higher 

level is driven by the dynamics of levels below. Every horizontal level i € {l,...,fc} can be decomposed 

into m,i sets, which have dynamics independent of each other. 

This decomposition is called horizontal-vertical decomposition (HVD) of the system. The proof 

of theorem 2.1 is based on repeatedly separating sets of variables with isolated dynamics using its 

Jacobian (see [11]). We assume that at each step we separate the maximal number of such sets, and 

we will regard this unique horizontal-vertical arrangement as the HVD decomposition. 

Note, that in general the number of layers k in decomposition of this type may vary. For example, 

we could define a separate layer for each set having isolated dynamics in which case the number of 

layers would be equal to X!i=i mi • However, for a fixed set of parameters, the partition of the set of 

variables into sets with isolated dynamics is unique and does not depend on the number of layers in 

the decomposition. 

The adjacency matrix of a directed graph G on n vertices {^1,^2, •••, vn} isanxn matrix A with 
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Figure 1: Metabolic network of C. pneumoniae 

"s V4 

Figure 2: Graph with adjacency matrix A 
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entry a* j equal to 1 if ViVj is an edge and 0 otherwise. In figure 2 is an example of a directed graph 

that has the following adjacency matrix. 

A = 

( 0 0 1   1 \ 

0 0 11 

0 0 0   0 

V o o o o I 

The following two important observations for our metabolic network model follow from [11]. 

Observation 2.2 Assume that a metabolic network is described by a directed graph with an n x n 

adjacency matrix A and a system ofn differential equations with Jacobian J. An entry of the transpose 

of the adjacency matrix AT is non-zero if and only if the corresponding entry of J is non-zero. 

A directed graph is called strongly connected if for every pair of vertices u and v there is a 

directed path from u to v and from v to u. The strongly connected components are the maximal 

strongly connected subgraphs of a directed graph. To shorten the description, we will use the term 

strong component instead of strongly connected component. We will use notation SC for a strong 

component. Strong components form a partition of the vertex set of the graph. 

Corollary 2.3 Assume that a metabolic network is described by a directed graph G with an n x n 

adjacency matrix A and a system ofn differential equations with Jacobian J. Then for every level i € 

{l,...,fc} of the HVD the subsets m, with independent dynamics described in Theorem 2.1 correspond 

to strong components of G. 

The proof of the following lemma is straightforward, see [5]. 

Lemma 2.4 If each strong component is contracted to a single vertex, the resulting graph is cycle-free, 

i.e. is a directed acyclic graph. 

Assume that we have a metabolic network described by a directed graph G. From Corollary 2.3 

and Lemma 2.4 it follows that if we contract each strong component of G to a single vertex , the 

resulting graph SC(G) is acyclic. Each vertex of SC(G) corresponds to a set with isolated dynamics 

in the HVD decomposition. To complete the HVD decomposition of the metabolic network, we have 

to assign each vertex of SC(G) to a level. We call a vertex sink, if it has only incoming or in-edges 

edges (but no out-edges).   We call a vertex source if it has only out-edges edges (but no in-edges). 
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Figure 3: HVD graph of the metabolic network of C. pneumoniae 

First, we find the set of all the sinks in SC(G), S\ and place them in the top level. The vertices 

of Si correspond to the sets with isolated dynamics that we separate first, according to the proof of 

Theorem 2.1. Next, we delete the set of vertices Si from SC(G), and place the set of all the sinks 52 

of SC(G) - Si in the next level. Then, we delete the sets of vertices S\ and S2 from SC(G), and place 

the set of all the sinks S3 in the resulting graph SC(G) — Si - S2 in the next level... Continuing in 

this manner we obtain the HVD graph G* of the metabolic network. All the sinks of SC(G) will be 

in the top level of G* and all the sources of SC(G) will be in the bottom level of G*. To summarize 

the above procedure, finding the partition of the dynamic model of the metabolic network into sets 

with isolated dynamics is equivalent to finding the strong components of the corresponding graph G, 

which is a well known problem in graph theory. HVD decomposition G* of a dynamical system with 

graph G can be found in 3 steps: 

1. Find strong components of G 

2. Contract each strong component to a single vertex to find SC(G) 

3. Assign vertices of SC(G) to levels, to obtain the HVD graph G* 

If Ci is a concentration of interest, we can find the trajectory of c* considering the system of 

dynamical equations corresponding to all variables that are below c* in the HVD decomposition and 

can reach a via directed path. Using the metabolic network of Chlamydia pneumoniae as an example, 

let us demonstrate how this approach can result in a considerable reduction in the dimension of this 

problem. In figure 3 there is a picture of the HVD graph of the metabolic network of Chlamydia 

pneumoniae. There are 52 vertices in this graph and each vertex represents a strong component. 

There are 9 single-vertex components that send an edge to component AAc, they are schematically 

(i 
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represented by a single vertex. Also, there are are 9 single-vertex components each of that receive 

an edge from component AAc, they are also represented by a single vertex on the picture of the 

HVD graph. We will call the size of a strong component the number of vertices in it. There is one 

strong component of size 136 (AAc, shown in figure 3 in red), all other strong components consist of 

a single vertex. Assume, that the concentration c^ that is of interest to us corresponds, for instance, 

to the single-vertex component AAd. In this case it is sufficient to consider the system of equations 

corresponding to AAd, AAe, AAv and AAp to find trajectory of Cj. This means that instead of having 

to solve a system of 187 differential equations as defined in the original problem we reduced finding 

the trajectory of c, to solving a system of 4 differential equations. However, if c* is in the 136 vertex 

component AAc we still have to consider a system of 149 equations (these correspond to vertices in 

components AAc, AAu, AAp, AAz, AAv, the 9 single-vertex components represented by vertex 9SCCs 

and the component AAc itself). It is clear from our example that in order to substantially reduce the 

dimension we have to also decompose the giant strong component itself. In the next chapter we will 

propose a way to do it. 

There are several algorithms that compute strong components of a graph. Tarjan's algorithm [5] is 

one of the most favored in practice. It finds strong components in time linear in the size of the graph. 

3    The giant strongly connected component 

Each of 42 metabolic networks that we tested, had one very large strong component, containing about 

84% of all vertices and many single-vertex components with occasional components of size 2 or 3. We 

will refer to the largest strong component of the metabolic networks as the giant strongly connected 

component, denoted GSC [9]. Metabolic networks belong to the class of scale—free networks [14], which 

means that their degree sequences follow a power law, so there are a few vertices of very high degree 

in the network. These vertices are called hubs, they integrate the functionally independent modules 

of the metabolism into a robust network [15]. Most of the vertices are connected through hubs by a 

relatively short path [1], [16]. 

In figure 5 we plotted the degree sequences of metabolic networks of C. pneumoniae, Escherichia 

coli (E.coli) and Saccharomyces cerevisiae (S. cerevisiae). To distinguish functional modules based 

on the network topology alone, several hubs are usually removed. Cutting vertices of highest degrees 

increases the modularity of the remaining network [6] and the independent functional units become co- 

hesive subsets of vertices that are sparsely interconnected with each other. In a preprocessed network 

modules can be distinguished as highly connected subsets [15]. The argument behind it is that these 
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300 400 500 600 

Number of vertices in the network 

Figure 4: Size of GSC before and after cutting 10 hubs 

The data was fitted with the lines y = 0.84T — 6 for the original networks and y = 0.85x — 55 for networks 

after cutting 10 hubs. 

metabolites have secondary role in synthesis pathways within the cell [15]. Such metabolites are for 

example ATP, ADP, NADH, NAD+ and have primary role in energy supply to sustain the synthesis. 

In [8], [9] current metabolites and cofactors like ATP, ADP, NADH, NAD+, H20 and Pi have been 

removed (small molecules such as H2O, NH3, O2, CO2 and phosphate are also considered as current 

metabolites). These metabolites function as carriers for transferring electrons and certain functional 

groups (phosphate group, amino group, one carbon unit, methyl group etc.). The classification of cur- 

rent metabolites in [8], [9] is similar to the classification of internal and external metabolites in [17], 

where external metabolites are removed. These are metabolites that can be regarded as externally 

buffered with respect to the system. Their concentrations can be considered constant in a normally 

functioning cell, in other words, they put virtually no constraints on network dynamics. Since current 

metabolites have high degrees, they are represented by hubs in studies where abundant metabolites 

have not been removed [6], [14]. From the above observation it follows that in a dynamically mod- 

elled metabolic network variables representing hubs can be safely removed and replaced by uncertain 

constants, which in turn means that the corresponding vertices (and edges attached to them) will dis- 

appear from the graph of the metabolic network. We call a degree of a vertex the sum of its in-degree 

and out-degree. The plot in figure 4 shows in red the size of GSC as a function of the network size for 

the 42 networks that we tested. Blue dots show the size of GSC after cutting the first 10 hubs from 
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Figure 5: Degree distributions of C. pneumoniae, E.coli and S. cerevisiae 

The degree sequences of each of the 42 metabolic networks that we have tested can be fitted by a function of 

type y = c + a/xb. The vertices above dotted line (hubs) were removed from the network. 
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eXSXt 

Figure 6: HVD graph of the metabolic network of E.Coli 

Figure 7: HVD graph of the metabolic network of S. cerevisiae 

each of 42 network models. The data was fitted with linear functions. The size of GSC before cutting 

the hubs behaves approximately as y = 0.84x — 6, and the size of GSC after cutting 10 hubs behaves 

approximately as y = 0.85x — 55. 

GSC is the core part of the metabolic network, that constitutes the dense and complicated central 

unit that processes a large number of metabolites fanning in and produces from them many metabolites 

that are fanning out. One can observe this characteristic on HVD graphs of metabolic networks of C. 

pneumoniae, E.coli and S. cerevisiae are shown in figure 3, figure 6 and figure 7 respectively (GSC is 

shown in red). The metabolic network model of C. pneumoniae has 187 vertices and 652 edges see 

fig. 3, GSC has 136 vertices and 551 edges. The metabolic network model of E.coli has 766 vertices 

and 3988 edges see fig. 6, GSC has 630 vertices and 3701 edges. The metabolic network model of S. 

cerevisiae has 551 vertices and 2806 edges see fig. 6, GSC has 466 vertices and 2631 edges. The type 

of structure observed above is called bow-tie architecture, it is the key design principle in biological 

networks that allows them to be robust yet flexible and evolvable [7]. 

In figure 8 we plotted the average degrees in GSC of the original and network and after cutting 

10 hubs from all networks, except C. pneumoniae, Helicobacter pylori, Methanococcus jannaschii, 
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Figure 8: Average degrees in GSC of the original network and after cutting 10 hubs 

Red: average degree in GSC of the original network 

Blue: average degree in GSC after cutting about 10 hubs 

Figure 9: Ratio of number of edges in the original and after cutting about 10 hubs 
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Streptococcus pyogenes, Treponema pallidum where we cut 9 hubs, because the 10th and 11th hubs 

in these networks have the same degree. 

Cutting about 10 hubs from the network reduced the number of edges almost by a factor of 2 for 

most vertices, and even more for smaller networks, see figure 9. This suggests that we could achieve a 

better reduction of number of edges in the networks, if we cut a larger number of hubs as the network 

size grows. In particular, the number of edges in C. pneumoniae network became 2 times smaller (323 

edges); the number of edges in E. coli network became 1.7 times smaller (2386 edges); the number 

of edges in S. cerevisiae network became 1.7 times smaller ( 1624 edges). The HVD graph of C. 

pneumoniae after cutting the first 9 hubs is shown in figure 10. The GSC of this preprocessed network 

has 65 vertices and 154 edges. Which means that the GSC graph is relatively sparse, with average 

degree 4.7. If we cut the first 20 hubs in E. coli network, and the 18 first hubs in S. cerevisiae network, 

we will achieve reduction in edge number similar to that observed in C. pneumoniae after cutting 9 

hubs. The number of edges in E. coli network after cutting 20 hubs is 1804, which makes a reduction 

ratio of 2.2. The GSC of E. coli network after cutting 20 hubs has 499 vertices and 1424 edges, which 

makes the average degree inside GSC 5.7. The number of edges in S.cervisiae network after cutting 18 

hubs is 1259, which makes a reduction ratio of 2.2. The GSC of S. cerevisiae network after cutting 18 

hubs has 381 vertices and 1030 edges, which makes the average degree inside GSC 5.4. In figure 11 is 

the picture of a HVD graph of S. cerevisiae after cutting the first 18 hubs. In figure 12 is the picture 

of a HVD graph of E.coli after cutting the first 20 hubs. After cutting several hubs, the metabolic 

network does not consist of one connected unit anymore, but its largest connected component still has 

a bow-tie structure with a giant strong component in the center of the network. 

HVD decomposition introduces a polarity in the metabolic network graph. If we could come up 

with a decomposition method for the GSC that extends the polarity introduced by HVD inside the 

GSC, this would help us to further reduce dimension of the problem for variables inside GSC. Next, we 

propose a way to achieves this. We will illustrate our decomposition method on GSC of C. pneumoniae. 

First we locate vertices of GSC that have incoming edges from outside the GSC. We call these vertices 

sources. Next, we identify vertices that have edges pointing from them outside the GSC. We call these 

vertices sinks (the sinks are shown in blue in figure 13). 

We put sources in the same bottom level, then we perform distance-labeling of the vertices in GSC, 

starting with the bottom level. In each step we construct a new level: it will include all vertices that 

can be reached by directed edges pointing to them from the last constructed level. In figure 13 is shown 

the decomposition of the GSC of C. pneumonia, where we can observe a clear pathway structure in 

GSC. The decomposition described above can be easily combined with the HVD decomposition of the 
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Figure 10: HVD graph of the C. pneumoniae network after cutting the first 9 hubs 

Figure 11: HVD graph of the S. cerevisiae network after cutting the first 18 hubs 
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Figure 12: HVD graph of the E. coli network after cutting the first 21 hubs 

entire network. Because the GSC is relatively sparse, there are few edges connecting vertices in the 

same level, and in the rest of the GSC we uncovered a clear pathway structure, see figure 13. 

If two metabolites are connected with two edges pointing in opposite direction, one of these edges 

must indicate the direction in which the synthesis goes in the metabolism under normal conditions 

(forward edge), and the function of the other edge must be stabilizing the system in case if conditions 

change (feedback edge). The look at the decomposition of GSC from dynamical perspective suggests 

that most likely forward edges are always pointing up and feedback edges are pointing down. Of 

course, further tests are needed to confirm our hypothesis. 

4    Conclusion 

We use a novel approach, HVD decomposition, to reduce dimension of problems on large-scale biolog- 

ical networks. We show examples of HVD decomposition for metabolic networks of several organisms, 

and describe how to use it to reduce the dimension of the problem of finding the trajectory of a con- 

centration of a given metabolite. The bow-tie structure of metabolic networks with GSC in its center 

is reconfirmed. We show that cutting current metabolites from the metabolic network does not affect 

its dynamical system model. Moreover, cutting as few as 10 hubs from the network decreases the 

number of edges in the network about by a factor of 2 and significantly decreases the average degree 

in the GSC. This allows us to further extend the HVD decomposition inside the new, much sparser, 

GSC. We state as hypothesis, that HVD decomposition and its extension inside GSC reveals forward 

11 

162 



B.5.   GRAPH DECOMPOSITION FOR BIOLOGICAL NETWORKS 

Figure 13: Giant strong component of C. Pneumoniae network after cutting 9 hubs 

and feedback edges of the network based only on structural properties of the metabolic network. 
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We propose a novel graph theoretic decomposition scheme for probing the 

generic structure of complex biological networks. For several most common 

cell regulation networks, according to the chosen polarity defined by the input 

and output signals, we identified the "minimum production unit"(MPU) which 

responds quickly and robustly to external signals and the feedback controllers 

which adjust the output of the MPL to desired values usually at a larger time 

scale. Detailed illustration and discussion are made to explain the network 

structures and how they are tied to biological functions. The proposed scheme 

may be potentially applied to parameter evaluation and key regulation factor 

identification in a variety of biological systems. 

Cellular behavior, including motility, metabolism and reproduction is controlled by complex 

biochemical reaction networks, many of which have been identified and studied in detail (/). 

These networks realize their regulatory role through complex molecular interactions. Con- 

temporary high through-put experiments produce unprecedented amount of data that serve to 

pinpoint the players and their interactions, resulting in complex chemical reaction graphs. How 
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to analyze these intricate graphs and gain insight into the regulation mechanism employed by 

cell has become a central problem of the molecular biology. 

Much progress has been made in the analysis of complex networks, both deterministi- 

cally (2,3) and stochastically (4-7). These studies concentrate on investigation of dynamics of 

given networks by checking their stability, parameter dependence, robustness, input-output re- 

lation. However, for large-scale networks such as those commonly found in important bilogical 

processes (8, 9), the incurred computational load often severely limits detailed analysis. More 

critically, with continuous experimental efforts of revealing details of a network, it has become 

increasingly hard to identify the underlying characteristic structures and thus gain insight into 

the key mechanism that shape the network function. Recently, useful concepts distilled from 

the study of statistical physics such as the small-world and the scale-free network (10,11), begin 

to see their application in gene regulation network and lead to considerable success. However, 

this type of statistical analysis mainly aims at gross features of networks (12) and thus ignores 

detailed inhomogeneities embedded which often determine the functioning of a network in an 

essential way, since disparate network topologies and dynamics fit for different functional re- 

quirements. Other methods of analysis (13-15) often fail to highlight interactions between the 

key elements of a system or properly reflect the dynamics associated with their function. 

Normal cell life involves physical or chemical activities at vast range of spatial and temporal 

scales and one central task of systems biology is to identify the characteristic structures at 

all scales and study their roles in relation to a particular cell function (16-21). These key 

structures are called modules, the existence of which contributes almost to every aspect of the 

cell regulation: robustness, sensitivity, adaptivity, evolvability. Their detection and study much 

simplifies the analysis of complex networks since a set of modules could be a lot simpler than 

a collection of entangled individual agents (22). The simplification may be carried out further 

by constructing modules of modules.   Nevertheless, the determination of modular structure 
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in a large network is not straightforward since one molecular species may be involved in many 

different pathways with very distinct external connections. Such inter-correlation is easily under 

appreciated and yet can have profound effects on the organism. 

In this paper we propose a minimal production unit (MPU) - feedback controller theory of 

the biochemical networks based on the control theoretic point of view. In this theory, a network 

is decomposed into two motifs: one is the pipeline of linear production unit which serves to 

generate the output in a quick and robust way; the other is the set of feedback loops which act 

as controllers to the production. These two motifs are decided based on the information flow 

in the network. Input and output nodes can always be selected in a cell regulatory network, 

which defines a polarity of the network. The information is received at the input, processed 

and then sent to the output, which defines an overall forward direction. The units that carry 

on the information along the forward direction belongs to the production motif, while the re- 

maining units direct the information in the opposite direction and are thus treated as feedback 

controllers. Every module in the network belongs to either of the two motifs and can be further 

decomposed in a similar way if necessary. In this way, a complex network can be analyzed into 

a hierarchy of modules with different sizes and internal dynamics. From biological evolution 

point of view, it is likely that this nested structure stems from a simple core and is later wrapped 

with complex controller in evolution. So, our theory reveals the stable generic feature of a bio- 

chemical network, which can be used to explore either the intricacies of a single structure or 

interdependencies of a series of systems. In the following, we show that this particular structure 

are accessible via graph theoretic analysis and revealing special production-controling facilities 

in cell regulation networks. 

The dissection of large networks into functional modules greatly facilitates their analysis. 

The functional modules can be studied individually with well-designed boundary conditions. 

The properties of the whole network are gathered by piecing together the modules in an ordered 
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way. Henceforth, our strategy of analysis is characterized by a decomposition and recombi- 

nation procedure. Below, we carry out the decomposition and show that a network can be 

algorithmically dissected into disparate functional units. The horizontal-vertical decomposition 

(HVD) developed in a recent publication (23) decomposes a network into strongly connected 

components (SCC) in an ordered way, displaying the underlying pipeline structure at the largest 

scale. To look into each SCC of interest, we design a new scheme which first searches for the 

embedded cycles and then determines the feedbacks by a selection procedure. By combined 

use of the HVD and feedback selection, it is possible to identify the forward edges and feed- 

backs at all scales. In addition, by properly cutting certain feedback edges, we obtain a skeleton 

network with the dominant agents and key interactions identified, as well as their ordering and 

underlying topological structures, which is called a minimal production unit (MPU). 

In the following, we will use NFKB as an example to explain our graph theoretic analysis 

procedure and display the production-controler structure. The chemotaxis network of E. coli 

will be analyzed to further show this universal topological-dynamical structure. More examples 

will be given in the appendix. 

(a) (b) (c) 

Figure 1: The diagram of a model of the NF-KB signaling module. 

The NFKB regulatory module concerns the switching dynamics of the nuclear factor NFKB, 

which regulates various genes important for pathogen or cytokine inflammation, immune re- 
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sponse, cell proliferation and survival (24,25). In the cytoplasm of a resting cell, NFKB usually 

binds to IKBQ and its activity is suppressed. Certain external signals activate the switch protein 

IKK which phosphorylates IKBQ such that NFKB is released (26). The free NFKB then translo- 

cates into the nucleus and initiates the transcription of a large set of proteins, including protein 

IKBQ and protein A20. Protein IKBO, once synthesized in the cytoplasm, enters the nucleus, 

binds to NFKB, transports it out to the cytoplasm again and thus terminates the transcription. 

Protein A20 deactivates IKK. Therefore, the module mainly consists of two forward proteins 

IKK and NFKB and two feedback proteins IKBQ and A20. Also, the translocation of the pro- 

teins between the nucleus and the cytoplasm is an important biological process that achieves 

the spatial localization of different protein species. 

The diagram of a detailed model of the NFKB regulatory network is shown in Fig. 1(a) 

where we use x/s to represent the concentration of various proteins. The associated chemical 

kinetic model is given and explained in Appendix A. With physiological initial conditions (27), 

the concentration of the nuclear NFKB changes as a damped oscillation as shown with the thin 

dotted curve in Fig. 1(c). At the beginning, it shoots up to a very high value in a short time and 

then relaxes to a much lower steady value in an oscillatory way. 

For any networked system described by certain dynamical equations, it is easy to write an 

interaction graph with the vertices representing the reacting agents and the edges directed from 

each agent to the ones influenced by it. The interaction graph for the NFKB model is shown in 

Figure 1(b). 

For clarity, we omitted the self loops which represent self-interactions. It is straightforward 

to write down the adjacency matrix for the interaction graph, which marks 1 at the entries cor- 

responding to connected edges and zero otherwise. The interaction graph and the adjacency 

matrix neglect details of the interactions and only maps out the network topology which holds 

almost everywhere in the phase space and the parameter space, except for a set of measure 
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zero (23). This great robustness confers great flexibility to characterize vastly different dynam- 

ics described by ODEs or mappings or even stochastic equations. Certain system properties, like 

the uniqueness of the stationary point sometimes can be deduced from pure topological consid- 

eration of network structures (28,29). So, understanding of structure of interaction graphs helps 

unveil the essential elements in a complex system which possibly has uncertainties in the pa- 

rameter values or is influenced by a noisy environment. Graph theoretic techniques will be 

developed here to decompose the interaction graph and disclose its generic structure used to 

realize its biological function. 

The horizontal-vertical decomposition (HVD) of an interaction graph has been contrived 

and discussed in a recent paper (23). Vertically, the system is decomposed into a linear series of 

modules, where the module above is influenced by the module below but not vice versa. So, the 

input signal propagates unidirectionally from the bottom to the top. Horizontally, each module 

is decomposed into independent groups with no connection between them. So, each group has 

its own input and output and are functioning relatively independently. The direct application 

of the HVD to teh interaction graph in Fig. 1(b) results in three layers with the top and bottom 

layer consist of the vertex sets {xi} and {£3, x15}, respectively. The rest vertices are strongly 

connected and belong to the middle layer. This type of structure with dominant intermediate 

processing unit exists for most of biological networks as a result of omnipresent feedback loops 

and reversibility of many biochemical reactions. 

Further analysis is needed to determine the forward and backward edges for the processing 

unit in the middle layer. First, its polarity is easy to identify. The vertex x15 is the output signal 

that is of interest while xi receives the external input. Therefore, in the middle layer, x2 is the 

input vertex and x7 is the output one. They should stand at the beginning and the end of the 

middle module. Next, we notice that in a strongly connected component (SCC), the forward and 

backward edges always make cycles and vice versa every cycle contains at least one forward 
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Figure 2: The structure decomposition and extraction of the MPU of the NF-KB signaling 
regulatory network, (a) the structured diagram derived from the graph theoretic analysis; (b) 
with feedbacks removed; (c) with irrelevant vertices removed. 

and one feedback edge. Since cycles are obvious topological invariants of a network and easy to 

seek, our strategy consists of two steps: first, search for all cycles that exist in the graph; second, 

determine the feedbacks through a selection procedure, which depends on the information flow 

direction and approximately minimizes the number of feedbacks. The detailed illustration of 

our technique is contained in Appendix B. Here we only show the result of the computation in 

Fig. 2(a). 

From Fig. 2(a), we see that there are 4 feedback loops: 

• FBQ - the one through vertex 4: IKKo associates with free luBa and catalyzes its decay. 

• FBft - the one through vertex 14: I/-cBa„ captures NFKB„ to form (IKBCV-NFKB)„, which 

then moves out of the nucleus. 

• FBC - the one through vertex 12: NFKB„ promotes the production of the lnBa mRNA 
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which translocates to the cytoplasm and initiates a burst of IKBC* production. 

• FBd - the one through vertices 8 and 9: NFKB,, promotes the production of the A20 

mRNA and thus initiates the production of A20, which catalyzes the decay of IKKa. 

This identification agrees very well with the usual recognition of feedback loops in the literature 

based on biological reasoning. In Fig.2(a), all the feedback loops FBa,b,c,d have at least one 

edge attached to the input or the output vertex, so at least 4 cuts are needed to remove these 

feedbacks. Also, there are 7 extra 2-cycles in the graph, which require 7 more cuts. So, for the 

NFKB model, at least 11 cuts are required to remove all the feedbacks. With our algorithm, we 

successfully identified a minimal cutting set. Those big cycles are uniquely determined while 

the uncertainty of the decomposition comes from the vertex set Sm = {x5, x6, £io, xn , ^13} 

connected by those 2-cycles exclusively. 

We emphasize that we acquired the network structure by an automatic procedure based 

on the graph decomposition. So, the method developed here can be potentially applicable to 

real complex networks in cell signal transduction or gene regulation. It is also understood that 

because of the existence of binary or dissociative reactions, the rates represented by some edges 

are correlated since they symbolize the same reactions. In the above consideration, we ignored 

this correlation and carried out our analysis from a pure graph theoretic point of view. Further 

refinement of the ordering needs to incorporate these detailed reaction information, as shown 

below. 

After the structured network is constructed as in Fig. 2(a), it is very convenient to Extract 

the minimal production unit. In the case of signal transduction network, the minimal production 

unit is the minimal subgraph of the original network such that the response to external stimuli 

continues to be produced though its value may not be correct. It obviously depends on the initial 

state of the system and on the specific response under investigation. 

X 

174 



B.6.   UNFOLDING CELL REGULATION NETWORK ANATOMY THROUGH GRAPH 
DECOMPOSITION  

In the NFKB network, there exists a particularly simple procedure to extract the MPU after 

we identified the forward and backward edges. First, the feedbacks and the associated reac- 

tions are removed as we now only consider the forward production part. As a consequence, 

{x4 ,i8,x9,x12,xi4} are removed, which results in Fig. 2(b) where the correlation among 

edges have been considered. Second, all the outputs except the one we are interested in are 

removed. That is, {x3,xn} are removed. From here we see that the final MPU indeed de- 

pends on what signal we are looking at. Finally, remove other irrelevant vertices. It is Xi0 here 

since its initial value is zero and does not receive any contribution from other vertices or the 

environment. The arrow from Xe comes from a binary reaction and x10 can not be produced 

there. At the end of the day, we produce the MPU depicted in Fig. 2(c). It contains the vertex 

set sm = {xi, X2 , X5 , X6, x7 , X13 , X14}, while all other vertices can be regarded as functioning 

controllers. 

To check if what we got in Fig. 2(c) is indeed the MPU, we keep only the variables in 

the vertex set Sm and their interactions in the evolution equation. Numerical simulation of this 

reduced set of equations produced an output curve depicted with the thick solid line in Fig. 1(c), 

which displays a fast relaxation to a large value. It is interesting to note that the saturation value 

and the relaxation time are very close to those of the first oscillation peak of the full equationa. 

The vertex set Sm constitute the MPU of the NFKB gene regulation network, which generate 

a quick and large response to the external signal. The rest vertieces act as controllers to bring 

down the initial pulse to a desired steady value in a much longer time scale. Both the short and 

the long time response bear important biological significances (25). 

In Ref. (25), it is pointed out that a two-component system with a negative feedback ex- 

hibits the basic oscillating or saturation behavior depending on the parameter values. Here, the 

two components are replaced by two subnetworks residing in cytoplasm and nucleus, respec- 

tively. The forward edges and feedbacks are realized by the translocation of several different 
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molecules. As extra resources are needed to produce these regulatory molecules, the question 

why the extra feedback loops and intermediate steps exist is naturally raised. External signals 

could have directly acted on NFKB to control its activity. Those extra features in network struc- 

ture and interaction dynamics bring about extra robustness and sensitivity to the network for 

fulfilling its basic function (30). 

Lying at the core of this regulatory network is the association and disassociation of NFKB 

with IKBQ. When binded, they stay away from the nucleus and the NF^B-initiated transcrip- 

tion is terminated; when they separate, NFKB tends to enter the nucleus and starts prompting 

transcription. The feedback FB;, mainly facilitates the step of clearing NFKB out of the nucleus. 

The feedbacks FBC and FB^ are two negative feedbacks. FB^ is to restore the concentration 

of IKBQ that has been consumed by the IKKa-catalyzed decay. FBd is to deactivate IKK„ by 

.420 to bring down the activation level of the whole network. Like other feedback signaling from 

the output (4,31) it provides adaptivity and sensitivity. When a signal such as TNF just arrives, 

IKK„ constantly gets activated into IKK0 while the deactivation of IKKa is minimized since its 

constitutive decay rate is small. So, the concentration of IKKa will rapidly increase until A20 

is produced by the feedback loop and starts the catalyzed decay of IKKQ. The forward reaction 

rate is thus maximized transiently and enables cell response to signals with short duration (25). 

The negative feedback will eventually bring down the IKKa concentration to a steady level 

which is much lower than the transient peak. So, the network has a very sensitive and fast 

transient response, which is essential for certain signaling pathways (25). 

The oscillation observed in this process is a signature of trading stability for sensitivity (21). 

It confers easy excitability to the network while brings oscillations at the same time. 

The reaction rates of all the biochemical processes are to some extent influenced by the 

environment variables like temperature, pH value, concentration of certain ions (32). To work 

properly under different conditions, the chemical network should possess structural stability. 
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Here the double feedbacks FBC and FB^ offer extra structural stability against parameter uncer- 

tainty. If the parameter changes incur an temporary increase of the concentration of NFKB„, 

then both FBe and FBd will act to bring it down. Even when the rate of FBC or FB^ changes, 

the other feedback will try to minimize the effect. Therefore, the double feedbacks act like a 

double safe for keeping the system stable under parameter fluctuations. 

The above procedure of searching for MPU could be easily generalized to more complex 

networks. The critical step lies in our capability of detecting the feedback loops. Once the feed- 

back controllers are decided, the MPU is obtained by removing all the feedbacks and then all the 

irrelevant outputs and inputs. The exhibition of fast forward production and the slow feedback 

controller is also quite universal as demonstrated by the next example of E. coli chemotaxis 

network, as well as those in Appendix C. 

Receptor (x, -,«, ) 

Mowr-ChcY, (* ) 

2   IOI 
a. 

r JL 

(a) (b) (c) 

Figure 3: (a)The chemotaxis model of E. coli. (b) Feedback and forward structure through 
graph decomposition, (c) The response of CheYp to the external cue of the full network (thick 
solid line) and the MPU (thin solid line), ligands added at t = 500 and removed at t = 1000. 

The chemotaxis of E. coli is regulated by its chemotaxis pathway. Chemoattractants binds to 

and activates the transmembrane receptors, which stimulate CheA through the adaptor CheW. 

Activated CheA phosphorylates CheY, which binds to the flagellar motor and increases the fre- 
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quency of E. coli tumbling. The activation of the receptor complex is controled by its methyla- 

tion states. Higher methylation states indicate higher probability to be activated. In the model, 

CheR binds only to the inactive receptors to increase methylation and phosphorylated CheB 

only to the active receptors to decrease methylation. 

The chemotaxis model is shown in Fig. 3(a). Fig. 3(b) displays its feedback and forward 

structure upon application of graph decomposition. The first level constists of the vertex set 

{xi ,X2 ,X3 ,X4 , x5} which are different methylation states of the receptor complex. External 

signals propagate down through x8, x8 and finally reaches the flagellar protein x9. There is one 

feedback vertex through x7 (CheBp). The minimal production unit (MPU) is obtained after all 

the reactions involving x7 is removed and is contained in the box in Fig. ??(b). 

With the feedback through CheBp (x7), the system has sensitive detection and robust adap- 

tivity as shown with thick solid line in Fig. 3(c). Starting with zero value , the CheYp quickly 

reaches the saturation level. At t = 500s, an external stimulus - lO^M concentration ligand is 

supplied, which induced a jump of CheYp concentration followed by an exponential decay back 

to the saturation value. At t = 1000s, the ligand is removed which triggered a drop of CheYp 

concentration but regained its stable value exponentially fast. When the feedback is removed, 

the MPU retains the stable value after a quick initial rise no matter how the concentration of 

external ligand changes. The robustness is retained but the sensitivity is lost. So, in this exam- 

ple the feedback is essential for system's transient response to external stimulus and guarantees 

the sensitivity. As in the previous example, the forward production reacts quickly accounting 

for the sensitivity of the network while the controller effects at a longer time scale to realize 

the adaptivity. This has been observed over again in several other most commonly encountered 

biological networks presented in Appendix C. 

We devised an automatic procedure to identify the key functional units of cell regulation 

networks by applying graph theoretic method and further dynamical systems analysis.   We 
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identified the forward production pipeline and feedback controller in the NFKB regulatory net- 

work with the HVD and the feedback loop searching algorithm. They form disparate functional 

modules and can be analyzed further with the same program if necessary. Based on the gener- 

icity and topological nature of the anatomy of the NFKB network, it is reasonable to believe the 

existence of similar structures in other cell regulatory networks. 

The detection of modular structures provides additional insight how a regulatory network 

works and thus gives clear indication of key protein species and key reactions in a cascade, 

which finds vast applications in the drug design and synthetic biology (33). The disclosure of 

the dominating skeleton subnetwork in a regulatory pathway also avails the determination of 

reaction rates of in vivo biochemical reaction since the distracting unimportant reaction com- 

ponents have been removed from the skeleton structure and the Jacobian matrix becomes more 

balanced (34). 

With the help of the current program, the analysis of large-scale network possibly gains 

much efficiency by building the hierarchical connection among different scales. In the top-down 

direction, the network may be broken into functional modules at different scales by the above 

decomposition technique. From bottom up after the property of each module is conveniently 

explored, a hierarchy of modules of increasing size may be built until the whole network is 

covered. This is a topological generalization of multi-scale analysis (35) to networked systems. 

Future application of the decomposition and the modular analysis technique could go far beyond 

biological networks. 

This reduction is closely related to the problem of determining rates of in vivo chemical re- 

actions that sensitively depend on the cell conditions and are hard to measure directly. They are 

usually estimated based on the response curves of the network, with known interaction graphs. 

A generic system turns out to be very sensitive to some parameters while inert to others (36). 

This observation is pertinent to the structural and functional redundancy commonly found in 
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biological networks. In order to maintain similar biological function under possibly vastly dif- 

ferent environment, a typical cell regulatory network contains much more extra pathways than 

is needed for the basic activity in normal conditions. In a particular experiment, only part of the 

network properties are measured, which is likely to be carried out only with part of the network 

so the rest seems redundant and the corresponding parameters are inert. Our current approach 

could be used to determine these inert parameters and thus disclose the skeleton of the network 

relevant to the experimental probation. The part of the network represented by the inert param- 

eters can be viewed as adaptive gears which take effects only under stress conditions and are 

thus negligible in normal conditions. In the following, we analyze the dynamical system Eq. (1) 

to excavate the inert parameters and hence pin down the major part of the network. 

APPENDIX 
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A    Chemical kinetic equation of the \ F/ H network 

Deterministically, the dynamics of the NFACB network is described by a set of chemical kinetics 

equations: 

X\ = fcprod      fcdeg%l       K\11X\ 

X2 = k\UXx — k3X2 — k2UX2XS — kdegX2 — 02X2Xio + t\X4 — 03X2X13 + £2X5 

X3 = £3X2 + /C2UX2X8 

X\ = 02X2X10 - £1X4 

x5   =   a3x2xi3 - t2x5 

X6 = C6aXi3 — OiX6Xi0 + £2X5 — «lX6 

X7 = 21^X6 — 01X7X11 

X8 = C4X9 — C5X8 

Xg = C2 + C1X7 - C3X9 

xio   =   -02X2X10 - Oix6xi0 + c4axi2 - c5aXio - JioXio + eiaXn 

Xn   =   —01X7X11 + iiakvXio — e\akvX\\ 

Xl2     —     c2a + claX7 _ C3aXi2 

X'13     =     OiX6Xio - C6aXi3 - 03X2X13 + e2aXi4 

x'14   =   aix7xn — e2oA;„xi4 

X'l5     =     C2c + ClcX7 - C3cX15 , (1 ) 

where the notation is adopted from the reference (27) and marked in Fig. 1(a). Protein IKK 

has three different forms, the neutral form IKKn (xi), the activated form IKKa (x2) and the 

deactivated form IKK* (x3). IKKn is passive but can be activated into IKKa by external cues 

like TNF or IL-1.  u e {0,1} is a switch variable which is equal to one when the external 

15 

181 



B.6.   UNFOLDING CELL REGULATION NETWORK ANATOMY THROUGH GRAPH 
DECOMPOSITION  

cue is present but equal to zero otherwise. IKKa is deactivated by A20 (a?g) into IKKt (£3) 

which is different from IKKn and cannot be activated. IKKa is able to bind with InBa (xio) 

to form the protein complex lKBa-IKK0 (x4) or with the complex IKBOJ-NFKB (XI3) to form 

a tri-molecular complex IKKQ-IKBQ-NFKB (X5). Once IKKa binds with IKBQ, in either the 

bimolecular or the trimolecular form, it phosphorylates and initiates proteolysis of I/cBcv so that 

NFKB (X6) is released from the complex and restores its enzymatic capability, entering the nu- 

cleus and being denoted by NFKB„ (X7). When NFKB„ binds to the relevant promoter regions 

in the DNA, a great variety of transcriptions are initiated. The transcripts (xg) for A20 and the 

transcripts (xu) for InBa move to cytoplasm and start synthesis of the corresponding proteins. 

Other interesting transcripts (xi5) for certain signaling proteins may be generated as well. The 

newly synthesized protein IKBQ will enter the nucleus, wherein denoted by I«Ban (in), and 

bind with NF/cBn to form the complex IKBO-NFKB,, (X14), leaving the nucleus for the cyto- 

plasm. Thus, the transcription is temporarily terminated by the association with protein IKBQ. 

The switch protein IKKa itself is also constantly deactivated by A20. In the mean time, almost 

all the proteins and transcripts decay spontaneously, and the bindings and unbindings all have 

constitutive reaction rates which are much smaller than the corresponding enzymatic reaction 

rates. 

B    Identifi cation of forwad and feedback edges 

In this appendix, we will design an algorithm to identify the forward and feedback edges with 

given polarity. First, a cycle search program is discussed which produces all the cycle generators 

for a strongly connected component. Then a selection procedure is discussed which generates 

a partial order of the vertices and enables the detection of feedbacks in a straightforward way. 
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B.l    Principle of minimum feedbacks 

Very often, in engineering systems, multi-step processes are carried out in a well-ordered se- 

quential way with a small number of feedback controllers modulating the behavior of the sys- 

tem. The cascade structure yields both robustness and evolvability to a networked system. 

It also has the advantage of maximizing operation efficiency and minimizing energy cost by 

adjusting magnitude of the feedback control. As an analogue, we propose that a minimum feed- 

back principle is also utilized by the cell: the feedback edges should be a minimum set in a 

biochemical network like cell regulation networks. 

How to find a minimum set of edges is an NP-hard problem in graph theory but there exist 

approximate algorithms which could do the job relatively fast. It is conceivable that the solution 

might not be unique. 

In the signal transduction network, extra constraints are imposed. From a control theory 

point of view, the signal transduction network consists of two major components, the informa- 

tion forwarding part and the feedback controller. The forward part receives external signal at 

one end, pass and process it along different paths, produce an output at the other end. So, the as- 

sociated information flow defines a direction on the network. The feedback component controls 

the flow by sending downstream signals back to upstream nodes. The identification of these 

two components is essential for understanding the function of individual parts of a network. 

So, the problem of searching for the minimal set of feedback arcs in this new context has to be 

consistent with the constraints brought up by these extra features. The problem could be put 

in an equivalent way: find an ordering of the vertices with the input and output vertices sitting 

at opposite ends, such that the number of feedback edges is minimized. To achieve this goal, 

in the following, the HVD and the cycle searching and selection techniques are discussed and 

applied to the graph in Fig. 1(b). 
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B.2    Cycle search 

For a finite graph, all cycles can be obtained by algebraically combining a set of independent 

cycle generators. For an SCC, all the edges are included in the generator set Cgen since there 

always exists at least one cycle passing any edge and thus each edge is contained in at least one 

generator. In the following, we introduce a searching-collapsing scheme to find the generators 

of all the cycles of a general graph & with the adjacency matrix A. The main idea is to identify 

shortest cycles and then simplify the graph in an iterative way: 

(1) Record all the self-loops of ^ which are encoded by the nonzero diagonal elements of A. 

After removing the corresponding edges from $, we obtain a new graph Sfj and a new adjacency 

matrix A\. 

(2) Search and record a shortest m-cycle l\=[ax, ...,am] of A\ where <Vs represent vertices of 

<£ by looking for the nonzero diagonal elements of the powers of A. 

(3) The induced subgraph Jf\ by the vertex set {a,i,..., am} has an adjacency matrix B\ which 

is a submatrix of Ax. Each nonzero element (i, j) of B\ represents an edge from the vertex a,j to 

the vertex a* which can be made to a cycle by connecting a, back to a, with part of the cycle 1%, 

e.g.,by the chain of edges [aj,ai+1, ...,o^]. So for each edge in 3%\ but not in lu we can identify 

and record a cycle. 

(4) Collapse all the edges and vertices in the subgraph Jt\ into one point P\, and we obtain the 

updated graph #2 for which a new adjacency matrix A2 is written down. If ^2 only contains Pi, 

the iteration is terminated. Otherwise, we go back to step (2) and repeat the procedure with the 

new graph ^2 and the new adjacency matrix A2. 

It is easy to show that each cycle of ^i corresponds to a unique cycle either in Jfx or in ^2- 

Vice versa, each cycle / in ^2 can be identified with a unique cycle in ^: if the cycle / runs 

through Pi, then its entering vertex and leaving vertex in JfJ can be connected by a unique path 

embedded in the cycle U and thus a unique cycle in 'Si is produced by concatenating this path to 
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the edges contained in /; if the cycle / stands apart from Pu it directly corresponds to one cycle 

in (S\. So, after the search is done, finally, we can trace backward all the cycles contained in the 

original graph <£. Here, we only recorded the set Cgen of cycle generators. As we pointed out 

earlier, however, their linear combinations are able to produce all the cycles and so cover the 

whole transitive part of the graph. The generators derived from the above algorithm are prime 

in the sense that any proper subset of a generator is not a cycle. Note that the set Cgen is not 

unique since the selected cycle in step (2) is not unique, but the number of cycle generators 

is a constant which depends only on the graph itself. The important point here is that all the 

feedback edges appear at least once in Cgen as argued above. 

To the NF-KB gene regulatory network, we apply the cycle-searching technique and find 

that the total number of cycle generators are 33 with 15 1-cycles and 8 2-cycles. Therefore, 10 

cycle generators has length longer than 2. 

B.3    Selection procedure 

In order to determine the forward and feedback edges from the cycles found in the previous 

section, we utilize the polarity of the network that has the input and the output points. We take 

the middle layer of the NFKB network from the HVD result as an example. Here, the input point 

is X2 as it receives signals from xi and the output point is x7 as it sends signals to xi5. The goal 

is to find all the forward paths that go from X? to x7 and all the feedback loops. The problem is 

clear conceptually but not rigorously defined mathematically since different choices may lead 

to different forward and feedback sets. Here, we provide one choice that seems reasonable. 

After adding a direct connection (2, 7) from x7 to X2, we apply the cycle searching technique 

developed above and identify a set of cycle generators. 

For a graph with tree structure, it is always possible to find an ordering of the vertices, 

such that feedback edges do not exist. For instance, the HVD could generate such an ordering. 

19 

185 



B.6.   UNFOLDING CELL REGULATION NETWORK ANATOMY THROUGH GRAPH 
DECOMPOSITION  

With cycles present, at least one feedback exists no matter how the vertices are ordered. Here, 

we implement the principle of minimal feedbacks to extract the minimal set of the edges the 

removal of which leads to generation of tree structures in the network. Therefore, by a greedy 

algorithm it is tempting to cut those edges that are common to most number of cycles. It is 

not uncommon that by removing one edge quite a few cycles get detroyed. 1-cycles (self- 

loops) and 2-cycles are special and need to be treated differently. 1-cycles always attach to 

the corresponding vertices and are not regarded as feedback loops, the 2-cycles correspond to 

bidirectional edges most likely representing the forward and backward reactions since many of 

biochemical reactions are reversible. These 2-cycles are important for keeping the chemical 

balance but not to be regarded as feedbacks from a signal transduction point of view. Each 

2-cycle contributes exactly one feedback edge. They have to be cut one by one irrespective of 

the ordering of the vertices. Therefore, they have no impact on the vertex ordering regarding 

the search of minimal set of feedbacks. Hence, we consider only cycles of length larger than or 

equal to 3 when ordering the vertices. In a graph possessing polarity, for the input vertex, every 

out-edge is regarded as a forward edge and every in-edge a feedback. The opposite is true for 

the output vertex. 

With the long cycles having been determined in the cycle search program, we first look 

for those passing the edge (2,7) and thus obtain a set of forward paths that go from x2 to 

X7. Then, from the remaining long cycles, we search for cycle segments that parallel to these 

already obtained forward path segments so that alternative paths from x2 to X7 are constructed. 

We repeat the search until no more alternative paths can be generated from the available long 

cycles. Now, we have a subgraph & expanded by the vertices and the edges contained in these 

forward paths. For the NFKB regulation network, the vertex set in & has been computed as 

Vf = {x2 , X5 , X6, X7, X10, xn , X13} which are displayed inside the rectangle in Fig. 2(a); the 

complementary vertex set consists of Vj, = {14, x», xg, xi2, xM}. They do not belong to the 
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forward pipeline from x-i to X7, so they must be included in the feedback motifs. Next, we 

partially order all the vertices and edges according to the determined forward path. 

First, the HVD is applied to &. We get 4 layers and 7 groups with one vertex in each group 

since there is no feedback edge in &. So, from x2 to x7, we generated a partial ordering by 

the layered structure. The vertices in each layer are not ordered. We rearrange the order of the 

vertices in & according to the partial order and append the vertices in Vt, to the end. Using this 

ordering for the SCC, a new adjacency matrix A, is generated. All the subdiagonal entries stand 

for forward edges while the entries above the main diagonal indicate backward edges. We can 

further identify all the 2-cycle edges by checking the diagonal-symmetric partners of nonzero 

superdiagonal entries. If the subdiagonal partner is also nonzero, then together they stand for a 

2-cycle. If the partner is zero, then we have a long feedback loop, the collection of which are 

clearly exhibited by the vertices and the edges outside the rectangle in Fig. 2(a). 

C    Examples of Several other cell regulation networks 

C.l    B. Suhtilis chemotaxis network 

Figure 4: Network representation of the chemotaxis model of B. Suhtilis. 
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Xi T20 16 Tn £11 Motor - CheYp 
x2 T10 X7 CheAp 112 Ry 
•'':< Too ^8 C'hcB,, ^13 RYP 

X i To, Xg CheYp Xl4 R^ 
x5 T02 £io CheVp 

Table 1: TtJ denotes six different methy lation states of the receptor dimer where the index i and 
j mark the methelation states of residue 630 and 637, respectively. CheABVY denote different 
kinases in chemotaxis signaling. RYP, Ry denote receptors with and with no ChemYp binding, 
while RA denotes activated recetors. 

The chemotaxis signaling network of B. subtilis retains many features of that of E. coli 

but also has varied considerably. The model is adapted from (37). See Fig. 4 for the inter- 

action graph and the notation is explained in Table 1. Here, in a similar way, the receptor (T) 

adopts different configurations (active, inactive, weakly active, weakly inactive) according to its 

methylation states and external ligand concentration. However, the activation and deactivation 

of the whole receptor complex (R) also depends on the binding of CheYp. The active receptor 

complex can activate Che A which in turn activates CheY. The phosphorylated CheY binds to 

the flagellar protein and enhances straight runs of the bacterium. It is also assumed that CheYp 

deactivates CheA. CheAp also activates CheB which adjusts the methylation state of the recep- 

tor. A new inhibitor CheV exists in B. subtilis network which disrupts the receptor complex 

when unphosphorylated but can be deactivated by CheAp phosphorylation. 

Through the graph decomposition discussed previously, three main feedbacks are unam- 

buguously detected and displayed in Fig. 5(a) for the B. Subtilis chemotaxis network. One 

is through xH (CheBp) which is activated by x7 (CheAp) and changes the methylation state of 

the receptor (ii,...,6). The feedback through xi0 (CheVp) is the new controller of the receptor 

complex while the feedback through xx2 and xl3 relays the action of CheYp (x9) to regulate the 

activation and inactivation of the receptor complex. The first six variables xi,...,6 representing 

different methylation states are interconnected, making up a complete subgraph and describing 
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(a) ih, 

Figure 5: (a) The feedback and forward structure through graph decomposition, (b) The MPU 
of the B. Subtilis chemotaxis network. 

their interdependence. All of them affect the activation of the whole receptor complex (i14). 

We checked the dynamics by using the kinetic equations and parameter values in (37). Fig. 

6 shows the change of z9 (CheYp) in the time interval [0,1500], starting with x9 = 0, 10/iM 

attactant added at t = 500 and removed ait = 1000. When the full network is put to work, 

the adaption is clearly exhibited in Fig. 6(a) by the elevation of x9 during [500,1000] in the 

presence of the chemo-attractant. When the feedback back is cut, we get in Fig. 6(b) a stable 

value of x9, which does not change with the attractant concentration. So the subgraph shown in 

Fig. 5(b) is an MPU, which only provides the basic supply of CheYp, devoid of capability of 

adaptation. Also noticeable is the fast response produced by the MPU and the relatively slow 

adaptation process controled by the feedbacks. 

Comparison of Fig. ?? and 5 reveals the similarity and difference between the chemotaxis 

pathways of E. coli and B. subtilis. The forward MPU parts of both pathways are almost iden- 

tical. Nevertheless, the feedback regulator in B. subtilis has extra loops and layers which may 

provide more subtle control (37). 

23 

189 



B.6.   UNFOLDING CELL REGULATION NETWORK ANATOMY THROUGH GRAPH 
DECOMPOSITION 

Figure 6: The concentration change of CheYp (xg) of the chemotaxis network ofE. colt (a) with 
and (b) without feedbacks. External attractant of 10/zM is added at f = 500 and removed at 
t = 1000. 

C.2    Survival and apoptotic pathways initiated by TNF-a 

This model studies the survival and apoptotic pathways initiated by TNF-a and we adopt it 

from (38), which play decisive roles in cell fate decision in response to inflammation and infec- 

tion. After the external cue TNF-a binds to its receptor TNFR1 (x2), adaptor proteins TRADD, 

TRAF2 and RIP-1 are recuited to form an early complex ready for binding and activating other 

functional proteins. There are two different downstream pathways: the survival pathway medi- 

ated by NF-KB and the apoptotic pathway mediated by caspase. NF-KB is usually sequestered 

by IKB and is released when IKB degrades. IKK binds to the early complex to form a survival 

complex and is activated with the dissociation of this complex. The activated IKK is able to 

induce proteolysis of IKB. The released NF-KB translocate to the nucleus, binds to DNA and 

leads to the transcription of IAP and IKB. C-IAP inhibits apoptosis by binding to caspase-3* and 

thus preventing DNA fragmentation. The notation is detailed in Table C.2. 

Upon application of the graph decomposition routine, we unfold the successfully unfold the 

underlying modular structure of the TNFa network. The forward production unit is a long cas- 

cade involving many different species and reactions. The signal TNFa (x\) is processed through 
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Figure 7: Network representation of the Survival and apoptotic pathways initiated by TNF-a. 

the network until DNA fragmentation is induced (x26) as shown Fig. 8(a). The direct HVD 

identifies one big SCC enclosed in the two boxes in Fig. 8(a). Further analysis distinguishes 

the forward and backward edges. The whole NFKB pathway is now treated as a feedback back 

module, which controls the level of the c-IAP (x27) and thus Caspase-3* (x25), and maintain 

the option for survival. It is intriguing that the NFKB module is produced automatically by our 

decomposition procedure althougth it has many connections to the rest of the network. The 

removal of the NFKB module singles out the MPU. 

Fig. 9 shows the level of DNA fragment (x26) with or without the presence of the NFKB 

control module. With the feedback module, the fragmentation of DNA is low (Fig. 9(a)), 

which may suggest the survival of the cell; without, the DNA cleaverance is high (Fig. 9(b)), 

which could indicate an apoptotic fate of the cell. So, indeed, here the NFKB modules acts as 

a controller of the apoptotic pathway. Our decomposition technique accurately captures this 

information. Again, without the control module, the MPU produces over abundantly the output 

signal in a relatively fast way. The long feedforward edge from x16 to x27 may accelerate the 
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X] TNFa 217 FADD 
Xl TNFR1 2l8 (27)/RIPl/FADD 
23 TNFa/TNFRl 2l9 TRADD/TRAF2/RIP1/FADD 
.;-,i TRADD ^20 Caspase8 
25 TNFa/TNFRl/TRADD 221 TRADD/TRAF2/RIPl/FADD/Caspase8 
•i't; TRAF2 222 Caspase8* 
•''7 TNFa/TNFRl/TRADD/TRAF2 223 Caspase3 
I8 

RIP1 224 Caspase8 * /Caspase3 
Xfl (x7)/RIPl 225 Caspase3* 
210 IKK 226 DNA - frag 
Xn (x7)/RIPl/IKK 227 cIAP 
X12 IKK* 228 Caspase3 * /cIAP 
X\3 IKB/NFKB 229 DNA 
XU 

IKB/NFKB/IKK* 230 Caspase3 * /DNA 
^15 IKBP 231 IKB 

Xl6 NFKB 

Table 2: TNFa is one tumor necrosis factor which binds to the receptor TNFR1. TRADD, 
TRAF2 and RIP1 are adaptor proteins which may form complexes with TNFa. IKK, NFKB, 

IKB belongs to the NFKB module while FADD, caspase8 and caspase3 are on the apoptotic 
pathway. c-IAP is an inhibitor of apoptosis protein. 

control in this case. 

C.3    Circadian clock in Drosophila 

Circadian clock exists in many different organisms ranging from bacteria to human. The reg- 

ulation pathway adopted from (39) and displayed in Fig. 10 models the Drosophila circadian 

clock which mainly contains two interlocked loops. The notations are explained in Table 3. The 

TIM and PER protein in the first loop may bind to each other in the cytosol or nucleus, but they 

enter the nucleus separately. They down-regulate their own expression by inhibiting the tran- 

scription factor CLK-CYC. The association of TIM and PER in the cytoplasm is mediated by 

FBM and the dissociation is catalyzed by SM which is generated by the constitutive entering of 

PER into the nucleus. In the second loop, CLK-CYC activates both VRI and PDP expression. 
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(a) (b) 

Figure 8: (a) Feedback and forward structure through graph decomposition, (b) The minimal 
production unit of the TNFcv network. 

VRI represses the expresson of CLK while PDP promotes. 

The network graph after the decomposition analysis in Fig. 11(a) clearly shows 5 feed- 

backs. The one through SM (xn) is the positive feedback that accelerates the dissociation of 

the PERTIM complex. The other four are the important regulators of the concentration of PER, 

TIM, VRI and PDP through DNA expression and protein translation. The feedbacks through 

ii2 and x13 interact with each other and control the production of CLK (xi9). The MPU is very 

easily obtained by removing the feedback modules and displayed in Fig. 11(b), which indicates 

how the (sunlight) signal is picked up at x4, processed via PERTIM, CLKCYC interaction and 

output at x2i. With all the feedbacks, the Drosophila network is able to generate stable oscil- 
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Figure 9: The evolution of the DNA fragment (x26) (a) with and (b) without the NFKB feedback 
module. 

•'': Perra x7 PER • Pc 5C13     Pdpm X19           CLKC 

•r2 Timm x% PER • Pn x14    Clkm XJO      CLK • CYCC 

x3 PERC Xg TIMn xis   VRTC xn   CLK-CYC  Pc 

Xi TIMC ^10 PER • TIMn x16    VRIn xM      CLK•CYCn 

%5 PER • TIMC XU SMC 117    PDPC i23   CLK-CYC   Pn 

•'•(, PER • TIM/ XU VRI„, *18    PDP„ 

Table 3: This Drosophila circadian clock model consists of two loops. One contains PER 
and TIM and the other contains PDP and VRI. They interact through CLK-CYC controlled 
expression. SM and FBM are two proteins assisting in the first loop. 

lations with period being 24 hours. Indeed, employing the kinetic model in (39) and starting 

with a somewhat arbitrary condition, the network soon reached an oscillatory state as shown in 

Fig. 12,. Without the feedbacks, all the state variables quickly relaxed to a steady state. The 

network loses its function. So, these feedbacks are essential elements for the generation of the 

circadian cycles. We note that the drift to stable oscillation in Fig. 12(a) takes much longer than 

the relaxation in Fig. 12(b), which indicates that the MPU works at a much smaller time scale 

while the feedback controller is slowly adjusting the motion to the desired one. 
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Figure 10: Network representation of the Circadian clock in Drosophila. 

C.4    The EGF receptor signaling 

The epidermal growth factor receptor (EGFR) belongs to the family of protein-tyrosine kinase 

receptors, which regulate cell growth, survival, proliferation and differentiation (40,41). This is 

a simplified version of the EGFR signal transduction network adopted from (42). The interac- 

tion graph is depicted in Fig. 13 and notations are explained in Table C.4. Upon binding of EGF 

(x\) to its receptor R (x2), the occupied receptors EGFR (x3) will form dimers EGFR2 (£4) and 

get phosphorylated EGFR2p (X5), which triggers the binding of the cytoplasmic proteins, such 

as Grb2 (x20), Shc(x2i) and PLC7 (x22), to the receptor. PLC7 binds to the receptor to form 

a complex EGFRP-PLC (x6) and gets phosphorylated EGFRP-PLP (x7). The activated PLC7, 

i.e. PLP (xi8) then dissociates with the receptor and initiates many subsequent reactions, like 

binding to cytoskeletal structures PLC-I (X19). The complex EGFRP-G (x8) of the adaptor pro- 
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Figure 11: (a) Feedback and forward structure through graph decomposition, (b) The minimal 
production unit of the Drosophila cirdadian network. 

tein Grb2 and the receptor may recruit the GDP-GTP exchange factor SOS (x22) a"d put it in 

the vicinity of Ras. The binding of Grbs to the receptor could also be mediated by She, which 

makes a complex EGFRP-Shc (xi0) first and is consequently phosphorylated into EGFRp-ShP 

(in). The binary complex is able to bind Grb2 to form a ternary complex EGFRp-ShP-G (x\2) 

and then binds to SOS to produce a quadruple EGFRp-ShP-G-S (Xis), which approaches and 

affects the Ras activity like as well as in the complex EGFRP-G-S (J9). All the complexes 

dissociate at some rates. 

In this example, almost all reactions are reversible so the whole network is strongly con- 

nected and hence usual simple decompostion schemes are hard to work. Our scheme, however, 

is still able to generate the biologically meaningful topology if the input and ouput vertices are 
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Figure 12: The evolution (a)of the cytoplamic CLK CYCPC (x2i) with all the feedbacks present 
and (b) of xi .. ,23 without the feedback module. 

X[          EGF x7 EGFRp-PLP x13   EGFRp-ShP - G - S X19      PLC - I 
X2                    Pi x% EGFRP-G X14                G — S X20           G 
x3       EGF - R x9 EGFRp-G - S x15                  ShP X21           She 
x4      EGF - R2 £10 EGFRp-Shc x16             ShP - G £22           s 
x5      EGF - R2p Xll EGFRp-ShP x17                  PLC x23   She - G - 
x6   EGFR^-PLC X\2 EGFRp-ShP - G x18                  PLP 

Table 4: R denotes the EGF binding receptor. PLC and PLP denotes the enzyme PLC7 and its 
phosphorylated form, respectively. G and S stand for Grb and SOS. ShP is the phosphorylated 
form of She. 

appropriately selected, see the decomposed graph in Fig. 14(a). The binding, dimerization and 

phosphorylation of the EGFR leads to the production of EGF-R2p (x5) which becomes the hub 

of all the signaling processes. The reactions involving PLC (x]7) are automatically selected to 

make one separate module in the small box on the right of Fig. 14(a) since they are not direcly 

related to the production of EGFR2p-G-S (x9). Displayed in the graph are mainly three routes 

to the target output x9. The longest one is through x2i —• x10 —» xn —• x!2 —> X13, another 

is through x8 and the shortest one is a direct connection from x5 to x9. But the shortest one is 

related to the reverse reaction of the dissociation of the EGFR2p-G-S complex and should not 
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Figure 13: Network representation of the epidermal growth factor receptor model. 

be treated as a signaling process. It is removed in the MPU graph shown in Fig. 14(b). So, 

there are two major pathways as explained before: the short one passing x8 is through direct 

binding of Grb and the other long one is mediated by the binding and activation of She. The 

MPU shown only contains the short course. 

The time evolution of the output plotted in Fig. 15 shows that with the feedback control 

(Fig. 15(a)), the signaling arrived at the desired value x9 = 0.13 in a short time and stay there 

indefinitely long. Working only with MPU (Fig. 15(b)), however, the signal quickly rises to 

a large steady value x9 = 4.5 and might change the behavior of the downstream reaction as a 

consequence. As before, the fast production unit responds in a rapid and uncontroled manner 

while the extra controllers may pin down the output to the desired value at a large time scale. 
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Figure 14: (a) Feedback and forward structure through graph decomposition, (b) The minimal 
production unit of the EGFR network. 

C.5    G-protein coupled receptor model 

Here, the model is taken from (43), for the G protein-coupled receptor (GPCR) signaling mod- 

ules in macrophage immune cells. The GPCR system responds to multiple external cues, such 

as: light, hormones, odorants, neurotransmitters, amino acids, which is an important drug target 

and is one of the most common signaling channels in a cell. Here, a simplified model is used to 

study the effects of two signaling molecules (C5a and UDP) on the second messenger calcium 

Ca2+. 

The interaction graph of the model network is displayed in Fig. 16 and the notation is ex- 
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•''1 C5aR £21 PLC/?4 • Ca2+ • GaQGTP X41 Buf 
•'•.! C5aC X22 PIP2 x42 Ca2+ • Buf 
X3 GRKp • G/?7 ^23 PLC/34 • Ca2+ • Ga,GTP • PIP2 £43 CA2+ 

X\ GRKP • G/?7 • C5aC X24 IP3 X44 PKC 
xs v^Oclv^p ^25 DAG £45 PKC•DAG 
XQ P2YR #26 PLC/33 X46 PKC • Ca2+ 

X-t UDPC ^27 PLC/?3 • Ca2+ 
£47 GRK,, 

•'•« G/?7 • GQiGDP £28 PLC/33 • Ca2+ • Ga,GTP £48 GRK 
Xg G/?7 £29 PLC& • Ca2+ • Ga,GTP • PIP2 x49   PKC • DAG • Ca2+ • GRK 
X 10 GaiGTP £30 PLC/33 • Ca2+ • G/?7 £50 DAGd 

X\\ GaiGDP £31 PLC/33 • Ca2+ • G/?7 • PIP2 X51 IP3A'a 

Xi2 G^7 • Ga,GDP £32 PKC • DAG • Ca2+ 
X52 IP4 

Xl3 GQ,GTP £33 PKC • DAG • Ca2+ • PLC/34 • Ca2+ 
X53 IP5 

X14 Ga„GDP X34 PLC/34 • Ca2+ 

Xl5 RGSa £35 PKC • DAG • Ca2+ • PLC/33 • Ca2+ 

Xl6 RGSa • Ga.GTP £36 PLC& • ca2
p
+ 

X17 RGS„ • GQ„GTP £37 IPSR 
Xl8 PLC/54 ^38 IP3R • IP3 
Xl9 Ca2+ 

£39 IP3R • IP3 • Ca2+ 

^20 PLC/34 • Ca2+ 
X40 IP3R • Ca2+ 

Table 5: The notations for the G-protein coupled receptor model. Buf represents other calcium 
buffers in the cell. 
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Figure 15: The evolution (a)of the EGFRP-G-S (.r9) with all the feedbacks present and (b) with 
MPU. 

plained in Table 5. The main biochemical process could be explained as following. Upon C5a 

and UDP binding to specific cell surface receptors, the G-protein heterotrimer dissociates to 

free Ga-GTP and G/?7, both being able to bind isoforms of PLC./3 and catalyze the synthesis of 

IP3 and DAG from PIP2. IP3 binds to certain ion channels on the membrane of endoplasmic 

reticulum to induce the release of Ca2+ into the cytosol. DAG and Ca2+ bind to and activate 

PKC which then phosphorates and inactivate PLC8. GRK is localized at the membrane by G/87 

once it is phosphorylated by PKC. GRK phosphorylates and inactivates C5a receptor (C5aR). 

There are also Ca2+ flow from other buffers in the cell or from extracelluar environment. 

Upon application of our decomposion technique to the above network, a structured graph is 

obtained and displayed in Fig. 17. The network consists of four parts: 

• The source vertex set {x6 , x7 ,xsi}. 

• The sink vertex set {x50}. 

• The feedback vertex set {x5, X34,X41, X42,x^,X49,x&, x53}. 

• The major strongly connected processing unit, the rest of the vertices 
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Figure 16: Network representation of the G-protein coupled receptor model. 

In the major processing part, the cycle search and selection program decomposed it into hor- 

izontal layers, being put in an order which relays the signals input from vertex x\, the cell 

surface receptor and terminates at vertex xi9, the calcium ion. According to the order given in 

the figure, we can see that there are many feedbacks. It happens that the feedback vertex set 

mark the major ones. The feedback through x52 , x53 marks the feedback of phosphorylation 

of IP3 back to PIP2; the one through X48 , £49 marks the feedback of PKC on GRK2; the one 

through J34 marks the action of calcium on isforms of PLC/3; the one through x41, X42 marks 

the exchange of calcium with other calcium buffers. Of course, there are many other important 

feedbacks. They are visible as feedbacks in the boxed forward processing unit. The MPU is 

shown in Fig. 17(b) where we have removed the feedback box and some of the feedbacks in the 

36 

202 



B.6.   UNFOLDING CELL REGULATION NETWORK ANATOMY THROUGH GRAPH 
DECOMPOSITION  

forward processing unit which are unidirectional. Shown in Fig. 18(a), is the change of Ca2+ 

over time when a concentration 250nM of C5a is added at t = 0. A fast initial growth of 119 

and a slow relaxation to a steady value is obserbed. With only the MPU, x\% reaches a very 

high value in a short time and stay there without being brought down to the equilibrium value 

of the full network. So, those feedbacks act as a controller to set up the output of the system 

to a controled value. The MPU responds to external signals with fast production as in other 

examples. 

C.6    A phage decision circuit 

When the bacterium Esherichia Coli is infected by phage A, there are two possible subsequent 

pathways: lysogeny and lysis depending on the concentration of particular proteins. In the lyso- 

genic pathway, the DNA of the A-phage will be integrated to the host DNA. In the lytic pathway, 

the host DNA will be excised to provide material for A-phage duplication. The selection of the 

pathway is made by the A lysis-lysogeny decision circuit where the molecular fluctuations play 

significant roles (44). 

Here, we present a circuit model due to H. H. McAdams and L. Shapiro (45). 

Upon infection of E. coli, phage A is faced with selection of two different fates: lysis where 

more copies of phage A are assembled and released after the host bacterium is lysed or lysoge- 

nesis where the DNA of the phage is integrated into the host's DNA. This fate decision is made 

by a well-characterized competitive regulatory mechanism of a bistable gene switch. The core 

of the switch is the ?R and PRM operators which share three operator sites (OR1, OR2, OR3). 

Translation of Pff transcript produces CI while PflA/ encodes Cro. The two factors CI and Cro 

bind to the operators sequentially in the opposite order. When CI binds to OR1, P/? is repressed 

following which VRM is activated by CI at OR2 and repressed by CI at OR3. ?RM is repressed 

when Cro binds to OR3 and PR is repressed by Cro at OR2 or OR1. Initially PflAf is off. But CII 
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Xi    RecA 
x2       ci 

S3 

•''i 

X6 

•1-7 

J\ 

Xg 

^10 

CI 
CI* 
cii 
CII 
CII* 
ciii 
cm 
cro 

in Cro 
X12 ant — Cro 
xi3 Ant - Cro 

X14        PRM 

Xl5 

Xl6 

X17 

Xl8 

Xl9 

X20 

p« 
PRE 

PI 

n 
N 

tLl 

X21 tL2 
X22 tR2 
X23 tR2 
X24 0 

X25 0 
X26 P 
X27 P 
X28 q 
X29 Q 
X30 anti — Q 

£31   Anti - Q 

X32 

£33 

£34 

£35 

£36 

£37 
x38 

£39 

P*< 
tR' 

P/ 
xis 
Xis 
int 
Int 
S 

Table 6: In the table, PftAf,Pft,P/?£,Pi,,P/. P/1Q.PR' are promoters; tRl, tR2, tLl, tL2, tR' are 
terminator on the DNA strand; CI, CII, CIII, N, O, P, Q, Cro, Xis, Int, Anti-Q are regulatory 
proteins; Anti-Q, Ant-Cro are gene transcripts. The corresponding gene is marked by lower 
case letters. 

initiated from PR and CIII, N initiated from PL lead to the stimulation of PRE, which induces 

rapid production of CI and suppresses the production of Cro by the anti-Cro transcript. Both 

Cro and CI supress PL. Protein N is able to anti-terminate the terminators tRl, tR2, tLl, tL2, 

such that CII and CIII could be produced rapidly and the production of proteins Q, Xis, Int 

is able to start. Regulator Q can anti-terminate tR', which paves the way for the P& initiated 

transcription to continue through S and activate the lysis coding genes. However, Q may be 

repressed by Anti-Q initiated from PAQ which is activated by CII. The concentrations of Xis 

and Int will determine lysis-oriented excision or lysogenesis-oriented integration, respectively. 

The CII activated promoter P/ favors the production of Int. 

In all, roughly speaking, CI, CII and CIII production leads to lysogenesis while Cro pro- 

duction leads to lysis. Both the bacteria state such as the multiplicity of infection (MOI) and 

external cues such as ultraviolet light play important roles in the fate decision process. Many 

components of the network are effective only transiently. Once the decision has been made, 

they are suppressed. In the model shown in Fig. 19, the operators OR1, OR2, OR3 are not 

represented explicitly. 
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This network is quite sparse, xi represents the external signal source and sits on the top 

of the decomposed structure in Fig. 20(a). Five elements {x25 , X27 , x36, X38 , X39} stand at the 

bottom, in which {x25 , X27} are intermidate products that are not active in the model while the 

rest are important for the A lysis-lysogen fate decision. The main processing part is contained in 

the left long bar where the signal enters through cii (x5) and finally switches on (off) N (X19) and 

tRl (X22). All the subsequent steps depend on these two. The feedback vertices are contained on 

the small vertical box to the right of the main processing unit. The Cro (xu) autoregulation and 

the CHI factor (x9) are treated as feedbacks, which seem plausible. Certainly, different choice of 

the input or the output vertices may result in different sequence and partitions. Also noticeable 

is the small loop in the main unit consisting of {xi4 , X2 ,X3 ,14} with one feedback from x4 

to X14. This loop is just the autoregulation module of CI. After removing most feedbacks, the 

MPU is obtained and displayed in Fig. 20(b) where the signal relaying process is very clearly 

exhibited. As before, the MPU is very likely losing its biological function without the feedback 

controllers. 
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(a) (b) 

Figure 17: (a) Feedback and forward structure through graph decomposition, (b) The minimal 
production unit of the G-protein coupled receptor network. 
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Figure 18: The evolution of the Ca2+ (xi9) with all the feedbacks present (a)and only with MPU 
(b). 
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Figure 19: Network representation of the A phage decision circuit. 
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(a) (b) 

Figure 20: (a) Feedback and forward structure through graph decomposition, (b) The minimal 
production unit of the A lysis-lysogen decision network. 
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Constrained Dynamics Lifting 

Gear, Givon and Kevrekidis 

August 3, 2008 

Abstract 

In this paper we present a novel numerical scheme that aims on 
integrating a dynamical system which exhibits time scale separation. 
The novelty of the new algorithm is that it assumes only the separation 
of scales, without explicitly knowing what variables are the slow ones 
and what variables are the fast ones. 

1    Introduction 

Many problems in science can be described by a dynamical system that 
exhibits time scale separation. The case where the variables can be cate- 
gorized as slow and fast variables has been successfully treated in the past 
years mainly due to tools provided by Differential Algebraic Equations and 
the Averaging Principle. Various kinds of multiscale algorithms have been 
introduced to effectively integrate systems with scale separation. Follow- 
ing the introduction of a novel auxiliary process by Freidlin and Wentzell 
[1], different integrators were suggested in [2], [3],[4] which are based on a 
numerical discretization of the auxiliary process. The use of the averag- 
ing principle in this context crucially depends on many layers of a priori 
knowledge about the evolution equations, for example, the decoupling of 
the variables into slow variables and fast variables, the full knowledge of the 
different summands on the right hand side of the evolution equations for the 
slow variables which in turn implies the a priori knowledge of the nature of 
the slow variable (deterministic, stochastic.) and last, the assumption that 
the observables are the slow and fast variables of the system. 

Scientists and engineers are faced with research problems that often have 
many complex internal feedback processes that defy simple analysis, or that 
must be studied at scales that are much different than processes occurring 
in nature.   In such, any a priory assumption on the nature of the coarse 
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description limits the feasibility of the results. These challenges often need 
massive datasets for simulation, have heterogeneous data sources that must 
be linked, or generate massive, high-dimensional datasets from experiment 
or observation, and will soon be beyond today's capabilities. 

Computational experimentation allows insight into complex systems by 
enabling the creation of a virtual description (algorithmic or computational) 
that can interact with elements from the real world. Simulation and other 
dynamic modeling techniques allow us to experiment with complex systems 
in ways that would be unimaginable in the real world, and to constrain our 
understanding of the system characteristics or underlying physical phenom- 
ena. Furthermore, it allows us to guide real world operations and exper- 
imentation in cases that have potential for unforeseen or extreme events. 
Research in this area will provide needed new modeling techniques ranging 
from mathematical formulations to multi-scale simulation techniques. 

A novel approach which is based on computational experimentation is 
the Projective Integration of Gear and Kevrekidis [5]. In the projective 
integration method there is no a priori knowledge of the nature of the coarse 
description. In their coarse projective integration method it is assumed that 
a parametrization of the slow variable is given and that it can be computed 
from the observations. 

In this paper we consider the problem of integrating systems with scale 
separation where the separation is not explicitly given in the equations de- 
scribing the dynamical system and hence no a priori knowledge of the coarse 
description is at hand. Of course, if additional information about the system 
is given in advance, one should use it to make the computations simpler and 
faster. 

We start with a simple example of our formulation. 

HI. There exists a hidden dynamical system, described by. 

dx = ydt 

1 y/2 (1-1) 
dy — - (sin x — y) dt -\—-p dW. 

€ y 6 

where 

1. (x,y) £K = M.'2,x€'Jlx = R1,y£Ky = 'Rl and t £ [0,T]. 

2. e<l. 

H2. The observables of the system {u,v) G S = K2 are an unknown, smooth 
and invertible function of the hidden variables x, y which we set to be 
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F-.K^S, ¥(x,y) = (u,v), 

(uv) = F(xv)=(   cos(ll(x'^     sin(\\(x,y)\\) \ ( x \ 
(u,v)     *[x,y)     y_s-m{^m   cos(||(x,y)||) AW'   (     } 

An image of the function F is sketched in Figure 1. 

Using results from the averaging principle, we have the following approx- 
imation which we now describe. We start by defining the auxiliary process. 
For every x. 

1 /2 
dY(t) = -(smx-Y(t))dt + ^7=dW(t). (1.3) 

If we ignore the noise term in (1.1). we have a system of stiff ODEs. The 
auxiliary process (1.3) corresponds to the fast equation in stiff ODEs when 
the slow variable is fixed. The next step after fixing the slow variable when 
solving stiff ODEs is to move e to the left hand side and to set is to zero. 
This leads to an algebraic equation. The solution of the algebraic equation is 
the solution at time equals infinity of te fast dynamics when x is kept fixed. 
Equivalently it is the limiting position of the y variable when evolving by the 
fast dynamic equation with fixed x. When the auxiliary process is stochastic 
one follows the same lines. A limiting solution of the auxiliary process is 
sought, however the stochasticity implies that the limiting solution, when 
exists, is a distribution which is not limited to a stationary position. Basic 
knowledge in stochastic processes tells us that in our example the auxiliary 
process induces a stationary measure A/"(sinx, 1). which is Guassian with 
sin x as its mean and one standard deviation. 

Recalling again stiff ODEs. the solution of the algebraic equation, y as 
a function of x, is plugged into the right hand of the equation describing 
the motion of the slow variable to give in our example dx ss sin xdt. In the 
stochastic case we average the right hand side of the slow dynamics over the 
stationary measure to induce the averaged dynamics in ~R.X = R1, 

dx — dt I yd{N(s'mx, 1)} = dt sinx. 

The averaging principle asserts that for t 6 [0,T], 

(x(t),y(t)) « {x(t),Y{oo)) = (x(t),Af(sinx(t), 1)). 

This example is a special demonstration to the case where the knowledge 
of y^cc), the invariant measure generated by (1.3), is sufficient to generate 
x(t). This was mainly achieved due to he fact that one knows which variables 
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(u,v) = F(x,y) 

Figure 1: The image of the non linear transformation given in (1.2) 
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are the fast variables and which are the slow variables. In all other cases 
which we categorized under Assumption [H2], there is no known scheme that 
is able to integrate such systems. 

This section is organizes as follows. In Subsection 1.1 we describe the 
(coarse) projective integration method. In Section 1.2 we introduce our 
algorithm. 

1.1    (Coarse) Projective Integration 

1.1.1 Start with projective for ODES 

Emphasize that the slow manifold exists because of the enslaving. This is 
a case where the high dimensional evolution reduces to a lower dimensional 
process. Regardless of the initial position of the particle, it takes the particle 
very short time (which is usually elog j) to approach the lower dimensional 
manifold, and after the time the particle evolves only close to the lower 
dimensional submanifold. This is variable reduction. For example consider 

dx = y dt 

1 (1-4) 
dy = -(sinx — y)dt. 

If we start at (xo,yo)^ then after short time the particle will be positioned 
close to (xo,sinxo), and then it will continue evolving along the curve 
{(x,sinx)} where the evolution is dictated by dx = sinxdt, the speed at 
which it moves along the curve. 

1.1.2 Move to projective for fast stochastic when we know the 
slow variable 

Explain that the motion is in the entire space, the particle is not enslaved to 
a lower dimensional submanifold. Instead we can find coarse variables that 
evolve on a lower dimensional submanifold. they are not physical particles. 

Consider again (1.1). For every initial value (xo,?/o) the particle will 
explore the entire y-space before we can see a change in the x direction. 
As x evolves the particle will continue to explore the entire j/-space that 
corresponds the the current value of the x component. What the averaging 
principle gives us is an artificial description, in the sense that the particle 
itself doesn't follow this description but rather the x-component of the par- 
ticle follows that reduced evolution. Note that in our examples the coarse 
description is the same both for the stiff ODEs and for the case where the fast 
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dynamics is stochastic. However, we emphasize again that in the stochastic 
case there is no physical particle which evolves along the averaged system. 

Conclude with the difficulty with lifting/initilalizing when the coarse 
variable is not part of the phase space. 

1.2    Algorithm 

It is often the case for a complex system that one is usually looking for a 
coarse description, we do the same, however, the algorithm we present is 
independent of the choice of the coarse variable. A predetermined choice of 
a coarse variable doesn't change the way the algorithm is implemented. 

The averaging principle as given in the xy-space, 7?.. decouples the phase 
space 1Z into a product of two spaces 1Z = Rdx x R^, where the first subspace 
consists of only the subspace where the slow motion occurs and the second 
one consists of only the subspace where the fast motion occurs. For every 
x € Rdx, the fast motion induces a probability distribution A/"(sinx,l) in 
R'V This is equivalent to saying that in 11, the phase space, the probability 
density is given by, 

6(x)Af (sin x, 1). 

We emphasize that although in TZ there exists a natural coarse variable 
and natural coarse space 1ZX, in <S there are infinitely many "natural" coarse 
spaces and coarse variables. To see this, recall our system (1.1). The fast 
dynamics induces a Gaussian measure with sin x as its mean, and the natural 
slow variable will evolve in R like 

dx = sinx dt. 

However, for this dynamical system an important coarse variable might be 
the evolution of the mean of the distribution which is a vector in R2 and is 
given by (x(t),sinx(i)). Hence in this case the elimination of the y compo- 
nent of a coarse description is quiet brutal. 

We now move to introduce the algorithm. We first describe it using hand 
waving and assuming no predetermined coarse variable is known. 

1. Set initial value in the observed world u, v. 

2. The current value has an inverse image in the x,y world which we 
denote by (x, y). Since we have no access to the x, y world, we use this 
only as a fact. 
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3. Evolve the dynamical system in the u,v world using microscopic time 
step to generate a good empirical sample for the image of the distri- 
bution in the y space which corresponds to the current x. 

4. Calculate the median of the empirical sample. The median will be our 
coarse variable. 

5. Evolve the system for a period of Xt where St <C \t <C At and record 
the final value. 

6. Starting at that value evolve the dynamical system using microscopic 
time step to generate a second good empirical sample of the stochastic 
cloud. 

7. Calculate the median of the empirical sample. The is the second me- 
dian point for evaluating the derivative of the median. 

8. Make a Projective step using the two medians. 

9. If (n < N) repeat the procedure, otherwise END. 

In order to move to the more formal description of the algorithm, we 
now define the symbols we use throughout the algorithm: 

• Let d : S x S —> M+ be the metric in <S. This metric is used for 
determining the medians. This knowledge can be used as variance 
reduction for the empirical median. However in this paper we do not 
address this point any further 

• Define Px : H —> JRX to be the function ("projection") Px(x,y) = x 

• Let (uo,vo) G S be an initial value 

• (Un,Vn) are the numerical values of the coarse description 

• Let {Um, Vm) be the empirical samples of a cloud 

• Recall ¥(x,y) — (u,v) to be the unknown function between the two 
worlds 

• Z\ for i = l(resp. i = 2) is the first (resp. second) median used for 
the projective step. 

Equipped with the definitions we present the algorithm. 
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Algorithm: 

1. Set n = 0, i = 1 and (U°, V°) = (u0, «o). 

2. Given (£/°, V°) there exist (X,Y) = ¥-l(U°,V°). 

3. Evolve the dynamical system using microscopic time step 5t to gen- 
erate (Um, VTH

) m = 1,..., M, where M is large enough to have a 
good empirical sample of ¥(S(X)p00(y; X)), but small enough to insure 

px (F-
1
 ({[/-, Vm}M=0))~X 

4. Set Zj, = mino</<Af Em=o^((^^')),(C/m, V"1)). 

5. If (i = 1) 

(a) (Un,Vn)=Z* 

(b) Evolve the system for a period of \t where 8t <C \t <C Ai and 
record the final value as (U°,V°). 

(c) Set i = 2. 

(d) Go to 2. 

6. Projective step: 

(a) (Un+l,Vn+l) = (Un,Vn) + Sg&A*. 

(b) i = 1. 

(c) If (n < TV) go to 2, otherwise END. 

The coarse description that we have constructed is given by 

C:={(Un,Vn)}^0cS. 

We have chosen (Un, Vn) = Z\ to be the median [?] point of the experimental 
data set sampled from the invariant measure F(6(X)p0O(y;X)). 

When one is equipped with a predetermined coarse vaxiable that we set 
to be Q then the following additions need to be made. 

Algorithm with predetermined coarse variable: 

1. Set n = 0, i = 1 and (U°,V°) = (u0,v0). 

2. Given (U°,V°) there exist (X,Y) = ¥~l(U°, V°). 
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3. Evolve the dynamical system using microscopic time step 5t to gen- 
erate {Um, Vm) m = 1,..., M, where M is large enough to have a 
good empirical sample of ¥(S(X)p(X>(y; X)). but small enough to insure 

PX(F-1 ({um, vm}%=Q))*x 

(a) Set Z\ = mino<(<M Em=o d((Ul, V1)), (Um, Vm)). 
(b) Calculate the current value of the coarse variable and denote it 

4. If (i = 1) 

(a) (Un,Vn) = Zl
n 

(b) Evolve the system for a period of Xt where 6t «: \t <C At and 
record the final value as (U°, V°). 

(c) Set i = 2. 
(d) Go to 2. 

5. Projective step: 

(a) i. (Un+uVn+l) = (Un,Vn) + %^At. 

ii. Qn+i =Qn + s^At. 
(b) i = 1. 
(c) If (n < N) go to 2, otherwise END. 

The coarse description that we have constructed is given by 

(2:={Q„}toC5. 
The idea in this algorithm is to evolve the predetermined coarse variable 
using the standard projective schemes. However with that we are still left 
with the problem of performing the lifting. To overcome the lifting prob- 
lem we couple the standard projective scheme with the new algorithm that 
evolves the medians. In such, the lifting is done by using the present value 
of the median. 

2    The same thing in infinitesimal generators lan- 
guage 

The relation of C to the slow/coarse variable x in 1Z is through the existence 
of an additional smooth and invertible function G such that. 

¥-\C) =F~1 ({(£/„, Vn)}^o)cG (*,). 
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We start by formulating the problem. 

HI. There exists a hidden dynamical system, described by. 

dtp(x,y,t) = Lp{x,y,t), (2.1) 

where 

1. (x,y) € Tl = W1. x e Kx = Rd*, y e ftj, = Rd« and £ e [0,T]. 

2. 

I = -L\ + L2. e 

3. 6 < 1. 

4. the derivatives (or differences when we include jumps) prescribed 
in L\ (resp. L?) are only in the y (resp. x) direction. 

H2. The observables of the system (u, v) £ S = Rn are an unknown, smooth 
and invertible function of the hidden variables x, y which we set to be 
F : Tl ->S. F(x,y) = (u,v). 

Using results from the averaging principle, we have the following approxi- 
mation. 

p{(x,y),t)fap(x,t)p00(y;x). (2.2) 

In special cases when the evolution of the slow variable can be modeled by 
a differential or difference equations which includes ODEs. SDEs and Jump 
Processes, the knowledge of Poo(y,x) is sufficient to generate p(x,t). In all 
other cases which we categorized under Assumption [H2], there is no known 
scheme that is able to integrate such systems. 

The paper is organizes as follows. In Section 3 we describe the (coarse) 
projective integration method. In Section 4 we introduce our algorithm. 

3    (Coarse) Projective Integration 

3.1    Start with projective for ODES 

Emphasize that the slow manifold exists because of the enslaving. This is 
a case where the high dimensional evolution reduces to a lower dimensional 
process; the particle evolves only on a lower dimensional submanifold. This 
is variable reduction. 

10 
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3.2    Move to projective for fast stochastic when we know the 
slow variable 

Explain that the motion is in the entire space, the particle is not enslaved to 
a lower dimensional submanifold. Instead we can find coarse variables that 
evolve on a lower dimensional submanifold. they are not physical particles. 

Conclude with the difficulty with lifting/initilalizing when the coarse 
variable is not part of the phase space. 

4    Algorithm 

We start our presentation of the algorithm for a simple case where, 

L2 = a(x,y) -Vz, 

i.e.. assuming the slow variables x evolve according to an ODE, 

dx = a(x,y)dt, 

and we later make the necessary generalizations for more complex L2 gen- 
erators. 

It is often the case for a complex system that one is usually looking for 
a coarse description, we do the same, however, the algorithm we present is 
independent of the choice of the coarse variable and in some sense it can 
be used as a "Coarse Free - Equation Free " approach. We first start with 
exploring the submanifold in the uu-space, S. which is the image of 

F(Supp(/9oo(j/;x))), 

where Supp is the support of the density in ~R. The averaging principle 
as given in the zy-space, K, decouples the phase space 1Z into a product 
of two spaces 1Z = Mdx x R'V where the first subspace consists of only 
the subspace where the slow motion occurs and the second one consists of 
only the subspace where the fast motion occurs. For every x e Rdl. the fast 
motion induces a probability distribution Poo{y\ x) in M'V This is equivalent 
to saying that in TZ, the phase space, the probability density is given by. 

Poo(x,y) :=6(x)poc{y;x). 

We emphasize that although in 7Z there exists a natural coarse variable 
and natural coarse space = Hx, in <S there are infinitely many "natural" 

ll 
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coarse spaces and coarse variables. To see this, consider the fast dynamics 
to be described by an OU process. 

dx = ydt 

1 \f2 
dy = - (sin x - y) dt H—-= dB. 

e \/( 

The fast dynamics induces a Gaussian measure with sinx as its mean, and 
the natural slow variable will evolve in M like 

dx = sinx dt. 

However, for this dynamical system an important coarse variable might be 
the evolution of the mean of the distribution Poo(x, y) which is in M2. Hence 
in this case the elimination of the y component of a coarse description is 
quiet brutal. 

d : S x S —> R+, to be the metric in S and Px : V, —> Rx to be the 
function ("projection") Px{x,y) = x. Let (uo,^o) G S be an initial value. 

1. Set n = 0, i = 1 and (U°,V°) = (u0,v0). 

2. Given (U°, V°) there exist (X, Y) = ¥-l(U°, V°). 

3. Evolve the dynamical system using microscopic time step 6t to gen- 
erate (Um, Vm) m = 1,..., M, where M is large enough to have a 
good empirical sample of F(S(X)p00(y; X)), but small enough to insure 

Px(¥-1({Um,Vm}^=0))^X 

4. Set Z\ = mm0<l<Mj:m=od((Ul,Vt)),(Um,Vm)). 

5. If (i = 1) 

(a) {Vn,Vn) = Z\ 

(b) Evolve the system for a period of Xt where St <S At <C At and 
record the final value as (U°, V°). 

(c) Set i = 2. 

(d) Go to 2. 

6. Projective step: 

(a) (t/„+i,V„+i) = (£/„,Vn) + %^At. 

(b) i = 1. 

12 
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(c) If (n < N) go to 2, otherwise END. 

The coarse description that we have constructed is given by 

C:={(Un,Vn)}%=0cS. 

We have chosen (Un, Vn) = Z\ to be the median [?] point of the experimental 
data set sampled from the invariant measure ¥(6(X)poc(y; X)). 

The relation of C to the slow/coarse variable x in TZ is through the 
existence of an additional smooth and invertible function G such that. 

F-'(C) = F-1(Ry„)t0)cG(KI). 

5    Generalizations 

In this section we give different generalization to our novel scheme. Each 
generalization corresponds to some lack of a priory information about the 
dynamical system which is not known in advance. The less information we 
have in advance about the system, the more complexity we need to add to 
the solution. 

In the recent years .... how to efficiently parallel the algorithm 

5.1 Effective dimension 

We assume here that we do not know in advance the dimension of the slow 
variables and the dimension of the fast variables. We only show how to find 
the dimension of the fast variables. The description that we give assumes 
that e is at the limit 0. 

We start by evolving the system according to Step 3 in the algorithm to 
generate the data set A — {(Um, Vm)}m:=l. If A contains no acute triangles 
then A is a manifold with dimension 1. If A contains acute triangles but no 
acute three-dimensional polyhedron where the faces are acute triangles, then 
A is a submanifold of dimension 2. This verification can continue to higher 
dimension although its complexity becomes exponential in the dimension. 

5.2 Hypothesis Validation 

In the algorithm we presented only the case where L2 = a(x,y) • Vx, i.e., 
assuming the slow variables x evolve according to an ODE, dx = a(x, y) dt, 
Most of the problems that appear in the literature in the context of scale 
separation and coarse graining can be categorized into three types: 

13 

226 



B.7.   CONSTRAINED DYNAMICS LIFTING 

1. The coarse variable is governed by an ordinary differential equation 

2. The coarse variable is governed by an stochastic differential equation 
that corresponds to a Fokker-Planck equation 

3. The coarse variable is governed by a jump process that can be numer- 
ically solved using Gillespie's SSA. 

Under the assumption that the coarse variable is either one of these types, we 
now present the generalization of our original algorithm to the two stochastic 
cases. We emphasize that we do not need to know in advance the nature 
of the coarse variable and we can verify it from the data. We start by 
determining to which category the dynamics belong and then we show how 
to change the algorithm to incorporate this knowledge. 

1. (U°,V°) = (u0,vo). 

2. Given (C/°, V°) there exist (X, Y) = F~l(U°, V°). 

3. Evolve the dynamical system using microscopic time step 6t to gen- 
erate (Um, Vm) m = 1,... ,M, where M is large enough to have a 
good empirical sample of ¥(S(X)p00(y; X)). but small enough to insure 

px(f-
1({um,vm}^s0))^x 

4. Set Z° = mm0<i<MZ^=od((Ul,Vl)),(Um,Vm))- 

5. Repeat for 1 < k < K, 

(a) Set Z° to be initial value 

(b) Evolve the system for a period of Xt where St <C At <C At and 
record the final value as (U®, Vfc°). 

(c) Given (Uf>, Vfc°) there exist {X,Y) = F"1^0, Vfc°). 

(d) Evolve the dynamical system using microscopic time step St to 
generate (t/^l,Vfe

m) m = 1,...,M, where M is large enough 
to have a good empirical sample of F(S(X)poc(y;X)), but small 

enough to insure Px (w~x ({Um,Vm}^=Q]) n X 

(e) Set Zk = min0<KM £^=0 d((Ul
k, Vg)), (U?, Vk

m)Y 

6. Hypothesis test: 

(a)^(Z0) = ^Efc
K=i(^-^°) 

14 
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(bM2(Z°) = ^£«=1(Z*-Z°)2 

With that we can test to get the following results: 

1. If 3k such that Zk = Z° then the coarse dynamics is governed by a 

jump process with intensity A =    l    ^ *-. check whether I can do 
even the jumps or just approximate them 

2. If A2{Z°) = 0 then the coarse dynamics is deterministic. 

3. In all other cases the coarse dynamics is governed by an SDE. 

Now that we know the nature of the coarse variable we can change the 
Projective Step in the algorithm. We present here the algorithm for a coarse 
variable described by an SDE: 

5.2.1     Algorithm for coarse SDE 

1. Set n = 0. i = 1 and (U°,V°) = (u0,v0). 

2. Given (U°, V°) there exist (X, Y) = F"1^0, V°). 

3. Evolve the dynamical system using microscopic time step St to gen- 
erate {Um, Vm) m = 1,..., M, where M is large enough to have a 
good empirical sample of ¥(S(X)poc>(y; X)), but small enough to insure 

Px(F-l({Um,Vm}%=0))*X 

4. Set Zil = nnn0<l<M^=0d((Ul,Vl)),(Um,Vm)). 

5. (Un,Vn) = Zk 

6. Repeat for 1 < k < K. 

(a) Set Z\ to be initial value 

(b) Evolve the system for a period of Xt where St <?; Xt <C At and 
record the final value as ({7°, V£). 

(c) Given (t/fc°, V^0) there exist (X,Y) = F-l(U%,V<?). 

(d) Evolve the dynamical system using microscopic time step St to 
generate (U•,V•) m = 1,...,M, where M is large enough 
to have a good empirical sample of F(S(X)p00(y; X)), but small 

enough to insure Px (F~
1
 ({t/m, V^m}^=0)) sa X 
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(e) Set Zk = mino<KM £m=o d((Ul
k,1$), {Uj?, Vk

m)). 

7.A1(un:vn) = ^KzLAzk-z°) 

8. Al(un,vn) = j^zLAzk-z0)2 

9. Projective step: 

(a) (Un+i,Vn+i) = (Un,Vn) + Ax{Un,Vn)At + A2(Un,Vn)dB. 

(b) If (n < TV) go to 2, otherwise END. 

5.3    Coarse projective 

In this section we discuss the case where we are given a coarse variable D 
of the system and a function H such that for any value (u, v) e <S we can 
calculate D = H(u,v). 

The problem 

6    Diffusion maps for exploring the coarse sub-manifold 

Clustering and low dimensional representation of high dimensional data are 
important problems in many diverse fields. In recent years various spectral 
methods [6] to perform these tasks, based on the eigenvectors of adjacency 
matrices of graphs on the data have been developed. One can think of the 
diffusion maps as a way to revive a data set by choosing a discrete jump 
process that can generate the same data set as its stationary distribution 
and then using characteristics of the jump process to extract information 
from the data set. 

In the context of this paper and under appropriate assumptions one can 
improve the way the jump process is chosen. If the coarse variable is indeed 
restricted to 7lx, then the following can be done. 

1. Discretize TZX and label the space segments as {B(\[=x.   Set a zero 
matrix ALL — 0. 

2. For each step from 5/ to Bm set A(l, m) = A(l,m) + 1. 

3. Normalize the rows to stochastic matrix. 

A is now an approximation to the operator of the coarse variable. A(i, j) 
gives the transition probability between the ith neighborhood and between 

Hi 
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the jth neighborhood.   Now with this matrix one can continue with the 
following parts of the diffusion maps methods. 

When the above assumptions are not met, for example in the case where 
the coarse dynamics is not restricted to TZX rather it is just restricted to a 
submanifold of S. then the use of the diffusion maps method is very appeal- 
ing for exploring the coarse submanifold. We demonstrate here a problem in 
which the coarse variable evolves according to a double well FP equation on 
an unknown submanifold. Since the dimension of the phase space is much 
larger compared to the dimension of the submanifold explored by the coarse 
variable the discretization suggested above becomes inefficient. 
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I.    INTRODUCTION 

During the process of self-assembly, randomly distributed components acting under the influence 

of short-range mutual interactions, arrange themselves into a highly ordered final configuration. 

An important feature of self-assembly is that the components arrange themselves into this more 

ordered state without the influence of external factors. The ordered arrangement observed at the 

level of the resulting superstructure is predicated on the design of the individual components and 

their local interactions. Understanding the self-assembly process and how local properties of the 

components may be manipulated to influence the resulting global ordering, is an active area of 

research spanning a broad range of disciplines including materials science, chemical engineering, 

bioengineering, and nanotechnology. 

In a seminal article, Whitesides and Grzybowski [1] provided a broad definition of self-assembly, 

and addressed promising applications in a wide range of disciplines. They observed that self- 

assembly of cells to form tissue, organs, and ultimately organisms, is fundamental to life, and 

motivates a determined study of the self-assembly process. Subsequent studies and applications of 

self-assembly are as fascinating as they are plentiful. Murr et al [2] identified self-assembly as the 

mechanism by which silicatein monomers combine to form protein fibers in certain marine sponges. 

Zheng et al used shape recognition and selective binding to induce self-assembly and packaging 

of integrated semiconductor microsystem devices by agitating the components in an aqueous en- 

vironment [3], and Stauth et al [4] have manufactured field-effect transistors via self-assembly of 

micrometer scale components using similar techniques. In [5], self-assembly is shown to enhance 

synergistic group transport of autonomous robots. Jakab et al recognized that although biolog- 

ical systems are genetically controlled, the formation of biological superstructures is ultimately 

governed by physical interactions, and demonstrated the formation of prescribed shapes using 

self-assembling multicellular systems [6]. 

Typically, studies of self-assembly examine the ordered superstructures that arise from a given 

fixed interaction potential. For example. Manoharan et al used optical and electron microscopy 

to identify the range of structures produced by self-assembly of colloidal microspheres as fluid is 

removed from the emulsion droplets containing the spheres [7]. Maksymovych et al investigated 

the formation and reactivity of linear chains of dimethyldisulfide molecules on a gold surface [8]. 

Engel et al ([9]. see also [10-13]) have observed the formation of complex crystals and quasicrystals 

arising from a simple double-well interaction potential. 

Interest in the fabrication of nanomaterials and photonic crystals with desired material prop- 
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erties [14-21] motivates the inverse problem: design the shortrange interactions in order to in- 

duce self-assembly of the components into a desired lattice structure. Laboratory techniques now 

available allow for modification and tuning of particle interaction potentials [22]. and hence ex- 

perimentalists are achieving ever-increasing control over the local interactions that influence the 

global properties of the material formed via self-assembly. These methods typically use colloidal 

suspensions and optical forcing to alter the chemical environment and screening properties of the 

solution in which the assembly occurs. 

In this paper, we specifically consider the problem of designing short-range pairwise interaction 

potentials between particles on a planar surface to induce self-assembly of a desired lattice. The 

main results to be presented are new methods a heuristic geometric method as well as a robust 

trend optimization method for the design of isotropic interaction potentials that lead to high quality 

honeycomb lattices as the system of particles is cooled. The geometric method is also extended to 

the case of anisotropic potentials which allows for the formation of more exotic kagome lattices. 

Another contribution of this work is the development of tools for objective assessment of quality 

of lattices, that mimic intuitive human perception of lattice quality. 

Rechtsman et al in [23] have already demonstrated computational methods for finding solutions 

to the inverse self-assembly problem. They used a simulated annealing optimization procedure to 

find potentials that lead to the self-assembly of particles into square and honeycomb lattices. To 

be sure, the intent of [23] was to demonstrate that the inverse problem of potential design for the 

purpose of inducing the formation of a target lattice can be solved in practice, and to carefully 

verify that the potentials they proposed do indeed lead to the target lattices through Monte Carlo 

simulation. Hence, the computational effort required to obtain the potentials was only a marginal 

consideration in their work. Presently, we consider the straightforward simulated annealing method 

of [23] as a baseline method with which we may compare the new methods presented here. When 

compared with the baseline simulated annealing method, the optimization procedure described in 

this paper leads to a hundredfold speed-up in the generation of potentials, as well as the formation 

of higher quality lattices. Furthermore, the procedure for finding potentials is more robust, and the 

resultant potentials form the target lattices more robustly with respect to variations in the initial 

conditions of the particles. As will be demonstrated, the chief reason for the marked speed-up 

over the simulated annealing method is the facility of the trend optimization method to optimize 

objective functions that are both noisy and expensive to evaluate. 

The organization of the paper is as follows. In Section II, we precisely define the self-assembly 

problem, and summarize the method for generating potentials devised previously by [23] that will 
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serve as a baseline method for purposes of comparison. In Section III. we establish objective metrics 

for measuring lattice quality so that reasonable comparisons between the methods can be made. 

We approach the self-assembly problem by framing it as an optimization problem in which 

the desired potential optimizes a suitably chosen objective function. This approach requires that 

we choose both an optimization scheme and an objective function to be optimized. Section IV 

describes three objective functions that will be used, while Section V describes in detail the trend 

optimization method. A discussion on the hierarchical nature of the trend method is also provided. 

We proceed in Section VI to list the five solution methods to be compared and describe their 

implementation. The final comparison of the methods is presented graphically in the plots of 

Section VII. In Section VIII, we present an extension of the geometric method to anisotropic 

potentials that lead to self-assembly of the kagome lattice. 

All molecular dynamics simulations performed during the design and testing of the potentials 

were executed on the CITerra high performance computing cluster housed in the Division of Geo- 

physical and Planetary Sciences at Caltech using the LAMMPS software package [24] from Sandia 

Laboratories. 

Acknowledgments. We would like to thank Andrzej Banaszuk. Ronald Coifman. Yannis 

Kevrekidis, Alison Marsden, Matthew West, Jose Miguel Pasini, and Igor Mezic for their interest 

and helpful comments. This work was supported in part by DARPA DSO under AFOSR contract 

FA9550-07-C-0024. 

II.    THE SELF ASSEMBLY PROBLEM 

The availability of laboratory methods to tune interaction potentials between components, and 

hence influence the structure of the resulting self-assembled configurations, motivates the use of 

self-assembly to produce materials with desired structural properties. The specific self-assembly 

problem addressed in this paper is defined as follows: 

Definition: The Self-Assembly Problem 

Design a radially symmetric pairwise interaction potential, VHc(r)> so that when a 

system of particles interacting with each other in the plane through this potential is 

cooled, the particles form a honeycomb lattice. 

The purpose of the present paper is to compare methods for generating potentials that solve the 
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self-assembly problem. The methods for generating potentials are compared using three criteria: 

Cl. The computational effort required by the method to produce the potential; 

C2. The quality of the lattices formed by the potential; 

C3. The robustness of the quality of the lattices formed to variations in the initial conditions of 

the particles. 

Certainly, for a given method we expect to see trade-offs between these criteria. For example, 

a faster method may lead to a potential that produces lattices of poorer quality. 

Laboratory techniques for tuning interaction potentials motivated Rechtsman et al [23] to con- 

sider physically realizable potentials as basis functions for the desired potential, where the basis 

functions contain parameters that allow for tuning the shape of the total potential obtained from 

their sum. For the case when the desired final configuration of particles is the honeycomb lattice. 

[23] proposed an interaction potential consisting of the sum of a Lennard-Jones potential, an ex- 

ponentially decaying potential, and a Gaussian-shaped potential, parameterized in the following 

way: 

VHc(r;oo,alla2,a3) = ^-^ + aie-^-0.4e-40<r-a-1'2, (1) 

where OQ, a\, 02, and 03 are four free parameters that can be tuned to adjust the shape of the 

potential. 

A solution (there are many) to the self-assembly problem has been provided by [23]: namely, 

choosing 00 = 5.89. a\ = 17.9, a2 = 2.49. and a3 = 1.823 in the expression for VHC- A sample lattice 

obtained when cooling a system of particles using these parameters for the interaction potential 

is shown in Figure 1(c). The honeycomb lattice is the dominant structure in the lattice, although 

there are still visible defects that arise due to the finite duration of the cooling schedule. The 

cooling simulation used to obtain this lattice, as well as all other simulations referred to in this 

paper, were performed using periodic boundary conditions. 

A reasonable question to ask at this point is: "How difficult is the self-assembly problem?" 

Experience shows that although easy to state, the self-assembly problem is difficult to solve in that 

solutions that lead to the honeycomb lattice are difficult to find and possibly very fragile. For 

instance, adding small perturbations to the parameters in [23] for the honeycomb potential leads 

to the configuration in Figure 2(b) in which the honeycomb structure is less pronounced.   The 
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(a) A perfect honeycomb lattice,   (b) The potential produced by [23].      (c) A sample lattice obtained 

using the potential provided by 

[23]. 

FIG. 1: The self-assembly problem entails finding an interaction potential that leads to the formation of a honeycomb 

lattice (a). [23] used a simulated annealing optimization procedure to generate a potential (b). A sample lattice 

formed using this potential is shown in (c) and exhibits defects that result from the finite duration of the cooling 

simulation. 

(a)o„ = 5.89, ai = 17.9, 

a2 = 2.49, a:) = 1.823. 

(b) a,, = 5.89, ai = 17.9, (c) o<, = 5.0, ai = 17.0, 

a2 = 2.49, a.i = 1.89. ai = 2.0, O.T = 1.5. 

(d) an = 6.0, a, = 18.0, 

02 = 3.0, as - 2.0. 

FIG. 2: The lattices shown here are obtained by slowly cooling 484 particles using the interaction potential 

VHc(r; Oti,ai,a2,a:0 provided in Equation 1 with the parameter values indicated. Figure 2(a) uses the parameters 

proposed by [23], while Figure 2(b) indicates how fragile the honeycomb lattice is with respect to slight changes in 

the parameters. Figures 2(c) and 2(d) indicate the range of structures obtained for generic values of the parameters. 

amorphous configurations shown in Figures 2(c) and 2(d) indicate the range of structures that are 

possible for generic values of the parameters. 

We have identified the honeycomb lattice as the target lattice in the self-assembly problem 

because it the simplest lattice structure that represents a non-trivial case for self-assembly. The 

triangular lattice is easily and robustly assembled by a straightforward Lennard-Jones interaction 

potential. This fact can be readily demonstrated through direct simulation; however, it is interest- 
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ing that a rigorous mathematical proof that the triangular lattice is the global energy minimizer 

and ground state of a particle system with a pairwise Lennard-Jones interaction potential was 

provided only recently by Theil in [25]. Generating a potential that robustly induces the formation 

of a square lattice in particle simulations is also a simple matter using the geometric method to be 

presented later. Producing the honeycomb lattice using only a radially symmetric potential is more 

troublesome chiefly because regions of the domain tend to form the triangular lattice - a lattice 

that competes strongly with the honeycomb lattice. This is due to the fact that the triangular 

and honeycomb lattices have identical distances to nearest neighbors, and the triangular lattice is 

formed by simply adding a particle to the center of each hexagonal cell in the honeycomb lattice. 

For concreteness, we constrain the parameter space over which we search for parameter values 

•n VHc(r;°o,aiia2>a3) such that 

4.0 <a0< 8.0, 0 < ai < 30.0, 0 < a2 < 3.8,       and      1.25 < a3 < 2.25.        (2) 

These ranges yield a large class of function shapes over which the search is performed. 

Rechtsman and co-workers developed two computational algorithms to find potentials that lead 

to the self-assembly of particles into a given target lattice [23. 26]. 

The first optimization scheme chooses the shape of the potential so that the energy difference 

between the target lattice configuration and the configuration of the competitor lattices is max- 

imized. The optimization is performed while ensuring mechanical stability by allowing only real 

phonon frequencies. This method is purely static in that it seeks to ensure that the target lat- 

tice configuration is energetically the most preferred final state; the method does not incorporate 

information about the dynamics of the particles as they tend towards this final configuration. 

The second optimization scheme considered by Rechtsman et al concentrates on choosing poten- 

tials so as to maximize the stability of the target lattice near its melting point, while also requiring 

stability of the the target lattice with respect to changes in density, and mechanical stability by 

ensuring that the phonon frequencies are real. After placing particles into the target lattice con- 

figuration, a short molecular dynamics simulation is performed at a fixed temperature just below 

the melting temperature of the lattice. The deviation of the the final configuration from the initial 

target lattice is computed using the Lindemann parameter. 

»-\vX(*-#)'-{*$(••-*))' (3) 

where N is the number of particles, and r\    and r* are the initial and final positions of particle i. 
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respectively- A simulated annealing procedure is used to choose parameters in the expression for 

VHC.(r;aOiai>02,13) tnat minimize the Lindemann parameter. 

After generating a potential using these methods. Rechtsman et al carefully checked using Monte 

Carlo simulations that particles starting in a random initial configuration do indeed self-assemble 

into the target lattice. The determination as to whether or not the target lattice was formed, 

was made by visual inspection of the final configuration and deciding if the configuration has few 

enough defects to be considered a lattice, as well as checking the long range order by visually 

inspecting simulated Bragg diffraction patterns. 

III.    LATTICE QUALITY METRICS 

As described in Section II, one of the criteria used to compare methods for generating interaction 

potentials is the quality of the resulting lattices. In the work of [23]. a simple visual check of the 

resulting lattice was used to determine if the desired lattice (with a few defects perhaps) was 

obtained, and since their purpose was to show that the desired lattices can be obtained, this visual 

check was sufficient. The purpose of the present paper is to compare several methods according to 

the lattice quality criterium, thus we must first introduce objective methods for assessing lattice 

quality. 

A prevalent metric for lattice quality is the structure factor, a quantity that assesses long range 

spectral order in the lattice using diffraction patterns. We have found that this quality metric is 

inadequate for our purposes, firstly because the structure factor does not provide a scalar value for 

quality, and secondly because we have observed that long range order is not necessarily strongly 

correlated with visual perception of lattice quality - a lattice with glaring defects may still exhibit 

a high degree of long range order, for example, while a lattice that has weak long range order 

due to a grain boundary may have excellent local lattice structure. Hence, we have developed two 

lattice quality metrics that mimic nearly as possible the visual assessment of lattices. When the 

human eye looks at a lattice and makes a judgement with respect to lattice quality, the emphasis 

is on order within sub-regions of the entire lattice. A lattice that consists of two perfectly formed 

sub-lattices that have a domain wall where they meet will be judged by the eye to be quite well- 

formed. Thus, although long range order is important, a determination of local ordering is crucial 

for assessing lattice quality in a manner similar to the eye. The metrics that we use to quantify 

lattice quality have this local feature. 

The two lattice quality metrics we present here are called the Template Measure and the Defect 
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Measure. In both cases, a lower value of the metric corresponds to a higher quality lattice. 

A.    Template Measure 

The Template Measure uses a small segment of the target lattice as a template with which 

to locally compare nearby lattice particle positions for each particle in the given lattice. In the 

honeycomb lattice, a suitable template may be one hexagonal cell composed of six particles, or 

points. For each particle in a given lattice configuration, the first point in the template is pinned 

to the particle, and the template is then rotated to find the best fit to other nearby particles. 

As the template is rotated, each point in the template is paired with the nearest particle in the 

given lattice. The angle of rotation of the template that produces the least deviation between the 

template points and lattice particles is considered the best fit. Once this best fit position of the 

template has been found for each particle in the lattice, the Template Measure (TM) is obtained 

by summing the deviation in the positions of the template points and lattice particles from the 

best fit for each particle in the lattice: 

N 

~i,p ~ ri,p )     "•" "p.extra 
TM 10° V 

p=l 
Z{4 
i=2 

(4) 

where the index p ranges over all N particles in the given lattice, 0 is the angle of rotation of the 

template, rt 'l°
mp atc is the position of the ith point in the template when the template is attached 

to particle p and rotated by angle 0. if is the position of the particle in the given lattice that 

is closest to iv pemp ate, and c is the number of points in the template (c = 6 for the honeycomb 

cell template). Notice that since the first point in the template is pinned to the given lattice 

particle their positions are equal, that is r\ = ri^
cmPate, anc] hence the sums over the template 

points need not consider this first template point. The extra term. np,cxtra, is a count of any extra 

particles in the given lattice that fall inside the hexagonal template, but are not paired with any of 

the template points. In this way, the best fit of the template seeks not only to match the particle 

locations, but also the void within the hexagon. This 'opacity' of the template ensures that defects 

that arise due to the formation of the triangular lattice that has a particle located at the center of 

the hexagon will be penalized. The prepended scaling factor of 100/7V is not strictly necessary in 

the Template Measure, but is included for convenience so that the resulting lattice quality values 

can be interpreted as a measure of the defectiveness per particle, and have a magnitude in a range 

from zero to roughly 100. 

An illustration of how the Template Measure is implemented in practice is provided in Figure 3. 
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In Figure 3(a). a single hexagonal honeycomb cell template is attached to a particle in a honeycomb 

lattice and rotated until a best fit with the surrounding particles is achieved. Repeatedly attaching 

the template to each particle in the lattice and realigning as in Figure 3(b) quickly reveals the 

locations of the defects. 

(ft) (b) 

FIG. 3: Illustration of the Template Measure, (a) A template consisting of a single hexagonal cell is pinned to a 

particle in the given lattice, and rotated to the position which minimizes the distance between points in the template 

and the nearest particles in the lattice, (b) Fitting the template cell to each particle in the lattice and rotating to 

find the best fit, quickly reveals the locations of defects. 

B.     Defect Measure 

The second lattice quality metric we present is the Defect Measure. The Defect Measure provides 

a weighted count of all the defects in the local neighborhood of each particle in the given lattice. 

The types of defects considered are shown in Figure 4, and include displaced, missing, and extra 

particles. Note that all of the possible defects, including global defects, are taken into account by 

the types of defects shown. For example, extended grain boundaries are taken into account by 

contributions to the Defect Measure from locally displaced, missing, and extra particles. 

Recall that in the perfect honeycomb lattice, the distance to nearest neighbors is unity, while 

the distance to second nearest neighbors is v/3- In order to calculate the Defect Measure, we 

consider only a small circular region around each particle of radius (1 + \/3)/2 « 1.366 so that 

only three nearest neighbors, each at unit distance, should be included. Then, using the locations 

of all particles actually located within this circular region for the given lattice, the contributions 

from each of the defects is calculated, and then summed with the specified weighting, for each 

particle in the given lattice to provide a measure of the quality of the lattice as a whole. The 

weights attributed to each type of defect may be chosen according to the desired properties for the 

 10  
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•••••••   • 
• _ • 'i r-^. 

FIG. 4: To compute the Defect Measure, the number of defects in a circular neighborhood of each particle are 

weighted and summed. The types of defects used in computing the Defect Measure are displaced, missing, and extra 

particles, as well as lone and boundary particles. 

self-assembled lattice.  These weights may emphasize correct local densities, correct alignment of 

particles, correct inter-particle distances, or any other customized weighting. 

Accordingly, the Defect Measure (DM) is given by 

N 

DM 100^ 
^displaced I 5Z X(<^p>) • {dpj ~ 1-0)2 

"1" ^missing ' ^p.missing ~f* ^extra ' ^p.cxtra "1" ^lone ' ^?p,lone "1" "^boundary " ^/p,boundary 

where the w's are the weights attributed to each type of defect; the np's are the integer number 

of missing and extra particles within the small circular region surrounding particle p; the r/p's are 

indicator functions that equal unity if particle p is a lone or boundary particle and zero otherwise; 

the index p ranges over all the N particles in the given lattice; the index j ranges over the particles 

contained within the small circular region surrounding particle p; and dpj is the positive distance 

between particle p and particle j. As with the Template Measure, the scaling factor of 100/N is 

included so that the quality values are normalized by the number of particles and fall within a 

convenient range. In the first term, \(-) is a smooth cutoff function that decreases from 1 to 0 

at the outer edges of the circular region, or more precisely, as its argument increases from 1.275 

to 1.366. This smooth cutoff function ensures that the Defect Measure remains continuous with 

respect to motion of the particles and as the number of particles entering the circular region of 

each particle fluctuates. 
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More explanation of the Defect Measure and its applications can be found in [27], where there 

is also a discussion of other lattice quality metrics. 

For the purposes of this paper, we use the following weight values for the Defect Measure: 

^displaced = 1 -0 ,       Wmisaing =1.5,       Wextra = 0.8 ,       k>lone = 2.0 ,       ^boundary = 0.1 . 

Sample values of both the Template Measure and the Defect Measure for four lattices of varying 

quality are shown in Figure 5. 

(a)TM = 131.6 

DM = 161.3 

(b)TM = 63.6 

DM = 42.1 

(c)TM = 33.9 

DM = 14.9 

B%88% 
(d)TM = 19.9 

DM = 9.6 

(e)TM = 10.2 

DM = 1.6 

FIG. 5: Sample values of the lattice quality metrics are shown for a range of lattices. In each figure, the value of 

the Template Measure (TM) and the Defect Measure (DM) are provided. Both measures assign a lower value to a 

lattice of higher quality. 

IV.    OBJECTIVE FUNCTIONS 

A natural way in which to find solutions to the self-assembly problem is to search for a potential 

that optimizes an appropriate objective function. The objective function must be well-chosen so 

that 1) optimizing the objective correlates well with the formation of the desired lattice, and 2) 
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the objective function is not prohibitively expensive to evaluate.   In this section, we present the 

objective functions that will be used in the potential generation methods under comparison. 

A.    The Lindemann Parameter Objective Function 

As noted in Section II, the Lindemann parameter is a measure of how much a lattice configu- 

ration has deviated from the perfect lattice configuration after a short simulation. Consequently, 

the Lindemann parameter cannot be used as a metric for lattice quality per se since it measures 

how far a lattice has deviated when initially placed in the perfect target lattice configuration, 

whereas a lattice quality metric must assess the quality of a lattice obtained after a slow cooling 

process from an arbitrary initial condition. The Lindemann parameter can nevertheless be used 

as an objective function that must be minimized in order to find potentials that lead to formation 

of the target lattice - an approach that was first proposed and developed by [23]. Intuitively, 

minimizing the Lindemann parameter produces potentials that stabilize the honeycomb lattice to 

thermal agitation. Used as an objective function, the Lindemann parameter is advantageous since 

it is much faster to evaluate than other objective functions that require much longer molecular 

dynamics simulations. 

As implemeted in this paper, the Lindemann parameter objective function is computed for a 

given interaction potential by placing 72 particles in the honeyomb lattice formation, and then 

performing a brief simulation at a temperature very near the melting temperature of the lattice. 

The use of 72 particles allows for the construction of a lattice consisting of 30 honeycomb cells that 

form an infinite honeycomb lattice when the 72-particle configuration is used to tile the plane. The 

value of the Lindemann parameter is calculated using the initial and final lattice configurations. 

The wall clock time to compute the Lindemann parameter on a single CPU is approximately 2 

seconds. 

Optimizing the Lindemann parameter is, however, an indirect method in that the quanitity 

being optimized is not the quantity that will be used to determine the final quality of the poten- 

tial. A more direct approach is to explicitly optimize the lattice quality metrics. Although the 

quality metrics require a slow cooling simulation and are consequently more expensive to evaluate, 

optimization of the quality metrics guarantees optimization of lattice quality. Indeed, an important 

observation made in this paper is that optimizing the Lindemann parameter is only moderately 

correlated with lattice quality - potentials can be found that produce a low value of the Lindemann 

parameter, yet when tested in a slow cooling simulation produce lattices of poor quality. 

 13  
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B. Quality Metric Objective Functions 

We also consider direct evaluation of the Template Measure and Defect Measure quality metrics 

as objective functions. To evaluate these objective functions, we start with a regular Cartesian grid 

of 64 particles with a spacing that provides a particle density equal to the density of the honeycomb 

lattice. These particles are initialized with a temperature well above the lattice melting point 

and then this temperature is slowly reduced until the particles freeze into a lattice configuration. 

The quality metrics are computed using only the final lattice configuration. Compared with the 

computation of the Lindemann parameter, these cooling simulations are expensive to carry out; a 

single call to a quality metric objective function on a single CPU takes approximately 70 seconds. 

It should be noted that the computational expense associated with evaluation of the objective 

functions arises almost entirely from the molecular dynamics simulations. Computation of the 

actual value of the Lindemann parameter, the Template measure, or the Defect measure after the 

final configuration has been obtained, requires less than a tenth of a second. 

C. Properties of the Objective Functions 

The objective functions presented have important features that influence the effectiveness of the 

optimization schemes employed. One of the chief contributions of this paper is the use of a trend 

optimization scheme that is better suited to these objective functions over a standard simulated 

annealing optimization procedure. 

The fact that the objective functions require evaluation times on the order of seconds and 

minutes implies that any optimization method that requires many thousands of evaluations to 

search the four-dimensional parameter space will necessitate a computation time measured in 

hours and days. The time taken to run an optimization algorithm will be spent almost entirely 

evaluating the objective functions, and overhead computation required by the optimization scheme 

in choosing the next location at which to evaluate the objective, for example, is practically negligible 

in comparison. The trend optimization method we propose is particularly well-suited for this 

situation in which the objective functions are expensive to evaluate. 

Figure 6 displays repeated evaluations of the Lindemann parameter objective function as each 

of the parameters in VHc(r; do,0,1,0.2,0,3) is varied in turn, while the remaining parameters are 

held fixed at the values provided by Rechstman et al (namely, oo=5.89. ai = 17.9, 02=2.49. and 

03=1.823).    Each circle in the plots corresponds to a single evaluation of the the Lindemann 
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parameter objective function. The red line in each plot represents a trend line that is computed 

by averaging over 100 samples taken at each of 600 regularly spaced intervals along the axis of the 

varied parameter. 

45     S     55     8     65     7 14       16       16        3       21      34 

FIG. 6: Each circle in the figures above corresponds to a sample evaluation of the the Lindcmann parameter objective 

function. The parameter shown on the i-axis is varied over the indicated domain, while the remaining parameters are 

held fixed at the values provided by Rechstman et al (oo=5.89, oi = 17.9, a/>=2.49, and a:i=1.823). The vertical axis 

in each plot represents the value of the Lindcmann parameter. Note that the vertical scale in each case is different. 

The red line is computed by averaging over 100 trials at each location, and reveals a smooth trend in the data. 

Our first observation is that due to randomness induced by the initial conditions and simulation 

at constant temperature, the objective function does not produce repeatable values for a fixed 

set of parameter values. Repeated evaluation of the objective functions for the same parameter 

values leads to a wide range of output values. For this reason, the objective functions are not 

strictly functions, although we continue to use this term. More correctly, due to the randomness 

introduced by the initial conditions and the simulation with a thermostat, we can think of the 

objective functions as assigning a one dimensional probability distribution to each set of values 

that define the potential. Thus, a call to the objective function returns a value drawn from the 

probability distribution specified by the parameters. We shall see that the trend optimization 

method exploits the fact that the expectation values of the probability distributions vary smoothly 

with respect to changes in the parameters of the potential. 

Examining the evaluations of the objective functions reveals that they are noisy with respect 

to variations in the parameters. The functions are not smooth and certainly no derivatives of the 

objectives are available. Nevertheless, averaging over many evaluations for a fixed set of parameter 

values reveals that the objective functions do possess a smooth and slowly varying trend. As 

indicated in Figure 6. the smoothness of the average values (shown in red) indicate that, when 

averaged, the objective functions do admit a sensible notion of a minimum. 
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In summary, the salient features of the objective functions in the self-assembly problem are the 

following: 

1. They are expensive to evaluate; 

2. They are highly variable—repeated evaluations of the objective functions for the same input 

potential yields a broad range of values; 

3. They are highly non-smooth with respect to changes in the parameters; 

4. They have a smooth trend when averaged over many evaluations. 

Objectives with these features are often encountered in optimal design problems in which evalu- 

ation of the objective function for a specific set of parameter values requires completion of an actual 

laboratory experiment, or the execution of a computationally expensive simulation using random 

initial conditions [28. 29]. Optimization of these objective functions is clearly not tractable using 

standard gradient-based methods. In this paper, we implement an optimization scheme ideally 

suited for objective functions of this type that has allowed us to construct an efficient procedure 

for solution of the self-assembly problem, an approach that we call trend optimization. 

V.    OPTIMIZATION METHODS 

In the previous section, various objective functions have been introduced that can be used in the 

search for lattice-forming potentials. In this section, we present two methods for finding optimal 

values of these objectives. First, we briefly discuss simulated annealing which was used by [23] in 

the baseline approach. Second, we present in detail the trend optimization approach. 

A.    Simulated Annealing 

Simulated annealing mimics the ability of a thermal process to search a configuration space to 

find the ground state. We begin the search by evaluating the objective at an initial point, xo, in 

the parameter space and denote the value of the objective function at this location by Eg. The 

search then proceeds by jumping to new locations in a random walk. The probability, p. of making 

the jump from Xi to a new location Tj+i is determined by 

if Ei+i < E,, 
(5) 

«-*)/m  a Ei+l>E{. 
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The small probability of moving to a location where the objective is in fact higher than the 

current value, allows for the search to escape from a local minimum. In analogy with true simulated 

annealing in metals, the temperature, T, is slowly reduced so that at first the search eagerly 

traverses the search space by easily escaping from local minima, and then settles to a specific 

local minimum as the temperature decreases. This simulated annealing optimization scheme was 

implemented using the GNU Scientific Library GSL.SIHAN_SOLVE() routine [30]. 

When applied to the self-assembly problem, the simple simulated annealing method described 

here fails to converge to a sensible minimum because of noise in the objective functions. Under- 

standably, the method gets stuck in ephemeral local minima that appear and disappear due to 

noise in the objectives. Convergence can be obtained if the objectives are sufficiently smoothed. 

Smoothing necessitates averaging over at least 20 independent simulations and thus requires added 

computational expense, and even then a large proportion of optimizations fail to converge within 

a reasonable number of objective evaluations. 

Admittedly, the simulated annealing method described here represents a very simple approach, 

and more complex methods involving adaptive search, for example, could be employed. The 

straightforward simulated annealing approach serves, therefore, as a modest but easily understood 

baseline method. We have investigated the simulated annealing method using many different 

cooling regimens including adaptive methods, and have found little improvement in each case. 

B.    Trend Optimization 

Trend optimization is well-suited for problems in which the objective functions are expensive 

to evaluate, derivatives of the objectives are not available, and the objectives are noisy yet exhibit 

a simple underlying trend when averaged over many evaluations. 

In the trend approach, we use a few well-distributed evaluations of the objective function to 

generate a smooth global approximation to the averaged objective function. This smooth approx- 

imating surface, referred to as the surrogate, attempts to capture the underlying smooth trend in 

the noisy objective evaluations. The optimization then proceeds by finding the optimal values of 

this surrogate function that is computationally cheap to evaluate. Trends in the surrogate quickly 

reveal regions of the parameter space in which the optimal parameters are most likely to be found 

and hence the search is greatly accelerated. The insight provided by the smooth surrogate function 

then informs the choice of parameters at which subsequent evaluations of the objective should be 

made. 

J7  

248 



C.l.   FAST GENERATION OF POTENTIALS FOR SELF-ASSEMBLY OF PARTICLES 

Booker et al [31] combined the speed and facility with which the trend approach zooms in on 

regions of optimal parameter values with the rigorous convergence guarantees of patterned search 

methods developed previously by Torczon [32], to produce what is known in the literature as the 

Surrogate Management Framework. In this two-pronged approach, the trend method is used in the 

global search step of the patterned search method to accelerate the search, while the use of a polling 

step on a patterned conceptual grid provides the guarantees of convergence. In this seminal paper. 

Booker et al also applied the Surrogate Management Framework approach to the optimal design 

of a helicopter rotor blade with thirty-one design variables. More recently, Audet et al [33. 34] 

have provided a generalization of Torczon's pattern search method, which they refer to as Mesh 

Adaptive Direct Search, and have applied it to optimization of the chemical treatment of discarded 

potliners to minimize release of toxic waste in the production of aluminum [35], Mesh Adaptive 

Direct Search has since been incorporated into the Surrogate Management Framework by Marsden 

et al in [36], 

The range of design problems to which the trend optimization approach has been applied is 

starting to grow. Marsden et al have used the Surrogate Management Framework in the optimal 

design of airfoils to reduce noise generated in the trailing turbulent flow [37], and a computational 

framework has been provided in [36] for optimizing design of surgeries for improved blood flow 

and cardiovascular geometry. Siah et al. have used Kriging surrogate models to design optimal 

configurations and shapes of automobile antennae to minimize electromagnetic coupling [38], and 

Raza et al have compared methods for generating surrogate functions in a design problem seeking 

the optimal arrangement of fuel rods in a liquid metal reactor [39]. 

A unifying theme in all these applications is the parsimonious way in which trend optimization 

is able to optimize expensive, noisy objective functions. Moreover, trend optimization is robust 

to noise in that the trends approximate the general shape of the objective function with smooth 

surfaces that quieten the noise and anomalous evaluations of the objective function. Hence, trend- 

based approaches survey the parameter landscape for large depressions, and are not distracted 

by superficial deep spikes that may arise due to noise. Because the surrogate prioritizes regions 

that consistently perform well, rather than a single "flash-in-the-pan" evaluation, the parameter 

values returned by the trend are robust to uncertainties and are more likely to reliably reproduce 

near-optimal values of the objective upon repeated evaluation. 

Trend optimization can be performed in a coarse-to-fine hierarchical manner by recursively 

building a hierarchy of trend-fitting surfaces. Each successive iteration of the procedure yields a 

new trend that focuses on the most optimal region of the search space. Successive trend surfaces 
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utilize all objective function evaluations obtained in previous iterations to more accurately model 

the objective function. After an initial global trend is developed, the search area is refined to the 

area surrounding the global minimum of the surrogate - recall that since the surrogate is smooth 

and cheap to evaluate, the global minimum of the surrogate can easily be found. Refinement of the 

search area helps to ensure that subsequent function evaluations are chosen in locations that are 

most relevant and promising. As the search area becomes more refined, successive iterations may 

use a larger basis of fitting functions, or use more sophisticated trend construction methods to more 

accurately pinpoint the location of the minimum. These features of iterative trend optimization 

yield a hierarchy of coarse to fine trends that enable the method to initially make large strides 

toward the optimal value, and then to focus ever more tightly on the exact location of the optimal 

value. 

In our discussion thus far, it remains to be described how the surrogate functions are generated 

from a small number of function evaluations. This topic lies within the province of data approxima- 

tion and fills a large body of literature. Needless to say. there are a great number of interpolation 

and fitting approaches available. Popular methods include polynomial interpolation, splines. Krig- 

ing, distance-based interpolation, linear and nonlinear regressions, radial basis functions, neural 

networks, and kernel-based approaches [40-42], For a thorough survey, please see the monograph 

by Hastie [43]. 

Reviewing the Lindemann parameter objective evaluations depicted in Figure 6. we plainly see 

that an interpolating scheme is not appropriate for the noisy objective functions of the self-assembly 

problem. For this reason, we have chosen the ridge regression method for generating surrogate 

functions that is particularly well-suited for noisy data in high dimensions. Ridge regression was 

originally developed by Tikhonov (hence the method is sometimes referred to as Tikhonov regular - 

ization) for ill-conditioned linear regression problems [44], His approach was to introduce diagonal 

stabilization to regularize the linear interpolation system. The added regularization improves the 

conditioning, and introduces smoothing. 

In the current context, we are provided with a vector of M noisy measurements, y = 

\y\r-- ,VM}: of the objective function at the vector of locations x = [xi,--- ,XM]. We want 

to find a smooth function that best represents the smooth trend in this data. This trend, denoted 

T(x), is constructed as the weighted sum of basis functions: 

\i 

T(x) = Y^Ck*(x,xk), 
fc=i 

where we must now solve for the vector of coefficients c = [ci,--- ,CM\.   Gaussian radial basis 
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functions are chosen for the basis since they are well-suited for regression problems in high dimen- 

sions [45-47]. To be specific, we choose radial basis functions of the form 

4>(x,Xj) = <t>{\\x-xj\\2) 

where 

0(r) _ e-(«r)a ]       r£K 

Proceeding in the standard manner for linear regression, the vector of coefficients, c. in the expres- 

sion for the trend are obtained by solving the linear system 

Ac = y (6) 

where the elements of the square symmetric matrix A are given by 

Ay :=^{xi,Xj). 

This procedure assumes that A is full rank. In ridge regression, the conditioning of A is improved 

by adding diagonal regularization. The linear system in (6) above is replaced by 

(^S1)-: (7) 

in which ueR. and I is the identity matrix. Regularization is obtained at the expense of introduc- 

ing the new free parameter u. In the traditional usage of ridge regression, the analyst must choose 

an optimal value of u) that balances the need for improved conditioning with the desire to keep 

the departure from the least-squares solution small. In our context, since we are not immediately 

concerned with conditioning, we use w to control the amount of smoothing introduced. Smaller 

values of u> yield larger smoothing, while larger values of ui ensure increased pointwise accuracy to 

the noisy data. In practice, this approach is straightforward and robustly produces smooth trends 

to noisy objective functions. In Figure 7. an illustration of smooth trends generated using ridge 

regression are given for noisy evaluations of the Lindemann parameter. It must be remembered 

though that these surrogates are constructed as one-dimensional curves for illustration, whereas in 

the full self-assembly problem the surrogate functions are smooth four-dimensional hypersurfaces. 

The ridge regression method can be extended to include adaptive control of the amount of 

smoothness introduced in response to local conditions. This local ridge regression approach is 

implemented by replacing Equation (7) with 

A + diag 
1 1 

20  

251 



C.l.   FAST GENERATION OF POTENTIALS FOR SELF-ASSEMBLY OF PARTICLES 

FIG. 7:   Generating surrogate functions for noisy data.   Each circle represents an evaluation of the Lindemann 

parameter as in Figure 6. The solid trend line is generated using Gaussian radial basis functions and ridge regression. 

where the vector of M free parameters [wi, •-• ,wjf] can be chosen independently to adjust the 

amount of smoothing local to each measurement. In this way. a low value of u> can be chosen to 

locally increase the smoothing in a region in which the noise in the data is high, and similarly, a 

large value of LJ can be chosen for measurements in regions in which there is high confidence in 

the data and noise is low. This facility is not currently implemented in our trend optimization 

algorithm, but is mentioned here to indicate the flexibility that the ridge regression method affords. 

As previously mentioned, there are many candidate approaches for trend fitting besides ridge 

regression that could be uses in the self-assembly problem. For instance, simple quadratic fitting is 

very easily implemented and guarantees convexity of the surrogate. In practice, this method also 

works remarkably well for the objectives of the self-assembly problem. 

Tirnd Optimization Algorithm used in the Self-Assembly Problem 

In using the trend optimization approach for the design of the potentials in the self-assembly 

problem, we have implemented it without coupling to a Direct Search method. Consequently, 

we lose rigorous guarantees of convergence, but in practice trend optimization alone performs 

remarkably well and reliably converges to an optimal value, as will be demonstrated over repeated 

trials. 

Throughout the computations, we scale the four-dimensional parameter search space to form 

a unit hypercube. We use the hierarchical approach described above with three levels of recur- 

sion. Hence, during each optimization three trend surfaces will be constructed at finer and finer 

resolution. The basic steps of the procedure are as follows. 

Let U\ denote the four-dimensional unit hypercube of the parameter space to be searched, and 

let H be the number of levels in the trend hierarchy (we use H = 3). 
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FOR each iteration in the hierarchical trend optimization method, indexed by k = 1, • • • ,H: 

Step 1. Generate Sample Locations: 

Select M points, [xjv-- >2$f], from Uk using Latin Hypercube Sampling [48]. 

Step 2.  Evaluate the Objective: 

Evaluate the objective at each of the M locations x*. and store each corresponding 

result in yf. 

Step 3.  Build the Trend: 

Use all data \(x'i,y
l

i) : j = 1, • • • , fc; i = 1, • • • , M > obtained during the optimization 

so far to construct the trend surface 7* via ridge regression. 

Step 4.  Optimize the Trend: 

Quickly find xj, the location in the parameter space that globally minimizes the trend 

surface TV 

Step 5.  Refine the Search Domain: 

Generate a new search domain, Uk+i, by reducing the size of the current search domain. 

Uk, by a factor of 2 along each dimension centered about the point a:J. 

END 

After H iterations, declare x, := x^ as the parameter location that minimizes the objective 

function. If desired, the objective function can be evaluated repeatedly at £,, and then averaged, 

to generate y,. the expected value of the objective at x,. 

The most computationally expensive step is Step 2, the evaluation of the objective function. 

In comparison, optimization of the surrogate performed in Step 4 is extremely fast. To effect 

Step 4, we simply evaluated the surrogate at 5000 points randomly distributed throughout the 

search space and selected the point that produces the lowest value of the surrogate. The surrogate 

provides repeatable values so there is no need to average over many evaluations of the surrogate. 

At the completion of the algorithm, the total number of required objective function evaluations 

is M • H. that is. A/ objective evaluations during each of the H trend iterations. An important 

point is that, at each iteration, the M objective evaluations required by Step 2 are independent. 

meaning, therefore, that these M evaluations can be computed in parallel. In our optimization 

source code, we have parallelized Step 2 so that the total wall clock time required for the entire 

optimization algorithm to complete is H • T0t,j. where T0t,j is the CPU time required to run the 
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optimization with a single objective function evaluation. An important point, therefore, is that if 

the number of available computing processors is greater than M (and we consider any overhead 

communication costs between the A/ processors as negligible), then the execution time of the 

algorithm is independent of M. Thus, trend optimization provides an effective method to harness 

parallel computation resources for fast global optimization. 

Since in our specific implementation of the trend algorithm we recursively generate three sur- 

rogate functions, and since the evaluation of even the most expensive objective function is approx- 

imately a minute; the trend algorithm terminates after just three minutes of computation on 40 

processors having used information gathered from 120 objective evaluations. The CITerra cluster 

at Caltech has 4096 processes that could conceivably be used to find an optimal solution; however, 

we have observed that trend optimization provides reliable convergence when M (the number of 

objective evaluations made at each step) is ~ 40 or above, so that a far more modest number of 

processors is actually required. In summary, the trend optimization scheme as we have applied 

it to the self-assembly problem is able to provide parameters that optimize the most expensive 

objective functions in just over three minutes when run on a cluster of 40 parallelized processors. 

It should be noted that the hundredfold speed-up obtained by trend optimization over simulated 

annealing in the time taken to generate potentials (as stated in the introduction), is assessed 

using the total CPU time summed over all processors, and not the wall clock time. The speed- 

up is attributed to the robust manner in which trend optimization accelerates search of a noisy 

objective with a smooth trend. Hence, the speed-up attributed to the facility with which the trend 

optimization admits parallelization of the computation represents an additional time savings over 

and above the hundredfold speed-up. 

VI. METHODS FOR GENERATING POTENTIALS 

The five methods for generating potentials that we compare in this paper are described below. 

The first is a heuristic geometric method that requires no computation. The other four methods 

utilize an optimization procedure. 

A.    Geometric Method 

The geometric method (abbreviated as GM) that we present here is an optimization-free pro- 

cedure that exploits differences between the geometry of the desired target lattice and competitor 
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lattices that we hope to discourage. The design of the potential is based on four main principles: 

GM1. The potential must have local minima located at each of the radial distances to nearest 

neighbors in the desired lattice and nowhere else; 

GM2. The potential may include local maxima at radial distances at which competitor lattices 

have nearest neighbors but the target lattice does not; 

GM3. When the target and competitor lattices have nearest neighbors at the same radial dis- 

tances, the energy levels of the local minima identified in GM1 are chosen to energetically 

prefer the target lattice; 

GM4. A Lennard-Jones potential is spliced into the potential at the origin to provide a hard 

core potential. 

GM1 and GM2 use information about the geometric structure of the target and competitor 

lattices to stabilize the target lattice, and to discourage a competitor lattice that has different 

distances to nearest neighbors. GM3 uses energetics to discriminate between lattices that have 

identical distances to nearest neighbors and differ only in the numbers of particles at those distances. 

When the target lattice is the square lattice, and the identified competitor is a triangular 

lattice, the fact that these lattices have different distances to nearest neighbors makes this method 

of potential generation a very robust approach. By explicit construction, the locations of the local 

minima and maxima discourage the triangular lattice and stabilize the square lattice. The shape of 

the potential generated for this case is shown in Figure 8(a). Notice in particular that the potential 

has a very simple form with local minima at distances of 1.0 and v2 to encourage the square lattice, 

and a local maximum located at V3 to discourage the triangular lattice. In simulation this potential 

performs remarkably well. The potential robustly forms the square lattice, and defects (except for 

voids) are seldom observed. A sample square lattice obtained with this potential is shown in 

Figure 8(b). 

The honeycomb lattice represents a more difficult self-assembly problem since both this target 

lattice and the competitor triangular lattice have identical distances to nearest neighbors. The 

only difference between these lattices that must be exploited is the different number of neighbors 

at each distance. Hence, in GM3. the relative heights of the local minima are chosen to ensure 

that the target lattice represents a lower energy state than the competitor lattice and is thus more 

likely to form upon cooling. 

_24  

255 



C.l.   FAST GENERATION OF POTENTIALS FOR SELF-ASSEMBLY OF PARTICLES 

3 

u 
a 

1 5 

1 

05 

|---Squar« 
, Honeycomb | 

OS \   *' 
1?    14    16    IB     ?     22    24    26 

oo (b) (c) 

FIG. 8: Potentials developed using the heuristic geometric method for both the square and honeycomb lattices arc 

shown in Figure (a). Figures (b) and (c) show typical lattices obtained using these potentials. 

The application of the GM method for the specific case of constructing a potential that favors 

the honeycomb lattice and discourages the triangular lattice proceeds as follows: 

1. Recognize that both the triangular and honeycomb lattices have nearest neighbors at a 

distance of 1.0, and second nearest neighbors at a distance of v/3- The number of neighbors 

at those distances (the lattice coordination numbers) for the honeycomb lattice are 3 and 6. 

while the triangular lattice has 6 and 6. 

2. Assign local minima at distances of 1.0 and vo. 

3. Since the triangular lattice has more particlas at distance 1.0 than the target lattice, raise 

the first minimum at 1.0 with respect to the height of the minimum at V3. 

4. Splice in a 6-12 Lennard-Jones type repulsive potential at the origin to simulate a rigid core. 

5. Use cubic splines to piece together the repulsive core at the origin and the local minima at 

their various locations and heights. 

One other consideration that we include when designing this potential is that we are careful 

not to make the local maximum between the first and second minima too high. This ensures that 

particles that are stuck in the triangular formation have increased likelihood of escaping to the 

lower potential well of the honeycomb lattice. 

The cubic splines are constructed so as to have zero derivative at the local minima, thus ensuring 

that the potential is continuously differentiable on the whole positive real line. A sample potential 

constructed using this method for the generation of honeycomb lattice potentials is shown in 
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Figure 8(a). Notice that the potential has local minima located at distances of 1.0 and %/3. with the 

first minimum located above the second minimum. Since the triangular lattice has more particles 

located at distance 1.0 than the honeycomb lattice, this ensures that the triangular lattice is a 

higher energy state than the honeycomb lattice. A sample lattice produced using this potential is 

shown in Figure 8(c). The fact that this heuristic geometric method is able to produce honeycomb 

lattices of this quality without having to use any computation and optimization is quite remarkable 

and until now has been overlooked in the self-assembly literature. 

We refer to the geometric method as a heuristic method since we do not provide formulas or 

algorithms for choosing the relative heights of the local minima and maxima. The only prescribed 

constraints are the locations of the local minima that, by construction, ensure stability of the target 

lattice. In practice, we find that any sensible choice of the heights that avoids sharp gradients in 

the potential works reasonably well. In the implementation of our computer code, the user need 

only input the location and heights of the desired minima and maxima, and the spline fitting and 

splicing of the Lennard-Jones potential are computed automatically, which makes the approach 

very simple to execute. Given the simplicity of the geometric method, the ease with which it 

is implemented, and the relatively high quality of the resulting lattices, it represents a "rough- 

and-ready" approach that anyone needing to design a potential would do well to consider before 

pursuing more computationally expensive schemes. 

Whereas the geometric method utilizes only the geometries of the static target lattice and 

competitor lattice, the optimization methods discussed next incorporate information about particle 

dynamics by optimizing parameters in the potential with respect to dynamic particle simulations. 

B.    Baseline Method 

The baseline simulated annealing method of [23] uses the simulated annealing optimization 

procedure with the Lindemann parameter as the objective function. As mentioned previously, the 

simulated annealing procedure fails to converge to a meaningful minimum unless the objective 

function is averaged over many trials. We refer to this method with the abbreviation SA-LP20 to 

indicate that the simulated annealing approach is applied to the Lindemann parameter averaged 

over 20 independent evaluations. The large number of samples required to sufficiently reduce 

the noise in the objective function, means that it is impractical to apply the simulated annealing 

optimization procedure to the more expensive quality metric objective functions. The simulated 

annealing procedure is initiated with initial guess solutions chosen randomly and uniformly from 
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Summary of Potential Generation Methods 

Method Optimization Objective Cost (s) 

GM Geometric method (1 

SA-LP20 Sim. anneal. Lindemann (20 sample avg.) 40 

T-LP Trend Lindemann 2 

T-TM Trend Template Measure 70 

T-DM Trend Defect Measure 71) 

TABLE I: Each of the five methods for generating potentials is listed here with the associated computational cost 

of evaluating the objective function. Notice that the Geometric Method is not an optimization-based method and 

incurs no computational cost. 

the parameter space described by the inequalities in line (2) of Section II. 

C.    TYend Optimization Methods 

The remaining three methods that we consider utilize the trend optimization method applied to 

the Lindemann parameter, the Template Measure, and the Defect Measure as objective functions. 

These methods are abbreviated T-LP, T-TM, and T-DM respectively. Since the trend optimization 

method is well-suited to noisy objective functions, the objectives do not need to be averaged over 

many runs when evaluated. 

A summary of all the potential generation methods under study is provided in Table I. 

VII.    RESULTS 

In this section, we compare the effectiveness of the proposed methods for generating interaction 

potentials that lead to the self-assembly of the honeycomb lattice. In particular, in accordance 

with the comparison criteria enumerated in Section II. we seek answers to the following questions: 

1. How much computational effort is required to generate the potentials? 

2. What is the quality of the lattices generated by the potentials? 

3. How reliably do the potentials form high quality lattices given uncertainty in the initial 

conditions of the particles? 

Answers to these questions, as well as a comparison of the five potential generation methods 

discussed in Section VI, are summarized in the suite of plots shown in Figures 9 and 10.   In 
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brief. Figure 9 shows the superior effectiveness of trend optimization over simulated annealing in 

minimizing the respective objectives as a function of the number of objective evaluations required, 

while Figure 10 shows the quality of the lattices obtained by the potentials that were generated by 

the optimizations. 

Numbar of Function Evaluation* 

(a)Simulatcd annealing optimization of 

the Lindemann parameter (SA-LP20). 

(b)Trend optimization of the 

Lindemann parameter (T-LP). 

Number of Funcaon Evaluations Numbar of Function Evaluations 

(c)Trend optimization of the Template 

Measure (T-TM). 

(d)Trend optimization of the Defect 

Measure (T-DM). 

FIG. 9: Averaged objective function values versus number of objective function evaluations for four optimization 

methods arc shown here. In the results for simulated annealing shown in (a), dashed lines indicate optimizations 

that failed to find an optimal value. The single bold line represents the mean of the optimizations that did converge 

to an optimal value (indicated by solid lines). Most notably, trend optimization reliably converges to a minimum 

value of the Lindemann parameter with a one-hundredfold reduction in the number of required objective function 

evaluations when compared with the simulated annealing approach. 

The geometric method (GM) is the simplest method to implement. It does not require any 

objective optimization to search for parameters and consequently does not incur any computational 

cost. In order to evaluate the quality of the lattices produced by the geometric method, one-hundred 

cooling simulations were performed using the honeycomb potential shown in Figure 8(a). After 

each simulation, the Template Measure and the Defect Measure were computed. Averaging over 
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all these runs yielded the following scores: 

1. Template Measure = 17.9 with standard deviation 3.4. 

2. Defect measure = 11.8 with standard deviation 4.5. 

Comparison with the lattice qualities obtained using the optimization-based methods as shown in 

Figure 10 indicates that these quality scores are exceptionally good, and that assiduous computa- 

tional optimization is required to produce potentials that produce lattices of higher quality. 

The four optimization-based methods (SA-LP20, T-LP. T-TM. and T-DM) were each run for an 

increasing number of allowed objective function evaluations. For each number of objective func- 

tion evaluations, each trend optimization method was executed in twenty independent trials, with 

each trial generating parameters for the interaction potential that seek to minimize the respective 

objective function. In Figure 9, the average of the values of the objective function obtained in 

the twenty trials is plotted for each number of function evaluations (the error bars indicate the 

standard deviation over the twenty trials for each number of function evaluations). 

After all the optimizations are completed and the potentials have been generated, the quality 

of each potential must be tested. For each number of function evaluations, and for each of the 

twenty independent trials, the potential produced by a method was quality tested by running 

twenty cooling simulations on a system of 225 particles, and then measuring the quality of the final 

lattices using both the Template Measure and the Defect Measure. For a single trend optimization 

method, this requires 

(12 different numbers of function evaluations \      / 20 independent trials \      /   20 cooling simulations \ 
each trend method /      \   each number of function evaluations /      \   each independent trial / 

/   4800 cooling simulations \ 
\        each trend method     / 

In other words, 240 independent optimization trials are required to produce a single curve in Figure 

9, and 4800 cooling simulations are required to produce a single curve in Figure 10. The cooling 

simulations were initialized with a temperature approximately 1.5 times the melting temperature 

of the lattice and then slowly cooled using a Nose-Hoover thermostat to less than ten percent of the 

melting temperature. At the completion of each cooling simulation, both the Template Measure 

and the Defect Measure were computed to measure the quality of the resulting lattice. Averaging 

over the 20 cooling simulations yields two quality scores for each potential - one for each quality 

metric. Results for the Template Measure are shown in Figure 10(c) while results for the Defect 

Measure are shown in Figure 10(d). 
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After reviewing the results in Figure 9. we see that the trend approach clearly provides a faster 

and more robust method for optimizing the objective functions. Figure 9(a) shows the results 

from twenty simulated annealing optimizations for different randomly chosen starting points in 

the search domain, and indicates that the success of the method is highly variable. Simulated 

annealing often fails to find optimal parameter values and remains stuck in local minima even 

after 10.000 evaluations of the objective. Of the twenty simulated annealing optimization trials 

performed, only nine were able to find an optimal value of the Lindemann parameter less than 

0.15. The bold line in Figure 9(a) represents the mean over only these nine best-performing 

trials. Moreover, many of these simulated annealing optimizations that do converge require more 

than 6.000 objective evaluations. In contrast, we see from Figure 9(b) that trend optimization 

reliably finds optimal values after sixty evaluations of the Lindemann parameter. We conclude 

that when trend optimization is used to optimize the Lindemann parameter, we obtain a one- 

hundred-fold reduction in computation time over the simulated annealing method of [23), and that 

the optimization is more robust. The speed-up can be attributed to the fact that the objective 

function is noisy yet has a simple trend two properties for which trend optimization is ideally 

suited. 

Furthermore, the accelerated search of the trend method makes it possible to use trend opti- 

mization with the more expensive quality metrics as objective functions. Doing so provides the 

extra guarantee that the generated potentials produce high-quality lattices. As indicated in Fig- 

ures 9(c) and 9(d), trend optimization reliably finds optimal values of the lattice quality objectives 

in less than 120 function evaluations, although it must be remembered that these objectives are 

approximately 35 times more expensive to evaluate than the Lindemann parameter. Nevertheless, 

the total CPU time required to perform these optimizations is still less than the time taken by 

simulated annealing to optimize the Lindemann parameter. 

Figure 10 shows the quality of the lattices generated by the potentials produced by the various 

methods, as measured using both quality metrics. Several important observations are to be made 

after reviewing these plots. First, optimization of the Lindemann parameter leads to lattices of 

modest and unreliable quality, indicating that the Lindemann parameter and lattice quality are 

only moderately correlated. Second, even when simulated annealing is successful in optimizing the 

Lindemann parameter, the corresponding potential may yield lattices of poor quality. This occurs 

because simulated annealing may find minima corresponding to very narrow wells that do not pro- 

vide robustness against uncertainty in initial conditions. In contrast, since trend optimization seeks 

out the general trend over the entire search space, this method finds minima that more robustly 
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(a)Quality of lattices generated using 

simulated annealing measured with the 

Template Measure. 

Number of Function Evaluations 

(c)Comparison of lattice quality using the 

Template Measure. 

(b)Quality of lattices generated using 

simulated annealing measured with the 

Defect Measure. 

Number of Function Evaluations 

(d)Comparison of lattice quality using the 

Defect Measure. 

FIG. 10: Here we compare the quality of the lattices produced using the four optimization methods. In (a) and 

(b), the quality of the lattices produced using the simulated optimization method is shown. It should be noted that 

only the nine potentials generated by the convergent simulated annealing trials in Figure 9(a) were used to produce 

these plots. Figures (c) and (d) show the quality of lattices produced using the three trend optimization methods. 

Using trend optimization directly on the quality metrics reliably produces high quality lattices. Optimization of the 

Lindemann parameter is only moderately correlated with improved lattice quality. In these Figures, recall that values 

of the Template Measure and the Defect Measure for purely random configurations are 132 and 161, respectively, 

and that the computation-free Geometric Method produces lattice quality scores of 18 and 12, respectively. 

lead to high quality lattices. Finally, the two lattice quality metrics are reasonably consistent in 

that a potential generated by optimizing one of the quality measures is also considered high-quality 

in the other measure. 

Figure 11 shows the range of potentials generated by the trend optimization methods.   The 

potential provided by [23] is also shown for reference. Most striking is that trend optimization un- 
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FIG. 11: Potentials for the generation of honeycomb lattices. V'n is the potential previously provided by [23], TYend 

optimization generates potentials similar to [23] (labelled VA), but also uncovers a new family of solutions that have 

a more repulsive shape and no local minima (sample potentials in this family are labelled VB and Vc). Remarkably, 

these repulsive potentials robustly form large regions of honeycomb lattice without defects. 

covers an entirely new family of potentials not previously considered. In this family of potentials, 

the exponential term is dominant and consequently, their shape does not admit a local minimum. 

The repulsive shape of these potentials leads to higher quality lattices since particles do not get 

stuck in local minima associated with local potential wells. In simulation, we observe that the de- 

fects continue to move through the configuration until they leave the domain entirely, or annihilate 

one another through collisions. 

Figure 12 shows two sample lattice configurations obtained for 4128 particles simulated using 

the potential labelled Vc in Figure 11 that was generated with trend optimization on the Tem- 

plate Measure. The parameter values for this potential are ao=5.771. ai=23.594. a2=0.574. and 

a3=1.816. The final lattices exhibit large regions of extremely well-formed honeycomb lattice that 

we have not previously observed using potentials that contain local minima. In Figure 12(a), a 

prominent grain boundary lies between two large areas of well-formed honeycomb lattice. As in 

Nature, this grain boundary forms when the cooling is not sufficiently slow. In Figure 12(b), iso- 

lated defects are visible in the lattice; however, it should be noted that these defects are not yet 

"frozen" into the lattice, and given enough time will eventually leave the domain or disappear 

through mutual collision. 

The repulsive potentials found using trend optimization are remarkably effective at producing 

large regions of almost defect free honeycomb lattice despite their relatively simple shape. The 

effectiveness of these potentials suggests that a far simpler basis of potential functions can be 
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(a) (l.» 

FIG. 12: Honeycomb lattices formed using the repulsive family of potentials discovered using trend optimization, 

(a) Two large regions of extremely well-formed honeycomb lattice meet to form a grain boundary, (b) Large regions 

of the honeycomb lattice are formed with a few isolated defects. These defects continue to move, even after the 

lattice is frozen, until they exit the boundary or are annihilated by collisions with other defects. 

used in the parameterization of VHCM- In these potentials it is the exponential decay term that 

dominates over the Gaussian term. The numerical simulations seem to suggest, and it would be 

interesting to pursue rigorously, that for a fixed density, the honeycomb lattice is a global minimizer 

(or ground state) of the exponential decay pairwise interaction potential. This path is consistent 

with the numerical findings of Jagla et al in [50] for a ramp type potential. 

VIII.    ANISOTROPIC POTENTIALS 

The methods presented thus far can be used to quickly generate isotropic potentials that produce 

high quality lattices. However, the potentials for self-assembling honeycomb lattices are not robust 

to variations in density - the lattices only form if the initial density of the particles is very near the 

ideal density of the target lattice. If the initial density is much less than that of the target lattice, 

then a triangular lattice will be favored. [23] addressed this issue by searching for optimal potentials 

over a range of densities. However, the tolerance for variation in density is still very narrow and 

may indeed be a fundamental limitation of isotropic potentials. Allowing the potentials to have 

angular dependence leads to the robust formation of high-quality lattices from initial conditions 

J33  

264 



C.I.   FAST GENERATION OF POTENTIALS FOR SELF-ASSEMBLY OF PARTICLES 

with large variations in density. Moreover, admitting potentials with angular dependence allows for 

the construction of potentials that form more exotic lattices, such as the kagome lattice, which has 

not yet been accomplished with purely isotropic potentials [23]. Certainly, the use of anisotropic 

potentials is well-motivated by abundant natural examples of anisotropic interaction potentials in 

Nature - the water molecule serving as an ubiquitous prototype. 

In order to introduce potentials with angular dependence, we must first extend the config- 

uration space of the particle system to include an angular coordinate. We no longer consider 

the particles as point particles, but rather as two-dimensional sliding disks, each with radius R 

and uniform mass density. The configuration manifold of each particle is now R2 x 51. The 

configuration of the ith particle is described by the coordinate chart {Xi,yt,0i) as indicated in Fig- 

ure 13. and we write the vector of coordinates describing the configuration of all N particles as 

x = [(xi,yi,0i),--- ,(xN,yN,6N)}- The total interaction potential over all particles now has the 

FIG. 13: To implement an anisotropic potential, particles are now modeled as two-dimensional disks whose con- 

figuration is described by a location for the center of the disk, {x,y), as well as a heading angle 8. The interaction 

potential between two particles is a function of the distance between the particles, as well as the angle, a, that lies 

between the heading angle and the bearing toward the second particle. 

form 
N 

V(x) = ^2vpair(xi - Xj,yi - yj.Oi^j) (8) 

where Vpajr : R x R x Sl x S1 —> R is the pairwise interaction potential between particles that 

depends not only on the relative displacement between particles, but also the angular displacement 

of each particle relative to the angular bearing of the other particle. By construction, we make 

Vpair symmetric with respect to particle interchange. Specifically, 

Vpair(z« -*jtVi -Vj^i^j) :=#«* -Xj,Vi ~Vj,0i) +i>{xj -Xi,yj -yh8j). (!)) 
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It remains to choose the functional dependence of t/>("i •> •) to reflect the desired symmetry in the 

target lattice. Consider the interaction potential 

«Ax,A|,,0*) := ^ - 1 [l - .sin2 (=§*)] (10) 

where 

r := v/(Aa:)2 + (Ay)2 (11) 

is the radial distance between the particles, and 

a* := 8k - arctan(Aj/, Ax) (12) 

is the angle between the heading of particle k and the bearing toward the second particle (see Figure 

13.) This potential is simply a Lennard-Jones potential with added amplitude modulation in the 

azimuthal direction on the attractive term. The periodicity of the trigonometric functions ensures 

that the potential has n-fold radial symmetry, and that each particle has preferred directions along 

which it feels the attractive pull of neighboring particles. The free parameter v is chosen to adjust 

the shape of the potential. When u is zero, the potential collapses to the isotropic Lennard-Jones 

potential. For values of v between zero and unity, the potential has n potential wells symmetrically 

distributed in the azimuthal direction. Taking values of u greater than unity raises the repulsive 

regions between the potential wells. Hence, v is a parameter that determines how strongly the 

anisotropic potential prefers the binding site directions. In simulations, we have observed that 

taking larger values of v produces lattices with less defects since particles that do not align with 

the preferred binding directions fall into these more repulsive regions between the wells and create 

a configuration with much higher energy. These defects are quickly removed by vibrations in the 

lattice. In practice, a compromise must be met since the larger regions of repulsion created by 

higher values of v increase the time taken for self-assembly to occur - particles only bind with 

one another if they approach each other along an ever more narrower binding direction. In the 

simulations that follow, we have used a value of v = 1.5. 

By changing the integer value of n. we can induce the formation of lattices with desired n-fold 

symmetry. Surface plots of potentials with 3-fold and 4-fold symmetry (n=3 and n=4) as a function 

of the radial coordinate r and the azimuthal angle a. are provided in Figures 14(a) and 14(b). A 

honeycomb lattice and a square lattice produced with these potentials using particles initialized at 

low density are shown in Figures 14(c) and 14(d). 

For the creation of more exotic lattices, we alter the azimuthal modulation of the potential 

even further. Each particle in the kagome lattice, for example, has binding sites at angles of 0°. 
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FIG. 14:   The potential with three-fold symmetry shown in (a) yields the honeycomb lattice shown in (c). Similarly, 

the potential with four-fold symmetry shown in (b) yields the square lattice shown in (d). 

60°, 180°, and 240° [49], To ensure preferred binding along these directions, we must modify the 

azimuthal dependence of the Lennard-Jones potential accordingly. Before doing so, we first express 

the potential function ip of line (10) in the following equivalent way: 

4>(Ax,Ay,9k) = 
2r'2 [l-i/S(a*)] 

where 

S(ak) :=sin2 (-^) • 

(13) 

(14) 

As written here, 4> produces a potential with n-fold symmetry. In order to produce a potential 

that favors the kagome lattice, we must simply introduce a new definition for the functional form 

ofS(-). 
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Let B := [61, • • • , bn] denote the ordered list of n desired binding directions measured in radians 

satisfying 

0 = 6i < ••• <6n <2n. (15) 

Note that without loss of generality, we may prescribe that the first binding direction lies along 

the ray corresponding to zero radians. For the honeycomb lattice, BHC 
:= [0, ^f > 4f ]' wn"e f°r 'ne 

kagome lattice we have Bkagome :— [0, § ,tf, 4p]. Then, for o e [0,27r), we use the elements in the 

list B to define 5(a) piecewise as follows: 

sin2 (La~\ n)    if 6,-< a < 6j+i ,      for i = 1. • •• .n - 1, 
S(a) := { ^5ITrT  ' " (16) 

(K^H      Xbn<a<2n. 

When S(a) defined in this way is substituted into the expression for the anisotropic potential 

function V 'n l'ne (13), it provides the necessary azimuthal modulation of the Lennard-Jones 

potential to produce potential wells along the binding directions specified in the list S. A plot of 

S(a) using B^some is provided in Figure 15(a). Notice that S(a) has local minima precisely at the 

binding site angles of 0°. 60°, 180°, and 240° consistent with the kagome lattice (recall from line 

(13) that minima in S(a) lead to minima in the interaction potential). Consequently, the angular 

dependence in the resulting interaction potential favors the bond structure peculiar to the kagome 

lattice. The potential and a lattice resulting from this potential are shown in Figures 15(b) and 

15(c) respectively. 

IX.    CONCLUSIONS AND FUTURE WORK 

We have presented and compared methods for generating potentials that lead to the self- 

assembly of specified target lattices. In particular, we have addressed the problem of designing 

pairwise interaction potentials that induce the formation of a honeycomb lattice when a planar 

system of particles is cooled. 

We have demonstrated that reasonably high quality lattices can be produced using a heuristic 

computation-free geometric method. The geometric method provides principles that utilize purely 

geometric information to design potentials that by construction favor and stabilize the target 

lattice. 

A trend optimization algorithm has been introduced that quickly and robustly finds optimal 

shapes of the interaction potential that lead to the self-assembly of lattices of high quality.  The 
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FIG. 15: The function in (a) is used to azimuthally modulate the amplitude of a Lennard-Jones potential to 

encourage binding directions that favor the kagomc lattice. The resulting potential surface is shown in (b), while a 

kagomc lattice formed with this potential is shown in (c). 

success of the trend method lies in its ability to quickly locate minima in a noisy and expensive 

objective function. Moreover, the potentials discovered using the trend optimization procedure 

robustly form high quality lattices with respect to variations in the initial conditions of the particles. 

We have seen that the trend optimization method has discovered a family of potentials characterized 

by very simple exponential decay profiles that routinely lead to the formation of the honeycomb 

lattice. 

Our trend optimization algorithm robustly and routinely finds optimal values of the objective, 

although it must be noted that as currently implemented, the algorithm does not provide rigorous 

guarantees of convergence. Convergence can be guaranteed, however, by incorporating a polling 

step as required in the Surrogate Management Framework. It would be interesting to investigate 

the effects of polling on the optimal results and the efficiency of the method. One expects that the 
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addition of a polling step to guarantee convergence will represent only a marginal increase in the 

overall computational cost of the algorithm. 

The geometric method has also been extended to the design of anisotropic potentials. Azimuthal 

dependence of the interaction potential allows for the formation of the kagome lattice which has not 

previously been performed using isotropic potentials. Incorporating anisotropy into the potentials 

allows for the formation of lattices over a wide range of particle densities. 

An auxiliary contribution of this paper is the development of two metrics for objective analysis 

of lattice quality. The development of these metrics was necessary for comparison of the lattices 

produced by the proposed potentials. 

We anticipate that the methods presented here will naturally extend to three dimensions without 

impediment. Rechtsman et al have recently investigated the design of potentials for self-assembly 

of three-dimensional lattice structures [51]. Most notably, they have demonstrated the formation of 

the diamond and wurtzite lattices. As a matter of course, we intend to apply the methods presented 

here to the design of potentials in the three-dimensional self-assembly problem and expect the trend 

optimization method to provide a significant computational savings in the design of potentials. Of 

particular interest is to determine if trend optimization recovers the three-dimensional result of [51], 

or if a new, simpler, and perhaps more robust family of solutions is discovered. 

A natural extension of the methods presented is to investigate the use of multi-specie and multi- 

body potentials for the self-assembly of quasicrystals and Penrose tilings. Generating lattices with 

prescribed geometry and structure is highly motivated by the desire to produce photonic crystals 

with specified optical properties. Also, we intend to explore the use of the trend optimization 

method for designing potentials that lead to the the formation of hexahedral meshes over compli- 

cated three-dimensional volumes. Producing hexahedral meshes is a notoriously difficult problem 

that is currently a major stumbling block for continuum mechanics computations that use a finite 

element method. 

More broadly, we expect to use trend optimization to understand more deeply the fundamental 

limitations and extraordinary possibilities of self-assembly. It will be interesting to investigate, 

for example, the role of optimal potential design in natural systems. In this regard, a study of 

self-assembly is a study of life itself. Are there mechanisms at the level of local interactions that 

allow for the differentiation of cells that self-assemble to form bone, for instance, from those that 

form brain tissue? How much control authority over the superstructure formed via self-assembly is 

provided by control over the local interactions? Are there natural systems in which a small amount 

of flexibility in the properties of the local interactions allows for large and beneficial changes in 
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structure at the macroscopic level? We believe that insights to these questions may be afforded by 

rinding optimal potentials through the method of trend optimization. 
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Abstract 

Motivated by the work in [1] on design of potentials for spontaneous 
self-assembly of particle systems into 2D target structures, we propose 
three tools to apply to this problem. First, we introduce a new pseudo- 
distance between planar point sets, that can be used to compare particle 
configurations with the target structure. In conjunction with Molecular 
Dynamics simulations, it provides an objective function to be graphed or 
optimized over the space of parameters of the potential, and thus, it pro- 
vides a tool that quantifies the effectiveness of a potential to assemble a 
target configuration. The second tool, is the use of infinitesimal mechani- 
cal stability of the target structure with a given inter-particle potential as 
a necessary condition for self-assembly. The third one, characterizes the 
target structure (with given inter-particle potential and Rayleigh dissipa- 
tion forces) as an asymptotic fixed point of the system dynamics or not, 
by examining the behavior of initial conditions close to the structure in 
backward time. The first tool provides a sufficient condition to identify 
assembling potentials, but it can be computationally expensive, while the 
other tools are computationally fast and provide necessary conditions that 
can be used to exclude a priori "bad" regions of the parameter space. 

1    Introduction 

In a recent paper [1], Rechtsman et al discuss "inverse methods" for design of 
potentials for self-assembly. The implied "direct" problem is the determination 
of the minimum energy configuration of a system of identical, classical interact- 
ing particles (at a fixed density), given their interaction. The "inverse" problem 
is to design the interactions between the particles, so that their minimum en- 
ergy configuration (again, at fixed density) is a desired one. In particular, these 
authors consider isotropic two-body potentials with fixed functional form, but 
tunable parameters, and seek to determine optimal parameter sets so that a 
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particle system with these interactions (in 2 dimensions) would "self-assemble", 
as closely as possible, into a (piece of a) square lattice or a honeycomb structure 
of given density, as the temperature decreases to T = 0. The inspiration for 
their work comes from a host of examples in Biology, Chemistry and Materi- 
als Science where smaller "units" arrange themselves to form larger structures 
through their interactions. If one can manipulate these interactions to some ex- 
tent, one may be able to form structures with desired properties and functions, 
see [1] and references therein. 

The general methodology of [1] is as follows: Starting with a two-body 
isotropic potential of given functional form, but with tunable parameters a*, 
V(r, {a*}) (r is the inter-particle distance), they propose objective functions of 
the a* whose minimization implies that the particle system has the desired struc- 
ture (square lattice or honeycomb of a given density) as its ground state, and 
thus, it will equilibrate to it as its temperature is brought down to 0. They pro- 
pose two such functions, one based on energy considerations and one based on 
dynamical ones ("zero-temperature" and "near-melting" schemes). After each 
of the optimization schemes is terminated, the obtained potential is tested for 
effectiveness: An annealed Monte Carlo (MC) simulation is performed in an 
NVT ensemble starting from a random configuration, and the resulting mini- 
mum energy configuration is compared to the desired structure. 

In this work, we propose some tools to attack the problem of self-assembly. 
Before we introduce these tools, we want to comment on the approach of [1] and 
justify the need for our methods. As pointed out by the authors, the energy- 
based zero-temperature scheme ignores all other competing structures other 
than the ones it explicitly considers. Though physically intuitive, it does not 
provide a sufficient or necessary condition for self-assembly. The near-melting 
scheme offers only a necessary condition: To quote, there is an "inherent bias 
in this scheme towards the target lattice", meaning that the scheme guarantees 
non-local stability of the structure but not self-assembly from any (or most) 
initial conditions. Also, the metric used by the authors (and referred to as 
the "Lindemann parameter") to compare the particle system configuration near 
its melting point with the target structure, is not entirely satisfactory. If the 
particle system has rotated as a whole, or two particles have exchanged positions, 
the distance of the particle configuration from the target will be increased. 
Similarly, the structure assembled by the final MC simulation (to check the 
outcome of the optimization) is qualitatively compared to the target, either 
directly, or by the plot of the structure function S(k), see section 2 and [1]. 

In our approach, we seek to provide clear-cut necessary and sufficient con- 
ditions on whether a set of parameters renders a potential capable to assemble 
a structure. The first tool we introduce is a Fourier space-based distance for 
point sets in R2. This new distance function allows us to compare two planar 
point sets modulo translations and rotations, i.e. a point set and a translated 
and rotated copy of itself are considered the same. It allows us to quantitatively 
compare a particle configuration with a target structure, rather than relying on 
qualitative estimations. After running an MD simulation of the particle sys- 
tem with a given potential, while slowly lowering the temperature to T = 0 (the 
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freezing has to be slow enough, so that the system is not trapped in a metastable 
state, i.e. a local minimum of the interaction energy), we calculate the distance 
of the equilibrium configuration from the target structure. Averaged over all ini- 
tial conditions, this provides an objective function, whose minimum determines 
the best set of parameters (of the potential) for self-assembly from most initial 
conditions. We will refer to this function as the Defect Metric. In practice, see 
section 2, it suffices to consider just a few initial conditions per function eval- 
uation (the most we used was 5). Note that the Defect Metric being equal to 
zero (or, at least, very small) for a set of parameter values provides a sufficient 
condition for self-assembly of the target structure. We consider this a major 
advantage of this method. Also, the method is not in any way biased towards 
the target structure. We will not attempt any optimization in the examples 
considered here, but rather plot the Defect Metric in parameter neighborhoods 
around the solutions of [1] in order to illustrate the effectiveness of our approach. 

The second tool we introduce, is the use of the (infinitesimal) mechanical 
stability of a structure as a necessary condition for its self-assembly from a given 
potential. In [1], the authors emphasize the necessity for mechanical stability 
of a target structure if it is to be considered as a ground state for the particle 
system with a given potential interaction. They also check that the potentials 
furnished by their optimization schemes guarantee mechanical stability in each 
case. However, this idea can be exploited further to delineate portions of the 
parameter space where the resulting potential does not guarantee mechanical 
stability of the target structure. The relevant calculations are very fast and 
require no optimization. This provides a simple, fast test that can drastically 
reduce the parameter space one has to search over for a solution. Note that a 
potential that guarantees mechanical stability of the target structure does not 
necessarily assemble it, hence this condition is only necessary. 

The third tool, is the use of backward (in time) integration to identify an 
asymptotic stable fixed point of a dynamical system. It is based on the property 
of an asymptotic stable fixed point that, trajectories slow down more and more 
the closer they get to it. Contrast this with the behavior of trajectories around 
a regular point of phase space, where they don't, at least in some directions. 
The idea is to consider initial conditions around a presumed fixed point and 
study their behavior in reverse time. If the presumed fixed point is indeed one, 
the initial conditions will move away from it slowly. If it isn't, at least some 
of them will move away from it fast enough. The way we implement this idea 
in the self-assembly problem, is the following: For a given target structure, we 
create an ensemble of particle configurations uniformly distributed according 
to their distance from it (with the Defect Metric taking values between 0 and 
a small upper bound). We propagate this ensemble backwards in time for a 
short time and calculate the average of the Defect Metric. A large value of 
this average Defect Metric means that the target structure is not an asymptotic 
stable fixed point for the potential. As with mechanical stability, this test 
provides a necessary condition only, however, it is fast and simple to implement, 
and requires no optimization. Again, the goal is to exclude portions of the 
parameter space and thus speed up the search for good parameter sets. 
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We will use three examples to demonstrate our methods: Self-assembly of 
a square structure using two candidate potentials with parameters, Vsqui and 

Vsqu21 

Vsqui(r;a0,ai,a2)    =    12 ~ ~6 + a° exPhai (r ~ a2?\> (1) 

Vr
sqU2('l;ai!a2)    =    -& + tanh(oir-a2) - 1, (2) 

and self-assembly of a honeycomb structure using Vhon, 

Vhon(r;ao,ai,a2,a3) =-^ ^ +at exp[-a2r] - .4 exp[-40(r - a3)2]. (3) 

Kiqui and Vhon are taken from [1], while Vsqu2 is a generalization of a potential 
found in [2]. These three potentials are plotted in figure 1 for parameter values 
that make them assembling. The physical motivation for these choices of func- 
tional forms is the following: V3qUi and VSqu2 energetically favor neighbors at 
distances 1 and y/2 (first and second neighbors in the case of a square lattice of 
lattice constant 1) while they strongly disfavor neighbors at distance \/3 (second 
neighbors in the case of a triangular lattice of constant 1, the triangular lattice 
being the main competitor of any 2D structure assembled by an isotropic poten- 
tial). Vhon energetically favors neighbors around r = \/3. It disfavors neighbors 
around r = 1, but makes them locally stable (see small dip in Vhon close to 
r = 1; the actual lattice constant of the honeycomb structure for this example 
is 1.0565). At the right density, this competition between energy and mechani- 
cal stability favors the honeycomb structure which has only 3 first neighbors at 
distance 1.0565 versus the triangular lattice that has 6 first neighbors at this 
distance (they both have 6 second neighbors at distance %/3 x 1.0565). 

The organization of the rest of the paper is as follows: In section 2, we 
introduce our Fourier space-based distance of point sets in R2 and use it to 
compute the Defect Metric as a function of the potential parameters in each 
example. In sections 3 and 4, we present our mechanical stability and backward 
integration calculations, respectively. Section 5 concludes. Some properties of 
Fourier space-based distance functions of point sets in M2 are discussed in an 
Appendix. 

2    Defect Metric 

In this section we introduce a new metric that compares point configurations 
(sets) in K2 modulo translations and rotations. It allows us to compare the 
"shapes'" of two point sets as structures, without the need to use an a priori 
correspondence of points of the two sets. The use of this metric, combined with 
Molecular Dynamics simulations will provide a sufficient test for the assembling 
capability of potentials. Note that the constructions in this section (as well as 
the derivations in the Appendix) generalize immediately to Rm. 
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Figure 1: Potentials Vsqui, Vsq„2 and Vhon for parameter values that make them 
assembling. 

Consider a configuration of points {rj, i = 1,...,JV, in R2.  Assigning a 
mass of 1 to each point, we may define the (singular) mass distribution of this 
point set to be 

N 

The Fourier transform of p is given by 

N 

c(k) = J2e~ikr'< ke (•1) 

The c(k)'s were introduced in [3] under the name collective coordinates, with the 
purpose of capturing collective aspects of the dynamical behavior of a system of 
identical particles . For some of their uses, see [4, 5, 6] and references therein. 
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The quantity |c(k)|2 is the Fourier transform of the pair correlation function of 
the mass distribution of this point set, i.e. 

/ 
ke*'|c(k)|2 = ^«(r-(r<-ri)). 

(2TT) 

Notice that it is invariant to translations of the point set, r< —> r< + c. Since 
the pair correlation function of a finite point set (i.e. the knowledge of the set 
of relative positions {i-* — r^}) determines the point set modulo translations, 
so does the structure function S(k) = \c(k)\2/N. Note that this fact does 
not resolve the Crystallographic Phase Problem in general, i.e. a distribution 
cannot be reproduced by knowledge of the moduli of its Fourier coefficients only, 
but for the restricted class of distributions we are considering, namely finite 
superpositions of delta measures, knowledge of |e(k)|2 is enough to determine 
the point set modulo translations. 

Given two point sets, {r-1'} and {rj2'}, i = 1,..., N, we define a distance 
d({r'''}, {r'2'}) between them (modulo translations) by 

rf({r(1)}, {r<2>}) = i j |j^w(k) |k(1)(k)|2 - |c<2'(k)|2 (5) 

where w is a positive, continuous and integrable function that weighs the rela- 
tive importance of Fourier modes. In the Appendix, it is shown that d is well 
defined, and satisfies the properties of a distance function. Different choices 
of w, emphasize different spatial characteristics of the point set. Consider, for 
example, the point sets a and b of figure 2: a is a piece of square lattice of 
constant 1 made up of 10 x 10 sites and b is made by shifting the left half of o 
(10 x 5 sites) by 1. Structures a and 6 appear much the same in their bulk (i.e. 
away from their boundaries), but globally the sets are distinct. We can capture 
the similarities and the differences of these two sets at different length scales by 
using different weight functions. For example, 

/L-\ _ /  l>    k* € h1071"' 107r)> ky e [—IOTT, IOTT], u'i(k) — <   _ 
otherwise, 

penalizes differences in the structures in length scales from .2 and up, and gives 
a value of d = 17 for the distance of a and b. 

, (  1,    kx € [-IOTT, —TT] U [TT, IOTT], ky e [-IOTT, -TT] U [TT, IOTT], 

\ 0,    otherwise, 

penalizes differences in length scales from .2 up to 2 only (i.e. inside a 5 x 5 box 
centered at every lattice site) and thus gives a much smaller value of d = 1.8 
(the calculations are done using a discrete version of (5) with o and b inside a 
20 x 20 box). So, w provides a flexibility in the comparison of characteristics of 
two point sets at different scales. 
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Figure 2: Left: A piece of square lattice. Right: The left half of a is shifted up 
by one lattice constant. 

To compare the "shapes" of two point sets, one needs to mod out not only 
translations, but also rotations. To this end, we define the quantity 

Nns J\\n<s (2n> 

The crucial step here is the angular k-integration that eliminates all information 
in the structure function except for the pairwise distances in the point set. In 
the Appendix, it is shown that 

1     y^Ji^s) 

2Nn2 *-?.    r«s 
7^ = •^£ >ljc 

where r,j = ||r, - r^ ||, and hence I(s) only retains information about the pair- 
wise distances of points. It is shown in [7, Theorem 2.6] that the distribution 
of pairwise distances of points in a point configuration uniquely determines it 
modulo translations and rotations, except for a set of configurations of measure 
zero in the space of all possible point configurations. 

We define now the following pseudo-distance function between two two point 
sets, {r^jand {r<2)}, » = 1 JV: 

u({r(1)},{r(2)})= /    w(s)\h(s)-I2(s)\ds. (7) 
Jo 

w must be a positive, continuous and integrable function in [0,oc). In the 
Appendix, we show that u is well-defined, and it is a pseudo-distance. As in 
(5), w weighs various length scales differently. Consider, for example, the point 
sets a and c in figure 3 (c is made from a by slightly shifting and rotating its 
upper right quarter). For wi(s) = I, s € [0,107r], their distance is u = 0.0038. 
Using 

,   . f   0, S < 7T, 
•2(S) = {   1,    7r<S<10rr, 
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reduces the distance to u = 0.0011. As expected, when the large scale features 
are ignored, the difference between a and c is much less pronounced. 

Figure 3: Left: A piece of square lattice.  Right: The upper right quarter of a 
is slightly shifted and rotated. 

In each of the three examples mentioned in the introduction (two candi- 
date potentials for the square lattice and one for the honeycomb structure), we 
performed MD simulations for particles in a box with periodic boundary condi- 
tions, with density fixed to the appropriate value for each target structure. The 
simulations were performed using the MD software package LAMMPS (Large- 
scale Atomic/Molecular Massively Parallel Simulator) [8]. The initial positions 
of the particles formed a square lattice and the initial velocities were randomly 
generated. The system temperature was slowly decreased close to T = 0 using a 
Nose-Hoover thermostat [9, 10, 11]. The Defect Metric (distance u of the target 
structure from the final configuration of the MD) was computed for a grid of 
parameters in each case, using a small number of runs per evaluation (average 
over runs). The weight function 

w(s) _  /   0,     8 < W/1% 
u{s)-\ i,   8>n/l, 

(I being the lattice constant in each case) was used in its computation, so that 
large-scale differences between the achieved structures and the target were not 
penalized. The integral (6) was replaced with the sum over Fourier modes 
appropriate to the container box of each simulation. 

The results of the simulations are plotted in figure 4. The top plot rep- 
resents the Defect Metric as a function of parameters ai and a2 of V8qUi, 
with oo set equal to 0.828. It is immediately seen that the parameter val- 
ues {a^,a2) = (26.5,1.79) of [1] for V^qui fall exactly in the parameter region 
where the Defect Metric is close to zero. The middle plot contains the Defect 
Metric for VSqu2- As a side remark, compare the two wedge-like domains of the 
parameter space where the Defect Metric is (approximately) zero for V8qU2 with 
the corresponding narrow strip of parameter values for Vsqui. It is obvious that 
Vsqu2 is more robust to changes in its parameters than V9qui. Finally, for Vhon, 
the parameters (00,02) = (5.89,2.49) of [1] fall into a shallow and narrow min- 
imum of the Defect Metric, see bottom plot. As stated in the Introduction, we 
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did not attempt any optimization here, but rather, we wanted to demonstrate 
the effectiveness of our approach. If desired, optimization over the parameters 
aj can be done using simulated annealing as in [1], or other methods, such as 
trend optimization [12, 13] that are very effective when one is optimizing over 
functions that are expensive to evaluate and noisy (as is the case here, because 
the objective function is evaluated using a few MD runs with different initial 
conditions). We plot the same results in the top plots of figures 7-9, along with 
the results of sections 3 and 4 for easy comparison. 

Figure 4: Top: Defect Metric as a function of parameters a\ and a^ of Vsqui, 
with do = 0.828. Middle: Defect Metric as a function of parameters oi anda2 

of V8qU2. Bottom: Defect Metric as a function of parameters oo and a? of Vhon, 
with ai = 17.9 and 03 = 1.823. The stars correspond to the solutions of [1] 

3    Mechanical stability 

Infinitesimal mechanical stability of an equilibrium configuration of a particle 
system is a test that the said configuration is a (local, in general) minimum of 
the potential interaction energy. Hence, it is a natural condition to check in the 
search for the global energy minimum. Any potential (and hence, set of param- 
eters) that renders the desired structure infinitesimally mechanically unstable, 
cannot have that structure as a ground state. This provides a simple and fast 
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test that excludes portions of the parameter space before any search or opti- 
mization. The quantity to be calculated, is the Hessian of the potential energy 
of the system, evaluated at the equilibrium configuration. Semi-definiteness of 
the Hessian is equivalent to mechanical stability. For infinite periodic config- 
urations of identical particles, the eigenvalues of the Hessian are the squared 
frequencies of the phonon excitations (modes) of the structure. 

We plot the minimum squared frequency ui2 of the phonon modes of the 
target structure, as a function of the parameters in the potential in each case, 
in figure 5. When the minimum J1 is negative, the potential renders the target 
structure infinitesimally mechanically unstable. For the case of the square lattice 
with VSqui and VsqU2, the top and middle plots of figure 5 delineate the "a priori 
good'" portions of the parameter space with with very good accuracy. In the case 
of the honeycomb structure with Vhoni the bottom plot of figure 5 shows that 
about 30% of the parameter space depicted can be excluded beforehand. The 
same results are plotted in the middle color plots of figures 7-9 for comparison 
with the results of sections 2 and 4. 

Figure 5: Top: Minimum squared phonon frequency w2 in a square lattice of 
constant 1 as a function of parameters a.\ and ai of Vsqui> with oo = 0.828. 
Middle: Minimum squared phonon frequency J1 in a square lattice of constant 
1 as a function of parameters a\ and 02 of VsqU2- Bottom: Minimum squared 
phonon frequency w2 in a honeycomb structure of constant 1.0565 as a function 
of parameters ao and 02 of Vhon, with aj = 17.9 and 03 = 1.823. The stars 
correspond to the solutions of [1] 

10 
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4 Backward integration 

Consider a dynamical system with a globally attractive fixed point and a small 
neighborhood around that point. If we reverse the arrow of time, this small 
neighborhood will expand, and in the limit t —> -co, it will encompass the 
whole space. This is an equivalent way to state that the fixed point is globally 
attractive. Notice, that this does not happen for regular points in the phase 
space: A neighborhood of a regular point will be mapped only to a subset of 
the phase space as t —> — oc. This idea could be used, in principle, in the 
self-assembly problem in the following way: If a target structure is to be the 
ground state of a particle system for a given potential, then a a neighborhood 
of initial conditions (particle positions/velocities) around the target structure 
at equilibrium would expand to the full phase space of the particle system in 
the limit t —> — oc. However, for an N particle system in 2D, this would require 
propagating a 4Ar-dimensional probability distribution function, a daunting task 
even for small N. Instead, we use a different manifestation of the asymptotic 
stability of a fixed point in backward evolution. Consider an asymptotic stable 
fixed point (not necessarily globally attractive). Initial conditions in a small 
neighborhood of it, will move away from it when we reverse time evolution, but 
very slowly. This is equivalent to the asymptotic approach of trajectories to the 
fixed point in forward evolution. This "slowing down'" of trajectories, however, 
does not happen for regular points in phase space, no matter how close we get 
to that point. Hence, in reverse time, initial conditions around a regular point, 
tend to move away from it faster (at least some of them). We use this fact 
to construct a simple test for detecting non-assembling potentials: For a given 
target structure, we create an ensemble of 50 particle configurations uniformly 
distributed according to their distance from it. We propagate this ensemble 
backwards in time for a short time and calculate the average of the Defect 
Metric. Large magnitudes of this average, signify non-assembling potentials. As 
with mechanical stability, this test provides a necessary condition only, however, 
it is fast and simple to implement, and requires no optimization. The goal, again, 
is to exclude portions of the parameter space and thus speed up the search for 
good parameter sets. 

Figure 6 contains the plots of the average Defect Metric for the particle 
ensembles that were integrated backwards for a short time, for each example, 
as functions of the potential parameters. The same results are plotted in the 
bottom color plots of figures 7-9 for comparison with the results of sections 2 
and 3. Notice the very good agreement with the mechanical stability plots. 

5 Conclusion 

Motivated by the recent work [1], we presented three new tools for optimizing 
potentials for self-assembly. The first tool, is a new (pseudo)metric for compar- 
ison of particle configurations. In conjunction with MD simulations, it provides 
an automated sufficient criterion for detection of good parameter values of the 
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Figure 6: Top: Average Defect Metric as a function of parameters a] and a? 
of Vsqul, with a0 = 0.828. Middle: Average Defect Metric as a function of 
parameters ai and 02 of VsqU2- Bottom: Average Defect Metric as a function 
of parameters ao and 02 of Vhon, with a^ = 17.9 and 03 = 1.823. The stars 
correspond to the solutions of [1] 

potentials. Since it is based on Fourier space considerations, it is ideal for target 
structures with simple spectra, like crystals and quasi-crystals (see [14] for a re- 
cent work on assembly of crystals and quasi-crystals with a simple double-well 
potential). The other two tools, infinitesimal mechanical stability and backward 
integration, provide simple (no optimization required) and fast (no MD's or very 
short run MD's needed) criteria that can a priori exclude "bad'- portions of the 
parameter space to be searched. This makes them invaluable when the potential 
depends on 3 or more parameters. 
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Appendix 

In this appendix, we present proofs that the functions d and u defined, respec- 
tively, in (5) and (7), are metrics (actually, u is a pseudometric). From the 
definition (4), it is immediately seen that |c(k)| < N. We have, for d: 

1. <H{rM}t{rM}) is well-defined: 

d({r(,)Ur(2'})    =    l/^Mk^'W-I^Wl 

*    ^/70»(k)(k(1,(k)|2 + |c(2'(k)|2) 

2. d is symmetric in its arguments (obvious) 

3. d satisfies the triangle inequality: 

rf({r(1)},{r<3>}) 

=    ^/^Mk)||c<')(k)|2-|c'3>(k)|2| 

"   vl (^"'(k)(|lc<I,(k)l2 - lc(2'(k)l2| + |lc<2)(k)l2 - k(3)(k)|2|) 

=   d({r<'>},{r<2>}) + d({r<2>},{r<3>}). 

4. If d({r'''}, {r'2'}) = 0, the two point sets are identical up to a global 
translation. 

d({r(,)},{r(2»}) = 0 
=•    |c(1)(k)|2-|c(2)(k)|2 = 0, VkeR2 

I re
ikr(|c(1>(k)|2 - |c(2)(k)|2) = 0 

(27T)2 

N N 

=•    ^<5(r-(ri-rj))=^<5(r-(rm-rn)), 

which means that the relative positions in the first point set are the same 
as in the second point set, including multiplicities. This implies the state- 
ment, i.e. the second point set is just a translation of the first. 

Now, for u: 
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1. ^({rt1)},^2'}) is well-defined: 
From the definition of I(s), we have that I(s) < N. Then, 

«({r(1)},{r(2)})    =    /    w(s)\h(s)-I2(s)\ds 
Jo 

rOO 

< /    w(s)(h(s) + I2(S))ds 
Jo 

< 2N /    w(s)ds < oc. 
Jo 

2. u is symmetric in its arguments (obvious) 

3. u satisfies the triangle inequality: 

«({r(1)},{r(3)}) 
rOO 

=     /    w(s)\h(s) - h(s)\ds 
Jo 

y»0O 

<     /    w(fl)(|/i(«)-/a(fl)| + |/2(fl)-/3(fl)|)da 
Jo 

=    u({r(1)},{r(2)})+U({r(2>},{r(3>}). 

4. If u({r(1'}, {r'2'}) = 0, the pairwise distances in the first point set are 
the same as in the second point set, including multiplicities. This implies 
[7] that the point configurations are identical modulo translations and 
rotations, except for a set of configurations of measure zero in the space 
of all possible point configurations. Hence u is only a pseudometric. 

First, we compute I(s) analytically. We have, 

Nns  J\\H<s (27r) 

1      [" kdk 1   f2" ,.. ,,       ,_     ,  .    ...... 
/   — /     d(p\c(k con <p x + ks\n<py)\ 

Jo   2?r 27r Jo Nns2 

Nns2 J0    In <2n J0    ^ ^ 

[Note : r-j - r, = rtj cos(<f>ij)x + rtj sin(0y)y] 

1      f kdk^ 

"  s   4?1y ~y Jo 

1 V^J_   r/       x _  _J      V^ J\(rjjs) 
n2B2 2_. r.. 

SJ^JS> ~ 2Nn2 2_.     r..8    • 

2N.. 

2Nn2s2^ru    iWJ '     2Nn2^    ms 

17 
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Then, 

w({r(,)},{r(2)}) = 0 

/i(s) = /2(a)V«e[0,oo) 

£ -Jy Ji(r<JJ«) = E 4f ^^ Vs € 1°'°°) 
i#i    U n^m 

1        f00 

=*   ETU   /    d»*Ji(")Ji(r^«) 

1     Z-00 

=     J2 ~m d«sJi(rs)Ji(r^s) 
n5£m rnm   •'0 

which implies that the pairwise distances in the first point set are the same 
as in the second point set, including multiplicities. 
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1 Introduction 

The phase diagram for krypton atoms on a graphite substrate can be constructed 
by running molecular dynamics simulations at a variety of temperature and density 
conditions, and observing some measure of the order of the system. Rather than 
using such an order parameter for the system as a whole, the approach taken here 
is to focus on local properties. In particular, the density of the different phases that 
are in co-existence in our system. 

Using snapshots from molecular dynamics simulations, the fluid and solid regions 
are identified based on the local density of particles. The overall density in these 
regions is then calculated and this yields points on the phase co-existence curve 
at the temperature of the snapshot. The phase diagram can be constructed by 
analysing snapshots from different final temperatures in this way. 

In order to calculate the extent of the fluid region, the boundary between the 
fluid and solid phases needs to be accurately identified. This is achieved by looking 
not only at the local density of particles but also at the local density around nearest 
neighbour particles. 

The motivation for this approach is Gelb and Miiller's temperature quench 
method   [1] described in the following section. 

The results of the pattern boundary detection method will be compared with the 
phase diagram for krypton on graphite that was found by Vladimir Fonoberov using 
molecular dynamics simulations. They will also be compared against experimental 
results due to Butler [Butler] and Larher [Larher], as well as 2D calculations by 
Sander   [Sander]. 

2 Gelb and Midler's Method 

Gelb and Miiller's method consists of two parts: the molecular dynamics simulation 
using the temperature quench method and the analysis of the simulation results. 

2.1 Temperature Quench Simulations 

Figure 2.1 illustrates the temperature quench method for the molecular dynamics 
simulations. The system starts in a single-phase equilibrated state, shown as point 
A. The temperature is then suddenly dropped to a point B at a lower temperature. 
This places the system in an unstable state and causes a spontaneous separation 
into two co-existing phases. At this point, it is not necessary for the simulation to 
continue until the system is once again in equilibrium. Only local equilibrium is 
required. 

2.2 Analysis of simulation results 

Analysis of a snapshot of the system after the above temperature quench simulation 
gives two points on the phase co-existence curve at the final temperature. One 
will be for the lower density phase (vapour in the example) and one for the higher 
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Figure 2.1: Example phase co-existence curve with temperature in the vertical di- 
rection and density in the horizontal direction. The temperature is dropped from an 
equilibrated initial condition at A to a lower temperature at B, causing a separation 
of phases. Figure based on   [1] Fig. 1. 

density phase (liquid in the example). The lower portion of the phase diagram 
can be constructed in this way, however the method is not successful in the broad, 
flat region of the phase diagram. In this region there is a range of densities for 
one temperature at which the phases co-exist and thus it is difficult to identify the 
phases. 

Gelb and Miiller analysed a snapshot from the simulation by first dividing the 
simulation box into sub-cells. The density of each of these sub-cells was then calcu- 
lated, as well as the local co-ordination number of each particle. Boundary particles 
were identified as those particles that had a local co-ordination number greater than 
the low-density phase and less than the high-density phase. Sub-cells that consisted 
of more than 30% boundary particles were excluded from the analysis. 

A histogram of the remaining cell densities was constructed. Examples of such 
histograms for our krypton on graphite system are shown in Figure 2.2. The his- 
togram of densities separates into a bi-modal distribution, reflecting the densities 
of the phases that co-exist in the system. The density of each of these phases is 
identified as the most common density within the range of densities for that phase. 

As can be seen from Figure 2.2(b), the histogram can have more than one promi- 
nent peak in the range of densities that correspond to one of the co-existing phases. 
It is the highest peak which is taken to be the relevant density. Further, for high (or 
low) total densities, there may not be enough sub-cells with densities in the range of 
densities of the other phase for a confident assessment of the peak in the histogram. 
This is illustrated in Figure 2.2(c). 

The results obtained by Gelb and Miiller's method of analysis are shown in 
Figure 2.3. For comparison, results of molecular dynamic simulations with 10 000 
atoms (instead of the 2496 particles used here) are indicated, as well as experimental 
results and numerical 2D results. The method was repeated for total densities of 
0.467 and 0.612. 
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.•••* R 

Figure 2.2: (a) Histogram of densities including all sub-cells (dashed green line) and 
including only sub-cells with less than 30% of particles being boundary particles 
(solid blue line). Temperature=75K, total density=0.467. (b) As for (a) but area 
under solid blue line normalised to 1. Temperature=80K, total density=0.467. (c) 
As for (b). Temperature=80K, total density=0.612. 

3    Pattern Boundary Detection Method 

Instead of following Gelb and Muller's method of excluding sub-cells with too many 
boundary particles and constructing histograms of densities, in the pattern boundary 
detection method we use the boundary particles to define the fluid regions. The areas 
of such fluid regions are then calculated by summing the area of the Voronoi cells 
of the constituent particles. This yields a density for the fluid region that does not 
exclude any particles in its calculation. It also allows us to get over- and under- 
estimates of the fluid density by accounting for the boundary particles in different 
ways. 

The major differences from Gelb and Muller's method are thus: 

1. Find boundary particles by counting nearest neighbours and nearest neigh- 
bours of nearest neighbour particles. 

2. Calculate area of each phase by finding the Voronoi cell of each particle and 
not by using areas of sub-cells. 

3. Include all particles and regions and do not arbitrarily eliminate regions. 

4. Find over and under estimates for points on phase co-existence curve by at- 
tributing different areas to fluid regions. 
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Krypton/Graphite Phase Diagram 

- Experiment (Butler [114 Lamer [2]) 

2-D DF Calculation (Sander [3D 

- Vladimira tO.OOO-atom 3-D MD Calculation 

Gelb and Mueler Method - rho*0 467 

Gelo Mueller Method - mo-0.612 

0.1 0-2        0 3        0.4        0.5        0.6        0 7        0.8        0.9 
Density (commensurate monolayere) 

Figure 2.3: Comparison of phase co-existence points found by Gelb and Miiller's 
method of analysis with molecular dynamics, experimental and 2D calculation re- 
sults. 

Figure 3.1 shows a typical snapshot from a simulation of 2496 particles at a 
final temperature of 70K with a total density of 0.467. The highlighted particles 
are within the simulation box. This box has periodic boundary conditions in both 
directions. In order to see the neighbouring particles and calculate the Voronoi cells 
on the edges, the particles have been repeated outside the simulation box. Fluid 
particles are coloured blue, boundary particles are coloured green, and solid particles 
are coloured red. 

In the solid phase, particles are in a triangular lattice configuration with 6 nearest 
neighbours. Fluid particles have less than 6 nearest neighbours. Boundary particles 
have less than 6 nearest neighbours and have at least one nearest neighbour that 
has 6 nearest neighbours. Thus, by counting the number of nearest neighbours 
of each particle and keeping track of which neighbours have fewer than 6 nearest 
neighbours, each particle can be identified as either a fluid particle, a solid particle, 
or a boundary particle. 

3.1    Calculating Densities 

Having identified the type of each particle, the density of the fluid regions can be 
calculated in the following way. Let nx denote the number of particles of type x and 
let Ax denote the sum of the area of all Voronoi cells corresponding to particles of 
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Figure 3.1: Typical snapshot from simulations, showing Voronoi cells of particles in 
doubly periodic box. Particles within the simulation box are highlighted: blue = 
fluid particle, green = boundary particle, red = solid particle. 

type x. The fluid density is then given by 

Fluid Density = nfiuid 

(Afluid + AMry) - (flbdry x 4=^) 
(3.1) 

The area in the denominator is the area attributed to the fluid particles. The first 
term corresponds to the area of the Voronoi cells coloured yellow in Figure 3.1. The 
second term is an estimate for the area occupied by the boundary particles. The 
Voronoi cells of the boundary particles can not be used to calculate the area occupied 
because the boundary particle is to be treated as the edge of the solid phase. The 
boundary particles are each attributed an area equal to the average area occupied 
by a particle in the solid phase. 

An under-estimate for the fluid density does not take into account the area 
occupied by the boundary particles and thus over-estimates the area occupied by 
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the fluid region: 

Fluid Density Under — Estimate = njluid 

Afluid + Abdry 
(3.2) 

An over-estimate for the fluid density can be obtained by using a different def- 
inition of fluid particles. Designate a particle as a large cell particle if its Voronoi 
cell has an area greater than 1.5 times the average area of the solid particle cells. 
Then 

Fluid Density Over - Estimate = ^'Qrge ce,ls . (3.3) 
^large cells 

Figure 3.2 shows the particles that are designated as large cell particles in black, 
with their Voronoi cells coloured yellow. 

Figure 3.2: Particles defined to be large cell particles are coloured black for the same 
simulation as shown in Figure 3.1. The Voronoi cell of such particles are coloured 
yellow. 

To calculate the density of the solid phase, only particles in the inner core of 
the solid regions were used. Such inner core particles have the correct number of 
nearest neighbours and each of their nearest neighbours also has the correct number 
of nearest neighbours. The inner core of the solid region is less likely to have defects 
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than locations close to the edge of the solid region. The density is given by: 

nsolid inner cluster Solid Density = 
Asolid inner duster 

(3-4) 

The inner core regions can be seen in Figure 3.3 for the same simulation as shown 
in Figure 3.1. 

Figure 3.3: Particles in the inner core of the solid regions are coloured magenta, for 
the same simulation as shown in Figure 3.1. 

4    Results 

The points obtained on the phase co-existence curve for krypton on graphite using 
the Pattern Boundary Detection method are shown in Figure 4.1. The molecular 
dynamics simulation, experimental and 2D calculation results are shown for com- 
parison. The different colours (yellow, magenta and cyan) refer to different total 
densities that were used for the simulations. The small coloured dots on the left 
side of the phase diagram correspond to the under- and over-estimates of the fluid 
density. 
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It can be seen that the points on the left of the phase co-existence curve agree 
well with the molecular dynamics simulation results at low temperatures. As the 
temperature increases and the phase co-existence curve becomes flatter, the method 
performs worse, as expected. The results for the right side of the phase diagram 
(density of the solid phase) have an unexplained constant offset from the molecular 
dynamics simulation results. Note that simulations were carried out at each tem- 
perature for each of the total densities - coloured points that can not be seen in the 
figure are obscured by other points, indicating a good agreement between results 
from different total densities. 

4.1 Speed-up 

The main advantage of the Pattern Boundary Detection Method is that it is faster 
than a long molecular dynamics simulation that requires the system to be in equi- 
librium. The temperature quench method needs only one equilibrated single-phase 
initial condition. This can then be used to obtain results at a variety of lower 
temperatures. After the temperature is dropped suddenly, only local equilibrium is 
necessary and so there is no need to wait for the whole system to equilibrate. 

The Pattern Boundary Detection method yields two points on the phase diagram 
from one final temperature, thus halving the number of simulations that need to be 
carried out. Furthermore, identifying the phases requires only one snapshot from 
the simulation. There is no global quantity, such as an order parameter, that needs 
to be tracked over successive snapshots (as for example in methods that observe the 
heat capacity). 

A further advantage of the Pattern Boundary Detection Method is that it pro- 
vides under- and over-estimates of the fluid density. Up until the broad, flat region 
of the phase diagram (where the method is not expected to work anyway), these 
estimates bounded the results that were obtained by using any of the total densities 
considered. 

4.2 Extension to the neck region of the phase diagram 

The method, as described above, identifies the fluid and solid phases by counting 
nearest neighbours. This is effectively a measure of the local density. At higher total 
densities, the difference in density between the fluid and solid phases is no longer 
large enough for this approach to be successful. These high total density simulations 
must be considered so as to extend the Pattern Boundary Detection method to the 
neck region of the phase diagram (in the upper right of Figure 4.1). 

The distinguishing feature of the solid phase in these situations is the order of the 
particles. They form a triangular lattice by adsorption of atoms onto the graphite 
substrate. Thus a measure of the order, or geometry, of the particles must be used, 
such as the Defect Measure. This is ongoing work. 

A further complication in the neck region of the phase diagram is that the 
temperature is high enough such that particles that have been adsorbed onto the 
substrate move significantly, while remaining adsorbed.   There is a spiral motion 
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about the adsorption site. To identify the solid particles, this motion about the 
adsorption site must be averaged out by looking at a number of snapshots. 

5    Conclusions 

The Pattern Boundary Detection method provides a way of constructing the lower 
portion of the phase diagram of krypton on graphite. Speed-up over equilibrated 
molecular dynamics simulations comes from using the temperature quench method 
in simulations, from finding two points on the phase co-existence curve for every 
final temperature, and from needing only one snapshot per final temperature. 
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Figure 4.1: Phase diagram for krypton on graphite showing the results of the Pattern 
Boundary Detection method (in yellow, magenta and cyan), as well as molecular 
dynamics, experimental and 2D calculation results. Small coloured dots indicate 
under- and over-estimates of the fluid density. 
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1 Introduction 

The structure of crystalline solids has been an interest of the condensed matter 
and materials science fields for a long time. The defects present in these solids 
determine many of the physical properties of the material. Investigations have been 
both theoretical and experimental, concentrating on how different types of defects, 
and the number of them, affect mechanical, electrical and optical properties. A large 
number of experiments have been performed that attempt to make materials that 
are free of defects, or examine the formation energies and movement of defects. The 
number of defects and their type is commonly deduced from bulk properties of the 
material, such as diffraction patterns or shear stress. The focus is on the material 
as a whole rather than on the environment of each constituent particle. 

This report is concerned with a quantitative assessment of the quality of two- 
dimensional lattices. We are interested not in the way that a lattice responds to some 
external stimulus that would measure a bulk property of the lattice as a whole, but 
rather assessing the positions of the constituent particles in a manner similar to the 
human eye. The aim is to quantify what the eye sees when comparing two lattices 
and deciding that one is better than the other. The notion of "better" may depend 
on which property of the lattice is more important to the assessor, or the goal of 
assessing the lattice. The measures of the defects of a lattice that we have developed 
is thus concerned with the local neighbourhood of each particle, reflecting the eye's 
propensity to judge sub-regions of the lattice and how these regions combine. 

Four defect metrics that have this local nature are described and compared. The 
most versatile of these, the Defect Measure, is used as a tool in applications that 
arise from the challenge of designing an isotropic potential that leads to the self- 
assembly of particles into a lattice. All particles are identical and move in a finite 
two dimensional area. 

The self-assembly of particles is of importance in the diverse fields of under- 
standing how biological or chemical components form a coherent whole and multi- 
vehicular surveillance. Large numbers of small vehicles moving in a lattice formation 
has been proposed as an efficient way of surveying the landscape. (Ref?) The lo- 
cal deviations from a perfect lattice formation must be understood in this context. 
Vehicles that communicate only with their neighbouring vehicles should be able 
to assemble into and maintain a lattice formation, eliminating the need for each 
vehicle's specific trajectory to be programmed. The design of the ideal isotropic 
potential for doing so requires an effective measure of the defects in the lattice, as 
does the evaluation of the robustness of that potential. 

2 Types of Lattice Defects 

There are a number of different types of defects that can occur in a monatomic 
two-dimensional lattice. The defects most commonly referred to are listed below. 

•  Vacancy: a lattice site that should have a particle is unoccupied. 
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• Interstitial: a particle occupies a lattice site that should not have a particle 
occupying it. 

• Frenkel pair: a vacancy and an interstitial are nearby. A particle is at a lattice 
site which should be unoccupied, leaving a nearby lattice site that should be 
occupied empty. 

• Topological defect: a region in a lattice where the ordered structure is different 
to the rest of the lattice. For example, in a honeycomb lattice a region that 
has five particles in a ring rather than the required six. 

• Split interstitial: two particles share a lattice site, typically by having their 
centre of mass at the lattice site where there should be one particle. 

• Edge dislocation: an extra line of particles inserted part of the way into the 
lattice. The adjacent lines of correctly ordered particles bend around the line 
that terminates. Dislocations are breaks in the translational symmetry of the 
lattice. 

• Disclinations: a line defect that results in a rotation if the orientation of the 
lattice around the defect is tracked. 

• Grain boundaries: regions, typically lines, where the orientation of the lattice 
changes abruptly. Frequently caused by two lattices growing separately and 
then meeting. 

3    Metrics for Assessing the Quality of Lattices 

We describe four defect metrics that focus on the local configuration of particles. 
These metrics are compared in the following section. 

3.1    Defect Measure 

The Defect Measure is a tool that was developed in order to compare the quality of 
lattices. The human eye is frequently a good judge of the quality of a lattice, how- 
ever, a more qualitative assessment was sought in order to efficiently assess lattices 
that are formed during the optimization procedure used for finding a potential that 
leads to the self-assembly of particles in a plane. 

Given particle positions in a plane, the quality of the lattice that is formed is 
determined by the desired or target lattice. If the target lattice is known then 
calculating the Defect Measure requires only Step 3 in the procedure described 
below. 

If the target lattice is not known, or if it is necessary to find the type of lattice 
that the system of particles is forming, then Steps 1 and 2 can be applied, to deter- 
mine what the target lattice is. Identification of a target lattice means identifying 
both the type of lattice (honeycomb, triangular, etc.)   and the minimum lattice 
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spacing, which we shall call the lattice constant, a. That is, identifying the target 
lattice involves identifying the shape and the scaling. 

The need to identify the target lattice arises when optimizing the potential for the 
self-assembly of a honeycomb lattice. The competing lattice is a triangular lattice 
that may have one of two different lattice constants, depending on the density of 
particles. When searching over parameters for the honeycomb potential, if it can 
be seen that the lattice that is forming for a set of parameters is heading towards 
a triangular lattice rather than a honeycomb lattice, the simulation can be stopped 
and another set of parameters may be tried. In this way, the optimization procedure 
can be sped up. 

Identifying the lattice constant is important not only because it contributes to 
the identification of the target lattice but also because for some potentials, the lattice 
that is formed has a different lattice constant than that suggested by the isotropic 
inter-particle potential that led to the formation of the lattice. For example, a 
potential designed to form a honeycomb lattice with a lattice constant that is equal 
to the distance to the first minimum of the potential, may form a lattice with a 
different lattice constant due to the sensitivity to the density of particles. In assessing 
the quality of the resulting lattice, if only the shape of the lattice is important, then 
the actual lattice constant must be found. 

The algorithm for identifying the target lattice and computing the Defect Mea- 
sure does not need the positions of all particles in the plane. It only requires a list of 
distances to the nearest 20 neighbours of each particle. To distinguish between the 
four types of lattices considered - triangular, honeycomb, square and Kagome, it is 
only necessary to consider the distances to the nearest 15 neighbours of each parti- 
cle, however results are more reliable (identification of target lattice is improved) if 
more nearest neighbours are considered. 

This is an important feature for our surveillance example. Vehicles would only 
need to detect other vehicles that are in a certain range that covers an area in which 
there would be approximately 20 other vehicles. The direction of each detected 
vehicle is unimportant, only the distance to that vehicle. In this way, the position 
of each vehicle does not need to be tracked. 

In the identification steps (Steps 1 and 2), it is assumed that the lattice is 
reasonably well formed. This assumption effectively means that the human eye 
would be able to distinguish the type of target lattice. 

Any number of particles may be in the lattice being assessed, if periodic boundary 
conditions are imposed. If this is not the case, then the number of particles must 
be large enough such that the number of inner particles of the lattice out-number 
the number of boundary particles. The larger the number of inner particles with 
respect to boundary particles, the better the algorithm is able to identify the target 
lattice. 
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3.1.1     Procedure for identifying the target lattice and computing the 
Defect Measure 

Step 1: Identify lattice constant, a 

1. List inter-particle distances dPj for particle p in ascending order. 

2. Find clusters of values for each particle. 

3. Average over values in clusters of lowest values to find a. 

Step 2: Identify type of lattice 

1. Count how many values in first few clusters identified in Step 1. 

2. Find mode of number of particles in clusters of lowest values, then clusters of 
next lowest values, etc (for a majority of particles, the number of values in 
each cluster should be the same). 

3. Compare number of particles at each distance (modes of clusters) with known 
values for possible types of lattices. 

Number of particles in perfect lattice: 

Mode of: cluster 1 cluster 2 cluster 3 

Triangular 6 6 6 
Square 4 1 4 
Honeycomb 3 (i 3 
Kagome 1 4 6 

Step 3: Compute the Defect Measure 
Compare the given lattice to a perfect lattice of the same type, with the same 

lattice constant, to find a measure of the defects, i.e. the quality of the lattice. 

For a particle p in the target lattice, find the distance r that is halfway between 
the distance to the closest neighbours and the next closest neighbours. This distance 
is shown as the red circle in Figure 3.1. For a triangular lattice, there are 6 closest 
neighbours at a distance of a and 6 next closest neighbours at a distance of \/{3)a. 
The red circle has a radius of r = (1 + \/(3))a/2. 

Define the nearest neighbours of a particle p to be those particles that are within 
a radius r of particle p. 

1. Choose weights, uidefect type for each type of defect (see discussion below). 

2. For each particle, p, construct the nearest neighbours circle and compute the 
Defect Measure of that particle according to which of the following types of 
defects apply (shown in Figure 3.2): 
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Figure 3.1: The nearest neighbours circle (red circle) of particle p is halfway between 
the closest particles and the next closest particles. 

• Displaced particles 

(Defect Measure)p = ^displaced x I ^Z -^P 
X
 ^i ~ °^ 

\ jgnearest neighbours 

(Defect Measure)p = u>mi3Sing x nmi33tng x a2 

Missing particles 

)p = wmis»tng x Mrnisstng 

• Extra particles 

(Defect Measure)p = wextra x nextTa x a2 

• Lone particles 

(Defect Measure)p = ujmiS3ing x 6 x o2 4- uione x a2 

• Boundary particles 

(Defect Measure)p = Wfcoundary x a2 

3. The Defect Measure for the lattice is given by summing over all particles p: 

(Defect Measure for Lattice) = Yj (Defect Measure)p 

ffjp is the fade factor for particle j with respect to particle p. The fade factor 
allows particles to fade out of view of particle p rather than disappear as they cross 
the nearest neighbours circle. The fade factor is equal to 1 for dpj < (5 + 3\/3)a/8 
and is equal to 0 for dp] > (1 + V3)a/2 (the nearest neighbours circle). The fade 
factor decreases from 1 to 0 over a distance that is equal to a quarter of the distance 
from a to the nearest neighbours circle. Within this region, the fade factor decreases 
in a cubic polynomial fashion with horizontal tangent at the end points of the region. 
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(a) Displaced particles (b) Missing particles (c) Extra particles 

•    •    • 

(d) Lone particles (e) Boundary particles 

Figure 3.2: Type of defects used in computing the Defect Measure 

The weights, u'defect type, for each type of defect are chosen according to the 
severity of the defect. This depends on the goal. For example, in the surveil- 
lance situation, if the collision avoidance of the vehicles is an issue, then a larger 
weight would be given to the weight for extra particles, uiextra, in order to deter 
more strongly lattices with extra particles. When optimizing the potential for the 
self-assembly problem, a larger weight for boundary particles, (^boundary, may be 
necessary to penalize the formation of distinct sub-lattices. Note that boundary 
particles are not penalized for missing particles in their nearest neighbours circle. 
The effect of changing the weights for the various types of defects will be discussed 
further in Section 4. 

One of the advantages of the Defect Measure is that it allows this flexibility to 
penalize different types of defects more heavily. In this way, it is a tool that can be 
shaped for the specific task at hand. 

The Defect Measure is lower for higher quality lattices. A perfect lattice will 
only have a Defect Measure equal to zero if the weight for boundary particles is set 
to zero. 

Note that all of the varieties of defects discussed in Section 2 are taken into 
account by the types of defects listed in Step 3.2. For example, grain boundaries are 
taken into account by contributions to the Defect Measure from displaced, missing 
and extra particles. 

The Defect Measure essentially compares the local density around each particle 
to that of the target lattice, with a correction for the distance between particles, 
added on. 

For this reason, only the inter-particle distances are required. The geometry of 
the particles is not considered. This is sufficient because, for any potential that could 
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lead to self-assembly, if the correct number of particles are put into a region the size 
of the nearest neighbours circle, they will arrange themselves into approximately 
the correct configuration due to the potential between them. 

3.1.2 Advantages of the Defect Measure 

The Defect Measure has a number of advantages over the methods for quantifying 
the quality of lattices surveyed at the beginning of Section 3. 

• The Defect Measure gives a local assessment of the quality of a lattice. Apart 
from the versatility of the Defect Measure in applications that this leads to, 
a local assessment of a lattice is closer to the qualitative assessment that a 
human eye would make of a lattice. 

• Each particle's contribution to the quality of the lattice can be quantified. In 
this way, regions of the lattice that are not well formed can be identified. This 
is useful in applications such as the one discussed in Section 5.4. 

• The primary types of defects, and the number of such defects, that occur in a 
lattice can be easily identified. 

• The flexibility of the Defect Measure due to the assignment of weights to 
defects, leads to a versatility that may be exploited in applications. 

• The target lattice does not need to be specified. 

• The Defect Measure is invariant under rotations, reflections and translations 
of the lattice. 

3.1.3 Identifying the boundary of a lattice 

To implement the procedure for calculating the Defect Measure (with non-zero 
weights for the boundary particles), the particles that form the boundary of the 
lattice must be identified, using only the distances to the nearest 20 neighbours. 

The boundary particles of a perfect lattice can be identified by counting the 
number of particles at a distance of a, and the number of particles within a distance 
of la from each particle. For a triangular lattice, an inner particle has 6 neighbours 
at a distance of a, 6 neighbours at a distance of \/3a, and 6 neighbours at a distance 
of 2a. Boundary particles can have a maximum of 5 particles at a distance of a 
and 15 particles within a distance of 2a. This is shown in Figure 3.3. Particles 
that satisfy these conditions are designated as boundary particles. Note that these 
requirements specify the maximum concavity of the boundary that can be detected. 
A similar construction applies to different types of lattices. 

For an imperfect triangular lattice, the condition of having a maximum of 5 
particles at a distance of a is loosened to having a maximum of 5 particles within 
the nearest neighbours circle. The second condition is relaxed to having a maximum 
of 15 particles within a distance (1 + \fl/2)a of the candidate boundary particle. 
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Figure 3.3: A boundary particle in a triangular lattice can have a maximum of 5 
particles at a distance of a and 15 particles within a distance of la. The red particle 
shows such a particle. The red line indicates the boundary of the lattice. The circle 
encloses particles that are within a distance la of the red particle. 

This distance is halfway between 2a and the distance to the next nearest neighbours 
(at \fla). Similarly relaxed conditions apply to other types of lattices. 

Identifying the boundary of a lattice given the positions of particles 

If a system of particles is not in a reasonably well-formed lattice, yet the goal is 
to compute the Defect Measure of the particles with respect to some specified target 
lattice, then it will be necessary to use a different method to identify the boundary 
particles (for non-periodic boundary conditions). In this situation, the position of 
each particle is required, as the number of particles in the circles described above 
may not be at all comparable to that of the target lattice. 

The convex hull of a set of points in a plane is the minimal convex set containing 
all the points. It may be visualised as the shape of an elastic band that has been 
stretched to encompass all the points and then allowed to collapse around them. 
The convex hull for a set of points and the points identified as boundary points by 
this convex hull are shown in Figure 3.4. 

Clearly, this is not what the human eye identifies as the boundary. It is the 
non-convex hull that correctly identifies the boundary particles. First, a minimum 
concave curvature, p, must be chosen. The non-convex vertices of the boundary are 
then those particles that are touched by a disk of radius p as it is rolled around the 
outside of the set of points. The following algorithm for finding the non-convex hull 
is due to E. Boje [Boje [2000]]. 

Algorithm for finding the non-convex hull (Boje): 

1. Find the Delaunay triangulation1 of the set of points. 

2. Find the outside triangles, i.e.   those triangles with an edge that does not 
touch another triangle's edge. Such edges together form the convex hull. 

'The Delaunay triangulation of a set of points is a triangulation such that no point is inside the 
circumcircle of any triangle in the triangulation. It is the dual graph of the Voronoi tessellation of 
the points. 
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(a) Convex hull (b) Boundary points 

Figure 3.4:   (a) The convex hull of a set of points in the plane,   (b) The points 
identified by the convex hull as boundary points (shown in red). 

3. Recursively delete any outside triangle that has an outside edge longer than 
2p. 

4. Recursively delete outside triangles whose outside edge is the longest and 
whose circumscribing circle2 has a radius greater than p. 

5. Iterate until all triangles pass steps 3 and 4. 

The points identified by this algorithm as the particles on the non-convex hull of 
the set of points in Figure 3.4 is shown in Figure 3.5 in red. These are the boundary 
particles. Note that the boundary points identified by the convex hull corresponds 
to the points found by rolling a disk of infinite radius around the set of points. 

Figure 3.5: The points identified by the non-convex hull as boundary points (shown 
in red). 

The circumcircle of a polygon is a circle that passes through all of the vertices of the polygon. 
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3.2    Geometric Defect Measure 

The Defect Measure takes into account the local density of particles and the distance 
between particles. It does not consider the local geometry of particles. Despite this, 
as discussed above, the Defect Measure provides a good assessment of the quality 
of a lattice. The Geometric Defect Measure was developed as an alternative quality 
assessment tool that could be compared to the Defect Measure to check that looking 
at local densities (with a correction for displacements) does indeed lead to a lattice 
with the correct geometry. It can also be combined with the Defect Measure as a 
correction, to yield a quality assessment tool that considers local densities, distances 
between particles and local geometry. 

Computation of the Geometric Defect Measure requires the position of each 
particle in the system as well as the type of target lattice. It focuses on the shape 
of the lattice and not the scaling. Thus two lattices that differ only by a scaling of 
the lattice constant will have identical values for the Geometric Defect Measure. It 
is computationally more expensive than the calculation of the Defect Measure. 

Os   •      • 

)*    • • 

"(Si 

P. 

Figure 3.6: Construction used in computing the Geometric Defect Measure for par- 
ticle p. 

The algorithm for computing the Geometric Defect Measure of a honeycomb 
lattice is outlined below and illustrated in Figure 3.6. The procedure is similar for 
other types of lattices. 

Algorithm for computing the Geometric. Defect Measure of a honeycomb lattice: 

1. Find the nearest neighbour of particle p. Label it nnl. Let the distance 
between particles p and nnl be dnn\. 

2. Extend the line from p to nnl a distance of dnni. Determine whether there 
is a particle within a distance dnn\/% of this point, i.e. whether there is a 
particle in region 2 in Figure 3.6. 

3. Continue extending the line from p to nnl in units of dnn\ and determining 
whether a particle is within a region around the end points. Do this for a total 
of 5 regions or steps from particle p. 
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4. Compare whether or not a particle is found in each region to that expected 
from a perfect lattice. For the honeycomb lattice, there should be particles in 
regions 3 and 4, but not in regions 2 and 5. (Region 1 will have a particle by 
construction.) 

5. If a region j does not have the correct number of particles then np\} = 1, else 
npij = 0. 

6. Repeat for the second and third nearest neighbours, nnl and nnZ. 

7. Calculate the angle between pairs of nearest neighbours of p: 0pi2, 9pn, and 

#p23- 

8. Sum over all particles p in the lattice to obtain the Geometric Defect Measure 
of the lattice. 

3/5 3 \ 

Geometric Defect Measure = Y^ yj    z2nP*i  +    5Z    lcos 120° — costal 1 
p   i=l   \j=i fc=2,Jt>i / 

(3.1) 

If the system of particles does not have periodic boundary conditions then the 
extension of the lines from particles to their nearest neighbours should be cut off 
when a boundary is reached. 

A number of modifications to the algorithm outlined above are appropriate for 
most lattices. Firstly, the number of steps that the lines are extended may be 
increased or decreased, depending on the type of lattice. For the triangular lattice, 
looking at only 3 regions is sufficient to give a quality assessment that is comparable 
to what the human eye would judge. However, 5 regions is more appropriate for a 
honeycomb lattice. Changing the number of steps taken alters how local the quality 
assessment is. It is the local nature of the Geometric Defect Measure that makes it 
useful for detecting regions with many defects. 

Secondly, the size of the regions used to determine whether a particle is in the 
correct position relative to the base particle p may be adjusted. It is appropriate 
to increase the size of the detection region the further the region is from the base 
particle. Doing so is compatible with judgements made by the human eye. It is 
also affected by the importance of having a correctly aligned lattice rather than a 
skewed lattice. For the honeycomb lattice, a good choice is allowing the radius of 
the detection region for region s to be {$ — 1) x dnni/8 for s > 1. 

Lastly, as regions further away from the base particle are less important in 
quantifying the local geometry, the contribution of the more distant regions to the 
Geometric Defect Measure can be reduced. The first term in parentheses in Equa- 
tion 3.1 then becomes 5Zj=i '"v'j * (6 — s)/4, for s > 1 where s denotes the number 
of the detection region. 

3.3    Voronoi Metric 

The Voronoi Metric finds the Voronoi tessellation of the particles in the lattice and 
compares the area of each Voronoi cell to the area of a Voronoi cell of the target 
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lattice. The Voronoi tessellation of a set of particles in the plane is the partition of 
the plane into regions such that any point of the plane in the region corresponding 
to particle p is closer to p than to any other particle. The Voronoi tessellation of an 
imperfect lattice can be seen in Figure 3.7(a). 

The Voronoi Metric is straightforward to apply to lattices with periodic bound- 
ary conditions. The positions of the particles near the bounding box are mapped 
outside the bounding box in an appropriate way that is consistent with the periodic 
boundary conditions. This is illustrated in Figure 3.7(b). 

The particles of the lattice are shown in blue; the lattice has a bounding box 
specified by 0 < x < 1 and 0 < y < 1. The particles that have been mapped outside 
the bounding box are coloured cyan. The particle on the left that is coloured 
magenta lies inside the bounding box. It is mapped to the particle position on 
the right that is coloured red. Such a construction allows the Voronoi cells of the 
particles close to the boundary to be calculated without edge effects, for periodic 
boundary conditions. 

Algorithm for computing the Voronoi Metric: 

1. Map particles that are close to the bounding box outside the bounding box, 
respecting the periodic boundary conditions. 

2. Find a Voronoi tessellation of the particles. 

3. Compute the area of each Voronoi cell that contains a particle in the original 
lattice. 

4. The Voronoi metric is given by 

N 

Voronoi Metric = >J 
,-.,, ^     areaof bounding box 

area(V(p))  
N 

(3.2) 

where N is the number of particles in the original lattice and V{p) is the 
Voronoi cell containing particle p. 

An alternative expression for the area of a Voronoi cell in the perfect lattice may 
be obtained from the geometry of the target lattice and the best estimate for the 
lattice constant. The lattice constant may be estimated by Step 1 of the procedure 
for computing the Defect Measure described in Section 3.1.1. This is particularly 
important for the honeycomb lattice, for which the lattice constant depends not only 
on the first minima of the potential but also the density of particles. For a perfect 
honeycomb lattice (with periodic boundary conditions), the area of each Voronoi 
cell would be 3\/3a2/4. The second term in Equation 3.2 may be replaced by this 
expression. 

For lattices formed in a bounding box that does not have periodic boundary 
conditions, an assessment of the quality of the lattice based on the Voronoi Metric 
can be made by ignoring the contribution from boundary particles. The boundary 
particles can be identified by using Boje's algorithm for finding the non-convex hull 
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0 6 0 8 

(a) 

0? 0 4 0 6 Oft 

(b) 

Figure 3.7: (a) Voronoi tessellation of a set of points in the plane, (b) The same 
Voronoi tessellation as in (a) with the particles of the original lattice coloured blue 
and the particles that are mapped outside the periodic boundaries coloured cyan. 
The particle on the left coloured magenta is mapped outside the bounding box to 
the particle position coloured red on the right. 

of a set of points. In this case, the alternative expression for the area of a Voronoi 
cell in the target lattice, explained in the preceding paragraph, should be used. 

To include a contribution from the boundary particles of the lattice, there are a 
number of options. Modified Voronoi cells for the boundary particles can be formed 
by taking the area enclosed by the lines of the Voronoi tessellation and the bounding 
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box. These areas for the boundary particles can then be compared to the areas of the 
similarly modified Voronoi cells that would be formed for the target lattice. Since 
the modified Voronoi cells of the boundary particles in the target lattice depend a 
great deal on the construction of the target lattice, it is best to sum the areas of the 
modified Voronoi boundary cells of the lattice and compare this to the sum of the 
areas of the modified boundary cells of the target lattice, rather than compare the 
areas of individual cells. However, this is not an effective way to assess the quality 
of a lattice because of the many possible ways of constructing the target lattice. 

Another way to include the contribution of the boundary particles to a Voronoi- 
like metric is to define the Voronoi cells of the boundary particles to be the area 
enclosed by the lines of the Voronoi tessellation and the non-convex hull of the 
particles. This method suffers from the same drawback as the previous one, but has 
the advantage that for a lattice that is not aligned with the edges of the bounding 
box, the contribution of the boundary particles to the value of the metric will be 
smaller. This effect is important for lattices that do not require the pressure from 
the domain walls to form. For example, this method is the appropriate way to 
include the boundary particles in the Voronoi metric of a triangular lattice that is 
formed in a domain that is larger than the area occupied by the lattice. 

The boundary particles can also be dealt with in the following manner. As- 
sign to each boundary particle of the lattice the area of an inner Voronoi cell in 
the target lattice. For example, each boundary particle of a honeycomb lattice 
formed in a domain without periodic boundary conditions, would be assigned an 
area of 3i/3a2/4. The area occupied by the cells of the boundary particles is then 
Abdry = 7itary3\/3a2/4, where TiMry 's the number of boundary particles. Compute 
the area, Ainner, of the domain that is occupied by the inner particles of the lat- 
tice. The contribution of the boundary particles to the Voronoi-like metric is then 

I ^bdry ~~ dinner I • 

None of these options for including the contribution of the boundary particles 
of the lattice to a Voronoi-like metric are satisfactory, for the reasons mentioned 
above as well as the variability at the edges of computed Voronoi tessellations. The 
Voronoi Metric is thus of limited use for lattices formed in domains without periodic 
boundary conditions. 

3.4    Cumulative Distribution Function Metric 

The cumulative distribution function of the inter-particle distances of a lattice can 
be used to assess the quality of the lattice. This metric was proposed by Mezic and 
Runolfsson in a different setting [ Mezic and Runolfsson [2004]]. The cumulative 
distribution function (CDF) metric is most effective when only inter-particle dis- 
tances up to a distance of slightly above la are considered. In a perfect lattice, this 
includes the nearest neighbours, the next nearest neighbours and the third nearest 
neighbours of each particle. 

Algorithm for computing the Cumulative Distribution Function Metric: 

1. Let the distance to a point half way between the third nearest neighbours 
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circle and fourth nearest neighbours circle of particles in the target lattice be 

"-max- 

2. For each distance d from d = 0 to d = dmax, find all inter-particle distances of 
the lattice being assessed that are less than or equal to d. 

3. Then 

CDFlat(d)=     Y.     d'J (33) 
d,j<d, i>j 

for 0 < d < dmax, where the dij are the inter-particle distances of the lattice. 

4. CDFtarget ls defined in a similar way using the inter-particle distances of the 
target lattice. 

5. The Cumulative Distribution Function Metric is given by 

{CDFuaW-CDFtargaitydl 
rl=d 

Jl=0 
(3.4) 

The CDF of a lattice and its target lattice is shown in Figure 3.8. CDFiat is in 
blue and CDFtarget is in green. The value of the Cumulative Distribution Function 
Metric is the area between the curves. 

Figure 3.8:  The Cumulative Distribution Function Metric computes the area be- 
tween CDFiat shown in blue and CDFtarget shown in green. 

The question of how to treat the boundary particles of a lattice is also an issue 
for this metric, especially for domains without periodic boundary conditions. For 
lattices formed in domains with periodic boundary conditions, the only concern is 
whether the domain can indeed be rilled with a perfect lattice with the specified 
number of particles. Not all domains have a perfect lattice that completely fills the 
domain for an arbitrary number of particles. However, this introduces only a very 
minor error into the value of the CDF metric. 

For domains without periodic boundary conditions, a target lattice must be 
constructed that can be used to find CDF target- The inter-particle distances of the 
target lattice depend on where the boundary particles are placed, i.e. the shape of 
the boundary. 
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A more serious problem with the CDF metric is that there is a cancellation 
between two different types of defects: missing particles and extra particles. If 
a particle is missing a neighbouring particle at a distance d! from it and another 
particle has an extra particle at a distance d! from it, then there will be some 
cancellation between these two defects, and the value of the CDF metric at d! will 
be lower than it should be. However, these two defects also affect the surrounding 
particles and this will add to the value of the CDF metric. How much is added 
depends on the arrangement of particles around the defect and not the defects 
themselves. 

The CDF metric was designed to only look at inter-particle distances less than 
dmax partially for this reason. There is less opportunity for such cancellation of 
defects to occur. Another reason for limiting the CDF metric's horizon to dmax is 
that considering all inter-particle distances would put too much emphasis on the 
long range order of the lattice. When assessing the quality of a lattice, the human 
eye tends to focus more on the order within regions that have a radius of a few 
lattice constants, rather than the long range order of the lattice as a whole. 

A feature of the CDF metric is that it tends to judge lattices with grain bound- 
aries relatively harshly. This may or may not be a concern depending on the goal 
and how severe such a defect is considered to be. 

4    Comparison of Quality Metrics 

A natural question to ask is: Which of the metrics for assessing the quality of a 
lattice discussed in Section 3 is the best? 

Evidently, this depends on which properties of a lattice are more important. 
Different metrics focus on different aspects, such as having the correct number of 
particles in approximately the right positions, or having the correct alignment of 
particles. This will be discussed further below. 

There are two straightforward ways to compare metrics that assess the quality 
of a lattice: whether it can identify the best lattice from a set of lattices, and the 
computational time taken to compute the value of the metric for a lattice. 

In order to compare the metrics from Section 3, a set of 20 lattices were gener- 
ated, with 576 particles in a domain with periodic boundary conditions. The target 
lattice was the honeycomb lattice. Each metric was used to assess the lattices and 
rank them from best to worst. The time taken to calculate the value of the metric 
for each lattice was averaged over the 20 lattices. The results are shown in Figure 4.1 
and Table 4. 

Figure 4.1 has the metrics discussed in Section 3 along the vertical axis and the 
number of each of the 20 lattices used for the comparison along the horizontal axis. 
Defect Measure 1 and Defect Measure 2 differ only in the weights assigned to the 
different types of defects. :! The colours in the figure represent the ranking of the 20 
lattices, with a rank of 1 in red being the best lattice and a rank of 20 in dark blue 

Weights for Defect Measure 1: uidispiaced = 10,u)mi„»,„9 = l.0,ur.xtra = 0.8. 
Weights for Defect Measure 2: io,;,.,,,/„,-,.,i = l.O.u.',„,.,.,,„,, = 0.02,u^n, = 0.015. 
There were no boundary or lone particles in these lattices. 
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Defect Measure 1 

Defect Measure 2 

Geometric Defect Measure 

Voronoi Metric 

10 1? 14 1* 18 X 

Lattice number 

Figure 4.1: Comparion of quality assessment metrics. Each metric along the vertical 
axis ranked the 20 test lattices (along horizontal axis). The colourbar indicates which 
colour corresponds to which ranking. Red signifies the best lattice (rank 1) and dark 
blue the worst lattice (rank 20). 

being the worst lattice. For example, along the top row it can be seen that Defect 
Measure 1 ranked lattice number 7 as the best lattice and lattice number 10 as the 
worst lattice. 

Time to compute (s) 

Defect Measure 0.117 
Geometric Defect Measure 6.69 
Voronoi Metric 0.338 
CDF Metric 0.163 

Figure 1.1 shows that Defect Measure 1 ranks the test lattices in an order that 
is similar to the ranking of the Voronoi Metric (with the notable exception of the 
identification of the best lattice). Rows 2 and 3 of Figure 4.1 show that Defect 
Measure 2 assigns similar rankings to the test lattices as the Geometric Defect 
Measure. This highlights the flexibility of the Defect Measure which results from 
the freedom to choose the weights for the defects. It will be shown below that 
the Geometric Defect Measure and the Voronoi Metric consider different aspects of 
lattices to be important and thus apply to different situations. The CDF Metric 
identifies the same few lattices as being the worst lattices that the other metrics 
identify. However, the lattices that are judged to be the best lattices by the CDF 
Metric are not judged to be that way by the other metrics. The Geometric Defect 
Measure ranks the CDF Metric's best lattices as being only moderately good. 

Lattices number 18 and 5 are shown in Figure 4.2. It can be seen that in lattice 
18, although there are defects like missing and extra particles, the particles tend to 
be aligned with each other. For a majority of particles, the angles between nearest 
neighbour particles are close to that of a perfect honeycomb lattice. There also 
seems to be more medium range structure than in lattice 5. This is precisely what 
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(a) Lattice 18 (b) Lattice 5 

Figure 4.2: Test honeycomb lattices with 576 particles and periodic boundary con- 
ditions. The dark blue particles are inside the bounding box. The cyan particle 
positions show the structure at the edge of the bounding box. 

the Geometric Defect Measure focuses on. However, in lattice 18, there are obvious 
defects. In lattice 5 on the other hand, the density of particles is much more uniform 
across the domain.The particles are not aligned well into a honeycomb lattice but a 
majority of particles have the correct number of nearest neighbours and form rough 
rings of 6 particles. It is this local area of each particle aspect of lattices that is the 
focus of the Voronoi Metric. The shape of the Voronoi cells is not considered, only 
their area compared to a Voronoi cell of a perfect lattice. 

Which of lattices 18 and 5 is judged to be the better lattice depends on the 
goal. If the purpose of having a honeycomb lattice is to cover an area evenly, with 
each particle having 3 nearest neighbours and forming rings of 6 particles, then the 
Voronoi Metric is the one to use. If the goal is to form as much of a close-to-perfect 
honeycomb lattice as possible then the Geometric Defect Measure should be used. ' 
It is interesting to note that the Defect Measure can be used to achieve both of these 
goals simply by adjusting the weights for the different types of defects. 

Both the Voronoi Metric and the Geometric Defect Measure ranked lattice 18 
as the best lattice. The Geometric Defect Measure did so because of the regular 
alignment of the particles. The Voronoi Metric ranked it so highly because of the 
peculiar coincidence of the error in the area of the Voronoi cells around the gross 
defects that can be seen in lattice 18, summing to a similar error in area that is 
spread out across all Voronoi cells. This can be seen by comparing the lattices in 
Figure 4.2; lattice 18 was ranked as the best and lattice 5 was ranked as the second 
best. It is because of a few large errors in area summing to a similar total as the sum 
of many small errors in area, and not because the Voronoi Metric particularly looks 
at geometry, that lattice 18 has the best ranking. It can be seen from Figure 4.1 
that Defect Measure 1 avoids this anomaly. 

4Lattice 18 was generated using a polynomial potential while lattice 5 was generated using a 
Rechtsman style potential Reclitsman. Stillinger, and Torquato [2006] 

324 



D.2.   QUALITY ASSESSMENT TOOLS FOR LATTICES 

4 Comparison of Quality Metrics 20 

The Voronoi Metric whose results are shown in Figure 1.1 used the alternative 
expression for the area of a Voronoi cell in the perfect lattice that is explained in 
Section 3.3. The alternative expression computes the average latttice constant and 
then sets the perfect Voronoi cell area to be 3\/3a2/4, based on geometry. The 
assessment of this quality metric thus depends greatly on how accurate the estimate 
of the lattice constant is. The average lattice constant is calculated using Step 1 of 
the algorithm for computing the Defect Measure. 

The Voronoi Metric can also be implemented as in the algorithm in Section 3.3, 
with the area of a perfect Voronoi cell being given by (areaof bounding box)/(number of particles). 
The results for this metric are shown in Figure 1.3 under the label Voronoi Metric 2. 
Lattice 18 is no longer ranked highly, while most of the other rankings remain the 
same. Using this version of the metric concentrates more on how much of the avail- 
able space a particle's Voronoi cell covers rather than comparing it to the space a 
particle in a perfect lattice would cover. 

Defect Measure 1 

Defect Measure 2 

Nearest Neighbour 
Lines Measure 

Angle Measure 

Geometric Defect Measure 

Voronoi Metric 1 

Voronoi Metric 2 

CDF Metric 

Area Estimate Measure 

LartKe numb*: 

Figure 4.3: Comparison of quality assessment metrics. Each metric along the vertical 
axis ranked the 20 test lattices (along horizontal axis). The colourbar indicates which 
colour corresponds to which ranking. Red signifies the best lattice (rank 1) and dark 
blue the worst lattice (rank 20). 

Figure 4.3 also shows the two components of the Geometric Defect Measure: one 
focusing on whether particles are where they should be along the nearest neighbour 
lines and one focusing on how close the angles between nearest neighbours are to 
what they should be in a perfect lattice. The rankings for these two components 
are very similar. 

The last row of Figure 4.3, labeled Area Estimate Measure, is a very rough 
quality assessment metric. It compares the area a perfect lattice would cover if it 
had the average lattice constant, to the area of the bounding box. That is, 

Area Estimate Measure =  Areaof bounding box — (3\/3a2/4) x (number of particles) 

This quick calculation can identify the best lattice and the worst lattice but does 
not perform well in between.  It's only advantage is that it requires nothing more 
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than the calculation of the average lattice constant. All of the other metrics, require 
this computation and then other computations. 

Table 4 shows the time taken to compute the value of each metric. These times 
were obtained by averaging the time taken to compute the metric for each of the 20 
test lattices. Each metric was given the minimum information it needed in order to 
compute the value of the metric. The Defect Measure calculations were given the 
distances to the nearest twenty neighbours of each particle. The CDF Metric was 
given a list of all nearest neighbour distances up to a distance of 2.2a. The Geometric 
Defect Measure and the Voronoi Metric were given the particle positions. The 
rationale for giving each quality metric only the minimum information that it needs 
stems from the applications of the metrics. If the Defect Measure is used to assess 
the lattice formed by vehicles Hying in formation then these vehicles need only detect 
their nearest twenty neighbours - this limits the range necessary for their relative 
distance sensors and the amount of information that must be transmitted. When 
using the Defect Measure to assess the quality of lattices formed in a LAMMPS 
simulation, the distance to the nearest twenty neighbours is easily accessible due 
to the structure of the LAMMPS simulation code. This code calculates particle 
positions in parallel by dividing up the domain into smaller regions, thus keeping 
more detailed information about a particle's nearest neighbours. Similar reasoning 
holds for the CDF Metric. 

••  •..•. :^> 
•jr. 

•,•'  .".•   i .*..-.« -  v„ . vj .-.•**• 

• • •   • *. 

(a) Lattice 1 (b) Lattice 10 

Figure 4.4: The two worst test honeycomb lattices with 576 particles and periodic 
boundary conditions. The dark blue particles are inside the bounding box. The 
cyan particle positions show the structure at the edge of the bounding box. 

Figure 1.1 shows that all of the metrics, apart from the CDF Metric, found 
lattices 1 and 10 to be the two worst lattices. These lattices are shown in Figure 4.4. 
It can be seen that these two worst lattices also exhibit the two different types of 
lattice that the best lattices in Figure 4.2 did. Namely, one has particles that are well 
aligned (albeit in the wrong locations) and the other has a more uniform number of 
particles per area (though not aligned into the honeycomb pattern at all). 
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(a) Lattice 15 (b) Lattice 16 

Figure 4.5: The CDF Metric's two best test honeycomb lattices with 576 particles 
and periodic boundary conditions. The dark blue particles are inside the bounding 
box. The cyan particle positions show the structure at the edge of the bounding 
box. 

The CDF Metric assigns rankings that are quite different from all of the other 
metrics. It judges the worst lattices, similarly to the other metrics but chooses 
different lattices as the best lattices. These best lattices, shown in Figure 4.5, 
received a moderately good ranking from the Geometric Defect Measure but were 
rated as quite bad lattices by the Voronoi Metric. One feature that they exhibit 
is having regions that are well-formed that are separated from other well-formed 
regions by regions with many defects. Lattices 15 and 16 have large regions with 
missing particles and also curves with a small distance between the particles (more 
evident in Lattice 16). This combination leads to some cancellation, causing the 
lattice to be ranked highly, as discussed in Section 3.4. 

Thus, it seems that the CDF Metric does not appear to assign rankings that 
are similar to what a human observer would assign, whether particle alignment or 
density is the focus. The CDF Metric is an indicator of how many inter-particle 
distances (within a limited range set by d-max) are correct. Since the distances are 
the focus rather than the local density or alignment (properties that are important 
for forming a lattice structure), the structure is less important with this metric. This 
renders the CDF Metric less useful as a quality metric for the particular problem of 
the self-assembly of particles into a target lattice. 

5    Applications of the Defect Measure 

The Defect Measure is a tool that can be used to quantitatively assess the quality 
of lattices. It is useful in a variety of situations, such as finding potentials that lead 
to the self-assembly of particles, assessing the robustness of such potentials, and 
helping to speed up simulations of lattice formation. 
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5.1    Design of Potential for Self-Assembly 

The Defect Measure can be used as a tool not only to assess the quality of lattices 
that result from simulations with a particular isotropic potential between particles, 
but also to refine such potentials to achieve the best potential. For example, the 
isotropic inter-particle potential necessary for the self-assembly of a honeycomb 
lattice will have a strongly repulsive component at short inter-particle distances, 
a local minimum at the lattice constant of the target lattice, a global minimum at 
\/3 times the lattice constant, and a tail that goes to zero at long inter-particle 
distances. A functional form for such a potential can be designed with a number of 
parameters that may be varied to achieve the potential that yields the best lattices, 
as measured by the Defect Measure. 

Rechtsman and co-workers [Rechtsman. Stillinger, and Torquato [2006]] found 
the following expression for the self-assembly of particles into a honeycomb lattice: 

VHC = -fi ~ Id + ai exp[-a2r] - 0.4 exp[-40(r - a3)2] (5.1) 

with ao = 5.89, ai = 17.9, a2 = 2.49, and 03 = 1.823 as the best parameter values for 
good lattices. The form of Equation 5.1 can be used to refine the potential and find 
the best value of parameter a2 for self-assembly. The other parameter values and 
conditions (such as the density and cooling schedule) were kept constant in the 1000 
simulations that were run with 65 particles in a domain without periodic boundary 
conditions. The parameter a2 values used for the 1000 simulations, formed a Gaus- 
sian distribution with mean a2 = 1.49 and standard deviation of 0.6. Figure 5.1 
shows the Defect Measure of the final lattice of each simulation versus the value of 
the a2 parameter used to generate the lattice. The values of the weights for the 
Defect Measure are: (^displaced = 10, wmiSSing = 1.0, uiextra = 0.8, ^boundary = 0.2, 
and u>ione = 2.0. These weights are the same weights as for Defect Measure 1 in 
Section 4. The lattices corresponding to the red and green points are shown in Fig- 
ure 5.2. The green point has the lowest Defect Measure of all the lattices. Note that 
each point in Figure 5.1 is the result of one simulation with random initial velocities 
for the particles. Ideally, for each value of a2 a number of simulations would be run 
and the average Defect Measure of the final lattices used. 

Figure 5.1 indicates that for the conditions under which the simulations were run, 
the best choice for parameter a2 is a value of 2.6. Note that the honeycomb lattice is 
quite fragile and particularly sensitive to the density of particles and the boundary 
conditions. Thus for different densities or boundary conditions, other values of a2 

may be more appropriate. However, the method for designing an isotropic potential 
has been illustrated by the above example. 

As mentioned in Section 4, the weights of the Defect Measure should be chosen 
according to the properties of the lattice that are most important. 

The Geometric Defect Measure can also be used to design the potential for the 
formation of lattices with the correct alignment of particles. Figure 5.3(a) shows 
the Geometric Defect Measure versus the parameter a2 for the same simulations as 
above. The best lattice, shown in Figure 5.3(b), was formed with o2 = 2.23. Thus 
which value of a2 is chosen depends on whether the focus is the correct alignment or 
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Figure 5.1: Defect Measure versus parameter 02 in Equation 5.1. The 1000 simula- 
tions shown here used 65 particles in a domain without periodic boundary conditions. 
The a-2 values have a mean of 1.49 and a standard deviation of 0.6. The lattices 
corresponding to the red and green points are shown in Figure 5.2. 
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Figure 5.2: (a) Lattice corresponding to the green point in Figure 5.1, with 02 = 2.6 
and Defect Measure= 9.6. (b) Lattice corresponding to the red point in Figure 5.1, 
with 02 = 0.5 and Defect Measure= 41.6. 

local density of particles. Figure 5.4 depicts the two components of the Geometric 
Defect Measure: the Nearest Neighbour Lines Measure and the Angle Measure. 

5.2    Optimization of Potential for Self-Assembly 

When employing an optimization procedure to search over parameter space in order 
to find the best potential for the self-assembly of particles, the Defect Measure 
can be a useful tool in a number of ways. Firstly, it quantitatively measures the 
quality of each lattice, thus removing the need for the user to visually assess each 
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Figure 5.3: (a) Geometric Defect Measure versus parameter 02-  (b) Lattice corre- 
sponding to the lowest Geometric Defect Measure in (a), with a^ = 2.23. 

lattice. Secondly, the procedure for computing the Defect Measure, explained in 
Section 3.1, can identify the type of lattice (if it is reasonably well-formed). This 
is particularly useful when the target lattice is the honeycomb lattice because the 
competitor lattice is the very stable triangular lattice. In the parameter space of 
the honeycomb self-assembly potential, the Defect Measure may have local minima 
corresponding to triangular lattices. Step 2 of the Defect Measure algorithm can 
identify such local minima and the optimization procedure can be constructed so as 
to avoid parameters leading to triangular lattices. 

The third use of the Defect Measure in an optimization scheme is indicating 
when the simulations can be ended. For each set of parameters, a simulation will 
have to be run to determine whether those parameters lead to a good potential for 
self-assembly. Rather than having to run each large simulation for a long time, the 
Defect Measure of the particles can be computed during the simulation and when 
the Defect Measure levels off, the simulation can be cut short. Figure 5.5 shows the 
Defect Measure plotted against the time step for a single simulation. From time 
step 110 until the end of the simulation at time step 150, the Defect Measure stays 
relatively constant, indicating that the simulation could have been cut off at time 
step 110. Naturally, the Defect Measure would not need to be computed at every 
time step, and not at the beginning of the simulation. Shortening the simulation 
time in this way in an optimization scheme would speed up the procedure. 

5.3    Quantifying Robustness of Potentials 

A good potential for the self-assembly of particles will be robust to uncertainty in 
the parameters of the potential, the density of particles and the cooling schedule. 
The larger the range of values over which the final lattice formed is acceptably good, 
the more robust the potential is. 

There are two ways to define what an acceptably good lattice is. Lattices that 
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Figure 5.4: The two components of the Geometric Defect Measure, (a) Nearest 
Neighbour Lines Measure versus parameter 02- (b) Angle Measure versus parameter 
a2. 

have a Defect Measure below a certain value can be accepted as good lattices. The 
actual value of the Defect Measure chosen for this purpose will depend on the weights 
assigned to the different types of defects. This is because the value of the Defect 
Measure for a lattice only has meaning with respect to another value determined 
with the same weights. 

The second way to define the acceptably good lattices is by using Step 2 of the 
procedure to compute the Defect Measure. If the lattice can be identified by the 
algorithm to be of the same type of lattice as the target lattice, then it is an ac- 
ceptably good lattice. Such lattices will have a majority of particles that have the 
correct number of nearest neighbours, next nearest neighbours and third nearest 
neighbours. This definition of a good lattice works best for lattices with periodic 
boundary conditions or lattices with many more inner particles than boundary par- 
ticles. 

Figure 5.6 plots the Defect Measure versus density of particles for two honey- 
comb potentials: Rechtsman's potential and a piecewise polynomial potential. The 
weights of Defect Measure 1 were used in the computation. Note that 15 points were 
omitted from Figure 5.6(a). These points all had a Defect Measure greater than 495 
and a density greater than 1. Each point in the plot corresponds to a simulation 
of 65 particles in a domain without periodic boundary conditions. There were 1000 
simulations with densities given by a Gaussian distribution with mean of 0.8 and 
standard deviation of 0.1. 

Defining acceptably good lattices to be those having a Defect Measure less than 
30, Rechtsman's potential yields good lattices from densities of 0.6334 to 0.9578. 
The polynomial potential yields good lattices over a range of densities from 0.6884 
to 1.0690. This corresponds to a spread of 0.3244 for Rechtsman's potential and a 
spread of 0.3806 for the polynomial potential. Thus the polynomial potential can 
be said to be more robust to uncertainty in the density of particles. It forms good 
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Figure 5.5: Defect Measure versus time for a single simulation. 

lattices over a wider range of densities. 
The sensitivity of potentials to the parameters in the potential and the cooling 

schedule can be examined by a similar procedure. 

5.4    Identification of Clusters to be treated as Rigid Bodies 

The self-assembly of particles with pairwise isotropic inter-particle potentials into 
a lattice requires long and expensive simulations. The temperature of the particles 
must be decreased slowly to allow a lattice to form. One way to speed up such 
simulations is to identify particles that have already formed a lattice structure and 
treat these particles as a rigid body, thus decreasing the number of evaluations of 
the potential function. This procedure works best for lattices that form nuclei that 
grow and join up to form a lattice. The triangular lattice is ideal because of its 
stability once formed. The polynomial potential discussed above for the honeycomb 
potential also forms in this way. 

A cluster of particles that may be treated as a rigid body can be identified by 
observing how much the inter-particle distances change over time. If these distances 
have not changed significantly for an appropriate length of time then the particles 
are most likely in the lattice configuration and may be treated as a rigid body. 

However, there may be some defects in this cluster of particles. A lattice with a 
defect is typically less stable than a lattice free of defects. Over time, the particles 
will try to eliminate the defect or move it towards the edge of the otherwise well- 
formed cluster. This takes more time than the free movement of particles that are 
not a part of a cluster. So a cluster that has a defect may be identified as a cluster 
to treat as a rigid body because the inter-particle distances have not changed much. 

To allow defects within clusters of particles to be eliminated, the Defect Measure 
can be calculated for each candidate rigid body particle. Those particles with a high 
Defect Measure (those close to the defect) would then not be included in the cluster 
of particles to be treated as a rigid body. 
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(a) Rechtsman's potential (b) Polynomial potential 

Figure 5.6: Defect Measure versus density of particles for (a) Rechtsman's potential 
and (b) a piecewise polynomial potential. Each point corresponds to one simulation 
of 65 particles in a domain without periodic boundary conditions. The weights 
corresponding to Defect Measure 1 were used. 

This application of the Defect Measure has not yet been implemented. See Sun 
Hwan Lee's work. 
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Uncertainty as stabilizer of the head-tail ordered phase in carbon 
monoxide monolayers on graphite 

Tuhin Sahai 
United Technologies Research Center, 1,11 Silver Lane. MS 129-85. East Hartford. CT 06108 

Vladimir A. Fonoberov and Sophie Loire 
Aimdyn, Inc.,  1919 State Street. Suite 207. Santa Barbara. CA 93101 

(Dated: June 2, 2009) 

(CO)i_x(Ar)r mixtures physisorbed on graphite experimentally display a novel phenomenon of 
increasing phase transition temperature (stabilizing the system) with increasing Ar impurity con- 
centration or uncertainty [H. Wiechert and K.-D. Kortmann, Surf. Sci. 441 (1999)]. We develop a 
2D Ising model that accurately captures the phase transition and its temperature dependence. The 
anomaly in transition temperature is due to formation of pinwheel regions of CO around Ar atoms. 
The dilemma of whether the ground state is head-to-head or head-to-tail ordered is reconciled in 
favor of the latter. The phase transition curve in the presence of uncertainty in Ar impurity is 
computed using Monte Carlo (MC) and Probabilistic Collocation Method (PCM). PCM computes 
the first two moments w 2000 times faster than MC. 

PACS numbers: 68.35.Rh, 68.55.Ln, 05.50.+q, 02.70.Jn 

Uncertainty is an important factor in the design of physical models. Usually significant effort is 
needed to minimize uncertainty in the output of a model subject to input uncertainty. Phase transi- 
tions in statistical thermodynamics of condensed matter are some of the most vivid manifestations 
of the effect of uncertainty on the state of a system.1,2 In particular, defects in the form of vacancies, 
interstitial and quenched impurities give rise to random fields which are known to catalyze phase 
transitions.3,4 Disorder and nonequilibrium effects are known to modify structural phase transitions 
in pure periodic systems.5 Even small amounts of impurities in monolayers of adsorbed gases can 
induce significant changes in the phase behavior and phase transitions. Impurities tend to distort 
the sublattices of the adsorbed phase, and hence lead to a phase transition into an "intermediate" 
phase significantly prior to that observed for a pure monolayer.6 Low temperature phase transitions 
in some systems can be regarded as realizations of two-dimensional (2D) Ising systems.7 

Recently. Carbon Monoxide (CO) monolayers with Argon (Ar) impurities physisorbed on graphite 
have been studied experimentally and found to exhibit unique physical properties.4S When adding 
Ar impurities to head-tail ordered CO monolayers. the order in the system is slowly destroyed and 
the phase transition is found to be completely suppressed when the impurity concentration reaches 
as 7%.4 Unlike any other known physical system, the disorder induced in a CO monolayer by Ar 
impurities results in a higher phase transition temperature, thereby stabilizing the head-tail ordered 
phase.4 The phase transition of interest (called head-tail ordering transition) occurs at as 5.18K.91" 
In this Rapid Communication we develop a model of the CO-Ar system and explain the origin of 
the observed phenomena. 

CO-Ar mixtures physisorbed on graphite can be considered as experimental realizations of 2D Ising 
models. In the following we design an Ising model that captures the head-tail ordering transition 
along with the anomalous shift in the transition temperature with increasing Ar concentration. 
The stabilization of the phase with uncertainty is successfully captured by the Ising model when 
the experimentally observed pinwheel structure4 of CO molecules around the Ar sites is correctly 
modeled (see Fig. 1). We study the phase transition curve as a function of Ar concentration in 
the presence of uncertainty. The unpredictability in the exact concentration of Ar atoms is another 
source of uncertainty. The latter uncertainty transforms the phase transition curve into a phase 
transition region, which can be captured by computing the moments of phase transition region 
at every nominal concentration of Ar. The moments are obtained using Monte Carlo (MC) and 
Polynomial Chaos (PCH) techniques. The two methods are compared, and it is found that PCH 
captures the moments of the uncertain phase transition curve w 2000 times faster than standard 
MC. 
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FIG. 1:   CO-Ar on graphite,   (a) Pinwheel structure formed around the Ar impurities,   (b) Flip of CO 
molecule in Metropolis-Hastings. 

EN    Y^6 j Uij, where N is the total number of CO 
,j take into account electrostatic interactions of point charges on 

We model the potential energy of the system as a sum of pairwise interactions between CO 
molecules and their six nearest neighbors: (/ 
molecules. Pairwise interactions U, 
both molecules. Van der Waals interactions between the two molecules and interactions with the 
graphite substrate. The center of mass of each molecule is shifted by a distance dr from the center 
of the hexagonal lattice cell in which it is located (see Fig. 1). 

To simulate the system at different temperatures we employed the Metropolis-Hastings algorithm. 
A CO site is picked at random and its spin is flipped (i.e. C and O are swapped, see Fig. 1). 
If the total energy of the modified system decreases, the spin flip is accepted, otherwise the Hip is 
accepted with probability associated with the Boltzmann distribution.11 For all simulations reported 
in this Rapid Communication, 2 x 104 flips are performed per CO site. At each temperature, the 
fluctuation in energy U gives us the heat capacity (C„).n The center of mass offset dr is a very 
important parameter of the model. In the absence of impurities, we observe head-to-tail ordering 
for dr = 0.202, while dr = 0.205 results in head-to-head ordering. Both values of dc correspond to 
the experimentally observed position of the heat capacity peak. 

All results are obtained for a 104-site Ising system. The impurities are chosen randomly on 
the two-dimensional lattice with the restriction that no CO molecules can have more than one 
impurity in their six nearest neighbors. The locations of impurities on the lattice are found to 
make no difference for the transition temperatures. When the center of mass offset dr lies outside 
of the interval [0.195; 0.212], the system exhibits "classical" behavior with high phase transition 
temperatures which decrease with increased impurity concentration as the system becomes less 
stable. For the head-to-head ordered monolayer with dr = 0.205, the phase transition temperature 
does not depend on the impurity concentration. Finally, for the head-to-tail ordered monolayer 
with dr = 0.202, the phase transition temperature shifts to higher temperatures with the inclusion 
of impurities. In addition to the fact that our model is able to explain the anomalous increase in 
transition temperature with impurity concentration, it also reconciles the dilemma of whether the 
ground state is head-to-head or head-to-tail ordered in favor of the latter.4 

For each concentration of Ar, a heat capacity curve is computed with dr = 0.202 (see Fig. 2). It can 
be seen in Fig. 2 that the effect of Ar impurities on the C„ curves match experimental observations.4 

Both the suppression of the heat capacity curve along with its anomalous shift to higher transition 
temperatures4 are captured. To the best of our knowledge, the Ising model implemented in this paper 
is the first model that captures the anomalous shift of the phase transition temperature caused by 
formation of pinwheel structures around Ar impurity sites. 

From Fig. 2 the transition temperatures can be plotted against the concentration of Ar (we pick 
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FIG. 2: Heat capacity C„ for different concentrations of Ar impurities. 
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FIG. 3: Phase transition temperature as a function of Ar impurity density extracted from the Ising model 
(red curves) and its quadratic fit (blue curve). Experimental data (black curve) and error bars are taken 
from Ref. 4. 

the transition temperature at the peak for every curve in Fig. 2). The transition temperatures with 
increasing Ar density are plotted in Fig. 3. demonstrating the anomalous shift found experimentally.4 

The noisy curve obtained from the Ising model (see Fig. 3) is approximated by a quadratic fit to ease 
the computation of the phase transition in the presence of uncertainty. Moreover, our theoretical 
predictions are found to lie within experimental error of Ref. 4 as shown in Fig. 3. 

In the experiments, there is always uncertainty in the concentration of impurities. This, in turn. 
makes the phase transition curve uncertain. Hence, different experimental realizations of CO-Ar 
mixtures on graphite will give rise to slightly different phase transition curves. In the following we 
quantify the variability in the phase transition curve in the presence of uncertainty in the concen- 
tration of Ar impurities. To compute the variability we use two different approaches. The first 
approach, the MC technique, is a fairly standard statistical analysis method. This method is. how- 
ever, very inefficient. A significant speedup in the computation of the uncertainty in the phase 
transition curves can be obtained by employing PCH techniques.1213 

For each value Kn of Ar concentration in Fig. 3 we assume that the concentration of Ar is 
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distributed binomially14 with mean at A'() and standard deviation of 3% (e = 0.03). The parameters 
of the binomial distribution N and p can be found from the following system: 

Np = A'„ 

JVp(l-p) = (eAo)2. (1) 

For each value of mean Ar concentration, we sample the corresponding binomial distribution in Ar 
concentration using MC techniques and compute the mean and standard deviation of the transition 
temperature. The results of the MC procedure are shown in Fig. 4 for 104 samples for each binomial 
distribution. As expected, the mean transition curve is the same as the quadratic fit in Fig. 3. The 
region between the outer curves in Fig. 4 is one standard deviation around the mean transition 
temperature. As the concentration of Ar atoms increases, the uncertainty in the phase transition 
temperature also increases. Although MC methods succeed in computing the phase transition curve 
in the presence of uncertainty, a very large number of samples (10 ) are necessary for a reliable 
estimate. 

PCH techniques are used to quantify output uncertainty by expanding the output random variable 
of interest in an optimally-chosen orthogonal basis.1315 Let us consider the following system: 

i = /(*,A), (2) 

where x is the system output and A is a vector of uncertain system parameters with associated 
probability distribution w{\). In PCH the output random variable is expressed as 

x(t; A) = a0(t)MV + ai(t)ti(\) + ... (3) 

Here {^j(A) :i6 1,..., oo} forms an orthogonal basis with respect to u>(A). 
The coefficients a,(t) can be determined using Galerkin projections13 when the equations of the 

system are explicitly known. In the case of the Ising model, the phase transition temperature is a 
random variable and / is the Metropolis-Hastings code. Since / is not known explicitly, one can 
apply Probabilistic Collocation Methods (PCM).16 where the output random variable is expanded 
using Eq. 3. However, the system parameters are sampled using zeros of a polynomial orthogonal 
to the basis used in expansion Eq. 3 (typically if the order of expansion is n, V'n+i is chosen). A 
Lagrange interpolating polynomial is passed through the output and the resulting moments of the 
distribution are computed. The orthogonal polynomials corresponding to the binomial distribution 
are the Krawtchouk polynomials A',,.17 The zeros of the polynomials Kn take non-integer values. 
Since the number of Ar atoms has to be discrete, we use the quadratic fit in Fig. 3 to compute the 
phase transition temperature at a fractional number of Ar atoms. 

The results of using PCM can be seen in Fig. 4. PCM captures the mean transition temperature 
curve along with the one standard deviation curves exceedingly well with just 4 input samples. The 
error in the mean and variance at the Ar concentration of 3% can be seen in Figs. 5(a) and 5(b). 
The results from PCM are obtained with the same magnitude of error as MC 2000 times faster. 

In this Rapid Communication we studied the effect of argon impurities on the head-tail ordering 
phase transition in CO monolayers physisorbed on graphite. We developed an Ising model that 
captures the head-tail ordering transition in CO-Ar mixtures in agreement with experimental data. 
The unique physical properties of the CO-Ar system have been explained and attributed to the 
formation of pinwheel regions of CO around the Ar impurities. To quantify the uncertainty in the 
number of Ar atoms, we have applied PCM and found it to be far superior to MC in this problem. 
This approach can be used to quickly bound the variation in phase transition curves when the 
impurity concentration is not known accurately. 
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Abstract 

The goal of this paper is to develop modeling techniques for complex systems for the 
purposes of control, estimation, and inference: 

(i) A new class of Hidden Markov Models is introduced, called the finite-rank optimal- 
prediction (FRO) model. It is similar to the Gaussian mixture model in which 
the actual marginal distribution is used in place of a Gaussian distribution. This 
structure leads to simple learning algorithms to find an optimal model. 

(ii) The FRO model provides a unification of other modeling approaches including the 
projective methods of Shannon, Mori and Zwanzig, and Chorin, as well as a version 
of the binning technique for Markov model reduction. 

(iii) Several general applications are surveyed, including optimal control, and the dy- 
namical analysis of complex systems via Markov spectral theory. Computation 
of the spectrum, or solutions to dynamic programming equations are possible 
through a finite dimensional matrix calculation without knowledge of the underly- 
ing marginal distribution on which the model is based. 

(iv) A detailed application to molecular dynamics is presented: Spectral theory for the 
low dimensional Markov model is applied to predict phase transitions for helium 
adsorbed on a graphite substrate. 
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1    Introduction 

Complex systems can be found throughout engineering, and the social, physical or life sciences, 
and every academic community that must confront complexity has developed specialized tools 
for modeling complex systems. In this paper we survey some of these methods, and provide a 
unifying framework for the purposes of estimation and control. 

Markov models are adopted as a basic model since they can capture a range of non-stationary 
behavior. They are a valuable modeling technique even for models that are not Markovian. This 
observation is initially due to Claude Shannon. 

Shannon introduced the idea of low dimensional Markov models to replicate features of 
English language. This appears as the motivation for the notion of entropy in his famous 
1948 paper A mathematical theory of communication, which is regarded as the birth of modern 
information theory [26]. These early ideas led to modern techniques in source coding (e.g., the 
Lempel-Ziv algorithm used in every computer for compression [18]). 
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The main idea is simply described as follows. Let Z denote a discrete-time stochastic 
process for which we seek a Markovian description, evolving on a subset Z of Euclidean space. 
For the purposes of modeling it is assumed that the process is stationary. Shannon's (first-order) 
Markov model is obtained using Baye's rule to construct a one-step transition kernel, 

where the ratio denotes the Radon-Nikodym derivative. That is, T describes the average dy- 
namics of Z in steady-state. The Markov model with transition kernel T also captures a large 
part of the steady-state behavior: It follows from the definitions that the marginal distribution 
of Z is invariant for T: Letting n denote the marginal, we have, for any set A C B{Z), 

H{A) = Jrtdz)T{z,A) (2) 

Or, in operator-theoretic notation, fiT = fi. 
Shannon's model was developed independently for continuous-time processes in the physics 

research community: It is a component of the famous Mori-Zwanzig projection method [22, 27]. 
The model (1) also coincides with the Markov model developed by Chorin (see e.g. [X, 7]). In 
this work the Markov model is said to exhibit optimal prediction due to the solidarity of the 
steady-state marginals captured in the invariance equation (2). 

While providing powerful and general approaches to model reduction, Shannon's approach 
can still result in a highly complex model. In particular, if Z is not finite, then the Markov 
model with transition kernel T can be regarded as an infinite-dimensional nonlinear dynamical 
system. To avoid this complexity we seek a finite dimensional setting. The approach taken 
in this paper is to enforce the optimal prediction property on a finite-dimensional space of 
functions. There are many ways to enforce this constraint — Motivation for the class of models 
adopted in this paper comes from recent spectral theory of Markov processes. 

Various theories from Markov processes suggest a model whose transition kernel has finite 
rank: For a collection of functions {hi} and measures {ni} the kernel can be expressed as the 
finite sum, 

m 

T = Y,hi®m (3) 
i=l 

so that T(z,A) = £^ hj(z)nj(A) for any z and A. For example, if Z is a finite state space 
Markov model whose transition matrix has distinct eigenvalues, then (.i) holds with {hi} and 
{/Xj} right and left eigenvectors. For general, infinite dimensional models it is still possible to 
obtain a reduced order model based on the eigenvectors corresponding to eigenvalues near unity. 
Based on the sign structure of the eigenvectors, it is possible to approximate a complex Markov 
model by a much simpler hidden Markov model (HMM) [14]. This construction is rooted in the 
asymptotic theory of Freidlin and Wentzell [12, fi], the theory of quasi-stationarity for Markov 
chains [11], and the approximate modeling approaches based on spectral theory developed in 
[13, !)] — see also recent approaches in [15, 19]. 

Finite rank Markov models with transition kernel of the form (:5) are used to approximate 
complex Markov processes in [3, 17] for the purposes of verifying the existence of a spectral 
gap, and for establishing limit theory such as large deviations. 

Other common approaches to model reduction also lead to a finite rank Markov model of 
this form.   If Y is the output process of an HMM with finite state process J, then the joint 

3 
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process (I,Y) is Markov with a finite-rank transition kernel, even if the observations evolve in 
a complex space. 

The use of binning to create a finite-dimensional Markov model, as in [13, 9], results in a 
finite state-space model, or a simple refinement (given in (S)) leads to a finite-rank model of 
the form (3). 

The approach advocated in this paper combines all of the points of view surveyed above, 
based on the finite-rank optimal-prediction (FRO) model, introduced here for the first time. 
Let {ri,Si : 1 < i < m} denote measurable functions on Z, each in £2(^)1 and f°r a collection 
of constants {Bjj} denote, 

m 

s„(2o,zi) = 5Z etjS«(zo)"ij(zi),        20.2i e z (4) 
«J=1 

The FRO model is Markovian, whose transition kernel is finite rank with density se, 

T»{zo,A):= s„(zo,zi)ii(dz\). (5) 
JzieA 

The subscript in the density is used to stress that this is to be learned.  The task of learning is 
greatly simplified by choosing to avoid estimating the entire dynamics. 

The FRO model has unique features, not found in generic HMM models, that are developed 
in this paper. To summarize, 

(i) The structure (3.2) in which fi is the (unknown) marginal distribution of the vector Z(t) 
leads to a simple characterization of the best sH through L2 or information-theoretic 
methods. Complexity of computation of the best parameter is greatly reduced when 
compared to, say, the EM method [IS]. 

(ii) In particular, this class of models can be chosen to capture the optimal prediction 
property: For a given collection of functions {<&} in Z/2(/i) we can choose O = O* to 
guarantee, 

E„.[<t>i{Z(t))4>j{Z{t+\))) = E{4>i{Z{t))4>i(Z{t + \))l       i,j = l,...,m,       (6) 

where the left hand side denotes the expectation with respect to the model obtained 
using 0*, and the right hand side is the actual expectation in steady state. This is a 
generalization of the optimal prediction property described by Chorin for the Markov 
models of Mori and Zwanzig [S, 7, 22, 27]. In fact, these models were introduced by 
Shannon for the first time in [26] — Some history is contained in Section 2. 

(iii) The FRO model can be adapted to obtain a model based on binning, as in [13, 9], while 
again preserving the optimal prediction property ((i). 

(iv) Knowledge of the full marginal fi is unnecessary in all applications of interest in this 
paper. In particular, 

(a) Only finite-dimensional statistics (means and covariances) are required to ob- 
tain the optimal parameter in (3.2). These statistics are easily estimated 
through Monte-Carlo techniques. 
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(b) It is shown in Proposition 3.3 that computation of the spectra of the kernel T is 
also possible through knowledge of finite-dimensional statistics. An application 
of this result is used in Section •">, which contains a detailed treatment of the 
prediction of phase transitions in molecular models. 

(c) Similarly, the solution to dynamic programming equations that arise in op- 
timization as well as simulation can be computed based on easily estimated 
finite-dimensional statistics. 

We believe that the FRO model is ideal for applications to optimization, distributed control, 
simulation variance reduction, as well as prediction of phase transitions. 

The remainder of the paper is organized as follows. Contained in the next section is a review 
of Shannon's approach to Markov modeling, and results demonstrating how more recent meth- 
ods fall into Shannon's framework. Section 3 contains a development of the finite-rank Markov 
model. Several different techniques are introduced to obtain a model exhibiting the optimal 
prediction property on a finite-dimensional function class. Section I contains aa Monte-Carlo 
methods to compute the parameters in a finite-rank Markov model and provide a statistical 
analysis of the estimates. 

Section 5 contains an in-depth application of the spectral-theoretic techniques to the phase- 
transition prediction problem of molecular dynamics. 

Conclusions and extensions are summarized in Section 7. 

Notational conventions An upper case symbol such as X denotes a random variable, and 
lower case x deterministic. Bold italic X indicates a stochastic process. 

To indicate relative dimension we let # denote a very large integer. Hence, if we say that 
"x evolves on K this signifies that x is a deterministic process evolving on a state space so 
large that simulation is extremely difficult on an ordinary computer. 

We let z or Z denote a process on a simpler state space. A Markov model is constructed 
to approximate the behavior of Z. Its state process is denoted Z, each evolving on the state 
space Z. 

2    Shannon's Markovian projection 

In the treatment of deterministic dynamical systems, model reduction is typically addressed 
through singular-value decomposition to eliminate 'fast variables'. Hence the choice of coarse 
variables in a reduced-complexity description is specified by relative dynamics. In the proba- 
bilistic framework considered here we have much greater freedom: Regardless of what variables 
are chosen to build a Markov model, the resulting nonlinear system is stable (see Proposition 2.1 
that follows). Moreover, the model replicates exactly whatever statistics are input as constraints 
in the construction of the transition kernel. 

The following result is based on Shannon's construction (1). It is a component of the model 
reduction techniques pioneered by Mori and Zwanzig in the area of statistical mechanics [22, 27]. 
The conclusion of the proposition is described by Chorin as optimal prediction since the model 
T captures exact marginal statistics of Z. 

Proposition 2.1. Suppose that the Radon-Nikodym derivative (1) exists for each z and A to 
define a transition kernel on Z x B(Z).  That is, T( • ,A) is a measurable function on B(Z) for 
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each A € B(Z), and T(z, •) is a probability measure on B(Z) for each z 6 Z.  Then the Markov 
chain with this transition kernel describes these aspects of the stationary process Z: 

(i) One-step dynamics: T(z,A) = P{Z(t + l)e A\ Z(t) = z), zeZ, Ae B(l). 

(ii) Steady-state:  The probability \i is invariant for T, 

H{A)= [    ti{z)T(z,A),        i4efl(Z). 
Jzez 

This result is a trivial consequence of the definitions, yet its implications are surprisingly 
rich. A roadblock to its application is that the transition kernel T is not known. Moreover, in 
general it remains an infinite dimensional object, in which case learning the entire transition 
kernel is not feasible. In Section 3 we turn to kernels of finite rank to approximate the optimal 
prediction model. First we consider some special cases in which the form of the approximate 
model is relatively transparent. 

2.1     Model construction using binning 

Let {Xi,... ,Xn} denote a partition of the state space for the complex, stationary process X: 
These sets are assumed disjoint, with (JXi = R • This partition is used to define a coarse 
variable that indicates the particular partition that X(t) occupies at each time t. 

Let Z denote the integer-valued process taking values in the set {1,2, n} defined by 
{Z(t) = i iff X(t) G Xi, 1 < i < m). Shannon's construction has a simple interpretation in this 
case because Z takes on only m possible values. 

Proposition 2.2. With Z defined using a state space partition, the transition matrix (1) can 
be expressed for ZQ = i and z\ = j by the ratio of the probabilities, 

T(,  „i    P{*(0)ex;, X(i)eXj} 
T(2o'2l) = P{x(o) € x,} • (7) 

That is, T(zo,z\) = (7r{Xj}) JX£X n(dx)P{x,Xj), where ir is the marginal distribution for 
X. D 

If desired, a finite-rank Markov model on the original state space can be obtained using the 
transition kernel, 

T,(xo,dxi):=T(z0,zi)   .   \ ,       x0€Xi, xi€Xj. (8) 

The definition (7) is used in [13, 9] to construct a finite state space Markov chain. In these 
papers the distribution of X(0) is arbitrary, so that the invariant measure for T will not be 
consistent with X. 
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2.2    Markov spectral theory 

The binning approach can be justified based on the results from spectral theory surveyed above: 
If the sets {X*} are selected so that the transition times are approximately geometrically dis- 
tributed, then an accurate Markov chain approximation can be obtained. Results in [It, 21] 
show that the geometric distribution approximation holds for a sampled diffusion, provided the 
sets {Xj} are sublevel sets of the associated eigenfunctions. 

We next consider a more general setting: Suppose that Z is an m-dimensional vector-valued 
function of a Markov chain X evolving on R . There is a function ip: R* —> Rm such that 
Z(t) = xl>(X(t)) for each t. If the spectra of X and Z coincide, then a decomposition of the 
state space Z = Rm appears justifiable based on the spectrum of T. Under special conditions 
Shannon's model does capture a part of the overall spectrum. 

Proposition 2.3. Suppose that h is an eigenfunction for X with real or complex eigenvalue \, 
and suppose moreover that it can be expressed as a function oft: For some function g: Rm —• C, 

h(x) = g{ip(x)),        x e R#. 

Then g is also an eigenfunction for T with eigenvalue X. 

Proof. For any function /: Rm —> C we have from the definitions and the Markov property, 

E[f(Z(t))g(Z(t+l))]=E[f(Z(t))h(X(t + l))]=E[f(Z(t))Ph(X(t))]. 

Based on the eigenvector equation we obtain, E[f(Z(t))g(Z(t + 1))] = E[f(Z(t))(Xg(Z{t)))]. 
The optimal prediction property implies that the same identity holds with Z replaced by Z, 

E[f(Z(t))g(Z(t + 1))] = E[f(Z(t))(\g(Z(t)))}. 

Prom the definition of conditional expectation we conclude that E[g(Z(t + l)) \ Z(t)] — \g(Z{t)), 
or Tg = Xg. O 

3    Finite-rank optimal-prediction models 

In this section we introduce several approaches to model construction for the FRO model with 
transition kernel (3.2). Stationarity of Z is assumed throughout, even though the ultimate goal 
is to construct a Markovian approximate model whose realizations are not necessarily stationary. 

Some general properties of finite rank models are summarized in Section 3.1. 
The main result of Section 3.2 shows how to construct 9* satisfying the optimal prediction 

property ((i). The remainder of this section develops optimization techniques for the construc- 
tion of a model. In Section 3.3 a parameter is found that minimizes an Li error criterion. 
It is shown in Proposition 3.4 that an optimizer satisfies the optional prediction property (<i) 
with {4>i} = {r^}, provided the functions {r^} and {m^} coincide. An alternative maximum 
likelihood criterion is described in Section .'}. 1, and similar conclusions are obtained. 

The following conventions are adopted throughout this section. For any Rm-valued functions 
/,g whose components lie in Liili) we denote the auto-correlation functions, 

R{f(k) = El/.fZfflOjjtZ^))],       i,j = l,...,m, k € Z (9) 
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or in matrix form, Rf*(k) = E[f{Z(0))gT(Z(k))].   When / = g we write Rf(k) instead of 
RM(k). 

Recall that n denotes the marginal distribution of Z. We let /z2 denote the stationary bivari- 
ate distribution describing the joint statistics of (Z(t), Z(t + 1)), /ie the stationary distribution 
for TH, and /z„ the stationary bivariate distribution under the transition law TH. That is, 

nl(dzo,dzi) := ^H(dzo)T^(zo,dzi) (10) 

The bivariate distribution possesses a density with respect to the product distribution \i x /x, 
denoted p„, which can be expressed as a finite sum of the form, 

m 

pl(zo,zi) = Yl &ijri(zo)mj(zi). (11) 
«J=1 

To obtain a tractable framework for approximation, we assume throughout the remainder 
of the paper that the functions {ri,mj} are given. The functions {SJ} in (1) are obtained from 
the functions {rj,rrij} via, 

m 

*i = ( £ BerrM"*))'1*. (12) 

We begin with some comments on the general finite rank model. 

3.1    Properties of finite-rank Markov models 

Consider a general transition kernel of the form, 

m 

T(z, A) = J2 Si(z)m(A),        zeZ, Ae B(Z). (13) 

where {s,} are non-negative valued functions, and {//<} are probability measures. Let Z denote 
the Markov chain with this transition kernel, 

?{Z(t + 1) € A | Z(t) = z} = T(z, A). 

Some properties of T and Z are summarized in the following: 

Proposition 3.1.  The Markov chain Z with finite-rank transition kernel (13) has the following 
properties: 

(i) Z is, of course, a Markov chain on the state space Z. 

(ii) The m-dimensional stochastic process W(t) = (si(Z(t)),..., sm(Z(t)))T, t>Q,isa 
Markov chain on Rm. 

(iii) Z is also a Hidden Markov Model: There is a finite state space Markov chain I on 
the finite set {I,... ,m}, an i.i.d. process N on R, and a function ip: {1,... ,m} xR-> 
{1,..., m} such that, 

Z(t+l) = ip(I(t),N(t+l)),        t>0. 
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What are the eigenvalues of T! If (h, A) solve the eigenfunction equation Th = Xh with A a 
possibly complex scalar, and h: Z —> C, it follows that h can be written as a linear combination 
of the functions {s,}: For some complex scalars {&} we have, 

h{z) = ^2(H8i(z),       zel. (14) 

The form of T given in (KS) and the eigenfunction equation then give, 

m 

Linear independence of the functions {s;} implies that the coefficients coincide. Consequently, 
the coefficients {@k} and the eigenvalue A are obtained as the solution to the finite matrix 
eigenvalue problem, 

Mg = Xg, 

with Mjk:=iij{sk). 
The constraints on {gk} and A in the FRO model are expressed, 

Aft = Yl ®*ijMjkQk,        1 <i<m, 
jM 

where Mj* = n(rjSk) = fl^(O). In conclusion, we obtain 

Proposition 3.2. The eigenvalues ofTH~ in the FRO model correspond with those of the mxm 
matrix 0*fl•(O). If X € C is an eigenvalue, and g an eigenvector, 

0*Rrsg = Xg 

then the function (II) is an eigenfunction for T. D 

We next consider a general approach to optimal prediction. 

3.2    Optimal prediction on a subspace 

Suppose that {fa} are a collection of functions in L%(n), 

H(<fi) := E[4>f(Z(t))} < oo,        I < i < m. 

Our goal is to choose 0 = 0* to guarantee the optimal prediction property ((i). We first express 
the left hand side as follows: For each i,j = 1,... ,m, 

E^[fa{Z(t)fa(Z(t + 1)] =  / (j)i(zf))(t>j{zx)pf,{zfi,zi)n{dzQ)n{dzi) 

(15) 
= $1 ®k(H(<t>irk)»(<l>jmf) 

k,e=i 

Based on the notation (9), it follows that the equation ((i) has the equivalent matrix formulation, 

«*,r(O)0*i?m''*(O) = fl*(l). (16) 

We thereby arrive at a formula for the optimal parameter. 
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Proposition 3.3. Suppose that the covariance matrices /?*'r(0) and /?m,*(0) are invertible. 
Then the unique value of 0* satisfying ((>) is defined by the matrix product, 

0* = [fl*'r(0)]-1fl*(l)[jrB-*(0)]-1. (17) 

• 

3.3    Optimal prediction and L2 projection 

We now show that the optimal prediction property holds for an optimal model obtained under 
a natural optimization criterion. 

Recall that /£ possesses a density p2, with respect to the product distribution /JX/I. Assume 
that p? also possesses a density, denoted p2. The Li mismatched criterion considered here is 
defined for any 6 by, 

£(0) = \ [(p»(zo, Zy) - p(z0, zx))
2
ii{dzQ)ti(dzx) (18) 

Proposition 3.4 asserts that the Li optimal model exhibits optimal prediction on the finite- 
dimensional subspace of functions spanned by the basis. If {r,} = {m^} are indicator functions 
of a partition of Z, then (fi) coincides with the constraints defining the transition matrix de- 
scribed in Proposition 2.2. 

Proposition 3.4. Suppose that r* = mi for each i, that r\ — mi = 1, and that these m 
functions are linearly independent in Li{p). That is, the covariance matrix Rr(0) is full rank. 
Then, the vector 0* minimizes £ if and only if the optimal-prediction constraints ((>) hold with 
{4>i} = {rj}.  The unique solution is expressed uniquely, 

e* = {e-,} = [jrwr'/ruMTno)]-1 (19) 

Proof. First consider the general setting in which the {r^} and {m*} may differ. On setting the 
derivative of £ with respect to 0j„jo equal to zero for each io and jo we find that an optimal 
parameter is characterized by the optimal-prediction constraints, 

E[ri(Z{t)m.j(Z(t + 1)] = / ri(zo)mj(zi)p(zo,zi)ii(dzo)fi{dzi) 
\ (20) 

=     ri(zo)mj(zi)p^{zo,zi)n(dz0)p.(dz1)       i,j = \ m 

Under the assumption that n and mi are identically equal to unity, the constraints (20) imply 
that, 

1 = E[ri(Z(t)mi(Z{t + l)} =  / pH.(zo,zi)n(dzo)n(dzi) 

so that (i^. has total mass one. 
To complete the proof it is necessary to demonstrate that the bivariate distribution fi2,. has 

equal marginals /zH-i = P-n'2, with 

MH-I(') =A4.(-,Z), MH'2(-) = /*H-(Z, •) 

10 
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