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Chapter 1

Summary

1.1 Objectives

The objective of this project was to develop and demonstrate, in challenge problems selected by
DARPA DSO, techniques for managing uncertainty in complex dynamnical systems. Out of the
original three-year program, the first two phases were executed. Each of these phases was divided
into tool development as well as meeting challenge problems to demonstrate the convergence of
these tools in concerted efforts.

More explicitly, the overarching goal of the project was to develop tools and workflows for quan-
tifying and managing uncertainty in ways that would perform orders of magnitude faster than
Monte Carlo sampling with controlled, provable scaling (preferably linear in the system size). The
challenge problems were designed to demonstrate progress toward this ultimate goal.

The focus of Phase I was to show that the techniques selected and developed could be applied
correctly to systems of many particles. The two challenge problems for this phase were:

e Self-assembly: Obtain an interaction potential such that a system of particles in a box would
spontaneously asseinble into a lioneycomb structure and compare this to a benchmark solution
from the literature [9, 10].

e Phase diagram: Obtain the plase transition temperature of a noble gas physisorbed on a
graphite substrate, demonstrating that the team could correctly extract comnplex emergent
behavior of a system of 10,000 particles.

Apart from the further development, selection, and implementation of mathematical tools for un-
certainty quantification, Phase II included the following challenge problems:

e Phase diagram with uncertainty: Show orders-of-magnitude speed-up over Monte Carlo san-
pling in the quantification of uncertainty in a complex, uncertain system. The system chosen
for this challenge was a monolayer of carbon monoxide (CO) on graphite in the presence of an
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Figure 1.1: Summary of main rcsults for the self-assembly problem.

uncertain level of argon impurities. The system exhibits a complex phase transition [12] and
the task was to calculate the transition temperature, including its uncertainty, as a function
of the uncertain argon concentration.

e Surveillance: Design search strategies for 50 simulated unmanned acrial vehicles (UAVs) look-
ing for a stationary target in a complex terrain usiug noisy scnsors with uncertain footprint.
Tlie strategics had to exhibit shorter search times than straightforward lawnmower patterns
while still satisfying constraints on detcction (lower bound) and false alarm (upper bound)
probabilitics.

1.2 Summary of accomplishments

The performance requirements from tlie Phase I and II challenge problems were mect, and in some
cases surpassed by orders of magnitude above the required acceleration. Here we summarize the
accomplishments directly related to the challenge problems. Chapter 2 summarizes the tools de-
veloped, organized by themes.

Phase I self-assembly challenge

e Asshown in appendix C.1 and reference [J3|, the team first developed several relevant mctrics
for lattice quality and then applied trend optimization using ridge regression ([J3] and [11]) to
obtain solutions superior (in terms of robustness of the self-assembly) to the benchmark [10].
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The most robust solutions were particularly counterintuitive in that the resulting interaction
potential was purely repulsive. The team also showed that extending the interaction to
anisotropic potentials can yield much more robust self-assembly, even of structures that were
identified in the literature as impossible to obtain through central potentials ([J9] and [10]).

o The self-assembly problem also exposed the team to the state of the art in molecular dynamics
simulation algorithms and, in particular, to the different approaches for simulation of systems
of particles with noise, typically due to contact with a thermal bath. This spurred the
development of a completely novel approach to simulating noisy systems that preserve the
specific structure of the noise in a controlled manner [J2]. In other words, this is the stochastic
equivalent of variational integrators, with the difference that instead of preserving energy (as
in the widely used Verlet algorithm [4]) they preserve the invariant measure.

e Other mathematical results related to the self-assembly challenge are a proof that central
potentials cannot yield certain structures when the system is not confined to a fixed-volume
box [J9] and several provably-correct metrics for quantifying the distance between simulation
results and target lattices (appendix C.2 and [J11]). Finally, several tunable lattice quality
measures were developed (appendix D.2 and [J12]). These can be selected to emphasize
different desired qualities in the target lattice (e.g., shape vs. density) and can be used for
self-assembly as well as for phase diagram computations.

Figure 1.1 summarizes the main results for the self-assembly challenge problem.

Phase I phase diagram challenge

e In appendix E.1 [J17] the team developed a new class of Hidden Markov Models, the finite-
rank optimal-prediction (FRO) model, for quickly learning the dynamics of a system. This
new tool was used to learn from MD simulations of helium atoms physisorbed on graphite the
dynamics of a coarse variable relevant to the phase transition (the potential energy per atom).
The transition is then associated with metastability in the spectrum of the Markov model.
The team showed that it is faster to directly learn when the spectrum exhibits metastability
than to directly simulate the system until it settles into its stationary distribution. The
method was later extended into reference [C4], where it was applied to fast decentralized
control over networks through the construction of multiple local Markov models.

e Model order reduction was approached from the point of view of data clustering and stochastic
modeling. A Markov matrix whose state space is the possible size of clusters can be learned
from the simulation of molecular systeins at specific conditions, such as temperature, density
and pressure with prior belief. The expectation value of an invariant distribution of learned
Markov matrix indicates the phase transition of the molecular dynamics system qualitatively
while the second largest eigenvalue modulus can be used as a quantitative indicator. As a
consequence, the stochastic reduced order model not only reduces the order of the system
based on the choice of coarse variable but also provides an insight of macroscopic properties.
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Figure 1.2: Summary of phase I results for the phase diagram problem.

Heuristic graph decomposition Bayesian estimation is shown to be more reliable and robust
than maximum likelihood estimation because it reflects prior information on the system.

e Two orders of magnitude acceleration over Molecular Dynamics 10,000 atom baseline was
achieved by running a reduced size system of only 100 particles. To assess the error in the
phase transition temperature determined using lower number of atoms in MD simulation,
convergence of the phase transition temperature was studied using numerical and analytical
methods.

e In reference [J1] the team builds on the Coarse Molecular Dynamics technique [1] to obtain
the order-to-disorder transition temperature of krypton physisorbed on graphite. The team
obtains 5x acceleration compared to standard MD measurements of Huctuations of the to-
tal energy. The CMD technique falls under the umbrella of the more general equation-free
methods, in which the macroscopic evolution of a system is simulated by doing short bursts
of microscopic-level simulations compatible with the required macroscopic state. Initializ-
ing such microscopic systems is called lifting, and doing it efficiently is an area of active
development (see appendix B.7 and [J8]).

e A parallel effort for the krypton problem (appendix D.1) was to extend the use of quenching
simulations [5] by developing pattern boundary detection methods to separate high and low
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Figure 1.3: Summary of Phase II results for the phase diagram problem. From left to right: system
snapshot showing pinwheel structures around argon impurities (blue); flip moves used in Ising-type
model; heat capacity curves for different impurity concentrations; acceleration in calculation of the
transition temperature for Monte Carlo (blue) and PCM (red).

density regions that appear spontaneously in first order phase transitions.

Figure 1.2 summarizes these results. Note that, in order to obtain a good match with the experi-
mental results from the literature for the case of heliuin, the team had to add a quantum-mechanical
correction to the classical potential used in the simulations. This correction, based on Feynman'’s
quasi-classical potential, went beyond the asymptotic approximations from [14] that were used in
the theoretical calculations of reference [2].

Phase II phase diagram with uncertainty challenge Appendix D.3 [J21] focuses on the low
temperature phase transition for carbon monoxide (CO) physisorbed on a graphite substrate.

e The team first developed an Ising-type model for the system that accurately captures the
phase transition in the presence of an uncertain concentration of argon impurities.

e Since in the simulations the number of argon impurities had to be an integer, the team
had to extend the Polynomial Chaos-based Probabilistic Collocation Method [3] to the case
where the uncertain parameters can only take integer valucs, leading to a rare application of
Krawtchouk polynomials. PCM allowed the tcain to calculate the mean and variance of the
phase transition temperature 2000 times faster than Monte Carlo sampling [J21].

e The team’s result settled the scientific question of whether the ground state of CO on graphite
is head-to-head ordered or head-to-tail ordered in favor of the latter. Furthermore, the team
showed that formation of pinwheel regions of CO around argon atoms are at the origin of the
anomalous effect of stabilization of the low-tcmperature phasc [J21].

Figure 1.3 shows the system, a typical configuration in the Ising-type model, a representative
flip move (molecule rotation) in the computational procedure, the variations in the specific heat
vs. temperature curves, and the comparative acceleration of PCM over Monte Carlo.
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Phase II surveillance challenge Appendix A as well as references [J4, J6, J13, J18, J19],
[C5], and [6] contain extended reports on results relevant to the surveillance challenge problem.
Figure 1.4 shows the search area used by the team to compare the performance of the algorithms
developed in the project with that of both standard and “smart” lawnmower search patterns that
take into account the prior distribution for the single target. The challenge included the following
constraints, so as to make the different algorithms comparable:

e There is a single, immobile target to be found.

e The vehicles’ sensors have a small footprint compared to the total search area (0.1% for
one sensor, 5% for the whole swarm) and their dynamics must be constrained (speed and
acceleration limits).

e The sensors are noisy: at each observation, a sensor has a probability of detection sq < 1 and
false alarm sg > 0.

e The terrain includes foliage. If the target is in the foliage, it is undetectable. The algorithms
must be able to conclude that the target is undetectable after a finite time.

e The algorithms as a whole must exhibit a global probability of detection above a given thresh-
old Py global and false alarm rate below a given threshold P, giobal-

Under these coustraints, the algorithms compete for lowest median detection time.

As shown in figure 1.4, two different lines of attack yielded successful practical search strategies:
Spectral Multiscale Search (SMS), Greedy Spirals, and Dynamic Greedy Search (DyGS). Each uses
a very different approach and has its own strengths. These strengths treat different axes of the
problem and could in the future be combined into a unified approach to control a swarm of UAVs
performing autonomous search missions. Both methods achieved almost 2x reduction in median
search time conipared with smart lawnmower.

Spectral Multiscale Search, or SMS (appendix A.1 and [J13]), which combines a novel application
of the Neyman-Pearson lemma [J6] with a Lyapunov method, is a fully-autonomous approach
that flexibly dictates the required control forces on the whole swarm at every time step. Given
the prior distribution for the single target, the method evaluates low much the time-integrated
coverage differs from the prior, using a specially-designed weighted measure that yields a naturally
multiscale approach. The method spontaneously spreads out the vehicles, initially covering the
large-scale features of the prior and then filling in the smaller scale details. As shown in figure 1.4,
this method can take into consideration both uniform and nonuniform priors. The vehicles avoid
the foliage when possible, but spontaneously fly over it when needed to cover a different region.

Figure 1.4 also shows the ROC (Receiver Operating Characteristic) curves associated with the SMS
decision algorithm [J13]. For a given sensor quality (i.e., for given parameters sq and sg,) these
curves show graphically the effect of taking repeated measurements in an area and help determine
how much coverage is needed before the global constraints Py giobal and P global are satisfied.

Dynamic Greedy Search, or DyGS (appendix A.2 and [J4]), is made of two parts: a grid-free decision
algorithm and a trajectory planner. The trajectory planner is based on a specially-developed
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Figure 1.4: Top left: search area used for the simulations. The gray zones mark the foliage and
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Greedy Spirals, and DyGS (see text). The bottom shows an approach combining helicopter model
trajectory segments and roadmap planning for near-real time control of UAVs over Fort Benning,




1.3. ORGANIZATION OF THE REPORT

method for optimizing dynamically the path to take in a computationally tractable manner while
still producing realizable trajectories. It is based on the use of a library of elementary trajectory
segments that individually satisfy the vehicle dynainics and can be interlocked to produce large
scale roadmaps (see also section 2.3.1).

Even though the challenge problems focused on the detection of a single target, the teamn identified
that the need to detect multiple targets would naturally arise in the future, and the necessary
mathematics to treat this problem in a computationally-efficient manner had to be developed.
Appendix A.4 (see also [C5]) develops such tools. The approach is novel in that it makes efficient
a computation that in its original forin is computationally intractable.

1.3 Organization of the report

The summary of accomplishments presented above focuses on the convergence of the different tools
selected and developed as applied to the solution of the Phase I and Phase II challenge problems.
In contrast, chapter 2 summarizes other tools that were mostly preparation for Phase III and were,
for the most part, not used directly in the solution of the Phase I and Phase II challenge probleins.

For published results we include the reference to the appropriate journal or conference proceedings,
while for results that are submitted or in preparation we include the full drafts or internal reports as
appendices. The appendices are mostly self-contained, and as such the citations in the appendices
refer to their own bibliographies, and not to the report’s main bibliography.
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Chapter 2

Other tools developed

This project deals with the quantification and robust management of uncertainty in complex sys-
tems. In view of the goal of a real-time demonstration, many tools were developed with the goal
of supporting fast, decentralized analysis of the situation, as well as efficient design of vehicle
trajectories compatible with complex dynamics.

In this chapter we describe some of the tools developed. As these focused on improving different
aspects of the problem, the tools are very heterogeneous, and fall broadly in the following three
categories:

o Graph theoretic methods for systein analysis and uncertainty quantification
o Decentralized estimation

e Design of dynamics

2.1 Graph theoretic methods for system analysis and uncertainty
quantification

In order to make a system of many interacting components tractable, the system must be analyzed
and divided into weakly connected components such that each individual component is of reasonable
size. However the automatic detection of such components is a difficult task. Appendices B.5
and B.6 [J14, J15] focus on the analysis of such systems using graph-theoretic techniques to obtain
both weak connections as well as causal chains. The latter are important for predicting the flow of
information, and therefore uncertainty propagation, through such a system.

Similar methods were applied in reference [C3], where waveformn relaxation was used to simulate
a system with weakly connected components. This method was further extended in [J24] (see
appendix B.1) into a unified, scalable approach to uncertainty quantification. Further uncertainty
quantification techniques are compared in appendix B.2

11



2.2. DECENTRALIZED ESTIMATION

Another use of graph-theoretic techniques is the application of diffusion maps to detect slow vari-
ables in a system [J22]. Once such slow variables have been found, an equation-free approach can
be used to accelerate the simulation of the system (see [J1, J8| and [1, 13, 15]).

Finally, reference [J23] uses the connectivity of a network to do global filtering of noisy measure-
nients.

2.2 Decentralized estimation

In anticipation of future challenges where many vehicles are collaborating in an environment with
limited communication (or, equivalently, to extend life in power-limited wireless networks), several
tools were developed to deal with decentralized estimation.

e For large networks and, in particular, for networks where the connectivity is changing dy-
namically), stochastic multiscale consensus was developed [C2]. Here each node decides at
random whether to simply pass along a measurement received from a different node or to do
a computation on it. The act of passing information along produces long scale connections
that accelcrate the convergence of consensus algorithms.

e For the problemn of searching for a target, appendix B.3 deals with the issue of several different
noisy sensors having to make a decision as to whether the target has been detected based on
the limited information they have shared up to that point.

2.3 Design of dynamics tools

The area of design of dynamics encompasses both the design of systems that will spontaneously
behave in a desired way as well as simplifying computations on complex systems so the problem of
assigning tasks becomes tractable.

Examples of design of systems that spontaneously behave as desired are given in appendix C, where
the self-assembly tools are described in detail. A related problem is that of targeted activation [C1],
where the dynamics of the system are exploited to minimize the required energy input to obtain
global reconfigurations.

For simplifying computations in systems with many independent actuators, a good example is the
fast reconstruction of wavefronts for telescopes with adaptive optics (see [8] and [7] for experimental
validation). Also, see appendix B.4, where a connection to the problem of self-localization is made.

2.3.1 Control optimization of vehicles with obstacle avoidance

With the goal of developing eflicient methods to control vehicles with complex dynamics in en-
vironments with obstacles, a general framework was developed for integrating the dynamics and
optimizing the motions of mechanical systems. The resulting algorithms are superior to standard

12



2.3. DESIGN OF DYNAMICS TOOLS

methods in numerical robustness and eflciency, and can be applied to many types of vehicles such
as simple helicopters and hovercraft.

The general approach is based on a combination of standard optimal control techniques and classical
search and dynamic programining methods. These methods stand on top of a robust numerical
representation of the underlying vehicle dynamics derived using the theory of discrete mechanics.
The main results can be summarized as:

e structure-respecting geometric discretization of mechanical systems with symmetries, internal
actuated shape, and nonholonomic constraints

e discrete optimal control formulation that respects the geometric structure

e combining the derived local optimal control techniques with global search methods in order
to guarantee near-globally optimal solutions

e extending the basic motion planning framework to handle more specific tasks such as time-
varying goal state, maximizing sensor coverage, deploying multiple vehicles to maximize in-
formation about a goal with uncertain dynamics multiple vehicles

13
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Spectral Multi-Scale Search

Alice Hubenko®, Vladimir Fonoberov', George Matthew!, and Igor Mezi¢$

January 22, 2009

Abstract

We present a search algorithm for single or multiple searchers that finds a stationary target
in presence of uncertainty in sensor radius. The considered uncertainty condition simulate the
influence of the changing environment that occur in practical applications. Uncertainty in sensor
radius sets this problem apart from the usual search and surveillance problem setting. Given Pp
and Pr 4, the algorithm minimizes search time to find the target with probability of detection at
least Pp and probability of false alarm at most Pr4. We prove that the algorithm discovers the
target with the desired efficiency. Computer simulations show that our algorithm has excellent
performance when compared with Billiard search which is a type of random search. Form the
design of the algorithm, it follows that the search time is inversely proportional to the number of

searchers participating.

1 Introduction

Study of search problems as formalized mathematical models started more than 60 years ago, for a
survey see [1]. During World War II mathematical theory was applied for the first time to locate Ger-
man submarine threats in the Atlantic. Since its first applications search theory developed somewhat
detached from practical applications. Our theory stands out from this trend because it uses realistic
dynamics to model movement of searchers and in addition it is, apparently, the first model in literature
that incorporates uncertainty in sensor radius that is a significant factor that affects search missions in

real life. An extensively studied setting that is similar to ours, see [2], [6], is when a target is located
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somewhere in a region that is partitioned into a number of cells. The probability distribution for
the targets position (i.e., the probability that the target is in any particular cell), and the detection
function of our sensor (i.e., the probability of detection versus effort spent searching a cell, given that
the target resides in that cell) are given. The goal is to maximize the probability of detection of
the target, assumed that amount of total effort available for the search is fixed. A major drawback
of this problem is its discrete setup, that would require perfectly functioning sensors. Besides, the
theoretical solutions given to this problem assume that the search effort is infinitely divisible between
cells and result in trajcctories that would be physically hard to follow. Recently, several application
oriented algorithms have been developed for similar problems. 8] presents a receding-horizon cooper-
ative scarch algorithm that jointly optimizes routes and sensor orientations for a team of autonomous
agents searching for a mobile target. The algorithm in [8] reduces the continuous search problem
to an optimization on a finite graph. In [11] a framework for cooperative search using UAV swarms
is described. The algorithm in [11] sweeps the area with UAVs flying side-by-side in straight lines.
Unfortunately, both algorithms of [8] and [11] do not take into account changes in the environment
that may occur. The changing environment (such as wind or fog) may alter the effective radius of
the sensor. This would lead to leaving parts of the area completely uncovered and would reduce the
performance of the search algorithm. We consider the search problem where a stationary target is
placed in an area A that contains foliage F' that the sensors can not penetrate. We consider the a
priori distribution of the location of the target known (if it is not given we assume it to be the uniform
distribution). The searchers move through the area A in continuous motion and use a circular sensor
to scan the area. Our goal is to minimize search time in the presence of uncertainty in sensor radius
while keeping the probability of detection of our algorithm above threshold Pp and probability of
false alarm of the algorithm below threshold Pr4. In our Spectral Multi Scale (SMS) algorithm we
utilize the Neyman-Pearson lemma, that is central in binary hypothesis testing theory, to design the
decision making rulc, that allows the searchers to quickly locate target suspects as they cover the area.
The algorithm puts some of the searchers in rechecking mode to take some additional measurements
at target suspects positions. This strategy ensures that the probability of false alarm is within the
required threshold. We use the H~! coverage strategy described in Section 3 to cover the area A.
We tested the SMS algorithm with 50 searchers for different a-priori target distributions, each time
making 5000 independent simulations. Our computer simulations show that besides demonstrating
superior robustness in presence of uncertainty the SMS search vastly outperforms Billiard search when
searchers start out in random directions and move in straight lines, reflecting when they reach the

border. The median absolute deviation of SMS search time is 1.5 times smaller than that of Billiard
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search; median search time of SMS search is 1.6 tiines smaller than that of Billiard search; median
detection time of SMS search 1.7 times smaller than that of Billiard search. Another imnportant ad-
vantage of the SMS algorithm its effective use of assets: the search time is inversely proportional to
the number of searchers. So, for example, if we have two searchers instead of one, the expected search

time is half of what we would expect with one searcher.

2 The decision making strategy

Let us consider the problem where N searchers are moving inside a search area A in R? with the
objective to detect a point-like target. We assuine that each searcher has a circular sensor with radius
at most 8. We will consider various scenarios for uncertainty in sensor radius. The target can be either
in the search area A or in the foliage F' where the searcher can not detect it. We assume that with
probability a the target is in F' and with probability 1 — a the target is in S = A\ F. We assume
that the probability distribution of location of the target is known. The probability of detection for
a single measurement, sy, is the probability of getting a reading 1 on our sensor, assuming that the
target is within the sensing area. The probability of false alarm for a single measurement, sy,, is the
probability of getting a reading 1, assuming that the target is not within the sensing area. Note, that
for any sensor sy > sf,. The studies on real-life sensors indicate that as sy increases, so does sy,.

We denote by Pyp the probability of declaring that the target is in foliage, assuming that the
target is in S. We denote by Pr4 the probability of detecting the target in S, assuming that the
target is not in that location. In the simulation setting it translates to the following, as seen in [5].
Denote the number of realizations of the whole search scenario Ng, the number of times the algorithm
declared finding target and the target was not there N4, the number of times target was detectable
(in S) Np, and the number of times the target was detectable but the algorithm declared that it is in
the foliage Nyp.

Npa
Prg= lim —=
Np—=oo Np

N
Pyp = lim . L)
R—YO0 ND

During the course of the algorithm the searcher moves in S, taking measurements with frequency
f. For easier description of our decision making procedure, let us first assume that the searcher moves
around S in steps. In each step the searcher is allowed to make several independent measurements with

his sensor. Assume that at each step the searcher takes ng independent measurements, and declares
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detection of target if at least 49 + 1 of the measurements are 1s. The Neyman-Pearson criterion (see
[4]) allows us to find ng and o that maximize the probability of detection while the probability of
false alarm stays under some prescribed bound (Pr4). The Neyman-Pearson lemma (sec [4]) implies

that the optimal ng and g are the solutions to the following optimization problem.

1o

o\ & = n =
Pra=Plk> ] +pPlk=2]= Y ( k)sh(l—sfa)"*’ ’°+p(7§)s}‘;<1—sfa)"° o
k=v0+1

n

1 — Pyp = Plk > vo] + pPlk = 0] = Zn: (72()) sh(l —sa)™F + P(ZE)SZOU =t ™ @)

k=~0+1

We first find minimal 7 satisfying (1) when p = 0. Because at this point 7 is unknown, 9 = vo(ng)
is a function of ng. Next, from the equation (1) we find p = p(ng). Finally, we substitute vo(ng) and
p(ng) into (2) and find the minimal ng for which the equation still holds. Taking ny measurements
at each location guarantces that probability of missed detection of the algorithm will be less or equal
than Pasp it does not guarantee however that the probability of false alarm of the algorithm is less
or equal than Pr4. Taking ng measurements will be a preliminary criteria in our decision making
algorithm: if at least 9 + 1 readings are 1s the searcher will assume that there is a target suspect
at that location. To achieve probability of false alarm less or equal than Pp4 the searchers will take
additional ineasurements.

We denote by Tg0p the stopping time of the algorithm. The probability of false alarm for onc step
is the probability of detecting the targct in S when the target is not in that location. Denoting the
total number of steps taken by N, we can express the upper bound py, for probability of false alarm

for each step as follows.

(1-pra)¥ =1 Pra (3)
From equation (3) we get
1.14n
Pfa =1 —(l—PpA)?T';% (4)

Pfa provides an upper bound for the probability of false alarm for each step needed for the algorithm
to achieve probability of false alarm at most Pp4. The probability of missed detection for one stcp
is the probability of declaring that the target is in foliage when the target is S. Denoting p,q upper

bound for probability of missed detection for each step, we get
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(1- PMD)-H'%%% (5)

Pmd =1-—

Pma provides an upper bound for the probability of missed detection for each step. Using the Neyman-
Pearson criterion again, we obtain the constants n; and «;, that will be used by the algorithm in making
the final decision. n; will be the upper bound on the number of measurements that the searcher may

take at one step. From Neyman-Pearson lemnma (see [4]) we have

n1
pra= P> ml Pl =l = 3 (})ehalt =sr* 40" )1 -5 (0)
k=m+1

n1
1 = pma = Pk > m]+ pPk =m] = Z (7:)85(1 . sd)nl—k i p<:i)s;1(l ) et U
k=m+1

Summary of parameters and variables

N number of searchers
8d probability of detection for a single measurcment
Sfa probability of false alarm for a single measurement

DPmd probability of missed detection for one step

Pfa probability of false alarm for one step
Pyp probability of missed deteetion of the algorithm
Pra probability of false alarm of the algorithm
Tstop stopping time of the algorithm

f frequency of the sensor measurements

a probability for target to be in foliage (0 < a < 1)
é upper bound of the radius of the sensor

A the search area

F foliage

To find ny, we find mininal y; = v(n;) satisfying (6) when p = 0. Next, from the equation (7)
we find p = p(n,). Finally, we substitute v; and p(n,) into (7) and find the minimal n; for which the
mequality still holds.

The decision making algorithm
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Figure I: ROC curves

1. At each stcp the searcher takes ng measurements. If the number of 1s is less or equal than ~,

the searcher decides that the target is not within the sensing area, and makes another step.

2. If the number of 1s is greater than =g, the searcher starts making additional mcasurements,
stopping after at most n; measurcments. After each additional measurement the searcher checks
whether or not the ratio of 1s is smaller than (y1 + 1)/n. If yes, the searcher decides that the
target is not within the sensing area and makes the next step. If no, the searcher makes an
additional measurement. If the searcher has made n; mmeasurements and the ratio of 1s is

greater than (71 + 1)/n;, he declares that the target is detected.

3. If no detection occurs until timne Ty, the searcher stops and declares that the target is in the

foliage.

In figure 1 we present performance plots of our decision making algorithm. Fixing constants ng,
sq and sf, we can compute all corresponding pairs Pra, Parp using equations (1) and (2). For fixed
sq and 85, each color represents a constant ng, shown on the picture. The pairs sq , 55, that we usc
are characteristics of real-life sensors computed in [7].

An estimate for the stopping time of the algorithm can be obtained as follows.

1= P,

Tstop = WISI (8)
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Figure 2: Search area S with foliage (grey), prior (red) and 5000 random targets

3 H ! coverage

In SMS search we use dcsign of motion described in {3] for n searchers to achieve optimal coverage
of the prescribed domain. The heart of the coverage method is a Lyapunov-based control design
utilizing an H~! Sobolev space cost function. The method in [3] allows to design optimal dynamics
for searchers with the goal to cover any part of a given area S. For instance, if the location of the
target is described by a probability distribution P, the part of S where P > 0 has to be covered. We
tested the motion design, included in SMS scarch, for 50 searchers and area S shown on figure 2, with
foliage is shown in grey. Wc tested the problem in case when the prior probability distribution of
the target P is uniform and in case when the location of the target corresponds to prior distribution
shown in red (higher probability corresponds to darker shade in figure 2). As illustrated in figure 3
and 5, the [/ ™! coverage motion design of SMS search guarantees superior coverage according to prior
of the target in both uniform and non-uniform cases. Note that scarchers move with realistic second
order dynamics. As seen in figure 5 the motion of the searchers depends on the probabitity of the
target being in a certain part of the area: the high-probability regions are always covered better. By
covering S according to a probability distribution P H~! coverage saves time by not going to regions
where thc probabitity distribution of the target is 0. There is a potential drawback in H~? coverage
if P contains several high peaks. I that case the searchers will cover the regions close to peaks much
more than needcd to guarantee the desired precision threshold for SMS search. A clever way to avoid
over-covering the area is to use log(P) instead of P. Figure 6 illustrates the reduction of peaks using

logarithm by showing two different cross-sections of P and log(P). Figure 7 shows the area that has

27



A.l

SPECTRAL MULTI-SCALE SEARCH

0 200 400 800 800 1000 1200 1400

Figure 5: Typical coverage of P > 0 by 50 searchers
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Figure 6: Reduction of high peaks in P {dashed), by replacing it with log(P) (solid line)
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Figure 7: Search area S with of log(P) > 0 shown in red

Figure 8: Typical coverage of log(P) > 0 by 50 searchers
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to be covered after taking logarithm of the prior. As illustrated in figure 8, after reducing high peaks
we avoid visiting certain arcas too many times and the coverage of the desired parts of S becomes

niore even.

4 Spectral Multi Scale Search (SMS search)

Assume that we have n searchers and an area A where a single target is located. A may contain
foliage F' which the scnsors can not penetrate. If the target is in the foliage it is undctectable for
the searchers. We usc a decision making strategy based on the Neyman-Pearson lemma, that was
described in Section 2, and compute constants ng, Yo, 71 and 4, for given Prs , Pap, 57, and sq.
We use a measurement history map to keep track of target suspects: we divide the arca S into small
enough cells, and keep record of scnsor measurements for each cell. At the beginning of the algorithm
the belief map and the list of target suspects have no records. There will be two main modes for each

searcher: explore and recheck. After deployment, all searchers start out in explore mode.

1. In explore mode the searchers cover the search area using H~1 coverage dynamics and update
the mecasurement history map. When the number of measurements at a location becomes 1y we
check if the number of dectections at the location exceeds vq: if yes, the location is added to the
list of target suspccts. Starting from the most likely targets (locations that have the highest ratio
of positive measurentents), each target suspect is assigned to an available neighboring scarcher
in explore modc. The scarcher that has been assigned a target suspect changes his mode to

rechecking, and moves to the location of the target on a straight linc with maximum speed.

2. Inrecheck mode, the searcher has to perform ng measurements flying above a target suspect posi-
tion. After finishing the measurements, tlie searcher switches to explore mode. After rechecking,
if the ratio of detections to the number of measurements cxceeds -le, we keep the location in the

list of target suspects, otherwise we remove it from the list.

3. When the number of measurements at a location becomes ny, we check if the number of detections

at the location exceeds v;: if yes, we declare that the target is found and stop the search.

4. If the algorithm reaches stopping time Tj;,p,, without declaring a detection, the algorithin declares
that the target is in the foliage.

We tested the SMS search algorithm for 50 searchers on a rectangular area A shown in figure 2.

Foliage is shown in dark grey and the prior distribution of the target is shown in red. Each searcher

10
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Figure 9: Histograms of SMS search for non-uniform prior and log-non-uniform prior
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Figure 10: Histogram of SMS search for uniform prior
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Figure 11: Proof that the algorithm stays within the desired probability thresholds

has a fixed uncertain sensor range that changes periodically with a fixed period. The probabilities of
detection and false alarm for a single sensor are s4 = 0.8 and sf, = 0.2 respectively. The goal is to
minimize search time while satisfying requirements Pp group > 0.9 and Pra group < 0.1. In figure 11
we show that Pp group and Ppa group converges above and below the required limits, respectively, as
the number of realizations of SMS search increases. We tested the SMS algorithm in 5000 experiments
with randomly generated targets for uniform prior, shown in figure 4, and in case of non-uniform prior,
shown in figure 2. In figure 9 we compare histograns of 5000 experiments of SMS search performed
on S with non-uniform prior shown in figure 2 and with log-non-uniforin prior shown in figure 7. The
search and detection time statistics, also presented in figure 9, show that the median scarch time of
SMS applied to non-uniform prior is 15% bigger thau in case of log-non-uniform prior and the median
absolute deviation of SMS detection time applied to non-uniform prior is 40% bigger than in case of
log-non-uniform prior. The histograin of SMS scarch performed on S with uniform prior is in figure 10.
In figure 12 the median of the search time is shown as a function of the number of realizations of SMS
search. Using H~! coverage on non-uniform prior (sec figures 2, 5) results in a median search time as
compared with H~! coverage for uniform prior (see figure 3). Taking logarithm of the non-uniform
prior (sce figures 8, 7, 6) helps to reduce the median search time even further.

The resulting median detection time was 203 sec, median search time was 400 sec, median absolute
deviation (MAD) was 229 sec.

12
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Figure 12: Median search time of SMS algorithm

5 Conclusions

In this paper we explore performance of scarch algorithms in presence of uncertainty in sensor radius.

The introduced SMS search algorithm demonstrates excellent performance in presence of uncertainty

as shown in the table below. We designed the SMS algorithim maximizing its effective use of assets:

the search time is inversely proportional to the number of searchers.

Comparison of SMS search under different conditions

Algorithm Median Detection Time | Median Search Time | Median Absolute Deviation
SMS (no uncertainty) 169 sec 303 sec 226 sec
SMS 203 sec 400 sec 229 sec
Billiard search 587 sec 1190 sec 534 sce

In the above table we compare statistics for SMS search without uncertainty, SMS search with

periodically changing uncertain sensor radius, and Billiard search when searchers start out in ran-

dom directions and move in straight lines, reflecting when they reach the border. We ran computer

simulations of SMS search conducting 5000 independent experiments for each scenario. Computer

simulations show that Median Detection Time, Median Search Time and Median Absolute Deviation

of SMS search in presence of uncertainty are very close to the corresponding SMS search data without

uncertainty in sensor radius.

13
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The median absolute deviation of SMS search time is 1.5 times smaller than that of Billiard search;
median search time of SMS search is 1.6 times smaller than that of Billiard search; median detection

time of SMS search 1.7 times smaller than that of Billiard search.
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1 Overview

Achieving the Surveillance Milestone requires the design of trajectories for aerial vehicles with
uncertain sensors moving over a large complex terrain so that the time to locate a stationary target
on the ground is significantly less than the time required by straightforward lawnmower trajectories.
Because the individual sensor measurements include non-zero probabilities for both missed detection
and false alarm, and the sensor footprint size is uncertain; thc final statcment provided by the search
algorithm as to the location of the target cannot be provided with absolute certainty. Rather, the
final declaration of the targct location must meet confidence thresholds specified a priort for the
probability that the stated target location is correct. In this report, we present the Dynamic
Greedy Search (DyGS) algorithm for dynamically generating vehicle trajectories that achieves
this Surveillance Milestone while ensuring that the method is robust to sensor failure, and is easily
implemented for vehicles with complex dynamics and for regions with arbitrary foliage distributions.
The DyGS algorithm achieves a 1.9 times speed-up over lawnmower methods.

Two essential components of the DyGS search strategy presented here are a dynamic trajectory
generation algorithm and a precise sensor decision algorithm.

The trajectory generation algorithm provides dynamically updated trajectories that seek to
maximize the probability of finding the target while ensuring consistency with the modeled dynam-
ics and limited control authority of the vehiclcs. A hallmark of the DyGS search strategy is that
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it requires no modification to handle vehicles with under-actuated or complex dynamics. Further-
more, the algorithm can be applied to real vehicles in which an accurate model of the dynamics is
not known, and only recorded maneuvers of the real flight dynamics are provided.

The sensor decision algorithm takes as its input the history of measurements obtained during
the search up to the current time. Given these raw inputs, the decision algorithm must decide when
the search may be terminated and a declaration of the target location can be provided that satisfies
the specified thresholds of ceorrectness. A classical approach to dealing with measurement data is
to sample the incoming measurements onto a spatial grid, and then to calculate the probability for
the target to be located at each cell in the grid. Here, we use a grid-free approach that instead stores
the measurements as raw atomistic data so that inferences of the target location are made using
the raw measurements in their most precise form. This approach has several advantages in that it
removes approximation errors incurred by gridding, maximizes the use of information received in
an information-theoretic sense, and also forgoes the need to impose a grid and a consequent scaling
on the search domain that is not intrinsic to the problem. In practice, imposition of a grid can lead
to ambiguity and ill-conditioned interpretation of the probabilities in each cell.

2 The Surveillance Milestone

We now provide a precise description of the Surveillance Milestone problem. In order to assess the
efficiency of various search algorithins we have developed a specific test problem against which all
the methods may be benchmarked. However, an important point is that the DyGS search algo-
rithm is generally and easily applicable to arbitrary search domains and foliage distributions, and
the specific domain used here is simply an example case. In particular, the search domain need not
be a simply connected region.

The Search Domain:
1. The search domain, D, is a golden rectangle with an area of 1 square kilometer.
2. Regions of the search domain are designated as foliage as indicated in Figure 1.

3. A probability density f with support on D provides the probability density for finding the
target at each location in the search domain. Since there is exactly one target to be found,
fD fdA = 1. Target locations are sampled from this probability density function.

The Vehicle Model:
1. Fifty vehicles, each equipped with a single sensor, are available to search the domain.

2. The vehicles are initially deployed at rest on a 5 by 10 grid with 5m spacing in the lower left
corner of the domain.

3. The dynamics of the search vehicles are modeled as a simple double integrator:
I=u (1)

where z is the location of the vehicle in the plane, and u is a control force that must be chosen
subject to the constraints that the maximum allowed magnitude of the velocity vector is 10
m/s, and the maximum allowed magnitude of the acceleration vector is 5 m/s?.
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Figure 1: The search domain shown here is used to benchmark search algorithms in the Surveillance
Milestone. Green areas represent foliage in which the target can hide without being seen by the sensors.

The Sensor Model:
1. Each sensor takes a measurement every 0.5 seconds.

2. During a incasurement, the area scanned by the sensor is circular and lies directly below the
vehicle. The radius of the area scanned by the sensor changes every 50 seconds and is chosen
uniformly from the interval 5m to 10m.

3. If the target is outside the foliage and inside the small circular area scanned by the sensor,
then the sensor reports with probability 0.8 that the target has been scen. In other words,
the sensor probability of detection, pq, is 0.8.

4. If the scanned area includes regions without foliage and the target is not in these open regions,
then with probability 0.2 the sensor reports seeing the target, i.e. the sensor probability of
false alarm, pg,, is 0.2.

5. For all other cases, the sensor reports that the target was not seen.

6. When the sensor reports secing the targct, the exact location of the target is provided. If
the sensor provides a false alarm, a location inside the open region inside the scanned area
is randomly generated and returned. This location is stored by the sensor measurement
generator and returned during future falsc alarms for cases when the scanned area includes
this location.

7. With each measurement, the sensor also provides the exact location of the vehicle.
Information Available to the the Search Algorithm:

1. The search algorithm is provided with the exact geometry of the search domain and foliage,
the probability distribution of the target locations, and the lower and upper bounds for the
radius of the circular area scanned by the sensor.

2. At each timestep (every 0.5 seconds), the algorithm is provided with measurciments from cach
of the sensors. The measurement data includes the precise location of the sensor, and one of
the following statements:

(a) No target was seen,
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(b) The target was seen at the location (zm,, Ym).

Information Provided by the Search Algorithm:

1.

2%

At each time step, the search algorithm must provide trajectories along which the scnsors
must move. The trajectorics must be consistent with the specified vehicle dynamies.

The algorithm must terminate the scarch and provide a final declaration of the target loeation.
This declaration must be one of the following:

(a) The target is in the foliage,

(b) The targct is in the open area and is located at the position (x4, yq).

Benchmarking Search Algorithms:

1.

5.

NT represents the numbcr of target locations that arc sampled from the target probability
density. We choose NT = 5000.

. For each target location, the search algorithm is run until the search is terminated and a

dcclaration of the target location is made. The time taken to perform the search is recorded.

. After all NT searches have been eonducted, the correctness of the declarations is checked.

Let
ND ;= (Number of detectable targets) The number of target locations in the
open region,
NFA = (Numbecr of falsc alarms) The number of declarations stating that the
target was at a speeific point in the open region that were not correct,
NMD := (Number of missed detections) The numbecr of declarations stating that
the target was in the foliage when the target was in fact in the open
region.
Then eompute
B, &= -I}’VF—}\ (Algoritlun probabilty of falsc alarm),
Puyp = %g; (Algorithm probabilty of missed detection).

The algorithm is considcred sufficiently correct if Pyp and Pra are both less than 0.1.

. If the algorithm is sufficiently correet, then the median seareh time of all the NT seareh times

is computed.

Sufficicntly correct scarch algorithms are rankcd by comparing their imedian seareh times.

The Surveillance Milestone Problem Statement:
Dcesign a scarch algorithm so that the median scarch time eomputed using the methodology de-
scribed above is less than the median search time computed for a search algorithm that uses
systematic lawnmower type trajectories.
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3 The Dynamic Greedy Search Algorithm

As mentioned in the overview, the Dynamic Greedy Search (DyGS) strategy comprises two al-
gorithms: a grid-free decision algorithm for storing measurement data and deciding when a final
declaration as to the target location can be mmade, and a trajectory generation algorithmn for dy-
namically generating trajectories that are consistent with the vehicle dynamics and maximize the
probability of finding the target. :

3.1 The Grid-Free Decision Algorithm

The grid-free approach provides a method for storing and interpreting the measurement data in
a manner that is computationally efficient while maximizing the utility of the raw measurements.
The central data structure maintained by this algorithin is a list of suspect locations. Whenever
a sensor reports that the target has been seen at a particular location, and this location has not
previously been identified, this new location is added to the list of suspect locations. Associated
with each suspect location in the list is a repository for all measurements that have ever been taken
at locations that are less than the maximum possible sensor radius away from the suspect target
location. Hence, along with the suspect location, we store every measurement that could possibly
have included this location in its scanning area. With all the locally relevant measurements in
hand, we can conveniently compute the local probability that the target is located at each suspect
location in the list. For the case when the algorithm is told a priori that there is only one target, all
measurements are globally dependent — a null measurement in one location increases the probability
for positive measurements elsewhere in the domain. For this case, it is conceivable that we could use
all the global measurement data to compute the probability that the target is located at each suspect
location exactly; however, this procedure would require computationally expensive integrations and
summations to compute the conditional probabilities. The approach presented here computes only
a local probability but in a manner that uses the data precisely. Furthermore, the probabilities
become precise for the case when the number of targets is not known and measurements separated
by more than twice the maximum sensor radius are independent.

The probability that the target is located at a suspect location is updated whenever a local

measurement is received using a Bayesian update schene. Let {sj}l]-ts1 denote the current set of

NS suspect locations. Let {m{c}&‘l denote all the NM measurements local to s; that have been

received up to the current time. Finally, let T; denote the event that the target is in fact located at
sj. When a new suspect location is identified and added to the suspect list, the probability that the
target is at this location is initialized to the value of the probability density function for the target
distribution at this point. Then, the probability is updated using all measurements previously
recorded. Since we are using the local approximation (that distant measurements are independent)
we need only use nearby measurements to perform this calculation. As the search proceeds and
more local measurements are received, the probability is further updated. The formula for updating
the probability associated with suspect location s; given a new measurement mj, 41 180
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P(T;|ml):= _ P(m{ |T1)f(31)
PN Pl 1 T ) - f(s) + Pm) | ~ T3 ) - (1= f(s5)

. Pml | T:)-P(T; | mi
P(Ty |y ) o= = — M | 5 ) P T | 05 = i
P(mk+1|Tj)‘p(Tj|mk)+P(mk+1|~T]')‘P(~Tj|mk)

Remark 1:
The uncertainties introduced by the sensor probabilities for false alarm and missed detections, as
well as the uncertainty with respect to the sensor radius are accountcd for in the right hand side
in the following way:
1f the measurement mi +1 did not observe the target, then

P( miﬂ | T;) = (1 — pq) - P(vehicle was in range of 5;) + (1 — pga) - P(vehicle was out of range of s;).
If the measurcment m{. +1 did observe the target, then

P( m{c_H | T;) = pa - P(vehicle was in range of s;) + pra - P(vehicle was out of range of s;).

The probability that the vehicle was in or out of range of the suspect location is determined
by the specified uncertainty in the scnsor radius. For the specified range of values for the sensor

radius, and denoting the vchicle position during measurement mj, as 1';:1 we have r := ||:L',7c - 85,
1  ifrf <5
P(vehicle was in range of s;) = ¢ 2-02r] if5<r <10 , (2)
0 if'n > 10
and
P(vehicle was out of range of s;) = 1 — P(vehicle was in range of s;). (3)

Making the assumption that measurements separated by more than twice the maximum sensor
radius are uncorrelated (which is equivalent to assuming the number of targets is unknown) implies
that we only need to consider measurements that are nearby the suspect location when performing
the probability update.

Remark 2:
Notice that a separate probability space is assigned locally to each suspect location, and that each
probability space is partitioned into only two possible events: the target is at s; (denoted Tj) or
the target is not at s; (denoted ~ T;). Since all the probabilities are computed locally, there is
no requirement that the sum of all the probabilitics at all the suspect locations is unity. In other
words, we should not expect Z;LSI P(T; | m}) = 1. What is guaranteed by construction is that

P(T; | ml)+P(~T;|ml)=1.

6
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These local probabilities provide a sense for the most likely target locations based on local
measurements only.

At every timestep, the data structure described above provides a ranked list of the most likely
locations where the target is hiding given the measurement history. What remains, is for the al-
gorithm to deterinine when a target is located at a specific suspect location with sufficiently high
probability that the search can be terminated and a declaration of the target location can be made.
The algorithm must also be able to deterinine with sufficient confidence of correctness that the
target is in the foliage. To effect these actions, we introduce three parameters:
MinimumNumberQOfMeasurementsToCheck, MinimumNumberOfMeasurementsToDeclare, and Maximum-
SearchTime that we will now proceed to describe.

Suspect Checking:

The default behavior of the search vehicles is to browse the scarch domain and to gather measure-
ments in regions where the target is most likely to be found. (More on how these search trajectories
are generated is provided in Section 3.2). As the vehicles browse the domain, a list of suspect lo-
cations and the local probability that the target is in fact at these locations is generated. If the
local probability that the target is located at a particular suspect location rises above 0.5, and the
number of measurements used to compute this probability is greater than or equal to Minimum-
NumberOfMeasurementsToCheck, then the algorithm will command the most nearby search vehicle
to fly directly to the suspect location to gather more measurements to check the status of the sus-
pect. During this checking process, a count of the number of certain measurements (measurements
obtained while the sensor is less than 5m away from the suspect location) is kept. This requirement
effectively removes uncertainty due to the variable sensor radius. When the number of certain niea-
surements reaches MinimumNumberOfMeasurementsToDeclare, the algorithm has sufficient data to
determine the status of the suspect location. If more than half of the certain measurements indicate
that the target is present, then the algoritlun can terminate the search and declare that the target
is located at the suspect location. Otherwise, the suspect location is flagged as checked, the search
vehicle resumes browsing, and the search continues.

Search Termination:
The search algorithm proceeds with sensors simultaneously browsing and checking suspect loca-
tions. The longer the search continues without uncovering the location of the target, the greater
the probability that the target is located in the foliage. When the search time reaches Maximum-
SearchTime, the search is terminated and a declaration is made that the target is in the foliage.
Choosing larger values of MaximumSearchTime will provide greater confidence in the correctness of
this declaration.

Choosing Values for the Parameters:
In short, the values of MinimumNumberOfMeasurementsToCheck, MinimumNumberOfMeasurementsToDe-
clare, and MaximumSearchTime are chosen so as to minimize the median search time. In this way,
freedom in the choice of the parameter values allows the search algorithin to be optimized for the
specific search problem at hand.

In practice, MinimumNumberOfMeasurementsToCheck is chosen from the nominal set of values
{2,3,4,5}, and then a simple search is performed to find the values of the remaining two parameters
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so that the search time is minimnized.

It should be noted that for a given seusor py and pg,, the Neyman-Pearson Lemma provides
a minimum number of measurements that are required to test the hypothesis that the suspect is
indeed the target, and the nuniber of positive measurements that are required in order to declare
that the suspect is indeed the target with sufficient correctness. These theoretical rcsults are
helpful in guiding the choice of the paramectcrs, howcver, in practice these choices tend to be too
conservative. The freedom to choose and adjust tlie parameters allows the algorithm to exploit
structure in the given problein. Inhomogeneous structure arises, for example, from the uneven
distribution of foliage, the shape of the target probability distribution, tlie geometry of the domain,
and the concentrated deployment location of the vehicles. All these factors introduce non-trivial
effects that are not accounted for in a straightforward application of the Neyman-Pearson lemma
that assumes a homogeneous structure and distribution of events.

Finding optimal values of the remaining two parameters, MinimumNumberOfMeasurementsToDe-
clare and MaximumSearchTime, proceeds very quickly because of the relatively simple functional
dependence of the search time on the parameters. We choose the parameters as low as possible to
decrease the search time, subject to the following constraints:

C1. Decreasing the stopping time increases Pyp (The algorithin is too hasty to declare that the
target is in the foliage).

C2. Decreasing MinimumNumMeasurements increases Pra (The algorithm is too hasty to declare
that the target is located at a suspect location).

In practice, we sequentially decrease these two parameters as much as possible without violating
the specified Pra and Pyp. This is a simple bisection search that requires perhaps 5 to 10 runs
on each parameter. Each run (which includes 5000 searches) takes 2 to 4 minutes on a cluster at

Caltech.

The main features of the sensor decision algorithm are summarized as follows:
1. No grid is required. The original problem has no inherent grid and we do not impose one.

2. We do not need to assign mcasurements to a grid. This process inherently introduces uncer-
tainty that is not a part of the original problem.

3. The final declaration of the target position is exact. It is either at that exact location or it is
not.

4. An optimized Neyman-Pearson criterion is used in the local binary hypothesis.

5. Time is optimized while ensuring the constraints on Pga and Pyp are satisfied.

3.2 Dynamic Greedy Trajectory Generation

We now describe the algorithm for dynamically generating trajectories that are consistent with
the vehicle dynamics. In essence, the trajectories for each vehicle are chosen from pre-computed
trajectory segments so as to maximize passage through regions of the domain in which the target
is most likely to be found and that have not previously been visited.
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Figure 2: The trajectory library consists of motion primitives that can be pieced together to generate a
vehicle trajectory that is consistcnt with the dynamics and limited control authority of the vehicles. Elements
in the trajectory library are shown in figures (a) through (e) in order to emphasize how the library allows
for a range of motion that covers the multiple scales of the search domain.

Library of Trajectories:

Each scnsor has a library of trajectories storcd in memory. A trajectory consists of a list of
waypoints where each waypoint is a triple (z,y,0) describing the position and heading anglc of
the vehicle along the trajectory at time intervals commensurate with the frame rate of thc camera.
The library is pre-computed and can be stored in memory at the factory where the vehicles are
manufactured.

The library currently implemented in the DyGS algorithin has 205 trajectories. As shown in
Figure 2, the library includes trajectories ranging from sharp left to sharp right turns and range in
length from 12 seconds to 120 seconds. This library can be easily enriched with morc trajectorics or
replaced with new trajectories without requiring any changes to the search algorithm. A guideline
for choosing trajectories to include in the library, is that they should cover all scales of the scarch
domain.

Vehicle Constraints:
By construction, the trajectories in the library satisfy the dynamic constraints of the vehicles. For
the case when the dynamics is modeled with a double integrator, the trajectories are designed so
that the vehicles always move at the maximum allowed velocity, and accelerations are only applied
perpendicular to the direction of motion.

Choosing Trajectories from the Library:
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At each time step, each sensor is mnoved to the next waypoint along its current trajectory. If the
sensor is at the end of its current trajectory, then the sensor must be assigned a new trajectory
from the library. The sensor performs a scan through the trajectories in the library to detcrinine
which trajectory will maximize the time-averaged probability of the prior visited during the trajec-
tory. Visits to locations in the foliage and outside the search domain are considered to have zero
probability. Also, any location along the trajectory that has been previously visited more than
MaxNumVisits times, is considered to have zero probability. MaxNumVisits is a parameter that is
chosen to adjust the “thickness” of the coverage.!

Computational Effort:
The computational overhead rcquired to implement this trajectory generation scheme is minimal
since at each time step, the majority of sensors are simply moved to the next waypoint along their
current trajectory. Computation is only required when a sensor reaches the end of its assigned tra-
jectory. A search conducted by fifty sensors can be simulated 100 times faster than real time on a
single modest CPU. The computational effort of the search is dominated by the decision algorithin
(updating suspect lists etc.) and not the trajectory optimization.

Extensions:

The dynamic trajectory generation algorithm can be easily extended to more complicated dynamnics
by simply replacing the library; no changes to the code are necessary. For examnple, we have success-
fully implemented search with vehicles whose dynamics is described by a simple three-dimensional
model for under-actuated helicopter dynamics. The helicopters are modeled as rigid bodies with
controls for forward and roll pitch of the main bladcs, as well as a yaw control from the tail blades.
Conceivably, the trajectory generation algorithm can be applied to a vchicle in which an accurate
model of the dynamics is not known; the trajectory library can be generated by recording the
motion of the vehicle as it is driven through various maneuvers by an actual pilot.

Robustness:

Since the trajectories are dynamically generated, they easily and quickly adapt to sudden changes
or updates in the prescribed search domain, foliage distribution, or initial target probability distri-
bution. In contrast, the trajectories used in a systematic search strategy such as the lawnmower
approach, are pre-computed and difficult to alter dynamically if new information about the search
domain is provided or it becomes apparent that one of the sensors has failed. Moreover, lawn-
mower styled trajectories become increasingly difficult to design for search doinains with complex
geometry and foliage distributions. The ability of the DyGS algorithm to dynamically update the
trajectories and the resulting chaotic nature of the these trajectories affords them more robustness
when faced with search domains that have complex geometries.

4 Results and Conclusion

A search method that uses systematic lawnmower styled trajectories was implemented for purposcs
of comparison with the DyGS algorithm. When applied to the test domain described in Section 2,

'MaxNumVisits can be adjusted continuously through the positive reals via use of a coin. For example, to realize
MaxNumVisits = 3.67 we ask if a random number in the unit interval is greater than 0.67. If yes, then choose
MaxNumVisits = 3, otherwise choose MaxNumVisits= 4.

10
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the lawnmower method achieves a median search time of 887.5 seconds. The median search time
obtained for the DyGS algorithm is 458.5 seconds. We conclude that the DyGS algorithm achieves
the Surveillance Milestone by producing a 1.9 times speed up over the systematic launmower search
strategy. What is more, the DyGS algorithm provides robustness to sensor failure and to changes
in the search domain geometry and foliage distribution. The DyGS algorithm is computationally
fast, and can handle vehicles with complex, under-actuated, or even unknown vehicle dynamics.

11
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A.3 Collision avoidance and surveillance with autonomous vehi-
cles
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Abstract

The main aim of this papcr is two fold. First is to present a ncw technique
for collision avoidance of mechanical systems and second is to demonstrate the
role of collision avoidance to enhanee surveillance. The traditional techniques
for collision avoidance arc based on shaping the potential encrgy [18] or by
introdueing gyroseopie forees into the system [6]. In this paper, we close the
story by introdueing kinetie shaping for collision avoidance in the spirit of the
Method of Controlled Lagrangians [5, 4. We also provide analytic guarantec
for no collision under some mild eonditions depending only upon the encrgy and
momentum of the system as it enters into a collision avoidanee mode. The cor-
responding control cffort is compared with known techniques. For an example
vchicle model, it is shown that potential based collision avoidance methods are
the most control cfficicnt. We then bricfly discuss the dependence of collision
avoidance control cost on vehicle models. In partieular, for systems with effi-
cient steering, we expcect gyroscopic collision avoidance to be the most cfficient.
We then show how collision avoidanec can be used to randomize survcillance to
give efficient chaotic search algorithms. The results are illustrated using mul-
tiple underactuated hovercraft. Perhaps most interesting, using a mix-norm,
the area surveillance by multiple hovererafts is shown to approach optimality
quickly compared to the time taken to survey 90% of the region.

1 Introduction

1.1 Overview

The main goal of this paper is to introduce a new tool for collision avoidance and to
demonstrate the role of collision avoidance in randomizing surveillance using multi-
ple vehicles. We will also discuss quantities which can be used to evaluate quality of

*This work was in part supported by DARPA DSO undcr AFOSR contract FA9550-07-C-0024.
Approved for public rclease, distribution unlimited.
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surveillance heuristics. In particular, we introduce a new kinetic shaping based col-
lision avoidance controller and surveillance with arguably chaotic properties, similar
to the billiard problem [15]. Collision avoidance is critical when managing multi-
ple vehicles in an environment with obstacles. They have also been used recently
[6] to demonstrate their role in simulating flocking behaviour in addition to their
intended task of avoiding collisions. The traditional potential based methods [18]
and the recent gyroscopic force based methods |[6] can be thought of as shaping
the potential and the linear part of kinetic energy of the Lagrangian. In this paper,
we complete the story of energy shaping based collision avoidance schemes by de-
signing a collision avoidance controller by shaping the kinetic energy of the system.
Using an example vehicle model and a scenario, we compare how the new technique
fares with the previous two methods by evaluating the the L? and L* norm of the
control effort. The former norm quantifies the fuel consuined and the latter norm
quantifies the maximum acceleration the vehicle experiences in avoiding collision.
We also note that kinetic shaping collision avoidance gives analytic guarantee for no
collision under a mild assumption depending only upon the energy and momentum
of the system as it enters into a collision avoidance mode.

Surveillance using nultiple vehicles is an important engineering problem with
widespread applications. Traditionally, this task has been categorized into the static
surveillance problem and dynamic surveillance problems. In the former, one needs
to find the most optimal placement for sensors or cameras in an environment to
maximize the area coverage [2, &]. In the latter problein, one has sensors on dynamic
objects like vehicles and maybe moving targets [3, 9]. The problem now is to design
surveillance heuristics to guarantee target capture and tracking, i.e., to search and
secure. The main research areas that come under dynamic surveillance are searcher
coordination, flocking/formation control, role of communication topology and line of
sight maintenance. Please see [11] for a detailed overview on the existing literature
on these topics. In searcher coordination, the problem is to make sure no part of the
region of interest is left out. The problem of searching for missing people trapped in
mines falls in this category. In flocking and formation control, the goal is to make
a group of vehicles move in a group to achieve a particular task like adaptive ocean
sampling [7]. Whenever one has multiple vehicles, ensuring that the controller is
robust to communication link losses is of upmost important. These problems fall
under the communication topology category. The main aim is to demonstrate that
whatever strategy one comes up with, the surveillance is not compromised because
of noise or communication link breakages etc. Finally, when one has radio signals
for intervehicle communication, it becomes important to make sure line of sight
is maintained. See [11] for more references on this problem. In this paper, our
focus will be on surveillance, i.e., we will not consider communication issues. Our
main goal is to make sure the region is surveyed and that too in a “chaotic” or
randomized manner. Such randomized searches are important in problems where
one has mobile or “intelligent” targets and we do not want the targets to predict the
searchers path for evasion purposes [16]. In our case, we want our search effort to
be distributed with respect to some probability density depending upon the apriori
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belief for target distribution and at the same time appear “chaotic” enough to keep
the targets from predicting the next location of the sensors. We will present our
surveillance algorithm and demonstrate this property by comparing the mix-norm of
our vehicle trajectories with those of ideal zero inertia vehicles used as a benchmark.

1.2 Organization

In §2, we introduce kinetic shaping collision avoidance controller and give an explicit
formula for the case when the vehicle is a double integrator. In §2.2, we compare
the controller cost for the kinetic shaping controller introduced in §2 with the tra-
ditional potential based controller and with gyroscopic forcing based controller and
interpret the results. In §3, we show how collision avoidance enhances surveillance
and quantify its performance. In the same section, we discuss ideal vehicles and the
mix-norin. In §4, we present some simulation results for the case of multiple under-
actuated hovercraft surveying a circular region. We demonstrate that using collision
avoidance, the hovercraft trajectories approach a uniforin distribution quickly con-
pared to the time taken to survey 90% of the region. We conclude this paper with
a suinmary of the main results and a discussion in §5.

2 Kinetic Shaping for Collision Avoidance

Intervehicle collision avoidance and obstacle avoidance is one of the most impor-
tant issues in multivehicle tasks. The vast amount of literature focussing on this
particular task bears testimony to this claim. Traditional methods based on po-
tential design can be traced to the original works of Rimon and Koditschek [185].
The basic idea is to assign repelling potentials to obstacles and other vehicles and
shape the potential energy of the moving vehicle accordingly. To get rid of some
of the drawbacks of potential based collision avoidance, viz, global knowledge of
obstacles etc, the authors in [6] design gyroscopic forcing based collision avoidance
schemes. One of the main advantages of this new approach is that it tends to avoid
gridlocking. Moreover, it conserves the total energy of the system as the steering
forces act perpendicular to the instantaneous velocity. This in turn implies that we
can use the readymade energy function of the system as a Lyapunov function for
stability analysis purposes. Moreover, the gyroscopic forces do not interfere with
the global potential function designed for a particular control task. The gyroscopic
force based collision avoidance is also completely decentralized. Each vehicle has a
sensing radius and goes into a collision avoidance mode only when it senses other
vehicles within its sensing radius.

Gyroscopic based collision avoidance discussed in [6] can be thought of shaping
the Lagrangian by introducing a term linear in velocity. For example, if (g;) =
q are generalized coordinates, then we can introduce gyroscopic forces into the
system by adding the term G = 3°, Ai(q)¢' to the Lagrangian'. The gyroscopic
forcing term responsible for collision avoidance acts in a direction “perpendicular”

!Intrinsically, we are adding the action of the one form A = A;dg* on the tangent bundle to the
Lagrangian.
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to the instantaneous velocity. What this means is that the Euler-Lagrange term

corresponding to G adds the term (%} - gg,}) ¢* to the right hand side of the
Euler-Lagrange equation for the original Lagrangian in the it! direction. It can be
verified that the dot product of this term with q is zero, i.e., the gyroscopic forcing
term is “perpendicular” to the instantaneous velocity. Note also that if the one
form A;dq' is closed, the gyroscopic forcing term is zero. Potential based collision
avoidance discussed in [14] also shapes the potential energy part of the Lagrangian.
But now, the resulting collision avoidance forcing term can be made to act eithcr
along the center lines of the vehicles as in [18], or in a direction perpendicular
to the centerline or a combination of these two directions. In the same paper, it
was observed in simulation cxamples that when the forcing term acts in a direction
perpendicular to thc centerline, it takes a much longer time for thc vehicles to get
out of collision avoidance mode. After studying the above two examples, one could
ask if its possible to derive collision avoidance schemes by shaping the kinctic energy
part of the Lagrangian. We provide an answer in positive in this section.
The model we will be using in this section is going to be

X=ur+uc+up (2.1)

where ur is the controller which takes the vehicles to a particular target location
or achieve a particular task, uc is the collision avoidance controller and up is the
dissipation controller linear in velocity. Each vehicle has a sensing radius r, and a
collision radius r., i.e., a vehicle senses another vehicles which is within a distance
re from it. If the distance between two vehicles is less than 7., its considered a
collision. So our goal is to dcrive a collision avoidance scheme which guarantees that
the distance between two vehicles is always greater than 2r.. The collision avoidance
controller uc is nonzero only when the vehicle senses an obstacle or another vehicle
inside its sensing radius. When the vehicle is in its collision avoidance mode, ur
and up are both set to zero.

%)

Figure 2.1: Vehicle j within the radius of sensing r, of vehicle i.
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Consider two vehicles in R™ whose controlled equations of motion are

X1 = ur+uci+up (2.2)
X2 urg + ucay + up? (2.3)

The Lagrangian for each of these vehicles are given by their respective kinetic en-
ergies L; = %)éir)éi. As stated before, when vehicles i senses another vehicle within
its tolerance radius, it goes into a collision avoidance mode where

ur; =0; up; =0 (2.4)

In this collision avoidance mode, we would now like to choose the collision avoid-
ance controller uc; such that the resulting closed loop system consisting of the two
vehicles is also a Lagrangian system with a Lagrangian which locks like a kinetic
energy term. Consider the Lagrangian L given by

1 : .
L= §||X1 — % 2(5} + x3) (2.5)

This Lagrangian is regular as long as x; # x2. The energy E' corresponding to this
Lagrangian is the Lagrangian itself and the momentum corresponding to translation
symmetry is p = ||x; — Xo|?(x% 4 %3). We will show that for two vehicles following
the Euler-Lagrange equations for this Lagrangian, the vehicles do not collide as long
as their initial velocities are not equal and opposite to each other. More precisely,
we have the following result.

Theorem Consider two vehicles with configuration variables given by x3, x2 and
following the equations of motion corresponding to the Lagrangian given by (2.5).
If at t = 0, we have x1(0) # x2(0) and x1(0) + X2(0) # 0, then the two vehicles
never collide at any instant of time, i.e., x1(¢) # x2(t) for all t > 0. Moreover, if
Ep > 0 and pg # O are the nonzero energy and momentum at ¢t = 0 respectively,

then ||x; — x| >/ J-LFEJ(J; for all time.

PROOF For the Lagrangian given by (2.5), the momentum p corresponding to
translation symmetry and the energy E are conserved quantities. Assume that
3 — x2|| > 0. Then we have

1 s g ; .
Ey = Z”x’ = xall? [II%1 + %21 + [|%1 — %2/1?]
1 : .
2 k- a2 [|%1 + %o 2
1 [lpol?

= Z||X1——Xz||2 ( Assuming ||x; — x2|| > 0) (2.6)

Therefore, we get that if |[x; —xz|| > 0, then ||x; —x2|| > 4/ ”%i-kz > 0. Thus, using
continuity and the fact that x;(0) # x2(0), we get that the minimum distance of
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approach for the vehicles is bounded below by a quantity depending only on the
values of energy and momentum at ¢t = 0. |

If we now use the equations of motion given by the Euler Lagrange equation
corresponding to the Lagrangian (2.5), we have designed a collision avoidance con-

2
troller which guarantees no collision as long as |1%‘|s > r.. Here, subscript s

denotes the instance when the vehicles are within each others sensing radius and
have sensed each other. At this instant, the only controller acting on the vehicles
are the individual collision avoidance contoller derived from the Lagrangin (2.5).
The final controlter for the individual vehicle turns out to be

1

(x1 — x2)?
1

(x1 — x2)?

ucy = (—2(x1 — x2)7 (%1 — X2)%1 + (% + X3)(x1 — X))
(2:7)
ucy = (=2(x; — x2)T (%1 — %2)%2 + (%2 + x3)(x2 — x,))

Figure (2.2) illustrates trajectories in the (z;,z2) plane for two vehictes in R
with coordinates z1,z2. The initial position is (0.5, 0) and various trajectories
correspond to various initial velocities starting from this particular initial position.
As shown, the trajectories never “collide” with the line 1 = 9 unless its initial
momentuin is zero in which case they collide in finite time. We have the following
result.

5>

= (-4, 10)
- o
(SR ]

01 na

e

0 [ 3] 02 03 o4 os 0“ 0‘7 0-‘ 0.‘ ‘
Xt
Figure 2.2: Trajectories in (z1,z2) plane for two vehicles in R with positions given by z1,z2

and corresponding to the Lagrangian given by (2.5). The initial position is (0.5,0) and the initial
veloeities are shown in the figure.

Result Consider two vehicles in R with positions given by z),z2 and following
the equations of motion given by the Lagrangian (2.5). If £,(0) + 2(0) = 0 and
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z1(0) # x2(0), then
_24(0)
21(0)

where z;(t) = z1(t) — z2(t) and 2;(0) # 0 by assumption. Therefore, we have
collision in finite time.

(2.8)

PROOF Proof follows by writing down the equations of motion for the Lagrangian
(2.5) in R using the variables

2] = ) —ZX2
) + 12 (2.9)

<2

and verifying (2.8). [ |
We also have the following time to minimum approach result.

Result Consider two vehicles in R with positions given by z,,z2 and following
the equations of motion given by the Lagrangian (2.5). If E = 2L(0) > 0 and

p = (21(0) — 22(0))? (£1(0) + 22(0)) # 0, the the vehicles approach their minimum
distance at time T,in = —gf where

2 = 3 (2/a(z(0) — K) + sinh(2v/a(2(0) — K)))
D PR
where 21, 29 are as defined above in (2.9) and k = M_l\%[ﬂgll — 25(0).

PROOF We have,

1
L = Zz'f’(é'f’+2§) (2.10)
2-
212‘2
= (2.11)

If E > 0and p # 0, we have %—2‘ = \/%—fi —1. This gives, z; = 7‘5 cosh(v/a(zg—
k)). Therefore, 2| = sinh(v/a(zo —k))%; and 2, = —2\/a tanh(/a(zo —k))23. There-

fore,

() =k+ ﬁf{oot(sinh(z) +z—A4(tc) +c2) =0) (2.12)
where

oy = % (2v/a(22(0) — k) + sinh(2va(z(0) — k))) (2.13)

o, = %2\/522(0) (1 + cosh(2v/a(z2(0) — &) (2.14)
Now, z; is minimum when z9 = k at t = T4, This implies, Typin = —%f. |
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2.1 Comparison with potential and gyroscopic forcing based con-
trollers

In this section, we will compare the performance of kinetic shaping collision avoid-
ance controller with the traditional potential shaping based and the recent gyro-
scopic shaping based controller. Figure 2.3 compares qualitatively the difference in
trajectories for the three different collision avoidance schemes. In this figure, we
have two double integrator vehicles in R?, initially located at (30, 0) and (—30, 0).
Starting with zero initial velocities, their task is to swap their positions avoiding
collisions. The controllers will be stated precisely in (2.17). The plot illustrates
the trajectories as the vehicles swap their positions. We see that qualitatively, the
trajectories for collision avoidance based on gyroscopic forcing and kinetic shaping
are comparable. Whereas in the traditional potential forcing based controller, we
see the typical spring-mass like bouncing back phenomena. We also see that gyro-
scopic based collision avoidance starts steering the vehicles away from each other
earlier on and performs a less aggressive maneuver compared to kinetic shaping
based controller.

Figure 2.3: Two vchicles swapping their positions. The three trajectories correspond to three
different collision avoidance schemes. As can be seen, the trajectories for kinctic shaping and
gyroscopic forcing based collision avoidance arc qualitativcly comparable.

Collision avoidance when n > 2 When we have more than two vehicles, there
are atleast two strategies to handle this situation by essentially reducing it to a two
vehicle problem. In the first case, each vehicle detects all the other vehicles within
its sensor radius and treats the average state of its neighbours as another vehicle,
thus reducing the multiple neighbour problem to a two body problem. This strategy
is not new and seems to work in simulations. See [6] for example and references
therein. The second alternative is for each vehicle to avoid collision with its nearest
neighbour amongst. We will use the latter in all the simulations in this paper. It
also appears that kinetic shaping based controller can be extended to n > 2 case by




A.3. COLLISION AVOIDANCE AND SURVEILLANCE WITH AUTONOMOUS VEHICLES

2.2 Cost comparison with potential and gyroscopic forcing based controllers 9

considering a Lagrangian of the form

L=5 S (I —x)|2(2 + %2) (2.15)

1<i<j<n

without resorting to any of the heuristics discussed above. We will not be considering
this scenario in this paper and rather focus on avoiding collision with the nearest
neighbor and compare the performances between kinetic, potential and gyroscopic
controllers.

2.2 Cost comparison with potential and gyroscopic forcing based
controllers

e

Figure 2.4: Trajectories of 20 vehicles, each starting on the circumference and reaching its assigned
target location with collision avoidance based on kinetic shaping controller.

We now use a specific task to compare how our kinetic shaping based colllision
avoidance compares with the potential and gyroscopic based controller. We choose
the following scenario and use two norms to do the comparison. Consider n vehicles,
each with a sensor radius of 2m, initial distibuted at an equal spacing on the circuin-
ference of a circle with radius 7m. We vary n from 10 to 20. At ¢t = 0, these vehicles
are assigned a random target position, again lying on the circumference. Figure 2.4
shows a sample trajectory. The plot on the left shows the initial configuration and
the plot on the right shows the projection of the trajectories in time onto the plane
after the vehicles have reached their respective target locations.

We choose the three different kinds of collision avoidance controller as discussed
above to evaluate the performances of each. Specifically, we compare the cost func-
tions given by fOT u? and fju|s (L? and L* norm of u) over 20 runs for each value
of n and each collision avoidance scheme. Here, u is the sum ut + uc + up. The
former norm quantifies the amount of fuel consumed and the latter norm quantifies
the maximum acceleration experienced by the vehicles. We illustrate the results in
Figures 2.5, 2.6 and 2.7.

For the cost comparison, we choose the following controllers.

ur; = —kr(x; — x13)

_ (2.16)
up; = —kpX;
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Here, x; is the target point assigned to the it vehicle, kr is the potential gain
which drives the it* vehicle to its target and kp is the dissipation gain. The only
controller that varies is the collision avoidance controller uc;. Let us denote the
state of the nearest neighbour of the i*" vehicle by xxi, Xni. Then, we have the
following expression for the collision avoidance controller for the i*! vehicle.

(=20 — xni)T (i — Xni)%i + (32 + %%,) (xi — xni))

Xci = T il (2.17a)
OR
1
= kpcexp(m)(xi ~ XNi) (2.17b)
OR
= kgc exp(HXi_—XNl”)KX,' (2.17C)

Here, (2.17a),(2.17b) and (2.17¢) correspond to kinetic shaping, potential shaping
and gyroscopic shaping based collision avoidance controllers respectively. kpe, kge
are controller gains and K is a constant skew symmetric matrix. Please see [14] for
more details on the potential and gyroscropic controllers in (2.17). The parameters
kr,kp in (2.16) are fixed and ky, kg in (2.17) are chosen so as to keep the average
minimum distances over 20 simulations to be around 2% of the sensor radius. This
is illustrated in Figure 2.5. In our case of planar vehicles, the sensor radius is 2m
and K is chosen to be

£ = [ _01 (‘) ] (2.18)

As can be seen in Figure 2.6, for the gains corresponding to the minimum dis-
tances in Figure 2.5, the collision avoidance based on potentials seems to have the
least average control effort. Both, the kinetic based and gyroscopic based collision
avoidance are comparable to each other and have a similar pattern. Even when one
looks at the maximum acceleration norn ||ul|, as Figure 2.7 illustrates, collision
avoidance based on potentials has the least maximum acceleration. From the above
discussion, it appears that atleast for the particular task we have considered and the
particular double integrator model for the vehicles, potential based collision avoid-
ance seems to be the least expensive. Ofcourse, for different vehicle models, one
needs to do a similar study and make conclusions. In our double integrator vehicle
model, thrusting and steering were both equally expensive. For vehicles which have
a cheaper way of gyroscopic steering as compared to ours, we expect gyroscopic
based collision avoidance to perfori better. One also needs to be a bit more careful
when making these comparison. For example, it is known that using potential based
techniques, it is observed that vehicles do get stuck in local extremums [6].
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Figure 2.5: The parameters in (2.16) and (2.17) are chosen such that the average minimum
distance over 20 runs which any two vehicles approach are comparable for all the three strategies
based on kinetic, potential and gyroseopic eollision avoidance. The scnsor radius for the vehieles in
the numerical simulation are all 2m.

3 Randomized Area Surveillance Using Collision Avoid-
ance

In this section, we will demonstrate how collision avoidance can be used to enhance
area surveillance by “randomizing” them. We also make sure this is done in a
decentralized and scalable manner and is independent of the search domain and
its topology. The main motivation for such search strategies is to make sure that
an adversary target is not able to predict the state of search vehicles in order to
dodge them. This is in stark contrast to the conventional “lawnmover” techniques
in which case a target can avoid detection by just following the lawnmovers. Some
ty pical applications of randomized search strategies or policies are for example police
patrolling and airport security systems [16].

The mix-norm We now make precise what we mean by “randomizing” scarches.
Our main interest is two fold. One is to make sure the whole region is swept without
any missed spots. Second, we need to do this such that the vehicle trajectories
appear random to the targets. For the first case, the problem is more interesting in
the case when the ratio of sensing radius to the area of the region is arbitrarily small.
In this case, in order to quantify randomization, we use the mix-norm introduced
in [13] in the context of fluid mixing. In the same paper, a scalar field is said to
be well-mixed if its averages over arbitrary open sets are uniform. For the vehicle
trajectory case, the basic idea is the following. We say that the trajectory of a
vehicle is uniformly distributed in a region if the time average of a Lo function
over the trajectory asymptotically approaches its space average with respect to the
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Figure 2.6: Plot comparing the total control cost to achieve a task using three kinds of collision
avoidance, kinetic, potential and gyroscopic based. As can be seen, collision avoidance based on
potentials seems to be having the least control effort.

uniform distribution g. It is known that this is a necessary and sufficient condition
for ergodicity [17]. If W, is the distribution which takes a function and evaluates
its mean over the trajectory upto time f, then we demonstrate that once collision
avoidance is introduced into the system, the distribution W; approaces i when ¢ for
t much smaller than the time taken for the vehicles to survey 90% of the region.
This is the sense in which our search is optimally randomized. Once the trajectories
start approximating a uniform distribution, we expect the targets not being able to
predict the future behavior of the vehicles.

As an illustration, consider the plots in Figure 3.1 and Figure 3.2. The first
figure depicts Hilbert curves for indices n from 1 to 4 which are space filling curves
in the limit n = oo. And Figure (3.2) is a plot of the decay of mix-norm over these
curves. We see that as the index increases, i.e., as the Hilbert curves gets closer to
a space filling curve, the mix-norm decays at a faster rate.

Benchmark vehicles Another way to see randomness is the following. The best
surveillance one can achieve is using ideal vehicles with zero inertia hoping around
instantaneously in the region such that their discrete trajectory points come from
a uniform distribution. We are essentially comparing our vehicles with these ideal
ones. When we say W; approximates a uniform distribution, we mean that mean of
samples of a function along the trajectory approaches the mean of samples of the
same function along the same numnber of points chosen from a uniform distribution.

Note that if we have apriori knowledge of target locations represented by a
distribution, we can exploit this information further by combining collision avoidance
with random way point assignment which are chosen fromn the apriori. In this

60



A.3. COLLISION AVOIDANCE AND SURVEILLANCE WITH AUTONOMOUS VEHICLES

3 Randomized Area Surveillance Using Collision Avoidance 13
uuo' )
- o
HFo
10+
c
8
o s
k]
g . :
E
=1
E 4
3 . :
s 2 i
2 i : .
A SR S . A NI, N, S, S S
0 1 1”2 13 14 18 AL 1?2 AL 1%
Number of vehicles

Figure 2.7: Plot of the maximum acceleration a vehicle experiences versus the total number of
vehicles in our task. Again, one can sece that collision avoidance based on potentials has the least
maximum acceleration.

setting, we have a decentralized collision avoidance and a centralized “manager”,
which keeps updating the waypoints for inidividual vehicles. The vehicles are free
to decide how they approach the waypoints and what kind of collision avoidance
they want to adopt. This is remniscent of the inner and outer loop philosophy in
[10] for example. We briefly discuss this setting below.

Problem Setting With Apriori Knowledge We have a region A, with maybe
obstacles, which needs to be surveyed. The region A also has a probability distri-
bution for events, i.e., there could be areas within A where events are more likely
to happen. We also have a finite number of vehicles with a finite sensor radius.
Consider a lattice L with [ points which reflects thc probability distribution for
the events. See the figure below which illustrates a lattice for uniform and Gaussian
probability distributions respectivcly for the case when the region A is circular. The
lattice spacing is a function of the individual sensor radius.

Cousider Algorithm 1 below. The vehicles, labelled 1 to n are initially in somec
arbitrary locations. We assumc that each vehicle has a sct point controller which
asymptotically takes it to a particular target location.

Algorithm 1 Surveillance Algorithm A
1: Assign n random points from L as target positions to the vehicles
2: Once the n vehicles reach their individual point, select new points from L and
assign them as target point to the vehicles
3: Repeat this procedure until L is exhausted

Throughout the steps above, we incorporate collision avoidance into the setting,
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Figure 3.1: Illustration of Hilbert curves for indexes running from 1 to 4

i.e., if in the process of reaching their respective target point two or more vehicles
come close to each other, they go into a collision avoidance mode. This strategy
has some advantages over the traditional lawnmover strategies. The manager only
assigns target positions to the individual vehicles as opposed to complete individ-
ual trajectory. Thus, we have a target assignment problem instead of a trajectory
generation problem which works for a much broader class of regions. This is be-
cause generating lawnmover trajectories for arbitrary regions is nontrivial [1]. Our
method also has advantages when considering underactuated vehicles, for which we
only need to design a set point controller as opposed to making them follow a partic-
ular trajectory. The individual vehicles are free to choose how to reach their target
positions providing the freedom to chose optimal controllers for example.

It can be nuinerically verified that with this strategy the trajectories start ap-
proximating a uniform distribution quickly compared to the time taken to survey
90% of the region. Note that in this case, it is not very clear where this random-
ization is coming from. We have a combination of random waypoint assignments
as well as collision avoidance. To resolve this and to make precise the role of colli-
sion avoidance, we instead consider the following scenario where there is no apriori
knowledge.

Problem Setting Without Apriori Knowledge We have a region A, with
maybe obstacles, which needs to be surveyed and consider two cases. In the first
case, one starts with random positions for the n vehicles and assigns them random
initial velocities. This essentially determines the future of all the vehicles as the
survey the area and we compute the mix norm of the trajectories. In the second
case, one incorporates collision avoidance into the first case and again evaluates
the mix norin of the trajectories. It turns out that once collision avoidance is
incorporated, the mix norm decays at a much faster rate thus validating our claim
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Mix Norm

Time

Figure 3.2: Plot of decay of mix-norm over the hilbert curves for the indices in Figure 3.1.

S

3 .

Figure 3.3: Ilustration of a region A with a grid reflecting uniforin and Gaussian probability
distribution for target locations.

that collision avoidance enhances the surveillance by randomizing it.

Cumulative Area Coverage Computation To calculate the area covered, we
distribute points from a uniform distribution in A and label thein red. When a
vehicle moves over it, we turn it green. Then the cumulative area coverage (CAC)
is the ratio of green points to the total number of points. This way, we can take
care of a broad class of surveillance regions and sensor sensing profiles. For example,
calculating the exact area occupied by a finite number of circles with varying radii
involves a nontrivial implementation of the inclusion exclusion principle.

4 Simulation

We now apply our surveillance strategy using vehicles which are simplified models
for a hovercraft. The concrete situation is the following. Consider a circular region
A with radius 50 m and 8 underactuated identical hovercraft as illustrated in Figure
4.1 with the following Lagrangian.

e %(maﬁ +my? + J62). .1)

63



A.3. COLLISION AVOIDANCE AND SURVEILLANCE WITH AUTONOMOUS VEHICLES

4 Simulation 16

y A

\

)

X

Figure 4.1: Model for an underactuated hovereraft.

The control force fi acts on the center of mass and the control torque f2 acts on the
body at a distance r from the center of mass as shown in Figure 1.1. The equations
of motion can be derived to be

mi cos(8) f1 — sin(0) f2
mj | = | sin(6)fi +cos(0)fz | . (4.2)
Jo —rf2

In Appendix A, we show how to choose fi, f; to design set point controller, dissi-
pative controller and gyroscopic force based collision avoidance controller for this
particular hovercraft system. Using these controllers, we implement our surveillance
strategy with collision avoidance.

Figure 4.2: Plot illustrating surveillance enhancement with collision avoidance.

As shown in Figures 4.4 and 1.3, for our algorithm, the vehicles take about 30
seconds to survey 90% of the circular region and it takes only about 2 seconds for
the trajectories to approximate a uniform distribution. Please see Appendix B for
details on how we compute the mix-norm for the hovercraft trajectories.
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15 2 25 3
Time

Figure 4.3: Plot of minx-norm of the vehicle trajectories and those of a uniform distribution.
As can be seen, the two norins match pretty well after about 1 sec even though the time taken to
survey 90% of the area is around 30 sec.

5 Conclusions

We now conelude this paper with a summary of the main results. We introduced
a kinetie shaping based collision avoidance and compared its performance in the
L? and L™ norms with that of potential and gyroscopic based collision avoidance
seliemes. For the partieular vehiele model we eonsidered, it turns out that potential
based collision avoidanee were the most efficient. For other vehieles with more com-
plicated dynamics, it could very well be that potential based eollision avoidance is
not the most efficient. For examples, vehicles in which thrusters are more expensive
eompared to steering, it is expected that gyroseopie foreing based eollision avoidance
will turn out to be cheaper.

We also demonstrated the role of eollision avoidanee in effieiently randomizing
surveillanee similar to the billiard problem. The randomization was quantified using
the mix-norm from fluid mixing literature. In our simulation, we showed that for
our case of underactuated hovereraft, the trajectories approximate a uniform dis-
tribution much earlier than the time taken to survey 90% of the region. We hope
to analytieally prove the decay of mix-norm for the hovereraft system in a future
publication. We also demonstrated randomization in essentially decentralized man-
ner. This is in contrast with ? | where they achieve uniformization by optimizing
a global eost funetion in a eentralized manner. Merging the work in ? | with ours
will be an interesting future direetion.
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APPENDIX A

6 Controllers for the underactuated hovercraft

In this section, we will design potential, dissipative and gyroscopic force based con-
troller for the hovercraft system.
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Design of gyroscopic controller Let S be a skew symmetric matrix given by

0 81 82
S = ( —81 0 83 . (61)
—89 —83 0
For the right hand side of (4.2) to be a gyroscopic force, the following equation must
hold true.
cos(0) fi — sin(0) f2 &
( sin(0)f, + cos(8)f» | =8 ( ¥ ) - (6.2)
=7 fa 0

Substituting for S from (6.1) in (6.2) and comparing the coefficients of &,,6, we
get the following conditions on entries of the matrix S.

82

-7 cos(8)

83 —s)rsin(6).

Therefor, the only parameter we have for tuning the gyroscopic force is s;. We now
solve for f1, fo in terms of s; to get the final equations of motion with gyroscopic

forcing as
mi 3§ — 7 cos(0)0
( mj ) =38 ( —& — rsin(#)0 ) : (6.3)
Jo rcos(0)E + rsin(f)y

One can readily check that the dot product of the right hand side of above equation
with velocity vector is indeed zero. Equation (6.3) represents the most general
gyroscopic forcing for the hovercraft. For our simulations in §4, we choose the
parameter 3| to be a constant.

Design of potential controller We design potential based setpoint controller
for the hovercraft. Because of underactuation, we cannot make the hovercraft flow
along an arbitrary potential field. Instead, we derive conditions on the possible
potentials which one can use for a hovercraft. In (4.2), assume the right hand side
is given by a poteltial V(z,,0), ie.,

v
cos(8) /1 — sin(8) f2 9
sin(@) fi + cos(8) fa | = - a7 | (6.4)
=1 5
90
We can derive the following condition on V.
0 .0V OV
0= rbm(())% - rcoa(())o—y. (6.5)
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Using method of characteristics, we can show that the most general solution for the
potential V in (6.5) can be found out to be

V =V(r —rcos(f),y — rsin(8)) = V(z1,22). (6.6)

Using V as in (6.6), we can design controller which will asymnptotically take the
hovercraft to the desired set (21, 22) = (214, 22¢). This in particular implies that we
can only guarantee that the hovercraft reach a neighbourhood of a desired target
point (24, y4) in the plane without control over its final orientation given by 6.

Design of dissipation controller In this case, we want to choose fy, f2 such

that
cos(6) f1 — sin(8) f2 &
sin(@)f1 +cos(@)f2 | =—-k| ¥ |]. (6.7)
—T‘f2 6
One can easily check that for the following choices for f1, fa, (6.7) is satisfied.
fi = —k(cos(8)z + sin(0)y) (6.8)
k.
fa = ;0 (6.9)

APPENDIX B

Computing H~! norm Let f(t) € R?%, t € [0,T] be the trajectory of the system
upto time T. We need to compute how “close” this trajectory is to a uniform distri-
bution. To compute this, we take N samples with N sufficiently large, uniformly in
time given by f(¢;) where i € {0,--- ,N —1} and t; = ﬁT. Denote this collection
by Sy = {f(t:)}. Pick another set of N points chosen from a uniform distribution
in the domain and denote this by Uy = {u(t;)} for i € {0,--- ,N — 1}. Then we
have

i I =N | exp (=i (ky fa(ts) + kafa(t)) |12
ISvlfs = > Tr 212

(6.10)
ky.k2€Z

Here, f1(t;) and f5(¢;) are the z and y components of f(¢;) respectively. The mix-
norm for Uy is similarly computed. Note that Zfil exp (—i (k1 f1(t:) + k2 f2(t:)))
is just the Fourier component of the ¢ distribution given by the samples of the
trajectory fo(z,y) = LI, 6(z - f1(t:))8(y — folts))-
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Multiple Target Detection using Bayesian Learning
Sujit Nair, Konda Reddy Chevva, Houman Owhadi and Jerrold Marsden

Abstract

The need to develop fast, robust multiple target search algorithms has generated a lot of interest recently
among scientists and mathematicians. In this paper, we develop a computationally efficient multiple target search
strategy given a fixed number of search vehicles and fixed number of stationary targets in a region. Two different
cases depending on whether the number of targets is known or unknown are considered. The search area is
divided into cells. The belief map is updated using Bayes’ theorem and an optimal reassignment (teleporting) of
vehicles based on the values of the current belief map is adopted. Exact computation of the belief map update
is expensive and often an approximation is needed. In this paper, we show that the Bayesian update can be
exactly computed in an efficient manner by using the detection history in each cell and results from the theory
of symmetric polynomials.

1. INTRODUCTION

Multi-target detection and tracking (1], (2], (3], [4] are important elements of a surveillance system. In
multiple target detection and tracking problems, one is interested in determining the number as well as the
dynamics of targets. Radar and sonar based tracking of objects for air traffic control and navigation are some
of the applications of multi-targct detection and tracking. In order to successfully detect and track targets, onc

needs to effectively extract uscful information about the target’s state from observations.

In this paper, we restrict out attention to detection of an unknown number of stationary targets using
measurements from a fixed number of search vehicles. Though we mainly focus on multi-target detection,
tracking and detection are closely related areas with significant overlaps. We, therefore, begin with a brief review
of the techniques for multi-target tracking and dctection. One of the earliest techniques for multi-target tracking
is the multiple hypothesis tracking [1], [2]. In multiple hypothesis tracking, onc associatcs a set of detections of
the target position with existing tracks. This association if successful leads to ncw tracks. Otherwise, the set of
detections are deemed false alarms. Typically, Kalman filter type algorithms are used to update the existing tracks
after association. Multiple hypothesis tracking suffers from somc problems. For instance, some information is
lost when the detcctions are generatcd from raw sensor returns. So if the targets rarely produce returns above
the detection threshold, then the tracking algorithm fails to accurately track the targets. A more robust solution

to multi-target tracking is called the track-before-detect (5] where raw scnsor returns are available to the tracker.

Sujit Nair, Houman Owhadi and Jerry Marsden are with Controt and Dynamical Sysiems. Caliech, Pasadena, CA 91125, USA
{nair, owhadi,marsden}@cds.caltech.edu

Konda Reddy is with Control Syslems. United Technologies Research Center, E. Hartford. CT. 06108, USA
ChevvaKR@utrc.utc.com
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The above approaches suffer from two drawbacks. First, the above approaches are not recursive in nature.
Secondly, if the target motion is complicated, then the above approaches have difficulty in modeling the target
motion. Multi-target detection and tracking using a Bayesian perspective is a more promising and robust
approach. This is the approach followed in this paper. Stone and coworkers [3] developed a mathematical
theory of multi-target detection and tracking from a Bayesian point of view. Some early work in this area was
done by Millcr and coworkers[6], Kastella (7] and Mahlcr [8]. In the Bayesian approach, the multi-target state
is a markov process. The Bayesian approach can handle complicated target dynamics. 1t also provides a solution

that is recursive in nature.

The problem of simultaneous detection and tracking of multiple targets can be formulated in the Bayesian
framework. The problem can be solved, in principle, by cxact computation of the Joint Multi-target Probability
Density (JMPD) [7], [9] that accounts for the uncertainty about the number of targets and their states. The JMPD
is a high-dimensional quantity and its exact computation is almost impossible. A big challenge in multi-target
detection and tracking research is to develop sophisticated numerical techniques to approximate the JMPD.
Particle filter methods that provide a stochastic grid approximation to the exact solution of Bayesian state
estimation have been proposed 1o approximate the JMPD for cases involving a large number of targets moving
in two-dimensions (10], [11]. More recently, a unified approach to multi-target detection and tracking based on
recursive approximation of the JMPD was presented in [12] where an efficient particle filiering scheme was

proposed.

Clearly, an important research theme in multi-target detection and tracking is the development of efficient
computational techniques to approximate the exact solution of the Bayesian state estimate. In this paper, we
consider the problem of detecting an unknown number of stationary targets. Since we only deal with detection,
association is not a concern. Though the detection problem is simpler in nature than the tracking problem, we
would like to cmphasize that the exact computation of the Bayesian update becomes increasing challenging as
the number of unknown targets and the grid size increases. The main motivation for this work is to develop

fast, computationally efficient techniques for exact computation of the Bayesian update.

The main contributions of the paper are as follows, We have demonstrated optimal Bayesian updates for
detecting unknown number of targets in a given search region. The belief states of the system grow expo-
nentially and usually cannot be solved exactly. However, we show that we can indeed solve the problcm in a
computationally efficient way by using the detection history in each cell. We also show that using Newton’s
identities from the theory of symmetric polynomials [13] helps us to exactly update the belief map. Newton’s
idcntities relate two different ways of describing the roots of a polynomial. They have applications in invariant
thcory and combinatorics and have connections to algebraic geometry. To the best of our knowledge, this is

the first time that Newton’s idcntities have been uscd in multiple target detection problems.

The paper is organized as follows. In Sec. 11 we review the well known Bayes’ theorem for calculating
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conditional probabilities. In Sec. III, we formulate the search problem given a fixed number of search vehiclcs
and targets. In Sec. IV, we propose a new way to calculate the belief map in a computationally efficient manner.
We also present a novel application of Newton’s identities from the theory of symmetric polynomials to exactly

calculate the belief map. Simulation results are presented in Sec.V.

I1. CONDITIONAL PROBABILITY AND BAYES® THEOREM

Conditional probability is the probability of some event given the occurrence of some other event. Let
(Q, F, P) be a probability space where Q, F and P have their usual meaning. Let A, B € F be two events
with P(B) > 0. The conditional probability of A given B is defined as:

_ (P(ANB)
P(A|B) = FB) n
where P(ANB) is the joint probability. Similarly, the conditional probability of B given A is given as
_ (P(ANB)
P(BlA) = PA) @
Baycs’ theorem for conditional probabilities follows from equations (1) and (2),
_ P(BjA)P(A)
P(A|B) = PB) 3)

Probabilities P(A|B), P(A), P(BJA) and P(B) are usually referred to as posterior, prior, likelihood and marginal
respectively. More generally, if {A;} is a partition of A, then

P(B|Ai)P(A))

PAIB) = & 5B )P (A)

@)
for any A; in the partition.
111. PROBLEM FORMULATION

The main problem we are interested in is the following: Given a search area with a fixed number of
stationary targets and search vehicles, design computationally efficient strategies for detecting all the targets.
More precisely, consider a search area that is divided into n cells as shown schematically in Fig. 1. Let V be the
total number of search vehicles. We will consider two cases. In one case, the number of targets is known apriori.
In the second case, the number of targets is not known. However, we assume that there is an upper bound T
for the number of targets in the region. We assume that the targets are stationary. We adopt a simple model for
the vehicle dynamics. At each time step, the vehicles can jump to any other cell or remain in their current cell.
Each cell can only be occupied by a single search vehicle and/or a singlc target. The vehicles detect a target
with probability p;. We will also consider false alarms with probability p;. At each time step, the vehicles
send their detection data, i.e., detect or no detect, to a central manager, that updates the belief map based on
the vehicle measurements. The belief map is a vector of numbers, P(7;), j=1,..., n, where P(T;) denotes
the probability that the target is in cell j. The vehicles are then reassigned to new cells based on the updated
belief map. There are several ways to reassign the vehicles to new cells. In this paper, we adopt an ideal policy
where the vehicles are reassigned or releported 10 cells that correspond to the maximum values of the belief

map. Though this reassignment scheme is not entirely realistic, it provides lower bounds for the detection times.
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[ ] [
@ search vehicle @ target

Fig. 1. A schematic of the search grid with fixed number of scarch vehicles and targets

In order to illustrate the application of Bayes’ theorem for the search problem, consider the simple case of
a single target and a single search vehicle in a grid of size n. The essential idea is to update the belief map at
each time step based on the measurements made by the vehicles. We assume that the initial targct distribution
is uniform, that is, P(T;)® = 1/n for all j. Suppose that the vehicle is in cell i and that d; is the detection data.
That is, d; = 1 if the vehicle detects and d; = 0 if the vehicle fails to detect. Then, given the detection data d;,
Bayes® theorem can be used to update the belief map:
P(dT))P(T;)°

PT) =P(Tld) = —L 7 5

(T)' = P(T;\di) P )

_ _PET)PT)° -

Lisi PUATOP(T)
Note that

P(d,lTl) = pg if di=1 & i=j @)

= p;if di=1 & i#j (8

= l—pg if di=0 & i=j 9

= l—-p; if di=0 & i#j. (10)

The above formula can be easily extended to the case of multiple vehicles. Before we do that, we introduce
some notation. P(A|B) stands for the usual conditional probability of A given B. P(T;,,...,T;,) denotes the
probability of the event T;; N...NT;,. Here it is assumed that the indices iy,...,i; are distinct. By D\ D;, we
mean the detection data consisting of all cells except the i® cell. By Z(:)P(Ai,,...,Ai,‘ |B). we mean the sum

over all P(A;,,...,A;|B) for (}) ways of choosing indices ij,...,i from the set {1,...,n}.

One observes that if there are k targets, then the belief map consists of (}) numbers given by P(T;,,...,T;,).
The number of computations required to update the belief map blows up exponentially as the number of cells
and targets increases. For example, for a 50 x 50 grid with S targets, thc belief map is of the order of 104,

This is a very important consideration if a particular search strategy nceds to be implemented in real time. In
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the next section, we describe a simple, computationally efficient and exact method to update the belief map.

This method is particularly attractive when the number of targets and grid size is large.

1V. COMPUTATtONALLY EFFICtENT BELtEF MAP UPDATE

In this section, we propose an alternative formulation where instcad of having a belief map of size (7}, we
construct a belief map of size n by considering the history of detections/no detections in each cell. At each
instant of time, vehicles make measurements about targets in their respective cells and report back to a central
manager whether they have detected or not detected a target in their respectivc cells. For each cell, the total
number of derections and total number of no detectrions is stored. Using this information, at each time step,
the belief map is constructed as follows: If d; and m; are the total number of detections and no detections

respectively in cell i up to that time, the detection data can be written as the following 2 x n matrix
din e [dy

D= : (1)
m ... mg,

A. Known Number of Target Case

We now consider the case when the number of targets is known apriori and is assumed to be k. For the

detection data D, we can construct the belief map as follows:

P(T;ID,U =k)

PWOIT, U = k)P(T|U = k)

P(D|U =k)
Ly POIT T T U = 4)
o P(D|U =k)
X Y PTe- Ty T U =B)P(T|U =)

(")
where U is the number of targets. The denominator can be written as

P(DIU =k)

g2 YV PBIT o T U= R P T =R .
]
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Assuming the initial prior is uniform, we get

P(T;|D,U =k)

P(ij---vTquIan =k)P(Ti|U =k)
D)
B e PO g o 00
L) POITys - Ty U =k)

ﬁﬁ%ﬁ%z“ﬂ”Dthwnnpr=H
o L) POITy, - Tj U =K)

Z(J,)P(D”;»le,...,Th_.I’U =k)
L) PO(Tjp,.. Ty U =k)

Therefore, assuming that the detections are independent of each other, we can write the above equation as

P(TI|D,U =k)

L(,n) PO\DIT . Ty U =k)
L) POy, Ty U =)

= P(DIT})

The main advantage of this formulation is that we have a very significant reduction in memory requirement
as we are only storing 27 numbers at each stage instead of (}). We will later show how to exacily compute
the numerator and denominator in thc above equation using Newton's identities from the theory of symmetric

polynomials that further leads to computational savings.

B. Unknown number of Target Case

In this case, we consider that the number of targets is unknown apriori. However, we assume that the
maximum number of targets possible is T. This case is considerably difficult than the previous case where the

number of targets were known apriori. The belief map update procecds in the following manner:
P(Ti|D)
T

Y P(TiID.U = )P(U = jID)
=

B i P(D|T;,U = P(Ti|U = j)P(U = j|D)
P(D|U = j)

-

_ ipwmﬂ=ﬂ”mU=ﬁHU=ﬁ
j=1 P(D)

_ i P(DIT;, U = j)P(TiU = j)PU = j)
j=1

Ll P(DlU =P =1)
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Assuming uniform prior for P(U = j), we get

P(Ti|D)

_ iPwmy=ﬂmmU=ﬁ
j=1 ):/T=1 P(DIU =1)

L\ P(DITLU = )P(TIU = j)
I P(DIU =1) '

After a few manipulations, we get
P(Ti|D)
PO, g
P E(,) PO\DlTiy,... iy, U =)

H
J

i (;7):(7) P(DITy,,...,Ti; , U =1)

Now, for both the single and multiple target case, we need to compute

n
P(D|7;|117;pu=./) =HP(DI|7}|v"'vTijvu=j)
1=l

where Dy is the detection data corresponding to cell /. Define

; di+mp\ 4
o= POTy T, 0 = )= (V3™ )0 =

if 1€ {i,i1,...,i;} and

; di+m
br= POy Ty = )= (4™ )1 =

otherwise. Therefore, we need an algorithm to efficiently compute terms of the form

% PUDIT B =)

]
n
= ¥ [Iemin-Tu=3) a2)
(=
= Zail""’a"ib"jﬂ e 13)
(N
This can be written as
POl =0=8 X By a4
('II) I<ii<..<ij<n

where Pp =b,...b, and c,-=§:.

As one can see, computing P(7;|D) involves a larger number of operations and can considerably slow down

the belief map update. We are faced with the following problem. Given n numbers ¢j,...c, and an integer &,
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compute the symmetric polynomials

Jk = Z (f,'l...(‘,'k (15)

1<iy<...<iz<n
in an efficient manner? In the next section, we briefly review the theory of symmetric polynomials and show
how the symmetric polynomials can be expressed in terms of the power sums using Newton's identities. This

novel application of Newton’s identities considerably reduces the number of computations needed to update the

belief map.

C. Symmetric Polynomials and Newton's Identities

A symmetric polynomial on n variables xy,...,x, is a function that is invariant to any permutation of its

variables. That is, the symmctric polynomials satisfy

f1y y2 0y Ya) = fx1, X2, sy Xn), (16}

where y; = xx and & being an arbitrary permutation of the indices 1,2,...,n. The elcmentary symmetric

polynomials Ji(x), x3,..., X,) are given by

Tt = Jum

I<i<n
J2(x1y X2,.005 Xp) = Z XiX;j
1<i<j<n
S0 Xaprmylm) = Z XXXk
1<i<j<k<n
Jn(x1, X20...5 Xp) = Xi
1<i<n
The power sum Sp(x), X2,..., X,) is defined as
n
Splxr, x2,..., ;)= Y F an
1

k
The relation between the symmetric polynomials J; and the power sums S, is given by Newton's identities.

The first few identities are

= (18)

h = %(53—52) (122

ig = é(sf-3s,sz+2s3) 0

g = 5'2(5‘}-6sfsz+3s§+85153—654) Gy
8
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In general, the symmetric polynomials can be computed using the following determinant

S 1 0 0 - 0
152 48 1 0 -« 0
=15 i85 18 10 (22)
; 1
1 1 1 1 |
B 5Sk-1 g7 S22 gSk-s 0 ¥$

All of these identities can be computed very easily using any commercial symbolic package. The main
advantage of writing it in this form is that computing S; is much cheaper as it involves vector processing. For
example, if n =100 and k = 4, the brute force implementation using four for loops takes around 25 seconds on
a MacBook Pro laptop whereas using the Newton’s identities, it takes only about 104 seconds! This clearly

shows that one can get computational speed-up of orders of magnitude by using Newton’s identities.

V. SIMULATION RESULTS

In this section, we provide simulation results for a grid of sizc 15 x 15. Note that the state space for the
system is (2§5) for 5 targets. We choose 5 target at locations 43,77,99,155,216 at r = 0. The initial prior
is assumed to be uniform. The values of pg and p; are chosen to be 0.9 and 0.1 respectively. As shown in
the Figure (2) , the belief map converges to the expected value in about 80 iterations. The oprimal releporting
scheme gives lower bounds on the detection times and serves as a baseline against which other strategies can be
compared. An immediate extension of this strategy is local optimal releporting where each vehicle is moved to a
neighboring cell with the maximum belief map value. This is ongoing work. Preliminary results suggest that the

local optimal reassignment strategy performs satisfactorily. The vehicle dynamics are more realistic in this case.

We have also examined the effect of the number of search vehicles and p; on the detection times. As
expected, as the number of search vehicles increases, the detection time decreases with the number of search
vehicles. One such simulation result is shown in Fig. 3. However, it is intcresting to note that beyond a critical
value of the number of vehicles, the detection time does not change much with the number of vehicles. Such an
observation can provide guidelines in choosing the number of search vehicles for a given search mission. Figure
4 shows the variation of thc detection times with p;. Once again, as expected the detection times decreases

almost linearly with pj.

V1. CONCLUSIONS

In this paper, we have dcmonstrated optimal Bayesian updates for detecting unknown number of targets in
a region that is divided into cells. The belief states of the system grow exponentially and cannot be solved
exactly. We develop a different formulation and show that we can indeed solve the problem exactly using results
from the theory of symmetric polynomials and using the detection history. As future work, we will provide
theoretical estimates of the detection times when the vehicles are optimally teleported. We will also compare

local optimal vehicle reassignment with teleporting.
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Fig. 2. Evolution of belief map for a 15 x 15 grid. The cell number is plotted on the x-axis and the belief map values are plotied on the

v-axis. After the 82nd iteration, targets are detected at location 43,77,99.155.216.
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works

82



B.1. SCALABLE UNCERTAINTY QUANTIFICATION IN COMPLEX DYNAMICAL
NETWORKS

Scalable uncertainty quantification in complex dynamic
networks

Amit Surana & Andrzej Banaszuk

January 12, 2009

1 Abstract

Many large scale systems of interest (e.g. power systems, biological networks) are often composed
of weakly interacting subsystems. We propose an iterative scheme that exploits such weak inter-
connections to overcome dimensionality curse associated with traditional uncertainty quantification
methods and radically accelerate uncertainty propagation in systems with large number of uncertain
parameters. This approach relies on integrating graph theoretic methods and waveform relaxation
with uncertainty quantification techniques like probabilistic collocation and polynomial chaos. We
analyze convergence properties of this scheme and illustrate it on a power network.

2 Introduction

The issue of management of uncertainty for robust system operation is of interest in a large family of
complex networked systems. Such systems typically involve a large number of heterogeneous, con-
nected components, whose dynamics is affected by possibly an equally large number of parameters.
Uncertainty Quantification (UQ) methods provide means of calculating probability distribution of
system outputs, given probability distribution of input parameters. One of the most commonly used
methods is Monte Carlo sampling (MCS), or one of its variants. Although MCS is straightforward to
apply as it only requires repetitive executions of deterministic simulations of the system, typically a
large number of such executions are needed as the solution statistics converge relatively slowly, e.g.,
the mean value typically converges as O(1/v/N) where N is the number of realizations [13]. Quasi
Monte Carlo (QMC) methods on the other hand offer better convergence for moderate number of
random parameters, the rate being O(SE%NZ), where p is the number of random parameters in the
system. However, while MCS suffer from poor coverage of the space being sampled, QMC methods
often lead to incorrect density of the sampled points. Recently. Mezic [11] developed a new scheme
known as DSample, which exploits ergodic dynamics to generate samples which do not suffer form
such limitation: the sample points have proper coverage and correct density in the sample space.
Most importantly the convergence of this method follows the fast O(1/N) scaling, independent of p
the number of random parameters.

Generalized polynomial chaos (gPC) is another recently developed technique which belongs to
the class of non-sampling UQ methods. In gPC, stochastic quantities are expressed as orthogonal
polynomials of the input random parameters, and different types of orthogonal polynomials can be
chosen to achieve better convergence (under certain circumstances, exponential convergence can also
be attained) [12]. When applied to differential equations with random inputs, the gPC expansion
is typically combined with Galerkin projection, such that the resulting set of equations for the
expansion coefficients are deterministic and can be solved via conventional numerical techniques.
However, stochastic Galerkin (SG) procedure can be challenging when the governing stochastic
equations take a complicated form. To this end, high-order probabilistic collocation method (PCM)
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has been developed [14]. PCM combines the advantages of both Monte Carlo sampling and gPC-
Galerkin method. The implementation of a PCM algorithm is similar to that of MCS, i.e., only
repetitive realizations of a deterministic solver is required; and by choosing a set of sampling points
based on the theory of multivariate polynomial interpolations, it retains the high accuracy and fast
convergence of gPC expansion, similar to SG. In higher dimensions, however, the use of standard
tensor products of one-dimensional quadrature points as sampling points leads to an exponential
growth of the number of points. The work of [14], is a first systematical attempt to avoid using tensor
product constructions. Instead it employs the so-called sparse grid [5], to tackle problems with large
number of random variables more efficiently. In addition, to deal with UQ in PDE systems, mutli
element formulation of gPC and PCM have also been recently developed (7, 2].

As described above, while, there have been various efforts to overcome dimensionality curse asso-
ciated with UQ methods, none of such extension exploits the underlying structure and dynamics of
the networked systems. In fact, many networks of interest (e.g. power systems, biological networks),
are often composed of weakly interacting subsystems. As a result, it is plausible to simplify and
accelerate the simulation. analysis and uncertainty propagation in such systems by suitably decom-
posing them. For instance, authors in control theory studied large-scale interconnected dynamical
systems using graph theoretic decomposition of the system. These studies, however, concentrated
mostly on questions of stability and robustness (see e.g. [15, 16]). In contrast Mezic et al. [10],
introduced a framework for studying more general asymptotic behavior and uncertainty propagation
in such multicomponent nonlinear systems. They showed that, the use of graph decomposition in
conjunction with Perron Frobenius operator theory can greatly simplify the invariant measure struc-
ture and uncertainty quantification, for a particular class of networks. While this approach exploits
the underlying structure of the system, it does not take advantage of the weakly coupled dynamics
of the subsystems.

In this paper. we propose an iterative UQ approach that exploits the weak interactions among
subsystems in a networked system to overcome the dimensionality curse associated with traditional
UQ methods, and radically accelerate uncertainty propagation. This approach relies on integrating
graph decomposition techniques and waveform relaxation scheme, with probablistic collocation and
generalized polynomial chaos. Graph decomposition can be realized by spectral graph theoretic
techniques to identify weakly interacting subsystems. Waveform relaxation, a parallelizable itera-
tive method, on the other hand, exploits this decomposition and evolves each subsystem forward in
time independently but coupled with the other subsystems through their solutions from the previous
iteration. At each waveform relaxation iteration we propose to apply PC at subsystem level and use
gPC to propagate the uncertainty among the subsystems. Since UQ methods are applied to rela-
tively simpler subsystems which typically involve a few parameters, this renders a scalable iterative
approach to UQ in complex networks. In an alternative approach the random differential equations
can be transformed to a deterministic system, by employing a stochastic Galerkin projection. Sub-
sequently, graph decomposition and waveform relaxation can be applied to accelerate simulation of
this deterministic system, leading to uncertainty quantification in the original system.

This paper is organized in six sections. In section 3 we set up the mathematical framework
and state precisely the problem of uncertainty quantification. Section 4 deals with spectral graph
decomposition while waveform relaxation is described in section 5. We give an overview of gPC
and PCM methods, in the section 3. These techniques form the basic ingredients of the scalable
approaches to UQ, which are discussed in section 7. We propose two such iterative approaches: the
first one requires access to equations which describe the underlying dynamics of the system, while
the other one treats the system as a black box. In section 8 we illustrate this iterative procedure on
a simplified power system network and numerically analyze its convergence properties. Finally, in
section 9 we summarize the main results of this paper and lay down some future research questions.
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3 Uncertainty Quantification in Networked Systems

Consider a nonlinear system described by as system of random differential equation

x = f(x,§1), (1)
where, f = (f1, f2,---,fn) € R" is a smooth vector field, x = (z,,z2,--- ,z,) € R" are state
variables and £ = (£),82,--- ,§;) € R” is p dimensional vector of uncertain parameters of interests.

The solution to initial value problem x(to) = xo will be denoted by x(t;¢), where for brevity we
have suppressed the dependence of solution on initial time ¢; and initial condition xo. The Jacobian
J associated with system (1) is given by

I got) = (PREGEED, B

and describes the linearized dynamics of the system about the solution trajectory x(£;€). The
average value of Jacobian along the solution for nominal value of parameters £,,,, will be denoted by

- 1

to+T
J= T /tn Jij(x(t; Em)rf"l’ t)dt]' (3)

Let us also define a set of quantities

z= (211321 il 1‘7(1) = G(x) = (gl(xv' = ’gd(x)))r (4)

as observables or quantities of interests. The goal is to numerically establish the effect of input
uncertainty of £ on output observables z.

In what follows we will adopt a probabilistic framework and model £ = (£,,&2,+ ,&p) as a p—
variate random vector with independent components in the probability space (€2, A, P), whose event
space is € and is equipped with o —algebra A and probability measure P. Without loss of generality,
we would assume that these parameters (§1,82,- - - ,§,) are mutually independent of each other. Let
w; : I; = R* be the probability density of the random variable £;(w), with I'; = £;(§?) C R being
its image. Then,

P
w(€) = [Jwi(&), Veer (5)
i=1
is the joint probability density of the random vector £ = (£1,- -+ , &) with the support,
P
r=J[r:cre (6)
=1
Without loss of generality we would assume that I'; = [-1 1],i =1,..- ,p. Naturally, the solution
for system (1) and the observables (4) are functions of same set of of random variables £, i.e
x=x(t€), z=z(€) =G(x). (M

As described in the introduction,, this problem of uncertainty quantification in large systems (n > 1)
with large number of uncertain parameters (p >> 1) is computationally intensive. Recently developed
UQ methods like Dsample [11] and sparse-grid based probabilistic methods [14] can handle this
complexity to some extent. These methods however do not make use of the underlying structure
and the dynamics of the system, which can be often be taken to an advantage. The goal of this
paper is to develop scalable uncertainty quantification approaches which exploits this structure and
dynamics. The key methodologies for accomplishing this are the spectral graph decomposition,
waveform relaxation, and gPC and PCM, which are discussed in the subsequent sections.
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4 Graph Decomposition

The problem of partitioning the system of equations (1) into subsystems based on how they interact
or are coupled to each other, can be formulated as a graph decomposition problem. Given the set of
states zy,--- , I, and some notion of dependence w;; > 0,i=1,--- ,n,j =1,--- ,n between pairs of
states, a graph G = (V, E) can be constructed. The vertices v; in this graph represent the states z;
and two vertices are connected with an edge of weight w;;, if w;; between the corresponding states
z; and x; is positive (or larger than a certain threshold).

Different choices of the weight matrix W = [w;;], would lead to different decompositions of the
graph. For instance, Mezic et al. [10], proposed a horizontal-vertical decomposition {HVD) of the
graph G based on the structural properties encoded in the Jacobian 2, associated with the system
1. Specifically, in this case

wij = I(|Jy1), (8)

where, 7 is an indicator function. Note w;; = 1 if state i affects state j, and w;; = 0 otherwise.
The HVD of the graph is obtained by recursively identifying transient and recurrent non-null sets of
the Markov chain corresponding to the weight matrix W, with weights given by (8). Vertically, the
system is decomposed into a linear series of subsystems, where the subsystems above is influenced
by the subsystems below but not vice versa. So, the input signal propagates unidirectionally from
the bottom to the top. Horizontally, each subsystem is decomposed into independent groups with no
edges connecting different groups. So, each group has its own input and output and are functioning
independently. Each group in HVD is a connected component of the graph and HVD creates a
partial ordering on the set of connected components.

Another plausible partition of G is to assign the nodes into different components such that nodes
in the same components are strongly coupled and nodes in different components are weakly coupled
to each other. This requires a notion of coupling strength between nodes or states, which would
depend on the nature of the problem; for our case, we propose to use

wyy = %[ljul + [T54l), 9)

which measures the interdependence of states z; and x; on each other, corresponding to the linearized
dynamics. The problem of decomposition can now be formulated as follows: we want to find a
partition of the graph G with edge weights (9) such that the edges between different components
have a very low weight and the edges within a components have high weight. The main tools for
accomplishing this decomposition are graph Laplacian matrices. There exists a whole field dedicated
to the study of those matrices, called spectral graph theory [19]. Note that in the literature, there is
no unique convention as to which matrix is exactly called the graph Laplacian and how the different
matrices are denoted. In the following we always assume that G is an undirected, weighted graph
with weight matrix W, where w;; = w;; > 0. The unnormalized graph Laplacian matrix is defined
as

L=D-W, (10)

where, D is the diagonal degree matrix whose ith diagonal entry d; = 3~  Wij- There are two other
matrices which are called normalized graph Laplacians in the literature. Both matrices are closely
related to each other and are defined as

Loym D=2 p-Y2 = | _ D=2 p-1/2, (11)
Lew = D'L=I1-DW. (12)

The procedure to decompose the graph using graph Laplacian, is summarized below, details can be
found in [19]. Given m, the number of components or subsystems,

1 Construct the graph G = (V, F) by the procedure described above. Let W be its weighted
adjacency matrix.
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2 Compute the graph Laplacian L.

3 Compute the first m eigenvectors vy,- -+ , vy, of L.

4 Let V € R"*™ be the matrix containing the vectors vy, -, vy, as columns.

5 Fori=1,---nlet u; € R™ be the vector corresponding to the i-th row of V.

6 Cluster the points u;,7 = 1,--- ,n in R™ with the k-means algorithm into clusters Cy,--- , Cy,.
7 Output: Clusters Ay,--- , A, with 4; = {j|u; € C;}.

Typically, m the number of weakly coupled subsystems (or components) in the system, is not known
apriori. The spectral gap in the spectrum of the Laplacian can be used to identify m. For discussion
on other methods, see [19]. We shall denote by

Ni={j:3ke A & 3leA; stsy>0}, i=1.---,m, (13)

the set of indices of the components (or subsystems) to which the i—th component (or subsystem)
is weakly connected.

In practise HVD and spectral decomposition can be combined: the connected components iden-
tified in horizontal layers after HVD can be further decomposed into weakly interacting subsystems
by using graph Laplacians, as described above. In summary the graph decomposition partitions the
system into appropriate subsystems, allowing the application of waveform relaxation, an iterative
scheme to accelerate simulation of a system composed of weakly coupled subsystems.

5 Waveform Relaxation

In this section we describe the basic mathematical concept of the Waveform Relaxation (WR)
method. We consider dynamical systems which are described by a system of differential equations
of the form (1). For purpose of discussion here, we would assume that the parameter values £ in the
system (1) are fixed. The general structure of a WR algorithm for analyzing system (1) over a given
time interval [0 T consists of two major processes, namely the assignment partitioning process and
the relazation process 17, 18].

In the assignment-partitioning process, the system is partitioned into m disjoint subsystems of
equations. This partition can be accomplished, for instance by the graph decomposition procedure,
as described in the previous section. Without loss of generality, we can rewrite Eq. 1 after the
assignment-partitioning process as:

1 = Fi(yi,di(t), A, 0)
y2 = Fa(ya, da(t), As,t)
ym = Fm(ynudm(t)yl\mvt) (14)
where, for each 1 = 1, ,m,
Fi={f;:7€ A}, (15)
yi € R? is the subvector of x assigned to the i—th partitioned subsystem, i.e.
yi(t) = {z;(t) : j € Ai}, (16)
Ai(t) ={§;: 7 € Ai}, (17)
and
di(t) = {y,.(t) : : € N3}, (18)
5
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are decoupling vectors. It is clear that if the vectors d;(t) are treated as the input variables of
the system described by Eq. 14, then the system can be easily solved by solving m independent
subsystems associated with Fy,--- [F, respectively.

The relaxation process is an iterative process, which starts with an initial guess of the waveform
solution of the original dynamical equations (14) in order to initialize the approximate waveforms of
the decoupling vectors. During each iteration, each decomposed subsystem is solved for its assigned
variables for t € [0 T by using the approximate waveform of its decoupling vector. Two most
commonly used types of relaxation are: Gauss-Seidel(GS) relaxation and the Gauss-Jacobi (GJ)
relaxation. For the GS relaxation, the waveform solution obtained by solving one decomposed
subsystem is immediately used to update the approximate waveforms of the decoupling vectors of
the other subsystems. For the GJ relaxation, all waveforms of the decoupling vectors are updated at
the beginning of the next iteration. The relaxation process is carried out repeatedly until satisfactory
convergence is achieved.

Let the superscript index I denote the WR iteration count. Then the general structure of a WR
algorithm can be formally described as follows:

e Step 0 (Assignment-partitioning process): Partition (1) into m subsystems of equations as

given by (14).
e Step 1: (Initialization of the relaxation process): Set I = 1 and guess an initial waveform
{¥°(t): t € [0 T} such that y2(0) = ya;.

e Step 2 (Analyzing the decomposed system at the I-th WR iteration): For each i = 1,--- ,m,

set
di(t) = {yj, '(6) : js € i} (19)
for the GJ relaxation, and solve for {y(¢):t € [0 T]} from
yi =Filyl,d{(1),As,1), (20)

with initial condition y!(0) = yio.
e Step 3 (Iteration) Set / = [ + 1 and go to step 2.
Remarks
1 A simple guess for {y?(t)} is y?(¢) = x;(0) for all t € [0 T).

2 In the actual implementation, the relaxation iteration will stop when the difference between the
waveforms {y'(t) = (y{(t),--+,y}()) : t € [0,T]} and {y'~'(t) = (y17'(®),- -, ¥i (D) :
te[0 Tl}i e supep 7y llyr(t) —yr—i(t)|, is sufficiently small.

3 In analogy to the classical relaxation methods for solving linear or nonlinear algebraic equa-
tions, it is possible to modify a WR algorithm by using a relaxation parameter w € (0,2). By
introducing w, the iteration equation (20) gets modified to yield

where,
yi=yi " +w@ -y (22)
Note the following two important characteristics of the WR Algorithm:

1 The analysis of the original system is decomposed into the independent analysis of m subsys-
tems.

2 The relaxation process is carried out on the entire waveforms, i.e. during each iteration each
subsystem is individually analyzed for the entire given time interval [0, T).

The conditions that guarantee the convergence of WR method have been analyzed in detail in [17].
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6 Uncertainty Quantification Methods

As discussed in introduction, UQ methods can be classified as sampling and non-sampling based.
In this section, we describe two such interrelated approaches: generalized polynomial chaos (gPC)
and probablistic collocation method (PCM).

6.1 Generalized Polynomial Chaos

In the finite dimensional random space I' defined in (6), the gPC expansion seeks to approximate
a random process via orthogonal polynomials of randoin variables. Let us define one-dimensional
orthogonal polynomial spaces

Whde = {v: T - R:v € span{y(€)}¥,),  k=1,---,p, (23)

where, {1:(£x)} denotes the polynomial basis from the so called Wiener-Askey polynomial chaos [12].
According to the Cameron-Martin theorem [21], the Wiener-Askey polynomial chaos expansion can
approximate and describe all stochastic processes with finite second-order moment, which is satisfied
for most physical systems. The Askey scheme of polynomials contains various classes of orthogonal
polynomials and with their associated weighting functions which coincide with probability density
function of different distributions. For example, uniform distributions are associated with Legendre
polynomials, and Gaussian distributions are associated with Hermite polynomials. An important
property of the Wiener-Askey polynoinial chaos is orthogonality:

/r V(€)W (& )wic (k) dEx = 65, (24)

where, d;; is the Kronecker delta.
The corresponding P-variate orthogonal polynomial space in I' is defined as

wrh= @ wh (25)
ldI<P
where the tensor product is over all possible combinations of the multi-index d = (d;,d2,--- ,d;) €

NP satisfying |d| = 30_, di < P. Thus, W/ is the space of N-variate orthonormal polynomials of
total degree at most P, and its basis functions satisfy

/F‘I’e(ﬁ)‘l’j(ﬁ)W(&)di = E(Vi(§)¥;(8)) = by, (26)

forall 1 <17,53 < dim(WpP) =M= Qﬁ’;ﬁ)—!. where £ is the expectation operator.

The major advantage of applying the gPC is that a random differential equation can be trans-
formed into a system of deterministic equations. A typical approach is to employ a stochastic
Galerkin projection, in which all the state variables x,,z2, - - ,z, are expanded in polynomial chaos
basis with corresponding modal coefticients (a¥(t)), as

M
oL (t.€) =) af()Uu(§), k=1,---,n. (27)
gl

Substituting, these expansions in Eq. (1), and using the orthogonality property of polynomial chaos
(25), we obtain

a_‘; = ‘/rfk(xf(t’{)"" ’Ivl:(t!{)’&! t)q’](f)W(f)df, k= 1)' LN, J =1,--- 71”1 (28)
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a set of deterministic modal ODEs, with initial conditions

af(o) = /ka(O,{)\Il](E)w(E)df, k= 11"' y ] = 1)" g 1A[ (29)

This system can be solved with any numerical method dealing with initial-value problems, e.g., the
Runge-Kutta method. Similarly, the observable can be expanded in gPC basis, as

M
(6,6 =) brOVi(e), k=1, .4, (30)
i=1
where,
= /F k(€)W (O)w(€)dE = /F o (x(t, )T (OW(E)dE, k=1,--,d, j=1,-,M. (31)

Hence, once the solution to the system (28) has been obtained. the coefficients bf can be approxi-
mated as

bfz/rgk(zf(t,e),---,xﬁ(t,e))wj(e)w(e)de, k=1,--,d, j=1,---,M. (32)

Such a Galerkin procedure has been used extensively in the literature. However, when (1) takes a
complicated form, the derivation of Galerkin projection in (28), and subsequently the gPC approx-
imation of the observable in (32), can become highly non-trivial, if not impossible. To circumvent
this difficulty, probablistic collocation method has been developed.

6.2 Probabilistic Collocation Method

The collocation method is an alternative approach to solve stochastic random processes with the
gPC. Instead of projecting each state variable onto the polynomial chaos basis, the collocation
approach evaluates the integrals of form (31) by evaluating integrand at the roots of the appropriate
basis polynomials. Two underlying concepts for the PCM are the orthogonal polynomial and their
associated quadrature rule. Given a probability density function w(§) (let p = 1,d = 1 for now),
the PCM based on Gauss quadrature rule, approximates an integral of a function g with respect to
density w(£), as follows

1
[ sou@d~ ¥ g (33)
=il ri€CT
where,
Ci={re: Yps(ra) =0,k =1,--- ,g+1}, (34)

is the set of Gauss collocation points with 1; being the orthogonal polynomials corresponding to the
probability distribution w(£), as described in previous section. The weights W; are given by

1
[ = w”—(y)w d
W= [ NTETATIEn Rl (35)

The Gauss quadrature formula, which is a well-known numerical integration technique, yields an
exact integration value for any function in a polynomial form of order less than or equal to 2q + 1.
Other quadrature rules can be also be used, some of which have nested quadrature points. One such
rule known as Clenshaw Curtis (CC) quadrature is described in the Appendix.

For higher dimensional discussion (i.e. for p > 1), we would denote 1D quadrature rule (Gauss
or CC) along each random dimension as

my

ull,[g] = Z ‘Vljkg(rl;k)1 ] = 17' Ry /Y (36)
k=1
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where, [; is the accuracy level of quadrature formula, and my, is the number of quadrature points
corresponding to that accuracy level. Building on the 1D quadrature formula. the full grid PCM
leads to following cubature rule,

/ 11 i 'l--- / 'l o1, EIWENE (37)

~ Iy lp)lg) = U, @UL UL )g) (38)
my, o, m,
= Z Z AL Z (”/’lle ”/'17]'7 s ”’ylnju )g(rlljl Ay rlpjp) (39)

H=1ja=1  jp=1

To compute I(ly,--+ ,l,,p) we need to evaluate the function on the full collocation grid C(1,p)
(where, 1 = (Iy,--- ,1;)) which is given by tensor product of 1D grids

Cp)=C x---xCl, (40)

with a total number of collocation points being Q = []}_, ;. In this framework, therefore, for any

t. the approximations to the model coefficients a¥ (see Eq. 27) and b¥ (see Eq. 30) can be obtained
as

my N, myy,

ak(t) = / (L OWEWEAE = Y Y N (Wi, Wy -+ Waog Jaelt g0+ 171,5,), (41)
15 n=1j2=1  jp=1
and
my, my, nny,

bk(t) = /r ak(x(L YV E)WE)E = Y S o Y (W5, Wiagy -+ W5 )k (X Ty 171,5,))-

n=1ja=1  jp=1

(42)
Note to compute summations arising in above equations (41,42), the solution x(t,7i,j,," " ,71,j,)
of the system (1) is required for each sampling point (ry;,,---,7,;,) in the full collocation grid

C(1,p). Thus, simplicity of collocation framework only requires repeated runs of deterministic solvers
(without explicitly requiem access to the system equations), resulting in a faster algorithm than gPC.

If we choose the same order of sampling points in each dimension, ie. I} = lp...--- =1, =1,
the total number of points is @ = IP. Hence, the computational cost increases rather steeply
with the number of uncertain parameters p. This problem can be circumvented by using different
cubature rule. One such example is Smolyak rule which requires significantly smaller number of
points while maintaining the same accuracy as full grid PCM. Smolyak’s algorithm is a method
first developed to handle high dimensional quadrature [4] and later extended to accomplish high
dimensional interpolation [6]. Its basic idea is to use the solution to several low-dimensional problems
to span the space and then linearly combine these to yield the solution to higher dimensional problem
[5). Grid generated using this rule is known as sparse grid; for further discussion, the reader is
referred to the Appendix.

7 Scalable Uncertainty Quantification Approach

In this section we discuss how generalized polynomial chaos and probabilistic collocation method can
be integrated with graph decomposition and waveform relaxation scheme, leading to scalable UQ
approaches. We describe two such iterative approaches: the first one requires access to the equations
which describe the underlying dynamics of the system, while the other one treats the system as a
black box.

9
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7.1 Equation Based Approach

The procedure of transforming a random differential equation to a deterministic system, by employ-
ing gPC and stochastic Galerkin projection, was outlined in section 6.1. The deterministic set of
ODE'’s so obtained describe the evolution of modal coeflicients (see section 6.1 for details) and can
be compactly written as

a = H(a,t), (43)
with the initial condition a(0) (see Eq. 29 as well), where,
a = (a1,a} " ah,0f, - 0y, oesaly oo ), (49)
H = (h}vhév"' 7h;\!!h?7"' vh%h"' ’ 11’7"' ’ 11:!)7 (45)
and
M M
h¥(a,1) = /rfk(Za:(t)w,-(s),--- VS el (OU(E), 6,0V, (OW(E)E, k=1,---,n, j=1- M.
i=1 i=]
(46)

Note that order of the deterministic system (43) is nM, where M = %)—! and is significantly greater
than the order n of the original random system (1). However, by applying graph decomposition and
waveform relaxation to the deterministic system (43), we can accelerate the computation of solution
to the initial value problem stated above. The main assumption here is that if the system (1 is
composed of weakly interacting subsystems, so would be the transformed system (43). In summary,
the three step approach to UQ is:

e Step I: Apply gPC and stochastic Galerkin projection to system (1) to obtain a deterministic
system (43).

e Step II: Apply graph decomposition (see section 4 for details) to identify weakly interacting
subsystems in the system (43).

e Step III: Apply waveform relaxation (see section 5 for details) to the decomposed system
obtained in Step I

After these steps, one can evaluate the effect of uncertainty on observables as described in section
6.1. One of the major limitation of the above approach is that, in order to accomplish step 1 we need
access to the equations (1), which may not be readily available for large muiticomponent systems.
Moreover, even when equations are available, the Galerkin projection step may be very tedious, if
not impossible. We describe an alternative approach in the next section, which treats the system
more or less as a black box.

7.2 Probabilistic Waveform Relaxation Based Approach

In section 5 we described a deterministic waveform relaxation, in which the decoupling vectors
are deterministic function of times. By incorporating UQ methods, we would extend WR to the
probabilistic setting we are dealing with. Specifically, at each waveform relaxation iteration we
propose to apply PCM at subsystem level and use gPC to propagate the uncertainty among the
subsystems. Since UQ methods are applied to relatively simpler subsystems which typically involve
a few parameters, this renders a scalable iterative approach to UQ in large networks. Moreover, like
in PCM this method does not require access to the equations describing the system dynamics.
Consider the i—th subsystem of the system (14), written as system of 1st order ODE’s

3)1} = F]’:(Yi,di(t),l\i,t)
B = Fé(yi»di(t)vAivt)
y: - F:(ylydl(t)vAlvt) (47)

10
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where, y; = (y},¥5,*+ ,yk,) with N, = |A;| (where, |- | denotes the cardinality of the set) and d;(t)
is the decoupling vector (18). Note that the i—th subsystem is directly affected by the parameters
A; and indirectly by other parameters through the decoupling vector. We shall denote by Li C
{€1,€2,--- ,&p} the set of all parameters which directly or indirectly affect the i—th subsystem.
Clearly, ' D A; and

Zi=T\ A (48)
will be the set of parameters which indirectly affect the i—th subsystem. Also we shall denote by
i | ] 45 (49)
JEN:
Analogous to the P-variate orthogonal polynomial space introduced in section 6.1, we consider a
P-variate space formed over the random parameter set = C {£1,&s,- -+ ,&p}
WE = Q) wh, (50)
[di<p

such that [d| = dy+d2+---dy < P, where N = |Z|. Following this notation for the i—th subsystem,
we shall denote the polynomials belonging to lV£, by \Ilz,j = 1,--+ M;, where M; = %’%,ﬂ and
N; = |%;|. In this polynomial space we seek polynomial chaos expansions of the form,

M,
W) =) el (T, (51)
j=1

where, the superscript 7 in the above variables, denote that the all variables correspond to the i—th
system. We shall denote by yf (¢, %) = (y{", 45", -+ ,y¥) the vector of P—variate expansion for
i—th subsystem. With such an expansion, we can rewrite each equation in the subsystem (47) as

yi = F}i(yivyi(‘(tvzz))/\ivt)v k=11"'1N.9- (52)

where, we have expressed the decoupling vector as y;.(t, L) = (y£, (¢, £7),- -- ,yJ’-’N" (t,X7%n)), with
jk € M and Nn = |M|
The full collocation grid C(l,n;) for the i—th subsystem will be represented as

C(l,n; + nf) = C(o, n;) x C(m, nf), (53)
where, 1 = (0, m),
C(o,n;)=C) x -+ x CJ"', (54)
is the collocation grid corresponding to parameters A;, with n; = |A;|, 0 = (01, ,0y,), and
C(m,nf)=Cp, X+ x C,‘,,"f, (55)
is the collocation grid corresponding to parameters L¢, with nf = |Xi| and m = (my,--- yMige ).

Since, the behavior of i—th subsystem weakly depends on the parameters ¢, we can take,
Y Y i

- max m; € max Ok. (56)
i=1, .0 k=1, 04

With this framework, we are ready to outline the second UQ approach:

e Step I: Apply graph decomposition (see section 4 for details) to identify weakly interacting
subsystems in the system (1).

e Step 1I: Apply probabilistic waveform relaxation, which involves following sub steps.

11
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= Step 0 (Assignment-partitioning process): Partition (1) into m subsystems (obtained in
Step 1) leading to system of equations given by (14). Obtain, A;, A X' and ¥t for each
subsystem, 1 = 1,--- ,m.

— Step 1: (Initialization of the relaxation process with no coupling effect incorporated): Set
I'=1and for each i = 1,-- ,m, guess an initial waveform {y?(¢):t € [0 T}} such that
y2(0) = ye, so that, the decoupling vector becomes

Yiln(t) = (ij(o)s aYin, (0))1 Jk € Mv Ny = IMlv (57)
and solve for {y!(t,A?):t€ [0 T]|} from
ytl = F'(y‘-l,yilc(t),A‘-,t), (58)

with an initial condition y}(0) = y?(0) on a collocation grid C(o,n;). Compute the gPC
expansion over P—variate polynomial space ch , leading to

M,
LAY = al (OW(AY, (59)
i=1

for k =1,--- ,M;. From now on we shall denote the solution vector of the i—the subsys-
tem at /—th iteration by yf! = (yifl,- .- ,y}\f:’).

— Step 2: (Initialization of the relaxation process, incorporating first level of coupling effect):
Set I =2 and foreachi=1,--- ,m, set

y?r‘(tv A:‘) = (yjpl‘(tsAjl)a"' 5 len (thjN" ))v jk eMa Nﬂ =] '-Mly (60)
for the GJ relaxation, and solve for {y?(t,£!) :t € [0 T]} from
yi=FUy] ¥t AD) Anst), (61)

with an initial condition y2(0) = y?(0), over a collocation grid C(1,»; + n). From this
obtain the P—variate expansions over the polynomial space WzP__ , so that

M,
ULE) = Y aOW(ED), k=1, M, @

j=1

— Step 3 (Analyzing the decomposed system at the I-th WR iteration): For each i =
1,---,m, set

yE(6Z) = R0,y B), Gk e N, Na=IMl,  (63)

for the GJ relaxation, and solve for {y*(t,£'):t€ [0 T]} from

y{ = Fi(y{,y‘»’((t,zi),l\i,t), (64)
with initial condition y/(0) = y?(0) over a collocation grid C(l,n; + n{). Obtain the
expansions,

- : A" . » 4
yiPl(AY) = ) al(OTLAY), k=1, M, (65)
j=1

— Step 4 (Iteration) Set I = I + 1 and go to step 3.

12
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Note that in above approach, PCM is applied at subsystem level with the collocation grid C(l, n; +
ng) (where, (I = (o,m))with o = (01,-+,0,,) and m = (my,--- ,m,:)) being sparse for the
parameters which affect that subsystem indirectly (see condition 56). The table below, shows how
much computational savings (see last column) can be obtained by using above framework, instead
of full collocation over the entire parameter space. In the table, m be the number of subsystem,
p; will be number of parameters occurring in the i—th subsystem and { be the order of accuracy
of collocation along each dimension for the collocation grid over the entire parameter space with
n = Z;"_,_,lpi parameters. Lets assume for simplicity of analysis. that o; = I,,7 = 1,--- ,n; and
m; = l,i = 1,--+,n§ and I, < l,. Imax denote the maximum number of waveform relaxation
iterations.

Subsystems & parameters | Collocation parameters | Full Collocation (Rp) | Iterative (R;) | Z£

R
m=2p;=5,i=1,2 L= 0l ="5; Ly =2 9,765,625 2,006,251 5

m=3,p;=5,i=1,,2,3 1=5,l,=5,lm=2 3.0518e+10 96.009.376 300

In the table above entries in third column are computed using formula R g = [P which denotes the
number of deterministic runs of the complete system (1). Similarly, the fourth column is obtained

using
m

m
Ri=1+ Zl{," + Imax(z i ®lf._”), (66)
i=1 i=1 j#i
assuming Imax = 10, and measures the total number of deterministic runs of the subsystems in-
volved. Clearly, advantage of the iterative approach becomes evident as the number of subsystems
and parameters in the system increase. Also note that this approach is parallelizable, and hence
highly scalable.

7.3 Some Remarks on two algorithms:

1 There are number of parameters that need to properly identified to

2 Analytical conditions under which these algorithms will converge, is not known and need to be
established. These conditions would provide an We perform some experiments to numerically
study the convergence behavior of probabilistic WR.

3 Note that in both algorithm graph decomposition is applied to identify weakly interacting
system, before waveform relaxation is initiated. It is assumed that this decomposition remains
valid as the system evolves during relaxation process. However, the

4 The full grid collocation used in above algorithm can be replaced by sparse grid collocation
in a straightforward manner. With this, additional computational gain can be attained as
sparse grid methods are computationally efficient compared to the full grid (see section ?? and
Appendix A for further details).

8 Example Problems

In this section we illustrate the iterative procedure developed in previous section on a simplified
power system network and numerically analyze its convergence properties.

13
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8.1 Stability Problem

In order to illustrate the iterative algorithm proposed in section 7.2 and study its convergence
behavior, we first consider a simple system, with two states (1, z2),

£ = azri+cxl-u, (67)
y = cxl4briov,, (68)

where, a,b,c,v),vy are the parameters. Here the parameter ¢ determines the coupling strength
between two subsystems described by the two equations. It would be assumed that c,v,v, are
deterministic parameters, while a, b are uncertain with Gaussian distribution. The objective here is
to determine the uncertainty in the stability of system, which can be quantified by looking at the
distribution of A,,,z, the maximum eigenvalue of the Jacobian,

o 2(1.7:10 2C$20
J(a,b,c) = ( Far  Ohpes ), (69)

where, )9, T20 is the equilibrium satisfying

arfy+cxjy—vm = 0, (70)
cxly+ bz, —v; = 0. (71)

Figures below show result of probabilistic waveform relaxation for different values of coupling pa-
rameter c. For all cases, the ground truth is computed based on collocation on the parameter space
(a,b) with I = 10, while I, = 5. {,, = 3 and P = 5. ln all cases considered, the iterative approach
converges to the ground truth, as shown by the histogram of A, (see figures ??), and its mean
and variance (see figures ??). As the coupling strength increases, the number of iterations required
for the convergence increases.

9 Conclusion and Future Work

In this paper we have proposed uncertainty quantification approaches which exploit the underly-
ing dynamics and structure of the system. In specific we considered a class of networked system,
whose subsystems are weakly coupled to each other. We showed how these weak interactions can be
exploited to overcome the dimensionality curse associated with traditional UQ methods, and radi-
cally accelerate uncertainty propagation in large systems. By integrating graph decomposition and
waveform relaxation with generalized polynomial chaos and probabilistic collocation framework, we
proposed two scalable iterative UQ approaches: equation based which requires access to the equations
describing the underlying dynamics of the system, while the other one, which we called probabilistic
waveform relazation, treats the system more or less as a black box. The second approach is more
practical as for most complex networked systems, it may be non trivial to obtain system equations,
if not impossible. We illustrated the probabilistic waveform relaxation approach on a simple system
with promising results.

Many questions further need to be investigated. First of all. analytical conditions under which
the two iterative schemes proposed in this paper converge, need to be established. The choice of
collocation parameter [, (see section 7.2) plays a critical role in how much computational gain can
be obtained in probabilistic waveform relaxation; a systematic procedure for selecting this parameter
is therefore crucial. Finally, this algorithm need to be tested on a larger system, to establish its true
potential of being scalable.
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A Sparse Grid Methods
A.1 Clenshaw Curtis Quadrature

ClenshawCurtis (CC) quadrature employs a change of variables £ = cos§ and uses a discrete cosine
transform (DCT) approximation for the cosine series, in order to compute the integral in Eq. 33.
More precisely, the cosine series expansion

Qg -
g(cos 0) = 3 + 2_: ax cos(k6), (72)
leads to
1 n
[ st = [ ateos(o)u(coss) sin(e)as
- O S W,
= T ik Zak k
ag
~ S Wo+ ZakW (73)
k=1
where, for k =0,---
2 3
a = ;/ g(cos 8) cos(k6)db, (74)
0
and .
Wi = / w(cos #) cos(k§) sin 6d6. (75)
0

Unlike computation of arbitrary integrals, Fourier-series integrations for periodic functions (like
f(cos8))) in Eq (74), up to the Nyquist frequency k = p, are accurately computed by the p equally-
weighted points

=)

= s » Tk—COb( Wk=1,--+,q+1}, (76)
except the endpoints, which are weighted by 1 /2, to avoid double-counting. With this the integral
(74) can be approximated as

Y LB COTRV o

(i — 1)k
: 2 =l (77)

For most w(£), the integral (75) cannot be computed analytically. Since the same weight function is

generally used for many integrands g(£), however, one can atford to compute these W numerically to
high accuracy beforehand, like in Gauss quadrature. Note the following features of CC quadrature:

1. Since, by definition the Chebyshev polynomials Ty (€), satisfy Tk(cos @) = cos(kf) CC quadra-
ture can be thought of as employing the expansion of the integrand (see Eq. 72) in terms of
Chebyshev polynomials to compute the integral.

2. In CC quadrature, the integrand is always evaluated at the same set of points, given by Cp
(Eq. 76) regardless of probability density function. On other hand, in Gaussian quadrature,
different density functions lead to different orthogonal polynomials, and thus different roots
where the integrand is evaluated.

3. Forqg=2,i > 1, C! C C},, (this would be the notation we would use for CC 1D grid from
now on, i.e. C1 = Cl (i) the CC quadrature points become nested. Gaussian quadrature
points lack this propert)
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4. The CC formula is less accurate, the (g + 1) point CC rule can provide an accurate result for
integrating polynomial functions of order up to g, compared to 2¢ + 1 for Gauss. For practical
purposes, however both method lead to comparable accuracy [3]. This is possible because
most numeric integrands are not polynomials, and approximation of many functions in terms
of Chebyshev polynomials converges rapidly.

In summary, besides having fast-converging accuracy comparable to Gaussian quadrature rules,
CC quadrature naturally leads to nested quadrature rules, which is important for both adaptive
quadrature and multidimensional quadrature (cubature). There are other quadrature rules with
nested properties, details can be found in [5].

A.2 Smolyak Quadrature

Smolyak’s algorithm is a method first developed to handle high dimensional quadrature [4] and later
extended to accomplish high dimensional interpolation [6]. Its basic idea is to use the solution to
several low-dimensional problems to span the space and then linearly combine these to yield the
solution to higher dimensional problem [5]. Let

Akle] = (U —U_)lg] (78)

be the difference quadrature formula with, 243 = 0. In general, the difference are therefore quadrature
formulas on the union of grids C} UC}_,, which is just C} in nested case. Based on these difference
formulas, Smolyak construction approximates the integral in Eq. (4) by

SLpled= Y. (Al eal--®Al)ll (79)

i <i+p—1

where, |i] =i, + i3 - +1,. This can be expressed in terms of U}', as

S, p)lg] = Z (1) +p-lii-t (lzil_—ll) UL U, --- UL ). (80)
1<lil<l+p-1
where, )
R (p—1)!
(Iil —t) B ek L

is the factorial. From above equation we see that like full tensor-quadrature, Smolyak quadrature for-
mulas are special tensor-product rule which are constructed from tensor products of one-dimensional
quadrature formulas, but these are combined so that in only some dimensions quadrature formulas
of high order are used while formulas of lower order are used in the other dimensions. One could
also write above formula in recursive fashion, like

-1

S(,p)lgl = D (Ak ® S —k,p— 1))]g], (82)
k=1
and
St+1,p+lgl= Y (AL ®AL---8Al oU,, ;) (83)
li|<i+p-1

Note that to compute (79), we only need to evaluate function g over so called sparse grid, which is
given by union over the pariwise disjoint grids S;, x --- x S,

Shpy= |J 8yx---xS, (84)
lil<i+p—1
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where, x denotes the usual Cartesian product. For non nested case
Sk = Ci, (85)

while, for nested case
Sk = Ci\C}_y, (86)

with C} = @, where recall C} is a set of 1D quadrature points corresponding to level k. Thus,
unlike full grid (Eq. 40), the sparse grid is a union of several tensor products. Based on Eq. (80),
an appropriate choice of vector i = (i,4,---,1,) gives level of accuracy in each dimension, from
which the sparse grids are obtained by usual product i.e. S;, x S, ---S;,. In case the univariate
formulas are nested, the sparse grids are also nested, i.e.

S(l,p) cS(1+1,p). (87)

The number of points @ in sparse grids S(I,p) are given by

Q= > pypi, (88)
H<t+p—1
where,
px = Card(Sk), (89)

is the cardinality i.e. number of points in the set Si. If m; = O(2') the order of Q is
Q=00 (90)

This shows that the dependence on dimension is much weaker on n the number of uncertain param-
eters, compared to O(2'?) for full grid. Table 1 gives a comparison of the number of grid points in
different schemes.

1 For n > 5 the sparse grid methods prove significantly more advantageous than full grid.
2 Nested quadrature rules lead to sparser grids compared to non-nested quadrature rule.
3 The asymptotic accuracy of sparse grid method is comparable to that of full grid.

More precise results on accuracy and convergence properties of Smolyak grids with different quadra-
ture rules can be found in [5]; for multielement formulation of sparse grid see [2].
In summary, the Smolyak formula (Eq. 80) can be expressed as

Py Pip

ShpMgl= D DD Wyglry), (91)

lil<t+p—1hH=1  jn=I

with, i = (i1,42, -+ ,ip),d = (J1,J2,++ 1 Jp)s and r§ = (r45,,+-+,7i,j5,)- Again note that i =
(21,82,-++ ,p) is vector specifying levels of quadrature formula in each dimension. For each i, p;,
(see Eq. 89) denotes the actual number of points in the 1D grid (Si. see Eq. 85 or 86) in k-th
dimension; hence ji goes till p;, to cover all points in the grid in each dimension.

For non nested case, weights are combined as follows

Wi = Wiy - Wi i, (92)
while in nested case,
Wo= Y. Yaten Vinsaieo (93)
li+q|<I+2d-1
17

99



B.1. SCALABLE UNCERTAINTY QUANTIFICATION IN COMPLEX DYNAMICAL
NETWORKS

Random Dimension (n) | Level (1) FG SG CC | SG Gauss
3 2 8 7 10
3 27 25 52
4 64 69 195
5 125 177 609
6 215 441 1710
7 343 1,073 4502
5 2 32 11 16
3 243 61 131
4 1,024 241 746
5 3.125 801 3376
6 7,776 2,433 13,083
7 16,807 6,993 45,458
8 32,768 19,313 | 145,873
9 59,049 51,713 440,953
10 100,000 135,073 | 1,272,848
10 2 1,024 21 31
3 59,049 221 486
4 1,048,576 1,581 5166
5 9,765,625 8,801 42,101
6 60,466,176 41,265 281,867
20 2 1,048,576 41 61
3 3,486,784,401 841 1871
4 1,099,511,627,776 11,561 38,531
5 95,367,431.640,625 | 120,401 600,226

Table 1: Comparison of full gird and sparse grid PCM using different quadrature rules. In order
to generate above table, m} = !+ 1 for Gauss, while m} = 2!-! + 1,/ > 1 (and m} = 1,{ = 1) for
nested CC univariate quadrature formula (see Eq. 36). This table has been partially taken from (9],
with last column generated using ME-gPC code (see next section).
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with q € N and

5 .={ Wy if g=1

e Wikig-1yr = Wkag-2s if g>1,
where, 8,7 are such that 74; = rxig—1)r = T(k+q-2)s-

The weights can be precomputed in both cases, so that there is no practical difference concern-
ing the overall cost of the quadrature formula. Note that Smolyak formulas can contain negative
weights even if the underlying univariate quadrature formula have positive weights. Convergence
is guaranteed, because values of the weights remain relatively small. For more details on stable
numerical implementation of Smolyak quadrature, the reader is referred to [5].

(94)
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Iter=2 ter=3

0
58 6 62 64 66 68 58 6 62 64 66 58 6 62 64 66

58 6 62 64 66

Figure 1: Convergence of distribution, ¢ = 0.1

Figure 2: Convergence of mean and variance
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tter=1 Iter=2 iterss
600 600
400 400 400
200 200 200
0 0
62646668 7 6
Iter=4 Iter=6
600 600 600
400 400 400
200 200 200
0
5.5 6 5 6
600[
400
200
0
(hbt} 55 6

Figure 3: Convergence of distribution, ¢ = 1.0

e 2o S

Figure 4: Convergence of mean and variance
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Iter=1 Iter=2 Iter=3
400 400 400
200 200 200
0 0 0
7 1.5 5.5 6 6 6264
lter=4 Iter=5 Iter=6
400 400 400
200 200 200
0 0
58 6 6.26.4 58 6 6264 58 6 6.264
lter=7 iter=8 Iter=9
400 400 400
200 200 200
0 0 0
58 6 6.26.4 58 6 6.264 58 6 6.264
True
400
200
0
58 6 6.264

Figure 5: Convergence of distribution, ¢ = 2.0

8
wp
s

Figure 6: Convergence of mean and variance
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lter=1 Iter=2 Ilter=3
600
400 400 400
200 200 200
0 0 0
5 5:5 6 6.2 6.4 6.6
Iter=4 Iter=5 Iter=6
600 600 600
400 400 400
200 200 200
0 0 0
55 6 5.8 6 6.26.4 5.65.8 6 6.26.4
lter=7 lter=8 lter=9
600 600 600
400 400 400
200 200 200
0 0 0
5.65.8 6 6.26.4 5.65.866.26.4 5.65.8 6 6.26.4
True
600
400
200
0
565866.26.4

Figure 7: Convergence of distribution, ¢ = 2.8

290

)

op

Figure 8: Convergence of mean and variance
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B.2 Uncertainty propagation by various methods
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Summary

The main results presented in this work are summarized next.

PDF Fitting for Uncertainty Propagation, Long Tail input PDFs, High
dimensions, Unknown Unknowns. The approximation of PDFs of outputs of
systems that depend on stochastic inputs can be used to estimate statistical measures
of the outputs. These PDFs can be used to propagate further the uncertainty in
complex systems. Computations of intermediate PDFs and merging of PDFs can
provide large computational savings in uncertainty propagation (UP) computations
for complex systems. Formulas that evaluate these computational savings are
provided. Methods of fitting PDFs are illustrated on several UP problems as: a)
Computation of phase change temperatures depending on 4 input parameters with
long tail PDFs; b) In high dimension examples, PDFs with up to 2000 input
parameters are effectively estimated; c) The effectiveness of estimating PDFs is
illustrated for high dimension cases that also include unknown unknowns(inputs) with
unknown PDFs.

Optimized Interpolation for parameters and number of eigenvectors using
probability weighted objectives is an interpolation procedure that combines a) a
Nystrom kernel based interpolation approach with b) an optimization of the
parameters of the kernel such that to minimize the difference between statistical
measures of the interpolated function and of the data. This method was used in the
response surface (RS) UP approach.

Domain Exploration approaches, uniform domain covers, hierarchical stochastic
covers for Optimization and UP. Finding positions of points that provide quasi
uniform domain covers are important for designs of experiments, optimization, UP,
interpolation, domain discretization, solving PDEs etc. Domain exploration
approaches are more and more often used in industrial applications where an
understanding of the space of possible designs is thought for, e.g., for regions of
robust solutions, or for optimal solutions with respect to multiple objectives. Domain
exploration approaches usually offer more information about the design space than
optimization approaches. Finding good sets of sampling points is important for the
efficiency of domain exploration approaches and for UP. It is desired to obtain the
maximum amount of information about the design space using a smallest number of
samples. Simple and robust hierarchical stochastic cover techniques are presented. A
repelling particle method is illustrated where n points in a domain that act as
repelling particles pushed by potentials that aim to enforce given properties such as
uniform spacing. The particles may be denser in regions where given PDFs are higher
(the PDFs are treated as separate potentials). Treatment of boundaries and constraints
in searches and optimization is performed by three techniques: direct enforcing of the
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constraint, using of boundary particles and using of boundary potentials that repel the
particles towards the interior. We discuss a Hierarchical Architectural Optimization
approach using these ideas. Results for Domain Exploration, Global Optimization and
finding Multiple Local Minima by Adaptive Hierarchical Repelling Particle
Techniques are demonstrated. In addition, it is demonstrated that the optimization
will track the found local minima in a case when the objective varies continuously in
time (or depending on parameters), i.e., the problem has a dynamic objective.

A Generic Unstructured Multigrid (MG) Approach in High Dimensions is
proposed that combines the presented domain covering approaches, with the
interpolation approaches, and with known multigrid formulations. These generalize
known MG techniques to sparse data in high dimensions and combine the efficiency
of hierarchical structures with local iterations and with approximation of solutions by
reduced models.

A Hierarchical Richardson Approach for Model Extrapolation is suggested.
Coefficients of a sequence of models are identified by system identification and
extrapolated as in a Richardson procedure. Models may be decomposed into
deterministic sub-models (e.g., trends) and stochastic sub-models (e.g., noise). Model
extrapolation can be used for both deterministic and stochastic models, hence for UP.
Large computational savings may be obtained by extrapolating a sequence of coarse
model results to approximate fine model results.

A Response Surface (RS) Uncertainty Quantification Approach is compared with
MC, a Polynomial Chaos Collocation approach, and with DSAMPLE (an effective
quasi MC technique) on the Kr Milestone Problem. Advantages and disadvantages
of the RS approach are discussed.

A Sum of Gaussians State Uncertainty Propagation method was demonstrated for
a New England Power Grid model and the computational time savings using the
proposed merging of PDFs approach is discussed.

1. PDF Fitting for Uncertainty Propagation, Long Tail input PDFs,
High dimensions, Unknown Unknowns

The approximation of PDFs of outputs of systems that depend on stochastic inputs can be
used to estimate statistical measures of the outputs. These PDFs can be used to propagate
further the uncertainty in complex systems. It is shown that appropriate computations of
intermediate PDFs can significantly reduce the complexity of uncertainty propagation in
(UP) computations. Methods of fitting PDFs are illustrated on several UQ problems as:
a) Computation of phase change temperatures depending on 4 input parameters with long
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tail PDFs; b) In high dimension examples, PDFs with up to 2000 input parameters are
effectively estimated; c) The effectiveness of estimating PDFs is illustrated for high
dimension cases that also include unknown unknowns(inputs) with unknown PDFs.

The main idea is to approximate the PDF(f) by fitting a histogram of f(x) as shown in
the figure below.

Mormallzad Histogram va RarasiOanaily POFo

Multiple techniques have been applied such as sums of Gaussians and kernel density
functions. For example, the PDF(f) may be approximated a by a sum of Gaussians or of
other basis functions (such as rectangles), or a spline fitting a histogram etc.

If the PDF(f) is smooth, then a small number of points may be sufficient to approximate
it well. The approximation of the PDF(f) is an 1D problem, although f(x) may depend on
the variables x in high dimensions. Moreover, the fitting does not use the PDF(x).

Even more, the PDF(f) may depend on many unknown unknowns with unknown PDFs.
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PDF(T) Approximations by Kernel Density, Long Tail 4D

The parameters and their PDFs are not used

Works in high dimensions for any number of parameters and with
unknown distributions; Works for unknown unknowns

Model: T(x) = Gauss1 * Reg1 + Gauss2 * Reg2 fitting MD data, x In 4D LT

-
- -

Histogram of Data
“ PDF(T(x))

PDF(T)
Approximations
50K samples

Convergence of Mean and Var

50K sampies:

mean_T_reg MC = 106.65
var_T_reg MC =400.02
mean_T_bin Hist = 106.65
var_T_bin Hist = 400.02
mean_TE_ker GSS = 106.65
var_TE_ker GSS = 400.31

i PDF of T Bin{r), ker_GSS(c), ker_BOX(b)

P

~ PDF(T) fi

-Approximations , : -
500 samples ! @
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PDF(T) for 500 Samples

Scaled Probab. Tc_E(b) vs T_MC(r)
~Nluognm o!Tdna — .

; p(x).

-
o’ :

28

e uﬁlllléll = ILI;L 1.

PDF of T Bin(r), ker_GSS(c), ker_BOX(b)

Probability of p(x) for
different x piotted for T(x)

M T(x)=T(y) may accumuiate
2 different probabiliities :

px)#p(y)  for x#y

Y

}
4

t
=
]

% w- “\..

PDF(T) ~ Sum_x g(T(x), T)/N
Sum of Boxes, Gaussians, Kernels

113



B.2. UNCERTAINTY PROPAGATION BY VARIOUS METHODS

DARPA Kr Milestone 4 Gaussian PDFs (5000 samples)

The PDF statistical measures retlect the Measures of the Samples
The quality of the sampling is reflected in the quality of the PDF

and they should have similar convergence rates,

e.g., DS + PDF should converge faster than MC + PDF

' The time savings come when Uncertainty is Propagated using PDFs

mietsgren o1 7 dom

mean MC = 110.13
var MC = 309.04

" mean PDF = 110.13
var PDF=317.45

Anaiytic resuits Viadimir:
mean T An: 110.30
var T An: 315.61

The Kernel PDF (biue) is smoother
than the Histogram (red)
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High Dimensions, Unknown Unknowns

2000 parameters (Normal PDFs)

“unknown” parameters random (uniform) drive the mode switch
500 samples, 107(-3) relative error MC vs PDF

5000 samples, 107(-4) relative error MC vs PDF

Histogrem of T deta

500 samples
mean MC = 186.53
mean GSS PDF = 186.54

L - var MC = 1.9002e+005
var GSS PDF = 1.9021e+005

.- POF of T Binir), ker_GSSic). ker BOX()

5000 samples
W g 0 mean_MC = 183.35711
,\w‘o g q} mean_PDF = 183.35707
B T var MC=  185579.5
: var_PDF = 185542.8

Propagation of PDFs in complex Systems
Complexity reduction by merging PDF's

The propagation of PDFs in complex systems by computations of intermediate PDFs
and merging of PDFs can significantly reduce the complexity of uncertainty
propagation in (UP) computations. The following schemes provide the computational
time saving using PDF merging.
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High Complexity of approximating PDFs by MC/Quas! - MC, ...

PDF(x1) z=g(f(x1,x2)}

J—\. /’ﬁ PDF(2)
_— yloto2) Zaul IA
N_samp PDF(X2)

T1 = Yime to estimate POF(2) directly from x1, x2 by MC/QMC, ...

T1 = ( N_variables * N_samples) * (Tf+ Tg) ; T1, Tg = time 10 evaluate 1, g

23
Time Saving by Merging PDFs
Besldes computing y also compute PDF(y):
Merge N_variable PDFs into 1 PDF
PDF(x1) 2=g(f(x1,x2))
o — s
PDF
N_variables y=f(x1,x2) j\ v z=g(y)
N_samples
PDF(x2) Reduce N_var MC to
1 var MC
y
—_—
T1 = Time to estimate POF(z) directly from x1,x2 by MC/QMC, ...
T1 = (N_variebles * N_samples) * (T1+ Tg) ; Tf,Tg = time to evaluate f, g

T2 = Time to estimete PDF(z) from x1, x2 computing intermediate PDF(y):

T2 = ( N_variebies * N_sampies)* Tf + N_samples ° Tg,

PDF(2)

Time Savings In epproximating PDF(z) = T1 -T2 = (N_variables -1) * N_samples * Tgp,
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Time Saving by Merging PDFs + Reducing MC to PDF Fitting

Besides computing y aiso compute PDF(y):
Merge N_variabie PDFs into 1 PDF + Repiace MC for y by PDF Fitting

PDF(x1) 2=g(f(x1,x2))

‘ m PDF(z)
PDF
N Cy=fx1x2) W 2=y)
N_samples
PDF(x2) Reduce N_var MC to
]j\— 1 var PDF Fitting
y

T1 = Time to astimeta PDF(z) directly from x1, x2 by MC/QMC, ...
T1= ( N_variables * N_samplea) " (T1+Tg) ; Tt, Tg = time to evaluata 1, g

T2 = Time 10 aatimate PDF(z) from x1, x2 computing intermediate PDF{y):
T2 = ( N_variables * N_samples) * Tt + N_PDFfit - 1g,

Time Savings in approximating PDF(z) = T1 -T2 = Tg * ( N_variables * N_samples - N_PDFtit)
25

Time Saving by Merging PDFs + Reducing MC to PDF Fitting

Besides computing y aiso compute PDF(y):
Merge N_variabie PDFs into 1 PDF + Repiace MC for y by PDF Fitting

PDF(x1) z=9(f(x1,x2))
]J\_ //——\ PDF(z)

PDF(y) .

iy y=1(x1.x2) 2=y)

PDF(x2) Reduce N_var MC j\
to N_ var PDF Fitting

y

T1 = Time to estimate PDF(z) dirsctly from x1, x2 by MC/OMC, ...

T1= (N_variables * N_samples)* (Tt+Tg) ; 1, Tg = time 10 evatuate 1, g

T2 = Time to astimete PDF(2) trom x1, x2 computing intermediate PDF(y):
T2=( N_variable_PDFfi) * Tt + N_PDFfit-Tg,

Time Savings in approximeting POF(z) = T1-T2 =
Tt (N_variables °* N_sampies - N_variable PDFtit) + Tg ° (N_variables ° N_samples - N PDFQ%)

2. Optimal Interpolation: Interpolation optimized for parameters and
number of eigenvectors using probability-weighted objectives.
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The presented interpolation procedure that combines a) a Nystrom kernel based
interpolation approach with b) an optimization of the parameters of the kernel such that to
minimize the difference between statistical measures of the interpolated function and of
the data. This method was used in the response surface (RS) UP approach.

Response Surfaces: Nystrom Interpolation with PDF weighted Optimization

Fit functions using Eigenvectors of a Kernei as basis functions

Given the values fix,) of f at the poimts fx.....x,/,

approximae  f{x) and derivatives of f at x

) Kv=Av, K is a kemel, eg. K(xv)=exp-llx-yl’/a?)

2) v(x,):%ZK(x,.x,)v(x,) cigenvectors of K
*

3) v(x)=%ZK(x,x,)v(x,) extend the cigenvectors using K
i

4) f(x,)=Za,vl(x,) fit f by a PDF weighted Optimization (see next) using a subsetof eigenvectors
’

5) f(x)nZulv;(x) extend f using extension of eigenvectors 3) \
: I Optimization Added to Nystrom I

4 N
6 (=343 K(xxw, )

A =

o N
N a,f(X)=zﬂ(za,K(x.x,)vl(x,)) get derivatives of f from derivatives of X

Ay =
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Optimization of the RS to fit the data, the mean and var of the data

The samples x are fixed, Find the RS, R(x) that best fits the data f(x) by varying the
number of eigenvectors (M), kernel parameters (sigma), and coefficients (a) of the
eigenvector expansion

Nystrom: Given the N values fix;) of f at the N points [x,.....x, /.
approximae fix) at x

1 Kv=Av., K is a kemel, eg. K(x.y)=exp(-llx-yl’/o’) NxN
M
2) /"(r,)-R(x,)=Za,vJ(.r,) approximate f using a subsetof M eigenvectors and an Optimization as:

3 0 =nJin(minIlf—RlI/IIfII) forM, o, a. gives good mean and var approximations

4) 0, =rLu:1[m'm|Z|f(x,)—R(x,)l PUDIY. pix,)+ wl var(f)- var(R)1 |}

minimizez mean and variance errors using known PDFs

5)0,=rL1in[min[nnrm. mean, var, PDF(RS)]}
” L]

insures R converges to f in norm( and...PDF). where PDF(RS) is an approximation of the histogram(f)

6) Bootstarp approaches: compare N different RS's. each for another subset of N-1 samples

Several potential advantages of RS for uncertainty quantification

1) The RS approach may work in large dimensions (1072 - 104 ?) for RS a small
number of "good” eigenvectors may be sufficient. The eigenvectors may represent
well the reduced dimensionality of the data.

2) The RS approach may be easily applied on general domains and on manifolds

3) The RS approach may use a relatively small number of evaluation points (e.g., quasi
uniform in high dimensions)

4) The eigenvectors used in RS may depend on the problem — an advantage in
approximating features of the surface

5) The eigenvectors may have a local character (e.g., sums of Gaussians) hence may
represent local features of surfaces
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6) Error and convergence estimates based on eigenvectors and eigenvalues may be
provided

7) The RS approach is general: any probability distributions of parameters may be used
for the RS

8) The RS approach may also be used when unknown unknowns (with unknown
distributions) are present (as shown in our approach, where about 1024 random initial
positions and initial velocities are present), (see the extrapolation approach that estimates
models of noise).

9) Extension/Extrapolation using eigenfunctions may have improved reliability for
bounded functions.

10) RS provide multiple alternatives/freedom in: selecting the kernels, evaluation points,
handling convergence, handling high dimensions, handling general domains etc.

Disadvantages of Eigenvector based RS Approaches

An expensive diagonalization of a large matrix is required. The matrix may be sparse but
it is not banded usually. Eigenvalue computing time and accuracy are major concern
issues. Numerical instabilities may happen due to small eigenvalues, especially in
schemes that involve division by the small eigenvalues (that often have large relative
errors). This difficulty may be handled by the hierarchical RS approaches. The selection
of the kernels and of parameters of kernels are not obvious. It is not easy to define local
parameters, although the structure of the problem may require this, e.g., a Gaussian sigma
should depend on the density of the data.

3. Domain Exploration, Hierarchical Uniform Domain Covers for UQ.
Hierarchical Architectural Optimization.

Finding positions of points that provide quasi uniform domain covers are important for
designs of experiments, optimization, UP, interpolation, domain discretization, solving
PDE:s etc. Domain exploration approaches are more and more often used in industrial
applications where an understanding of the space of possible designs is thought for, e.g.,
for regions of robust solutions, or for optimal solutions with respect to multiple
objectives. Domain exploration approaches usually offer more information about the
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design space than optimization approaches. Finding good sets of sampling points is
important for the efficiency of domain exploration approaches and for UP. It is desired to
obtain the maximum amount of information about the design space using a smallest
number of samples. Simple and robust hierarchical stochastic cover techniques are
presented. A repelling particle method is illustrated where n points in a domain that act
as repelling particles pushed by potentials that aim to enforce given properties such as
uniform spacing. Treatment of boundaries and constraints in searches and optimization is
performed by three techniques: direct enforcing of the constraint, using of boundary
particles and using of boundary potentials that repel the particles towards the interior.
The approach is used for Hierarchical Architectural Optimization.

In the hierarchical stochastic covering approach, a domain is covered stochastically by
non-intersecting balls of same radius. A sequence of covers of decreasing ball radii is
used as shown below. Stochastic stopping criteria are proposed.

Similar, using a particle repelling approach to cover a domain by repelling particles, for
example repelled by Gaussian potentials of given width, a hierarchical cover is obtained
by selecting Gaussians of different widths.

Applications:
1. UQ for selecting sampling points
2. RS, Interpolation, Fitting
3. Design of Experiments (DOE), Domain Exploration
4. Global Optimization using hierarchical approaches

Advantages:
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O SN AN

Works in high dimensions

Uniform full domain cover.

Avoids meshing - griding

Works on unstructured domains, manifolds
Multiscale covering

Handling of Boundaries, Constraints
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Domain Exploration-DOE using Repelling Potentials and Particle Dynamics
Particles driven by a repelling potential cover uniformly an unstructured domain

Ronald Coifman (Yale), Mihai Putinar (UCSB)

X(t+1) = X(t) - dt * grad(P(X(t))
direct: min(P(X(t))

/CO\
00
o0

Design of Experiments (DOE) Problem:
Position K points uniformly inside a general domain.

Approach: set K initial particles randomly inside the
domain and drive them by a dynamics based on a
repelling potential. The steady state provides a
“uniform"” covering solution. Handle boundaries and
constraints by potentials.

Rissz Powrdal based coverage

€ 88eR. D P Mardin, Olscredzing Marwioida via Minimun Energy Poiris | Notioes of
e Amaericen Mathematcs Socety, November 3004, pg. 1106 1184

Rivaz potental and Adwrces in
2004

Mhal Pulinar: A
Consvuctve

Advantages compared to other DOE techniques:

1. Any number K of polnts may be distributed, even
for very small K >= 2, In large dimensions.

2. The distribution of points Is uniform

3. The domain may be unstructured (e.g., not a box)
or a manitold

4. Constraints may be handied by potentlals.

5. More efficient than Latin Hypercube on general
domains and manifolds

6. Additional structure may be Imposed using Interlor
potentiails representing probabliities or reglons of
Interest.

Quasi Uniform Distribution of Points by Repelling Potentials

The Boundary Points are kept fixed

Iniatial Particle Positions
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B.2. UNCERTAINTY PROPAGATION BY VARIOUS METHODS

Exploration Approaches; Hierarchical Architectural Optimization

Hierarchical Architectural Optimization finds best Configurations satisfying a set of Objectives and

Constraints

Goal: Build a Dictionary of Good Architectures/Designs/Configurations,
e.g., for different costs, performances, weights, design options.

How:

Build a Hierarchy of Clusters: Poor Clusters are eliminated
starting with Coarse Large Clusters

Good Clusters are refined Hierarchically

Elimination Criteria are added as new Constraints during
the Optimization by Analysis of Solutions

Continuous Optimization is performed only close 1o the set

of best solutions

Main techniques used:

1. Hierarchical Optimization

2. Elimination Criteria added adaptively

3. Global Searches for Multiple Objectives
4. Local Continuous Optimization

Highlights of Results

+Orders of magnitude savings in experimental
work and time

-Reliable Global optima for exhaustive
hierarchical searches (10000 times reduction in
number of configurations)

*Very high confidence that best solutions have
been found

«Can search all possible discrete combinations
in finite unstructured domains, (with no
deterministic combinatorial algorithm)

Domain Exploration, Global Optimization and finding Multiple Local Minima
by Adaptive Hierarchical Repelling Particle Techniques.

The figure below illustrates a domain exploration and global optimization approach.
The objective is changing in time (it rotates in this example) and presents two large
local minima to be found and tracked in time. A hierarchy of optimizations is
performed by a hierarchy of potentials. The potentials generate broad large step
searches at start, in a global domain exploration phase, and then small step local
searches close to local minima. Boundary constraints are implemented by boundary
potentials, in this case, the boundary potential keeps the particles inside the circular

domain.
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Domaln Exploration, Hierarchical Global Optimization and
finding Multiple Local Minima for Time Dependent Objectives

Two large local minima vary In time.
Tha Hlerarchy of Optimizations Is performed by a Hierarchy of Potentials that generate broad large
atep searchas at atart (Domain Exploration phaaa) and then amall atep locai searches close to local

minima.
Tha objectiva la tima dependent (It rotatea in thia axample)
Boundary C are Impt d by y P

Potential for 43 particles

26

4. An Unstructured Multigrid Approach in High Dimension
A Generic Unstructured Multigrid (MG) Approach in High Dimensions is proposed
that combines the presented domain covering approaches, with the interpolation
approaches, and with known multigrid formulations. These generalize known MG
techniques to sparse data in high dimensions and combine the efficiency of hierarchical
structures with local iterations and with approximation of solutions by reduced models.

Multilevel approaches try to accelerate the solution of a problem by other problems on
different levels, for example by coarser representations of the initial problem.

The multilevel approaches comprise two main procedures:
1) solvers of each problem on its level;

2) inter-level transfers of data, variables, and operators.
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B.2. UNCERTAINTY PROPAGATION BY VARIOUS METHODS

Problem formulation :
L(x,u) = b, x:pointsin R", u unknown variables at x

bknown data at x, L:a general operator

Inter —level Transfers

Let X' and X’ be two sets of points
The transfer 1’ of u’,b’ from X' to X’ is performed by Interpolation

u.l =IIJll,, b.l = II..IbI

Coarse Level Operator

Given theoperator L' define the operator L’ by an approximation of L' =/1"/1'1'"

Coarse Level Problem (Full Approximation Scheme (FAS))

Given the level I approximate solutionu’ of L' (X', u’)=b'

Define the level J term b’ and level J problem formulation by
LI(XI,"I)=bI =L.I(x.l,ll..lul)+ll..l(bl__LI(XI’MI))

Update of Fine Level Solution

The (FAS) correction of level I solution u’ by level J solution u’ is:

Ni I, I
w =ulow+1’ (uJ—I Yu o)

Single Level Solvers, Single Level Relaxation
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B.2. UNCERTAINTY PROPAGATION BY VARIOUS METHODS

Iteratively update subsets of variables e.g., by local optimization or Newton approaches
as follows.

Problem formulation on a given level: L{x,u) = b,
x:pointsin R" indexed by I, X',

1 unknown variables at x,b known data at x, L:a general operator

Local update of solutions

Let X’ bea subset of the points X'

The associated equations

(1) L’(X’,u’y=b’ aresolved approximately for u’ by:

an optimization or solver procedure (e.g., Newton)

(2) The equation (1) is solved for different subsets of indices Jof [

until a convergence criterion is satisfied (Block Newton Gauss - Seidel)
If J =1 then a direct solver may be used, e.g., on coarse levels.

This procedureis a block type Gauss-Seidel iterative relaxation procedure.

A Local Interpolation Approach using a Partition of Unit
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B.2. UNCERTAINTY PROPAGATION BY VARIOUS METHODS

Let X be afinite setof points and f:X — R with known values on X
Let X' besubsets of X indexed by theindices I
Let g' approximate or interpolate f(x) on X', e.g., be local interpolations/fits of f

Ler p' be functions equal to O outside a set containing X', D p'(X')=1
!

The interpolation/fitting has a local form :
fx)=g(x)=> p'g’
g' maybe computed for exampleby a local regression or by local optimization

g" may be based on given basis functions

Multigrid Schemes as particular cases of the suggested Multilevel Schemes

Classical Multigrid (MG) FAS Schemes in low dimensions (up to 3 usually) on regular
meshes are obtained as particular cases of the suggested multilevel schemes.

For example, for uniform grids, an operator L. can be a finite difference approximation of
a differential operator; Relaxations may be Gauss-Seidel or block Gauss-Seidel or
Newton-Gauss_Seidel relaxations, etc.

The interpolations are based on local grid interpolations as in MG.

Local refinement reduces to performing a local multilevel scheme.

FAS schemes reduce to MG FAS schemes.
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B.2. UNCERTAINTY PROPAGATION BY VARIOUS METHODS

Observation

Suggested Unstructured MG Approach (that might work in High Dimensions)
Use Sparse Sets of Points and Local Expansions for Interpolation and Derivatives

P

P2

Derivativs and Interpolaton Use

an Expansion(e.g..by Eigenfunctons)

. 9
vl «—— Continuous v ——v*

k
u'(x,)=2a‘v,'(x,)
1=l

k
a,u'(x,)=2alajv:(xl)
=l

The MG FAS (Full Approximation Scheme)
n P Fah=r
2y P Fwh)y=r=FLun+0u" -F'@'y

3wl =ul,+ 007 -0,

new

Classic Low Dimension MG
Structured Meshes of Points

Interpolation/Derivatives
Use Meshes

Defining Coarsa Problams

Fine level exsct solutions transferred to
coarse levels sre solutions of the coarse
level problems.

Coarse level solutions do not change
exact fine level solutions

Fourler Components

Unstructured MG
Unstructured aparse sets of Points

Interpolation/Derivatives
Use (Local) Expansions

Same
Same

Same

Baala Functions/ Eiganfunctions 8

5. A Hierarchical Richardson Approach for Model Extrapolation

A Hierarchical Richardson Approach for Model Extrapolation is suggested. Coefficients
of a sequence of models are identified by system identification and extrapoiated as in a
Richardson procedure. Models may be decomposed into deterministic sub-models (e.g.,
trends) and stochastic sub-models (e.g., noise). Model extrapolation can be used for both
deterministic and stochastic models, hence for UP. Large computational savings may be
obtained by extrapolating a sequence of coarse model results to approximate fine model

results.
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Multilevel Extrapolation Builds and Extrapolates a Sequence of Models

Richardson Type Extrapolation:
Use a Sequence of Reduced Order Models for Speedup

Algorithm:

1) Find coefficients of a sequence of Models by System Identification

2) Build modets for the sequences of corresponding coefficients and do a Sys ID
3) Extrapolate the models of the coefficients

Build F(x.C(n)): System Identificion Model. for n particles, C(n] are coefficiets
Eg.. F(xCln)EY Clng, (0
Build models for C(nl eg. C(m)=) D (L1f

+

Build C=.!.ifl Cin) eg.,C=D,
Build F(x,C)the limit/extapolated model for large n
Eg. FxCEY G (mg(x

Uncertairg Management Apply th above procedure for Noise Models. e.g.,

NoiseModel= Data-F

Extrapolated
Model

P e
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Nolse Models

Bulld and Extrapolate a Sequence of Noise Models by Multilevel Extrapolation

Apply the Multilevel Model Extrapolation for Noise Models :
Find the models F by System ldentification. Define Noise as:
Noise = Data-F

Build Noise Models by System IDusing for the Noise data

Extrapolated

i .
\\ N Extrapolated Noise Model

Noise Models

M .

Welss ams

6. Comparison of Collocation, RS, DS, MC

Applications to the Kr Phase Diagram Milestone

A Response Surface (RS) Uncertainty Quantification Approach is compared with MC, a
Polynomial Chaos Collocation approach, and with DSAMPLE (an effective quasi MC
technique) on the Kr Milestone Problem. Advantages and disadvantages of the RS
approach are discussed.

Response Surfaces for Uncertainty Quantification
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The Response Surface (RS) approach of uncertainty quantification (UQ) builds
response surfaces (models) r(x) as approximations of desired outputs (responses)
f(x) as functions of parameters x with known PDFs, p(x). In addition one may be
interested in approximating the PDF of f, see the diagram below.

Uncertainty Quantification Problem: Given x, P(x), estimate f(x), P(f)
Compare mean and var for MC, Col, DS, RS

PDF(x)

A

f(x) : Model
Simulations ...
Parameters x

Given x, PDF(x)

e : Get f(x), PDF(f)

Different uncertainty measures of f(x) are approximated by corresponding measures of
r(x), for example the mean or variance of f are approximated by the mean and variance
of r. The RS approach may be effective when the evaluation of f(x) is expensive and a
when good approximations r ~=f of f can be obtained by a small number of evaluations
of f(x). From the point of view of UQ one is interested to approximate for example
mean(r) ~= mean(f) or var(r) ~= var(f). The main tasks in the RS approach are: 1)
finding a relatively small number of sample points {x_i } and 2) finding a good
RS/interpolation procedure that will use the samples {x_i } to build r such that r~=f and
statistical measures of r will provide good estimates of the desired statistical measures of
f. The following sections will discuss an RS approach, in our case a kernel based
interpolation procedure that was used in the numerical experiments; domain exploration
approaches for building sample points {x_i }; techniques for fitting the pdf of the output
p(f); and a comparison of the RS approach with Monte Carlo (MC), a Polynomial Chaos -
Collocation approach, and the DSAMPLE.

The 4 Uncertainty Quantification Approaches that have been compared, MC,
DSAMPLE, RS, and Collocation, can be summarized as:
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1) Monte Carlo: perform number N of MC evaluations of T(E) for E generated
by p(E)

mean ~=sum( T(Ei) ) /N

2) DSample (Quasi MC)

mean ~=sum( T(Ei) )/ N

3) Response Surface/Surrogate Build a Surrogate of T(E), e.g., using a basis of
functions, (eigenfunctions),

mean ~= sum( T(Ei) * p(Ei) )/ sum( p(Ei) ) (use RS with Importance sampling)

4) Collocation — Polynomial Chaos Evaluate T(E) at collocation points Ei, with
given weights wi

mean ~= sum( T(Ei) * wi ) / sum( wi )

The DSAMPLE approach is a new quasi MC approach developed by Igor Mezic
(UCSB), presented in another chapter.
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Uncertainty Quantification for the Krypton Milestone

Parameters
MD Simulations
RS and PDF
PD(E) PD(O)

o I X |
) =, - Specific heat piots ll ’ \ T[Ej

LJ rvour-anom potental (K- of Kr-C S TEREte s, T
= . - :

-1 ». : ' /' g

2" //
dtance 1
RS (E.T‘(El)'ﬂ'

200 va. 20 points

RS with Collocation points reproduces PC efficiency (up to 1300 samples)
RS works with any number of samples, and may be effective in high dimensions too

Nystrom with probabilities included in the objective;
RS Optimization (by # of eigenvectors and sigma, Optimization is not used in this example)

The RS results are close to the collocation results,
RS advantage: any number of sampling points can be used (subset of the collocation points)

RS disadvantage: numencal instability and difficulties related to eigenvalue computations (time and
accuracy for diagonalization of large matrices).

VARIANCE

10 10 10° 10° 16° 10° 10' 10° 107 10°10" 107 307 10° 10° 10° 10° 107 10° 10° 10 19
2
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RS is effective for a small number of samples, selected by DS

The RS is Optimized (by N eigenvectors, sigma, a)

RS resuits show a good upper trend and many “very good solutions” for tens of
samples

100 x 120 optimal solutions are generated (sets of samples from 2 to 120 are generated 100 times,
for each fixed set of samples the RS is optimized tor N of eigenvectors, sigma, a)
The mean and variance of the optimal RS are selected (and a blue point of the solution Is shown,)

MEAN

VARIANCE

A A ol i o s vt s 6 $
10 1¢f 16" 1¢" 10 1 10 1¢° 16 10°10" L Bt o

New England Power Grid - State Uncertainty Propagation

The propagation of state PDFs in Dynamical Systems by sums of Gaussians can be
performed as in Extended Kalman Filter approaches (see for example: Uncertainty
Propagation for Nonlinear Dynamical Systems using Gaussian Mixture Models

Gabriel Terejanu , Puneet Singlat , Tarunraj Singht , Peter D. Scott] AIAA Guidance,
Navigation and Control Conference and Exhibit ALIAA 2008-7472 ; 18 -21 August 2008,
Honolulu, Hawaii) by the following algorithm:

- The initial state x(0) of a dynamical system x(t+1)=f(x(t)) has given
PDF(x(0))
- Propagate PDF(x(t)) as an approximation of a Sum of Gaussians:
Gi(x(t)) = wi *fi * exp ( - (x-mi)’ Si*(-1) (x-mi) /2) ; mi: mean, wi: amplitude;

Si: covariance matrix, fi=1/( det(Si)*(1/2) * (2pi)*n/2)
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- Propagate means mi by the dynamical system x_mean(t+1) = f(x_mean(t))

- Propagate covariance (width) using Jacobians (at means):
Si(t+1) = (Df/Dx) Si(t) (Df/Dx)’

- Keep the weights wi constant or approximate them by an optimization
The approach was applied to the New England Power Grid model (as in the paper: Global |
Swing Instability of Multimachine Power Systems; Yoshihiko Susuki, Igor Mezic,

Takashi Hikihara; Proceedings of the 47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008) as shown in the figures below.

New England Power Grid

)
B, 5 [ | |

H, :
. ;', — —f),-u,’,’ + Pmi S (:,',Ez - Z E.EJ.

mfs ] 1<+
: il
{ :,i('us(ﬁi l‘j) + Bi) i(l(h, = 451)}.

Damping  Mechanical  Internal

Inertia Coefficient Input Power Voltage (;1] + iB ] Transfer lmpedance

17 between generators

Global Swing Instabllity of Multimachine Power Systems

Yoshihiko Susuki, Igor Mezi'c, Takashi Hikihara 3
Proceedings of the 47th IEEE Conference on Declsion and Control

Cancun, MexIico, Dec. 9-11, 2008
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New England Power Grid — State Uncertainty Propagation

Propagate the PDF of the State of the system, PDF(x) = Sum of Gaussians

x: 18 states; propagation of 1 Gaussian with initial mean and Covariance
Implicit ODE simulator ODE15s,

Propagation of Propagation of Norm of
norm of mean of Gaussian Covariance Matrix of Gaussian

= e -

200 sec jﬁk ’Wtﬂw il
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