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ABSTRACT 

3 
A dynamical model is proposed for C information that explicitly 

3 
incorporates effects of counter-C activities. The model assumes an 

inevitable growth of uncertainty inherent in military situations that 

is only counteracted by continuously importing new information into the 

3 
system. Counter-C activities are modeled as additional growth terms 

in uncertainty that depend on the instantaneous knowledge of both sides. 

It is shown for this model the relative shift of system equilibrium 
3 

is directly proportional to the ratio of the counter-C coupling coefficient 

to the system's natural uncertainty (.entropy) growth rate. Furthermore, 

it is shown that small perturbations from the stable equilibrium are 

restored to equilibrium by the system forces, i.e. the system is ultra- 

stable. However, a perturbation of entropy of one side, induces a delayed 

perturbation of entropy on the other side with opposite sign. Thus, if 

X becomes fortuitously more knowledgeable by chance, Y will in turn, some 

time later, become more uncertain, and vice versa. 
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3 
A Dynamic Model  for C 

Information Incorporating the Effects 
of Counter-C3 

Paul H. Moose 

I.   Introduction 

In modern warfare, an operational commander is intimately concerned 

with the quality, timeliness and completeness of his "picture" of the 

tactical situation. To a very large extent, his fortunes and those of 

his assigned forces depend on his having available, when and where he 

needs it, accurate data about the status, location and activities of both 

his own and the enemies' forces. Similar requirements extend well down 

into subordinate echelons of his command, including individual unit 

commanders and even "smart" weapons. 

The methods by which necessary information is acquired are remarkably 

diverse. Included, in our "computer age", are sophisticated radar and 

intercept equipments, a variety of imaging systems and acoustic sensors 

as well as ordinary direct reports and observations from the commander's 

own personnel. Inputs from special intelligence channels, and many other 

categories of reports constantly arriving by a variety of means round out 

a massive and continuing informational input. The staff, assisted undoubt- 

edly by modern automatic data processing equipments, is regularly creating 

and updating their assessment of the situation in order to give the best 

operational picture they can to their commander. The commander will, to 

a very great degree, make rational and reasonably predictable decisions 

for the future activities of his forces based on the world view he has 

developed from this sequence of images. 



II.  A View of Information 

We wish at this point to make several important observations about 

this "image of reality" that the commander works with. First, the images 

he has are never absolutely correct, that is, they contain errors. Nor 

are they perfectly sharp, that is, there are always many questions that are 

unanswered, or elements of contradiction or ambiguity. Secondly, an image 

gets fuzzier and fuzzier the further into the future one attempts to extra- 

polate it. This is because most elements of the picture are dynamic, i.e. 

they change (location, behavior, etc.) with time. The attributes of the 

elements may be partially constrained. For example, a ship cannot move 

faster than about 30 knots. However, after sufficient time most features 

of the picture will have totally relaxed, and may have taken on any of 

their possible values or conditions. 

This "fuzzyness in the crystal ball" axiom has a corollary. If the 

commander loses, or turns off, his senses or sources of information, his 

"current image" will grow fuzzier and fuzzier with time until it is 

completely blurred. Put another way, a commander only maintains his 

uncertainty about what is going on below its worst possible level by 

virtue of the continual application of systemic resources to guarantee an 

inflow of new information. 

The second law of thermodynamics holds that entropy(disorder) will 

grow to its maximum possible value within the constraints of the system. 

We shall identify uncertainty with entropy. Thus sensory devices and 

information sources provides the constraints on uncertainty. They do 

this by continually importing information (negentropy) to offset 

uncertainty's inevitable growth. 



III. Birth and Death of Uncertainty 

We postulate that if left unconstrained, uncertainty will grow from 

its current value toward its maximum possible value H   with a rate 
max 

proportional to the remaining knowledge. (H   measures the worst case, max 

total ignorance, where all possibilities are equally probable.)^ '    If T 

is the systemic relaxation time, then 
i 

HB = Ts    (HMAX"H) (1) 

models the birth of uncertainty, Hg, as proportional to the remaining 

knowledge, H..... -H, divided by the system relaxation time T . Left 

unconstrained, uncertainty will grow as shown in Figure 1. 

y 

Growth of this type is not an unreasonable assumption as can be 
seen in the work of Moose and Harrison, "An Analytic Model of Coordinated 
Effort with Application to Surveillance C3", May 1979, AD # A071-081. 



However, the commander is continually receiving new data that helps 

to reduce uncertainty; he is receiving "negentropy". We assume that the 

rate of entropy reduction is directly proportional to his state of 

ignorance. Thus 

Hn = -Tj1 H (2) 

expresses the fact that arriving information destroys uncertainty at a 

rate in direct proportion to its current value. 1,    is a characteristic 

negentropy arrival time. Let us further assume that the causes (1) and 

(2) may be superimposed such that 

5 " TS] HMAX -^S1 +T^H (3) 

models the net growth (or reduction) in uncertainty at any point in time. 

It is clear that this system is stationary when 

H   =    
TI (4). 

HMAX     TS + TI 

since at this point the birth and death rates exactly cancel one another 

and H = 0. 

Although this simple first order linear system is not very sophisti- 

cated, we see that it already illustrates some practical features. When 

Ts, the systemic relaxation time is very short compared to the character- 

istic arrival time of new information, uncertainty finds its equilibrium 

near maximum. On the other hand, if the relaxation time is equal to the 

characteristic arrival times, uncertainty will be cut to one-half its 

maximum value. When information arrives at a much greater rate than the 

attributes of the picture can change, uncertainty is very low and finds 

equilibrium at a level in direct proportion to the ratio  I/Tc. One must 

be cautious and take due note of the fact that Tr & Ts (or VT = T7  and 

Vs = TZ ) are global or macroscopic system variables. Vj & Vs might have 



units, for example, of bits/bit per hour and refer to the average behavior 

of the entire system ensemble much as species birth and death rates are 

typically measured in births (or deaths)/unit of population per year, and 

describe an average of the entire population. 

IV.  Information War 

(2) Rona   has described the concept of "information war" as a dominant 

factor in the conduct of modern warfare. In an information war, one 

actively attempts to deny the enemy knowledge of his force positions, 

numbers, intentions, etc. This is done by a variety of means. Included, 

for example, are cover and deception tactics, distribution of radar chaff, 

decoys, false messages, etc. One also works to keep his own communications 

intact and secure, but intercepts and exploits and/or jams those of the 
3 

enemy. One may also try to physically disable enemy C facilities and 

channels. In all of this, the purpose is to try to reduce one's own 

uncertainty by assuring a steady, reliable inflow of relevant information, 

a term we have already described above. But moreover, to disrupt the 

opposition's flow of information and ultimately blur or distort his image 

of the operational situation. This will be cause, we maintain, for poor 

decisions on his part thereby enhancing one's own force effectiveness. 

Let us suppose X & Y represent the entropies of two opposing sides. 

° 3 We should include, in X, a "counter-C  term to represent informational 

disruption by Y, and vice versa. Thus, the rate equations take the form 
o 

VSX XMAX " (VSX + VIX>X + rYX(YMAX- Y> 
o 

VSY YMAX " <VSY + VY + rXY(
XMAX-X)- 

(4) 

(2) v 'Rona, T.P., "Weapon Systems and Information War", Boeing 
Aerospace Co., Seattle, WA, July 1976. 



We have assumed that Y's disruption of X's flow of information is 

directly proportional to his current knowledge, Y
Mnv-Y, and likewise for 

3 
X's disruption of Y. The "Counter-C coefficients", rVw & r>.Y are, 

we presume, positive if in fact the information war is having the desired 

results, at least on the average. 

There is a question, however, about how these coefficients are to be 

chosen. In particular does rYX depend only on Y's efforts against X 

or is it also dependent on X's own knowledge, and if so, how? It seems 

plausible to suppose that if X is ^ery  short of knowledge of the situation 

already, he may be difficult to confuse even more, whereas if his knowledge 

is great he may be much more susceptible to disruption, deception, decoys 

and jamming, Admittedly, this is a highly speculative argument, but is is 

an extremely important point because it determines whether the two systems 

are linearly or non-linearly coupled, which, as we shall see presently, has 

an immense influence on their dynamic behavior. 

Let us list some options for Y   coupling to X. 

rYX Form Result 

a) rYX = YVY^MAX ^ ® constant linear coupling 

b) rvv = YW(
X
MAV - X) > 0     proportional to      2nd degree 

YX    YX MAX X's knowledge       (non-linear) 
coupling 

c) rYX = YVY
X
 ^ ° proportional to      2nd degree 

X's uncertainty      (non-linear) 
coupling 

-X 
d) rVY = YVYXMAY 

e  * °     increases exponen-   non-linear 
YA    TA nRA tially with X's      coupling 

knowledge 

e)  rVY = YVY X(X   - X) ^ 0   maximum coupling 3rd degree 
TX    TA   max when y „ XM.V and (non-1inea X = MAX , . 

~2— coupling 

no coupling when 
X = 0 or X = X MAX 



If we chose case b) above as the most intuitively appealing dependence, 

then Eq's (4) take the form 

X = <VSX + YYX YMAX)XMAX " (VSX + VIX + YYX W X " YYX Y(XMAX " X> 
(5) 

(V$Y + YXY 
X
MAX^

YMAX "" ^VSY + VIY + YXYXMAX^Y   YXYX^YMAX " Y^ 

which are 1st order, 2nd degree - non-linear coupled differential equations 

We may write them more compactly as, 

X = aoXMAX " alX " a2 Y(XMAX " X) 

(6) 
Y  =    6o YMAX "    B1Y  "    62X(YMAX " Y) 

To summarize, we have the following relationships between coefficients and 

definitions of system parameters: 

A. Coefficient Relationships 

i}     ao =  {VSX +    a2 W • So  =  (VSY +    h  W 

11)    a,   =aQ + VIX ,        0]   -    B0 + Vn 

111)    a2 =    Yyx 02  =    yXY 

B. Parameter Definitions 

^ XMAX' YMAX    ' Max''mum Uncertainty (Bits) 

^ VSX' VSY     ' Uncertainty Birth Rates (bits/bit per unit time) 

iii) VTX, VIY     ; Uncertainty Death Rates resulting from data 
inputs (bits/bit per unit time) 

3 -1 iv) YYV» YvY     >    Counter C coefficients (bits  per unit time) 

Note that if the counter C coefficients are both zero, Eq's (6) revert to 

a pair of uncoupled equations of the form given by Eq. (3). 



V.  Analysis 

Analysis of the behavior of the non-1inearly coupled 1st order 

differential equations, presented in Eq's (6) as a model for information 
3 

dynamics between opposing C systems, is usefully subdivided into separate 

treatments of 1.) "Stationary" or "Equilibrium" conditions, 2.) dynamic 

behavior near equilibrium points, and 3.) dynamic behavior far from 

equilibrium points. Before proceeding to the discussion of each of these, 

it is convenient to consider a normalized version of the equations as 

follows. Let 

* = t(vsx + V " (vsx + vix + V X ' V y°-x)] Ymax 
• r i (7) 

y »  Uvsy + Yxy) - (vsy + v.y + yxy) y - Yxy x(l-y)] Xmax 

where we now have defined normalized entropy variables and entropy rates, 

x = X/XMAX, x = X/XMAX , y = Y/YMAX, and y = Y/Y^. 

Note that 0 ^x, y^ 1 for physically realizable conditions. We may 

again introduce the more compact form 

x = (a - a]X - a2y(l-x))Ymax 
(8) 

y   -    (B0 - Bly - B2x(l-y)) Xmax 

with the coefficients defined now as follows: 

A.    Normalized Coefficients 

i)a=v      +Y , 8=v      +Y 7   o       sx       'yx ' po       sy        xy 

ii} al = ao + vix • Bl = eo + viy 

111) a2 =Yyx . B2 - Yxy 



(9) 

B.   Normalized Parameters 

i} vsx = VSX/YMAX   » vsy = VSY/XMAX; No•aljzed Bl>th Rates 

(bits" /unit time) 

11^ Vix = VIX/YMAX   ' VIY = VIY/XMAX; Normalized Death Rates 

(bits" /unit time) 

iii) Yyu » YVY ; Counter C coefficients (bits" /unit time) 
xy   yx   the same as in Eq's (6)). 

V.l  Stationary Points & Sensitivity 

Stationary points will occur when x = y = 0, that is when 

the conditions 

aQ - a1 x - a2 y(l-x) = 0 

60 _ @1 y - 62 x(l-y) = 0 

are met by x and y. 

Eq (9) may be solved for the values of x and y that yield these 

conditions. Because of the presence of the product term xy, there are, 

in general, two stationary points, which we shall designate (x,, y,) and 

(xo, y2). Before we look at the general solutions of (9), consider the 

case where y      = 32 
= ° and Yvx = a2 > 0. This case, which we shall 

designate as "Case 1", models the conditions where X is exercising no 
3 3 counter-C on Y, but Y is actively counter-C ing X. We wish to see 

what shifts occur in the equilibrium conditions (x , y ) as a function 
3 

of   Y's    counter-C    effort   y    . yx 
Observe that the equations are no longer quadratic and there is only 

one equilibrium point (x-,, y-,) and since B2 = 0, y, = y  so that 

immediately we find 

a2 

(1 - ao yo ) _0  .   U-O-Q) (1Q) 

1    al     (1 - a2 y. ) 
al 



's 's 
Thus we see that Y   state of knowledge is left unchanged but X 

state deteriorates from x to x-,   , (x, £ x ), as a function of Y " 

countering effort ct? = y        in accordance with Eq (10). Figure 2 shows c yx 
i „ 

a plot of   X '    relative increase in entropy,  (X,  - xl/x ,    versus    YWY/v_¥, 
U   U J A   9 A 

's 's 
Y   countering efforts in relation to X   natural entropic birth rate. 

Two curves are shown; the lower is for the case x = 0.1, y = 2/3 and 

the upper is for the case x = 0.1, y = 0.1. Note they both approach the 

value 9 for large values of y • This is maximum entropy, x, = 1, yx 
'c 

since we started at x = .1; i.e. the most Y can do is increase X o 

entropy by 9 times since that represents total  uncertainty for    X.    Note 

for small  values in  Figure 2 that the curves approach straight 45° lines on 

log-log scales indicating that    (Xi-X
0)/

X
Q    ancl     ^vx^sx    are ^near^y 

related for small  values    y    .    Indeed careful  expansion of Eq (10),  retaining 
yx 

all first order terms in a, , (a? = Y,.Y)> shows that for small y    , c. c yx yx" 

Y 

t 
sx 

Readers may easily verify for themselves that Eq (11) gives the same 

'yx' 'yx; 

h -xo)/xo= ^   •   0-*0)n-y0>. (11) 

results as are shown in Figure 2 for values of YUY/
V
CV ^ 1. yx s x 

Eq (11) gives the "counter-C sensitivity" of the system for one way 

coupling. It shows that if either X or Y are in an initial state of great 

uncertainty, counter-C efforts of one against the other will be of little 

value since either (1-x ) or (1-y ), or both, are approximately zero. 

However, if both sides are functioning with high informational efficiency 

each side is maximally vulnerable to countering efforts by the other. 

10 
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Having obtained an initial feeling for the sensitivity of the 

equilibrium point to the coupling factors, let us return to the general 

problem posed by Eq's (9) where both sides are actively engaged in 

counter-C efforts. Solving for the roots of Eq's (9), we find 

yl ,2 = cl xl ,2 + co 

xl,2 = P/2 + 1  (P2 " 4q)Js 

where 

p.  1 + A. . fo (13) 
v OUC-i     c. 

(12) 

O       0 
a2cl    cl 

(14) 

co (a260 - a032)/(a2(Br 62)) 05) 

c1 =  (a.,B2 - a262)/(a2(61- S2)) (16) 

2 
It can be shown that p - 4q > 0 and therefore the roots (x,, y,) and 

U2, y2) are always real. Further general analysis of Eq's (12) has 

shown that one of the roots is always found in the physically realizable 

space (0 < x, < 1, 0 < y, < 1) and the other is found outside the space, 

but in the first quadrant/ ' 

Considerable practical insight can be obtained by considering the 

following "matched case" which we shall designate "Case 2". For Case 2, 

we let 

Yxy   h vsy 

(3) v 'K.E. Woehler, "Root Locations", private communication, 1980. 

12 



3 
that is we keep the counter-C    efforts in a constant ratio equal  to the 

ratio of natural entropic birth rates.    With this constraint, we find that 

co = °      »    cl  = Vxo (18> 
so that 

*1,2 = (Vxo}    xl,2- (19> 

For Case 2, we see that both the equilibrium points must always lie on a 

straight line in the    x,y    plane passing thru the origin and the uncoupled 

stable point    x  ,y  .    Also, we note that oo 

P    =l+/^>Oandq    =    /l     > 0 (20) 
yo    a2 y0    a2 

and therefore all roots are positive. In Figure 3 we have plotted the 

the relative locations of the roots, (x, 2 - x )/x , versus Yvx/
V
sx» 

3 
normalized counter-C coefficient for the initial conditions x = y =0.1. o   o 
Note that one root pair starts at (», °°) and moves towards (1,1) as 

Y./v increases whereas the other root pair begins at (x , y ) and moves y x o  o 
toward (1,1) with increasing y        (and increasing y       according to yx xy 

Eq (17)). 
2    h By a very careful expansion of the radical  (p - 4q)2 with the 

additional constraint that c,=l, i.e. that x =y  (met by the initial 

conditions used in Fig. 3), we find that for small y    ; yx 

Xl    "   Xn ^v/y 

0 sx 

and 

2 0     «      ]  (oy\ 
xo        "    VVsx>  V. 

for the smaller and larger stationary points respectively.    Eq.  (21), giving 

the sensitivity to coupling for the two-way matched case (Case 2),  is seen 

to be identical  to the sensitivity for Case 1, the one-way coupling condition 

13 
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given in Eq (11).    Eq (22), shows that the second stability point is always 

very large, i.e. much larger than one and therefore lies outside the 

physically reliazable uncertainty space. 

The important thing to conclude from this analysis is that for small 
3 

counter-C    coefficients,  the relative loss of knowledge is proportional 
3 

to the ratio of counter-C    effort to the target s natural  entropic birth 

rate.    If the target's information decay is very slow under normal  conditions, 
3 

then he will be very susceptible to counter-C    activities.    However, if the 

normal  environmental  relaxation times,    T  ,    are short,  (his entropic birth 

rate is high), more effort will  be required to increase the target's average 

uncertainty an equivalent proportion. 

V.2    Stability 

The preceding paragraph dealt strictly with stationary or equilibrium 

behavior and analyzed the sensitivity of the equilibrium condition to varia- 
3 

tion of system parameters, in particular the counter-C    coefficients 

Y\/Y *   Yv  •    In this section, we wish to investigate the dynamic behavior yx xy 

of the system.    We can describe rather thoroughly the system behavior of 

this non-linear system for small  deviations from equilibrium using a tech- 

(4) nique from non-linear mechanics.    ' 

The analysis begins by translating the equations to the stationary 

point by the change of variables 

x'  = x-x1 (23) 

y1 = y-y-i 

which leads to 

x'=  [{u2
y]  " al^x'  " a2^1"xl^' + a2 x'y']    Ymax 

y'= [(e2x1 - e^y' - B2(l-y1)x' + e2y'x']     xmax 
(24) 

(4) v  'See,  for example; Minorsky, "Non-Linear Mechanics", J.W. Edwards, 
Ann Arbor,  1947. 

15 



For small displacements from equilibrium, the product terms may be 

neglected so that motion near the stationary point is described by the 

solution of the coupled linear dynamical equations, 

X'-  [cy^  -    o^x'  -a2(-Xl)y'] Ymax 

(25) 
y- tepr^y - ^ci-y^x-] xmax 

Before undertaking a general study of these equations, let us consider 

conditions analogous to those of Case 1 described in part V.l above, i.e. 

one-way countering of Y on X such that 3o=0- For simplicity, we shall 

further prescribe that Xmax = Ymax, and that vsx + vix - vsy + vjy. With 

these restrictions we are led to solutions 

y'  = y'(0)  exp[-  (Vjy + VSYJt] 

x' x'(0)exp[- (V^sx+Y^O-x^^lj-y'^  [l^Pl^O-^Wj]     (26) 
'1 

where    x'(0)    and   y'(0)    are the initial  perturbations and we recall  that 

VjY» vsY'"^IX' ^SX    are t'ie non-normalized birth and death rates for    X & Y. 

We see that    Y,    which is not being actively countered, has the same 

dynamic behavior as in Eq (3), simple exponential  decay back to equilibrium 

-1 ' s with time constant    (V     + V.  )     .    However, perturbations of   X       entropy 

are actually forced back to equilibrium more rapidly.    Moreover, although 

perturbations in    X    do not affect    Y,    displacements of   Y    from equilibrium 

do cause variations in    X,    but always in the opposite sense.    Thus, if Y 

has a temporary loss of knowledge,    X   will obtain a temporary increase, and 

vice versa (See Figure 4).    Note that    X "    maximum good fortune (or bad as 

the case may be) will  be delayed from the time of    Y     maximum loss of 

knowledge.    The time delay of the maximum is given by 

tr. n     —• ;  /OT\ 

-i- vix+vsx (27) 

T" Vxl'/<»1c«.x> •yx' 

16 



where TR = (VIX + V•)"  is the uncoupled relaxation time of the system. 

Eq (27) is plotted in Figure 5. We see that for very small couplings, the 

maximum effect is delayed about one system time constant, whereas for 

large couplings, the maximum effect occurs almost immediately. 

A more general analysis of Eq(s) (25) is made easier by considering the 

reversible linear transformation 

5 • A x' + By' (28) 

n. * Cx' + Dy1 

with A,B,C,&D chosen such that 

C =    S^ ^oe 
V 

n =   s2n \e 
s2t 

(29) 

and A      B 

C      D 

t    0.    Eq's (29) are known as the cannonical  form, 

(4) Following Minorskyx    , one finds that the exponential  coefficients, 

S-.  2    are given by roots of the characteristic equation, 

S2 -pS+q=0 

Sl,2    = p/2 -   \ (P2-4q)*s 

where in our case: 

p = (a2y}  -a1)Y|lax+ (3^-B^X^ 

p2-4q - [(a2yr o^Y^ - (B^- B^xJ 2 + 4^(1^ ) (1 -y, JX^Y^ 

(30) 

(31) 

The nature of the behavior of the cannonical equations, and hence 

x' and y1 through the inverse linear transformation, is determined by the 

location in p,q space. Figure 6 shows the type of dynamical behavior that 

obtains near equilibrium in various regions of p,q space. 
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Since a, > ou y, and  B-i > 82x,, p < 0.  It is also obvious that 
2 

a2B2 > 0 so that p -4q > 0 and we are never in Regions II or III of 

Figure 6. We can also see that since ^1_ > 0, and n_ > 1, that 
a2      s2 

q > 0 since a2B2 > 0. 

Therefore, we see that p and q are always found in Region IV of 

Figure 6 and the equations exhibit stable nodal point behavior near 

equilibrium. That is to say, in Region IV, S, and S2 are always real 

negative numbers, and therefore E,  and n are simple damped exponentials. 

Our small perturbation solutions are then of the form (see Minorsky, 

P. 44) 

St St 
x' • [s2+ Wai - vi>] ?oe' + [si+ Wv vi>] % e 2 

(32) 

s,t        s?t 
y'    =     X BoO-yJ C   e       + n e c 
J max      2V    ;1'  ^o o 

which are just linear combinations of the damped exponentials.    Thus the 

-1 -1 system is returned to equilibrium with the time constants    -S-i      and    -S2 

determined according to Eq's (30).    The constants    5    and n      satisfy the 

initial  conditions 

x'(0)  = (S2 + a]  - a2-yl^o + ^Sl  + al  ' a2yl^no 
(33) 

y'(0) = B2(l-y1)(?0 + n0) 

Consider now the nature of these solutions for conditions somewhat 

analogous to Case 2 of part V.l, the "matched case". In particular, again 

1et Xmax = Ymax' Yyx = V {^'^]'* X1=yl a"d Vsx=vsy' (This assure 

that a,= B,).  Under these "dynamically matched" system conditions we 

find that 

p = 2 (a2x1 - a.|)X, max 
(34) 
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. 

so that the characteristic roots of Eq (30) are simply 

51 = -V^max = "<VIX + VSX> 

52 = S1 -2V(1-Xl)Xmax 

The dynamic behavior (Eq's (32))becomes 

S,t      S,t 
x' =  (1 ) e d   + (A) e ' 

(35) 

(36) 
S2t      S,t 

y' -  (2) e 2 - (A) e ] 

where,  «£ = x'(0)_+ y'(Q) , A = x'(0) - y'(0) 

Suppose the system is initially disturbed so that x'(0) = -y'(0). 

Then Eq's (36) become 

-(VTX + V.Jt 
X' -x'(0) e  IX  SX (37) 

-(vTY + v<.Y)t 
y' = y'(0) e  IY   SY 

which are identical to a completely uncoupled system (See Eq (3)). However, 

suppose the system receives perturbations of the same signs, i.e. 

x'(0) = y'(0). Then 

x'-x'(O) ,-<¥IX*»SXtV,-*l)Wt 
x -xiuj e (38) 

y' = y'(0) e '(
VIY + VSY + V^VW* 

and the systems are driven back toward equilibrium even faster than when 
3 

no coupling exists by virtue of the counter-C activities. Finally, 

suppose x'(0) = x'(0) and y'(0) = 0. Then 

•tvTY + vTV)t r  -2y„M-*,nmavf .. x'(0) /<VIX + V* [, + ."^-VW] 

„ T-x'(0) e"
(VIX + "IY>t N . /^x/^W] 
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and Y will experience a change of entropy in the opposite sense of X. 

Again the maximum effect will be delayed as in the one way coupling case 

according to Eq (27), but with the effect of the counter-C coefficient, 

y    ,  doubled. 

To summarize, the equilibrium points are always stable, and non- 

3 
oscillatory for the counter-C model investigated in this section. Small 

perturbations of the system from equilibrium are powerfully forced back 

to equilibrium with time constants equal to or less than those of the 

3 
individual systems. However, counter-C efforts do cause a perturbation 

in one system to appear as a perturbation in the other system, but with 

some time delay. 

V.3 Dynamic Behavior Far From Equilibrium 

It is difficult to find general results for the behavior of the system 

far from equilibrium. However, a modest numerical investigation of Eq's (24) 

has revealed the following: 

1) For initial perturbations of about 0.1 (i.e. one tenth the entire 

entropy range), the behavior seems well described by Eq's (32), the 

small perturbation result. 

2) For large initial displacements, e.g. 0.9, the behavior is still 

stable nodal point in character and the entropies return to equilibrium 

smoothly. However, the "modeled entropy" for one system may temporarily 

go negative, which is physically impossible, although neither entropy 

ever appears to exceed its maximum value. 

3) The rate of return to equilibrium seems proportional to the counter- 

's 3 
C coefficients. Strong counter-C activities appear to strengthen the 

forces returning the system to equilibrium (Also see Eq's (39)). 

We have shown some typical dynamic trajectories in Figure 7 for 2 

equilibrium points and 3 initial conditions. Note the asymmetry of the 
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trajectories returning to (.5,.5) from (1,0) and (1,1). Also the one 

returning from (1,1), total uncertainty is restored to equilibrium much 

more quickly than the one coming from total uncertainty of X and perfect 

knowledge of Y, (same signs versus opposite signs). 

Two of the trajectories become negative although beginning and ending 

inside the physically realizable region. What will happen if a non-negativity 

constraint is imposed is not known, but could rather easily be investigated 

numerically. What does seem to be true is that even starting on a boundary, 

the entropies do not blow up or trend toward the other equilibrium point in 

the first quadrant but outside the physical region. One should be cautioned 

that this conclusion is based on a limited numerical investigation of the 

non-linear dynamical system equations and further investigation could indeed 

prove otherwise. 

VI. Discussion 

3 
The model we have proposed for C information dynamics based on entropy 

3 
includes a non-linear term to account for counter-C activities of two sides 

engaged in an information war. Before we discuss the meaning and implication 

of our analytical results, let us briefly recount some other applications of 

this class of equations. 

VI.1 Population Dynamics 

An interesting example is provided by the Lotka-Volterra model of 

population dynamics, originally devised to explain temporal oscillations 

in the occurrence of fish in the Adriatic Sea. If we let the prey fish 

be x and the predator fish be y, then the model is described by, 

x = a-,x - a2 xy 

(40) 
y = -S-jY + 62 xy 
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where a, and g, are the prey birth and predator death rates respectively 

and cu and 3? describe the prey losses and predator gains due to predator 

feeding. These equations have been studied extensively (along with more 

(5) 
elegant versions) for describing population dynamics of conflicting species. ' 

They have non-zero equilibrium points about which under some conditions they 

3 
exhibit stable focal point behavior, unlike our counter-C equations. Note 

that the non-linear terms are of opposite sign. As we shall see shortly, 

this is a requirement for focal point behavior. 

VI.2 Models of Combat 

Another example is provided by the Lanchester equations for armed 

combat.   Here we take x and y to be the sizes of the forces of two 

sides. Then 

x = -a-,y - a9 xy 
1    2 (41) 

y = -B-| x -32 xy 

include both terms most commonly considered. When ou • 3? = 0. Eq's (41) 

are of the form Lanchester termed "aimed fire" or "modern warfare". When 

a-. = 3-i = 0, Eq's (41) are of the form he called area fire or "ancient 

warfare". Although a non-zero equilibrium point exists in the general case 

of Eq's (41), we see that no non-zero equilibrium is possible for either of 

Ax 
the special cases. However, an "exchange ratio", T- , is obtained by 

dividing the two equations for these two cases. The solutions show the 

trajectories that x and y must follow as the forces are depleted. In 

particular, for "aimed" fire, the exchange ratio is 

(5) v  'May, R.M.,  "Stability and Complexity in Model  Ecosystems", 
Princeton Univ.  Press, 1973. 

*  'Taylor, J.G., "A Tutorial on Lanchester-Type Models of Warfare", 
Proc of 35th MORS Symposium, July 1975. 
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^   =    —       *. (42) 

^Cxf - x2) =ai(y
2 -y2) 

and for "area" fire 

dx     _   a_2 
dy    "   e2 2 C43) 

32(xi - x) • a2^yi " y^ 

These results have been interpreted to show the advantage in concentra- 

ting forces to minimize losses when "aimed" fire prevails whereas concentra- 

ting forces in "area" fire is of no particular advantage.    To illustrate, 

let   a2 •   32   
=   o-j •    3-|    •    1    and let   y- • 0.    Then for "area" fire 

xi " xf . ,    ..,.. _*       „'s      's 
yi 

s       s 
= 1 regardless of x. so X   and Y   losses are matched. 

(44) 

However, for "aimed" fire 

yi 
which for — « 1 is approximated by 

xi 

xi " xf   1 £i (45) 
yi     2 xi 

For example, if x. = y. then of course the losses are matched (Eq. (44)), 

however, if X initially concentrates all his forces against Y, so, say 

's 's 
x. = 4y., then X   losses are only 1/8 of Y   losses. 

One of the characteristics of Lanchester's specialized equations are 

that their dynamical solutions, like our C equations, are sums of real 

exponentials. However, since they have no non-zero stable point, their 

equilibrium behavior is not of great interest. Also, the solutions can go 

negative, which is not physically consistent with reality. 
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3 
VI .3 Alternative C Information Models 

Consider the pair of equations 

x = a - a,x + f(x,y) 
0   ] (46) 

y = Bo - S^ + g(y,x) 

Let us list some of the other options for    f(x,y)    and    g(y,x),    along 

with the one analyzed in Part V, and their interpretations. 

Entropy Birth (Death) 
Alternative f(x,y) g(y,x)  Rate  

a.) a2(l-y) 32(l-x) Counter-C    efforts create 
entropy in proportion to 
own knowledge. 

3 
b.) a2(l-x)(l-y)      B20-y)0-x) Counter-C    efforts create 

entropy in proportion to 
product of both sides 
knowledge. 

3 
c.) oux(l-y) B2y(l-x) Counter-C    efforts create 

entropy in proportion to 
self knowledge and opposi- 
tion's ignorance. 

d.) -cuyO-x) -Box(l-y) Intelligence efforts destroy 
entropy in proportion to 
self knowledge and opposi- 
tion's ignorance. 

3 
Alternatives a.), b.) and c.) are identical  to the counter-C    coupling 

options a.), b.) and c.) of Part IV.    Alternative b.)  is the case analyzed 

extensively in Part V.    Alternative d.)  listed here is a new concept.    It 
3 

proposes that instead of counter-C   activities to increase the opponent's 

entropy, the players focus on special  intelligence activities to reduce their 

own uncertainty and that the entropy death rate by such means will  be pro- 

portional  to one's own knowledge and the opposition's ignorance. 

The implications of these four alternatives for dynamic stability 

are listed below: 
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Alternative 

a.) 

b.) 

c) 

Re[S1  & S2J Im[S1  & Sg] 

Both < 0 0 
(stable) (no focal points) 

Both < 0 0 
(stable) (no focal points) 

Either or both 0 
may be > 0 (no focal points) 
(may be unstable) 

d.) Either or both 0 
may be > 0 (no focal points) 
(may be unstable) 

We see that models c.) & d.) may lead to unstable behavior near equilibrium 

points that would cause one or both entropies to blow-up. However, no model 

produces focal point behavior near equilibirum. This is because in all 

models, a-Bp > 0, which forces the imaginary parts of the roots of the 

characteristic equation to be zero. (This is not so with the Lotka-Volterra 

equations for population dynamics.) 

An interesting avenue for further research will be to investigate 

combinations of counter-C and intelligence models both for stable and 

unstable as well as focal point behavior and for equilibrium sensitivity 

3 
to intelligence vice counter-C efforts. 
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VII. Summary 

3 
In this paper we have proposed a model for C information dynamics 

3 
incorporating the effects of counter-C activities. The model is based 

on the inevitable growth of uncertainty inherent in military situations 

and the concept of information sensors and sources acting as constraints 

that maintain uncertainty below its worst possible value. System entropy 

dynamics of two opposing sides are characterized by natural "birth" and 

3 
"death" rates of entropy. Counter-C activities are introduced as additional 

growth terms that depend in some way on the entropy of one or both players. 

The dependence analyzed extensively in this paper in Part V models 

3 
counter-C effectiveness as being in direct proportion to the product of 

the two system's knowledges, (X_. -X) (Yma -Y), where X and Y are the 

two entropies and X_av and Ymav the largest amount of uncertainty (or max      max 

information) possible in the two systems respectively.  It is shown that 

for this kind of coupling, the relative shift of system equilibrium is 

directly proportional to the ratio of the coupling coefficient to the 

system's natural entropy birth rate. Furtheremore, it is shown that small 

perturbations from equilibrium are restored to equilibrium by the system 

forces, i.e. the system is ultra-stable, but that 1) perturbations of X 

and Y with the same sign are restroed much more rapidly than perturbations 

of opposite sign, and 2) a perturbation in one system induces a delayed 

perturbation in the other system of the opposite sign. Thus, if X becomes 

fortuitously more knowledgeable by chance, Y will in turn some time later 

become more ignorant and vice versa. It is also shown the system's dynamical 

trajectories near equilibrium are described by sums of exponentials with real 

coefficients. Such equilibrium points are called "nodal points". (In 

contrast, "focal point" systems have exponentials with complex coefficients 
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in which the trajectories spiral into the equilibrium point. See Figure 6.) 

A modest investigation of the dynamics far from equilibrium show the 

system always returns to equilibrium; but it is possible for the "modeled 

entropy" of one or both systems to temporarily become negative, a physically 

impossible condition for the "real entropy". The importance of a non- 

negativity constraint on system behavior far from equilibrium requires 

further investigation. 

Finally, after a brief review of two other well known applications of 

coupled non-linear state equations, the Lanchester combat equations and the 

prey-predator equations, several alternative counter-C models and an 

"intelligence" model are proposed. It is shown that these models too exhibit 

nodal point behavior, unlike for example, the predator-prey model, which may 

exhibit focal point behavior.  However, the intelligence model and a 
3 

counter-C model where the entropy rates depend on the product of one's own 

knowledge and the opposition's ignorance, are not necessarily stable. That 

is, small deviations from equilibrium may cause one, or the other, or both 

entropies to diverge. 

It is clear that further theoretical investigation of entropy models 

is needed, along with some modest simulations of actual systems, to determine 
3 

the utility of this approach for the evaluation of specific C I alternatives. 

NPS 
Monterey, CA 
December 1980 
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