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characteristics by coupling a mesoscale model to a Fourier method. Localized

phase-averaged wave momentum fluxes are calculated, which facilitates the

study of wave generation from fine-scale topographic features. We find that

the wave momentum fluxes are dominated by forcing from subsidiary topo-

graphic peaks, with the broader island topography controlling flow splitting

and lee vortex generation. Waves also arise at the far northern and southern

extremities of the island by acceleration of split flow through conservation of

the Bernoulli function. The strength of the local momentum fluxes prove to be

sensitive to a small change in the incident flow direction. Areally integrated

fluxes (wave drag) align closely with the incident flow direction, and are an

order of magnitude smaller than linear predictions and an order of magnitude

larger than corresponding dividing streamline predictions. We briefly discuss

the relevance of these results to the parameterization of subgrid-scale mountain

wave drag in climate and weather models.

Keywords mountain waves · drag · momentum fluxes

1 Introduction

Observational and numerical studies have shown that mountain wave gener-

ation can be affected by low-level nonlinear processes such as flow stagna-

tion on the upwind slope and subsequent flow splitting around the mountain

(Smith, 1989; Smolarkiewicz and Rotunno, 1989, 1990; Miranda and James,

1992; Schär and Durran, 1997; Smith et al, 2002; Jiang et al, 2005; Smith et al,

2007; Wells et al, 2008a; Eckermann et al, 2009). As Smith et al (2007) note



3

in their overview of mountain waves observed over the Pyrenees during the

Mesoscale Alpine Project, “...any quantitative prediction of mountain wave

generation must take full account of these lower troposphere processes.”

A mesoscale meteorological model can account for a range of nonlinear pro-

cesses, but the computational expense is a drawback if the mountain waves

are to be followed to high altitudes at high resolution. So here we couple the

mesoscale model to a much faster Fourier method. The mesoscale model is

used only where it is needed most, to simulate the low-level nonlinear flow

and to predict the emerging wavefield. At higher altitudes, where the wave-

field is quasi-linear, the Fourier method takes over. The Fourier method can

also characterize the properties of waves radiated from nonlinear flow over

multiscale orography in ways that simpler analyses of mesoscale model fields

cannot, a property we utilize here.

The present method debuted in Lindeman et al (2008), for idealized topog-

raphy and a uniform background wind and stratification (see also Eckermann

et al, 2009). Here we consider realistic topography but leave the background

uniform. We examine mountain waves generated by the Big Island of Hawaii

(hereafter referred to as Hawaii), which has four pronounced peaks (Figure 1).

Two of the peaks, Mauna Loa and Mauna Kea, are over 4 km in elevation. All

four peaks are sufficiently distinct and isolated that possible wave generation

from each can be distinguished.

Hawaii’s climate is fairly consistent year-round with east-northeasterly

trade winds (Rasmussen et al, 1989), and an average Froude number Fr ≈ 0.2
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Fig. 1 Topographic elevation h(x, y) for Hawaii (GTOPO30 interpolated to 1 × 1 km2

resolution) identifying the four main peaks. The contour interval is 250 m and the peak

elevation is 4066 m.

(Smolarkiewicz et al, 1988). Here Fr = U/(Nhm), where U is the upstream

surface wind speed, N is the buoyancy frequency, and hm is the height of the

tallest peak. Thus blocking and flow separation are expected, as has been con-

firmed in field experiments and numerical studies (Smolarkiewicz et al, 1988;

Rasmussen et al, 1989; Smith and Grubĭsić, 1993; Chen and Nash, 1994; Wang

et al, 1998; Chen and Feng, 2001; Hafner and Xie, 2003).



5

In section 2 we describe the modeling tools used here, namely the mesoscale

model, the Fourier method, and a Hilbert transform method for calculating

local wave momentum fluxes. In Section 3, we apply these tools to mountain

waves generated by representative winds impinging on Hawaii from the east-

northeast and from the northeast. We also compare these wave solutions with

those from the Fourier method using a linearized lower boundary condition

and a dividing streamline approximation. Section 4 discusses and summarizes

the main results of this work.

2 Modeling Tools

2.1 Weather, Research, and Forecasting (WRF) model

For our numerical simulations, we use version 3.1.1 of the Advanced Research

WRF (Weather, Research, and Forecasting) model, described in detail by Ska-

marock et al (2008). The model is nonlinear and fully compressible, discretized

with fifth/third-order finite differences for the horizontal/vertical advection,

and third-order Runga-Kutta for the time stepping.

In all WRF simulations, the computational domain is 900 km in each hor-

izontal direction (x, y) and 22 km in the vertical direction (z). The gridpoint

spacing is 1 km in the horizontal and about 120 m in the vertical. (WRF uses

a pressure-based terrain-following vertical coordinate.) Inflow/outflow condi-

tions are applied at the lateral boundaries, and the top of the model is a

rigid lid where the vertical velocity is zero. To minimize reflection of upward-
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propagating gravity waves from this lid, an implicit sponge layer is included

at z = 11–22 km. In this layer are 58 vertical grid levels, and the damping

coefficient varies with height according to eq. (21) of Klemp et al (2008) with

a peak damping rate at z = 22 km of 0.2 s−1.

In all simulations we use a frictionless (free-slip) lower boundary, a 1.5-

order turbulent closure scheme, and omit Coriolis effects and moisture. Each

simulation is run out to t = 12 hours, which allows sufficient time for the low-

level nonlinear response to develop, and for mountain wave fields to propagate

through the full vertical domain and attain a quasi-steady state. The lateral

boundaries are sufficiently far away from Hawaii as to be unaffected by the

low-level nonlinear processes after 12 hours.

The Hawaiian topography was obtained from the United States Geological

Survey (USGS) GTOPO30 data base, interpolated linearly onto a 1 × 1 km2

Cartesian grid, then smoothed using a two-dimensional five-point running

average to suppress forcing of unrealistic gridpoint-scale noise (Davies and

Brown, 2001). The four major island peaks in Figure 1 are retained after this

smoothing, and the peak elevation (Mauna Loa) is reduced only slightly, from

4066 m to 4000 m.
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2.2 The Fourier Transform (FT) Method

The far-field mountain waves generated by WRF are coupled to a Fourier-

transform (FT) solution of the form

w(x, y, z) =

∞
∫

−∞

∫

w̃(k, l, z) eı(kx+ly)dk dl , (1)

where w is the vertical velocity, w̃(k, l, z) is the vertical eigenfunction, and k, l

are the horizontal wavenumber components. For a nonuniform background,

w̃(k, l, z) can be approximated with ray theory, as in the Jan Mayen trapped

wave simulations of Eckermann et al (2006). For a uniform background, and

in the anelastic approximation, the vertical eigenfunctions are simply

w̃(k, l, z) =

[

ρ(zi)

ρ(z)

]1/2

w̃(k, l, zi)e
ım(z−zi), (2)

where zi is an initialization height, and the vertical wavenumber m follows

from the dispersion relation

m = −(k2 + l2)1/2

(

N2

ω̂2
− 1

)1/2

. (3)

The background density is ρ, and the buoyancy frequency is N . Since we

assume stationary waves, the intrinsic frequency is ω̂ = −kU − lV , where

U ≡ (U, V ) is the background horizontal wind vector. Additional terms in the

dispersion relation can be included (e.g. anelastic terms) but are omitted here

since they have minor effects. Trapping and tunneling effects (Broutman et al,

2006, 2009) can also be omitted from the formulation in this application due

to the uniform background, while evanescent modes (ω̂2 > N2) are omitted

for simplicity since our focus is on the propagating wave components.
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For linear problems (Fr ≫ 1) the FT method can be initialized at the

surface (zi = 0) using the topographic elevation h(x, y) to yield the lower

boundary condition

w̃(k, l, zi = 0) = −ıω̃h̃(k, l), (4)

where h̃(k, l) is the Fourier transform of h(x, y). Eqs. (1)-(3) give the resulting

linear steady-state mountain wave response.

For nonlinear problems (Fr . 1), the FT method is initialized by the WRF

solution at a height zi sufficiently above the low-level nonlinearity. That is,

w̃(k, l, zi) = w̃W (k, l, zi, ti), (5)

where w̃W (k, l, zi, ti) is the horizontal two-dimensional Fourier transform of

the WRF vertical velocity at height zi and time ti. The time ti is chosen to be

long enough to approximate the quasi-steady mountain wave response at zi.

After testing we found zi = 6 km and ti = 12 hours to be acceptable choices

for this work.

2.3 Phase averaged momentum fluxes

The gravity wave polarization relations can be used to compute the horizon-

tal perturbation velocities u, v from the vertical velocity w. The polarization

relations are applied in Fourier space, using the form (2) for w̃(k, l, z) and (3)

for the dispersion relation. Since u, v, and w can be obtained as complex func-

tions (see the following paragraph), we can compute the local phase-averaged
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momentum fluxes using

Fx = ρuw =
ρ

4
(uw∗ + u∗w) , (6)

Fy = ρvw =
ρ

4
(vw∗ + v∗w) , (7)

where * indicates a complex conjugate. These localized momentum fluxes are

particularly useful in the present context because they can be associated with

waves forced by flow across the individual peaks of Hawaii identified in Fig-

ure 1, as will be shown in section 3.

We obtain complex spatial variables in the following way. Consider the ver-

tical velocity w(x, y, z). If w is real, its Fourier transform will obey w̃(k, l, z) =

w̃∗(−k,−l, z). We first set w̃ to zero for half of the wavenumbers; e.g., those

for which the intrinsic frequency ω̂ = −kU − lV is negative. We multiply w̃

by two in order to account for the removal of amplitude information from

those wavenumbers and then take the inverse Fourier transform. The result

is a complex w. The real part of this complex w is the same as the original

w, but an imaginary part has been introduced that is the Hilbert transform

(Hahn, 1996) of the original real w. This complex w now represents the original

velocity field in complex vector form on the Argand diagram with local peak

amplitude wp and local phase φw each defined at every point, and similarly

for u and v.

This separation of phase and amplitude information allows us to construct

locally phase-averaged momentum fluxes, as follows. Eq. (6) is obtained by

first multiplying Re(u) = (u + u∗)/2 by Re(w) = (w + w∗)/2. The component

uw+u∗w∗ = 2upwp cos(φu+φw), where φu and φw are the local phases of u and
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w, respectively. Since from polarization relations φw = φu±π, this component

contains a cos 2φu “beating” term, which is not useful locally and has a zero

phase average. By contrast, the other component uw∗+u∗w = 2upwp cos(φu−

φw) = −2upwp. Note that phases subtract out of this term. Since uw =

−(upwp)/2, (6) follows, as does (7) from a corresponding expression for vw∗ +

v∗w.

In interpreting Fx and Fy as phase-averaged momentum fluxes, there is an

assumption that the spatial wavefield is sufficiently slowly varying that one

can meaningfully distinguish a rapidly varying phase from a slowly varying

amplitude. The wave field must also be steady and stationary. Those assump-

tions require formal testing but will be assumed to be valid here. Examples

validating the accuracy of these flux relations for waves radiated from lin-

ear and nonlinear flow over idealized three-dimensional obstacles are given in

Lindeman (2008) and Eckermann et al (2009).

3 Results

Two cases are considered. They are identical except that the background wind

direction is from the east-northeast in the first case (section 3.1) and from

the northeast in the second case (section 3.2). The initial state has constant

N = 0.01 s−1 and a constant mean wind speed of 8 m s−1. For the peak

mountain height of hm = 4 km, this gives Fr = 0.2.

Using a Sheppard criterion for flow splitting (i.e., Fr ≤ 1), the dividing

streamline height zc = hm(1−Fr) (Snyder et al, 1985). A simple parameteri-
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zation of wave activity at Fr ≤ 1 based on the dividing streamline uses only

the topography and flow above zc to generate mountain waves. For the present

value of Fr = 0.2, zc = 3200 m. Upstream air parcels below zc are assumed

to flow horizontally around Hawaii without contributing to the generation of

mountain waves. Thus only the top 800 m of the two tallest Hawaiian peaks

generate waves in the dividing streamline approximation. The dividing stream-

line topography hds is defined as hds = h for z > zc and hds = zc otherwise. In

the FT method, the dividing streamline initialization is implemented by set-

ting zi = zc and w̃(k, l, zi) = −iω̂ĥds in (2), where ĥds is the Fourier transform

of hds.

3.1 Case 1: East-Northeasterly Flow

Figure 2 shows the surface flow from WRF for a background wind of |U| =

8 m s−1 from the east-northeast, which is a typical direction of surface trade

winds impinging upon Hawaii. The streamlines show a primary zone of flow

stagnation and splitting along the upslope to Mauna Kea, with this low-level

flow diverted around the island. Asymmetric vortices form in the lee of Hawaii

in general agreement with previous observations and modeling (Rasmussen

et al, 1989; Smith and Grubĭsić, 1993).

In the following, the FT solution initialized by WRF (at zi = 6 km) will

be referred to as the FT/WRF solution. Figure 3 shows the WRF solution

(left column) and the FT/WRF solution (right column) for the wave-induced

perturbation velocities u, v, and w at z = 10 km. The FT/WRF solutions
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Fig. 2 Case 1. Surface streamlines at ti = 12 hours for the WRF simulation with U directed

east-northeasterly at 8 m s−1. Color shading shows wind anomalies along the U direction

(see underlying color bar, units in m s−1). Topography is overlayed as white contours at

500 m intervals.

were initialized with the WRF w field at zi = 6 km and then propagated

to z = 10 km using (2) and (3). The WRF and FT/WRF solutions are very

similar, indicating that the wavefield above the FT initialization height of 6 km
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Fig. 3 Case 1. Horizontal cross-sections at z = 10 km of anomalies in (top) zonal, (middle)

meridional, and (bottom) vertical velocity from WRF (left column) and WRF-initialized

FT solution (right column). Color bar units are m s−1. Topography contours are white

(500 m intervals).

is well approximated by linear steady-state propagating stationary gravity

waves.

The multiscale three-dimensional topography of Hawaii can force gravity

waves with a range of horizontal wavelengths. The polarization relations for
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Fig. 4 Case 1. Horizontal cross-sections of locally phase-averaged momentum fluxes at

z = 10 km from the FT/WRF method. The left panel shows Fx = ρuw, the center panel

shows Fy = ρvw, and the right panel shows the magnitude (F 2
x +F 2

y )1/2. Color bar units are

kg m−1 s−2. The prevailing initial wind direction is from the east-northeast. Topography is

overlaid with white contours (500 m intervals).

internal gravity waves dictate that horizontal velocity perturbations tend to

be dominated by long waves of low intrinsic frequency, whereas vertical veloc-

ity perturbations are largest for short waves of high intrinsic frequency, as is

evident from inspection of Figure 3.

Figure 4 plots the FT/WRF solutions for the local vertical fluxes of hori-

zontal wave momentum, Fx = ρuw and Fy = ρvw, at z = 10 km, computed

using (6) and (7), respectively. Also shown is the magnitude (F 2
x + F 2

y )1/2.

These phase-averaged quantities are more localized and less noisy than the

component velocity fields in Figure 3, and are thus easier to associate with

particular topographic features.

The momentum fluxes in Figure 4 are largest near the northern and south-

ern extremities of Hawaii. Surface flow acceleration is clearly seen in these
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regions in Figure 2 due to conservation of the Bernoulli function along these

diverted low-level streamlines. The resultant wave forcing at the northern and

southern edges of Hawaii is analogous to that reported at the cross-stream

extremities of elliptical obstacles by Ólafsson and Bougeault (1996) and of

axisymmetric obstacles by Eckermann et al (2009) at highly nonlinear Froude

numbers (Fr . 0.3). The response at the northern end of Hawaii is also influ-

enced by the topography of Kohala.

Localized flux maxima appear in Figure 4 slightly downstream of the peaks

of Mauna Loa and Mauna Kea. The localization of maximum wave fluxes in

a narrow zone just downstream of these peaks is in close agreement with the

findings of Eckermann et al (2009) for nonlinear flow over idealized axisym-

metric obstacles. It arises due to the abrupt leeside collapse and ascent of

isentropes triggered by upstream flow stagnation and splitting. This leeside

isentropic structure provides the dominant obstacle-like forcing of waves at

these altitudes, and so the linear dividing-streamline solution based on the

clipped mountain hds does not describe these wave fields and fluxes accu-

rately (Lindeman et al, 2008; Eckermann et al, 2009). Thus, in this case, both

Mauna Loa and Mauna Kea are acting much like isolated individual obstacles

to the local flow, with each generating waves due to a local nonlinear leeside

fluid-dynamical responses.

The streamlines in Figure 2 show flow splitting on the upslopes to Ko-

hala, Mauna Kea and Mauna Loa but also higher-level streamlines flowing

over these peaks, consistent with the observed waves generated from these
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peaks. By contrast, flow in and around Hualālai in Figure 2 is inhomogenous,

with a recirculating southwesterly flow to the northwest of the peak due to lee

vortices from Kohala, and a northwesterly flow to the southeast of the peak

due to flow splitting around Mauna Loa. This local surface flow pattern is less

effective in forcing waves from Hualālai. Indeed the momentum flux magni-

tudes (right panel of Figure 4) show relatively smaller wave momentum fluxes

emanating from this peak. This finding is consistent with idealized obstacle

simulations, which show strong suppression of both pressure and wave drag

from a second obstacle located within the downstream wake generated by flow

over and around an upstream obstacle (Wells et al, 2008b).

The areally-integrated wave momentum fluxes, or wave drag components,

are

Duw =

∫ ∫

ρ uw dxdy , (8)

Dvw =

∫ ∫

ρ vw dxdy . (9)

yielding Duw = 4.66 × 109 kg m s−2 and Dvw = 1.62 × 109 kg m s−2 at z =

10 km. This net wave drag vector, due to wave flux radiated from all the terrain

features, is directed almost parallel to the incident flow direction. When the

FT method is initialized traditionally (linearly) using the topography h(x, y),

we get Duw = 5.41 × 1010 kg m s−2 and Dvw = 1.19 × 1010 kg m s−2, a

difference of roughly an order of magnitude. This is further indication of the

reduction in effective mountain height for gravity wave forcing due to low-level

nonlinear processes.
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Another calculation was performed where the dividing streamline approxi-

mation served as the lower boundary condition. As previously mentioned, the

dividing streamline height zc = 3.2 km in the cases conducted here, and we

initialize using the dividing streamline topography hds(x, y) at zi = zc. For

this FT simulation, Duw = 7.05×108 kg m s−2 and Dvw = 1.71×108 kg m s−2,

which is about an order of magnitude smaller than the FT/WRF wave drag

values. Given that the two wave-flux peaks above the downslope of Mauna Loa

and Mauna Kea were governed by nonlinear responses not captured by hds,

and that two additional and larger flux peaks occurred due to Bernoulli-type

forcing at the cross-stream extremities of Hawaii, then this large underestima-

tion of the wave drag by dividing streamline theory is not surprising.

3.2 Case 2: Northeasterly Flow.

Here the background wind direction is from the northeast with the same speed

of 8 m s−1 as in the previous case (Fr = 0.2). The resulting WRF surface

streamlines are shown in Figure 5, the WRF and FT/WRF solutions at z =

10 km are compared in Figure 6, and the local phase-averaged wave momentum

fluxes at z = 10 km are shown in Figure 7. Despite the same Fr and a change

in wind direction of only 22.5◦, there are some large changes in the forced wave

fields.

Compared with the case of east-northeast winds, there is a substantial

diminution of the momentum flux peak near the southern tip of Hawaii (c.f.

Figures 4 and 7). This can be explained by comparing the low-level stream-
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Fig. 5 As in Figure 2 but for northeasterly flow (Case 2).

lines in Figures 2 and 5. For the east-northeasterly flow, Figure 2 shows a

uniform near-easterly flow pattern over the southernmost regions of Hawaii

which forces waves. By contrast, the northeasterly flow in Figure 5 results in

diverted streamlines pushed further south, with flow over the southern por-

tions of the island dominated by local vortices and a recirculating westerly
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Fig. 6 Case 2. Horizontal cross-sections for u, v, and w at z = 10 km for northeasterly

flow. WRF solutions (left column). FT/WRF solutions (right column). Color bar units are

m s−1. Topography is overlaid with white contours (500 m intervals).

flow regime. Any waves generated by this westerly flow will be absorbed by

critical levels on propagating into the upper-level northeasterly flow.

The momentum fluxes in Figure 7 are dominated by waves from the quasi-

elliptical northern peak of Kohala, yielding northeastward wave momentum

fluxes peaking in magnitude at ∼5.2 kg m−1 s−2. The northeasterly flow di-
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Fig. 7 As in Figure 4, but for northeasterly flow.

rection is almost perpendicular to the long axis of this peak, which, if it were an

isolated three-dimensional elliptical obstacle, is the optimal configuration for

generating large-amplitude, less-dispersed gravity waves (Smith, 1989; Wells

et al, 2008a). If we treat Kohala here as an isolated elliptical obstacle, its max-

imum height of ∼1200 m yields a local Froude number of 2/3, which should

trigger a high drag wave-breaking state (Ólafsson and Bougeault, 1996). The

localization of wave flux above the lee downslope in Figure 7 is the signature of

waves generated by the leeside collapse of isentropes anticipated at Fr ∼ 2/3

(Lindeman et al, 2008; Eckermann et al, 2009), and here WRF also produces a

turbulent kinetic energy (TKE) maximum in the lowest 5 km associated with

low-level wave breaking (not shown). The flux peak and wavebreaking would

both be expected to split into two and migrate to the cross stream extremities

of Kohala if the local Fr was nearer 0.2 (Ólafsson and Bougeault, 1996), while

the flux maximum would lie nearly above the obstacle peak if local Froude

numbers were & 1 (Eckermann et al, 2009). Thus the properties of the waves
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forced by Kohala can be interpreted to some extent here by treating it as if

it were an isolated elliptical obstacle. Note, however, that a similar approach

cannot explain the split-flow dynamics around Kohala in Figure 5. This low-

level flow originates not from ocean points to the northeast of Kohala, but

from regions well to the southeast due to prior flow splitting on the Mauna

Kea upslope. Thus the low-level dynamics around Kohala cannot be modeled

without considering the orography of the entire island.

The magnitude of the momentum flux from Mauna Kea in Figure 7 is

comparable to that in the previous east-northeasterly case; however there is a

significant reduction in wave momentum flux from Mauna Loa. Although the

rotation of the wind from east-northeasterly to northeasterly places Mauna

Loa more directly in the wake of Mauna Kea, streamline plots at z = 3500 m

in Figure 8 reveal that the speed and direction of upstream flow impinging on

the Mauna Loa peak is largely unaffected by Mauna Kea at these altitudes. The

northeasterly winds align closely with a steep topographic gradient downwind

of Mauna Kea that generates a narrow region of flow stagnation and reversal

in the lee in Figure 8. This flow generates waves above the lee downslope of

Mauna Kea as before. By contast, the topography of Mauna Loa is slightly

elliptical and it’s long axis aligns with the northeasterly flow, a configuration

that produces much weaker wave and lee-vortex responses in idealized obstacle

simulations (Smith, 1989). Indeed, unlike Mauna Kea, the flow immediately

downstream of Mauna Loa in Figure 8 shows no evidence of stagnation or re-

versal. This weaker dynamical response due to the coalignment of the incident
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Fig. 8 Surface streamlines at z = 3500 m and ti = 12 hours for the Case 2 WRF simulation

with U directed northeasterly at 8 m s−1. Color shading shows absolute winds along the

U direction (see underlying color bar, units in m s−1). Topography is overlayed as white

contours at 500 m intervals..

flow with the long-axis of the Mauna Loa peak appears to explain the weaker

wave fluxes in this case.
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Near Hualālai, the surface streamlines in Figure 5 indicate a significant

shift in surface wind direction from the previous east-northeasterly case, with

the surface flow approaching Hualālai from the northeast and flowing over

the peak. The resulting forced wave momentum flux in Figure 7 stretches out

west of the peak, due to preferential generation over the steepest topographic

gradients.

The integrated drag values calculated by the FT/WRF method are Duw =

3.21×109 kg m−1 s−2 and Dvw = 3.37×109 kg m−1 s−2. Again, the net wave

flux from all the peaks is directed roughly parallel to the incident flow. As in the

previous case, there is an order of magnitude difference between these values

and the linear FT values, which are Duw = 3.89×1010 kg m−1 s−2 and Dvw =

2.81×1010 kg m−1 s−2. When the dividing streamline approximation is applied,

the drag magnitudes are again nearly an order of magnitude lower than those

observed: Duw = 4.88 × 108 kg m−1 s−2 and Dvw = 4.44 × 108 kg m−1 s−2.

4 Discussion and Summary

We have shown that a linear Fourier-transform mountain-wave model can be

coupled to a nonlinear mesoscale model to characterize waves forced by non-

linear flow over and around the complex topography of (the Big Island of)

Hawaii. The coupling was accomplished by using the mesoscale model solution

for the vertical velocity to initialize the Fourier transform model at a height

of 6 km. The coupling was tested by running the mesoscale model separately

to 10km altitude and comparing the result with that of the coupled Fourier
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transform method. A future goal of this work is to take the Fourier solution

to much higher altitudes through realistic background winds, for Hawaii and

other locations.

A second new tool was applied to this Hawaii simulation. The perturbation

velocities were converted from real to complex variables, using what is effec-

tively a Hilbert transform. In complex form, the local phase average can be

obtained. The local phase-averaged momentum fluxes calculated in this way

were key to interpreting the results, since wave fluxes were concentrated in

small areas usually near the individual peaks of Hawaii in Figure 1.

This particular approach to studying wave generation from Hawaii is mo-

tivated by the need to accurately parameterize the significant drag forces on

the large-scale flow due to momentum flux deposition by mountain waves that

are not resolved explicitly by global climate and weather models (Kim et al,

2003). Climate models typically run at horizontal resolutions for which Hawaii

would be completely contained within a single grid box. In such models, total

wave drag from the island must be parameterized within that model grid box.

Higher resolution weather models would divide Hawaii among a number of

smaller grid boxes, which might explicitly resolve the large-scale island relief

but would not adequately resolve the smaller subsidiary peaks identified in

Figure 1. Thus the total wave drag and the wave drag from individual peaks

are relevant to the parameterization of mountain wave drag in models.

We performed WRF simulations using representative surface flow condi-

tions for Hawaii, namely a east-northeasterly to northeasterly trade-wind flow
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of Fr = 0.2 that produces strong flow splitting and downstream lee vortices

(Smolarkiewicz et al, 1988; Rasmussen et al, 1989; Smith and Grubĭsić, 1993),

a situation for which there are no clear predictions of the type of mountain

wave activity expected at higher altitudes to aid parameterization develop-

ment. Our approach shows some promise as a way of informing this difficult

parameterization problem.

The major findings of this pilot study for Hawaii are as follows:

– wave momentum flux is dominated by flow over individual island peaks and

Bernoulli acceleration at the cross-stream edges of the island. The large-

scale island topography drives flow separation and lee vortex generation

rather than wave forcing.

– individual peaks can act as quasi-axisymmetric or quasi-elliptic obstacles

and generate wave momentum flux that is concentrated above the downs-

lope through the forcing effects of leeside collapse and ascent of isentropes,

much as seen in simulations for idealized isolated obstacles (Eckermann

et al, 2009).

– for east-northeasterly flow we find wave generation at the northern and

southern extremities of Hawaii, consistent with the wave forcing at the

cross-stream extremities of idealized obstacles at Fr . 0.3 noted by Ólafsson

and Bougeault (1996) and Eckermann et al (2009).

– some wave features prove sensitive to a small change in wind direction

from east-northeasterly to northeasterly, with wave flux over Kohala inten-

sifying, over Mauna Loa weakening, and near the southern tip of Hawaii
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almost disappearing. The latter feature arises due to vortex generation in

the south that reduces wave forcing or removes waves at critical levels. The

former two features are ascribed to the sensitivity of wave responses to flow

direction due to the elliptical nature of these peaks.

– despite this variability, the areally-integrated wave momentum flux (wave

drag) vectors show similar magnitudes and strong alignment with the in-

cident flow direction.

– wave drag is roughly an order of magnitude smaller than linear predictions,

consistent with the strong flow splitting and lee vortex generation

– wave drag is roughly an order of magnitude larger than that predicted

by a Sheppard-based dividing streamline parameterization, due to larger

wave fluxes from individual peaks via leeside isentropic collapse, and wave

forcing at the north-south island extremities by flow diversion.
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