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Abstract 

This report summarizes three areas of research investigated under the Air Force grant: (i) balancing exploration 
and exploitation when performing reinforcement learning in POMDPs; (ii) proper sharing of information when 
performing POMDP-based reinforcement learning on a network; and (Hi) topic modeling for time-evolving systems, 
with the latter now being transitioned to cybersecurity. 

For research thrust (i), a fundamental objective in reinforcement learning is the maintenance of a proper balance 
between exploration and exploitation. This problem becomes more challenging when the agent can only partially 
observe the states of its environment. In this project we propose a dual-policy method for jointly learning the 
agent behavior and the balance between exploration exploitation, in partially observable environments. The method 
subsumes traditional exploration, in which the agent takes actions to gather information about the environment, and 
active learning, in which the agent queries an oracle for optimal actions (with an associated cost for employing 
the oracle). The form of the employed exploration is dictated by the specific problem. Theoretical guarantees are 
provided concerning the optimality of the balancing of exploration and exploitation. The effectiveness of the method 
is demonstrated by experimental results on benchmark problems. 

For research thrust [ii), the Dirichlet process (DP) has proven a powerful nonparametric prior in multi-task 
reinforcement learning (MTRL). A drawback of the DP prior is that it either encourages global clustering based 
on all parameters, or it encourages independent local clustering based on subsets of parameters. In this report we 
generalize the MTRL framework by employing the nonparametric dependent local partition process (LPP) as a 
prior to promote simultaneous local and global clustering. We provide theoretical analysis of the correlated local 
clustering structure induced by the LPP and show the structure facilitates information-sharing between partially 
similar RL tasks. We develop the LPP-based MTRL framework assuming the environment in each RL task is an 
unknown partially observable Markov decision process, and we provide experimental results to demonstrate the 
advantage of the LPP-based MTRL. 

For research thrust (ii), we consider the problem of inferring and modeling topics in a sequence of documents 
with known publication dates. The documents at a given time are each characterized by a topic, and the topics are 
drawn from a mixture model. The proposed model infers the change in the topic mixture weights as a function of 
time. The details of this general framework may take different forms, depending on the specifics of the model. For 
the examples considered here we examine base measures based on independent multinomial-Dirichlet measures 
for representation of topic-dependent word counts. The form of the hierarchical model allows efficient variational 
Bayesian (VB) inference, of interest for large-scale problems. We demonstrate results and make comparisons to the 
model when the dynamic character is removed, and also compare to latent Dirichlet allocation (LDA) and topics 
over time (TOT). We consider a database of NIPS papers as well as the United States presidential State of the 
Union addresses from 1790 to 2008. This is a demonstration of the technology, which is now being transitioned 
to time-evolving data from a computer network. 

I. EXPLORING AND EXPLOITING IN POMDPS 

A fundamental challenge facing reinforcement learning (RL) algorithms is to maintain a proper balance 
between exploration and exploitation. The policy designed based on previous experiences is by construction 
constrained, and may not be optimal as a result of inexperience. Therefore, it is desirable to take actions 
with the goal of enhancing experience. Although these actions may not necessarily yield optimal near-term 
reward toward the ultimate goal, they could, over a long horizon, yield improved long-term reward. The 
fundamental challenge is to achieve an optimal balance between exploration and exploitation; the former 
is performed with the goal of enhancing experience and preventing premature convergence to suboptimal 
behavior, and the latter is performed with the goal of employing available experience to define perceived 
optimal actions. 

For a Markov decision process (MDP), the problem of balancing exploration and exploitation has 
been addressed successfully by the Ez [1], [2] and R-max [3] algorithms. Many important applications, 
however, have environments whose states are not completely observed, leading to partially observable 
MDPs (POMDPs). Reinforcement learning in POMDPs is challenging, particularly in the context of 
balancing exploration and exploitation. Recent work targeted on solving the exploration vs. exploitation 



problem is based on an augmented POMDP, with a product state space over the environment states and the 
unknown POMDP parameters [4]. This, however, entails solving a complicated planning problem, which 
has a state space that grows exponentially with the number of unknown parameters, making the problem 
quickly intractable in practice. To mitigate this complexity, active learning methods have been proposed 
for POMDPs, which borrow similar ideas from supervised learning, and apply them to selectively query an 
oracle (domain expert) for the optimal action [5]. Active learning has found success in many collaborative 
human-machine tasks where expert advice is available. 

In this report we propose a dual-policy approach to balance exploration and exploitation in POMDPs, 
by simultaneously learning two policies with partially shared internal structure. The first policy, termed 
the primary policy, defines actions based on previous experience; the second policy, termed the auxiliary 
policy, is a meta-level policy maintaining a proper balance between exploration and exploitation. We 
employ the regionalized policy representation (RPR) [6] to parameterize both policies, and perform 
Bayesian learning to update the policy posteriors. The approach applies in either of two cases: (/) the agent 
explores by randomly taking the actions that have been insufficiently tried before (traditional exploration), 
or (//') the agent explores by querying an oracle for the optimal action (active learning). In the latter case, 
the agent is assessed a query cost from the oracle, in addition to the reward received from the environment. 
Either (/) or (/';') is employed as an exploration vehicle, depending upon the application. 

The dual-policy approach possesses interesting convergence properties, similar to those of E3 [2] and 
Rmax [3]. However, our approach assumes the environment is a POMDP while E3 and Rmax both 
assume an MDP environment. Another distinction is that our approach learns the agent policy directly 
from episodes, without estimating the POMDP model. This is in contrast to E3 and Rmax (both learn 
MDP models) and the active-learning method in [5] (which learns POMDP models). 

II. REGIONALIZED POLICY REPRESENTATION 

We first provide a brief review of the regionalized policy representation, which is used to parameterize 
the primary policy and the auxiliary policy as discussed above. The material in this section is taken from 
[6], with the proofs omitted here. 

Definition 2.1: A regionalized policy representation is a tuple (A.O.Z.W, p.ir). The A and O are 
respectively a finite set of actions and observations. The 2 is a finite set of belief regions. The W is 
the belief-region transition function with W(z.a.o'.z') denoting the probability of transiting from z to z' 
when taking action a in z results in observing d. The p. is the initial distribution of belief regions with 
fi(z) denoting the probability of initially being in z. The n are the region-dependent stochastic policies 
with n(z,a) denoting the probability of taking action a in z. 

We denote A = {1,2 \A\}, where |.4| is the cardinality of A. Similarly, O = {1,2 \0\} and 
Z = {1,2 \Z\}. We abbreviate (ao,Oi ,aj) as a^j and similarly, (oi.o2 ar) as O\-T and 
(ZQ, Z\ zj) as ZQ-T, where the subscripts indexes discrete time steps. The history ht = {ao:f-i. Oi-t} is 
defined as a sequence of actions performed and observations received up to t. Let 0 = {IT, //. W} denote 
the RPR parameters. Given ht, the RPR yields a joint probability distribution of z0:t and a0.t as follows 

By marginalizing c0:/ out in (11), we obtain p(aO:t|oi:t.0). Furthermore, the history-dependent distribution 
of action choices is obtained as follows: 

p(aT\hT.Q) =p(aO;T|oi:r.0)[p(aO:T_i|o1:T_1.0)] -l 

which gives a stochastic policy for choosing the action aT. The action choice depends solely on the 
historical actions and observations, with the unobservable belief regions marginalized out. 



A. Learning Criterion 

Bayesian learning of the RPR is based on the experiences collected from the agent-environment 
interaction. Assuming the interaction is episodic, i.e., it breaks into subsequences called episodes [7], 
we represent the experiences by a set of episodes. 

Definition 2.2: An episode is a sequence of agent-environment interactions terminated in an absorbing 
state that transits to itself with zero reward. An episode is denoted by (aQr^o^a^ • • • Oj- a^ rj ), where 
the subscripts are discrete times, k indexes the episodes, and o, a, and r are respectively observations, 
actions, and immediate rewards. 

Definition 2.3: (The RPR Optimality Criterion) Let V{K) = {{ak
lr%okakrk • • • o^a^4j}^=1 be a set 

of episodes obtained by an agent interacting with the environment by following policy fl to select actions, 
where n is an arbitrary stochastic policy with action-selecting distributions pn(at\ht) > 0, V action au V 
history ht. The RPR optimality criterion is defined as 

where hk = akQo\ak ''' °t *s me history of actions and observations up to time f in the k-th episode, 
0 < 7 < 1 is the discount, and 0 denotes the RPR parameters. 
Throughout the report, we call V(V^K):Q) the empirical value function of ©. It is proven in [6] that 
lim/t^oc V{V(K):Q) is the expected sum of discounted rewards by following the RPR policy parameterized 
by 0 for an infinite number of steps. Therefore, the RPR resulting from maximization of l/(X)(K);0) 
approaches the optimal as K is large (assuming \Z\ is appropriate). In the Bayesian setting discussed 
below, we use a noninformative prior for 6, leading to a posterior of 9 peaked at the optimal RPR, 
therefore the agent is guaranteed to sample the optimal or a near-optimal policy with overwhelming 
probability. 

B. Bayesian Learning 

Let Go(6) represent the prior distribution of the RPR parameters. We define the posterior of 9 as 

p(G\V{K].G0) =7- V(V^):e)Go(Q)[V(V{K))}-1 (3) 

where V(V{K)) = /V(V(K):e)G0{Q)de is the marginal empirical value. Note that V{V{K):Q) is an 
empirical value function, thus (13) is a non-standard use of Bayes rule. However, (13) indeed gives a 
distribution whose shape incorporates both the prior and the empirical information. 

Since each term in V(T>(K]:Q) is a product of multinomial distributions, it is natural to choose the 
prior as a product of Dirichlet distributions, 

Go(G) = p(n\v)p(K\p)p(W\u) (4) 

where p{fi\v) = Dir(//(1). • • • . IM(\Z\)\V), p(n\p) = IIJ£Dir(ir(t) 1). • • • , ir(i, L4|)|p,-). 

pWu)) = n^nli'inE'iDirWi,0,0,1),-•• ,W(i,a,o,\Z\)\uiAfi); A = {p,m}^, v = {«,}", 
and a;,.„.0 = {^i.a.oj}\^li are hyper-parameters. With the prior thus chosen, the posterior in (13) is a 
large mixture of Dirichlet products, and therefore posterior analysis by Gibbs sampling is inefficient. 
To overcome this, we employ the variational Bayesian technique [8] to obtain a variational posterior by 
maximizing a lower bound to In J V'(r>(K):0)Go(O)d0, 

LB({^},5(0)) = \nJv(&K\e)G0(e)dS - KL({^4t)g(0)}||{^p(4-0l4t- o\:t)}) 

where {<7t
fc}. #(©) are variational distributions satisfying cff{zQ.t) > 1, g{0) > 1, f g(Q)dQ = 1, and 

*E« T^i2Z%..^^(4t) = U 4 - nuo^fe-) and K^
11
"* 

denotes *" Kullback" 
Leibler (KL) distance between probability measure q and p. 



The factorized form {qt(zo-.t)g{0)} represents an approximation of the weighted joint posterior of 0 
and c's when the lower bound reaches the maximum, and the corresponding g(Q) is called the variational 
approximate posterior of G. The lower bound maximization is accomplished by solving {qt(zo-.t)} and 
c/(0) alternately, keeping one fixed while solving for the other. The solutions are summarized in Theorem 
2.4; the proof is in [6]. 

Theorem 2.4: Given the initialization p = p, v = v, Q = u, iterative application of the following 
updates produces a sequence of monotonically increasing lower bounds LB({qk}. 3(6)), which converges 
to a maxima. The update of {qk} is 

where 0 = {7?,//, W} is a set of under-normalized probability mass functions, with 
n{i,m) = e^^-^mi^-), JJ^J _ e*Wi)-*(Efflft)t and W(i.a,oJ) = e+P****)-**^!0****) t and 
0 is the digamma function. The g(9) has the same form as the prior Go in (14), except that the hyper- 
parameter are updated as 

Vi = «i + ELEL^oW 
P,a   =   R« + £Li£^EUo*Mr(0*(<£«) 

where gr(t,j) = p(*£ = i, zk
+x = j\ak

0:t.o\.t. 0), $T{i) = p{zk
T = i\ak

0:t.o
k.t. 0), and 

ak - bv^^tl^.e^nU^C^lfe^^^ie)]-1 (5) 

III. DUAL-RPR 

Assume that the agent uses the RPR described in Section VIII to govern its behavior in the un- 
known POMDP environment (the primary policy). Bayesian learning employs the empirical value function 
V(V{h): 0) in (12) in place of a likelihood function, to obtain the posterior of the RPR parameters 0. The 
episodes Vl-h) may be obtained from the environment by following an arbitrary stochastic policy II with 
pn{a\h) > 0, V a, V h. Although any such IT guarantees optimality of the resulting RPR, the choice of II 
affects the convergence speed. A good choice of II avoids episodes that do not bring new information to 
improve the RPR, and thus the agent does not have to see all possible episodes before the RPR becomes 
optimal. 

In batch learning, all episodes are collected before the learning begins, and thus n is pre-chosen and 
does not change during the learning [6]. In online learning, however, the episodes are collected during the 
learning, and the RPR is updated upon completion of each episode. Therefore there is a chance to exploit 
the RPR to avoid repeated learning in the same part of the environment. The agent should recognize belief 
regions it is familiar with, and exploit the existing RPR policy there; in belief regions inferred as new, 
the agent should explore. This balance between exploration and exploitation is performed with the goal 
of accumulating a large long-run reward. 

We consider online learning of the RPR (as the primary policy) and choose II as a mixture of two 
policies: one is the current RPR 0 (exploitation) and the other is an exploration policy ne. This gives the 
action-choosing probability pn{a\h) = p{y = 0\h)p{a\h.Q,y = 0) + p{y = \\h)p(a\h,Iie,y = 1), where 
y = 0 (y — 1) indicates exploitation (exploration). The problem of choosing good TI then reduces to a 
proper balance between exploitation and exploration: the agent should exploit 0 when doing so is highly 
rewarding, while following Ue to enhance experience and improve 0. 

An auxiliary RPR is employed to represent the policy for balancing exploration and exploitation, i.e., the 
history-dependent distribution p[y\h). The auxiliary RPR shares the parameters {/z. W} with the primary 
RPR, but with 7T = {rc{z.a) : a £ A,z e Z} replaced by A = {\{z.y) : y = 0 or l,z € 2}, where 



U- J 

X(z.y) is the probability of choosing exploitation (y = 0) or exploration (y = 1) in belief region z. Let 
A have the prior 

p(A|u) = n!fiBeta(A(i,0),A(z,l)|«o,«i). (6) 

In order to encourage exploration when the agent has little experience, we choose u0 = 1 and Uj > 1 so 
that, at the beginning of learning, the auxiliary RPR always suggests exploration. As the agent accumulates 
episodes of experience, it comes to know a certain part of the environment in which the episodes have 
been collected. This knowledge is reflected in the auxiliary RPR, which, along with the primary RPR, is 
updated upon completion of each new episode. 

Since the environment is a POMDP, the agent's knowledge should be represented in the space of 
belief states. However, the. agent cannot directly access the belief states, because computation of belief 
states requires knowing the true POMDP model, which is not available. Fortunately, the RPR formulation 
provides a compact representation of H = {h}, the space of histories, where each history h corresponds 
to a belief state in the POMDP. Within the RPR formulation, H is represented internally as the set of 
distributions over belief regions z E Z, which allows the agent to access H based on a subset of samples 
from H. Let Ttknown be the part of H that has become known to the agent, i.e., the primary RPR is 
optimal in 7iknown and thus the agent should begin to exploit upon entering Hknown- As will be clear 
below, Tiknown can be identified by ftknown = {h : p{y = 0\h. 0. A) % 1}, if the posterior of A is updated 
by 

Sw    =    UO + ELE&EUrfrfJrW, (7) 
uiA   =   max^.uj-ELESoEUyh'^LW), (8) 

where 77 is a small positive number, and of is the same in (5) except that r* is replaced by m*, the 
meta-reward received at t in episode fc. We have m* = rmeta if the goal is reached at time t in episode 
A:, and mf' = 0 otherwise, where rmeta > 0 is a constant. When Ile is provided by an oracle (active 
learning), a query cost c > 0 is taken into account in (8), by subtracting c from u\. Thus, the probability 
of exploration is reduced each time the agent makes a query to the oracle (i.e., y* = 1). After a certain 
number of queries, uu becomes the small positive number 77 (it never becomes zero due to the max 
operator), at which point the agent stops querying in belief region z = i. 

In (7) and (8), exploitation always receives a "credit", while exploration never receives credit (explo- 
ration is actually discredited when ne is an oracle). This update makes sure that the chance of exploitation 
monotonically increases as the episodes accumulate. Exploration receives no credit because it has been 
pre-assigned a credit (iii) in the prior, and the chance of exploration should monotonically decrease with 
the accumulation of episodes. The parameter Uj represents the agent's prior for the amount of needed 
exploration. When c > 0, U\ is discredited by the cost and the agent needs a larger u\ (than when c = 0) 
to obtain the same amount of exploration. The fact that the amount of exploration monotonically increases 
with U] implies that, one can always find a large enough U] to ensure that the primary RPR is optimal in 
Hknown = {^ : Piy — O|/?.0.A) ss 1}. However, an unnecessarily large U] makes the agent over-explore 
and leads to slow convergence. Let u"un denote the minimum u\ that ensures optimality in Hknown- We 
assume u•in exists in the analysis below. The possible range of ufin is examined in the experiments. 

IV. OPTIMALITY AND CONVERGENCE ANALYSIS 

Let M be the true POMDP model. We first introduce an equivalent expression for the empirical value 
function in (12), 

V{£{
T
K):Q)   =   E^,Er=oVrtp(aO:t.o1:t,rt|yO;( = O.0.M), (9) 

where the first summation is over all elements in £T    C ST, and ST = {{ao-.T-Oi-.T-ro-.r) • at € A. ot £ 
O.t = 0,1, • •• . T} is the complete set of episodes of length T in the POMDP, with no repeated elements. 



The condition y0:t = 0, which is an an abbreviation for yT = 0 V r = 0.1, • • • , t, indicates that the agent 
always follows the RPR (0) here. Note V(£(k): 0) is the empirical value function of 0 defined on £p}, 
as is t'(2>(A):0) on Z>(A). When T = oc ', the two are identical up to a difference in acquiring the 
episodes: £j is a simple enumeration of distinct episodes while T>{h' may contain identical episodes. 
The multiplicity of an episode in V(h' results from the sampling process (by following a policy to interact 
with the environment). Note that the empirical value function defined using £T is interesting only for 
theoretical analysis, because the evaluation requires knowing the true POMDP model, not available in 
practice. We define the optimistic value function 

T 1 

V>(4A'k-).A.ne)=^^^^(r( + (^max-r<)v;=oyr)p(ao:(.o1,.r<.(/O;t|0.A.A/.ne) (10) 

where \Z'r=0yT indicates that the agent receives rt if and only if yT = 0 at all time steps r = 1. 2. • • • ,t; 
otherwise, it receives RmSiX at t, which is an upper bound of the rewards in the environment. Similarly 
we can define V(V(h):Q.\.U.e), the equivalent expression for V/(4 ! 0. A. ne). The following lemma 
is proven in the Appendix. 

Lemma 4.1: Let V{£(*];Q), Vs{£(*]: 0. A. IIe), and i?max be defined as above. Let PexiPore(^rK)- ©• A. ne) 
be the probability of executing the exploration policy IIe at least once in some episode in 4   > under the 
auxiliary RPR (0.A) and the exploration policy Ile. Then 

Pexlporei^-e-A.rU  > i-H|F(4*>; 0) - Vf{0P\ 0. A. IIe) |. 
tin 'max 

Proposition 4.2: Let 0 be the optimal RPR on £:x, and 0* be the optimal RPR in the complete 
POMDP environment. Let the auxiliary RPR hyper-parameters (A) be updated according to (7) and (8), 
with uj > umin. Let Ile be the exploration policy and e > 0. Then either (a) Vtf^: 0) > V{£&,•< ©*)-«, 
or (b) the probability that the auxiliary RPR suggests executing Ue in some episode unseen in Soo is at 
least SG=21. 

Proof: It is sufficient to show that if (a) does not hold, then (b) must hold. Let us assume V(£„,,•, Q) < 
?(£»; 0*) - e. Because 0 is optimal in £(£], V{£{^]:&) > V{E^\ 0*), which implies V{S£K)\ 0) < 
V(£&K);@*) - e. where £^K) = €00\€

(JP. We show below that Vf(£^K): 0. A. ne) > V{£&K);Q*) 
which, together with Lemma 4.1, implies 

Pexipore(^K).0-A.ne)   >   ^- \vf(£^',6, A,lie) - V(S^;9) 

> 

fimax 

V{£^K):e*)-V(£^K):e) 
rtmax   u ' 'max 

>£iil_2l 
Rr, 

We now show Vf{£^K):Q.X.Ue) > V{£^K):B*). By construction, V>(^K):0.A.ne) is an optimistic 
value function, in which the agent receives i?max at any time t unless if yT = 0 at r = 0.1. • • • .t. However, 
yr = 0 at r = 0,1, • • • ,t implies that {hT : r = 0,1. • • • . t} c H\,nov;n, By the premise, A is updated 
according to (7) and (8) and U\ > u•m, therefore 0 is optimal in Hianam (see tne discussions following 
(7) and (8)), which implies 0 is optimal in {hT : r = 0.1. • • • , t}. Thus, the inequality holds. Q.E.D. 

Proposition 4.2 shows that whenever the primary RPR achieves less accumulative reward than the 
optimal RPR by e, the auxiliary RPR suggests exploration with a probability exceeding e(l — 7)^mix- 
Conversely, whenever the auxiliary RPR suggests exploration with a probability smaller than e( 1 —-> )#max, 
the primary RPR achieves e-near optimality. This ensures that the agent is either receiving sufficient 
rewards or it is performing sufficient exploration. 

'An episode almost always terminates in finite time steps in practice and the agent stays in the absorbing state with zero reward for the 
remaining infinite steps after an episode is terminated [7]. The infinite horizon is only to ensure theoretically all episodes have the same 
horizon length. 
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V. EXPERIMENTAL RESULTS 

Our experiments are based on Shuttle, a benchmark POMDP problem [9], with the following setup. 
The primary policy is a RPR with \Z\ = 10 and a prior in (14), with all hyper-parameters initially set to 
one (which makes the initial prior non-informative). The auxiliary policy is a RPR sharing {/u. W) with 
the primary RPR and having a prior for A as in (6). The prior of A is initially biased towards exploration 
by using uo = 1 and u\ > 1. We consider various values of U\ to examine the different effects. The 
agent performs online learning: upon termination of each new episode, the primary and auxiliary RPR 
posteriors are updated by using the previous posteriors as the current priors. The primary RPR update 
follows Theorem 2.4 with K = 1 while the auxiliary RPR update follows (7) and (8) for A (it shares the 
same update with the primary RPR for \i and W). We perform 100 independent Monte Carlo runs. In 
each run, the agent starts learning from a random position in the environment and stops learning when 
fttotai episodes are completed. We compare various methods that the agent uses to balance exploration 
and exploitation: (/) following the auxiliary RPR, with various values of u\, to adaptively switch between 
exploration and exploitation; (//) randomly switching between exploration and exploitation with a fixed 
exploration rate PexPiore (various values of PexPiore are examined). When performing exploitation, the 
agent follows the current primary RPR (using the 0 that maximizes the posterior); when performing 
exploration, it follows an exploration policy Ue. We consider two types of ne: (/) taking random actions 
and (,7) following the policy obtained by solving the true POMDP using PBVI [10] with 2000 belief 
samples. In either case, rmeta = 1 and 77 = 0.001. In case (ii), the PBVI policy is the oracle and incurs a 
query cost c. 

We report: (/') the sum of discounted rewards accrued within each episode during learning; these rewards 
result from both exploitation and exploration. (/'/') the quality of the primary RPR upon termination of each 
learning episode, represented by the sum of discounted rewards averaged over 251 episodes of following 
the primary RPR (using the standard testing procedure for Shuttle: each episode is terminated when either 
the goal is reached or a maximum of 251 steps is taken); these rewards result from exploitation alone. 
(Hi) the exploration rate Pexpiore in each learning episode, which is the number of time steps at which 
exploration is performed divided by the total time steps in a given episode. In order to examine the 
optimality, the rewards in (/)-(") has the corresponding optimal rewards subtracted, where the optimal 
rewards are obtained by following the PBVI policy; the difference are reported, with zero difference 
indicating optimality and minus difference indicating sub-optimality. All results are averaged over the 100 
Monte Carlo runs. The results are summarized in Figure 1 when ne takes random actions and in Figure 
2 when ne is an oracle (the PBVI policy). 
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Fig. I. Results on Shuttle with a random exploration policy, with A"tot.ai = 3000. Left: accumulative discounted reward 
accrued within each learning episode, with the corresponding optimal reward subtracted. Middle: accumulative discounted 
rewards averaged over 251 episodes of following the primary RPR obtained after each learning episode, again with the 
corresponding optimal reward subtracted. Right: the rate of exploration in each learning episode. All results are averaged over 
100 independent Monte Carlo runs. 

It is seen from Figure 1 that, with random exploration and Uj = 2, the primary policy converges to 
optimality and, accordingly, PeXpiore drops to zero, after about 1500 learning episodes. When ii\ increases 
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Fig. 2. Results on Shuttle with an oracle exploration policy incurring cost c = 1 (top row) and c = 3 (bottom row), and 
A'total = 100- Each figure in a row is a counterpart of the corresponding figure in Figure 1. with the random Uf replaced by 
the oracle n,. See the captions there for details. 

to 20, the convergence is slower: it does not occur (and PexPiore > 0) until after abound 2500 learning 
episodes. With ux increased to 200, the convergence does not happen and PexPiore > 0.2 within the first 
3000 learning episodes. These results verify our analysis in Section III and IV: (/') the primary policy 
improves as Pexpiore decreases; (//') the agent explores when it is not acting optimally and it is acting 
optimally when it stops exploring; (Hi) there exists finite ». such that the primary policy is optimal if 
Pexpiore = 0. Although U\ = 2 may still be larger than u•n, it is small enough to ensure convergence 
within 1500 episodes. We also observe from Figure 1 that: (/) the agent explores more efficiently when it 
is adaptively switched between exploration and exploitation by the auxiliary policy, than when the switch 
is random; (//) the primary policy cannot converge to optimality when the agent never explores; (/'//') the 
primary policy may converge to optimality when the agent always takes random actions, but it may need 
infinite learning episodes to converge. 

The results in Figure 2, with lip being an oracle, provide similar conclusions as those in Figure 1 when 
UP is random. However, there are two special observations from Figure 2: (/) Pexp\ore is affected by the 
query cost c: with a larger c, the agent performs less exploration. (//) the convergence rate of the primary 
policy is not significantly affected by the query cost. The reason for (//') is that the oracle always provides 
optimal actions, thus over-exploration does not harm the optimality; as long as the agent takes optimal 
actions, the primary policy continually improves if it is not yet optimal, or it remains optimal if it is 
already optimal. 

VI. SUMMARY OF BALANCING EXPLORATION & EXPLOITATION 

We have presented a dual-policy approach for jointly learning the agent behavior and the optimal balance 
between exploitation and exploration, assuming the unknown environment is a POMDP. By identifying a 
known part of the environment in terms of histories (parameterized by the RPR), the approach adaptively 
switches between exploration and exploitation depending on whether the agent is in the known part. 
We have provided theoretical guarantees for the agent to either explore efficiently or exploit efficiently. 
Experimental results show good agreement with our theoretical analysis and that our approach finds the 
optimal policy efficiently. Although we empirically demonstrated the existence of a small Ui to ensure 
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efficient convergence to optimality, further theoretical analysis is needed to find »"lin, the tight lower bound 
of Mi, which ensures convergence to optimality with just the right amount of exploration (without over- 
exploration). Finding the exact ufm is difficult because of the partial observability. However, it is hopeful 
to find a good approximation to uf•. In the worst case, the agent can always choose to be optimistic, 
like in E3 and Rmax. An optimistic agent uses a large m, which usually leads to over-exploration but 
ensures convergence to optimality. 

APPENDIX 

Proof of Lemma 4.1: We expand (10) as. 

Vf(£(
T
K):e.\.nc) = £g<K, E[=0ynp(ao:t,oi:t,nlito:j = o,e,M)P(ito:1 = oie.A) 

+Ef<*) Et=0 7(#max T.y0:,*oP(aO:t. Ol:t, rt\yO:U&, M, Tlc)p(yo:t\9. A) 

where y0-.i is an an abbreviation for yT = 0 V r = 0. • • • , t and y0:t ^ 0 is an an abbreviation for 3 0 < r < t satisfying 
yT + o. The sum E^*1 >s over a" episodes in 8{

T '. The difference between (9) and (11) is 

\V(£!f\e)-V(£f':e.\)\ = |E4«.Et=o7(r,p(a0:t,Oi:t,rtJ|to:t = 0,e,Af)(l-p(itort = 0|e,A)) 

-E4K) EfLo ->'f#max Ey,,:f5toP(ao:t. Ol:t. rt|jto:t,©. M, nc)p( J/0:f I ©• A)| 

= lE^1 ELo^r'P(aO:t-0l:*-r<l2/0:( = 0. 0, M) Es,,):,#oP(2/0:f I©. A) 

-EgW ELo 7'fimax Ey0:t^0P(a0:(- °l:t- r' l»0:ti ©• M, U.c)p(y0:t\e. A)| 
T                         T                                                   Rmax 

YlY^^<r< H [p(a0:f-°i:(-
rt|J/0:( = 0.0. M) ^p(a0:t.ovt.r,\y0:,,0. M. lie)IP(l/0:tI©- A) 

< EgW Er=O--'flmaxEv,):,*oP(2/O:t|0.A)   =   E£C*) ELO^«max(l -p(ttat = O|0.A)) 

<EfW(l-P(tt):T = 0|e,A))ELo7t^m«<    <    T
J^E£(K)(1-P(?/O:T = O|0,A)) 

where Eyu ,^o 's a sum over a" secluences {yo-.t : 30 < r < f satisfying yT # 0}. Q.E.D. 

VII. NETWORKED POMDPS AND SHARING INFORMATION 

Reinforcement learning (RL) typically requires a large quantity of trial-and-error searches (data) to 
discover the long-term consequences of actions in an unknown dynamic environment [7]. When the 
environment is not fully observable, the situation becomes more severe, since the agent needs more data 
to reason about the state uncertainty in addition to the consequences of each state-action pair. Therefore, 
it is important to utilize as much prior knowledge as possible in reinforcement learning, to promote 
parsimony in data usage. 

To be specific, let the unknown environment be characterized by a partially observable Markov decision 
process (POMDP), the states of which the agent infers through observations that are probabilistically 
dependent on the states. This gives rise to the belief state, a probability distribution of the states conditioned 
on all observed data up to the moment. The belief state is a sufficient statistic summarizing all the 
information required to make the decision about the action at any given moment [11]. To compute belief 
states, however, the agent must assume complete knowledge of the environment (i.e., must know the 
underlying POMDP model), which is not available by the assumption of reinforcement learning. 

Methods of addressing reinforcement learning in POMDPs are generally divided into two categories: 
model-based and model-free [12]. A model-based method first seeks to learn the underlying POMDP 
model of the dynamic environment in question, and then applies POMDP planning algorithms to find the 
optimal policy. A model-free method directly finds the policy, avoiding the intermediate step of learning 
the underlying POMDP. 



13 

As pointed out in [12], model-free methods are computationally advantageous, but they cannot take 
advantage of prior knowledge about the environment, as their model-based counterparts do. The latter is 
true because it is generally difficult to establish exact correspondence between a POMDP and its policy, 
and therefore the knowledge for a specific POMDP cannot easily be transferred into the knowledge for 
its policy. The difficulty, however, is alleviated in multi-task reinforcement learning (MTRL) [13], in 
which one is interested in the prior knowledge that one environment is similar to another. This type of 
relational knowledge transfers readily from POMDPs to their optimal policies, because similar POMDPs 
will accordingly have similar optimal policies. The key is then to infer which environments are similar 
and how many clusters (classes of environments) are present. This is accomplished in [13] by using 
a nonparametric Dirichlet process (DP) [14] prior imposed on the policies across the environments. 
With the experiences from multiple environments, the DP prior encourages the environments to form 
appropriate clusters, so that data are shared within each cluster to enhance the cumulative information 
and improve policy learning. It is noteworthy that the computational advantages of model-free methods 
are magnified in the MTRL setting, because they avoid solving a POMDP planning problem for each 
cluster of environments, repeatedly whenever the clusters are updated. 

Model-free methods rely on an appropriate way of representing the policy, based directly on the available 
observed information. The MTRL framework in [13] is based on the regionalized policy representation 
(RPR), proposed there to yield an efficient parametrization for the conditional distribution of action choices 
given historical actions and observations. The RPR is amenable to a Bayesian formulation and the Dirichlet 
process prior can be employed to promote clustering of the RL tasks. 

A drawback of the DP prior is that it either encourages global clustering based on the complete set of 
parameters, or it encourages independent local clustering based on disjoint subsets of parameters; however, 
it does not encourage an appropriate balance of both. On one hand, global clustering enforces two partly 
similar tasks to either share information inappropriately or not share information at all. On the other 
hand, independent local clustering yields unnecessary local clusters, increasing the burden on data usage. 
In this project we aim to address this problem by employing a nonparametric dependent local partition 
process (LPP) [15] in place of the DP. A major advantage arising from this replacement is that the LPP 
allows simultaneous local and global clustering, and therefore it provides an effective vehicle for sharing 
information between partially similar tasks. 

This aspect of the project has two major contributions. The first is the proposed LPP-based MTRL 
framework, which includes the DP-based framework in [13] as a special case, and the associated learning 
algorithm and experimental studies. The second principal contribution is the theoretical analysis of the 
LPP, which extends the results in [15] from two subsets of the parameters to an arbitrary number of 
subsets. Our theoretical analysis provides further insights into the LPP, both in the general sense and for 
our specific problem. In addition, we also provide analysis justifying the LPP as a relational prior for 
model-free RL. 

VIII. REGIONALIZED POLICY REPRESENTATION 

Definition 8.1: [13] A regionalized policy representation is a tuple (A O. Z. W. //. 7r), where A, O, 
and Z are respectively a finite set of actions, observations, and belief regions. The W is the belief-region 
transition function, with W(z.a.o'.z') denoting the probability of transiting from z to z' when taking 
action a in z results in observing d. The /j is the initial distribution of belief regions, with fi(z) denoting 
the probability of initially being in z. The n are the region-dependent stochastic policies, with ir{z.a) 
denoting the probability of taking action a in z. 

The history ht = {a0:t-i.oi:«} is a sequence of actions performed and observations received up to t. 
Let 0 = {n,p, W} denote the set of RPR parameters. The number of parameters is given by |0| = 
|TT| + \n\ + \W\ = \Z\ + \A\\Z\ + |.4||0||Z|2. The RPR expresses the joint probability distribution of zQ:t 

and do* as 

P(«O:t^O:t|Ol:(,0) = fl{z0)^{Zo, QQ) 
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By marginalizing z0:t out in (11), one obtains p(a0:t|oi:<.6), which can be used to yield p(at\ht,S). 
Assuming episodic agent-environment interactions [7], the RPR is learned using a set of episodes, 

where an episode of length T is denoted by (ak
)r

k
lo'lal{rk • • • o^a^rj-J, with A- the index. 

Definition 8.2: [13] Let V{K) = {(ak
]r

k,okakrk • • -o^a^r^)}^=1 be a set of episodes obtained by an 
agent interacting with the environment by following policy n to select actions, where n is an arbitrary 
stochastic policy with action-selecting distributions pn(at\ht) > 0, V action au V history ht. The empirical 
value function is denned as 

Ktih   m=0p
n(«) 

where h* = OQO*OI • • • ok is the history of actions and observations up to time t in the A~-th episode, 
0 < 7 < 1 is the discount, and 0 denotes the RPR parameters. 
It is proven in [13] that, as K — 00, the limit ofV(V(h)\Q) is the expected sum of discounted rewards 
by following the RPR policy parameterized by 0 for an infinite number of steps. 

Let Go(0) represent the prior distribution of the RPR parameters. The posterior of 0 is defined as 

p(0|^.GQ)^r f(PW:9)Go(e) (13) 
/V'(PW;0)Go(0)d0 

where V{V{K]) = j V{T>{K): 0)Go(0)o?0 is the marginal empirical value. Since each term in V{V{K); 0) 
is a product of multinomial distributions, it is natural to choose the prior as a product of Dirichlet 
distributions, 

Go(0) = p(n\v)p(7r\p)p(W\uj) (14) 

:-7' where p(fi\v) = Dir(/x(l). • • • . Ml^Dl"), P(*IP) = YliJ^{n(i. 1). • • • . n(i, \A\) Pi), p(W\u) = TT^, 

nSi   U!^ir{W(i.a.o.l).--- ,W{i,a,o.\Z\)\u;ta,0)- Pi   =  {pt.m}l*Lv  v  =   {v,}\% and ^,a,  = 
I ?\ 

{^i,a.o,j}j=\ are hyper-parameters. 

IX. REINFORCEMENT LEARNING IN MULTIPLE ENVIRONMENTS 

We consider M environments indexed by m — 1,2, • • • , M, each characterized by an unknown POMDP 
with the same action set A and observation set O. Though the environments may apparently look different 
from each other, it is often the case in practice that they fall into clusters such that those in the same cluster 
share fundamental common characteristics. Assume that, from each environment m, we have collected 
a set of episodes denoted as ZX*»> = {(a•-kr•-ko?-ka•-kr•-k • • • o^ka%*kr%?k)}%•v where a subscript 
or superscript m indicates the environment from which the episodes originated. 

One may pursue various paradigms to learn the RPR policies for the M environments. At one extreme, 
one may perform single-task reinforcement learning (STRL), i.e., employing T>{hm) to obtain a distinct 
RPR policy for the m-th environment, for any m e {1.2. ••• . M}. At the other extreme, one may 
aggregate the episodes across the environments to form a pool U^=1P

(Km), which is then employed to 
get one RPR for all environments. Clearly, STRL treats the environments as independent to each other 
while pool-based reinforcement learning (PBRL) treats the environments as identical. 

Between the two extremes is MTRL, in which one partitions the environments into clusters based on an 
appropriate similarity measure. Given the partition, one performs PBRL within each cluster or, equivalently, 
performs STRL by treating each cluster as a task. In Bayesian learning, the similarity measure is implicitly 
prescribed by the Bayesian prior, which induces probabilistic task clusters. Different Bayesian priors induce 
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different task clusters. By changing the priors, one obtains a wide spectrum of MTRL algorithms, bridging 
the gap between STRL and PBRL. 

The success of MTRL hinges on the choice of the Bayesian prior. The key is that the similarity 
measure prescribed by the prior should distinguish the differences between tasks while being able to also 
find similarities at the proper level of fidelity. In other words, a good prior should provide a reasonable 
balance between capturing the common characteristics among the tasks and respecting the idiosyncracies 
of each individual task. This motivates use of a dependent local partition prior, that promotes correlated 
local task clusters, allows a flexible similarity pattern that accounts for common as well as idiosyncratic 
aspects among the tasks, and thus makes the information sharing more efficient. 

X. MULTI-TASK REINFORCEMENT LEARNING VIA CORRELATED LOCAL TASK CLUSTERS 

Introducing notation, we let 0m denote the RPR parameters for the m-th environment, with the number 
of belief regions \Z\ independent of m. Recalling the environments have the same A and O and |0| 
is a function of (\Z\. \A\. \0\), we have |0m| = dapR, where CLRPR is constant. We further assume the 
elements in 0m follow the same order across m = 1.2 M. Let {1. 2. • • • . CIRPR} be partitioned into 
J nonempty disjoint subsets denoted by {Ji, J2. • • • ,Xj}. Hence lj indexes the j-th part of an RPR in 
any environment. We define Qmj as the subset of 0„, such that the elements of 0mj are indexed by lj 
in 0m. Thus ©,„ is accordingly partitioned into J disjoint nonempty subsets {Qm\. • • • .Qmj}, and the 
consistency among the partitions in different environments is ensured by using the same {lj}. 

The partition {0mj} should be constructed to facilitate local information sharing among the envi- 
ronments. For example, one may let 0ml = jj,m, 0m2 = nm{z = 1.:), ••-, Qm.\z\+\ = nm{z = 
l-2|.:), 0m.|z|+2 = Wm(:,a = l.o = 1.:), ••• , 0m,j = Wm(:.a = \A\.o = \0\.:), where 
J = \A\\0\ + \Z\ + 1. In this partition, each subset of parameters play a specific role in the RPR 
policy, for example, action selection in a particular belief region. This encourages environments to share 
the same subset of RPR parameters when they have similar goal states. 

A.  The Dependent Local Partition Prior 

With an appropriate partition of RPR parameters, one could place a local DP prior on each subset in 
the partition to encourage local information-sharing among the environments, 

emj~Gj. Gj~DP{aGQj). m = l.---.M. j = l.--.J (15) 

where GOJ is the j-th marginal of a probability measure Go. Each DP partitions the environments into 
clusters, with information shared within each cluster for a particular subset of 0. This is appealing when 
the environments are only partly similar. The drawback, however, is that it ignores the correlation between 
subsets of 0, and is prone to generate an unnecessarily large number of clusters. 

Alternatively, one may place a DP prior on all components of 0 to encourage global information-sharing, 

0m ~G. G~DP(QG0). m=l,2,--- ,M (16) 

A clear drawback is that, under the global DP prior, any two partly similar environments will be forced into 
the same cluster or they will be allocated to different clusters; in the former case, the idiosyncratic subsets 
of 0 will be learned inappropriately due to the wrong information-sharing, while useful information is 
forfeited for the related subsets in the latter case. 

The dependent local partition process (LPP) [15] is a nonparametric Bayesian prior imposing that when 
two environments share a certain subset of RPR parameters, say Zj, they are encouraged to share other 
subsets {lj' : f ^ j}. Such a prior promotes correlated local clusters to capture the dependence between 
RPR parameters. Formally, we specify the LPP prior on {0m} as follows: 

9mj~%<%m/Kl-fy)<%mi' rij~Be{l, 3). j = !.-•• J 
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(eml.---.0mJ)~G. G^DP(aGo). m=l, •• .M (17) 

where G0 is the base probability measure and a, 3 > 0. Following [15], we denote the LPP prior as 
LPP(a,3.G0). • 

We have specified the LPP in (17) differently than in [15], to make it easier to discern the structure. 
It is clear form (17) that the LPP reduces to the global DP in (16) or the local DPs in (15), when Q 
takes extreme values. As 0 —» 0, Qmj = Qmj, with Qm drawn from DP(a Go). As 3 -* oc, Qmj — 0mj 

is drawn from DP(aG0j)- Thus, LPP(a,3 —» 0.G0) is reduced to DP(aG0), which is a global DP 
imposed on {0m}, and LPP(a.3 —• oc.Go) is reduced to J independent DPs, {DP(aGoj)}j=l, where 
DP(aGoj) is a local DP independently imposed on 0mj, with the local DP base G0j being the j-th 
marginal of the global DP base G0. With 0 < 3 < oc. the density of Omj is a mixture of two point 
masses, respectively centered at a sample from the global DP and a sample from the ;-th local DP, thus 
the LPP generally combines the global DP and independent local DPs. 

The random probability measures G and {Gj} can be explicitly expressed by the stick-breaking 
construction of [16], 

-x. oc 

G = ^A0,(%-. Gj = JjAjjiJg^. j = 1, • • • . J 

Xj, = yjlll(l-Xji). A;-Be(U). j = 0.1.--- ,J 
l<i _ 

e;~G0.   (§?„•••,§£,)" Go,   1 = 1,2,-.. (18) 

which will be used to derive the Gibbs sampler for posterior inference. 

B. Analyzing the LPP Clustering Mechanism 

The expressions in (17) and (18) provide insight into the clustering mechanism of the LPP, which we 
analyze below. It is seen that the LPP promotes clustering through the discrete random measures G and 
{Gj}, where G is drawn from the global DP and is responsible for global clustering of {©m}^'=1, while 
Gj is drawn from the j-th local DP and responsible for local clustering of {&mj}'m=i- The proportions in 
the LPP are clearly seen from (17), which shows that, a sample 0,7!J drawn from the LPP has two choices: 
it enters some global cluster, along with {Omj' '• f ¥" j}, with an average probability of y^; it enters 
a local cluster, independently of {0mj' : f =fi j}, with an average probability of •£*. The simultaneous 
global and local clustering yields correlated local clusters. 

Analytic expressions have been given in [15] for p(Qmj = Qm'j) and p(0mj = Qm'j.Omj' = ©m'j'), 
Vm/ m'.j 7^ j', which yield Proposition 10.1. 

Proposition 10.1: Let 0m.0,„' !'~ G with G ~ LPP{a,3,G0). Denote Ci{a. 3) = p(9mJ< = Qm>j>) 
and C2(a. 3) = p{@mj> = 0m'i'|Q"v = ®m>j)- Then 

C2(a,/3) 4Q 

Gi(a.J) (/?2 + ,£( + 2)2 

It is clear that C2(a. J) > Gi(a. J), because a > 0. Thus knowledge that tasks m and m' are in the 
same cluster for I? strictly increases the probability that these tasks are in the same cluster for Ir. In this 
sense, we say the local cluster for Xj is positiveley correlated with the local cluster for Ij<. 

The analysis based on Proposition 10.1 considers only two subsets of © and does not reveal the 
correlation among n > 2 subsets. In what follows, we extend the analysis to 2 < n < J subsets. Our 
analysis begins with Lemma 10.2, where we provide an analytic formula for the joint probability that two 
tasks are in the same cluster for n distinct subsets of 0. The lemma is proven in the Appendix. 
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Lemma 10.2: Let {ji-j2- • • • ,jn} C {1,2, • • • , J} have distinct elements. Let 0m = (0mi. 0m2. • • • , 0mj) 
and 0m> = (0m'i- ©m'2- • • • • 0m';) be i.i.d. drawn from G with G ~ LPP(a. 3. Go), then 

"2(1 +a) 

;i + a)"+1(2 + 5)" 1 + 0 
+ J + aJ" 

It is easy to verify that the two formulae in [15] are special cases of the formula in Lemma 10.2, 
corresponding to n = 1 and n = 2, respectively. Lemma 10.2 provides complete information for the 
correlations among different subsets of 0 when considering the clustering of two tasks. Here, we are 
particularly interested in the additional change of the probability of Qmjl = 0m/j-, when one observes the 
new local cluster ©m^, = 6m'jn+], given that one has already observed n— 1 previous local clusters 
{Gmjk = 9m'jk,k = 2.3. • • • . n} before observing the new one. 

Proposition 10.3: Let 0m.0m' '-  G with G ~ LPP{a. :3.G0). Then it holds 

Cn(a.3) 
Def. 

= Cn+i(a,/3) 
Proof. Since both sides are positive, we need only to prove that the ration of the right side to the left 
side is larger than one. Denote £ = 2(,

1
1^") + i. The ratio, using Lemma 10.2, is 

C+1 +q,Jn"'C"~1 + a^""1 

Cn + ai3"       Cn + «^n 

_ C2n + a2J2" + C"+1a^"~' + C"~LQJ"+1 

" C2n + a2:i2n + 2Cnad" >   ' 

because 

Cf,+1Qj"-1 + Cn-1aJ"+1      1 /(      J, 
+ -    > 1. 

2C"aJ" 2 V^     C 

where the last inequality is arrived using the facts that § > 1 and i + ->2fori>l. Q.E.D. 
It is clear from Proposition 10.1 that Co < C3 < • • • < C„ < Cn+\ < ••• < Cj, which shows that the 

LPP prior cumulatively increases the probability of ©m^ = 0mj,, when tasks ??? and m' are observed to 
cluster for an increasing number of other subsets of©. In other words, each observation, say Qmjk. = ®mjk 

(k > 1), increases the probability of @mjl = Qmj1 on the basis of the increases brought by the previous 
observations {©mj, = ©mji : / = 2. • • • , k— 1}. It is noted that Proposition 10.1 has shown that C-\ < C2, 
which along with Proposition 10.3, establishes that {Cr, : n > 1} is a strict monotonically-increasing 
sequence. Therefore the two propositions provide a complete picture of the positive correlation between 
the local cluster formed on a single subset of 0 and the local clusters formed on multiple other subsets 
of©. 

C.  The Relevance to MTRL 

The correlation analysis above shows that the LPP has a more flexible clustering structure than either 
a global DP as in (16) or multiple local DPs as in (15), which allows the LPP to capture a richer set 
of similarity patterns among the tasks and, accordingly, to make information sharing more effective. The 
positive correlation is particularly appealing in our present case, in which an RPR policy is sought in each 
environment to accomplish the task of accruing long term reward. Each subset of RPR parameters assume 
a particular responsibility in the task and two different subsets of parameters may need to coordinate with 
each other to make an overall functioning policy. 
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Consider, for instance, several subsets of RPR parameters, respectively performing action selection 
in distinct and yet related belief regions. The actions in these regions must coordinate to produce a 
sequence of actions that lead to the desired consequence. If, indeed, two environments have some similar 
belief regions and the same consequence (hence policy) is desired with respect to these regions, then the 
action selection in these regions must be shared across the environments. Independent local sharing by 
independent DPs ignores these relations and leads to inefficient information usage. On the other hand, 
complete global sharing by DP is inappropriate for partially similar environments. 

In the MTRL we consider here, the LPP is imposed on the RPRs, not on the associated environments 
(POMDPs). When the prior knowledge is about the environments, how does one transform it into the 
knowledge about the RPRs? If we are specifying the knowledge about each individual environment, then 
we indeed need to transform it into the knowledge about each associated RPR. However, the prior we 
are trying to impose is about the relations between the environments. For the relational prior, we do not 
need the transform itself; we only need to require that the transform is continuous, in the sense that, if 
two POMDPs (say m and m') are similar for part i, then their .corresponding RPRs are similar for part j. 

To examine whether such a requirement is satisfied in our case, we recall that each POMDP is a belief- 
state MDP (Markov decision process) and that the corresponding RPR is defined in terms of the regions 
in the belief-state space [13]. The locality with respect to (w.r.t.) the POMDP states corresponds to the 
locality w.r.t. to the belief-states, which then transfer to the locality w.r.t. the belief-regions in the RPR, 
if the belief regions form a Markov partition of the belief-state space [11]. When the last condition is 
not satisfied exactly, the locality correspondence between POMDP and RPR is approximate. However, 
this does not affect our method too much, given that the RPR yields a stochastic policy and that the 
information sharing here is probabilistic under a nonparametric Bayesian prior. The advantage of our 
method is still prominent, as demonstrated by the experimental results. 

D. Posterior Inference 

We first introduce some latent variables. For j = 1,••• . J, let smj e {0,1} with smj = 1 denoting 
Bm7 = Qmj and smj = 0 denoting 0mj = Qmj. Let ^mo 6 {1,2. •• • . OG} index the global cluster that task 
m is allocated to. Let \pmj € {1.2. • • • .ex:} index the local cluster that task m is allocated to, concerning 
the j-th subset of 0. It is easy to see that p{smj = 1) = t]j, and pi^mj = i) = Aj* for j = 0.1. • • • , J 
and / = 1.2. • •• . oc. 

We are interested in the posterior of {0m}^;
=1, given the LPP prior specified in (17) and the episodes 

Um=1P
lAm,. To allow inference of the LPP parameters, we put a Gamma prior on each, i.e., we assume a 

priori that a ~ Ga(aQ. ba) and 6 ~ G&{ag. bg). We employ a hybrid approach to posterior inference, based 
on the stick-breaking construction in (18). Specifically, we employ the slice sampler in [17] to perform 
conditional Gibbs sampling of {umj}U{smj}U{A*i}U{^mj}U{77j}U {a, 3} given {0*}u{0*}, where 

{umj} are auxiliary latent variables conditional on which the infinite mixtures in G and {Gj} become 
finite. Given the Gibbs samples, we then employ the variational Bayesian (VB) algorithm in [13] to infer 
{0*} U {0*}. The steps of the hybrid Gibbs-variational approach are summarized as follows. 

Step 1. Draw umj ~ Unif(0. XiVmj), j = 0.1 7. 
Step 2. Draw smj ~ Ber(pmj), with 

Pmj 
^(P^;©^^,; 

where V(-) is the empirical value function as defined in Definition 8.2, 0m(Smj=i) is 0m with Qmj = Q^m0J 

and 0miSm,=o) is ©ro with 0mj = %mjj. 
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Step 3. Draw A*, from the conditional density 

M    J 

^|.-)oc(i-A;r]Iini^Il1-^>^ 
m=lj=0 l«?mj 

Let -f* = max{^mj : m = 1 M }. It is easy to show p(A«|- • •) = Be(A*j|l. Q) for i > ^p* while, for 
oc Be(A£|l,a)H(d£ < A* < djj) with 

j« rmj 
^ -'} 

<$ = ! max 
m 

*mj 

ll/<^mj,^I(
1 

*«) 
•cmj > / 

Step 4. Draw ^m0 and •fmj according to 

p{tmo\ • • •) oc i(^m0 e rm0)£(p(Am): em(Smj=1)) 
P(^mj| ' • •) oc I(^mj € rmJ-)V(P    m : 0m(*mj=0)) 

where, for j = 0.1. • • • . J, rmj- = {i : A^ > umj}. 
Step 5. Draw fy ~ Be(l + £m smi, 3 + £m(l - smj)). 
Step 6. Draw 3 ~ Ga(al3 + J. b3 - £^=] log(l - ty)). 

Step 7. Draw a ~ Ga(aQ + ^=o Y)- K - £^=o E£I 
log(! - A^))' with {<Pj) 8iven in SteP 3- 

Step 8. For j = 1. 2. • • • . J, j = 1, 2, • • •, do the following. If {m : smj = 1. ^m0 = i] is nonempty, infer 
Q*j by applying the VB algorithm to USmj=Wm0=,:D(A",) with the prior G0]\ if {m : smj = 0. ^ = /} 
is nonempty, infer 0y by applying the VB algorithm to USmj=o,^mj=iV{hm) with the prior G0j. 

XI. EXPERIMENTAL RESULTS 

We consider the ten maze navigation tasks in [13]. Of the ten environments, the first four, the following 
three, and the last three, are respectively duplicates of the gird-world (a), (b), and (c) in Figure 3. The 
grid-worlds (a) and (c) are partly similar for the cells enclosed by dashed lines. We use these ground 
truths in analyzing the sharing mechanism later. 

(c) 

3 5 s 10 
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4 6 9 11 
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(b ) 

6 

Fig. 3.      The three distinct grid-world environments considered in [13], with the goal indicated by a basket. The goal states are fully 
observable. 

We follow the experimental setup used in [13] to replicate the results for comparison. In particular, 
we set \Z\ = 6 for all RPRs and perform off-line learning, assuming the episodes {T>lhm]}•=l are 
collected beforehand, by taking random actions or querying a PBVI expert, the selection between the 
two manifested with probability of 0.5. The Gamma hyper-parameters for a and 3 in the LPP are set to 
aa = bQ = as = b3 = 1. The same base measure G0 is used for the LPP and all DPs (global and local), 
and the form of Go is given in (14) with all Dirichlet hyper-parameters set to one. 
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We compare the proposed LPP-based MTRL method to the following methods: STRL, PBRL, DP-based 
MTRL, and IDP-based MTRL, where 1DP is a set of independent DPs with each associated with a subset 
of (-). The DP is implemented by the LPP with 3 set to 10~20 and the IDP is implemented by the LPP 
with Q set to 1020. 

The results are reported in Figure 4. It is seen that the LPP-based MTRL earns significantly larger 
rewards than the DP-based MTRL. The improvements are attributed to the higher goal rates, since the 
LPP actually takes a larger number of steps to reach the goal. The improvements are most significant 
when the number of episode is small (< 10 here). The IDP-based MTRL performs most poorly among 
the methods. 

The performance of each method can be explained by the sharing patterns it infers, which we visualize 
using Hinton diagrams [13], shown in Figure 5 for K = 3 episodes (top row) and A' = 120 episodes 
(bottom row). The block (i,j) is each diagram displays the frequency the tasks i and j are assigned 
to the same cluster in the last 1000 iterations of Gibbs sampling. It is seen that DP infers three global 
clusters, respectively corresponding to the three grid-worlds in Figure 3. By contrast, the LPP combines 
grid-worlds (a) and (c) into a single global cluster, to capture the similar parts enclosed by the dashed 
lines shown in Figure 3, with the differences between (a) and (c) distinguished by splitting them in local 
clusters. 

An example is given in the fifth column of Figure 5, where it is seen that the LPP tends to split grid- 
worlds (a) and (c) for W(:.a,o'.:), which involves the belief-region transitions when walking west leads 
to observing walls on the south and north. It is clear from Figure 3 that such an (action, observation) 
pair exclusively leads towards the goal in grid-world (a) while it may also move away from the goal in 
grid-world (c). By locally splitting them, the LPP encourages respective appropriate transitions in the two 
grid-worlds. 

The diagrams show that the IDP-based MTRL has a strong tendency of isolating tasks, which is 
detrimental to information sharing and explains its poor performances. For example, the third column of 
Figure 5 shows the local sharing patterns involving the belief-region transitions when walking north leads 
to seeing the goal. Clearly, this (action, observation) pair leads to large rewards in both grid-worlds (a) 
and (c) and hence local sharing between them is helpful here. It is seen that the IDP needs a large amount 
of episodes (K = 120) to infer this, while the LPP infers this using only three episodes. 

o MTRL LPP 
-•-MTRL DP 

- MTRL IDP 
-*• Pooling 
- STRL 

0.6r 

5    7   1012        24 60       120      241 
Number of episodes per environment 

•g , I o MTRL LPP 
l-«-MTRLDP 

I ° 5i j —- MTRL IDP 
I ' •*- Pooling 
"0.4 

5    7    1012        24 60       120      241 
Number of episodes per environment 

5    7   1012 24 60        120 
Number of episodes per environment 

Fig. 4. Performance comparison on the ten maze navigation tasks, as a function of the number of episodes per environment 
used by the algorithms. Left: Average success rate for the agent to reach the goal within 15 steps. Middle: Average steps taken 
by the agent to reach the goal. Right: Discounted cumulative reward with the discount -> = 0.95. 

XII. SUMMARY ON NETWORKED POMDPS 

We have presented a new framework for multi-task reinforcement learning, based on simultaneous global 
and local information-sharing imposed by the LPP. We have extended the second-order analysis in [15] to 
higher-order analysis involving an arbitrary number of subsets of parameters. Our analysis provide further 
insights into the clustering structure under the LPP. Experimental results demonstrate the new MTRL 
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Fig. 5. The between-task sharing patterns, represented by Hinton diagrams, inferred by DP (column l), IDPs (columns 4 
& 6). and LPP (column 2 for the global sharing; columns 3 & 5 for the local sharing), where K is the number of episodes 
per environment (A' = 3 for the first row and A- = 120 for the second row.). The local sharing patterns are compared for 
\V(:.a.o'.:). with a="walk north" and o'="goal" in columns 3-4, and a="walk west" and o'-"walls on the north and south" 
in columns 5-6. Note the goal states are fully observable. 

method yields significant performance improvements, relative to previous published results. Future work 
includes extension of the method to online learning and the study of exploitation vs exploration within 
the MTRL framework. 

APPENDIX 

Proof of Lemma 10.2: Let smj £ {0.1} with smj = 1 denoting Qmj = Qmj and smj 

P\*3mji  ~ ^m'ji ^ "r7ij2 = ^m'72 • ' ' ' '^mj„  =:^m'jn) 
/n 1 1 

{ II      Yi Y.    P(e'nj,=Qm'jJ*m,,.Sm',J 

xp(smj,. 8m>jk\r)j,)p(Vh)}<% • • • <%, 

0 denoting 9mj = 0 mj- 

A-=1L 
1 +Q 

2 3 V 
1 +Q (l + 0){2 + 9)     (\ + a)(2 + 8) 

1 + Q 
3 

1 

(l+a)n+1(2 + 8)n 

(l+a)(2 + ;3)J 
'"2(1 +a 

1 + 8 
+ 3\   +adn 

Equation (a) follows because smj is independent of smy and ri} is independent of r/j-. V j' ^ j. Equation (b) is arrived based 

on that p(9 = 6') = y^, V 9.9' '~d' DP(aP0) [18], and that p(Qmj, = ©m'jJ = ° whenever one of them is from the 

• @m,„ = 5m%) = -f^- To reach equation 

Q.E.D. 
global DP and the other from the jk-th local DP. and that p(Qmjx = ©m'j,- 
(c), one calculates the moments of r^, ~ Be(l, 3). 

XIII. REVIEW OF TOPIC MODELING 

Topic models attempt to infer sets of words from text data that together form meaningful contextual 
and semantic relationships. Finding these groups of words, known as topics, allows effective clustering, 
seasoning, sorting, and archiving of a corpus of documents. If we assume the bag-of-words structure, i.e., 
that words are exchangeable and independent, then there are' in general two ways to consider a collection 
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of documents. Factor models such as probabilistic Latent Semantic Indexing (pLSI) [19], Latent Dirichlet 
Allocation (LDA) [20] and Topics over Time (TOT) [21] assume that each word in a given document 
is drawn from a mixture model whose components are topics. Other models assume that words in a 
sentence or even in an overall document are drawn simultaneously from one topic [22], [23]. In [22], 
the authors propose modeling topics of words as a Markov chain, with successive sentences modeled 
as being likely to share the same topic. Since topics are hidden, learning and inferring the model are 
done using tools from hidden Markov models. Whether one draws a topic for every word or considers 
all words within a sentence/document as being generated by a common topic, documents are represented 
as counts over the dictionary, and topics are represented as multinomial distributions over the dictionary. 
This approach to topic representation is convenient, as the Dirichlet distribution is the conjugate prior to 
the multinomial. However, because the distribution over the dictionary must be normalized, problems can 
occur if a previously unknown word is encountered, as can often happen when using a trained model on 
an unknown testing set. 

A new factor model has been proposed [24] that represents each integer word count from the term- 
document matrix as a sample from an independent poisson distribution. This model, called GaP for 
gamma-poisson, factorizes the sparse term-document matrix into the product of an expected-counts matrix 
and a theme probability matrix. Note that the GaP model is equivalent to placing a multinomial-Dirichlet 
implementation over the dictionary, so that one can model both the relative word frequencies and the 
overall word count. One may use the poisson-gamma characterization as a starting point to building a 
dynamic topic model by using a closely-related approach to [25]. Using an independent distribution for 
each word is attractive, as it addresses the problem of adding unknown words to the dictionary. Further, 
since each word is allowed to evolve independently, this approach leads to a more flexible model than 
using a traditional multinomial-Dirichlet structure. We build upon this construct in the model presented 
here. 

The main focus of this component of the project is on development of a hierarchical Bayesian model 
for characterizing documents with known time stamp. Each document is assumed to have an associated 
topic, and all documents at a given time are assumed to have topics that are drawn from a mixture model; 
the mixture weights in this model evolve with time. This framework imposes the idea that documents 
that appear at similar times are likely to be drawn from similar mixtures of topics. To achieve this goal, 
we develop a simplified form of the dynamic hierarchical Dirichlet process (dHDP) [26]. Inference is 
performed efficiently via a variational Bayesian analysis [8]. 

Our model differs from other time-evolving topic models [27], [28] in that our topics do not evolve 
over time; what changes in time are the mixing weights over topics, while the overall set of topics are 
kept unchanged. Specific topics are typically localized over a period of time, with new dominant topics 
spawned after other topics diminish in importance (the temporally localized topics may alternatively be 
viewed as a time evolution of a single topic [28], but such single-topic evolution is not considered here). 

XIV. REVIEW OF SEMI-PARAMETRIC STATISTICAL MODELING 

The Dirichlet process (DP) is a semi-parametric measure for development of general mixture models 
(in principle, in terms of an infinite number of mixture components). Let H be a measure and a is 
a non-negative real number. A draw from a Dirichlet process parameterized by a and H is denoted 
G~£>P(Q,//). Sethuraman [29] introduced the stick-breaking representation of a DP draw: 

Tk^HIltiU-^).     Vk*& Beta{l,a),     d'k ~d" H. (19) 

where 5g- is a point measure concentrated at 9*k (each 9*k is termed an atom), and Beta(l,a) is a beta 
distribution with shape parameter a. Note that G is almost surely discrete, with this playing a key role in 
the utility of DP for clustering. To simplify notation below, an infinite probability vector 7r constructed 
as above is denote 7r ~ Stick(a). 

Suppose the data of interest are divided into different sets, and each data set is termed a "task" for 
analysis. For clustering of T tasks the DP imposes the belief that when two tasks are associated with the 
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same cluster, all data within the tasks are shared. This may be too restrictive in some applications and 
has motivated the hierarchical Dirichlet process (HDP) [30]. We denote the data in task / as {»t,i}i^i. 
where Nt is the number of data in the task. The HDP may be represented as 

xu ~ f(9u);   i=l,2 Nt:   t = 1.2 T. 
0t,i ~ Gt:   f = l,2 Nt:   t = 1.2.....T. 
Gt ~ DP(a.G):   t = 1.2 T. 
G ~ DP('.H). (20) 

where f(6) represents the specific parametric model under consideration. Because the task-dependent DPs 
share the same (discrete) base G, all {Gt}J=i share the same set of mixture atoms, with different mixture 
weights. The measures {Gt}t=\j are jointly drawn from an HDP: 

{Gi,--- .GT]   ~   HDP(Q.-).H). (21) 

The HDP assumes the T tasks are exchangeable; however, there are many applications for which it is 
desirable to remove this exchangeability assumption. Models such as the kernel stick breaking process 
[31], [32], the generalized product partition model [33], the correlated topic model [34] and the dynamic 
DP [35] are techniques that impose structure on the dependence of the tasks (removing exchangeability). 
Some of these models rely on modifying the mixing weights to impose dependence on location [31], [32] 
or covariate [33], while others impose sequential time dependence on the structure of consecutive tasks 
(see [35]). 

We again consider T tasks, but now index t explicitly denotes the sequential time of data produc- 
tion/collection. To address the sequential nature of the time blocks, [26] imposes a dynamic HDP (dHDP) 

Gt = wtDt + (l-wt)Gt-i;   t = 2 T. (22) 

where {Gx. L>2. • • • . DT} ~ HDP{a.-,. H). The parameter wt e [0.1] is drawn from a beta distribution 
Beta(a0. b0)< and it controls the degree of innovation in G, relative to Gt-i. The DP and HDP are limiting 
cases of this model: 

• when wt —* 0, Gt —*Gt-\ and there is no innovation, resulting in a common set of mixture weights 
for all time blocks (DP); 

• when Wt —• 1, Gt —» Dt, where the new innovation distribution Dt controls the sharing mechanism, 
resulting in each time block having a unique set of mixing weights (HDP). 

It is important to restate that dHDP does not assume the mixture components evolve over time, only the 
mixing weights. The mixture components are shared explicitly across all time blocks. This is fundamentally 
different from other models that impose temporal dependence through component evolution [28], [27], 
this allowing a unique and independent set of mixing weights for each block. 

XV. SEMI-PARAMETRIC DYNAMIC TOPIC MODEL 

A.  Model construction 
Consider a collection of documents with known time stamps, with time evolving from t = 1, • • • ,T. 

At any particular time we have Nt such independent documents. The total set of documents over all time 
is represented as {aJt,t}i=it=i> where xt.i represents a vector of word counts associated with document 
i at time t. In the form of the model presented here, we are only interested in the number of times 
a given word is present in a particular document; the set of J unique words in the collection forms a 
dictionary. Each document is assumed characterized by a single topic, and at time f the topics across all 
documents are assumed drawn from a mixture model. In the proposed model the mixture weights on the 
topics are assumed to evolve with time (analogous to as implemented in the dHDP [26] discussed above). 
The assumption that each document is characterized by a single topic may seem restrictive; however, we 
observe in Section XVIII that for our motivating example this assumption is reasonable. 
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Fig. 6.     Dynamic Dirichlet topic model (dDTM). (a) graphical representation of the model, (b) expanded representation of the product 
measure aspect of the model. 

To constitute a model with a time-evolving mixture of topics, we seek a simplified representation of 
the dHDP. Specifically, the proposed topic model, termed dDTM for dynamic Dirichlet topic model, is 
represented as 

^t.i\Zt.i rV F(e{tiy. j = i j. 

~t,«lTt i"V Mult(Tt):   t = 2 T. 

zu\it\ *\j Mult{-Kx). 

Tt 
= (1 - wt)rt-i + wtirt\   t = 

7T( >SJ Dir(o);   t=l T. 
"'I ^v. Beta{co.d0):   t = 2 T. 

o; rs. Hj:   j = l J:   fc = l, 

T. 

..A'. (23) 

Note that T\ =IC\. The factorized structure H — fj HJ is similar to [24], which allows insertion of 
new words with time. 

Although perhaps not apparent at this point, for large A' the proposed model is closely related to dHDP; 
this is analyzed in detail below. The model is represented graphically in Fig. 6(a), and in Fig. 6(b) we 
illustrate how a single mixture component is drawn, with the parametric model of each dimension drawn 
independently from its respective prior. 

The form of the parametric model F(-) in (23) may vary depending on the application; in the work 
presented here it corresponds to a multinomial-Dirichlet model. We consider the number of times a word 
is present in a given document; to do this, F(-) is defined as a multinomial distribution and consequently, 
to preserve the conjugacy requirements, each Hj is a Dirichlet distribution. 
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B. Relationship to dHDP 

We now make explicit the relationship between dHDP [26] and dDTM represented in (23). Recall that 
the draws {G\. D2. • • • . DT} ~ HDP(a. y,H) may be constructed as [30] 

00 

fc=l 
•Xi 

Dt  =  £*a<Sefc   •  t = 2.- • • ,r 
fc=i 

7Tt   ~   DP(a.v)    .   t=l.-- ,r 
v   ~   Stick(~/) 

&k.   ~   H    .   fc = 1, • • • , oo 

(24) 

The draw 7r, ~ DP{a.v) may be represented in stick-breaking form, with the fcth component of n, 
constructed as nt_k = J2%i wtj${Ytj = k), with wt ~ Stick{a), Ytj ~ A/u/t(v); 5(Ytj — fc) equals one 
if >'tj = fc, and its zero otherwise. We may also truncate the draw v ~ Stick(a) to K sticks (denoted 
VK ~ Sfr'cfcA-(a)), for large A" [36]. Using these representations, the overall HDP construction, when 
truncated to K topics (atoms), may be represented as 

G, — /] ~\.kS&, 
k-\ 
K 

Dt — 
k=i 

Kt.k = ^2wtjS{Ytj = fc)    ;   fc = l 
i — 1 

Wt -x. 

J—l 

Stick{a)    .   t = I.-- ,T 

Y<J "SJ MUU(VK)    '•   j = 1, • • • >oo 

VK ~s„ 5^cfc/c(7) 

ek -V- if    .   fc = l,- •• .A' 

.A:   t = I,--- ,T 

t= l.-- ,T 
(25) 

Note that we truncate Stick(^) to K sticks, but do not truncate Stick{a). Additionally, Ytj e {!,••• . A'}, 
with the particular value of Ytj depending on which component is selected from the multinomial. 

To appreciate the relationship between dHDP and the proposed dDTM, note that (23) corresponds to 
drawing atoms/topics at time / from the finite mixture model Gt = wtDt + (1 — wt)Gt~i, with 

K 

G\   =   2_, ^l.fcfe* 
fc=l 

K 

D,   =   ^7rt,fc<Se*    •   t = 2-- • • ,r 
«s=i 

n,   ~   Dir(a/K. • • • . a/K) ,t= I. 
@k   ~   If    .   fc = l.-- .A 

,r (26) 

Recall that Sethuraman demonstrated [29] that a draw n n Dir(ag0), where go is a A'-dimensional 
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probability vector and a > 0, may be constructed as 
oc 

nk   =   ^ WAYJ = *)    •   k = 1- • •' • K 

w   ~   Stick{a) (27) 
Fj   ~   Mult{g0)    .   j = l,-" ,oo 

with 7TA- representing the /eth component of 7r. Using Sethuraman's stick-breaking representation of the 
Dirichlet distribution in (26), the proposed dDTM is constructed as 

K 

G\   —   / y7Ti.fc^efc 

fe-i 
K 

A = £ "^fe*   • t = 2, • • •, r 
fc=i 

oc 

7ra   =   ^ ^(5(y(J = A;)    :   fc = 1, • • • , K\    t = 1, • • • , T 

wt   ~   Stick(a)    ,t = !.••• .T (28) 
Yt.j   ~   Mult(l/K,• • • , 1/K)    ;   j = l,---,oo;   t = l.---.T 
ek ~ H  . k = i.--- .K 

The truncated dHDP model in (22) draws {G\. D2. ••• . DT} from (25), assuming Stick('y) is truncated 
to K sticks [36]. By contrast, within dDTM the measures {Gi,D2. • • • .£>r} are drawn from (28). In the 
former the random variables Ytj are drawn from VK, which is in turn drawn from the truncated stick- 
breaking process Stickx^); in the latter we simply set VK = {1/K, * * • , 1/K) and remove the parameter 
") altogether. It is felt that this relatively small change does not significantly affect the expressibility of 
the proposed prior. Within the proposed model the weights wt explicitly impose temporal relationships 
between the topics (documents at proximate times are more likely to share the same topics). 

The above discussion also demonstrates that considering the Dirichlet distribution Dir(a/K. • • • , a/K) 
with large K is analogous (but distinct from) a truncated stick-breaking representation. In this sense, the 
proposed model is non-parametric, in that setting a large K allows the model to infer the proper number 
of topics from the data, analogous to studies of the truncated stick-breaking representation [36]. Setting a 
large K {e.g., K = 50 in the examples below), does not imply that we believe that there are actually A' 
topics, since from (27) only a relatively small set of components in 7T, will have appreciable amplitude 
(the same type of motivation for the stick-breaking view of DP and HDP). As in other non-parametric 
methods, the proposed model infers a distribution on the proper number of topics, based on the data. 

We also emphasize that the stick-breaking representation of a draw from a Dirichlet distribution has 
been introduced above to make the connection between the proposed model and a truncated representation 
of dHDP. However, when actually performing inference, it is often simpler to just draw directly from 
Dir(a/K. • • • .a/K). However, this issue is revisited in the Conclusions. 

C. Limiting cases 
In Section XIV we considered dHDP under limiting cases of wt, and we do so here for the proposed 

dDTM in (23). In the limit wt —• 0, the dDTM parameters are drawn at all time from the same measure 
G\ = Yl£=\ ^l.fe^Sfc with 7Ti ~ Dir{a/K. • • • .a/K) and 0* ~ H. Therefore, in the limit K —* oc and 
wt —* 0 the topic-model parameters for dDTM are drawn from DP {a. H), as is the case for dHDP when 
Wt —» 0. Since K is finite in dDTM, the limit wt —* 0 yields a model similar to LDA [20] (in LDA one 
performs a point estimate for a, while here a is set). 

In the limit wt —> 1, at time t the dDTM model parameters are drawn from Gt = ^2k=i nt.k8&k, 

again with 0*. ~ if, and with each 7r( ~ Dir{a/K. • • • ,a/K). Thus the {Gt}t=\.T all share the same 
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atoms (topics), with distinct /-dependent probability weights 7rr. The dHDP model has a similar limit 
when n't — 1, with the weights drawn wt ~ DP(a.v) for v ~ Sticky). In both cases the atoms/topics 
are shared across all time, with different mixture weights. The dHDP arguably allows for more modeling 
flexibility, through the parameter -, while dDTM yields a simpler model with very similar structural form. 

XVI. MODFL PROPERTIES 

To examine properties of the model in (23), we consider the discrete indicator's space / = {1.2 A'} 
with k € / indicating one of the K mixing components of the model. Therefore, we can write 

Tt(I)\Tt-i,Wt    =    (1 - Wt)Tt-i{I) + Wf-Ktil) 
=   n_i(/) + At(J), (29) 

where \(I) = wt(irt(I) — T,_1(/)) is the random deviation from Tt-\{I) to Tt{I). 
Theorem 1. The mean and the variance of the random deviation \ are controlled by the innovating 

weight u't and model parameter a = [a/A a/A']: 

E{At(I)\Tt.uwtia}   =   UH(E(ict(I))-rt.i(r)) 

=   **([•}( ^l-Tt-i(J)), (30) 

ViMm-uWua}   =   i [^(1 -1) j^d-i)]. (3D 

where we observe two limiting cases: 
• when wt —> 0, rf = Tt-\. 
. when T>_, -* [£ £], £?{Tt(/)|Tt_i,u;t} = Tt_i(J). 

Theorem 2. The correlation coefficient between two adjacent distributions T>_I and Tf for t = 2 T is 

E{Tt-ijcTt<k} - E{Tt-hk}E{Ttk} 
Corr{Tt-i,k,Tt,k)   = 

y/V{Tt.hk}V{TtM} 

S3^I&(i-^ (32) 
MiXiW1-^)8' 

for any A- e I. The proofs of these theorems are provided in Appendix A. 
To compare the similarity of two adjacent tasks/documents, the two theorems yield insights through the 

mean and variance of the random deviation and the correlation coefficient which can be estimated from 
(32), using the posterior expectation of w. Although dDTM represents a simplification of the dHDP 
framework [26], the sharing properties are similar. The proofs to both theorems are summarized in 
Appendix A. 

XVII. VARIATIONAL BAYES INFERENCE 

To motivate the theory of variational inference, we first recognize that the equality 

I 
can be rewritten as 

\nP(X) = C(Q) + KL(Q\\P). (34) 

where O represents the model latent parameters O = {{&k}k=i •z-d i^tj/Li• w}, X the observed data, 
Q{0) some yet to be determined approximating density and 

C(Q) = I Q(0)ln^H^W     KL(Q\\P) = fQQ{0)In^^y<*0. (35) 
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For inference purposes, instead of drawing zu ~ Mult{Tt), we use an extra variable d,,, indicating the 
task/document we are drawing the mixing weights rdtj from; for each document-dependent xu we first 
draw the task indicator variable dt, from a stick-breaking construction and then the corresponding topic 
indicator zt., as follows: 

zu ~ Mult{ndti).      du ~ Mult{V). 

^q = "'<? n?=i (1 - WJ).     
w

q ~ Beta(l.dQ). (36) 

where Be/a(l,efo) corresponds to Beta{co,d0) in (23), with Co = 1. 
Therefore, the joint distribution of the indicator variables d and z can be written as follows: 

p{dt,i = v,zu = k\ict, &k,xt,ij   -x   C\\p{xu\0Zti=k.Tzt))p{zu = k\dt,i,irt, &k)p{du = v) 
1=1 

Nt    J v-l 

=   (UUMultK,=k)^.kw,Y[(l-wl), (37) 
»=1 J=\ 1=1 

where X, is the total number of documents in block t, and x\{ corresponds to word j in xLi. 
Our desire is to best approximate the true posterior P({Sk}k=l.z.d. {TTt}J=l,w\X) by minimizing 

KL{Q\\P), and this is accomplished by maximizing C(Q). In doing so, we assume that Q(O) can be 
factorized, meaning 

Q(0) = Q({©fc}^1,z,d,{7rt}^1,t») = Q({efc}^1)Q(«)Q(d)Q({irt}L)Q(w)- (38) 
A general method for writing inference for conjugate-exponential Bayesian networks, as outlined in [37], 
is as follows: for a given node in a graph, write out the posterior as though everything were known, take 
the natural algorithm, the expectation with respect to all unknown parameters and exponentiate the result. 
Since it requires computational resources comparable to the expectation-maximization (EM) algorithm, 
variational inference is fast relative to Markov chain Monte Carlo (MCMC) [26] methods (based on 
empirical studies for this particular application, and depending on what level of convergence MCMC is 
run to). 

A.   VB-E step 
For the VB-E step, we calculate the variational expectation with respect to all unknown model param- 

eters &k. Trt and wt. The variational equations of the model parameters 0k, TT, and u> are shown below; 
their derivation is summarized in Appendix C. The analysis yields 

0k   =   esp[£ £(£<*{,)+/3/M- DInWf)], 
j=l m=\    Th 

V      K t-\ K 

¥t   =   expQ2 £((ln%*) + (lnu/*) + ]T(ln(l - wq))) + Jja/A' - l)(ln ntk)}. 

.V,      K t-\ 

wt   =   explY,^((lnu't)+ £(ln(l-wg))) + (do - l)(ln(l - wt))}, (39) 

where 

(ln7Tt.it)   =   %i(nt.k)+a)-w{Nt + l). 

(4<) = 4^(4.1^ =k)- 
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l=v 

T 

(ln(l-u;,)>   =   V{d0+  ^  A•) _ ^{1 + d0 + ^ .VTO), (40) 
rn=/+l m=/ 

with (i-( •) the digamma function, (ntifc) the number of words sharing topic A- in block t, (3 = [,8/M l3/M] 
the Dirichet hyper-parameters for the priors on the words distribution, and m e {1.2 M} a possible 
outcome of the multinomial distributions on the word counts. 

B.  VB-Mstep 

Updating the variational posteriors in the VB-M step is performed by updating the sufficient statistics 
of the model parameters, obtained from the VB-E step. The analysis yields 

j 

Q{Sk)   =   HDir(:3/M+(pkA).....3/M + (pkM)), 

Q(irt)   =   Dir(a/K+(nu),....a/K + (nLK)). 
t-\ 

Q(wt)   =   Beta(l + (mt).do + ^2(mb)), (41) 

where (mt) = Y!,k-i(nt.k) and (pk,m) is the number of words with outcome m in topic k. 

XVIII. EXPERIMENTAL RESULTS 

The proposed model is demonstrated on two data sets, each corresponding to a sequence of documents 
with known time dependence: (i) the NIPS data set [22] containing publications from the NIPS conferences 
between 1987 and 1999 and (ii) every United States presidential State of the Union Address from 1790- 
2008. 

As comparisons to the dDTM model developed here, we consider LDA [20] and TOT [21], and dDTM 
with innovation weights set as {wt}J=.2 = 1 (termed DTM). For the dDTM framework, we initialized 
the hyper-parameters as follows: the parameter a = 1, c0 = 1, do = 2, and Dirichlet distributions with 
uniform parameters (3 = [JJ JJ] as priors on the words distribution; the integer M defines the number 
of possible outcomes concerning the occurrence of a given word in a document, and this is detailed 
below for the particular examples. We ran VB until the relative change in the marginal likelihood bound 
[38] was less than 0.01%. For the LDA and TOT model initializations, we used exchangeable Dirichlet 
distributions as priors on word probabilities and initialized the Dirichlet hyper-parameters for the topic 
mixing weights with a = [-^ j^]. The truncation level was set to K = 50 topics in all four models. 
For the reasons discussed in Section XV. the dDTM are expected to be insensitive to the setting of K, 
as long as it is "large enough"; we also performed studies of the below data for K — 75 and K = 100, 
with very similar results manifested. 

A. NIPS Data Set 
The NIPS (Neural Information Processing Systems) data set comprises 1.740 publications. The total 

number of unique words was ./ — 13.649. The observation vector xtJ corresponds to the frequency 
of all words in paper i of the NIPS proceedings from year r. We set the total number of outcomes of 
the multinomial distributions to M — 5; m = 1 corresponds to a word occurring zero times, m = 2 
corresponds to a word occurring once or twice, m = 3 corresponds to a word occurring between three- 
five times, m = 4 corresponds to a word occurring between six-ten times, and m = 5 corresponds to a 
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Fig. 7. Histogram of the rate of word appearances in the NIPS data set: the horizontal axis represents the number of times a given word 
appears in one document, and the vertical axis quantifies the number of times such words occurred across all documents. For example, in 
an average document, there will be 95 words that appear twice. From this we note that most words rarely occur more than five times in a 
given document. 

word occurring more than ten times in a publication. This decomposition was defined based on examining 
a histogram of the rate with which any given word appeared in a given publication (see Fig. 7). 

We first estimated the dDTM posterior distributions over the entire set of topics; the time evolution 
of the posterior dDTM probabilities for four representative topics and their ten most probable words, as 
computed via the posterior updates of words distributions within topics, are shown in Fig. 8; we ran the 
algorithm 20 times (with different randomly selected initializations) and chose the VB realization with 
the highest lower bound. 

We then selected the years when the four topics represented above reached their highest probability 
of being drawn and identified associated publications; as we can see in Table I, for a given topic, there 
is a strong dependency between the most probable words and associated publications, with this proving 
to be a useful method of searching for papers based on a topic name or topic identifying words. These 
representative results are interpreted as follows: Topics A and C appear to be related to neural networks 
and speech processing, which appear to have a diminishing importance with time. By contrast. Topics B 
and D appear to be related to more statistical approaches, which have an increasing importance with time. 
The specific topic label is artificially given; it corresponds to one indicator variable in the VB solution. 

In our next experiment, we quantitatively compared the dDTM, LDA, TOT and DTM models by 
computing the perplexity of a held-out test set; perplexity [20] is a popular measure used in language 
modeling, reflecting the difficulty of predicting new unseen documents after learning the model from a 
training data set. The perplexity results considered here are not the typical held-out at random type, but 
real prediction where we are using the past to build a model for the future; a lower perplexity score 
indicates better model performance. The perplexity for a test set of Ntest documents is defined to be 

P = exp{-^l=\.    F ;}. (42) 
ntest,i 

where xtesU represents the document i in the test set and ntesU is the number of words in document 
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Fig. 8.    Posterior topic probabilities distribution and most probable words for NIPS data set. as computed by the dDTM model. 
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TABLE I 

REPRESENTATIVE TOPICS FROM THE NIPS DATABASE, WITH THEIR MOST PROBABLE WORDS AND ASSOCIATED PUBLICATIONS. 

Topic A 
(year 1989) 

training 
networks 

input 
speech 

time 
recognition 

set 
state 

number 
word 

'A Continuous Speech Recognition System Embedding MLP into HMM' 
'Training Stochastic Model Recognition Algorithms as Networks can Lead to 
Maximum Mutual Information Estimation of Parameters' 
"Speaker Independent Speech Recognition with Neural Networks and Speech 
Knowledge' 
The Cocktail Party Problem: Speech/Data Signal Separation Comparison 
between Back propagation and SONN' 

Topic B 
(year 1999) 

algorithm 
problem 
weights 

case 
linear 
weight 
data 

model 
error 

training 

'Model Selection for Support Vector Machines' 
'Uniqueness of the SVM Solution' 
"Differentiating Functions of the Jacobian with Respect to the Weights' 
Transductive Inference for Estimating Values of Functions' 

Topic C 
(year 1988) 

spike 
system 
visual 

call 
response 
sy nap tic 
function 

firing 
activity 
output 

'Models of Ocular Dominance Column Formation: Analytical and Computational 
Results' 
'Modeling the Olfactory Bulbs Coupled Nonlinear Oscillators' 
'A Model for Resolution Enhancement (Hyperacuity) in Sensory Representation' 
'A Computationally Robust Anatomical Model for Retinal Directional Selectivity' 

Topic D 
(year 1999) 

distribution 
gaussian 
algorithm 

model 
sat 

space 
information 

linear 
function 
number 

'Local Probability Propagation for Factor Analysis' 
'Algorithms for Independent Components Analysis and Higher Order Statistics' 
'Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary 
Topology' 
'Data Visualization and Feature Selection: New Algorithms for Nongaussian Data' 

&te.il.i- 
In our experiment the role of a document is played by a publication; the perplexity results correspond 

to a real prediction scenario, where we are using the past to build a model for the future: we held out all 
the publications from one year for test purposes and trained the models on all the publications from all 
the years prior to the testing year; as testing years we considered the last five years between 1995 and 
1999. 

The perplexity for the LDA and TOT models was computed as in [20]; for the dDTM and DTM models 
it was computed as follows: 

,  E£r HT.U £*„ 2Li p(zL«>«t- e)p(ztt^i\T)p(TdtMi(=t\a)^vH n1>t(i -1»0), 
rdDTM = exp{ —^.v,,,,,  

PDTM = exp{- 

i=l     Tltest.i 

E;=r,'"(i:^iE,„EL1p(^»t.il^«t.i,e)p(^...|r)p(rd,f,,,=t|Q) 
ENteii „ 

t-X     ntest.i 
(43) 

where 2 is the topic indicator, i is the publication index, d is the block/year indicator, T is the total 
number of training years, and do is the hyper-parameter of the beta prior distributions Beta(l.d0) on the 
innovating weights {uv}[=o. The perplexity computation for the dDTM model is provided in Appendix 
B. 

Figure 9 shows the mean value and standard deviation of the perplexity of dDTM, LDA TOT and 
DTM models with K = 50 topics; we ran 20 VB realizations for the dDTM, LDA and DTM and 20 
MCMC realizations (with 1000 iterations each) for the TOT model. We see that the dDTM model slightly 
outperforms the other models, with the LDA and TOT better than the DTM. The improved performance 
of dDTM model is due to the time evolving structure; the order of publications plays an important role 
in predicting new documents, through the innovation weight probability w, as can be seen in (43). 

While the NIPS database is widely used for topic modeling, the relatively small number of years it 
entails mitigates interesting analysis of the ability of dDTM to model the time-evolving properties of 
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Fig. 9.    Perplexity results on the NIPS data set for dDTM, LDA. TOT and DTM: mean value and standard deviation. 

documents. This motivates the next example, which corresponds to a yearly database extending over 200 
years. 

B. State of the Union Data Set 

The State of the Union data set comprised 20,431 paragraphs, each with a time stamp from 1790 to 
2008. The observation vector xL, corresponds to the frequency of all words in paragraph i of the State of 
the Union from year t. In this (motivating) example, "document" i for year t corresponds to paragraph i 
from the State of the Union for year t. Therefore, the model assumes the State of the Union is represented 
by a mixture of topics, and within dDTM the mixture weights evolve with time. 

After removing common stop words by referencing a common list which can be found at 
http : //www.dcs.gla.ac.uk/idom/irjresources/linguistic_utils/stop.words, and applying the Porter 
stemming algorithm [39], the total number of unique words was J = 747. In the rare years where two 
state of the union addresses were given, the address given by the outgoing president was used. Similar 
to the NIPS data set, each paragraph was represented as a datum, a vector of word counts over the 
dictionary. However, to match the data structure, we set the number of possible outcomes as M — 2, 
indicating whether a given word was present (m = 1) or not (m — 2) in a given paragraph. This structure 
corresponds to a binomial-beta representation of the words distribution, a special case of the multinomial- 
Dirichlet model used in the NIPS experiment. 

For our first experiment we estimated the posterior distributions over the entire set of topics, for each 
of the three models mentioned above. Results for the dDTM model are shown in Fig. 10 for the time 
evolution of the posterior dDTM probabilities for five important topics in American history: 'American 
civil war', 'world peace1, 'health care', 'U. S. Navy' and 'income tax'; similar to the NIPS experiment, we 
ran the algorithm 20 times (with random initialization) and chose the VB realization with the highest lower 
bound. The topic distributions preserve sharp peaks in time indicating significant information content at 
particular historical time points. It is important to mention that we have (artificially) named the topics 
based on their ten most probable words. The corresponding most probable words are shown in the right 
hand side of each plot. In comparison, the dDTM seems to perform better than LDA, TOT and DTM: 
'American civil war' and 'health care' are topics that were not found by LDA, TOT or DTM. The better 
performance of the dDTM model can be explained by the sharing properties that exist between adjacent 
blocks, properties controlled by the innovation weight w. Figures 11, 12 and 13 show topic distributions 
and their associated ten most probable words for the LDA, TOT and DTM models, respectively. 

Concerning the interpretation of these results, we note that the US was not a world power until after 
World War II, consistent with Fig. 10(a). National health care in the US became a political issue in the 
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Fig. 10.    dDTM model - topic probabilities distribution and most probable words for State of the Union data set. (a) World peace, (b) health 
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Fig. 11.    LDA model - topic probabilities distribution and most probable words, (a) World peace, (b) U.S. Navy, (c) income tax. 

early and mid 1990s, and continues such to this day. The US Navy was an important defense issue from 
the earliest days of the country, particularly in wars with Britain and Spain. With the advent of aircraft, 
the importance of the navy diminished, while still remaining important today. Concerning Fig. 10(d) on 
taxation, the first federal laws on federal (national) income tax were adopted by Congress in 1861 and 
1862, and the Sixteenth Amendment to the US Constitution (1913) also addressed federal taxation. The 
heavy importance of this topic around 1920 is attributed to World War I. with this becoming an important 
issue/topic thereafter (concerning the appropriate tax rate). The US Civil War, which had a heavy focus 
on "state rights" was of course in the 1860-1865 period, with state rights being a topic of some focus 
sporadically thereafter. 

Another advantage of dDTM over LDA, TOT and DTM is that it allows us to analyze the dynamic 
evolution of topic mixing weights through innovation probabilities. For that, using the dDTM model, we 
examined the innovation weight probability w, for each year from 1790 to 2008. Table II shows the years 
when the mean innovation probability was greater than 0.8, the year-period description and the name of 
the associated president. As observed during those years, important political events are well identified 
by dDTM. For each of the innovating years shown in Table II we also estimated the "most innovative' 
words with respect to their previous year. For example, we were interested in finding the words that 
caused innovation during year 1829. For that, we first calculated the distribution of the words within one 
year, by integrating out the topics; we then estimated the Kullback-Leibler (KL) divergence between the 
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Fig. 12.    TOT model - topic probabilities distribution and most probable words, (a) World peace, (b) U.S. Navy, (c) income tax. 

probabilities of a given word belonging to two consecutive years, 1828 and 1829. The higher the KL 
distance is for a given word, the more innovation it produces; the ten most innovative words for each of 
the years of interest are shown in Table III. 

The results in Table II ideally (if dDTM works properly) correspond to periods of significant change 
in the US. Concerning interpretation of these results, President Jackson was the first non-patrician US 
president, and he brought about significant change (e.g., he ended the national banking system in the US). 
The Civil War, World War I, World War II, Vietnam and the end of the Cold War were all significant 
changes of "topics" within the US. Ronald Reagan also brought a level of conservative government to 
the US which was a significant change. These key periods, as inferred automatically via dDTM, seem to 
be in good agreement with historical events in the US. 

We also analyzed the ability of dDTM to group paragraphs into topics. We chose two distinguishing 
years in American history, 1861 (during the American Civil War) and 2002 (post terrorist attacks) and show 
the most probable three topics as computed via the VB posterior updates and their associated paragraphs 
(see Tables IV and V). In 1861 the three major topics were 'political situation", 'finances' and 'army', 
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Fig. 13.    DTM model - topic probabilities distribution and most probable words, (a) World peace, (b) U.S. Navy, (c) income tax. 

TABLE II 

YEARS WITH THE MEAN INNOVATION WEIGHT PROBABILITY GREATER THAN 0.8 IN THE DDTM MODEL, YEAR-PERIOD DESCRIPTION 

AND THE ASSOCIATED PRESIDENT. 

Year 
Mean innovation 

weight probability 
Period description President 

1829 0.87 
Pres. A. Jackson's era A. Jackson 

1831 0.84 

1861 0.82 Civil war A. Lincoln 

1909 0.81 Industrialization W. H. Taft 

1919 0.85 Post "world war I" era W. Wilson 

1938 0.84 
Roosevelt's economical 

recovery 
F. D. Roosevelt 

1939 0.82 Second world war F. D. Roosevelt 

1965 0.8 Vietnam's war L. B. Johnson 

1981 0.81 R. Reagan's promised 
economic revival and the 

recession 
R. Reagan 

1982 0.89 

1990 0.82 The end of the "cold war" G. H.W. Bush 
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TABLE III 

MOST INNOVATIVE WORDS IN THE YEARS WITH THE iMEAN INNOVATION WEIGHT PROBABILITY GREATER THAN 0.8 

1829 1831 1861 1909 1919 1938 1939 1965 1981 1982 1990 

Indian Treaty State Unit Legislation Federal Peace War Federal Spend World 
Law Unit Right Treaty Army Tax Freedom World Public Budget Peace 
Tribe Claim War British Labor Budget America Help Program Agriculture War 
Report Convent Increase Report Navy Billion War Social Budget Senate Free 
Secretary Prosper Total Negotiate Peace Deficit Cut Nation Union Let Cut 
Service Nation Power Spain District Increase God Care Increase Know Union 
Work Report June People Federal Fiscal Spend Million Health House Strength 
Constitute Negotiate .   Total Subject Ship Income Budget Parent Legislation Tax Cooper 
Construct Minister Year Session Regulation Rate Percent Peace Tax People Rate 
Navy People Service Claim Law Spend Army Drug America Represent Great 

TABLE IV 

PARAGRAPH CLUSTERING ANALYSIS FOR YEAR I86l: TOP THREE MOST PROBABLE TOPICS AND THEIR ASSOCIATED PARAGRAPHS. 

Topic 40 Topic 41 Topic 22 

Nations thus tempted to interfere are not 
always able to resist the counsels of 
seeming expediency and ungenerous 
ambition although measures adopted 

under such influences seldom fail to be 
unfortunate and injurious to those 

adopting them. 

The revenue from all sources including loans 
for the financial year ending on the 10th of 

June was and the expenditures for the same 
period including payments on account of the 

public debt were leaving a balance in the 
Treasury on the 1st of July of 

I respectfully refer to the report of the Secretary of War for 
information respecting the numerical strength of the Army 
and for recommendations having in view an increase of its 
efficiency and the wellbeing of the various branches of the 

service intrusted to his care. 

It is not my purpose to review our 
discussions with foreign states because 

whatever might be their wishes or 
dispositions the integrity of our country 

and the stability of our Government mainly 
depend not upon them but on the loyalty 
virtue patriotism and intelligence of the 

people. 

For the first quarter of the financial year 
ending on the 30th of September the receipts 
from all sources including the balance of the 
1st of July were and the expenses leaving a 

balance on the 1st of October of 

The large addition to the Regular Army in connection with 
the defection that has so considerably diminished the 
number of its officers gives peculiar importance to his 

recommendation for increasing the corps of cadets to the 
greatest capacity of the Military Academy. 

Some treaties designed chiefly for the 
interests of commerce and having no 
grave political importance have been 

negotiated and will be submitted to the 
Senate for their consideration. 

The revenue from all sources during the fiscal 
year ending June   including the annual 

permanent appropriation of for the 
transportation of free mail matter was being 
about 12 per cent less than the revenue for 

It is gratifying to know that the patriotism of the people 
has proved equal to the occasion and that the number of 

troops tendered greatly exceeds the force which Congress 
authorized me to call into the field. 

whereas in 2002 the topics were 'terrorism', 'national budget' and 'overall progress of the country'. In 
both cases, the algorithm automatically clusters the paragraphs using what appears to be an accurate topic 
representation. 

To show the dynamic structure of dDTM, we selected 2002 as a reference year and its two years before 
and after as years where topic transition could be manifested. For each of the five years, we estimated the 
most probable topic and identified its associated paragraphs. As we can see in Table VI, a topic transition 
is manifested during this time interval: if in 2000, the main topic was 'economy', in the following years 
attention is paid to 'education', 'terrorism', 'economy' again and 'war in Iraq', respectively. The terrorist 
attacks on the World Trade Center and on the Pentagon occurred in 2001, manifesting the clear change 
in the important "topics". 

Finally, we again compared dDTM, LDA, TOT and DTM models by computing their perplexities; in 
this case, the role of a document was represented by a paragraph and, similar to the NIPS experiment, we 
considered the task of real prediction, by holding out all the paragraphs from one year for test purposes 
and training the models on all the paragraphs from all the years prior to the testing year; as testing years 
we considered the ending year of each decade from 1901 to 2000. 

Figure 14 shows the mean perplexity of dDTM, LDA, TOT and DTM models with K = 50 topics and 
10 testing years. We ran 20 VB realizations for the dDTM, LDA and DTM and 20 MCMC realizations 
(with 1000 iterations each) for the TOT model; the standard deviation values are included as well. We 
see that the dDTM model consistently performs better than the other models. We also observe that LDA 
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TABLE V 

PARAGRAPH CLUSTERING ANALYSIS FOR YEAR 2002: TOP THREE MOST PROBABLE TOPICS AND THEIR ASSOCIATED PARAGRAPHS. 

Topic 19 Topic 2 Topic 39 

America has a window of opportunity to 
extend and secure our present peace by 
promoting a distinctly American 
internationalism. We will work with our allies 
and friends to be a force for good and a 
champion of freedom. We will work for free 
markets free trade. 

Government cannot be replaced by charities or volunteers. 
Government should not fund religious activities. But our 
Nation should support the good works of these good 
people who are helping their neighbors in need. So I 
propose allowing all taxpayers whether they itemize or not 
to deduct their charitable contributions. Estimates show this 
could encourage as much as one billion a year in new 
charitable giving money that will save and change lives. 

Together we are changing the tone in the 
Nation's Capital. And this spirit of respect 

and cooperation is vital because in the 
end we will be judged not only by what 

we say or how we say it we will be 
judged by what were able to accomplish. 

Our Nation also needs a clear strategy to 
confront the threats of this century threats 
that are more widespread and less certain. 
They range from terrorists who threaten with 
bombs to tyrants in rogue nations intent upon 
developing weapons of mass destruction .To 
protect our own people our allies and friends 
we must develop and we must deploy 
effective missile defenses. 

I propose we make a major investment in conservation by 
fully funding the Land and Water Conservation Fund and 

our national parks. As good stewards we must leave them 
better than we found them. So I propose to provide one 
billion over ten years for the upkeep of these national 

treasures. 

The last time I visited the Capitol I came 
to take an oath on the steps of this 
building. I pledged to honor our 
Constitution and laws and I asked you to 
join me in setting a tone of civility and 
respect in Washington. I hope America is 
noticing the difference because we're 
making progress. 

Yet the cause of freedom rests on more than 
our ability to defend ourselves and our allies. 
Freedom is exported every day as we ship 
goods and products that improve the lives of 
millions of people. Free trade brings greater 
political and personal freedom. Each of the 
previous five Presidents has had the ability to 
negotiate far reaching trade agreements. 

The budget adopts a hopeful new approach to help the 
poor and the disadvantaged. We must encourage and 
support the work of charities and faith based and 
community groups that offer help and love one person at a 
time. These groups are working in every neighborhood in 
America to fight homelessness and addiction and domestic 
violence to provide a hot meal or a mentor or a safe haven 
for our children. Government should welcome these groups 
to apply for funds not discriminate against them. 

Neither picture is complete in and of 
itself. Tonight I challenge and invite 
Congress to work with me to use the 
resources of one picture to repaint the 
other to direct the advantages of our time 
to solve the problems of our people. 
Some of these resources will come from 
Government, some but not all. 

TABLE VI 

DYNAMIC STRUCTURE ANALYSIS FOR YEARS 2000-2004: MOST PROBABLE TOPIC AND ASSOCIATED PARAGRAPHS. 

Year 2000 (topic 37) Year 2001 (topic 12) Year 2002 (topic 19) Year 2003 (topic 37) Year 2004 (topic 34) 

We begin the new century with 
over one million new jobs; the 
fastest economic growth in 
more than ten years: the lowest 
unemployment rates in years: 
the lowest poverty rates in 
years: the lowest African 
American and Hispanic 
unemployment rates on record 
America will achieve the 
longest period of economic 
growth in our entire history. We 
have built a new economy. 

A budgets impact is counted in 
dollars but measured in lives. 
Excellent schools quality health 
care a secure retirement a cleaner 
environment a stronger defense, 
these are all important needs and 
we fund them. The highest 
percentage increase in our budget 
should go to our children's 
education Education is my top 
priority and by supporting this 
budget you'll make it yours as well 

Amenca has a window of 
opportunity to extend and secure 
our present peace by promoting a 
distinctly American 
internationalism We will work with 
our allies and friends to be a force 
tor good and a champion of 
freedom We will work for free 
markets free trade 

To lift the standards of our public 
schools we achieved historic 

education reform which must now 
be earned out in every school and in 
every classroom so that every child 
In Amenca can read and learn and 

succeed in life. To protect our 
country we reorganized our 
Government and created the 

Department of Homeland Secunty 
which is mobilizing against the 

threats of a new era. To bring our 
economy out of recession we 

delivered the largest tax relief in a 
generation 

We have faced serious challenges 
together and now we face a choice 
We can go forward with confidence 
and resolve or we can turn back to 
the dangerous illusion that terronsts 
are not plotting and outlaw regimes 

are no threat to us. We can press on 
with economic growth and reforms 
in education and Medicare or we 

can turn back to old policies and old 
divisions 

Our economic revolution has 
been matched by a revival of 
the American spirit crime down 
by percent to its lowest level in 
years teen births down years in 
a row adoptions up by percent 
welfare rolls cut in half to their 
lowest levels in years. 

When it comes to our schools 
dollars alone do not always make 
the difference. Funding is 
important and so is reform So we 
must tie funding to higher 
standards and accountability for 
results 

Our Nation also needs a clear 
strategy to confront the threats of 
this century threats that are more 
widespread and less certain. They 
range from terronsts who threaten 
with bombs to tyrants in rogue 
nations intent upon developing 
weapons of mass destruction To 
protect our own people our allies 
and friends we must develop and 
we must deploy effective missile 
defenses. 

Our first goal is clear we must have 
an economy that grows fast enough 
to employ every man and woman 
who seeks a job. After recession 
terrorist attacks corporate scandals 
and stock market declines our 
economy is recovenng Yet Its not 
growing fast enough or strongly 
enough With unemployment nsmg 
our Nation needs more small 
businesses to open more 
companies to invest and expand 
more employers to put up the sign 
that says Help Wanted 

Having broken the Baathist regime 
we face a remnant of violent 
Saddam supporters. Men who ran 
away from our troops in battle are 
now dispersed and attack from the 
shadows. These killers pined by 
foreign terronsts are a senous 
continuing danger Yet were making 
progress against them. The once all 
powerful ruler of Iraq was found in a 
hole and now sits in a pnson cell 
The top officials of the former 
regime we have captured or killed 
Our forces are on the offensive 
leading over patrols a day and 
conducting an average of raids a 
week 

Eight years ago rt was not so 
clear to most Americans there 
would be much to celebrate in 
the year. Then our Nation was 
gnpped by economic distress 
social decline political gndtock 
The title of a bestselhng book 
asked Amenca What Went 
Wrong. 

Schools will be given a reasonable 
chance to improve and the support 
to do so Yet ff they don't rf they 
continue to fail we must give 
parents and students different 
options a better public school a 
private school tutonng or a charter 
school. In the end every child in a 
bad situation must be given a 
better choice because when it 
comes to our children failure is 
simply not an option 

Yet the cause of freedom rests on 
more than our ability to defend 
ourselves and our allies Freedom 
is exported every day as we ship 
goods and products that improve 
the lives of millions of people. Free 
trade brings greater political and 
personal freedom. Each of the 
previous five Presidents has had 
the ability to negotiate far reaching 
trade agreements 

A growing economy and a focus on 
essential priorities will be crucial to 
the future of Social Secunty As we 
continue to work together to keep 
Social Security sound and reliable 
we must offer younger workers a 
chance to invest in retirement 
accounts that they will control and 
they will own. 

As democracy takes hold in Iraq the 
enemies of freedom will do all in 
their power to spread violence and 
fear. They are trying to shake the 
will of our country and our friends 
but the United States of Amenca will 
never be intimidated by thugs and 
assassins The kilters will fail and 
the Iraqi people will live in freedom. 
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Fig. 14.    Perplexity results on the United States presidential State of the Union Address for dDTM. LDA. TOT and DTM: mean value and 
standard deviation, estimated from 20 randomly initialized VB realizations. 

and TOT slightly outperform the DTM model due to the Dirichlet distribution approximations made in 
the DTM model. 

Concerning computational costs, all code was run in MatlabTA/ on a PC with Intel 2.33GHz processor. 
For the NIPS data dDTM, LDA, TOT and DTM required (for each VB and MCMC runs) 4 hours and 
16 minutes, 3 hours and 22 minutes, 10 hours and 31 minutes, and 3 hours and 45 minutes, respectively. 
For the State of the Union data these respective times were 25, 22, 104 and 23 minutes. These times are 
meant to give relative computational costs; none of the software was optimized. 

XIX. TOPIC MODELING SUMMARY 

We have developed a novel topic model, the truncated dynamic HDP, or dDTM, to analyze topics 
associated with documents with known time stamps. The new model allows simple variational Bayesian 
(VB) inference, yielding fast computation times. The algorithm has been demonstrated on a large database, 
the US State of the Unions for a 220 year period, and the results seem to be able to highlight significant 
events in the US history (although it should be emphasized that the authors are not historians, and much 
further testing and evaluation is required). The algorithm is able to identify important historical topics, 
as well as periods of time over which significant changes in topics are realized. The model compares 
favorably with LDA, TOT and a simplified form of dDTM (for which time dependence is ignored). 

Concerning future research, other approaches that might be considered for approximate inferences 
include collapsed sampling [40]. It would be interesting to analyze how these different inferences influence 
the overall performance of the model. In order to capture semantics evolution with time, one may consider 
a similar dynamic model for topics themselves. This could be accomplished by allowing the words 
distributions change in time; for identifiability, constraints could be used so that the majority of words in a 
topic, and their associated frequencies, remain constant across time. In addition, the evolution of the model 
occurred in only one dimension (time). There may be problems for which documents may be collected 
at different geographical locations, for example from different cities across the world. In this case one 
may have spatial proximity as well as temporal proximity to consider, when considering inter-document 
relationships. It is of interest to extend the dynamic structure from one dimension to perhaps a graphical 
structure, where the nodes of the graph may represent space and time. 

We also note there may be general interest within topic-model research in representing a draw from 
a Dirichlet process in the form in (27). While this increases the complexity of the analysis, it has the 
significant advantage of allowing one to place a Gamma prior on a and perform full VB inference (we 
no longer have to set a). As discussed in Section XV, a plays an important role in defining the number 
of expected topics per document (since it controls the number of important mixture weights). One may 
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place a separate prior on the distinct a associated with each document, so that the number of important 
topics per document may change. The complication with doing this, rather than just directly drawing from 
Dir(a/K. • • • ,a/K) is that one must now perform inference on many more parameters (on the sticks 
of the stick-breaking representation). In some applications such added complexity will be warranted by a 
desire to infer a in a full VB analysis. 
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