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Electronic Structure Methods based on Density Functional Theory 

Christopher Woodward 

Materials and Manufacturing Directorate 

Air Force Research Laboratory 

 

Introduction 

 

Over the last two decades electronic structure methods, based on Density Functional Theory, 

have emerged as a powerful tool for assessing the mechanical, thermodynamic and defect 

properties of metal alloys. These “First Principles” methods are very appealing because they are 

based on the culmination of our understanding of quantum mechanics and the electron-ion many-

body problem. While the starting point for such calculations requires only the most a basic 

knowledge of chemistry, crystalline and defect structure the calculations can quickly become 

very computational challenging with increasing system size and complexity. Practical 

application of electronic structure methods invariably includes chemical, spatial or temporal 

approximations that can curtail a faithful representation of the actual materials problem. 

However, over the last decade there have also been significant advances in methods for 

calculation free energies (entropy)[1], activated states (i.e. kinetics)[2], flexible boundary 

conditions[3], lattice dynamics[4], and reaction rate theory[5].  Taken with the rapid 

improvements in computer processor speeds and the maturation of “easy-to-use” DFT methods 

there has been an explosive growth in the use of DFT methods in materials science.  

 

 This Chapter is meant to be a guide to understanding the origins of these methods, their 

strengths and limitations and provide the basic procedures for calculating essential structural 

properties in metal alloys. Before delving into the details for DFT it is important to place the 

method in the context of the larger community of scientists interested in the nature of the 

electronic state in materials. Modern electronic structure emerged from method development in 

the Chemistry and the Physics communities and fall roughly into two groups: Hartree Fock and 

its extensions (HF+E) and Density Functional Theory.  Historically, HF+E was been considered 

to be more precise, and has been preferred by Physical Chemists, because systematic 

improvements to the original approximation are well defined. For several reasons HF+E is not 

well suited for metallic systems, as will be discussed in detail in section N.1, and corrections to 

HF are extremely computationally intensive, scaling with the 4
th

 to 6
th

 power of the number of 

electrons. Density Functional Theory has been widely used in metallic systems since it’s 

inception in 1962. With improvements in efficiency (speed) and refinements in the underlying 

approximations DFT is increasingly being used in Quantum Chemistry applications. Recently 

researchers have begun to blur the line between these two approaches by constructing novel 

potentials blending fundamental aspects of the two theories[6]. The resulting approximations 

show great promise for calculations over a broad range of problems ranging from atoms and 

molecules to chemically complex metal-oxide interfaces.  

 

For scientists and engineers considering using electronic structure methods, navigating the sea of 

DFT acronyms can be challenging. In general the acronyms refer to the numerical scheme, or 

basis, used to represent the electrons. More recently, as methods have matured codes have been 

named after the groups that developed or support the method. All electronic structure methods 

must deal with the large changes in the electron distribution observed in atoms, molecules and 
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solids. Some of the electrons are strongly bound to the nuclear sites (core states) and are very 

similar to that found in isolated atoms. Others are more weakly bound (valence states) producing 

bonding, and are responsible for most of the electronic, optical, thermodynamic and chemical 

properties. Electronic structure methods deal with this disparity in a variety of ways, depending 

on what class of materials problem is under consideration. For example with isolated atoms and 

molecules it is natural to work in real space with methods based on a linear combination of 

atomic orbitals (LCAO), represented numerically or as a sum of analytic functions (e.g. 

gaussians). For crystalline systems it is more natural to use periodic boundary conditions and 

electrons are represented using a linear combination, or basis, of plane waves. Over time several 

methods were developed to avoid the large number of planewaves needed to represent the 

rapidly varying electron core densities. One approach, employed in augmented plane wave 

(APW) and muffin tin orbital (MTO) methods, is to use a set of local functions centered around 

each atom and to match that solution on a sphere to a plane wave basis everywhere else. Another 

technique, the pseudopotential method, maps the strongly bound electron states into a potential 

that is then used to calculate the valence electrons. These Pseudopotential Plane Wave (PPW) 

methods are relatively easy to use and the simplicity of the basis has allowed significant progress 

in computational efficiency (i.e. parallel processing) and analytic solutions for properties such as 

atomic forces and stress.  

 

Historically mixed basis methods (APW, MTO) have been considered as the benchmark for 

accuracy in most applications. However, the mixed basis makes these methods more challenging 

to use and adds significant complications to deriving basic quantities such as atomic forces or 

stress. With advances in pseudopotential theory since the mid 1980’s PPW methods routinely 

reproduce the results of mixed basis methods. Also, because of the added benefits of larger 

simulation sizes, automated atomic and cell optimization it can be argued PPW methods are 

producing more accurate results is wider range of applications.  

 

Mixed basis methods are still the preferred technique for systems where the pseudopotential 

approximation breaks down. This happens when changes in valence electrons change the 

structure of the core electrons. For example in the actinides, where the f-electrons are coupled to 

the core states, APW and MTO methods are preferred[7]. Also, simulations of photo absorption 

and emission are probably best modeled using techniques where the core states are optimized 

along with the valence states. The quality and availability of pseudopotentials in some software 

packages can be quite limited. Researchers new to the field should carefully assess the available 

options before investing time or resources in any particular method.  

 

One additional criterion to consider is the scale of the problem that needs to be solved. Inevitably 

this dictates the method and the required computational platform. Both LCAO and PW 

pseudopotential methods scale well on current parallel supercomputers and are typically applied 

to molecular and crystalline problems respectively.  

 

DFT is being applied throughout the scientific community to a staggering range of problems. 

With current multi-processor supercomputers PPW methods can simulate system sizes up to 

approximately 1000 atoms[8]. This varies with the system symmetry and the choice of atomic 

species, with the transition metals being the most challenging. Researchers are also running ab-

initio molecular dynamics simulations for cells ranging from 100-500 atoms for simulation times 
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up to tens of pico-seconds. The future of DFT will be driven by improvements to the underlying 

approximations, the introduction of new hybrid potentials, and advances in supplementary 

methods the use employ DFT results.  Research into new novel basis functions (e.g. wavelets), or 

the introduction of new computer hardware (e.g. Field Programmable Gate Arrays) could 

revolutionize the field. Finally, while still in it’s infancy there is a significant effort underway to 

directly calculate the electronic state by Quantum Monte-Carlo methods, if properly coupled to 

next generation supercomputers this eventually could overtake all other developments[9]. 

 

The rest of this chapter is divided into three independent sections. The first reviews the general 

underlying theory of electronic structure methods and Density Functional Theory specifically 

and the taxonomy of DFT methods that have emerged over the last thirty years. The second 

section reviews the approximations and computational details of the most popular method used 

in metal systems, the pseudopotential plane wave methods. The last section reviews a subset of 

the applications of DFT methods have found in metals alloy systems. This includes calculations 

of a variety of structural, thermodynamic and defect properties with particular emphasis on 

structural metal alloys and their derivatives. 

 

N.1 The Fundamentals of Density Functional Theory: 

 

We would like to model a chunk of matter using only what we know about coulomb interactions 

between electrons and ions and the underlying principles of quantum mechanics. The approach 

taken over the last 50 years has been to systematically apply approximations making the many-

body problem more manageable while retaining the essential physics. Part of this evolving 

approach is to reduce the systems of equations to that subset which captures the problem of 

interest. We are not interested in solving systems with Avogadro’s number of particles; not only 

would solving such a problem be unfeasible, analyzing the results of such a calculation would be 

a herculean task.  Therefore for practical reasons, both conceptual and computational, it is 

considered best practice to minimize the scale (spatial and temporal) of the electronic structure 

calculation. There are many good reviews Density Functional methods. For a general overview 

of the fundamentals see R. Martin’s text, Electronic Structure, Basic Theory and Practical 

Methods[10]. Payne et al. review the general theory of Pseudopotential Plane Wave methods and 

many practical issues on applying these methods[11]. Many practical details of PPW and 

Augmented Planewave methods are reviewed in D. Singh’s text Planewaves, Pseudopotentials 

and the Linearized Augmented Plane Wave Method[12].  

Beginning from classical mechanics, the many body Hamiltonian of an ensemble of interacting 

atoms takes the form: 
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Where MI, PI, ZI and RI are the mass, momentum, charge and position of the M possible ions and 

me, pe and ri are the mass, momentum and position of the m possible electrons. The Hamiltonian 

is then separated into two parts, a purely ionic part (the first two terms in equation 1) and an ion-

electron part:  

 (2) 

From this point Materials Scientist can choose to represent He-Ion by an effective potential which 

leads to the field of atomistic modeling, or to invoke Quantum Mechanics and solve the many 

body Schrödinger equation which leads to the field of electronic structure methods. The later are 

generally considered a more faithful representation of the many body problem, as the electrons 

are treated explicitly. Standard practice is to now apply the Born-Oppenheimer approximation. 

Given that the electron cloud responds much faster to an applied field than the ions (me/MI<<1), 

we can decouple the nuclear and electronic motion and solve for the electron degrees of freedom 

with the ionic positions held fixed.  Using separation of variables the Schrödinger equation 

corresponding to equation 1 can be divided into two parts: 

 (3) 

using  produces two equations: 

 and 

 where T and V refer to the kinetic and coulomb potential terms for the electrons 

and ions and the eigenvalues (Ee coming from the separation of variables) incorporated as an 

effective potential for the ionic problem. The many body Schrödinger equation for the m 

electrons is: 

 

Unfortunately this equation cannot be solved directly. Two approaches are taken to solve this 

system of equations the first, Hartree-Fock and it’s extensions (HF+E), solves for the electron 
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wave-functions and the second, Density Functional Theory, solves for the charge density (Drs. 

W. Kohn and J.A. Pople split the Nobel Prize in Chemistry in 1998 for aspects of these 

contributions). The Hartree-Fock approach is attractive because the derivation allows for well-

defined systematic (though costly) improvements to the initial approximation for the third term 

in equation (2) , these are sometimes called “post Hartree Fock methods”. HF+E  methods  are 

used extensively in non-metallic systems, however they are poorly suited for metal systems for 

several reasons. First, significant corrections to the initial HF approximation are required to 

properly represent metal systems. Second, in free electron metals HF produces an intrinsic 

instability in the electron velocity (a logarithmic divergence in k, where  is the energy 

dependence of the electron as a function of wave vector k) at the Fermi surface[13].  

Density Functional theory is based on two insights provided Hohenberg, Kohn and Sham in the 

early 1960’s[14,15]. First, Hohenberg and Kohn proved that for the ground state of an interacting 

electron gas in an external potential the electron density, , can be treated as the total energy 

of a system of interacting electrons in an external potential (i.e. the coulomb potential produced 

by the atomic nuclei) and is given exactly as a functional of the ground state electronic density: 

. Here a functional is defined as a function of a function – in this case E is function of 

the electron density. While the Hohenberg-Kohn theorem shows that E(p) is a unique functional 

it does not provide a prescription on how to form the functional, so the usefulness of the theorem 

is dependent on finding sufficiently accurate approximations[14]. 

To this end Kohn and Sham suggested writing E as: 

  (4) 

the functionals on the right representing the kinetic energy of a system of non-interacting 

electrons, the electron-ion interactions, the Hartree potential of electron-electron interactions, the 

ion-ion interactions and the exchange correlation functional respectively[15]. The functional are 

now integrals over space, i.e. the last two terms explicitly are: 

 (5) 

  (6) 

In the last term Kohn and Sham identified exchange and correlation 

energy/electron of a uniform electron gas of density  This is the local density approximation 

(LDA) which assumes that given a sufficiently slowly varying density a function, can be 

defined which represents the effective potential of an electron surrounded by its own "mutual 

exclusion zone" consistent with the requirements of quantum mechanics.  
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Using the fact that the functional is an energy minimum with respect to variations in  (the 

H-K theorem) they then derived single particle Schrodinger like equations that are sometimes 

referred to as the Kohn Sham equations: 

 

Where  with m equal to the number of occupied states (the number of 

electrons in the system) and   which is identified as the exchange-

correlation contribution to the chemical potential of a uniform gas of density . The system of 

equations is solved self-consistently by assuming a  constructing the last two terms in the 

KS equations and then solving for  using  The total energy is given by: 

 

The K-S equation maps the interacting many electron system to a set of non-interacting electrons 

moving in an effective potential of all the other electrons. The utility of the K-S equations rest in 

our ability to find reasonable approximations for the functional . Fortunately this function 

has been studied in detail for the case of a uniform electron gas[16], and derived using Monte 

Carlo techniques[17] and parameterized for electronic structure calculations[18].  

LDA has been surprisingly successful in predicting a variety of properties in metals. Lattice 

parameters are usually accurate to within ~1% and cohesive energies and elastic constants to 

within ~10%. The method is well suited for studying solids, perfect and defected crystals and is 

easily extended to include spin dependence, the Local Spin Density Approximation, which has 

been widely applied to ferromagnetic and anti-ferromagnetic systems[19]. LDA is also the 

starting point for a variety of improvements based on the local change in the electron density 

produced by the electron (the exchange-correlation hole). These Generalized Gradient 

Approximations have systematically improved the accuracy of DFT for problems in molecular 

systems and broadened the application base significantly (these are reviewed in the next section). 

However, currently the method is still not well suited for systems with large Van der Waals 

energies or systems sampling infinitesimally small electron densities such as a structures 

bounded by a vacuum.  

Where DFT methods seem to diverge is in the spatial representation of the one-electron wave 

functions. The wide variety of methods reflects the fact that an accurate representation of the 

charge density has traditionally required specialized basis functions. The fundamental problem is 

that as the atomic number increases the additional atomic wave-functions are required, by the 

Pauli exclusion principle, to be orthogonal to existing lower lying wave-functions. To 

accomplish this, as the principle quantum number increases, the wave-functions take on a rapidly 
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varying radial form near the atomic center. Therefore, for a set of basis functions to accurately 

describe the electrons it must be able to both represent the rapidly varying function near atomic 

centers and the relatively smooth functional form outside that region. 

Several strategies have been used to solve this problem. Techniques such as the Augmented 

Plane Wave, Muffin Tin Orbital and Korringa Kohn Rostoker methods use an efficient and 

compact basis to describe the wave-functions near the atomic centers[20,21,22]. An additional 

basis (typically plane-waves) is used to describe the wave-functions outside this region and 

various schemes are used to ensure a proper match of the wave-functions at the boundary 

between these two regions. These methods give a very accurate representation of the core region, 

while allowing some flexibility in the basis outside this region. Refinements to these techniques 

such as the Full potential Linearized Augmented Plane Wave (FLAPW) [23] and Full Potential 

Linearized Muffin Tin (FP-LMTO) [24] are currently considered to be the most accurate DFT 

methods, though the implementations are limited to relatively small cell sizes.  

The seminal work on Orthogonal Plane-Wave methods led to the development of an alternative 

technique where the low lying (core) states are effectively removed from the calculation[25]. In 

this case an effective electron-ion potential, or pseudo-potential, is derived from an atomic 

electronic structure calculation. Pseudo-potentials incorporate the tightly bound wave-functions 

and ionic charge so that the potential produces the same electronic interactions as the original 

atomic calculation.  In this way the core electrons, which do not normally influence materials 

properties, can be removed from the simulation. By construction the pseudo-potentials produce 

the same interaction with the valence electrons as the original all electron calculation (as 

measured through the electron scattering properties)[26]. Recent pseudo-potential schemes have 

relaxed this philosophy during the construction of the potential, only to re-impose the 

requirement when constructing the Kohn-Sham orbitals in the system of interest[27,28]. Pseudo-

potentials also incorporate the effective potential produced by the Pauli exclusion principle such 

that the valence wave-functions are smooth functions in all space. Therefore it is natural to 

combine a plane-wave basis with the pseudo-potential representation in what we now call 

pseudo-potential plane-wave methods (PPW).  

While the plane-wave basis is not as compact as that used in the LAPW methods, PPW methods 

have been easier to implement because of the simplicity of the plane-wave basis. It is relatively 

straightforward to calculate atomic forces (through the Hellmann-Feynman theorem), the stress 

tensor and phonon properties [29,30,31]. However, until the mid 1980’s application of PPW 

methods were somewhat limited because of the size of the required plane-wave basis set. In 1985 

Car and Parrinello showed how to simultaneously optimize both the electronic and ionic degrees 

of freedom by taking advantage of fast fourier transforms and the plane-wave basis[32]. Iterative 

diagonalization methods that have grown out of these insights have shown that by proper 

preconditioning of the Kohn-Sham wave-functions during the optimization procedure it is 

possible to directly minimize the Kohn-Sham energy functional[33]. This innovation stabilizes 
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the constrained optimization of Eq. 1 and has made it possible to run very large simulations 

relatively efficiently[11]. 

Figure 1. Schematic of the methods developed by the chemistry and physics communities to 

solve the materials many body problem. In general the DFT methods are the method of choice 

for calculations on metallic systems. 

 

 

N.2 Pertinent Approximations and Computational Detail for Calculations in Metal Alloys: 

In order to calculate the electronic structure of an alloy the researcher needs more than just an 

underlying theory and a working description (basis) of the electrons. First the methods need 

efficient and accurate techniques for integrating the quantities described in section 1 over the 

volumes (and k-space) of interest. Second, the approximations and basis need to be well matched 

to the problem of interest.  Finally, explicit knowledge of the crystal structure, location and 

species of every atom on the simulation volume is required. Fortunately, for a most of the alloy 

of engineering interest this information is available in tabulations of the International Tables for 

Crystallography in the form of space groups, describing the symmetry of the lattice, and 

Wyckoff positions, describing the atomic sites (position and chemistry)[34].  
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Integration of cell quantities: One advantage to working on metallic systems is that the 

underlying crystalline structure is almost invariable periodic. This allows the researcher to 

employ simulation cells with periodic boundary conditions (supercells) to represent the material 

of interest. Periodic boundary conditions also make it possible to represent most all quantities of 

interest in terms of real and Fourier space (k-space) components. This is particularly useful when 

summing up terms numerically in the KS equations or equation (8) over the Brillouin zone. 

The most straightforward way to integrate of quantities over the supercell is to divide the 

Brillouin zone using a tetrahedron grid of points (k-points). However, in the early 1970’s 

numerical schemes were developed to predict the smallest set of k points, “special k-point”, that 

would yield the most accurate cell integrations [35,36]. In most modern application codes the 

selection of k-points is sufficiently automated that the investigator needs to only input the 

required density of such points. However, one characteristic of a metal is that valence states, or 

bands, are partially occupied, and this can produce numerical instabilities. In order to avoid this 

and to improve the efficiency of the cell integration researchers introduced a numerical smearing 

of the highest lying bands, specifically those that are near the Fermi surface. The “broadening” 

methods fall into two classes, those employing ad-hoc functional forms such as Gaussians and 

finite temperature schemes based on the Fermi-Dirac or Gauss like functions that mimic thermal 

broadening [37,38]. Both methods are effective, and the latter technique has the advantage of an 

associated, if ad-hoc, temperature.  

Computational time for metal simulations scales with the number of k-points, however as the 

simulation sizes get larger and reciprocal space get smaller the number of required k-points is 

reduced. For large simulations, say greater than 100 atoms, often only a single k-point is needed. 

Also, if only the gamma point (k = (0,0,0)) is required then calculations can gain another factor 

of 2 in efficiency, because of the symmetry imposed on the complex parts of the wavefunctions.  

While there are rules of thumb for the use of special k-points and broadening methods, it pays to 

carefully test the convergence of such methods using, for example, the cell energy or other 

quantity of interest. In general the density of k-points should be approximately that of the size in 

dispersion in the bands near the Fermi surface[39]. 

Understanding and choosing a pseudopotential: Early in the development of electronic 

structure methods researchers realized that the electrons contained in full atomic shells (s, p and 

d) do not have a strong influence on chemical and mechanical properties. These effects are 

controlled mostly by the interaction of valence electrons, which have the largest principle 

quantum number, and thus the most rapidly varying radial function in the region around the atom 

nucleus.  Pseudopotentials replace the core-valence electron interactions, the second term of 

equations (4) and (7), with an effective potential produces a realistic pseudo-valence 

wavefunction that has a smooth and slowly varying radial form.  Typically pseudopotentials are 

derived from an atomic reference calculation and then used in crystalline or other environment, 

so transferability is a serious concern when developing such a scheme. Early local 
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pseudopotentials, and more recent implementations of the same, are severely limited and can 

only reliable be used in simple free electron metals where the core electrons have very weak 

interactions with the valence states[40.41].  

Modern pseudopotential theory is based on a “norm-conservation” approach that enforces a strict 

criterion for mapping real to pseudo wavefunctions and includes non-local angular momentum 

(ℓ) dependent interactions that accurately model the valence-core electron interactions[26]. 

Transferability is maintained by imposing identical logarithmic derivatives, and thus scattering 

phase shifts, outside a certain (core) radius about each atomic site.  More recent advances in 

pseudopotential theory such as Vanderbilt’s ultrasoft pseudopotentials make use of additional 

functions about the atomic core, which allow for smoother pseudo wavefunctions and more 

efficient PPW calculations[27]. This and later refinements of pseudopotential theory parallel the 

original strategies used in Orthogonalized Plane Wave methods developed by Herring, Callaway 

and others from the mid 1900’s[25].  The most recent advances in pseudopotential theory, the 

projector augmented wave (PAW) method[28], retains all the information of the core states and 

is thus analogous to the most accurate all electron methods (e.g. OPW, APW and MTO). 

Implementing the PAW methods in PPW codes required additional development and using the 

potentials incurs additional computational overhead.  

Using modern numerical methods, current commercial PPW implementations of the PAW 

method are as efficient as the original Car and Parrinello methods and as accurate as many full 

potential methods. They have the added benefit of ease of calculation of atomic forces, stress 

tensor and convergence of basis. A wide variety of ultrasoft and PAW pseudopotentials are 

available in the user community as well as source code for developing such potentials. More 

importantly there are readily-available, well-documented suites of pseudopotentials that have 

been tested by a broad user base.    

Exchange-Correlation Potentials, Local Density Approximation and the Generalized 

Gradient Approximation: Density Functional Theory is one of the most successful electronic 

structure methods precisely because of the simplicity of the underlying exchange-correlation 

functional. Practical application of the HK theorem through the KS equations requires a both an 

assessment of the exchange correlation functional and a numerically efficient scheme for 

interpolating the energy for a range of charge densities. Since the original formulation of the KS 

equations the nature of the exchange correlation potential has been studied in some detail. The 

Local Density Approximation is the foundation of all these approximations. Within the LDA 

only knowledge of the exchange correlation energy of the homogeneous electron gas is required. 

Thiis approximated as the sum of exchange and correlation potentials, the first given by a basic 

analytical form and the second calculated using Monte Carlo methods [17]. These data were then 

fit to functional forms to improve computational efficiency and parameterized for electronic 

structure calculations [18].   
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The Local Density Approximation has been found to be a surprisingly accurate in a wide variety 

of systems. The initial formulation was expected only to valid for volumes with slowly varying 

electron densities, a condition that is not well satisfied in many crystals. It is generally believed 

that the LDA approximation underestimates the exchange energy (by~10%) and overestimates 

the correlations energy (2%) and that these errors partially cancel each other out [42]. However, 

LDA is particularly unsatisfactory for low electron densities, such near a surface, and that has 

made the approximation problematic for calculations of atoms and molecules. Still, LDA 

produces reasonable accurate bond lengths and geometries for some molecules. 

The efficacy of the KS equations and the need for highly accurate simulations has resulted in 

systemic improvements to the LDA. The most successful approaches, based on generalized 

gradient approximations (GGA), include information on the effects of inhomogeneities in the 

electron gas on the exchange correlation potential. The gradient corrections are constructed to 

satisfy intrinsic sum rules and are designed to maintain the accuracy of LDA while correcting the 

errors introduced by large gradients.  Using FP-LMTO Ozolins and Korling calculated the 

changes in lattice constants and bulk modulus produced by using the GGA proposed by Perdew 

and Zhang (sometimes referred to as PW91)[43]. They found a systematic improvement in 

equilibrium volumes and bulk modulus for 3d, 4d, and 5d transition metals, with the mean error 

decreasing on average by 50% for both quantities across the series[44]. Other researchers also 

found that early GGA methods and PW91correctly produces the correct bcc ground state for 

crystalline Fe where the Local Spin Density Approximation erroneously predicts an fcc ground 

state [45.46]. 

Recently, other GGA methods are being validated that produce better energetics and better 

represent low density regions. Hybrid schemes based on a weighted mixing of HF exchange and 

DFT correlation have gained favor in the quantum chemistry community [47]. Also, another 

class of GGA functional has been self consistently matched to high and low electron densities, 

making it efficient and well suited for metallic systems with internal or external surfaces [48]  

N.3 Practical Application of DFT in Metals and Alloys: 

As illustrated in Figure N.2 DFT methods come in a variety of forms, they also vary widely in 

their level of maturity and efficacy.  Until recently most of the mixed basis methods (FPLMTO 

and FLAPW) were closely held academic codes, now there are several freeware and commercial 

options (see Table 3). While highly accurate, these methods have a more complex set of 

adjustable basis parameters than PPW methods. There are a variety of PPW methods some 

available as freeware and some commercially, and some have well developed pseudopotential 

libraries. New users should verify a given code base has the necessary features for running their 

application before investing resources into a method. All of the methods shown in Table 3 should 

produce accurate results for the simple applications outlined in this section. 
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Table 3. Partial list of currently available DFT programs. Some are available for a license fee and 

others are available at no cost. Many of the methods have associated users groups and some have 

graphical user interfaces. Materials Science trade organizations are beginning to track the status 

of software (see for example: http://iweb.tms.org/forum) and may provide useful updates to this 

table. 

 

Method Acronym/Name Fee POC 

PPW 

ABINIT No 

http://www.abinit.org/, Prof. X. Gonze, 

Université catholique de Louvain, Physico-

Chemistry and Physics of Materials, Louvain-

la-Neuve, BELGIUM 

CASTEP Yes 
Accelrys, Inc., San Diego, CA 92121 

http://accelrys.com/products/materials-studio 

Quantum Expresso: opEn 

Source Package for Research 

in Electronic Structure, 

Simulation, and Optimization 

No 

P. Giannozzi, Universit`a di Udine and 

Democritos National Simulation Center, Italy 

http://www.quantum-espresso.org 

 
VASP: Vienna Ab-initio 

Simulation Package 
Yes 

Prof. J. Hafner, Institute of  Materialphysik  

Wien University Austria, 

http://cms.mpi.univie.ac.at/vasp/ 

LCAO DMOL3 Yes 
Accelrys, Inc, San Diego, CA 92121 

http://accelrys.com/products/materials-studio 

 SIESTA Yes 

Prof. J.A. Torres, Universidad Autonoma de 

Madrid, Spain 

 http://www.icmab.es/siesta, 

http://www.nanotec.es/ 

FP-

LMTO 
LmtART No 

http://www.fkf.mpg.de/andersen/ 

S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996). 

 
RSPt : Relativistic Spin 

Polarised (test) 
No http://www.rspt.net/index.php 

FP-

LAPW 

WIEN2K Yes 

http://www.wien2k.at/index.html, Prof. 

Karlheinz Schwarz, Inst. f. Materials 

Chemistry, TU Vienna 

FLAIR 

 

 

 

Prof. M. Wienert, Univ. Wisconsin Milwaukee, 

weinert@uwm.edu 

QMD-FLAPW Yes 

Prof. A.J. Freeman, Northwestern Univ. 

Quantum Materials Design, Inc., 

http://flapw.com/news.html 

 

From crystal structure to input file, examples of VASP input files: 

Setting up the simulation cell for electronic structure calculations requires: the lattice vectors, the 

atomic positions and the chemical species at each site. The input file required for the PPW 

method VASP will be used to illustrate this process [49,50]. Typically the researcher starts with 

a phase and then refers to tables and textbooks to find the required quantities. For example in Ni-
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based superalloys Ni3Al is an important precipitate that significantly strengthens the Ni matrix 

phase. Using the tabulated data on alloy phases in W.E. Pearson’s Handbook of Lattice Spacings 

and Structures of Metals [51] the structure type is listed having a structure name (a representative 

material) AuCu3, the Strukturbericht designation L12, a lattice parameter of 3.567 Angstrom, 

with a space group of Pm3m. The Pearson classification for L12, AuCu3 is given as cP4 in the 

tables leading up to the Table of Classification of Structures of Metals and Alloys. A shortened 

version of the entry under cP4 is given in Table 4. After the first line describing the structure 

designations the atomic basis, the Wyckoff positions, are listed in terms of the atom type, the 

number of atoms at each symmetry distinct point and the internal coordinate. All the required 

information is now determined. The International Tables for X-Ray crystallography has more 

information for this cubic space group (number 221) and lists much more complicated crystal 

structures with this space group[34,52]. 

Table 4. Crystallographic information and atomic basis for L12, Ni3Al. 

Classification 

symbol 
Structure name 

Strukturbericht 

type 
Space group 

cP4 AuCu3 L12 Pm3m 

 Origin at center (m3m)   

 Equivalent positions:   

 Au:     1    a    m3m      0,0,0 

 Cu:     3    c    4/mmm  0, ½,½; ½,0, ½; ½,½,0. 

 

The VASP the input file for the lattice vectors and atomic basis is called POSCAR and a screen 

shot of the POSCAR file for Ni3Al is shown below. In POSCAR the title line is followed by the 

lattice constant from Pearson, the three lattice vectors for a cubic lattice in Cartesian coordinates. 

This is followed by the number of each chemical species, in this case 3 Ni atoms and one Al 

atom, and a keyword describing the format of the atomic basis. (Note that the order of the 

chemical species is important and must be consistent with the ordering of the pseudopotential 

input file.)  The atomic basis can be entered in either Cartesian (Keyword: CARTESIAN) or in 

terms of the three lattice vectors (Keyword: DIRECT). For the “Direct” mode the atomic 

positions correspond to  , where  are the lattice vectors scaled by the 

lattice parameter and xi are the values entered into POSCAR. Input using the CARTESIAN 

keyword is scaled only by the lattice constant: , where i, j, and k are unit 

vectors [100], [010], and [001] respectively.  

Fig. 2. Screen shot of input file describing crystal system and atomic basis for ’-Ni3Al.  
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Another, more complex example of an atomic basis is the δ-MoNi phase, which is also important 

in the Ni-based superalloys. In Pearson this topologically closed packed phase is listed as 

orthorhombic with lattice constants: a=9.108, b=9.108, and c= 8.852 Ang., containing 56 atoms 

with the space group P212121.  Table 4 gives the representative atomic positions listed as 14 

roman numbers with corresponding coordinates. The Wyckoff positions, listed in the 

International tables, for P212121, are shown in Table 5. The atomic coordinates are generated by 

using the last column of Table 5 with each of the 14 atomic parameters producing the expected 

56 atoms.  

Table 4. Crystallographic information and atomic parameters for δ-MoNi [51]. 

Phase System 
Strukturbericht 

type 

Space 

group 

   Est. % 

Mo[53] 

δ-MoNi 
Ortho-

rhombic 
-None- P212121 Atoms Atomic parameters  

    IV  0.4519   0.1153   0.5322 0 

    VI  0.4424   0.3662   0.5972 0 

    VIII  0.3882   0.0523   0.2748 0 

    IX  0.1337   0.0707   0.2157 0 

    X  0.3768   0.4358   0.8567 0 

    XII  0.0680   0.1442   0.9529 0 

    I  0.1763   0.4832   0.6425 80 

    XIII  0.0338   0.3398   0.1807 80 

    II  0.2289   0.2865   0.4098 91 

    V  0.2648   0.1993   0.7486 91 

    XI  0.3136   0.2464   0.0740 58 

    VII  0.0029   0.1969   0.6767 100 

    XIV  0.1885   0.0157   0.4960 100 

    III  0.1031   0.4192   0.9133 100 

 

Note however the atomic species for each site is still unknown, going back to the original 

reference for this crystallographic assessment we can find the chemical assignments for most but 

not all the atomic sites[53]. At finite temperatures all alloys show deviations from perfect 

ordering, however the composition of the studied δ-MoNi phase was Mo49.2-Ni and X-Ray 
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analysis could not unambiguously determine the chemistry on at least one of the sites. The 

electronic structure calculations can proceed by assuming a Mo50-Ni composition and the 

chemistry at the sites designated by XI as being occupied by Ni atoms. This is however just one 

possibility, and in principle a free energy model would include sampling the formation energy of 

other atomic arrangements at this composition.  

Table 5. Wyckoff Positions for Space group P212121 

Multiplicity 
Wyckoff 

letter 

Site 

Symmetry 
Coordinates 

4 a 1 (x,y,z),(-x+½,-y,z+½),(-x,y+½,-z+½),(x+½,-y+½,-z) 

     

Using Tables 4 and 5 the initial cell was constructed as shown in the screen shot of the POSCAR 

file in Figure 3. The Figure also shows a screen shot of the final cell configuration. Using VASP 

the lattice vectors and atomic positions were optimized within a spin polarized (ferro-magnetic) 

ultrasoft pseudopotential approximation. Note the slight change in the length of the orthorhombic 

lattice vectors and the change in atomic positions. At the start of the calculation the pressure was 

~ 16 kB and the largest force/atom was ~ 0.5 eV/Ang, after optimization the pressure was less 

than 0.5 kB and the atomic forces less than 2e-3 eV/Ang and the total energy change from the 

intial configuration was ~ 0.5 eV.  
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Figure 3. Screen shot of initial and final cell configurations for δ-Mo50-Ni. 

 

This and several other configurations were used to develop a simple free energy model of the Ni-

Mo system by approximating the configuration entropy [54]. 

Lattice parameters: While current PPW codes can optimize supercell geometries by 

minimizing in the diagonal components of the stress tensor, it is still useful to know how to 

calculate the lattice parameters using equations of state. Perhaps the most cited equation of state 

used for this purpose was developed by F.D. Murnaghan in 1944 [55]. Assuming that the bulk 

modulus (K) is a linear function of the pressure: 

    Initial Configuration                             Final Configuration 
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Figure 4: Energy as a function of volume for fcc Ni 

calculated using VASP. 

  

     

  (9) 

Such that the bulk modulus (K) and its 

derivative at zero pressure 

respectively are identified as:  

 respectively. Integrating equation 

(1) from zero pressure gives yields: 

. Using 

 we can identify   

and finally: 

    (10) 

Integrating two times and identifying  and  yields Murnaghan’s equation of state 

(MES): 

    (11) 

This somewhat complicated form can then be used to fit the energy as a function of volume 

calculated from electronic structure methods. For example Figure 4 shows the energy vs. volume 

for fcc Ni using PAW pseudopotentials and Table 6 gives the constants that produced the fitted 

curves.  

In general DFT will predict low temperature lattice constants to within a percent. The LDA will 

typically underestimate lattice parameters, while the later improved gradient corrected 

approximations do not follow this trend[57].  MES also produces an estimate of the bulk 

modulus and its derivative with respect to volume. There are reasonable alternatives to MES 

such as the Birch form [58] that is favored in some applications [59]. 

Recent improvements to the gradient corrections that are designed to alleviate problems in low 

charge density regions (i.e. internal voids, surfaces and surfaces interactions) have produced 

mean errors in lattice parameters of approximately 0.1% over a wide range of materials [59]. 
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Table 6. Results of MES fit to VASP total 

energies for fcc-Ni. 

 Ni -SA Ni - SP Exp.[56,51] 

 (eV) -21.67 -21.867  

 (Mbar) 1.9681 1.9420 1.876 

 4.7944 4.7628  

  43.429 43.684  

 (Å) 3.5150 3.5218 3.5238  

 

Elastic Constants: One of the primary uses of 

DFT in crystalline metals has been to predict 

lattice parameters and elastic constants. Initially 

the calculations were used to assess the validity of the LDA and the computational methods. 

However, as the LDA became more established and the exchange-correlation functionals became 

more refined it became routine for groups to predict the Cij of simple metals. In the early 1990’s 

DFT was used extensively to predict the elastic constants of a variety of high temperature 

intermetallics. Mehl and co-workers at the Naval Research Laboratory were one of the first 

groups to apply these methods and developed a robust strategy for assessing Cij for cubic and 

tetragonal crystal structures[60].  

The general approach is to express the free energy of the system as a function of the strain tensor 

acting on a small simulation cell volume. We can start from: , where 

dW is the infinitesimal work done by elastically distorting the crystal. Specifically 

 where we have used the definition of the elastic constants relating the 

applied stress to the resulting strain: . Assuming reversible and isothermal loading 

at zero pressure:  and we can write: . Changing 

notations from the fourth rank tensor to the reduced 2
nd

 rank tensor [60] we express the energy of 

the system around equilibrium using a Taylor series expansion in the strain: 

 (12)

V and P(V) are the volume and pressure of the undistorted lattice, dV is the change in volume 

produced by the strain  It is natural to apply strains to the simulation cell by transforming the 

primitive lattice vectors of the cell using the strain tensor : 
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Figure 4: Variation in fcc-Ni cell energy as a 

function of volume calculated using VASP. 
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considering only non-rotating strains. Now for the specific case of cubic crystals where: 

 then the double summation in the equation for the energy as a 

function of strain becomes: 

  

The effects of some applied strain are now explicitly coupled by elastic constants to changes in 

energy for a simulation cell with unit vectors . For example, take the case of a hydrostatic 

stress of  , this yields: . Identifying the bulk 

modulus ( ) we find: . Applying this form to the data in 

Figure MES_PAW for the spin polarized case yields bulk modulus of 2.01 Mbar, in good 

agreement with MES.  

In order to find the three independent elastic 

constants two other equations are required, and 

the normal convention is to apply two other, 

volume conserving, strains. For cubic systems 

usually  is found by applying

, with  being set by the constant 

volume constraint for a cubic cell: . 

Similarly,  is found by setting  and 

. This yields two other equations for 

the energy as a function of strain: 

 

 

The response of a unit cubic cell of Ni to such 

strains is shown in Figure E_CIJ. When the fits to the two curves are combined with the MES 

results the elastic constants can be resolved as shown for fcc Ni and L12 Ni3Al in Tables 2 and 3. 

The tabulated results are for spin averaged, spin polarized (ferro-magnetic), systems using LDA 

and GGA approximations.  Tables 7 and 8 show the results from a PWPP calculation (VASP) 

using ultrasoft and projected augmented wave pseudopotentials respectively.  Note that the LDA 
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Figure 5: Calculation of Cij from volume 

conserving strains applied to fcc Ni calculated 

using VASP. 
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and LSDA underestimate the lattice parameter and over estimate the elastic constants and the 

GGA results (PW91) show uniform improvement in lattice parameters and elastic constants. 

Finally, though PAW is assumed to be a better representation of the core states the USPP’s 

produce a more accurate misfit parameter. 

Table 7. Structural parameters for fcc Ni and L12 Ni3Al calculated using ultrasoft 

pseudopotentials in a PWPP method (VASP). Spin averaged and spin polarized (ferromagnetic) 

calculations in the Local Density Approximation and a Generalized Gradient Approximation 

(PW91) are used to predict the lattice parameter (Angstrom), elastic constants (Mbar) and misfit 

parameter ( ). As expected the LDA and LSDA 

underestimate the lattice parameters for Ni and Ni3Al. GGA and SGGA produce significantly 

more precise lattice parameters and elastic constants, with the SGGA calculations giving the 

most accurate misfit parameter. 

USPP             Spin Averaged                  Spin Polarized  

Metal Property LDA error GGA error LSDA error SGGA error Exp[51,56] 

Fcc a0 (Å) 3.4294 -2.7% 3.5258 0.1% 3.4221 -2.9% 3.5337 0.3% 3.5238 

 Ni K 2.515 35% 1.985 6.8% 2.383 28% 1.962 5.5% 1.860 

 C11 3.154 27% 2.506 1.0% 3.034 22% 2.380 -4.1% 2.481 

 C12 2.195 42% 1.725 11% 2.057 33% 1.753 13% 1.549 

 C44 1.358 9% 1.057 -15% 1.363 10% 1.253 0.9% 1.242 

 <err>   23%  6.8%   19%  4.8%   

              

L12 a0 (Å) 3.4893 -2.2% 3.5769 0.3% 3.4928 -2.1% 3.5784 0.3% 3.5670 

Ni3Al K 2.163 24% 1.777 2.1% 2.159 24% 1.787 2.7% 1.740 

 C11 2.749 21% 2.271 0.3% 2.778 23% 2.397 5.9% 2.264 

 C12 1.870 26% 1.529 3.3% 1.849 25% 1.481 0.1% 1.480 

 C44 1.431 11% 1.173 -8.7% 1.471 15% 1.240 -3.4% 1.284 

 <err>   17%  2.9%   18%  2.5%   

              

 0.0173 42% 0.0143 18% 0.0204 68% 0.0125 3% 0.0121 

 

Table 8. Structural parameters for fcc Ni and L12 Ni3Al calculated using Projected Augmented 

Wave pseudopotentials in a PWPP method (VASP). Spin averaged and spin polarized 

(ferromagnetic) calculations in the Local Density Approximation and a Generalized Gradient 

Approximation (PW91) are used to predict the lattice parameter (Angstrom), elastic constants 

(Mbar) and misfit parameter ( ). As expected the LDA and 

LSDA underestimate the lattice parameters. For Ni and Ni3Al, GGA and SGGA produce 

significantly more precise lattice parameters and elastic constants, with the SGGA calculations 

giving the most accurate misfit parameter. 

PAW               Spin Averaged                  Spin Polarized  

Metal Property LDA error GGA error LSDA error SGGA error Exp[51,56] 
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Fcc a0 (Å) 3.4197 -3.0% 3.5150 -0.2% 3.4258 -2.8% 3.5219 -0.1% 3.5238 

Ni K 1.144 -38% 1.968 5.8% 1.175 -37% 1.942 4.4% 1.860 

 C11 3.185 28% 2.480 0.0% 3.476 40% 2.704 9.0% 2.481 

 C12 2.227 44% 1.712 11% 2.019 30% 1.561 0.8% 1.549 

 C44 1.383 11% 1.121 -10% 1.618 30% 1.294 4.2% 1.242 

 <err>   25%  5%  28%  4%   

             

L12 a0 (Å) 3.4823 -2.4% 3.5685 0.04% 3.4927 -2.1% 3.5699 0.1% 3.5670 

Ni3Al K 2.183 25% 1.779 2.2% 2.171 25% 1.773 1.9% 1.740 

 C11 2.774 23% 2.264 0.0% 2.787 23% 2.343 3.5% 2.264 

 C12 1.888 28% 1.537 3.9% 1.863 26% 1.488 0.5% 1.480 

 C44 1.441 12% 1.189 -7.4% 1.488 16% 1.248 -2.8% 1.284 

 <err>   18%  2.7%  18%  1.8%   

             

 0.0181 49% 0.0151 24% 0.0193 59% 0.0135 11% 0.0121 

 

 

 

Entropic contributions to the free energy: In the last 10 years significant progress has been 

made in calculating the entropic contributions to the free energy of bulk phases and defects. This 

includes configurational, vibrational and electronic entropic terms. Examples of applications, 

including references reviewing the techniques, are given here. Electronic entropy has been 

shown to be important in calculating defect energies, such as vacancies in body centered cubic 

metals[61].  Contribution of thermal vibrations to the free energy as a function of volume 

(harmonic and anharmonic terms) has been used to estimate the thermal expansion of a variety of 

metals[62,63].  Configurational entropy for dilute solute concentrations are treated using the 

Bragg Williams approximations in conjunction with either lattice gas models and the Low 

Temperature expansion[64,65]. For solid solutions at high concentrations cluster expansion 

methods[66,67] are used to approximate the free energy on an Ising model lattice. Recent 

progress in methods development has automated parts of the construction and use of these 

techniques[1,68]. Van de Walle and co-workers have also attempted to include all three entropic 

contributions in modeling phases stability and to inform CALculation of PHAse Diagram 

methods (CALPHAD)[69]. These developments have significantly improved the efficiency and 

accuracy of the Cluster Expansion approach, particularly in its application to phase diagrams. 
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