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The use of different electron loss edges in energy filtered transmission electron microscopy 

(EFTEM) has allowed researchers to capture images of the morphology and size of precipitates 

in nickel-based superalloys.  In this work, we discuss a computational methodology for 

automated detection of secondary and tertiary γ’ precipitates in EFTEM images.  The optimum 

parameters for the automated region growing technique were identified using a combination of 

visual inspection and intensity information from the EFTEM images.  The microstructural 

statistics obtained from the segmented γ’ precipitates agreed with those of the manually 

segmented precipitates.  Then, automated segmented precipitates are used to extract 

microstructural information about the distributions of equivalent diameters of 656 tertiary 

precipitates along with the distances to the nearest secondary precipitates.  The significance of 

this technique is its ability to automate segmentation of precipitates in a reproducible manner for 

acquiring microstructural statistics that relate to both processing and properties. 

 

 

KEYWORDS: energy filtered transmission electron microscopy; EFTEM; automated detection; 

nickel-based superalloy; characterization 

1



1. INTRODUCTION 

 

The underlying γ’ precipitate structure in nickel-based superalloys plays a commanding role in 

the mechanical behavior of these alloys at high temperatures [1-3].  Previous work [4, 5] has 

shown that changes in processing can result in large changes in high temperature mechanical 

properties, such as creep and fatigue.  Therefore, it is vital to be able to characterize the statistics 

related to γ’ precipitates in these alloys to assess how influence of various processing conditions.  

Previous work by some of the present authors has shown that the use of automated image 

processing techniques are helpful in segmenting microstructure features that drive many of the 

strengthening mechanisms in titanium and nickel base super alloys [6-8].  Additionally, Tiley et 

al. [6] and others [9, 10] have shown that energy filtered transmission electron microscopy 

(EFTEM) is the state of the art technique for imaging γ’ precipitates.   

 

While much effort has been expended to refine techniques for imaging γ’ precipitates in EFTEM 

images, the analysis of these images is also very important and in many cases can be the 

bottleneck of the process.  Manual identification of the precipitate structure is very time-

intensive and may not be reproducible between researchers.  Automating the segmentation 

process for secondary and tertiary γ’ precipitates is required to accurately compare the influence 

of processing on the underlying γ’ structure.  Reliable assessment of microstructural statistics 

related to the precipitate size distributions and distances between precipitates is critical for 

models that predict precipitate microstructure evolution and mechanical properties.   

 

In this paper, we present an automated technique for detecting secondary and tertiary γ’ 

precipitates in EFTEM images of nickel-based superalloys.  The first section briefly describes 

the processing history for the nickel-based superalloy and the acquisition process for the EFTEM 

images.  The second section describes the automated technique used to identify the γ’ 

precipitates.  The third section then examines and optimizes several key parameters used in the 

automated technique.  Last, the fourth section uses this automated technique to segment the 

secondary and tertiary γ’ precipitates in eight EFTEM images and calculates the associated 

microstructural statistics.  The significance of this technique is its ability to automate 
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segmentation of precipitates in a reproducible manner for acquiring microstructural statistics that 

relate to both processing and properties. 

 

2. EXPERIMENTAL METHODOLOGY 

 

A nickel-based superalloy sample (Rene88DT) was cut from a forged disc developed under a 

Defense Advanced Research Projects Agency funded effort [11].  The sample was solutionized 

at 1050° C to dissolve primary γ’ and then water quenched and subsequently aged at 760°C for 

25 hours to produce a fine dispersion of uni-modal γ’ precipitates.    From earlier work, it is 

known that the Co and Cr preferentially segregate to the matrix material [6].  The Al, Nb, Ti, and 

Ni elements segregate to the ordered γ’.  Samples were cut and polished to produce TEM foils 

with a 50-nm thickness.  The samples were imaged on a Technai FEI 200-kV TEM using a 

Gatan Imaging Filter.  Previous work found that the Chromium edge in EFTEM images provided 

the best gamma prime precipitate contrast for quantifying precipitate sizes and area fractions 

[12].  In contrast to that work, this work uses 30 precipitates from Cr edge EFTEM images to 

find the optimum parameters for an automated segmentation technique. 

 

Figure 1 shows images of eight secondary (1-8) and eight tertiary (9-16) γ’ precipitates extracted 

from EFTEM images that were slow cooled.  Several problems with segmenting the γ’ 

precipitates are apparent from Figure 1, e.g., the morphology of the secondary precipitates, the 

changes in intensity within the precipitates, the intensity gradient at the boundaries, and a low 

level of noise.  Some of the intensity changes within the secondary precipitates are typically due 

to a low volume fraction of the precipitate within the thin film, i.e., during preparation, the TEM 

foil barely sliced through the precipitate in some locations (e.g., the upper right corner of the 

precipitate in image 3).  While the tertiary precipitates are all spherical in shape, the particles 

selected included some precipitates that would be difficult to manually segment (e.g., image 15) 

and even some overlapping particles (e.g., image 16). 

 

[INSERT FIGURE 1 HERE] 

 

3. AUTOMATED SEGMENTATION METHODOLOGY 
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While classical image processing techniques [13, 14] for segmenting image data have certain 

advantages, there are some limitations of using these techniques as well.  For instance, a classical 

approach to image processing consists of two steps [15]: (1) an enhancement step, in which the 

intensity difference between the features of interest and the background are amplified through 

the application of filters and transforms, and (2) a segmentation step, in which the features of 

interest are extracted from the subsequent image.  As Simmons and colleagues [15] point out, it 

is unrealistic to expect one segmentation technique to work on the vast number of materials 

microstructures.  Here, we have used the region growing technique to segment the γ’ 

precipitates.  Region growing algorithms are widely used in medical imaging applications [e.g., 

16-18] and should have the ability to even segment γ’ precipitates in EFTEM images with poor 

contrast.  

 

Region growing is a fundamental segmentation technique in image processing [13, 14].  The 

basic procedure for region growing is to start with a “seed” point and grow the region by adding 

neighboring pixels that have properties similar to the seed (e.g., similar intensity).  The region 

grows based on a similarity criteria and stops growth when no more neighboring pixels satisfy 

this criteria.  For example, the growth criterion is often based on the intensity difference between 

the neighboring pixel and the average intensity of the region.  For this example, a threshold 

parameter can be used for the stopping criterion; when the intensity difference for all 

neighboring pixels is above this threshold, growth of the region stops.  This “naïve” method can 

be used to segment the γ’ precipitates, but with a few disadvantages:   

 

1. The perimeter of the segmented particle can be very rough due to inherent noise within 

the image.  In reality, though, the surface energy of the γ’ precipitates will act to 

minimize the region perimeter.  While median or Gaussian filters can be used to reduce 

the noise within the EFTEM images, these methods will also blur the edges of the 

particle, making it difficult to accurately segment the particle boundaries. 

2. The threshold parameter used for a stopping criterion may need to be changed to 

accurately segment different particles.  Additionally, this threshold parameter may not be 

obvious based on visual observation of the region boundary, i.e., the precipitate interface 
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has a gradual intensity slope and multiple threshold parameters may appear to 

approximate the region boundary. 

 

We addressed these disadvantages to create a fully automated region growing technique for 

segmenting the γ’ precipitates.  First, to discourage non-spherical growth with the region 

growing technique, the addition process was modified to include a weighting factor that is a 

function of the local density of region pixels.  To implement this, the intensity difference is 

calculated for each pixel neighboring the region.  However, instead of adding the pixel with the 

closest intensity value, the intensity difference for each pixel is multiplied by a weighting factor 

function and the pixel with the lowest value is added.  In this research, the weighting factor 

function is given by  

 

( ) ceil
c

n

ew n
e

 
=  

 
, 

 

where n is the number of neighbors belonging to the region in a local neighborhood centered 

around each pixel and the constant c normalizes the weighting function so that the value of 

( ) 1w c = .  The ceiling function is used so that only pixels with a number of neighbors below c 

are adversely weighted.  By multiplying this weighting function by the intensity difference for 

each pixel, this places a lower probability of adding a pixel surrounded by a small number of 

pixels belonging to the region.   

 

Second, the stopping criterion of the “naïve” region growing was automated to select a threshold 

parameter for each precipitate in an unsupervised manner.  This is accomplished by 

incrementally increasing the threshold parameter for the region growing algorithm and finding 

the threshold parameter that maximizes a penalty function.  In this work, the penalty function is 

the intensity difference between mean intensities from the “inner” and “outer” regions.  For 

instance, the “inner” region can represent all pixels within the region and the “outer” region can 

represent the bordering pixels just outside the region.  The critical threshold parameter 

maximizes the penalty function and results in the optimum segmentation for the precipitate. 

 

5



Figure 2 illustrates how the automated stopping criterion works for a typical γ’ precipitate.  First, 

Figure 2(a) shows the region size (pixels) as a function of the threshold parameter selected for a 

seed point within the γ’ precipitate.  The size of the region increases as the threshold parameter 

increases, as shown in the accompanying images (where the perimeter pixels for the segmented 

γ’ precipitate is shown in red on the original image).  After a period of fast growth to the 

boundary, further increases in the threshold parameter result in only minor increases to the 

region size.  This illustrates the difficulty with choosing a threshold parameter based on visual 

observation alone.  With only minimal changes to the region size for higher threshold 

parameters, at what threshold is the particle accurately segmented? 

 

[INSERT FIGURE 2 HERE] 

 

To answer this question, Figure 2(b) shows the mean intensity of the region, the mean intensity 

of the neighboring pixels, and the intensity difference between these two areas as a function of 

the threshold parameter for the same γ’ precipitate.  Recall that the maximum intensity difference 

(red) is the stopping criterion.  For small threshold parameters, the intensity of the area outside 

the region is approximately equivalent to the intensity of the area inside the region, i.e., many of 

the pixels outside the region belong to the γ’ precipitate.  The abrupt increase in the intensity 

difference coincides with the region growing near the precipitate interface, as can be seen in 

Figure 3(a).  Again, recall that the optimum segmentation of the γ’ precipitate is defined as the 

threshold parameter that yields the maximum intensity difference between these two areas, as 

denoted by the red arrow.  In this automated manner, this routine quantitatively delineates the γ’ 

precipitate interface based on the intensity gradient across the interface.  The image in Figure 

3(b) shows the original image with the perimeter pixels for the segmented γ’ precipitate in red. 

 

There are several potential parameters that could be used to tune the results of the region 

growing algorithm.  For instance, the calculation of the intensity difference requires a border 

width (pixels) used for calculating the mean intensity of the outer region.  Additionally, the 

calculation of the region’s mean intensity can use pixels from the entire region or just pixels 

from the outer border of the region.  Moreover, the local density weighting function contains two 

parameters: the constant c and the size of the local neighborhood (m x m).  These parameters will 
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be investigated in the next section.  A combination of both visual inspection and quantitative 

comparison of the intensity difference for different segmented particles will be used to find the 

optimum parameters for segmenting secondary and tertiary γ’ precipitates from EFTEM images.    

 

4. SEGMENTATION OPTIMIZATION RESULTS 

 

4.1 Influence of intensity difference calculation 

The first parameter that was investigated was the width of the border just outside the region.  

Multiple gamma prime precipitates were segmented using seven different widths (in pixels): 1, 2, 

3, 4, 5, 6, and 7.  Additionally, the mean intensity of the region was calculated using (i) the entire 

region and (ii) the outer boundary layer of the region.  For these calculations, the values of the 

local density weighting function parameters were c = 9 and m = 5.  Figure 3 shows an example 

of how these factors influence the particle segmentation.  For the sake of brevity, only two 

different widths are used along with the two methods used for calculating the region mean 

intensity.  The numbers ‘2’ and ‘7’ refer to the border width in pixels, while the letters ‘i’ and ‘ii’ 

refer to the method for calculating the region mean intensity.  From Figure 3, a few trends are 

apparent through visual observation and supporting quantitative results: 

 

[INSERT FIGURE 3 HERE] 

 

1. As the width of the border used for the mean intensity outside the region is increased, 

the segmented precipitate size decreases.  However, this trend is drastically reduced 

or eliminated by using method ‘ii’ (the inner border) to calculate the region intensity. 

2. For method ‘i’, which uses the entire region to calculate the inner mean intensity, the 

stopping criterion misses the precipitate interface and allows the region to grow into 

the surrounding area, as evident in cases 2i and 7i.  Additionally, this method does an 

inadequate job of capturing certain geometric features in the primary γ’ precipitates 

(shown by red arrows). 

3. For method ‘ii’, which uses the outer boundary layer of the region to calculate the 

inner mean intensity, the stopping criterion appears to work well. 
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Based on these findings, method ‘ii’ is the optimum method for segmentation of the precipitates 

in this study.  The width of the border has less of an influence for this method, so a width of 7 

pixels will be used as the optimum border width parameter.   

 

4.2 Influence of local density weighting function parameters 

 

The second parameter investigated was the influence of the local density weighting function.  

The optimum border width and method for calculating the intensity difference from Section 4.1 

was used for this study.  All 30 γ’ precipitates were segmented using different values of m and c, 

which are listed in Table 1.  Recall that c normalizes the weighting function, so that a density of 

region pixels equal to or greater than c within the m x m local neighborhood is not adversely 

weighted.  Therefore, the parameter value of m/c = 3/1 does not adversely weight any pixels (i.e., 

the local density weighting function does not influence the region growing technique, w(n) = 1 

for all pixels).  Table 1 lists the average percentage change (rounded to the nearest percent) in 

area and perimeter for the 15 secondary and 15 tertiary γ’ precipitates for the m/c parameter 

combinations.  The percentage change in area and perimeter is calculated by comparing the 

statistics for the m/c combination of each precipitate with those of the m/c = 3/1 combination.  

The weighting function parameters have little effect on the precipitate area, but a large effect on 

the perimeter measurement for the γ’ precipitates.  The precipitate perimeter decreases as c is 

increased for a fixed neighborhood size (m). 

 

[INSERT TABLE 1 HERE] 

 

Figure 4 illustrates how the m/c parameters influence the segmentation of a tertiary γ’ precipitate.  

The perimeter of the segmented region is shown by red pixels on the original intensity image.  

First, the region starts to grow in a faceted manner as m/c2 approaches 0.5 (images at the far right 

in Figure 4).  This growth is due to the region growing algorithm adversely weighting all pixels 

that do not have at least 50% of their pixels in a local neighborhood, i.e., the growth is dominated 

more by local density of region pixels than the intensity of the added pixels.  This type of growth 

is inadequate for capturing the morphology of the precipitates.  Moreover, for low values of c, 

the region can grow in a fingering manner with a jagged interface (i.e., low percentage change in 
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the perimeter lengths in Table 1).  Therefore, a high value of c is ideal for growing a region with 

a smooth interface (compared to low c values) as long as faceted growth is avoided.  From this 

analysis, the optimum parameters for region growing are m/c values of 5/9 or 7/21.    

 

[INSERT FIGURE 4 HERE] 

 

4.3 Influence of initial seed location 

 

The third area to be investigated is the initial location of the seed point.  In the previous 

examples, the lowest intensity (darkest) pixel within the precipitate was selected as the seed 

point.  Based on the initial segmentation using the lowest intensity pixel, 250 random pixels 

within the precipitate were selected as starting seed points.  The optimum parameters from 

Sections 4.1 and 4.2 were used for this study.  After all 250 regions were grown, the statistics 

were analyzed.   

 

Figure 5 shows all of the random seed points on the original intensity image.  The color of the 

seed points denote the area of the region grown from that seed relative to the area of the region 

grown from the lowest intensity pixel.  Of the 250 regions, 191 of the regions were equal to 

(red), 38 were less than (green), and 21 were greater than (blue) the region grown using the 

lowest intensity seed point.  The spatial location and intensity of the seed point made a difference 

in the final segmented region.  First, seed points selected on the exterior of the precipitate have 

an increased chance of deviating from the segmentation produced using interior seed points.  

This effect is mainly influenced by the intensity difference in the interface region.  For example, 

the region in the lower right of the precipitate in Figure 5 has a higher mean intensity (lighter) 

than the rest of the precipitate and is closer to the intensity of the surrounding matrix.  Therefore, 

many of the seed points within this region had a higher or lower region area than seed points 

selected in the darker regions of the precipitate.  Based on these findings, seed points that 

accentuate the intensity difference between the precipitate and the matrix should be selected for 

the region growing technique, i.e., the darkest pixel in a dark particle or the lightest pixel in a 

light particle.  
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[INSERT FIGURE 5 HERE] 

 

4.3 Validation 

 

Using the optimum parameters outlined in Sections 4.1, 4.2, and 4.3, the initial precipitates were 

segmented using the region growing algorithm.  Figure 6 shows the original precipitates from 

Figure 1 with the perimeter of the segmented region shown by the red pixels.  For both the 

secondary and tertiary γ’ precipitates, a visual comparison of the segmented regions with the 

intensity images shows good agreement.  The region growing technique was even adequate at 

segmenting some of the more difficult precipitates, e.g., secondary precipitates with complex 

morphologies (1, 3, 4, 5, & 6) and a high intensity contrast within the precipitate (3 & 5) as well 

as tertiary precipitates that had very diffuse interfaces with intensities very near to the 

surrounding matrix (14, 15, & 16).   

 

[INSERT FIGURE 6 HERE] 

 

Additionally, 50 secondary and tertiary γ’ precipitates were selected to compare the difference 

between manual and automated segmentation.  All of the particles were segmented using the 

region growing technique with the optimum parameters.  The results are shown in Figure 7, 

which plots the area obtained via manual segmentation against the area obtained via the region 

growing technique.  The 45° line indicates a 1:1 correlation of the areas.  The areas found with 

the region growing technique are, on average, 14% smaller than those same precipitates 

segmented manually (i.e., 7% smaller equivalent diameter).  The inlaid images show several 

secondary and tertiary γ’ precipitates along with the perimeter of precipitates identified with 

manual (blue) and automated (red) segmentation techniques.  In this instance, manual 

segmentation tended to capture very light intensity differences in the interface region between 

the γ’ precipitate and the γ matrix.  However, in some cases, this method may actually capture 

some of the γ matrix pixels as well.  Moreover, the results obtained using manual segmentation 

are highly user-dependent.  In contrast to the manual segmentation, the automated region 

growing technique captures the precipitate and its interface based on a quantitative metric (the 
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intensity difference) in a reproducible manner.  In the event that the region growing technique 

should be tuned to the manual segmentation, the penalty function can be modified. 

 

[INSERT FIGURE 7 HERE] 

 

5. PRECIPITATE STATISTICS RESULTS 

 

The secondary and tertiary γ’ precipitates can now be segmented using the automated region 

growing technique to extract microstructural statistics from the EFTEM images.  Eight EFTEM 

images from a sample that was slow cooled after aging for 200 hours were examined because of 

the presence of both secondary and tertiary γ’ precipitates within the microstructure.  Figure 8(a) 

shows an example of one of the original intensity EFTEM images with the perimeters of the 

segmented secondary and tertiary γ’ precipitates in blue and red, respectively.  A number of 

microstructural statistics (e.g., area, equivalent diameter, perimeter, etc.) can now be extracted 

from the segmented precipitates.  Figure 8(b) shows an example of the distribution of equivalent 

diameters (nm) for the 656 tertiary γ’ precipitates segmented from these images.  The equivalent 

diameter for the tertiary γ’ precipitates was chosen as an example statistic, because most of the 

tertiary γ’ precipitates are spherical for this processing condition (unlike the secondary γ’ 

precipitates).  On average, the tertiary γ’ precipitates have an equivalent diameter of 26 nm and 

the distribution is lognormal.  For this microstructure, the secondary γ’ precipitate statistics are 

not easy obtained since unconnected segments of secondary γ’ precipitates within the EFTEM 

image can actually be part of the same secondary precipitate.  Several examples of this can be 

observed within Figure 8(a).  Therefore, a distribution of equivalent diameter for the secondary 

precipitates is not shown here; care should be used when using 2D statistics to describe 3D 

precipitates of complex morphology.  

 

[INSERT FIGURE 8 HERE] 

 

Another characteristic statistic that can be directly tied to the processing history of the 

microstructure is the nearest neighbor distances between precipitates.  Again, the nearest 

neighbor distances between secondary γ’ precipitates from 2D images are skewed in that they 
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may not represent the closest distance between precipitates, but rather the closest distance 

between branches of the same precipitate (see Figure 8(a)).  Of particular interest is the nearest 

neighbor distance between the secondary and tertiary γ’ precipitates.  For each tertiary γ’ 

precipitate, the distance to the nearest secondary γ’ precipitate was calculated.  Here, the distance 

is calculated as the minimum distance from the segmented boundary of the tertiary precipitate to 

the boundary of the secondary precipitate.  Figure 9 shows the distribution of nearest neighbor 

distances for the 656 tertiary γ’ precipitates.  The average nearest neighbor distance was 94 nm.  

Taking into account the average equivalent diameter of the tertiary γ’ precipitates, the average 

distance to the centroid of the tertiary precipitate (ideally where nucleation begins) is 

approximately 107 nm. 

 

[INSERT FIGURE 9 HERE] 

 

Interestingly, the distribution also quantitatively captures several effects within the 

microstructure.  First, the low occurrence of tertiary precipitates within 50 nm of the secondary 

precipitates (~8%) reflects that there is a zone around the secondary precipitates in which tertiary 

precipitates do not grow.  This may result from the segregation of elements within the vicinity of 

the boundary [6, 10].  The width of this zone has important implications for Ni-based 

superalloys, because the spatial distribution of γ’ precipitates impacts the overall mechanical 

properties. 

 

Second, the highest or extreme value of the nearest neighbor distance (306 nm) may indicate the 

spacing of the secondary γ’ precipitates.  That is, there are no tertiary γ’ precipitates greater than 

this distance because within a certain distance from the nearest secondary precipitate (~612 nm) 

the chemical composition is adequate for another secondary γ’ precipitate to form.  In this 

respect, the extreme value statistics of the nearest neighbor distances can give some insight into 

the maximum spacing of secondary γ’ precipitates.  In previous work, the distances between 

precipitates have been calculated using the equivalent diameter of the precipitates.  Clearly, 

considering the tortuous morphology of the secondary γ’ precipitates, the present technique for 

measuring nearest neighbor distances provides a much more accurate estimation of these 

distances, as well.   
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The ability to gather statistical information on both secondary and tertiary precipitates provides a 

great tool for the modeling community that has relied heavily on limited analysis of small 

particle populations.  This has been driven by the labor-intensive manual techniques used to 

segment images with difficult intensity gradients across particle boundaries.  The future of 

characterizing γ’ precipitates in Ni-based superalloys relies not only on better techniques for 

imaging, but also better techniques for segmenting large numbers of γ’ precipitates in an 

automated manner. 

 

Conclusions 

 

In this work, we discuss a computational methodology for automated detection of secondary and 

tertiary γ’ precipitates in energy filtered transmission electron microscopy (EFTEM) images.  

Several important parameters for the automated region growing technique were investigated 

using a combination of visual inspection and intensity information from the EFTEM images.  

These parameters were related to the method used for calculating the stopping criterion, the local 

density weighting function, and the seed point selection method.  After optimizing these 

parameters, the microstructural statistics obtained from the γ’ precipitates segmented with the 

automated technique were compared with the same precipitates segmented manually.  On 

average, the results show that the precipitate area (equivalent diameter) obtained using the 

automated technique is approximately 14% (7%) lower than that of the same precipitates 

segmented manually.  The automated region growing technique presented here is suitable for 

detecting secondary and tertiary γ’ precipitates of complex morphology and varying intensity 

contrast in a reproducible manner. 

 

This technique was then used to segment the secondary and tertiary γ’ precipitates from EFTEM 

images of a single crystal nickel-based superalloy that was slow cooled after aging for 200 hours.  

The segmented precipitates were used to calculate average/extreme microstructural statistics for 

this processing condition.  In addition to calculating the distribution of tertiary precipitate 

equivalent diameters, the distribution of distances from 656 tertiary precipitates to the nearest 

secondary precipitates was calculated.  The extreme values of the distribution shows that the 
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majority of tertiary γ’ precipitates are located greater than 50 nm and less than 300 nm from the 

secondary γ’ precipitate surfaces for this processing condition.  The significance of this 

technique is its ability to automate segmentation of precipitates in a reproducible manner for 

acquiring microstructure statistics that relate to both processing and properties. 

 

References 

 

[1] Reed R.C., The Superalloys Fundamentals and Applications, (Cambridge, UK, 

Cambridge University Press, 2006). 

[2] Telesman J., Kantzos P., Gayda J., Bonacuse PJ, Prescenzi A., Superalloys 2004, 

Warrandale PA, TMS Publications (2004), p.215. 

[3] Stoloff N.S., Superalloys II, New York, John Wiley (1987) p. 61. 

[4] Sondhi SK., Dyson BF, and McLean, Acta Materialia, Vol 52 (2000) p. 1761. 

[5] Fahrmann M., Hermann W., Fahrmann E., BoegliA., Pollock TM., and Sockel HG., 

Mater. Sci and Eng., A271 (1991) p. 122. 

[6] Tiley J., Viswanathan GB., Srinivasan R., Banerjee R., Dimiduk DM, and Fraser HL., 

Acta Materialia, Vol 57 (2009) p. 2538-2549. 

[7] Tiley J., Searles T., Lee S., Kar S., Banerjee R., Russ J.C., Fraser H.L., Mat. Science and 

Eng A, 372 (2004) p. 191-198. 

[8] Collins P.C., Welk B., Searles T., Tiley J., Russ J.C., Fraser H.L., Mat. Science and Eng 

A, 508 (2009) p. 174-182. 

[9] Viswanathan G.B., Sarosi P.M., Henry M.F., Whitis D.D., Milligan W.W., and Mills 

M.J., Acta Materialia 53 (2005) p. 3041. 

[10] Sarosi P.M., Viswanathan G.B., Whitis D.D., Mills M.J., Ultramicroscopy 103 (2003) p. 

83. 

[11] Littles Jr. J.W., Pettie R.G., Schirra J.J., Cowles B.A., Holmes R.A., Russ S.M., Materials 

damage prognosis, Warrendale PA, TMS Publications (2005) p. 23. 

[12] Srinivasan R., Banerjee R., Hwang J.Y., Viswanathan G.B., Tiley J., Dimiduk D.M., 

Fraser H.L., Physical Review Letters 102 (2009) 086101. 

[13] Russ, J.C., The Image Processing Handbook, 5th Edition (Boca Raton, FL, CRC Press, 

2007). 

14



[14] Gonzalez, R.C., Woods, R.E., Digital Image Processing, 2nd Edition (Upper Saddle 

River, NJ, Prentice-Hall, 2002). 

[15]  Simmons, J.P., Chuang, P., Comer, M., Spowart, J.E., Uchic, M.D., De Graef, M., 

MSMSE 17 (2009) 025002. 

[16] Law, T.S., Heng, P.A., Medical Imaging 2000: Image Processing, Kenneth Hanson 

(Editor), Proceedings of SPIE, 3979 (2000) 906-916. 

[17] Pohle, R., Toennies, K.D., Medical Imaging 2001: Image Processing, Milan Sonka, 

Kenneth Hanson (Editor), Proceedings of SPIE, 4322 (2001) 1337-1346. 

[18] M. del Fresno, M. Vénere, A. Clausse, Computerized Medical Imaging and Graphics, 33 

(2009) 369-376. 

 

 

15



Table 1 
The percent change in the area, perimeter, and equivalent diameter measurements for the 
secondary/tertiary γ’ precipitates when compared to region growing unbiased by the weighting 
function (m/c = 3/1). 
 

m c Secondary γ’ 
Area Change 

Tertiary γ’     
Area Change 

Secondary γ’ 
Perimeter Change 

Tertiary γ’  
Perimeter Change 

3 1 Segmentation is unbiased by local density weighting function 
3 2 0  + 1% -8 % -17 % 
3 3 0 + 2% -14 % -26 % 
3 4 - 1% 0 -27 % -39 % 
3 5 -1% + 1% -28 % -40 % 
5 3 0 0 0 -2 % 
5 5 0 0 -2 % -6 % 
5 7 0 0 -5 % -14 % 
5 9 0 + 2% -11 % -25 % 
5 11 -1% 0 -26 % -39 % 
7 5 0 0 0 0 
7 9 0 0 0 -2 % 
7 13 0 0 -2 % -6 % 
7 17 0 + 1% -7 % -17 % 
7 21 0 + 1% -17 % -32 % 

 

16



Figure 1 
 
Images showing the variations in precipitate morphology for primary (1-8) and secondary (9-16) 
γ’ precipitates. 
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Figure 2 
 
(a) Plot showing the region size as a function of the stopping threshold parameter.  (b) Plot 

showing the mean intensity for the region, the area just outside the region, and the intensity 

difference between the two areas as a function of the stopping threshold parameter.  The arrow 

and image correspond to the region with the maximum intensity difference, which is used for the 

automated region growing stopping criterion.   

 

  
(a) (b) 
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Figure 3 
 
Images showing how the width of the border used in the mean intensity calculation and the 
choice of method for calculating the region mean intensity influences the segmentation of a 
secondary γ’ precipitate.  The notation refers to the border width (i.e., the numbers 2 and 7 are 
the border width in pixels) and the two methods for calculating the region mean intensity, i.e., (i) 
using pixels from the entire region or (ii) just using pixels from the outer border of the region 
(using the same aforementioned border width). 
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Figure 4 
Images showing the influence of the local density weighting function parameters on the 
segmentation of a tertiary γ’ precipitate.  The parameters c and m refer to a normalization 
constant c for the weighting function and the size of the local neighborhood (m x m), 
respectively.   
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Figure 5 
 
Images showing the intensity image of the tertiary γ’ precipitate along with the 250 random seed 
point locations.  The colors correspond to the size of the segmented region relative to the region 
grown using the lowest intensity (darkest) seed point.   
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Figure 6 
 
Images showing the segmentation of the region growing technique with the optimum parameters 
(border width of 7 pixels, method ‘ii’, m/c = 5/9) for variations in precipitate morphology for 
primary (1-8) and secondary (9-16) γ’ precipitates. 
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Figure 7 
 
Plot comparing the area of 50 manually segmented precipitates versus the area of these same 
precipitates segmented with the region growing algorithm.  The images show examples of some 
of the secondary and tertiary precipitates with the perimeter of the manually and automated 
precipitates shown in blue and red, respectively. 
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Figure 8 
 
(a) Intensity image with segmented secondary (blue) and tertiary (red) γ’ precipitates using the 

automated technique.  (b) Histogram assembled from multiple EFTEM images, which shows the 

distribution of equivalent diameters (nm) for 656 tertiary γ’ precipitates.  The average equivalent 

diameter is 26 nm ± 13 nm. 

 

  
(a) (b) 
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Figure 8 
 
Histogram showing the distribution of nearest neighbor distances (nm) for 656 tertiary γ’ 

precipitates to the nearest secondary γ’ precipitates.  The average nearest neighbor distance is 94 

nm ± 39 nm. 
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