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  Detachment	
  
out	
  of	
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  Mabry,	
  in	
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Died	
  October	
  16,	
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  of	
  injuries	
  
suffered	
  when	
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  aVacked	
  by	
  
an	
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  device	
  in	
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Mo*va*on	
  

•  Urgent	
  need	
  for	
  effec/ve	
  padding	
  materials	
  to	
  
minimize	
  severity	
  of	
  blast-­‐related	
  injuries	
  due	
  to	
  
improvised	
  explosive	
  devices	
  (IEDs)	
  

•  For	
  use	
  in	
  helmets,	
  personnel	
  protec/ve	
  equipment	
  
(PPE),	
  vehicle	
  interiors,	
  etc.	
  

•  Difficulty	
  in	
  injury	
  detec/on	
  and	
  the	
  resul/ng	
  
intractability	
  of	
  injuries	
  results	
  in	
  long-­‐term	
  
treatment,	
  suffering,	
  and	
  costs	
  to	
  the	
  Army	
  

•  Need	
  a	
  method	
  for	
  rapidly	
  evalua/ng	
  efficacy	
  of	
  
candidate	
  materials	
  for	
  various	
  applica/ons	
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Determina*on	
  of	
  Viscoelas*c	
  Proper*es	
  of	
  
Foam	
  Materials	
  

•  GOAL:	
  Determine	
  material	
  response	
  (transfer	
  func/on)	
  in	
  the	
  frequency	
  domain	
  
•  RATIONALE:	
  Preliminary	
  part	
  of	
  blast	
  wave	
  imparts	
  an	
  impulsive	
  force	
  on	
  the	
  

vic/m	
  
•  Input	
  provided	
  by	
  impact	
  hammer;	
  force	
  =	
  F(s)	
  
•  Output	
  is	
  the	
  accelera/on	
  of	
  the	
  mass,	
  A(s)	
  

•  Frac/onal-­‐order	
  models	
  that	
  feature	
  a	
  three	
  parameter	
  model	
  in	
  which	
  
“frac/onal	
  deriva/ves”	
  PROVIDE	
  MORE	
  ACCURACY	
  AND	
  FLEXIBILITY	
  IN	
  
MODELING	
  DYNAMIC	
  BEHAVIOR	
  OF	
  FOAM.	
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Challenges	
  

•  Most	
  padding	
  materials	
  exhibit	
  viscoelas/c	
  behavior	
  
•  Dynamic	
  behavior	
  is	
  nonlinear	
  and	
  frequency	
  
dependent	
  

•  Cannot	
  be	
  accurately	
  modeled	
  using	
  simple	
  lumped-­‐
parameter	
  elements	
  
–  spring,	
  k	
  (energy	
  storage)	
  
–  damper,	
  b	
  (energy	
  dissipa/on	
  

Rapid	
  Quan*fica*on	
  of	
  Energy	
  Absorp*on	
  &	
  Dissipa*on	
  Metrics	
  for	
  PPE	
  Padding	
  Materials	
  
Short-­‐Term	
  Innova/ve	
  Research	
  (STIR)	
  Grant	
  #	
  55332EGII,	
  Final	
  Presenta/on,	
  20	
  October	
  2009	
  

Determina*on	
  of	
  Viscoelas*c	
  Proper*es	
  of	
  
Foam	
  Materials	
  

•  Previously	
  considered	
  two	
  approaches	
  to	
  modeling	
  dynamic	
  behavior	
  of	
  foam	
  	
  

1.  Integer-­‐order	
  transfer	
  func/on,	
  featuring	
  “tradi/onal”	
  linear	
  springs	
  and	
  dampers,	
  

i.e.,	
  Hooke’s	
  Law	
  springs	
  and	
  viscous	
  damping,	
  respec/vely	
  

2.   Frac*onal-­‐order	
  models	
  that	
  feature	
  a	
  three	
  parameter	
  model	
  in	
  which	
  “frac/onal	
  

deriva/ves”	
  are	
  used	
  

•  SIMULATIONS	
  INDICATE	
  THAT	
  OPTION	
  #2	
  PROVIDES	
  MORE	
  ACCURACY	
  AND	
  

FLEXIBILITY	
  IN	
  MODELING	
  DYNAMIC	
  BEHAVIOR	
  OF	
  FOAM.	
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Frac*onal	
  Deriva*ve???	
  

spring damper 

€ 

F = kx

€ 

F = b˙ x € 

α = 0

€ 

α =1

€ 

F = γ x(α )
viscoelastic material 
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Frac*onal	
  Deriva*ves	
  to	
  Model	
  Foam	
  Behavior	
  

represents pure 
stiffness behavior of 

material 

represents a combination of  
stiffness and dissipation 

behavior of material 

•  Use	
  a	
  three-­‐parameter	
  impedance-­‐based	
  (frequency	
  domain)	
  model	
  to	
  

represent	
  viscoelas/c	
  behavior	
  of	
  the	
  foam	
  based	
  on	
  force	
  input	
  and	
  

accelera/on	
  response	
  data	
  

  G0	
  =	
  shear	
  modulus	
  

  G1	
  =	
  modulus	
  that	
  represents	
  shear	
  s/ffness	
  and	
  dissipa/ve	
  behavior	
  of	
  the	
  foam	
  

  α	
  =	
  order	
  of	
  the	
  frac/onal	
  deriva/ve;	
  used	
  to	
  determine	
  G0	
  and	
  G1	
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Advantages	
  

•  Ability	
  to	
  use	
  lumped-­‐parameter	
  modeling	
  
techniques	
  for	
  simula/ons	
  
–  simplified;	
  increased	
  accessibility	
  

–  more	
  unified	
  modeling	
  approach;	
  fewer	
  interfaces	
  
between	
  models	
  

blast	
  (CFD	
  
model)	
  

head	
  
dynamics	
  

padding	
  
material	
  

helmet	
  
dynamics	
  

combine 
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Overall	
  Modeling	
  Approach	
  

CFD model provides 
incident blast pressure 

time history 

bond graph model with 
integer-order and 

fractional-order lumped 
parameter elements 



1/22/10 

6 

Rapid	
  Quan*fica*on	
  of	
  Energy	
  Absorp*on	
  &	
  Dissipa*on	
  Metrics	
  for	
  PPE	
  Padding	
  Materials	
  
Short-­‐Term	
  Innova/ve	
  Research	
  (STIR)	
  Grant	
  #	
  55332EGII,	
  Final	
  Presenta/on,	
  20	
  October	
  2009	
  

Padding	
  Materials	
  Used	
  in	
  Tes*ng	
  

•  Used	
  two	
  types	
  of	
  commercially	
  available	
  foam	
  in	
  lieu	
  of	
  
candidate	
  padding	
  materials	
  to	
  be	
  provided	
  by	
  ARL	
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Determining	
  Model	
  from	
  Experimental	
  Data	
  

1.  Acquire	
  input	
  force	
  and	
  
accelera/on	
  response	
  data	
  from	
  
impact	
  tes/ng	
  

2.  Compute	
  averaged	
  power	
  
spectra	
  from	
  five	
  experimental	
  
runs	
  	
  

3.  Apply	
  curve-­‐filng	
  algorithm	
  to	
  
compute	
  a	
  plot	
  of	
  the	
  transfer	
  
func/on	
  between	
  input	
  force	
  
and	
  accelera/on	
  of	
  mass	
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Determining	
  Model	
  from	
  Experimental	
  Data	
  

4.  Compute	
  real	
  and	
  imaginary	
  
parts	
  of	
  transfer	
  func/on	
  data	
  

5.  Perform	
  a	
  linear	
  regression	
  on	
  
each	
  part	
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Transfer	
  Func*on	
  Curve	
  Fit	
  Results	
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Results:	
  Material	
  Parameters	
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Valida*on	
  of	
  Model	
  vs.	
  Experimental	
  Data	
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Material	
  Model	
  Simula*ons	
  
GOALS	
  

1.  Verify	
  that	
  three-­‐parameter	
  model	
  material	
  proper/es	
  that	
  were	
  determined	
  
from	
  impact	
  tests	
  are	
  accurate	
  

2.  Determine	
  onset	
  of	
  satura*on:	
  material	
  can	
  no	
  longer	
  store	
  or	
  dissipate	
  energy	
  
due	
  to	
  blast	
  pressures;	
  maximally	
  compressed	
  during	
  loading;	
  acts	
  like	
  a	
  mass,	
  
i.e.,	
  compliance	
  and	
  dissipa/ve	
  proper/es	
  are	
  effec/vely	
  equal	
  to	
  zero	
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Blast	
  Pressure	
  Time	
  Histories	
  from	
  
CFD	
  Model	
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Model	
  Assump*ons	
  

•  Frontal	
  area	
  of	
  helmet	
  =	
  0.05	
  m2	
  

•  Foam	
  pad	
  thickness	
  =	
  5mm	
  
•  Satura/on	
  occurs	
  when	
  pad	
  is	
  compressed	
  down	
  to	
  
1mm	
  

•  Vic/m	
  is	
  knocked	
  over	
  by	
  blast,	
  i.e.,	
  no	
  impact	
  with	
  
objects	
  such	
  as	
  a	
  vehicle,	
  structure,	
  etc.	
  
–  results	
  in	
  a	
  free-­‐free	
  boundary	
  condi/on	
  for	
  helmet	
  mass	
  
and	
  mass	
  of	
  the	
  vic/m’s	
  head	
  

–  vic/m’s	
  resistance	
  to	
  mo/on	
  can	
  be	
  easily	
  incorporated	
  
into	
  model	
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This paper concerns the development of a combined experimental and simulation approach to assist in rapidly
quantifying metrics that characterize the energy absorption/dissipation capacity of candidate materials to be
used in retrofitted helmets and other personnel protective equipment (PPE) in an explosion environment.
The dynamics of a cross section of a helmet, padding material, and a proportional mass that represents the
head of the victim, are modeled using impedance-based bond graphs that feature primitives whose constitutive
behaviors are described using fractional derivatives. Force inputs to the model are derived from computational
fluid dynamic (CFD) models of improvised explosive devices (IED) with a range of net explosive weights
(NEW.) Metrics such as the saturation point of the material with respect to maximum blast loads, and the
ratio of the total blast energy to the energy that is transmitted to the victim, are used to rate two candidate
materials.

1 Introduction and Thesis

The use of energy-absorbing/dissipating materials in personnel helmets to reduce the effects of blast pressures
can have unanticipated adverse effects. The presence and/or configuration of these materials can focus
energy in such a way that it can cause unforeseen traumatic brain injuries (TBI). There is a wide range of
candidate materials, particularly viscoelastic materials, whose abilities to both dissipate and absorb energy
vary considerably. These abilities are difficult to quantify and model using linear lumped-parameter modeling
techniques and bulk material properties. This challenge is further complicated, given the extreme nature of
the input forcing functions encountered in a blast environment, i.e., short-duration impulses that result in
high rates of energy transfer to a victim.

The authors posit that using fractional-derviative-based material models for viscoelastic padding ma-
terials, allows the use of a lumped-parameter modeling approach, which will yield more accurate results
than those with linear material models. This approach eliminates costly and time-consuming computations
associated with finite element modeling approaches, which are not necessary for significant portions of the
model that are relatively incompressible, i.e., the helmet shell material and the victim’s head, as compared
to the helmet padding material.

2 Overall Approach

The overall approach of the work presented in this paper is shown in Figure 1. To assess the dynamic
behavior of the helmet padding material applied as a protective material in explosive environments, it was
necessary to determine input forces that are imparted to a victim in a wide range of explosive events, i.e.,
of varying intensity. Clutter and Connolly [2] performed an interdisciplinary study in which computational
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Figure 1: Overall Approach

fluid dynamic analysis (CFD) was used to generate time histories of blast pressures as experienced by a
virtual victim. These time histories were used to compute Input forces, as determined by the pressures at
the center of the victim’s helmet, as shown in Figure 2. An example of an input force time history for a
particular net explosive weight, i.e., explosion intensity, is shown in Figure 3. Material properties of the foam

Figure 2: CFD model of blast interaction with victim

Figure 3: Time history of blast force transmitted to victim
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padding materials are determined by subjecting them to a impulsive force input, which is similar to that of
an explosion, albeit on a smaller scale. Acceleration and force data from these experiments are used to form
experimentally determined transfer functions - that feature fractional exponents of the complex frequency, s,
from which material properties are extracted. The experimental setup and protocols are detailed in Section
3 and the procedure for determination of material properties in the context of a fractional-derivative model
are detailed in Section 4.

3 Experimental Setup and Protocols

The experimental test setup is shown in Figure 4. The test article consisted of two pieces of viscoelastic

Figure 4: Experimental setup

foam, 0.25 inch thick by 1 .25 inch square, adhered to an aluminum block, 0.5 inch thick by 1.25 inch
square, using a thin layer of ethyl cyanoacrylate applied with a brush. A piezoelectric accelerometer was
attached in the z coordinate through a threaded hole at the bottom of the aluminum block. The test article
was secured using a vice grip and held in minimal compression. An impulse hammer implemented with a
piezoelectric accelerometer was used to tap the specimen. Data was collected at a rate of 1 kHz with a USB
data acquisition accessory and LabViewTMrunning on a notebook computer. The experimental procedure
was repeated five times for each type of padding material.

Issues that were encountered and their subsequent resolutions included:
1. A 60 Hz ground loop that was eliminated by creating one common ground among all electronics.
2. Double-hit phenomena were encountered when using harder tips because of the deformation of the

aluminum. Therefore, it was necessary to use the softest tip available in the kit.
3. Aliasing issues were a problem due to the short nature of the test, which were remedied by using a

higher sampling rate.
4. The natural frequency of the system was too low to obtain viable acceleration data - this required

using an aluminum block instead of titanium, which had been the preferred metal, due to its lower loss
coefficient. Further, this also required a thinning of the foam pads to increase the effective stiffness of the
test article. Two test specimens, each with a different viscoelastic padding material were used for the tests.
The physical characteristics of these materials are given in Table 1.

4 Helmet Padding Model Using Fractional Derivatives

A schematic that represents a cross section of the helmet, padding material, and a proportional mass that
represents the victim’s head is shown in Figure 5. The corresponding bond graph model of the dynamics of
this systems is shown in Figure 6.
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padding material density cell color
(g/cm3) type

Ethylene Vinyl Acetate 0.032 closed white

Acrylonitrile Butadiene Rubber / 0.088 closed black
Polyvinyl Chloride

Table 1: Padding Material Physical Characteristics

Figure 5: Helmet cross section

Figure 6: Impedance-based bond graph with viscoelastic primitive element

The experimentally determined transfer function is extracted using impedance-based techniques [4].

A(s)
F (s)

=
s2X(s)
F (s)

(1)

where A(s) is the acceleration of the mass and F (s) is the input force to the mass. From the generalized
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spring-mass-damper model, we have

F (s) = mts
2X(s) +H(s)X(s) (2)

where the second term represents the combined damping and restoring forces, i.e.,

H(s)X(s) = Fspring + Fdamp (3)

For a classical mechanical oscillator, this term would simply be

H(s)X(s) = (k + sb)X(s) (4)

If we wish to consider a general form in which the combined forces are defined by a fractional derivative, we
have

H(s)X(s) = (κ+ sαβ)X(s) (5)

where κ is a pure capacitive term, β is a combined capacitive and resistive term, and α is the order of the
fractional differentiation.

Returning to Equation 2 and isolating this term yields

F (s)
s2X(s)

= mt +
H(s)
s2

(6)

H(s) = s2
[
F (s)
s2X(s)

−mt

]
= s2

[(
A(s)
F (s)

)−1

− mt

]
(7)

Where
(
A(s)
F (s)

)−1

is the inverse of the experimentally determined transfer function, and mt is the sum of the
masses of the titanium cube, foam pads, and accelerometer, as measured using a digital scale. Thus, the
experimental data that represents the bracketed term on the right hand side of Equation 7 is multiplied by
s2 to yield the data that represents H(s), i.e.,

s→ iω; H(s) = −ω2

[(
A(s)
F (s)

)−1

− mt

]
(8)

Note that H(s) in Equation 8 has units of kg/s2. Solving Equation 5 for H(s) and equating with Equation
8 begins to illustrate the procedure for characterizing the material behavior

H(s) = (κ+ sαβ) = −ω2

[(
A(s)
F (s)

)−1

− mt

]
(9)

Replacing the lumped-parameter constants κ and β with the following bulk material moduli,

κ =
2A
δ
G0 , β =

2A
δ
G1 (10)

where A and δ are the foam pad cross-sectional area and thickness, respectively, results in an equation that
relates the model to experimental data

G0 + sαG1

model

= − δ

2A
ω2

[(
A(s)
F (s)

)−1

− mt

]
experimental data

(11)

This demonstrates that the experimental data can be represented by a three-parameter model of the material
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behavior: G0, G1, and α , as formulated by Bagley, et al [1]. Setting s = iω on the left side of Equation 11
and applying Euler’s identity yields the following

G0 + sαG1 = G0 +G1ω
α
(

cos
απ

2
+ i sin

απ

2

)
(12)

From Equation 12 , the real and imaginary parts of Equation 11 can be expressed as

Re (data) = G0 +
(
G1 cos

απ

2

)
ωα (13)

Im (data) =
(
G1 sin

απ

2

)
ωα (14)

A plot of the real and imaginary parts of the experimentally determined transfer function for a particular
material is shown in Figure 7 Where Re (data) and Im (data) are the real and imaginary parts of the right side

Figure 7: Real and Imaginary parts of transfer function

of Equation 11, as determined from the experimental data. Taking the logarithm of both sides of Equation
14 indicates a linear trend - where logω is the independent variable - from which the order of fractional
differentiation, α, can be estimated

log [Im (data)] = α logω + log
(
G1 sin

απ

2

)
(15)

Thus, α can be obtained from the following using the resulting slope and y-intercept from a linear regression,
m and b, respectively

m = α; b = log
(
G1 sin

απ

2

)
(16)

Using a base ten logarithm, the equation for G1 becomes

G1 =
10b

sin απ
2

(17)

Having obtained two of the three parameters of the model, G0 remains to be determined. Substituting the
expressions for α and G1 into equation 13 and rearranging yields

G0 = 10Re (data) −
(
G1 cos

απ

2

)
ωα (18)

Note that, according to the above equation, G0 is a function of the frequency, ω, and thus would not appear
to fit into the scheme of a linear model. However, a plot of G0 vs ω, for a typical viscoelastic foam shows
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that there is minimal variation, i.e., less than three percent error, over the frequency range of interest, as
indicated in Figures 8 and 9 . A plot of the curve fit for the experimentally determined transfer function

Figure 8: comparison of G0(ω) and constant G0

Figure 9: relative error between G0(ω) and constant G0

for a particular candidate material is shown in Figure 10 The curve fit parameters are the experimentally
determined material properties, as given in Table 2.

padding material color α G0 (N/m2) G1 (N-sα/m2)

Ethylene Vinyl Acetate white 0.56 3.00× 105 3.19× 103

Acrylonitrile Butadiene Rubber / PVC black 0.60 2.39× 105 3.05× 103

Table 2: Experimentally Determined Properties of Padding Materials
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Figure 10: Curve fit for experimentally determined transfer function

Figure 11: Computational approach for mixed state-space equations

5 Computational and Simulation Techniques

The equations of state extracted from the bond graph model constitute a mixed state-space formulation of
the system of differential equations, whose general form is shown in Equation 19.

ẋ = A

xI

· · ·
xF

+ B u(t) + Φ Dα
t

 0
· · ·
xF


 (19)

The solution requires an approach where the fractional derivative of a state variable is explicitly computed [3].
Figure 11 illustrates this approach, where the differential equations are solved using an existing variable-step
fourth-order Runge-Kutta algorithm which is linked to a subroutine that computes the fractional derivatives
of the necessary state variables only, at each time step, ti. The simulations are run using MATLABTMwith
a fixed time-step size of 10−5 sec.

6 Simulation Results

To assess the validity of the state equations that model the dynamics of the helmet and padding materials,
simulations were run to determine whether the simulation results would match the experimental results
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Figure 12: Validation of state equations via comparison with experimental data

Figure 13: Summary of all simulation runs and dynamic behavior metrics for various blast intensities and padding
materials

obtained as described in Section 3, i.e., the input force was set to the that of the impact hammer for the
material property experiments, instead of the forces obtained from the CFD models of the explosions. It
was demonstrated that there was good agreement between the simulated and experimental results, as shown
by the overlay plot in Figure ??. Simulations were run for both materials subjected to a range of blast
intensities, as gather from the CFD analysis study cited in Section 2. The metrics used to identify material
behavior were:

1. The peak force transmitted to the victim by the padding material, expressed in newtons and lb-force
2. The attenuation factor, i.e., the ratio of the peak transmitted force and the peak blast force, expressed

as a percentage
3. The maximum compression of the padding material, expressed in mm
4. Whether or not the material became saturated, i.e., the material reached its maximum possible

compression
Figure 12 summarizes the simulation results for various blast intensities and padding materials. Example

simulation results for cases of material non-saturation and saturation are shown in Figures 13 and 14,
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Figure 14: Case in which padding material does not reach saturation

respectively. These plots and the summary of results demonstrate how the combined experimental and
simulation-based approach for assessing the efficacy of materials in blast applications for actual padding
materials that are to be considered for helmet and other PPE applications.
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Figure 15: Case in which padding material reaches saturation
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