
Hyperspectral Imagery Throughput and Fusion 
Evaluation over Compression and Interpolation   

 
James Patrick 

Air Force Research Lab & 
Wright State University  

WPAFB, OH 45433 
james.partick@wpafb.af.mil 

 

Ryan Brant  
Wright State University 

Dayton, OH  
brant.5@wright.edu 

 

Erik Blasch 
Air Force Research Lab & 

Wright State University 
WPAFB, OH 45433 

erik.blasch@wpafb.af.mil 
 

Abstract – Hyperspectral Imagery (HSI) is an emerging 
capability that extends the analysis of multi-spectral 
imagery (MSI) through additional bands, variable 
frequency band distributions, enhanced collections, and 
improved resolution. These developments have also led to 
increasing large data files that require intelligent 
strategies to perform throughput data reduction without 
degrading exploitation performance. In this paper, we 
explore the (1) common compression techniques with a 
novel method that improves the baseline, (2) exploitation 
targeting with frequency fusion of results over bands to 
maintain detection, and (3) demonstrate an information 
fusion performance model strategy for dynamic sensor 
management of HSI exploitation. The paper describes a 
method for robust HSI performance evaluation to truncate 
disturbances, interpolate data across these locations, 
compress and reconstruct the signal, perform decision-
fusion detection, and check the error associated with these 
operations – all supporting techniques to enable 
realizable HSI tracking and identification solutions. 

Keywords: HSI, Compression, Detection, Fusion, 
Robustness, Performance Models, Fusion Evaluation 

1 Introduction 
Hyperspectral Imaging (HSI) has grown as a popular 

sensor for resource management, agriculture and mineral 
exploration, environmental monitoring and target 
identification (ID). The spectral detail provided by HSI 
provides the ability to distinguish virtually all materials by 
comparing the waveforms of the image spectrum to those 
of known substance spectra. 

HSI detection analysis has progressed over many years 
from the geoscience community [1] for agricultural 
analysis (e.g. see lifetime of work from Landgrebe [2, 3, 
4]). Remote sensing applications typically have a large 
ground sampling distance (GSD), however current 
developments are decreasing the GSD through higher-
resolution systems or varying altitude platforms. 

In recent years, there has been substantial interest in HSI 
target detection [5] with methods such as Support-Vector 
Machines (SVM) [5], stochastic mixture modeling [6], 
expectation-maximization [7], and fuzzy-logic fusion [8]. 
While there is increasing interest in applications such as 
detection, HSI utilization requires methods to compress 

the 3D data [9-13], selective frequency fusion for object 
ID, fast registration for object tracking, and the ability to 
process frequency bands that are corrupt. This paper 
documents ongoing compression performance efforts to 
utilize HSI for object tracking and ID. 

Hyperspectral images are produced by instruments 
called imaging spectrometers. These sensors are typically 
mounted to high altitude survey vehicles and collect image 
data simultaneously in dozens or hundreds of narrow 
adjacent spectral bands, shown in Figure 1.  

                
Figure 1. HSI Collection 

 
Evaluation of HSI fusion systems includes (1) metrics, 

(2) processing and database constraints, and (3) robustness 
to operational conditions. The five basic fusion system 
metrics include throughput, timeliness, accuracy, cost, and 
confidence. Timeliness and throughput are related to the 
large HSI file sizes requiring intelligent compression 
techniques. Accuracy and confidence relate to target 
detection/ID.[14] Important to frequency-band fusion is 
the quality and size of the data. Throughput and cost (i.e., 
sensor coverage) are system constraints. A measure of 
operational robustness can be assessed as a system 
sensitivity to varying operational conditions (i.e. sensor, 
target, and environment). While many HSI algorithms 
have been proposed, (e.g. joint compression and 
classification for stationary target analysis [15]), the goal 
is to simultaneously determine tradeoffs.  

This paper proposes a methodology for joint HSI 
compression, frequency-interpolation, and exploitation for 
sensor management.  Section 2 overviews HSI processing. 
Section 3 describes the interpolation across band 
distortions and Section 4 describes compression 
techniques. Section 5 presents results and Section 6 lists 
the discussion and conclusions. 
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2 HSI Processing 
 The quantity of data associated with a HSI of a given 
area is very large. Thus to transmit this data back to 
ground locations for data processing requires large 
bandwidth or time. Hyperspectral images are 
amalgamations of images of the same object or area from 
multiple sensors (spectrometers) simultaneously in dozens 
or hundreds of narrow adjacent spectral bands. An 
analogous description would be to visualize a stack of 
photos of the same object, each only taken at a specific 
radiance frequency or wavelength (spectrum). Each image 
is the radiance response of the data (Figure 1).  

 There are several factors which affect the quality of 
the signal such as illumination, topography, spectra 
mixing, resolution and sensor effects. [2] Algorithms exist 
to address these factors when identifying constituent 
materials but are typically addressed on a case-by-case 
basis. [5] One factor existent in nearly all cases and 
typically uniform is atmospheric effects, even for a 
relatively clear atmosphere. For certain wavelengths these 
interactions attenuate the amount of incoming energy 
reflected by the ground to an airborne or satellite sensor. 
The atmospheric disturbances add variable distortions to 
the images at particular wavelengths that effect 
classification. 
 Water is a major constituent in the atmosphere that 
absorbs light. The degree to which this occurs depends on 
the water abundance and the particular wavelength, shown 
in Figure 2 as various reflectance reductions over different 
environmental (i.e. background) objects. 

 
Figure 2. HSI Spectrum (water absorption). 

 
 Received signals at certain wavelengths contain such 
a low signal to noise (SNR) ratio due to this absorption 
that information is lost. Typically, these wavelengths are 
cut out before further processing. Truncation of this data 
leaves a gap in the information that will result in the 
introduction of high frequency noise when the signal is 
compressed. This can be avoided by filling this gap with 
interpolated data. Two well known interpolating 
polynomials that are used to interpolate the cuts are a 

cubic spline and a piecewise cubic Hermite polynomial 
discussed in Section 3. 
 There is debate on which compression algorithms 
should be used for accurate HSI exploitation. [10] A 
standard example is the Discrete Cosine Transform (DCT) 
which reduces the amount data (an equivalent goal of 
information fusion). This transform coding relies on the 
idea that image pixels have a level of correlation with 
neighboring pixels. This correlation can be used to predict 
values of neighboring pixels, i.e. redundancies in the data 
will allow image data compression. The DCT attempts to 
decorrelate the image data and describe the data through a 
series of transform coefficients.[16, 17] These coefficients 
are transmitted and the image is reconstructed from these 
coefficients. Error can be assessed if the full original 
signal is available, which is explained in Section 4. 
 After adjustments for sensor, atmospheric, and terrain 
effects are applied, these image spectra can be compared 
with field or laboratory reflectance spectra in order to 
recognize and map surface materials such as particular 
types of vegetation or diagnostic minerals and identify 
targets of interest. 
2.1 Hyperspectral Data 

Remote sensing applications have utilized both multi-
spectral imaging (MSI) and hyperspectral imaging (HSI) 
to accomplish individual application requirements. The 
characteristic differences between MSI and HSI systems 
are very important for selection criteria for applications.  
Typically MSI systems have a smaller range of spectral 
bands (3-10 spectral bands) than HSI, which can have 
over 100. Also, MSI systems have wide and irregular 
spaced spectral bands while HSI systems have their 
spectral bands wide and regular spaced. Due to the wide 
spectral band, the amount of information that results in 
data collection can increase quite dramatically depending 
on the scene size.  
 Two examples of HSI imaging systems are Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) and 
HYperspectral Digital Imagery Collection Experiment 
(HYDICE). AVIRIS was designed and constructed by 
NASA’s Jet Propulsion Laboratory in 1987 and is 
associated earth science community for geology, land 
cover, and natural resource applications. [18]  AVIRIS is 
regarded as having the highest SNR ratio systems around 
AVIRIS has a 200-mm diameter aperture with a 0.6 rad 
field of view and 224 spectral channels between the 
wavelengths of 360nm to 2510nm. The system has high-
altitude applications (about 20 km above the ground) with 
20m ground resolution. [18].  
   The NASA AVIRIS data set of Moffet Field (available 
at http://aviris.jpl.nasa.gov/html/aviris.freedata.html) [19]. 
The data includes urban information such as buildings, 
runways, and vehicles collected over a variety of bands.  
Additional environmental ancillary environmental models 
include: vegetation and water absorption. Figure 3 shows 
the image cube available for the AVIRIS data (flown at 
20K meters over Moffett Filed, CA, USA). 
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Figure 3. HSI Cube [19]. 

 
 From the AVIRIS website: [19], the top of the cube 

is a false-color image made to accentuate the structure in 
the water and evaporation ponds on the right. The sides of 
the cube are slices showing the edges of the top in all 224 
of the AVIRIS spectral channels. The tops of the sides are 
in the visible part of the spectrum (wavelength of 400 
nms), and the bottoms are in the infrared (2,500 nms). The 
sides are pseudo-color, ranging from black and blue (low 
response) to red (high response). While the urban and 
water areas of separable, note the red (700 nm) in the 
lower right, which is indicative of red brine shrimp targets 
in the evaporation pond. [18] 

 HYDICE was built under contract for the Naval 
Research Laboratory in 1994 and was made available for 
civilian R&D communities. This system was one of the 
first low altitude systems which made high spatial 
resolution possible (around 1m resolution at a 2-km 
altitude).  The aperture size is 2.54cm with a 0.15 rad field 
of view. There are 210 spectral channels covering the 
wavelengths between 400nm to 2500nm.   

 For an airborne platform flying above the Earth’s 
surface there are several items that can cause problematic 
distortion in certain bands. The most prevalent is the 
atmosphere. Due to the rotation and vibration of 
atmospheric molecules in response to certain wavelengths 
of light, the information obtained in certain bands can 
become useless due to disruptive interference. These 
distorted bands are deleted, since they offer no reliable 
information. There were four regions in the AVIRIS data 
that were removed due to atmospheric distortion {1:3 μm, 
107:114 μm, 153:168 μm, 222:224 μm}. The HYDICE 
dataset took a different approach by interpolating across 
the noisy and junk bands. 

 To utilize these data sets for information fusion 
throughput and classification performance analysis, a way 
to deal with the deleted spectral bands that affect 
performance accuracy requires an interpolation method.  

  

3 HSI Preprocessing (Interpolation) 
Atmospheric interference from gas and water result in low 
SNR ratio in the reflectance signal. This results in large 
dips in the data. These dips are truncated, performed at 
specific known frequencies, from the data since they 
contain little useful information and contribute high 
frequency noise during the compression process. The gaps 
left by this truncation are then filled using interpolation 
[20]. 
 Two well known piecewise cubic interpolating 
polynomials cubic-spline and Piecewise Cubic Hermite 
Interpolation (PCHIP) are used to interpolate across the 
gap left by data truncation. These numerical algorithms fit 
data by defining the slope at the local area of interest via 
piece wise cubic interpolation. Spline requires that the 
data have a continuous second derivative. PCHIP only 
requires the first derivative to be continuous. Thus, 
absence of the second derivative may imply the curvature 
is discontinuous. PCHIP guarantees the preservation of the 
shape, as shown below. 
  The cubic-spline (CS) interpolates the data by fitting a 
third degree polynomial across each interval extending 
between two consecutive data points, and matches the first 
and second derivatives of adjacent polynomials at the 
seams. Thus, the CS provides a continuous function with 
first and second derivatives [21]. The ith is expressed in 
the following form 
 
P3

 i(x) = [(ai (x − xi) + bi) (x − xi) + ci] (x − xi) + f (xi)    (1) 
 
where x represents points where data is taken with i = 1,  
…, N. The coefficients of the slopes a, c are given by are 
given by Eq’s.(2) and (3) 
 

 a i =  
bi + 1 −  b i

 3 h i  (2) 
  

 c i =  
f (h i + 1)  − f (xi)

 h i   −  
h i (bi + 1 + 2 b i) 

3    (3) 
 
where h i = x i + 1 −  x i. Substituting Eq’s. (2) and (3) into 
the cubic polynomial, Eq. (1) renders 
 

 
h i b i

 3   +  
 2(h i + 1 + h i) bi + 1

 3  + 
h i+1  b i + 2

 3   

              =    
f (x i + 2) − f (x i+1)

 h i + 1
  −  

f(xi + 1) − 2 f(xi )
 h i     (4) 

 
Eq. (4) results in a set of equations that form a tridiagonal 
matrix that can then be solved for the coefficients b i. 
Closure conditions are necessary as this system is over-
specified, i.e. system is singular without them. 
  The PCHIP interpolation function in Eq.(5) is found 
by finding the coefficients given by Eq’s.(6,7) 
 
 P3(x) = f (xi) hi;0(x) + f (xi + 1)hi+1;0(x)  
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                   + m(xi) hi;1(x) + m(xi + 1)hi+1;1(x)  (5) 
 
 hi;0(x)   =  Hi; 0(ξ) 
 hi;1(x)   =  (x i+1 −  xi) Hi; 1(ξ) (6) 
  
 H1; 0(ξ) =  1 −  3 ξ 

2
  +  2 ξ 

3
 (7) 

 H2; 0(ξ) =  3 ξ 
2
  −  2 ξ 

3 

 H1; 1(ξ) =  ξ −  2 ξ 
2
  +  ξ 

3 

 
H2; 1(ξ) =   − ξ 

2
  +  ξ 

3 

 
where ξ = (x  − xi) / (x i+1 −  xi). 
 
 Spline may tend to have oscillation as seen in Figure 4 
due the way the algorithm tries to fix the data. PCHIP 
does not suffer these oscillations since PCHIP finds the 
slope which does not cause an overshoot. PCHIP 
increases, decreases and stays constant with data as seen 
in Figure 5. 
 

 
Figure 4. Interpolation of truncated data using different 
methods. 
 

 
Figure 5. Comparison of Spline and PCHIP interpolation 
showing oscillations. 
 
While interpolation is conducted, it must be done in 
coordination with the compression method. 

4 HSI Compression 
4.1 HSI Compression Codec 

The compression scheme developed in this paper is 
modeled after similar compression schemes used in JPEG 
and MPEG. There are many other compression techniques 
[9-13] from which we seek to explore further 
comparisons. The block diagram illustrating the main 
codec components can be seen in Figure 6.  The codec 
relies on the energy compaction ability of the discrete 
cosine transform (DCT) and attenuates low energy 
coefficients and uses quantization as a roundoff process. 
The results of the quantization are then put through 
lossless compression algorithms. 
 

 
Figure 6. Block diagram of HSI Compression Codec 
 
 Processing begins by segmenting the HSI data cube 
into smaller cubes of 8×8×8.  After a volume is 
segmented, it is then processed through the diagram with 
3D compression, scanning/quantization, and encoding, 
illustrated in Figure 6. 
 
4.2 3D Discrete Cosine Transformation 

The 3D discrete cosine transform (DCT) is a linear unitary 
transform that is similar to the discrete Fourier transform 
(DFT) but differs by representing a signal in real terms as 
opposed to complex. The DCT is a popular choice for 
transform coding of images because most of the pixels in 
images show a high correlation between neighboring 
pixels. HSI data, radiance or reflectance, tends to also be 
highly correlated between wavelength bands so the DCT 
should apply equally as well to the third wavelength 
dimension, see Figure 7.  
 

 
Figure 7. Correlation between bands of Moffett Field data 
cube. Black regions represent unusable bands in data cube. 
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A property of the DCT that lends itself to performing well 
on images, highly correlated signals, is that the DCT 
coefficients are uncorrelated which infers that the DCT 
shows a strong decorrelation property [16]. In addition to 
excellent decorrelation the DCT is able to compact energy 
into the lower frequencies so that the signal can be 
represented with fewer coefficients [17]. The 1D DCT is 
defined by 

 ( ) ( ) ( ) ( )
1

0

,
N

x

D u u f x g x uα
−

=

= ∑  (8) 

for u = 0, 1, 2, …, N − 1. Similarly the inverse DCT 
(IDCT) is defined as  
 

 ( ) ( ) ( ) ( )1

0

2 1
cos

2

N

u

x u
f x u D u

N
π

α
−

=

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
∑  (9) 

 
for x = 0, 1, 2, …, N − 1. In both of the previous equations 
α(u) is defined as  
 

 ( ) 1 / , 0

2 / , 1 1.

N u
u

N u N
α

⎧ =⎪= ⎨
≤ ≤ −⎪⎩

 (10) 

 

and the transform kernel g(x, u) is defined as 
 

 ( ) ( )2 1
, cos .

2
x u

g x u
N

π +
=  (11)  

    

The DCT, like the DFT, is separable and can be used in 
a multidimensional transform by applying the 1D 
transform along each dimension [16]. The 3D DCT 
transform becomes  

 

 ( ) ( )
1 1 1

0 0 0
, , , ,

L M N

x y z
D u v w f x y z G

− − −

= = =

= Α∑∑∑  (12) 

where  
 ( ) ( ) ( )u v wα α αΑ =  (13) 

and 
 ( ) ( ) ( ), , , .G g x u g y v g z w=  (14) 

 
4.3 Scanning/Quantization 

After the 3D DCT has been performed, a scanning 
function is used to convert the 3D volume into a 1D array 
of DCT coefficient values. The ideal scanning function 
would essentially convert the cube into a sorted list of 
coefficients. Two methods were used in the scanning 
process. The first method involved scanning the 3D cube 
of coefficients into a 1D vector and then applying the 
quantization. The scanning was done using a zig-zag scan, 
similar to JPEG, and then quantization was applied. The 
quantization vector was based on an exponential function 
where the time constant was varied to increase or decrease 
the compression ability of the quantized signal. Figure 8 
illustrates the scanning and quantization process The last 

part of the scanning process involves turning the 2D 
matrix representation show in the bottom of Figure 8 into 
a 1D vector by concatenating each row to the previous. 
 

 
Figure 8. Block diagram of HSI Compression Codec 

 
The second method involved using a scanning function 
found in [21]. The analog channel (AC) luminance and 
chrominance coefficients tend to have a Laplacian 
distribution centered about the mean with the largest 
magnitudes closest to the main axes [21]. To take 
advantage of the coefficient distribution a hyperboloid 
function was used to determine the scanning order [21].  
 

 
( )( )( )( )1 1 1

1 1

255, 0.00001

u v weq A
e

A

β

β

β

− + + +

−

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
= =

  (15) 

 

The function was tuned by finding optimal values for A 
and β and by weighting each axis (u, v, w) to determine 
the scan order. 
 The results from the scanning were then quantized to 
values between 0 and 255 with the higher frequency 
coefficients set to 0.  The number of coefficients that are 
zeroed depends upon the level of compression required.  
Zeroing of the coefficients creates a lossy compression by 
creating runs of zeros in the sequence that cannot be 
retrieved in the decoding process. Utilizing this approach, 
a sensor manager could dictate the compression related to 
needed classification accuracy. 
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4.4 Lossless Encoding 

The lossless encoding consists of two parts.  The first part 
takes the 1D vector from scanning/quantization and 
performs a run length encoding.  The run length encoder 
is beneficial because many of the AC coefficients are 
quantized to zero creating numerous runs in the data. The 
run length algorithm used only encodes runs of three or 
more which prevents bloating of the uncorrelated data. 
The last phase of the compression process involves using 
a Huffman coder to compress the result from the run 
length encoding. The Huffman coding is an entropy coder 
that performs a lossless compression by building a binary 
tree based on source symbol occurrences. Results have 
shown that arithmetic coding often outperforms the 
Huffman algorithm but was not selected due to its 
computational complexity. A more detailed treatment of 
Huffman coding can be found in [22].  
 
5 Results 
5.1 HYDICE 

The HSI data used for this project was provided by Naval 
Research Lab (NRL). This data was from the 
Hyperspectral Digital Imagery Collection Experiment 
(HYDICE) with each pixel representing approximately a 
2×2 meter square and 210 bands per sample. 
 The HSI data was modified by truncating band 
associated with water absorption. These cuts and any other 
discontinuities were filled with interpolated data generated 
through PCHIP. Figure 9 shows the results of one of these 
interpolations.  

 
Figure 9. Example of interpolated spectral data after 
truncation. 
 
The compression results can be seen in Figure 10 where 
the original image can be compared to many different 
compressions ratios.  From Figure 10, we can see that 
environmental targets (i.e. roads) are identifiable at 
different compression ratios.  The target resolution (pixels 
on target) would vary for classification, but detection is 
maintained. 
 

 
Figure 10. Image compression showing maintained target 
detection through frequency fusion. 
 
 Information fusion evaluation is based on the metrics 
chosen. Likewise, the results can be utilized in a 
performance model (i.e. exploitation) that a sensor 
manager (SM) can use to route sensors, predict target 
classification, and call for multiple looks on targets. An 
example of a SM tradeoff is for a given throughput size 
(data rate), does it take multiple low resolution images or 
a single high resolution image? Besides the visual 
comparison in Figure 10, a statistical measure involving 
the peak signal to noise ratio (PSNR) which can be 
calculated based on the following equations. 
 

 
11 1 2

0 0 0

1 pm n

ijk ijk
i j k

MSE I C
mnp

−− −

= = =

⎡ ⎤= −⎣ ⎦∑∑∑   (16) 

 

 
10

25520logPSNR
MSE

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (17) 

 
The PSNR values and compression ratios are shown in 
Table 1 and a plot of PSNR against the bits per pixel (bpp) 
is shown in Figure 11, which can be used as a 
performance model over target detection.  
 
Table I – 3D DCT Compression Results (HYDICE) 

PSNR Compression Ratio bpp 
59.3 2.9:1 2.76 
46.0 9.2:1 0.87 
43.2 14.5:1 0.55 
40.8 25.0:1 0.32
38.7 34.6:1 0.23 
35.5 62.1:1 0.13 

 

 
Figure 11. PSNR vs. bits per pixel 
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5.2 NASA AVIRIS 

To enhance the robust performance analysis, a second data 
set was run to evaluate the algorithm. The algorithm used 
on the AVIRIS dataset involved deleting the junk bands 
instead of interpolating across the bad regions. One issue 
that arises from deleting the bands is that discontinuities 
are introduced the spectral bands. Since the basis 
functions for the DCT are sinusoidal the transformed 
representation requires higher frequency coefficients to 
represent the signal.  This introduces ringing in the 
transformation and degrades the compression quality 
across the discontinuities.   
 

Moffett Field 
Original 

 

3.9:1 (55.43) 

 
9.8:1 (48.01) 

 

20.0:1 (39.62) 

 
41.2:1 (35.11) 

 

77.8:1 (32.31) 

 
Figure 12. Compression Results (Band 120) 

    
We conveniently resolved this issue by discarding extra 
bands so that the boundary of the processing did not 
overlap the discontinuity. Wavelet transforms have been 
shown to minimize the resultant discontinuities [1]. The 
compression results can be seen in Figure 12 where the 
original image can be compared to various levels of 
compression. 
 The PSNR values and compression ratios are shown 
in Table 2 and a plot of PSNR against the bits per pixel 
(bpp) is shown in Figure 13.  The 3D DCT compression 

yielded better results than the baseline JPEG compression 
with the PSNR near 10 dB greater near one bit per pixel.  
It is important to note that this data set is more rich in 
features, however, a simple detection was used only for 
the runway and large buildings. Further work will 
determine the tradeoff of compression to classification 
over the varying target size (which is not yet in the 
literature as the geoscience community has only looked at 
large blobs and area classification versus target 
classification.)  
 
Table 2 – 3D DCT Compression Results (AVIRIS) 

PSNR Compression Ratio bpp 
29.70 253.1:1 0.032 
30.63 159.7:1 0.050 
31.58 113.9:1 0.070 
32.31 77.8:1 0.103 
35.11 41.2:1 0.194 
39.62 20.0:1 0.401 
42.06 15.2:1 0.527 
44.38 12.4:1 0.647 
48.01 9.8:1 0.819
50.81 8.2:1 0.978
51.80 7.4:1 1.076 
53.00 6.2:1 1.299 
55.43 3.9:1 2.076 
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Figure 13. Top line shows result of using the 3D DCT 
compression against the baseline result of JPEG. 
 
 To simultaneously evaluate detection, compression, 
and interpolation, Figure 14 shows the compression ratio 
over various bands. The method allows for variable 
compression rates to correspond to efficient 
spatio/temporal/spectral constraints.  A key to note, and a 
goal of this work, is to look at the compression and 
detection (classification) where the sensor processing 
truncates the data. The truncated bands will have 
classification consequences as the lack of information 
could alter the target-ground contrast. Being able to 
interpolate these bands while reducing the data 
(throughput) size is important for future fusion of 
classifiers and sensor management research. 
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In addition to the static case presented, future 
evaluations will be performed over different classifiers 
such as mutual information [23] and be applied to frames 
[24] for a HSI simultaneous tracking and identification.   
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Figure 14. Reflectance plot for an arbitrarily selected 
pixel for two compression ratios, 253.1:1 and 9.8:1.  
(Shaded regions represent junk bands) 
 
6 Conclusions 
The goal provided an information fusion performance 
evaluation over spatio/spectral throughput, detection, 
classification, and data performance which can be utilized 
by a sensor manager for performance optimization. We 
improved standard compression techniques (i.e. JPEG) by 
finding a scanning algorithm that more efficiently 
maintained the high value DCT coefficients in conjunction 
with quantization as well as utilized interpolation methods 
for exploitation. Future sensor management strategies of 
HSI include multiple-frame processing [25], routing and 
pointing the platform and sensor, selective compression 
over bands of interest based on the target material type for 
classification, and interpolation across bands with 
distortion. Together, the simultaneous optimization of 
these functions would afford robust performance 
(effective and efficient); with appreciation of the scenarios 
of interests including the sensors, targets, and 
environmental conditions such as dictating the 
compression related to needed classification accuracy. 
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