
A Study of Rootkit Stealth Techniques

and Associated Detection Methods

THESIS

Daniel D. Nerenberg, 1st Lieutenant, USAF

AFIT/GCE/ENG/07-10

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT/GCE/ENG/07-10

A Study of Rootkit Stealth Techniques

and Associated Detection Methods

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Daniel D. Nerenberg, B.S.C.E.

1st Lieutenant, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/07-10

A Study of Rootkit Stealth Techniques

and Associated Detection Methods

Daniel D. Nerenberg, B.S.C.E.

1st Lieutenant, USAF

Approved:

/signed/ 5 Mar 2007

Major P. Williams, PhD (Chairman) date

/signed/ 5 Mar 2007

Dr. R. Baldwin (Member) date

/signed/ 5 Mar 2007

Dr. R. Raines (Member) date

AFIT/GCE/ENG/07-10

Abstract

In today’s world of advanced computing power at the fingertips of any user,

computer security should be a primary concern. Information is power and this power

is within the computer system. If the information within computer systems cannot

be trusted then the power that comes from such information cannot be properly

used. Rootkits are software programs that are designed to establish and maintain

an environment in which malware may hide on a computer system after successful

compromise of that computer system. Rootkits cut at the very foundation of the trust

in information and subsequent power.

This thesis examines rootkit hiding techniques, rootkit finding techniques and

develops attack trees and defense trees to identify deficiencies in detection and further

increase the trust in information systems. The developed attack and defense trees

identified that enumeration is not sufficient to defend against rootkits. A developed

classification of rootkits helps fill the gaps in enumeration of rootkit techniques and

gives direction for further detection development. By fully understanding what areas

need to be addressed in detection, better and more complete tools will come to fruition.

iv

Acknowledgements

First and foremost I would like to thank my Heavenly Father for blessing me with the

ability to complete this thesis. Secondly, I would like to thank my wife and children for

supporting and encouraging me throughout this educational adventure. I would also

like to express my sincere appreciation to my faculty advisor, Major Paul Williams,

and committee members, Dr. Rusty Baldwin and Dr. Richard Raines, for their

guidance and support throughout the course of this thesis effort. Their insight and

experience was certainly appreciated. I would, also, like to thank Mr. Lacey for his

expertise and support in everything. Special thanks to Greg Hoglund, James Butler

and all those who participate in www.rootkit.com, and in the writing of Rootkits:

Subverting the Windows Kernel ; these were priceless in my rootkit research.

Daniel D. Nerenberg

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xi

List of Abbreviations . xii

I. Introduction . 1
1.1 Motivation . 1
1.2 Overview . 2
1.3 Research Statement . 2
1.4 Thesis Organization . 3

II. Literature Review . 4
2.1 Background . 4

2.2 Operating Systems . 5

2.2.1 Windows OS 7
2.2.2 Linux & FreeBSD OSs 8
2.2.3 Prevention . 9

2.3 Classifications . 11
2.3.1 Achieved Access 11
2.3.2 Automation . 11
2.3.3 Attack Type . 11

2.3.4 Attack Tree . 11
2.4 Trusted Computing . 14

2.5 Exploits vs Patches . 16

2.6 Rootkits . 17
2.6.1 Binary Rootkits 18

2.6.2 Kernel Rootkits 19
2.6.3 Library Rootkits 20

2.7 Summary . 21

vi

Page

III. Rootkit Hiding and Finding Techniques 22

3.1 Chapter Overview . 22

3.2 Rootkit Stealth . 22
3.2.1 Hooking . 23

3.2.2 Patching . 30

3.2.3 Data Structure Manipulation 30

3.2.4 Virtual Machine and Virtual Memory 32

3.2.5 Hardware . 33
3.2.6 Rootkit Examples - Hooking 33

3.2.7 Rootkit Examples - Patching 35

3.2.8 Rootkit Examples - Data Structure Manipulation 36

3.2.9 Rootkit Examples - Virtual Memory 37

3.3 Rootkit Detection . 37
3.3.1 Behavioral Detection Class 42
3.3.2 Static Detection Class 43
3.3.3 Rootkit Detection Examples - Behavioral 45

3.3.4 Rootkit Detection Examples - Signature 47

IV. Experimentation and Results . 52

4.1 Chapter Overview . 52

4.2 Rootkit Attack Tree . 52
4.3 Rootkit Defense Tree . 54
4.4 Furthering the state of the art 55

4.5 System Under Test . 55

4.5.1 Base System . 56

4.5.2 Tested System 56

4.5.3 Software . 56
4.6 Experiment Overview: Rooted Rootkits 56

4.7 Experiment setup . 57

4.8 Outcomes . 57
4.8.1 Experiment 1 Modified HPH vs unmodified HPH 57

4.8.2 Experiment 2 Modified HPH vs Hxdef100r . . . 57

4.8.3 Experiment 3 Modified HPH vs AFX2005 . . . 57

4.8.4 Experiment 4 Modified HPH vs Fu 57

4.9 Metrics . 58

vii

Page

V. Summary . 59

5.1 Conclusion . 59
5.2 Future Research . 59

5.2.1 Rootkit Detection concept: Screen Sweeping . . 59

5.2.2 Rootkit Detection concept: Memory Tracking . 60

5.2.3 Research Questions 60

Appendix A. Windows Architecture 62

Appendix B. UNIX Architecture . 63

Bibliography . 64

Glossary . 69

viii

List of Figures
Figure Page

2.1. Abstract view of the components of a computer system. 5

2.2. UNIX-like OS: System call flow. 7

2.3. Block Diagram of Windows XP OS. 8

2.4. Block Diagram of Linux OS. 9

2.5. Example Threat Tree, House Burglary 13

2.6. Exploitation Cycle . 17

2.7. Protection Rings from the Intel Developer Manual 20

3.1. Rootkit Technology Picture . 23

3.2. Temporal ordering of a detoured function 24

3.3. Example SSDT Hook . 26

3.4. Example IDT Hook . 27

3.5. Example IRP Hook . 27

3.6. Device Driver Physical Structure from Microsoft 28

3.7. Normal execution path vs. hooked execution path for an IAT

hook . 29

3.8. Direct Kernel Object Manipulation 31

3.9. Rootkit Hiding Categories . 34

3.10. Detection Classification 1 . 41

3.11. Detection Classification 2 . 42

3.12. Detection Classification 3 . 43

3.13. Trampoline Function with Modification 46

4.1. Attack Tree 2: Rootkit Hiding Techniques 52

4.2. Rootkit Hierarchy . 53

4.3. Rootkit Defense Tree . 54

4.4. Rootkit Defense Tree:Klister Example 55

ix

Figure Page

4.5. Test Results . 58

A.1. Windows Architecture . 62

B.1. UNIX Architecture . 63

B.2. UNIX Architecture . 63

x

List of Tables
Table Page

2.1. Incident Categories (AFI 33-138) 12

3.1. Inline Function Hook . 30

3.2. Rootkit Examples . 38

3.3. Rootkit Detection Examples 50

xi

List of Abbreviations
Abbreviation Page

IDS Intrusion Detection Systems 1

IPS Instrusion Prevention Systems 1

RHTs Rootkit Hiding Techniques 2

RDTs Rootkit Detection Techniques 2

SUT System Under Test . 3

LKM Loadable Kernel Module 19

SSDT System Service Descriptor Table 24

IDT Interrupt Descriptor Table 24

IRP I/O Request Packet . 24

IAT Import Address Table . 28

DSM Data Structure Manipulation 30

DKOM Direct Kernel Object Manipulation 30

FLINK forward link . 31

BLINK backward link . 31

KPCB Kernel Process Control Block 36

xii

A Study of Rootkit Stealth Techniques

and Associated Detection Methods

I. Introduction

1.1 Motivation

Computer networks and their associated devices have been under attack by

hackers for some time, and defenses have been developed to protect against a myriad

of attacks. However, in recent years a powerful new class of software called rootkits

and also known as stealth technology has been developed.

Rootkits are software programs that establish and maintain an environment

in which malware can hide on a computer system after successful compromise of

that computer system. Since the inception of rootkits in the 1980s [8], rootkits have

improved in both their techniques and ability to protect hackers and their tools from

being discovered. McAfee(R) Avert(R) Labs indicates that over the last three years

the “incident rate of stealth technology has increased by more than 600 percent [34,

35]”, and “The number of rootkits submitted ... in 2006 compared to the first quarter

of 2005 increased by nearly 700%. The number of Windows-based stealth components

dominate the landscape, with an increase of 2300% from 2001 to 2005 [34,35].”

There is often ample time between the discovery of vulnerabilities and patching

of that vulnerability to install a rootkit. Installation of a rootkit compounds the effects

of the original compromise because a rootkit creates and maintains an environment

in which a software entity may hide itself and its effects thus making the original

compromise much more difficult to detect and remove.

There are many ways to mitigate threats to a computer system such as fire-

walls, Intrusion Detection Systems (IDS) and Instrusion Prevention Systems (IPS).

However, because of the time gap between vulnerabilities and patches, the increasing

capabilities of exploits, and the large increase in numbers of rootkits computers are

1

still very vulnerable. Thus, it is vital to understand how rootkits hide and how they

are found in order to build a rootkit attack tree that can identify holes in detection

techniques.

1.2 Overview

Rootkits create and maintain an environment for attack tools, such that a user

does not know of their presence on a compromised machine. However, the rootkit does

not gain access to the machine, rather, it maintains the access. In this research Rootkit

Hiding Techniques (RHTs)are explored as well as the Rootkit Detection Techniques

(RDTs) that are being used by some currently available tools. We analyze these

hiding and discovery techniques to identify deficiencies in detection.

Attack trees for rootkits are developed which give a high level overview of impor-

tant areas to defend in computer systems. An experiment in detection is conducted

using a rootkit to find rootkits. Although operating systems other than Windows(R)

are discussed, this research focuses on Windows(R) rootkits for two reasons: First,

operating systems differ in names for various tables, in functionality, and in stability

but the concepts are roughly the same (i.e., each has hardware interface(s), sched-

uler, kernel, libraries, system calls, and distinctions between user and kernel level

permissions) meaning the same general conclusions and attack trees can be shared

with minor modifications to suit each system (cf., Appendicies A and B.) Second, ac-

cording to McAffee(R) “The share of Linux-based techniques has gone from a high of

roughly 72 percent of all malware stealth components in 2001 to a negligible number

in 2005, while the number of Windows(R)-based stealth components has increased by

2,300 percent in the same time period [35].”

1.3 Research Statement

In this research we study the methods by which rootkits hide and also how they

can be detected. These hiding and finding techniques are used to create attack trees

from which deficiencies in current detection techniques can be identified, identified

2

deficiencies can be used to increase the effectiveness of computer system defenses.

This effort includes examples of current rootkits and rootkit detectors.

1.4 Thesis Organization

This chapter gives motivation, an overview, and a research statement as well as

the organization of the thesis. Chapter Two contains a literature review that encom-

passes operating systems, classification systems, trusted computing, exploits versus

patches, and gives a general background on rootkits. Chapter Three describes vari-

ous hiding techniques as well as examples of these techniques. The hiding techniques

are followed by various finding techniques used by RDTs. Chapter Four explains the

research findings and describes the System Under Test (SUT) as well as experimental

results. Finally, Chapter Five presents conclusions and recommendations for future

research.

3

II. Literature Review

2.1 Background

Attacks against computer systems have a wide range of effects and purpose.

Some attacks are meant to be malicious in various degrees, while others are simply

for curiosity. Regardless of the intent of an attack, we require the ability to defend

our computer systems and allow/deny access to our computer systems as we see fit,

not as an intruder may see fit. In attempt to protect and study the defense of our

computer systems many classification systems or taxonomies have been developed

and are discussed in Section 2.3.

Computer attacks may have a long period of time in which to occur because of

the length of time between discovery of a vulnerability (a software flaw that allows

other than intended operations to occur) and the application of a patch (a piece of

code used to replace/fix software vulnerabilities), which is further explained in Sec-

tion 2.5 of this thesis. If vulnerabilities are left unchecked and a threat (something

willing to take advantage of the vulnerability) exists then our computer systems are

at risk. This risk ranges from exposure (the simple loss of data) to the complete

loss of control over a machine. The next step, once a successful computer attack has

occurred, is that of maintaining control; this control can be maintained by rootkit

software. Just as a country does not or should not fight a battle and ignore the

war, a computer attack is simply the beginning (a battle) to lay the ground work

for maintaining control over the computer asset (the war). As noted by Anton Chu-

vakin of iDEFENSE Labs, “Rootkits are automated software packages to setup and

maintain an environment on a compromised machine.” According to Chuvakin, the

first evidence in the public domain of Rootkits was discovered in the mid 1990s [15].

Rootkits are explained further in Section 2.6, of this thesis. This thesis will seek to

help identify rootkit stealth techniques and identify deficiencies in rootkit detection

techniques. By identifying deficiencies in detection we can learn to better detect and

subsequently remove rootkits. The subsequent sections of this chapter will give the

4

reader a background in operating systems, classification systems, trusted computing,

exploits vs patches, and rootkits.

2.2 Operating Systems

In order to understand how a rootkit might install itself and hide in a computer

we must understand a computer from the architecture level. Silberschatz, Gagne, and

Galvin in their book Operating System Concepts, divide a computer system into four

main areas: hardware, the operating system, application software, and users using

Figure 2.1 to illustrate [59].

Figure 2.1: Abstract view of the components of a computer
system [59].

The user of a computer system uses hardware input/output devices such as the

keyboard and mouse in order to start desired tasks. Those hardware I/O devices

interact with application software in order to accomplish the desired tasks. The

operating system is the intermediary between the hardware, user, and application

software which acts as a manager between the user, the hardware, and the application

5

software of a computer system [59, 65]. A good example used by Silberschatz et al,

is that the operating system is “Like a government, it performs no useful function by

itself. It simply provides an environment within which other programs can do useful

work” [59].

If we look at Figure 2.1, we notice that there are a few layers within the diagram

in which a rootkit could insert itself, namely: at the application level, the operating

system level, and at the hardware level. Although inserting rootkits at the hardware

level may be feasible, as documented by John Heasman in his paper Implementing and

Detecting a PCI Rootkit [28], for this thesis, we will focus on the first two levels, paying

special attention to the operating system level with its many sub-levels. Within each

operating system is a structure called a kernel which, according to McKusick and

Neville-Neil in their book The Design and Implementation of the FreeBSD Operating

System, “...is a small nucleus of software that provides only the minimal facilities

necessary for implementing additional operating-system services” [43]. The size and

functionality of kernels have increased over the years but the intent remains the same,

such that the kernel controls what and when each thread, process, or task is run and

for how long. The following subsections will give the background needed for the

Windows, Linux, and BSD OSs. Furthermore, these sections will show what each of

the main divisions are in each OS. However, as will be seen, the operating systems

are very similar at least from a high level component view and attack perspective.

Not all of the tables or important structures will be named equivalently be-

tween operating systems but the underlying architecture of how an operating system

behaves when an input/interrupt occurs is similar. Max Bruning states in his ar-

ticle A comparison of Solaris, Linux, and FreeBSD that, “Once you get past the

different naming conventions, each OS takes fairly similar paths toward implementing

the different concepts” [6]. For example, in Linux or Windows, when an interrupt

is triggered, the interrupt handler takes over. The interrupt handler will then check

an interrupt descriptor table (IDT) to know how to handle the particular kind of

interrupt/system call request, the system call table is checked and then control jumps

6

to the address found. Control of this process can be usurped either by changing the

interrupt handler so that it uses a completely new IDT, or by changing addresses in

the IDT [64]. Execution of a system call in a UNIX-like operating systems (which

parallels that of a Windows OS) is shown in Figure 2.2.

Figure 2.2: UNIX-like OS: System call flow [7].

2.2.1 Windows OS. According to Silberschatz et al, Windows was designed

for “...security, reliability, Windows and POSIX application compatibility, high per-

formance, extensibility, portability, and international support” [60]. As can be seen in

Figure 2.3, the Windows OS was created in many modules. The main areas of which

to take note are the Hardware-Abstraction Layer, the Kernel, the executive, and the

usermode subsystems. The Kernel is the part of the operating system that decides

what, when, and for how long each thread is going to run based on parameters that

it receives as to priority [60].

In the Windows OS we find rootkits of three main types, namely patching

(replacement of code sections), hooking (altering execution paths), and data structure

manipulation (altering data structures). Windows much like any operating system is

subject to attacks via patching because of the need to allow programs to run with

varying permissions which can be granted by an unknowing user. However, steps have

been taken to deter this concept of patching by concepts such as digital signing which

can verify the integrity of applications.

7

Figure 2.3: Block Diagram of Windows XP OS [59].

Windows is also subject to hooking, in part because this functionality is allowed

(given the appropriate permissions) in order to monitor other processes. Finally, Win-

dows is also subject to data structure manipulation because, as with other operating

systems, there are data structures in software which can be modified. These prob-

lems are not easily addressed because if we completely removed the ability to alter

applications, execution paths and structures, we would remove desired functionality

and upgrade ability.

2.2.2 Linux & FreeBSD OSs. Although there are differences in implemen-

tation and some functionality between Linux and FreeBSD, their basic architecture is

virtually the same and grows closer together each time there is a development in one

or the other, due to cross pollination of ideas and sharing. According to Silberschatz

et al, Linux was designed for “...speed, efficiency, and standardization” [59]. Accord-

ing to McKusick et al, “the FreeBSD kernel provides four basic facilities: processes, a

filesystem, communications, and system startup” [43]. As can be seen in Figure 2.4,

8

the Linux OS, much like Windows, was created in many modules. The similarities

between Windows and Linux can been seen such that both systems have a kernel

which is surrounded by supporting modules to interact with higher level users and

lower level hardware. However, a difference between Windows and Linux is in regard

to processes and threads. Windows uses threads as its fundamental unit of execution

while Linux does not really distinguish between processes and threads, rather, Linux

generally refers to both as tasks [59].

Figure 2.4: Block Diagram of Linux OS [59].

One of the first techniques used by Linux rootkits was patching which is the

replacement or modification of data, files, binaries, etc. An example of such is the

rootkit T0rn which “replaces login, ifconfig, ps, du, ls, netstat, in.fingered, find and

top” [7] with modified versions of the same files. These modified versions then work to

hide information from the user. For example, the ls command shows a list of what files

are present in the current directory. The modified ls command would filter from view

any files specified by the rootkit. One of the most common techniques for insertion of

a rootkit in Linux and BSD is through a kernel loadable module which uses all three

rootkit techniques. A loadable kernel module allows any information processed by the

system to be modified [7]. This runtime insertion of malicious code into the kernel can

be deterred by turning off the ability to load kernel modules. However, as discussed

previously this can remove functionality that was used for legitimate purposes.

2.2.3 Prevention. Certainly there are configurations that make each of the

various operating systems more secure such as restricting the permissions a user has

9

on their account (ie, user account instead of administrator or root). In the various

UNIX variants, removing the ability to load kernel modules by turning off the func-

tionality slows down the main class of rootkits because, as discussed previously, the

ability to load malicious code would then need to occur in a different way such as

loading through /dev/kmem. The device files /dev/mem and /dev/kmem “allow the

root user to arbitrarily access the contents of physical memory and kernel memory,

respectively [21].” Allowing a root user to access physical and kernel memory gives

all the power desired to rootkit authors that have obtained root permissions through

some vulnerability.

Mandatory access controls (“When a system mechanism controls access to an

object and an individual user cannot alter that access” [5]) can also be added in

some UNIX variants such as Trusted Debian (aka Adamantix) [1], SE Linux [46], and

Trusted BSD [68]. Other functions also exist to help secure a system, FreeBSD for

example, also has a function called “jail” which restricts the user of that jail to its

own associated “processes, files, and network [43].” There are also many software and

hardware suites that help keep our computer systems relatively clean. Firewalls, Host

Intrusion Detection Systems (HIDS), Network Intrusion Detection Systems (NIDS),

Anti-Virus(AV), and various Rootkit Detectors. Another example includes the file

flags and four security levels in BSD in order to further secure the kernel. These

security levels are:

“-1. Permanently insecure mode: Kernel runs at secure level 0 at all times.

0. Insecure mode: File flags may be set and reset and devices may be read
from or written to according to their permissions

1. Secure mode: Superuser-setable file flags cannot be turned off. Device
files for system memory /dev/mem, /dev/kmem and for mounted filesys-
tems are read-only.

2. Highly secure mode: Device files for filesystems are always read-only,
whether they are mounted or not. Firewall rules may not be changed” [70].

10

2.3 Classifications

Many classifications have been created in order to understand and protect our

networks. Some of the classifications that have been used include: achieved access,

automation, attack type, and attack tree.

2.3.1 Achieved Access. In Table 2.1, we see Incident Categories from Air

Force Instruction 33-138, which shows the categories in which incidents fall based

on the level of achieved access by the attacker. Although this type of classification

system is useful in categorizing what has occurred in order to react it does not cover

how it occurred in order to defend.

2.3.2 Automation. Further classifications can be found, such as classifying

by degree of automation used in the attack: Manual, Semi-Automatic, and Automatic.

Manual attacks are as the name implies, where the human attacker scans, breaks into,

installs, and then uses some attack tool. Semi-automatic attacks, use scripts to do the

scanning, breaking, and installation, which is then followed by the manual instructions

to use the installed tools. Attacks are classified as automatic when the human-in-the-

loop simply starts the attack script and the scanning, breaking, installation, and

exploitation all occur without intervention [37].

2.3.3 Attack Type. Attack types are simply descriptive names given to

attacks such as IP Spoofing, Source Routing, Routing Table Corruption, Denial Of

Service Attacks (DOS), Smurf Attacks, Land Attack, Xmas Tree Attack, Teardrop,

TCP/UDP Diag Services Attacks, Ping of Death, SYN Flood, and Session Hijack-

ing [42].

2.3.4 Attack Tree. An attack tree is simply the graphical representation of

how an attack reaches its goal. Bruce Schneier, the CTO of Counterpane Internet

Security, describes attack trees as follows: “Attack trees provide a formal, methodical

way of describing the security of systems, based on varying attacks. Basically, you

11

Table 2.1: Incident Categories (AFI 33-138) [2]

Category Description

I Root-Level Intrusion: An unauthorized person gained root-level
access/privileges on an Air Force computer/information system/network
device.

II User-Level Intrusion: An unauthorized person gained user-level
privileges on an Air Force computer/information system/network
device.

III Attempted Access: An unauthorized person specifically targeted a
service/vulnerability on an Air Force computer/information
system/network device in an attempt to gain unauthorized or increased
access/privileges, but was denied access.

IV Denial of Service (DoS)): Use of an Air Force computer/information
system/network was denied due to an overwhelming volume of
unauthorized network traffic.

V Poor Security Practice: An Air Force computer/information
system/network was incorrectly configured or a user did not follow
established policy.

V I Scan/Probe: Open ports on an Air Force computer/information
system/network device were scanned with no DoS or mission impact.

V II Malicious Logic: Hostile code successfully infected an Air Force
computer/information system/network device. Unless otherwise directed,
only those computers that were infected will be reported as a Category VII
incident.

represent attacks against a system in a tree structure, with the goal as the root node

and different ways of achieving that goal as leaf nodes” [57]. If we can understand how

an attack reaches its goal then it will be easier to stop the achievement of such a goal.

A graphical example of an attack tree for a house burglary is depicted in Figure 2.5

from the Electricity Sector Information Sharing and Analysis Center (ESISAC) [22].

The reader may note, in Figure 2.5, that “OR” gates are used to show that only

one of the options is needed in order to progress through the attack path. If everyone

robbing a home is: first, entering the town, second, driving down the street, third,

entering the yard, and finally, going through the front door or the side window, then

12

Figure 2.5: Example Threat Tree, House Burglary [22]

we focus on the door and the window. Although, no one wants a burgler in town, a

more immediate concern is whether or not the burgler can gain access to the home.

Using an attack tree methodology, instead of only developing a new virus sig-

nature or finding a new way to block each individual new threat, we can identify

the points of ingress in order to protect them better. Concentrating on points of

ingress helps us to get more protection from smaller changes as well as better defense

in depth. Attack trees allow us to more easily explore options for stopping groups

(classes of attacks) in order to make it more difficult for the attacker to achieve their

goal. For example, if we can change the “OR” gate at any of the entry points to an

“AND” gate we can force the attacker to spend more time, money, and/or resources

to achieve the goal.

Furthermore, if our goal as defenders is not only to slow down the attackers but

to completely defend our computer resources then understanding and implementing

13

all of these classification techniques together will further our cause and bring us closer

to our goal. For example, continuing with the previous analogy of the burglar, if we

are able to track the burglar’s progress (achieved access) then we can more readily

focus our efforts on what is needed to prevent further access. If we know the level of

automation that is being used by the burglar then we may be able to “out think” him

by doing something that stops automation (perhaps encryption). If we are able to

enumerate the attack types and separate them into those that can hurt us (unknown

defense) and those that don’t (known defense), then we can focus our efforts on the

unknown. Although as quoted by Sun-Tzu, a Chinese general and military strategist

in approximately 400 BC, “Keep your friends close, and your enemies closer”, we

should not forget about the attacks for which we have known defenses. By apply-

ing classification systems we can better understand where to protect our computer

systems.

2.4 Trusted Computing

In an article published by the Electronic Frontier Foundation in October of

2003, Seth Schoen reports “trusted computing initiatives propose to solve some of

today’s security problems through hardware changes to the personal computer” [58].

According to Schoen, trusted computing architectures are being created via Microsoft

Palladium (Next Generation Secure Computing Base), the Trusted Computing Group

(TCG), Intel Lagrande, and AMD Secure Execution Mode (SEM). Some of the ideas

within this new architectural design include memory curtaining, secure input and

output, sealed storage, and remote attestation. Memory curtaining is using hardware

to stop programs from reading or writing to any memory space other than their own.

Secure I/O provides a “secure channel” from the I/O device to the application using

the device such that the application will be able to trust its input rather than worrying

about whether or not it has been altered by malicious software such as rootkits. Sealed

storage uses hardware to generate machine specific keys such that data that resides

on your machine can only be decrypted by your machine and the proper application.

14

Remote attestation is creating and sharing a cryptographic hash of your operating

system and any software running on it such that if any changes are made the remote

computers (computers with which you are sharing information) will be able to see

that changes have occurred and not send information until the situation has been

rectified [58].

The first product, which originated from IBM, of the Trusted Computing Group

is the Trusted Platform Module (TPM). The TPM is a hardware component that

holds “keys used to encrypt data for storage or transmission” [38]. By keeping the

keys and processing of such in a stand alone unit, the ability to sniff or otherwise

guess the decryption keys is dramatically reduced. Research is constantly underway

in the trusted computing area. Currently, the trusted computing group recommends

the following five steps [38] for implementation of trusted computing:

1. Authentication - “the binding of an identity to a subject” [5]

2. Data protection - prevention of unauthorized modification of data, possibly

through encryption or other means

3. Network attestation and platform measurement - the implementation of authen-

tication and data protection accross a network. For example, authenticating the

permissions of the computer to be granted access as well as the patch levels,

firewall setting [38].

4. Application protection - protection of applications from malicious activity by

such things as partitioning memory so the application can not run out of it’s

own space

5. Content protection - digital rights management to grant usage of software only

to authorized persons [38]

Efforts such as these will help improve our computer system defenses against

rootkits by addressing some of the behaviors of rootkits. For example, rootkits rou-

tinely access information “outside” of their own space such as causing an application

15

to jump to rootkit code which is addressed by application protection. Data protec-

tion addresses an entire class of rootkits, that of patching. Network attestation will

also give some protection against rootkits by helping verify those connecting to our

computers.

2.5 Exploits vs Patches

As can be seen in Figure 2.6, the path from vulnerabilities being discovered, to

advisories being released (which are followed by patches), is not long but it is long

enough to leave time for the attacker to further compromise a computer system or to

hide their tracks. In July of 2004, Deborah Radcliff of Security Focus reported, “The

time between vulnerability discovery and exploit, has compressed 90 percent during

the past three years the average being 11 days between discovery and exploit (well

below the 23 days most enterprises need to patch)...” [49].

Patching is a useful and important step to protecting our information systems

however, it is not a panacea. Scott Berinato of CSO online has an interesting view,

“Slammer was unstoppable. Which points to a bigger issue: Patching no longer works.

Partly, it’s a volume problem. There are simply too many vulnerabilities requiring too

many combinations of patches coming too fast” [4]. The number of vulnerabilities

continues to increase each year. In 2005, according to cert.org [14], there were 5,990

vulnerabilities reported, which is more than 5 times as many as the year 2000, and

over 35 times more than 1995. While in the first quarter of 2006 alone, there were 1597

vulnerabilities reported [14]. These figures do not account for the probable myriad

of vulnerabilities found that have not been reported which make the total number of

vulnerabilities that exist, increase.

The cost of patching can be estimated using the following formula and example

as given by Pete Lindstrom in Information Security Magazine, “(Hours x Rate x

Systems) + (Patch Failure x (Hours x Rate x Systems)) = Cost to Patch” [39].

16

As an example Mr. Lindstrom offers the following: “if it takes an army of

$70/hour technicians one hour to patch a system, and there are 2,000 systems, the

cost is $140,000. If you estimate that 5 percent of the patches fail, and figure an

average of two hours of recovery time (which includes help desk and IT support

activities), that’s 100 systems at $140 each – another $14,000” [39]. This comes to a

total of $154,000 for a single patch for one company that only has 2000 systems. This

can be reduced by using automated patching but shows that patching is expensive. If

the amount of patching can be reduced then the total cost of defense is thus reduced

as well.

Figure 2.6: Exploitation Cycle [44]

2.6 Rootkits

Rootkits, as defined by Chuvakin, are programs used to set up and maintain an

environment [15]. We add to this definition to include, protection and obfuscation of

attack tools which exist on a compromised computer. According to Chuvakin, there

are three main types of rootkits: Binary, kernel and library kits [15].

17

However, there are many ways to classify rootkits such as persistant vs memory-

based. Persistant rootkits are rootkits that survive on the system (running) past a

reboot whereas memory-based only rootkits live in memory and thus are effectively

destroyed if a reboot occurs [11]. Joanna Rutkowska in her article, Introducing Stealth

Malware Taxonomy, divides the classification into four types ranging from type 0 to

type 3 [54].

1. Type 0 is described as any malware that uses only documented programming

methods and does not directly interact with the operating system, kernel, or

other any other processes.

2. Type 1 malware “modifies those resources which were designed to be constant,

like e.g. in-memory code sections of the running kernel and/or processes.”

3. Type 2 malware then is the counterpart to type 1 which expects that malware

will modify resources that are not constant such as data sections (changing

pointers in a kernel data structure is cited as an example of type 2).

4. Type 3 malware uses hardware virtualization and exists outside of the system

structures. Rutkowska also created an example of type 3 as a proof of concept

called Blue Pill.

In the following subsections we will briefly explain some rootkit types in order

to give a background on rootkits. This classification system by type is very use-

ful, however, for this thesis and in subsequent chapters we will divide mainly into

three categories inspired by Hoglund et al [8]: Hooking, Patching, and Data Struc-

ture Manipulation (DSM). Each of these categories can occur at two levels, user and

kernel [8].

2.6.1 Binary Rootkits. Binary rootkits replace common binary files with

modified binary files so that when a call to that binary occurs it does as the attacker

wishes rather than as originally designed [15]. An example of such, is the Linux

18

rootkit T0rn which “replaces login, ifconfig, ps, du, ls, netstat, in.fingered, find and

top by manipulated versions” [7].

2.6.2 Kernel Rootkits. Kernel rootkits are probably the most dangerous

kind of rootkit in that they have complete control over the machine all the way to

the root level. Kernel rootkits use kernel calls to gain access to hardware rather

than simply system calls which then use kernel calls. These modified kernel calls

then allow the attacker to control what the computer reports to its other “trusted”

applications and resources. One example of how a rootkit installs is via a Loadable

Kernel Module (LKM). An LKM is used in normal functionality of a system to install

various applications and their associated drivers and libraries. However, rootkits also

take advantage of this functionality to insert themselves directly into the kernel. A

computer has various levels of “trust” which are referred to as privileges.

“A privilege in a computer system is a permission to perform an action. Ex-

amples of various privileges include the ability to create a file in a directory, or to

read or delete a file, access a device, or have read or write permission to a socket for

communicating over the Internet” [66]. When working with the Intel x86 architecture

we refer to these privileges as rings. As seen in Figure 2.7, Ring “zero” is where the

kernel operates and has full and unrestricted control. Ring “three” is where the user

has control but must use system calls in order to request information from hardware

at ring zero. Ring “three” is also referred to as “userland” [8].

Of note is that most OSs only use ring zero and ring three thus separating users

into somewhat restricted or not restricted at all, when it could be very useful and

important to have multiple levels of permission. For example, in our banks we don’t

have only a single differentiation between access modes (access to all or access to

some). Rather, we have access to some (e.g., user), access to more than some (e.g.,

teller), access to most (e.g., manager), access to all (e.g., owner with administrator

and manager). If we used all four levels or rings it would add more levels of difficulty

for attackers thus causing them again to use more resources in order to succeed. If

19

Figure 2.7: Protection Rings, Intel Developer Manual [16,36]

we can make the amount of effort needed to compromise systems exceed that of the

perceived reward then systems will be more secure because fewer attackers will attack.

One of the advantages or problems (depending on your viewpoint) with kernel

rootkits is that they can cause the system to report what the attacker wishes, whether

it is accurate or not [15]. This includes examples such as: incorrectly showing number

and/or names of processes running, number and/or names of aircraft flying, etc.

As documented by Hoglund et al, “By using a kernel hook, your rootkit will be

on equal footing with any detection software” [8]. By placing a rootkit in the kernel we

gain all of the kernel controls that would be granted to kernel level detection software.

2.6.3 Library Rootkits. Library rootkits work like kernel rootkits although

they run from the user level rather than the kernel level. By modifying libraries

used by kernel calls and system calls, the attacker can redirect or modify original

functionality to get the desired effects of file hiding or process hiding [15].

20

2.7 Summary

Classification systems for vulnerabilities/attacks and fingerprinting exist and are

helpful in the defense and fixing of security vulnerabilities. However, classification only

by achieved access, automation, or attack type leaves a defender wondering how to fix

a security flaw. Certainly, these classification techniques give us further information

on what exploit was used, but without an attack tree, it is difficult to pinpoint where

and how to fix a flaw.

As discussed earlier, the time between discovery of a vulnerability and patching

a vulnerability may be long enough to install a rootkit. Once a rootkit is installed

it is much more difficult to remove the compromised control of the system. Once

the rootkit has been installed, the patch may fix the original vulnerability which

allowed access to the machine but with a rootkit now present on the machine it

does not necessarily need the original vulnerability to regain access. The rootkit

could be hiding any number of other attack tools that leave backdoors and other

communication channels open, yet unseen.

This thesis will investigate rootkit hiding techniques (RHTs) and some publicly

available rootkit detection techniques (RDTs). We then create an attack tree from

which we can identify deficiencies in current detection techniques. The identified

deficiencies can then be used by future researchers to increase the state of the art in

computer system defense.

21

III. Rootkit Hiding and Finding Techniques

3.1 Chapter Overview

The main goal of a rootkit is to create an environment wherein the attacker

may move about freely and stealthily. This chapter will explain some of the common

stealthing techniques and give some examples of each as well as some of the current

detection techniques. This thesis focuses on the stealth techniques and detection

techniques although it should be noted that prevention should also be considered when

protecting your computer system. Prevention techniques will become very platform

and use specific. For example, in UNIX-like systems, the protection of /dev/kmem

and deactivation of kernel module support will “keep most rootkits outside of the

kernel” [7].

3.2 Rootkit Stealth

In order to be stealthy, a rootkit can and should hide many things, some of

which are processes and files. Three main hiding techniques are hooking, patching,

and data structure manipulation. In general, hooking is changing the execution path

of a call, patching is overwriting information in an application, and data structure

manipulation is changing a data structure. Each of these hiding techniques will be

discussed in further detail. Jan K. Rutkowski [56] refers to a similar separation in

techniques in Figure 3.1.

Another important concept to understand when discussing stealth techniques

is the difference between “hiding in plain sight” (steganography) and “hiding out of

plain sight”. In this thesis we use “hiding” to mean moving or covering information

so that it can not be seen through the desired means (hiding out of plain sight).

Steganography is another technique that can be used to obscure what the user is

seeing so that they do not know that a malicious process exists because they do not

perfectly recognize what they are seeing. Although steganography is normally hiding

information in pictures or other files, an example of steganography in this scenario

22

Figure 3.1: Rootkit Technology Picture [56]

would be: changing the name of a rootkit to msdirectx.sys (as is done by the FU

rootkit [27]) so that it looks like a legitimate driver and thus, is hiding in plain sight.

3.2.1 Hooking. Hooking is fairly old but as quoted from Hoglund “...the

rootkit-world hasn’t actually moved away from system hooks. ...most systems don’t

run even the most basic of rootkit detection programs, so even SSDT (system service

descriptor table) hooks are still really effective” [30].

Hooking works by changing the original execution path of some application so

that the information that it receives has passed through the rootkit allowing the

rootkit to scrub the data, effectively allowing the rootkit to hide itself, and anything

else it chooses, from view [8]. An example, is nicely illustrated by Hoglund et al,

in their book “Rootkits: Subverting the Windows Kernel” which is recreated in Fig-

ure 3.2. If we follow the diagram we see that information can be scrubbed by the

rootkit, as desired by the attacker, prior to returning to the source function. First

the function being rooted (source function) is overwritten with a jump to the rootkit

code (the detour), next the rootkit code (the trampoline) is executed. Part of the

rootkit code is to execute the overwritten data from the source function so that the

proper context is in the proper registers when the original code is executed. This is

23

then followed by a jump to the original function plus an offset (the target) to account

for the information that was overwritten. When the target function is done executing

it will return the results to the rootkit (the detour/new calling function) which can

then scrub the data that it desires. The rootkit will then return the scrubbed data

to the original calling function.

Source

Function

Detour

Function

Trampoline

Function

Target

Function

Rootkit Path

Normal Path

Figure 3.2: Temporal ordering of a detoured function [8]

Kernel Level Hooking - The three most common areas to hook in the Windows

kernel, according to Hogland, are the System Service Descriptor/Dispatcher Table

(SSDT), Interrupt Descriptor Table (IDT), and the I/O Request Packet (IRP) Func-

tion tables [8].

1. The SSDT is the table in Windows which holds a list of all system services by

ID and address. As reported by Prasad Dabak et al in their book Hooking Windows

NT System Services, Windows “system services can be considered the equivalent of

system calls in UNIX” [20]. System services and system calls “represent the funda-

mental interface for any user-mode application or subsystem to the kernel” [20].

2. The IDT is the table which holds the interrupt identifiers and their associ-

ated addresses. An IDT exists both in Windows and UNIX-like operating systems.

24

In Windows, “The Interrupt Descriptor Table (IDT) is an array of 8 byte interrupt

descriptors in memory devoted to specifying (at most) 256 interrupt service routines.

The first 32 entries are reserved for processor exceptions, and any 16 of the remain-

ing entries can be used for hardware interrupts. The rest are available for software

interrupts” [47].

3. The I/O request packet is where information needed to process an I/O

request is stored within the I/O manager and is used to represent the operation as

it is processed throughout the system [53]. Because the IRP is a location that stores

information about an I/O operation it becomes easy to see how this would be a

valuable place to hook for a rootkit and a place to protect as a defender.

3.2.1.1 Hooking the System Service Descriptor Table (SSDT). This

hooking method works on the SSDT and is not constrained to a single application.

According to James Butler and Sherri Sparks in their article, Windows Rootkits of

2005, the SSDT is where the “actual implementation of the operating system functions

are contained” [10]. SSDT hooking works by replacing the addresses of ZW* functions

with the address of rootkit code (“ZW routines provide a set of system entry points

that parallel some of the executive’s system services. Calling a ZW routine from

kernel-mode code results in a call to the corresponding system service” [17]). This

gives the opportunity for the rootkit code to manipulate information that would have

been returned to any calling application. ZW* functions are functions exported by

the kernel for usage by other kernel functions and device drivers. When a ZW*

function is called, usually by an NT* function (system call) it returns the address

corresponding to the NT* function which was stored in the SSDT [8]. As can be seen

in Figure 3.3, the hook simply overwrites the address of the hooked kernel function

with the address of the rootkit so that any application calling the hooked function will

have it’s execution path pass through the rootkit giving the rootkit the opportunity

to scrub or alter data.

25

Figure 3.3: Example SSDT Hook

3.2.1.2 Hooking the Interrupt Descriptor Table (IDT). This hooking

method works on interrupts and is not constrained to a single application or a single

operating system. IDT hooks work fundamentally differently than SSDT hooks in

that with an SSDT hook the idea is to insert the rootkit into the execution loop so

that it can scrub the output of a legit function, thus returning incorrect/incomplete

data to the calling application. The IDT hook, on the other hand, does not insert

in the execution loop. Rather, the IDT hook breaks the loop and calls the rootkit

code instead of the originally intended code as can be seen in Figure 3.4. This allows

the rootkit to identify that there is a call from a particular application so that it can

identify and then allow or block. This method works by replacing the address of a

legitimate interrupt in the IDT with an entry to some rootkit code [8]. This causes

the rootkit code to be called every time the interrupt occurs. Altering the IDT works

both in Windows and in Linux simply by changing the address of a legitimate jump

to the address of rootkit code in the IDT.

3.2.1.3 Hooking the I/O Request Packet (IRP) Function Tables. IRP

hooks, just like IDT hooks, are not returned to so creating a hook that calls to rootkit

code is necessary to alter information coming from the intended driver. An illustration

of an IRP hook can be seen in Figure 3.5.

26

Figure 3.4: Example IDT Hook

Figure 3.5: Example IRP Hook [9]

Figure 3.6, shows a normal device driver physical structure. Once hooked the

diagram would change the “Device Drivers” box to “rootkit driver”. It is necessary

to write a completion function so that the information from the original device driver

can be sanitized [8].

A common theme among the Kernel Mode hooks is that they each overwrite an

address in a kernel data structure with a rootkit address and they are not application

specific.

User Level Hooking can also be done from the user level or “Userland” using

API hooking. API hooking is overwriting or modifying sections of files/processes used

27

Figure 3.6: Device Driver Physical Structure, Microsoft [18]

by an application to do other than intended purposes or to report other than accurate

information.

There are two common kinds of userland API hooking processes; Import Address

Table (IAT) hooking, and Inline function hooking. The IAT is a data structure

belongs to and resides within the address space of most application’s. The IAT holds

the imported addresses of functions to which the application plans to jump. Inline

28

function hooking is simply placing “extra” instructions into a function. The resultant

execution path of inline function hooking can be seen in Figure 3.2.

3.2.1.4 Import Address Table (IAT) Hooking. IAT hooking works like

SSDT hooking except it operates on the IAT table rather than the SSDT table. IAT

is also a hook per application rather than a hook for all applications. The SSDT

holds the addresses of system services that applications use, while each application

has its own IAT. An example of IAT hooking can be seen in Figure 3.7. Normal flow

would be: Application, IAT, called function. This can occur because the IAT can be

overwritten to jump to the rootkit instead of the intended function. This allows the

rootkit to be the caller of the intended function which gives the ability to clean/alter

the returned information [8].

Figure 3.7: Normal execution path vs. hooked execution path
for an IAT hook [9]

3.2.1.5 Inline function hooking. Inline function hooking is basically

the same thing as IAT hooking except the control of the target function is taken by

replacing the first 5 bytes of the target function with a jump to the rootkit function.

The rootkit function then calls the target function using the previously saved first

5 bytes. In this way the target function will do its intended operation but then

return the results to the rootkit rather than the calling application. The rootkit

will then modify the data as needed and return the erroneous results to the calling

application [8]. Figure 3.2, shows how the inline hooking would work. The actual

usage of inline function hooking would look like Table 3.1, which shows the normal

29

preamble of a Windows function and the modified preamble. Inline function hooking

is very similar to the following rootkit concept which is patching.

Table 3.1: Inline Function Hook [10]

Original Preamble

Code Bytes Assembly

8bff mov edi, edi

55 push ebp

8bec mov ebp, esp

Modified Preamble

Code Bytes Assembly

e9 xx xx xx xx jmp xxxxxxxx

...

3.2.2 Patching. Patching is overwriting a binary such that it performs in a

different way than it originally performed. An example of malicious patching would be

to analyze a program to find where the conditionals are located. One such conditional

could be the Jump if Not Zero (JNZ) instruction which can be used to stop access

to a program if the key entered is not correct/valid. This can easily be patched

with the use of a hexadecimal editor. We simply search for the appropriately located

hexidecimal value 75 (the JNZ assembly instruction) and change it to hexidecimal

value EB (the JMP assembly instruction). This change effectively says “jump to the

next instruction even if the right key is not entered” thus making the “nag screen” no

longer appear. Patching is also used to improve or fix otherwise incomplete/incorrect

code.

3.2.3 Data Structure Manipulation. Data Structure Manipulation (DSM) is

modifying a data structure such that it no longer works in the same way. An example

of DSM is Direct Kernel Object Manipulation (DKOM). Other RHTs remove data or

change data while DSM is changing the structure such that the data still exists it is

30

just not seen or used in the same fashion. An excellent example of this technique is

DKOM as implemented by FU which is described in Section 3.2.3.1,

3.2.3.1 Direct Kernel Object Manipulation (DKOM). One of the

objects within the Windows kernel that can be modified is the executive process

block (EPROCESS) which contains information about its associated process as well

as pointers to other needed data structures [53]. In this scenario used by FU and

FUTo rootkits, DKOM modifies the doubly linked list of processes such that the

pointers in the list, point around the process to be hidden, effectively removing it

from the list. Once the process has been removed from the list it can still continue

to execute because the execution occurs through the associated threads rather than

from one process to the next. This does, however, effectively remove the process from

any queries that attempt to walk this linked list of processes.

Figure 3.8: Direct Kernel Object Manipulation [8]

The removal of the EPROCESS block from the list occurs by making the forward

link (FLINK) and backward link (BLINK) pointers, in the EPROCESS block of the

31

process to be hidden, point to each other, while making the neighboring blocks point

to each other. The EPROCESS block is accessed by using the kernel processor control

block to view the current thread which points to the ETHREAD block, which then

points to the EPROCESS block. Each EPROCESS block is connected via a doubly

linked list to other EPROCESS blocks. Figure 3.8, shows the modification of the

FLINK and BLINK pointers [16].

3.2.3.2 Future DSM Targets. Data structure manipulation is one of

the cutting edge rootkit techniques and as such will continue to develop. One obvious

location for implementation of such techniques will be in the scheduler. Currently

there is a proof of concept (used for detection) called Klister, developed by Joanna

Rutkowska in 2003. Klister allows the scheduler/dispatcher lists to be read, showing

the currently running threads which are used to schedule time on the processor [12,13].

Threads can then be checked to see which process they belong to, thus showing an

accurate view of which processes are running regardless of hiding techniques to date

such as DKOM. This RDT could be overcome at least in theory by manipulating the

scheduler/dispatcher such that the desired thread(s) are hidden.

3.2.4 Virtual Machine and Virtual Memory. Virtual machine and virtual

memory rootkits are some of the most cutting edge techniques. Virtual machine

rootkits, such as Blue Pill by Joanna Rutkowska [54, 55], seek to turn the host OS

into a virtual machine by lifting it and inserting the rootkit below as the host OS. In

this way the rootkit would have access to anything and everything in the now virtual

OS but the virtual OS would have no indication of the rootkit’s presence. Virtual

memory rootkits seek to monitor their own memory section address space such that

when another process tries to read it they are redirected. An example of virtual

memory rootkits is cited and explained in further detail in Section 3.2.9.

32

3.2.5 Hardware. Although inserting rootkits at the hardware level may be

feasible, as documented by John Heasman in his paper Implementing and Detecting

a PCI Rootkit [28], for this thesis, we will not delve into as much detail on the issue.

Summary of Stealth Techniques - As discussed earlier the three categories used

by rootkits to hide are Hooking (changing the execution path), Patching (overwriting

an executable), and Data Structure Manipulation (changing the data/structure of an

object). These same techniques are used to attack both Windows and Linux operating

systems. In Figure 3.9 we can see how the three categories fit. All software exists

as data (binary code) which can potentially be overwritten or patched (inner-most

circle). This data is generally in some format, object or construct of some sort (list,

array, etc) which is what is hooked, in order to change the execution path (middle

circle). These constructs all interact in one form or another with their environment

such as the OS which is their data structure. This data structure can potentially be

manipulated (outer circle). For example, changing or removing pointers to an object.

It is important as a defender and an attacker to understand where all the tables with

important data exist, and where control exists. Hardware certainly puts a slightly

different spin on these categories but still roughly maintains these categories simply

by containing these categories within a new set of hardware. For example, if a PCI

card is added to a machine in order to protect the machine, the PCI card itself would

have these three categories within itself. The three categories would also then exist

on the same machine but outside of the PCI card thus giving two distinct locations

to check.

The following sections will give some examples of the three categories of rootkits.

3.2.6 Rootkit Examples - Hooking. As previously described, hooking works

by changing the original execution path of some application so that the information

that it receives has passed through the rootkit allowing the rootkit to scrub the data,

effectively allowing the rootkit to hide itself and anything else it chooses from view [8].

The following are some examples of hooking rootkits:

33

Figure 3.9: Rootkit Hiding Categories

3.2.6.1 AFX - Windows RK. Hides by hooking the SSDT as described

previously. AFX, as will be shown later, can be detected by other rootkits at the same

level or by checking other areas of the operating system for existence of AFX [62].

3.2.6.2 Vanquish - Windows RK. Works by hooking of API calls as

well as patching. Once the API is hooked the function is patched so that the hook can

subsequently be “undone” [69]. The hook no longer needs to exist once the function

is patched because the function will carry out the rootkit functionality due to the

patch.

3.2.6.3 Hacker Defender - Windows RK. The readme file for hacker

defender describes hacker defender as follows: “... rewrite few memory segments in

all running processes. ...able to hide files, processes, system services, system drivers,

34

registry keys and values, open ports, cheat with free disk space. ...also masks its

changes in memory and hides handles of hidden processes. ...installs hidden backdoors,

register as hidden system service and installs hidden system driver” [32]. This rootkit

works by hooking various API functions to hook ALL processes in the system [32].

3.2.6.4 Adore BSD 0.34 - BSD RK. Adore is a kernel loaded module

that is used to hide files, processes and network connections. It uses a second module

to delete itself from the kernel data structures. The SSDT method described earlier

is used to insert the rootkit via the overwriting of 15 system calls [7]. Subsequent

versions of Adore such as Adore-NG 1.41 use the same kernel module loading but

then infect other areas of the kernel such as the virtual filesystem layer such that it

does not have to hide itself because it becomes part of other modules [7].

3.2.7 Rootkit Examples - Patching. Patching is overwriting a binary such

that it performs in a different way than it originally performed. The following are

some examples of patching rootkits:

3.2.7.1 eEye Bootrootkit - Windows RKs. Created by Derek Soeder

and Ryan Permeh of eEye Digital Security, this proof of concept proves use of the

boot sector to create a rootkit. It uses a hook into the interrupt 13h in order to patch

the OS loader and then hooks ndis.sys [61] which is the Windows Network Driver

Interface Specification. NDIS.sys, according to related forums, holds a “collection of

routines that applications can invoke to perform network-related operations” [50].

3.2.7.2 SucKIT 1.3b - Linux RK. SucKIT is a Linux rootkit designed

by Silvio Cesare [15] and includes mechanisms for reboots and a backdoor. This

rootkit is listed in the patching section because majority of its techniques rely on

patching however, as you will see many of the ideas from other techniques are used.

This rootkit installs itself by doing a search on the memory of the system to find

the location of kmalloc() (the function used to allocate memory in the kernel) and

35

the SSDT. Once found, the address of kmalloc() is placed in an unused entry of the

SSDT. The entry that now exists in the SSDT is called and used to allocate kernel

memory, and the rootkit is subsequently loaded into that memory space. The SSDT

entry used is then overwritten to jump to the rootkit space. The /sbin/init file is also

overwritten or modified in order to reload this rootkit after a reboot. However, this

rootkit also copies the original file before overwriting so that when a query is made

to the file, the rootkit can redirect the query to the original but renamed file. This

saving and redirecting stops detection via a simple checksum. While using patching as

a means for loading, this rootkit also takes advantage of the SSDT to hook 24 system

calls. However, the implementation of the hook is slightly different. The SSDT is

actually copied and then modified. The IDT is then hooked to have subsequent

system calls jump to the modified SSDT. This stops detection of the rootkit by SSDT

inspection [7].

3.2.7.3 T0rn 8 - Linux RK. T0rn hides process information by patch-

ing system libraries such as libproc.a in linux systems. Libproc.a is “used for relaying

the process information from the kernelspace (via /proc file system) to user space

utilities such as /bin/ps and top” [15].

3.2.8 Rootkit Examples - Data Structure Manipulation. DSM modifies a

data structure such that it no longer works in the same way. The following are

examples of DSM rootkits:

3.2.8.1 FU and FUTo - Windows RKs. FU and FUTo hide by using

DKOM to redirect pointers within the EPROCESS block in Windows OSs as de-

scribed in Section 3.2.3.1. A possible way to subvert this hiding technique is to follow

each thread from the Kernel Process Control Block (KPCB) to its Ethread and sub-

sequently to its EProcess, thus finding each process by iterating through threads in

the KPCB rather than processes in the EProcess blocks. A similar concept is shown

in “Klister” as previously mentioned.

36

3.2.9 Rootkit Examples - Virtual Memory.

3.2.9.1 Shadow Walker - Windows RKs. Shadow Walker uses virtual

memory to hide itself and its malicious processes from detection. As reported by

James Butler and Sherri Sparks, Shadow Walker is a proof of concept that covers

three concerns in virtual memory [11]. First, it detects when something other than

itself is attempting to read its memory space. This is done by identifying the dif-

ference between read, write, and execute. Differentiating between read, write, and

execute (read/execute, write/execute) is accomplished by marking the page table en-

tries (PTEs) as “non present” and hooking the page fault handler. This allows Shadow

Walker to monitor access to these pages. Once it has been clearly identified which

of these is being used, the RK must be able to fake the read or send back erroneous

information to would-be detection utilities. If the access is a read access, Shadow

Walker returns erroneous information to the application, otherwise Shadow Walker

runs itself as intended. The last thing addressed by Shadow Walker is that there is

little identifiable performance degradation because the increase in the number of page

faults generated is minimal. [11]

Other UNIX based rootkits include: (usermode)-lkr, ark, (kernelmode)-Knark(written

by Creed).

As can be seen in Table 3.2, there are many rootkits. Each rootkit studied fits

into at least one of the three categories, namely hooking, patching, or DSM. However,

as can also be seen in the table there are at least two rootkits which have treaded

on new territory, that of VM and Hardware. Both of these new territories still fall

within hooking, patching and DSM as described earlier but because of the newness

were left in the table as separate entries.

3.3 Rootkit Detection

There are many techniques to detect rootkits, however, as stated elegantly by

the writers of www.hxdef.org “For an attacker one security hole is enough to win

37

Table 3.2: Rootkit Examples

Rootkit Hooking Patching DSM VM Hardware

AFX X X

Vanquish X X

Hacker Defender X X

Adore/ava X X

SucKIT X X

Apropos X X

T0rn X

FU X

FUTo X

deepdoor X

peligroso X

firewalk X

prrf X

phide2 X

Shadow Walker X X

Blue Pill X X

eEye Bootrootkit X X

HE4Hook X

NTRootkit X

NTIllusion X

VideoCardKit X X

SonyBMG XCP X

wootkit X

RK X

the game. One can say the role of attacker is easier. But if you want to fight the

attacker you can’t produce an antirootkit solution that just fixes or protects one weak

point. You have to fix all those points. What’s more, you can’t have weak points

38

in that solution.” [31] Rootkits are constantly evolving and improving thus rootkit

detection methods must get better and more complete. There may or may not exist a

single rootkit detector that can find all rootkits. James Butler and Sherri Sparks, in

their article Windows Rootkits of 2005 [12], divide rootkit detection techniques into

five categories: signature based, behavioral/heuristic, crossview, integrity based and

hardware detection [12].

1. Signature based detection is scanning data for a pattern which comprises a

“fingerprint” that is unique to a particular entity [11].

2. Behavioral/heuristic based detection seeks to identify actions or patterns that

are abnormal to system operation. These detection techniques “work by recognizing

deviations in “normal” system patterns or behaviors” [11].

3. Crossview based detection uses the idea of data redundancy (the existence

of equivalent data in more than one location) to find “answers” from multiple sources

that should be the same in order to identify discrepancies [11]. An example of such is

a child asking her mother for permission to go to the park and then asking her father

permission for the same thing. The two answers should be the same; however, the

difference in answers is what is exploited by the child.

4. Integrity based detection compares a known good entity with a suspected

entity in order to verify the correctness/accurateness of the suspect entity. An example

of such is comparing “a current snapshot of the filesystem or memory with a known,

trusted baseline” [11].

5. Hardware based detection uses a piece of hardware to implement one or

more detection techniques such as signature, heuristic, crossview, or integrity based

detection while separating itself from the suspected operating system [11]. Hardware

detection makes it more difficult for the attacking entity to corrupt the results of the

hardware.

As important as each of these categories are; we have come to a different solution

for categorization. If it is possible to classify, such that a taxonomy is developed, then

39

we will be able to move more quickly in our research to detect “all” rootkits because

“all rootkits” would fit into the taxonomy. In an effort to move toward this taxonomy

we propose the following categorization. We propose detection classes, techniques,

and implementations each of which will have its subcategories.

Detection classes give categories that show ways in which it might be possible to

detect. Surely there may be classes that we have not yet discovered, but to date we see

these classes as: Static (Analysis/Detection based on the knowledge of characteristics

possessed by an entity such as a rootkit) and Behavioral (Analysis/Detection based

on the behavior or lack of absence of behavior of an entity).

Detection techniques are the subsets of detection classes which describe how the

detection classes may work. Subsets of the static class are: signature (analysis/detec-

tion of an entity through identified patterns or sequences) and integrity (analysis/de-

tection of an entity through verification and comparison of known good patterns or

sequences with suspect patterns or sequences). Subsets of the behavioral class are:

anomaly (analysis/detection of and entity through identification of unknown behav-

ior) and signature (as previously defined). Each of these techniques can take on an

aspect of time via a snapshot of past, present or future states.

Detection implementations are the ways in which we may implement detection

techniques or combinations of detection techniques as is the case with crossview. The

identified implementations to date are: crossview (the comparing of two or more

inputs, whether from the same technique or various, in order to achieve detection),

remote attestation (comparing “outside” information with information on a “suspect”

machine), cognitive/human, hardware, software, and memory tracking (detection of

anomalies via known memory behaviors).

We arrive at this categorization by analyzing detection starting with Figure 3.10.

In this graph we divide detection into two areas; “What it is” (What are we trying

to detect), and “What it is doing” (What is the entity, that we are trying to detect,

40

doing). The first branch is then followed further to identify two ways of detecting

“What it is”; Is it there, or can we verify that it is not there.

Figure 3.10: Detection Classification 1

“What it is” refers to what is the rootkit which we are trying to detect and a

static view (snapshot) of either what it looked like in the past, what it currently looks

like, or what it will look like in the future. This requires the knowledge of the rootkit

and what it looks like at various stages. “What it is doing” refers to the actions or

behavior of the rootkit or the actions and behaviors caused by the rootkit (the actions

and behaviors of the surrounding system). Figure 3.11, shows the same graph with

the new classes and techniques inserted. Figure 3.12 adds detection implementations

and other known inputs to a system.

Other known inputs to a system that might help in detection could be intel-

ligence (obtained from other sources, i.e., someone said there is a rootkit on my

machine), witness (the data, object, or structure affected by the victim), victim (the

41

Figure 3.11: Detection Classification 2

data, object, or structure that was manipulated), attacker (the manipulator of data,

object or structure), and outside sources (such as a news report or other information).

If we incorporate all of our classes, techniques, implementations and other inputs

into a graph and connect them via arrows showing inputs we obtain a very busy

Figure 3.12 which shows how each of the classes, techniques, and implementations

interconnect.

3.3.1 Behavioral Detection Class. Behavioral based detection seeks to iden-

tify actions or patterns that are abnormal to system operation. These detection tech-

niques “work by recognizing deviations in normal system patterns or behaviors” [11].

A lack of pattern or action is also a behavior, but it is a behavior of the system rather

than a behavior of the entity being investigated. For example, if an application is

launched that should create a particular pattern and it does not create said pattern

then that is anomalous. Behavioral detection uses two main techniques: anomaly and

signature. Behavioral detection can also be an input to many detection implementa-

tions such as: Crossview, hardware, software, cognitive/human, remote attestation,

and memory tracking.

42

Figure 3.12: Detection Classification 3

3.3.2 Static Detection Class. The static detection class is defined by what

the target entity is comprised of or its attributes, such as code. Static detection

currently has two techniques, signature and integrity. Signature based detection is

defined as a particular set (predefined set) of instructions or code which are to be

found and acted upon (i.e., identified, blocked, removed) [23, 33]. This set may be

a sequence of instructions or a pattern of instructions. Integrity based detection

compares a known good entity with a suspected entity in order to verify the correct-

ness/accurateness of the suspect entity. An example of such is comparing “a current

snapshot of the filesystem or memory with a known, trusted baseline” [11]. These

two techniques within the static detection class show two views, that of detection of

known bad via looking for the bad and detection of bad via verifying known good.

One drawback to signature detection is the fact that it works via the blacklist

(i.e., blocks a specific list of disallowed items, ie,. processes, actions, email addresses)

methodology such that you must know of the attack before blocking it. The two

limitations cited by James Foster of Global Security Solution Development and the

glossary developed by Imperva, Data Security for the Data Center, are: 1. “They

43

are prone to false positives without extensive tuning”, and 2. “They are not effective

at detecting many unknown attacks on custom or internally developed code” [23,

33]. However, the counterpart to blacklist is whitelist (blocks all but a specific list

of allowed items, ie,. processes, actions, email addresses, etc,) which is analogous

to integrity based detection. By including both signature (analogy:blacklist) and

integrity (analogy:whitelist) in the static detection class it seems that we have covered

static analysis.

It is our hypothesis that rootkits must hide from both classes of detection,

namely Behavioral and Static, in order to be completely stealthy. A rootkit does not

necessarily need to hide from both in order to be effective but in order to obtain

complete stealth it must address both and be at the lowest ring/highest level. The

term “lowest ring/highest level” refers to the protection rings in Figure 2.7. If we

do not attempt detection in all classes then a rootkit could achieve stealthiness by

only implementing the class that is not challenged. For example, a particular rootkit

could use metamorphic code in order to subvert signature detection and hook the

integrity scan report in order to subvert the results which would in effect defeat the

static detection class which shows that if behavior is not checked then we will not be

able to detect such a rootkit.

One way in which some rootkits can be found, as mentioned by Hoglund et al.

is by looking for an image on a system, which falls into the static detection class,

“This approach is still used by most anti-virus vendors” [8]. Hoglund also suggests

that “All software must ‘live’ in memory somewhere” [8]. which means that detection

can also be implemented in the forms of guarding and scanning.

Guarding vs Scanning - Guarding is the enumeration and protection of all im-

portant “assets”. This can be compared to whitelists (a specific list of allowed items,

ie,. processes, actions, email addresses, etc,) and the integrity detection technique.

Guarding then disallows anything not on the “approved” whitelist. Scanning, on the

other hand, is looking for a particular “signature” among the unknown events and

44

possibly within the known events (to verify the known events’ integrity). Scanning

requires a “signature” which assumes apriori knowledge of the intrusion or of a par-

ticular attack method [8]. Scanning could then be compared to blacklists and the

signature technique of the static class.

Both guarding and scanning are legitimate and useful techniques to protecting

a system and when used in conjunction with one another will raise the defenses of a

given system.

Rootkit techniques can be used to detect rootkits. For example, the usage of a

rootkit to detect other rootkits. If we use a rootkit to report rather than to hide we

may be able to subvert a malicious rootkit at the same level by creating a somewhat

“secure channel” for reporting back to the user.

The lower detour function box in Figure 3.13 (step 4), shows how it might be

possible to export the unmodified data of the target program to a different desti-

nation in order to maintain data integrity and compare against the modified source

application data, creating a crossview. Further details of this detection technique will

be discussed in Section 4.8.

3.3.3 Rootkit Detection Examples - Behavioral.

3.3.3.1 VICE. Vice detects the presence of hidden hooks by installing

its own device driver to check the SSDT for pointers that do not resolve to ntoskrnl.exe

which (“provides the Microkernel and Executive layers of the Windows NT kernel

space, and is responsible for various system services such as hardware virtualisation,

process and memory management”) [67]. It also checks devices in driver.ini with

the IRP table, and applications looking for IAT hooks in every DLL. This method of

detection is very robust when looking for hooks of this type. However, Vice is subject

to subversion through other techniques such as DSM [12].

45

Figure 3.13: Trampoline Function with Modification [8]

3.3.3.2 Patchfinder. Patchfinder is a proof of concept tool created

by Joanna Rutkowska. Patchfinder works by puting the x86 processor into single

step mode and counting every instruction on a clean machine and comparing the

instruction count to that of a potentially compromised machine. Through statistics

Rutkowska claims that rootkit detection can occur because the application of a his-

togram shows shifts in peak instruction counts on an infected system versus a non

infected system. Differently stated, a clean system will have a peak in instruction

counts at a particular spot in execution and an infected system will have a different

or shifted peak. However, the height of the peak may vary, normally, because of the

different paths of execution that could exist [12].

46

3.3.3.3 System Virginity Verifier. System Virginity Verifier, created as

another proof of concept by Joanna Rutkowska, works much like VICE by “comparing

important system libraries and drivers on disk with their corresponding loaded images

in memory” [12].

3.3.3.4 Copilot. Copilot is a hardware detection tool in the form of a

PCI card which implements behavioral and signature based detection techniques on

key tables and functions. Copilot effectively solves (at least for now) the need to have

a secure channel for reporting back to a user by maintaining all of the processing of

information on its own CPU using Direct Memory Access (DMA) to scan for rootkits,

and its own network interface to securely send the information to the requestor [12].

3.3.4 Rootkit Detection Examples - Signature.

3.3.4.1 Klister. Klister finds processes by iterating through the sched-

uler to find all threads that are scheduled and comparing that list to a higher level

view of running processes thus allowing a crossview to find discrepancies. A crossview

uses two or more views of the same data and compares the results in order to identify

discrepancies. Klister is a proof of concept for the Windows 2000 platform created by

Joanna Rutkowska [12]. It is claimed to be subvertible at least in theory by changing

the scheduler code or by using virtual machine technology. However, both of these

subversion techniques not only raise the level of difficulty for rootkit creation but have

an inherent problem in that they increase processor workload, thus allowing detection

via delay issues.

3.3.4.2 Rootkit Revealer. Rootkit revealer seeks to find persistent

rootkits (those that remain between reboots) by comparing the registry hive (“com-

prises a set of files, called hives, that are stored on the hard drive” [41]) and the

filesystem to identify files that do not belong [12]. This method of detection can

easily be subverted through redirection of queries to the file system files and queries

47

to the registry. According to the technichal paper, An Analysis of Forensic Tools in

Detecting Rootkits and Hidden Processes by Todd et al [3], Rootkit Revealer was able

to detect AFXRootkit and Hacker Defender.

3.3.4.3 Strider GhostBuster. Strider Ghostbuster seeks to find rootk-

its by comparing high level API calls and a manually parsed version of the filesystem

to identify files that do not belong [12]. As with many of these detection techniques,

this method of detection can easily be subverted through use of hooking and redirec-

tion. Therefore, it is important that the information obtained is verified to be correct

possibly through the use of trusted computing methodology.

3.3.4.4 Tripwire. Tripwire accomplishes detection through integrity

checking of the disk. In order for this to succeed the user must take a clean view of their

disk prior to operation and then any subsequent checks are compared against the clean

view. Each view or check uses a Cyclic Redundancy Check (CRC) hash value to record

the state of the disk. Any variations to the CRC in future checks from the original

check constitutes a flag or detection. Subversion of this technique is accomplished

through in memory rootkits as opposed to on disk (persistent) rootkits [12].

3.3.4.5 Blacklight. Blacklight works by querying every possible Pro-

cess Identification (PID) number, which they call Process Identification Brute Force

(PIDB), and comparing the results with a crossview of a higher level call to mark

any discrepancies as hidden. The following quote from an article published on un-

informed.org by Peter Silberman and C.H.A.O.S. clearly describes how Blacklight

works:

“Now we have a complete picture of how Blacklight detects hidden pro-
cesses: Blacklight starts looping through the range of valid process IDs,
0 through 0x41DC. Blacklight calls OpenProcess on every possible PID.
OpenProcess calls NtOpenProcess. NtOpenProcess calls PsLookupPro-
cessByProcessId to verify the process exists. PsLookupProcessByProces-
sId uses the PspCidTable to verify the processes exists. NtOpenProcess
calls ObOpenObjectByPointer to get the handle to the process. If Open-

48

Process was successful, Blacklight stores the information about the process
and continues to loop. Once the process list has been created by exhaust-
ing all possible PIDs. Blacklight compares the PIDB list with the list it
creates by calling CreateToolhelp32Snapshot. CreateToolhelp32Snapshot
is a Win32 API that takes a snapshot of all running processes on the sys-
tem. A discrepancy between the two lists implies that there is a hidden
process. This case is reported by Blacklight” [63].

According to the technichal paper, An Analysis of Forensic Tools in Detecting Rootkits

and Hidden Processes by Todd et al [3], BlackLight was able to detect AFXRootkit,

Hacker Defender, Vanquish, FU and FUTo.

3.3.4.6 Ice Sword. Ice Sword, was created by a Chinese programmer

by the alias of pjf [40]. It is believed to function using the same techniques as

Blacklight for process detection [63]. However, an apparent advantage Ice Sword

has over it’s counterpart is that it is more robust and includes capabilities to detect

“hidden processes, services, drivers, files, ports, and registry settings” [3]. According

to the technichal paper, An Analysis of Forensic Tools in Detecting Rootkits and

Hidden Processes by Todd et al [3], Ice Sword was able to detect AFXRootkit, Hacker

Defender, Vanquish, FU and FUTo.

3.3.4.7 GMER. GMER scans for hidden processes, threads, modules,

services, files, alternate data streams, registry keys, SSDT hooks, IDT hooks, IRP

calls, and inline hooks. GMER also monitors creation of processes, driver loading,

library loading, file functions, registry entries, and TCP/IP connections [48].

The area of rootkit detection has grown considerably and there are a very large

number of detectors. Due to the high number of detectors available, not all were able

to be covered due to time contraints. However, a list of some that were found are

listed in Table 3.3. Some were found mentioned in various articles but not described

fully and some were found at sites such as majorgeeks.com [3].

49

Table 3.3: Rootkit Detection Examples

Rootkit Detector Static Behavioral

Klister (Rutkowska) X

Rootkit Revealer (Sysinternals) X

Strider Ghostbuster (Microsoft) X

Tripwire X

F-Secure Blacklight (F-Secure) X

Ice Sword (XFocus) X

Patchfinder X

Vice X

System Virginity Verifier (Rutkowska) X

CoPilot X

Other Rootkit Detectors include: RKDetector, find hidden service, Flister, Kill

hide services, Kernel hidden process/module checker, modGreper, RegDatXP, Task-

Info, and bluestone.

Windows RK Detectors include: Aries Sony Rootkit Remover(lavasoft), Archon

Scanner(x-solve), AVG AntiRootkit(Grisoft), Avira Rootkit Detection(Avira), Dark

Spy(CardMagic and Wowocock), Helios(MIEL e-Security), HiddenFinder(Wenpoint),

HookExplorer (iDefense), Panda Anti-Rootkit Tucan (Panda Software), Process Mas-

ter (Backfaces), Rootkit Detective (McAfee Avert Labs), Rootkit Buster (Trend Mi-

cro), RootKit Hook Analyzer (Resplendence), RootkitShark (Advances.com), Rootkit

Uncover (Bit Defender), Rootkit Unhooker (UG North), SEEM (Al, nunki), Sophos

Antirootkit (Sophos), and Unhackme (Greatis).

Linux/BSD RK Detectors include: chkrootkit(Murilo and Jessen), Zeppoo (Zep-

poo), and Rootkit Hunter (Boelen).

Mac RK Detectors include: OS X Rootkit Hunter (Christian Hornung).

Summary - The detection classes, techniques, and implementations with their

associated examples all give us a better view into how rootkits can be detected and

50

where we may find potential deficiencies. The following chapter will show attack

trees and defense trees as examples of how rootkits hide and are detected in order to

help further identify what these deficiencies may be. It also illustrates via ideas and

experimentation some ways to further the state of the art.

51

IV. Experimentation and Results

4.1 Chapter Overview

In this chapter, in order to further explain and classify rootkit hiding techniques,

we develop an attack tree and a defense tree which will help to identify deficiencies

in current detection, help focus future research of hiding and detection, as well as

important concepts for defense. We also explain and define an experiment which

shows how a rootkit can be used to defend against other rootkits of the same type in

order to springboard future defensive techniques.

4.2 Rootkit Attack Tree

In Figure 4.1 we have created an example of how an attacker might achieve

a degree of stealth via following one of the branches of this attack tree through its

associated OR gates. We note that in order to obtain a degree of stealth the attack

need only pick one of the shown attack paths. For example, the FU rootkit [26]

modifies the SSDT which provides some stealth because the SSDT is relied upon by

many programs to provide information about existing processes.

Stealth

Ready List

AttackTree for Rootkit Hiding

UserDispatcher/scheduler Kernel Objects APIsVM

Wait In List Wait Out List

SSDT IDT IRP

ZWQuerySystemInfo ZW*

PsActiveProcList NT*

Steganography

Future -- Bleeding Edge -- Cutting Edge------------------ Current ------------------------------------- Older

Rootkit Technology Timeline

Figure 4.1: Attack Tree 2: Rootkit Hiding Techniques

52

From Figure 4.1 a hierarchical view of complete stealth can be derived and is

shown in Figure 4.2. Thus, for complete stealth an attacker must descend to the

lowest level of stealth. However, the lowest level of stealth needed is dictated by

the level of defense being implemented. Furthermore, descending to the lowest level

without regard to the higher levels is also not sufficient; the attacker must keep in mind

the 30,000 foot view in order to maintain stealthiness. For example, if an attacker

descends to the lowest level of stealth (perhaps using a VM technique such as Blue

Pill) but forgets to hide from both the signature and behavioral detection classes

with all of their techniques and implementations then they can still be theoretically

detected. In this case, although popular belief and albeit, very good analysis, would

suggest that Blue Pill would be “...virtually ‘100% undetectable’ !” [54], this does not

account for static or behavioral analysis from a hardware implementation and possibly

others.

Rootkit Hierarchy

Hardware

Scheduler
Threads

Kernel Objects
Tables

ZW* functions

API’s
Win32 Subsystem

NT* functions

User

VM

In
c
re

a
s
in

g
 l
e
v
e
l
o
f
c
o

m
p

le
x
it
y
 a

n
d

 d
if
fi
c
u

lt
y
 t
o

 c
re

a
te

/m
o

d
if
y

Figure 4.2: Rootkit Hierarchy

53

4.3 Rootkit Defense Tree

A defense tree is the counterpart to an attack tree, and is used simply to identify

what needs to be defended in a computer system. In order to have complete protec-

tion, all of the branches of the tree must be checked as can be seen in Figure 4.3 which

uses AND gates to depict that all branches must be addressed.

No Stealth

Ready List

UserDispatcher/scheduler Kernel Objects APIsVM

Wait In List Wait Out List

SSDT IDT IRP

ZWQuerySystemInfo ZW*

PsActiveProcList NT*

Steganography

Future ---------------------------- Bleeding Edge -- Cutting Edge---------- Current ------------------------- Older

Rootkit Detection Technology Timeline

Defense Tree

Figure 4.3: Rootkit Defense Tree

However, some branches can potentially be checked via checking other branches

or combinations of branches. An example of defense tree usage is given in Figure 4.4,

with Klister. By using a view of the API branch and a view of the scheduler/dispatcher

(the part of the operating system that decides what is to run next and for how long

based on priorities), Klister is able to effectively discover what is occuring in one

branch without directly searching it because the dispatcher should hold an accurate

list of what is running which can be compared against what “should be” accurate

in the API list. Any discrepancies can then be shown as hidden processes. This

technique cuts out the DKOM technique used by FU and FUTo by working around

it. However, as mentioned earlier, all branches should still be checked because if the

rootkit gets below the dispatcher then this technique, as clever as it is, also fails.

54

Defense Tree

Klister Crossview

No Stealth

Ready List

UserDispatcher/scheduler Kernel Objects APIsVM

Wait In List Wait Out List

SSDT IDT IRP

ZWQuerySystemInfo ZW*

PsActiveProcList NT*

Steganography

Future ---------------------------- Bleeding Edge -- Cutting Edge---------- Current ------------------------- Older

Rootkit Detection Technology Timeline

Kernel Objects

C
R
O

S
S
V
IE

W

Figure 4.4: Rootkit Defense Tree:Klister Example

4.4 Furthering the state of the art

In order to increase the state of the art in finding techniques we need to continue

to innovate and create new ways to detect and “win” the arms race. One possible

way to increase detection abilities is to use the available hiding abilities. To this end,

we have created the following experiment which uses a hooking rootkit to find other

hooking rootkits. In Section 4.5 we outline the System Under Test (SUT), which is

then followed by an experiment overview in Section 4.6, setup in Section 4.7, and

outcomes in Section 4.8.

4.5 System Under Test

The system boundaries for this particular research must be limited in order to

be manageable and contribute information to the body of knowledge on rootkits. For

this research we make the following boundaries:

55

4.5.1 Base System. Dell Latitude D510, Intel Celeron(R)M 1.40GHz pro-

cessor, 1G Ram, Windows XP Professional version 2002; service pack 2; fully patched

as of 8/21/2006.

4.5.2 Tested System. VMware Workstation version 5.5.1 build19175 with

Windows XP Professional version 2002; service pack 2; unpatched.

4.5.3 Software. Rootkits: HideProcessHookMDL, Modified HideProcessHook-

MDL, Hxdef100r, AFX2005, and Fu. Support Software: Procexp.exe, dbgview.exe,

calc.exe

4.6 Experiment Overview: Rooted Rootkits

It is our hypothesis that if a rootkit hides using a particular method that it can

also be modified to find other rootkits, of the same or “lesser” classes, using that same

method. The first experiment simply checks to see if a rootkit “HideProcessHook-

MDL” can be used to detect other rootkits that use the same and similar methods of

hiding.

HideProcessHookMDL (HPH) hides by hooking the SSDT and scrubbing the

content of the returned linked list for anything that has root in its name [25].

To detect the ability to find other rootkits we modified HideProcessHookMDL

such that it still hooks the SSDT but does not hide any processes, rather, it sends a

debug print statement which can be seen using Dbgview.exe [51] from Sysinternals.

Due to the technique used to hide via a hook into the SSDT, nothing is readily

seen as output until a call is generated looking for processes. Therefore, in order

to more closely monitor and show results for this experiment we used another tool

called procexp.exe [52] also from Sysinternals, because it continually calls for a list of

running processes. This also gives us the ability to see which processes are running

from the application perspective (procexp.exe) so that we can compare those with

what the modified hook (via the debug statements in dbgview.exe) sees running. It

56

is also necessary to name a program with root in the name. For these experiments

we will simply make a copy of calc.exe and name it root calc.exe. The final piece

of software needed to make this experiment complete is InstDriver.exe [29] which is

used to install the modified HPH.

4.7 Experiment setup

Install Modified HPH on a clean system (Windows XP used). Start HPH. Start

Debugview. Start Process explorer. Start calc.exe and root calc.exe. Install and

start other hooks. Compare output of application and modified hook.

4.8 Outcomes

4.8.1 Experiment 1 Modified HPH vs unmodified HPH. This experiment

verified that HPH was working because the process (root calc.exe) did not show up

in the process explorer. However, it showed that this particular hook could detect

itself because the hook did show up in debugview.

4.8.2 Experiment 2 Modified HPH vs Hxdef100r. This experiment verified

that both HPH and hxdef100r were working because the process (hxdefcalc.exe) did

not show up in the process explorer. However, it did show up in debugview. This

illustrates that the modified HPH was able to defeat hxdef100r.

4.8.3 Experiment 3 Modified HPH vs AFX2005. This experiment verified

that both HPH and AFX2005 were working because the process (root calc.exe) did

not show up in the process explorer. However, it did show up in debugview. Which

furthermore illustrates that the modified HPH was able to defeat AFX2005.

4.8.4 Experiment 4 Modified HPH vs Fu. As expected this experiment

showed that Fu was able to continue hiding processes even with the modified HPH

installed because Fu uses a different hiding technique discussed previously called

57

DKOM. This experiment further illustrates the “arms race” that exists with rootkits

versus rootkit detectors.

4.9 Metrics

Metrics in this experiment only had two outcomes, success or failure. The results

are summarized in Figure 4.5.

Figure 4.5: Test Results

In this chapter we have shown how attack trees and defense trees can be devel-

oped in order to identify holes in detection and also ways to detect in all branches

even when a particular branch has been otherwise compromised.

58

V. Summary

5.1 Conclusion

This thesis has shown the importance of understanding rootkit stealth tech-

niques and rootkit detection techniques. Many of the current technologies for each

stealth technique and detection class were illustrated in Chapter 3. Rootkit stealth

techniques can be examined using a graphical representation called an attack tree.

The attack tree and its counterpart the defense tree developed in this thesis show what

categories of techniques touch the base of the tree and shows to successfully defend

against all rootkits, each and every category of rootkits must be at least addressed. It

is also important to remember that this is rootkit research is very comparable to an

arms race in that, what works today may not work tomorrow because the attackers

will invent new ways of getting in that we as defenders have not yet thought of and

visa versa.

It was experimentally shown that a rootkit can successfully find other rootkits.

This research explored ways in which rootkits hide and also how they can be detected.

These hiding and finding techniques were used to create an attack tree from which

we can identify deficiencies in current detection techniques. Detection categorizations

were also refined.

The following section outlines some ideas for future research.

5.2 Future Research

5.2.1 Rootkit Detection concept: Screen Sweeping. Screen Sweeping is re-

moving data and/or results from the computer system user’s view. If a rootkit is

installed on a machine and a rootkit detector successfully identifies that there is a

rootkit present, the next logical step is to alert the user. If a rootkit can stop or

modify the detection report before it is sent to the computer screen then the user will

not know that a rootkit is present even if the detection tool was initially successful.

Screen Sweeping, suggests that in order to detect perfectly we must not only

detect but create a “secure channel” from the level of detection to the screen. This

59

“secure channel” or “Secure I/O” [38] is one of the concepts that is currently being

addressed by work in Trusted Computing, which is explained in Section 2.4.

5.2.2 Rootkit Detection concept: Memory Tracking. Every system has a

finite amount of memory. We understand how memory is used and the algorithm-

s/applications that choose which memory will be used. If we can mark or track which

memory is being used by our known system and which memory is simply “trash” then

by carefully tracking the memory we should be able to see writing anomalies and thus

detect other potentially malicious software on our systems. For example, if we know

that we have 100 memory locations in our system and locations 1-10 are being used,

then we should know that upon installation of a new program or other such action

that memory location 11 should be written used (location of the next memory lo-

cation would be algorithm/software dependent but should be understood). If upon

installation we tracked memory and noted that the chosen location for installation

was not 11 but rather some other location then we can set a flag as anomalous and

further investigate. What is at memory location 11? Is it a bad sector? Is it malicious

code?

5.2.3 Research Questions.

1. Do multiple detection methods (ie, crossview) need to be used or can a trusted

channel be created that is sufficient to detect and report all rootkits?

2. Is the first “complete” rootkit installed on a machine truly the winner? Is there

no other detection/removal option if a rootkit addresses each category and each

level?

3. Can I detect hardware scans and feed them faulty information or hide from

them?

4. Are there any other classes of detection other than static and behavioral?

5. Are there any other implementations of the static detection class other than

signature and integrity?

60

6. Are there any other implementations of the behavioral detection class other

than anomaly and signature?

7. Are there any other detection techniques other than crossview, hardware, cog-

nitive/human, software, remote attestation and memory tracking?

8. Explore ways to implement memory tracking.

61

Appendix A. Windows Architecture

Figure A.1: Windows Architecture [19]

62

Appendix B. UNIX Architecture

Figure B.1: UNIX Architecture [24]

Figure B.2: UNIX Architecture [24]

63

Bibliography

1. Adamantix.org. “Adamantix”, 2007. URL http://www.adamantix.org/.

2. of the Air Force, Department. “Air Force Instruction 33-138”, Nov 2005. URL
http://www.e-publishing.af.mil/pubfiles/af/33/afi33-138/afi33-138.pdf.

3. Benson, Joshua A, Timothy P Franz, Michael R Stevens, Adam D Todd, Gilbert L
Peterson, and Richard A Raines. An Analysis of Forensic Tools in Detecting
Rootkits and Hidden Processes. Technical report, Sep 2006.

4. BERINATO, SCOTT. “PATCH AND PRAY”, Aug 2003. URL
http://www.csoonline.com/read/080103/patch.html.

5. Bishop, Matt. “Computer Security Art and Science”, 2003.

6. Bruning, Max. “A Comparison of Solaris,
Linux, and FreeBSD Kernels”, Oct 2005. URL
http://www.opensolaris.org/os/article/2005-10-14 a comparison

of solaris linux and freebsd kernels/.

7. Bunten, Andreas. UNIX and Linux based Rootkits Tech-
niques and Countermeasures. Technical report, 2004. URL
http://www.first.org/conference/2004/papers/c17.pdf.

8. Butler, James and Greg Hoglund. Rootkits: Subverting the Windows Kernel.
Addison-Wesley, 2006.

9. Butler, James and Sherri Sparks. Spyware and Rootkits:
The Future Convergence. Technical report, Dec 2004. URL
http://www.usenix.org/publications/login/2004-12/pdfs/spyware.pdf.

10. Butler, James and Sherri Sparks. “Windows rootkits of 2005, part one”, 4 Nov
2005. URL http://www.securityfocus.com/infocus/1850.

11. Butler, James and Sherri Sparks. “Windows rootkits of 2005, part two”, 17 Nov
2005. URL http://www.securityfocus.com/infocus/1851.

12. Butler, James and Sherri Sparks. “Windows rootkits of 2005, part three”, 5 Jan
2006. URL http://www.securityfocus.com/infocus/1854.

13. Butler, Jamie and Greg Hoglund. “VICE - Catch the hookers!”, 2005. URL
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/

bh-us-04-butler.pdf.

14. Center, CERT Coordination. “CERT CC Statistics 1988-2006”, 7 June 2006.

15. Chuvakin, Anton. An Overview of UNIX Rootk-
its. Technical report, iDEFENSE Labs, Feb 2003. URL
http://mitglied.lycos.de/dlwhitepapers/rootkits.pdf.

64

16. Claycomb, Craig A. Analysis of Windows Rootkit Detection Tools (FOUO). Ph.D.
thesis, AFIT, 2006.

17. Corp, Microsoft. “Kernel-Mode Driver Architecture: Windows DDK”, 2002.

18. Corporation, Microsoft. “Device Driver Physical Structure”, 2006. URL
http://technet2.microsoft.com/WindowsServer/en/library/2e81a334-

ece5-4210-815a-6a2ea33f61151033.mspx?mfr=true.

19. Corporation, Microsoft. “Windows Architecture”, 2006. URL
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc

/winarch.mspx?mfr=true.

20. Dabak, Prasad, Milind Borate, and Sandeep Phadke. Hooking
Windows NT System Services. M&T Books, Oct 1999. URL
http://www.windowsitlibrary.com/Content/356/06/2.html.

21. developer.apple.com. “Developer Connection”, Nov 2006. URL
http://developer.apple.com/documentation/Darwin/Conceptual/

KernelProgramming/security/chapter 3 section 7.html.

22. ESISAC. “American Electric Power Attack Tree Methodology”, 6 June 2006. URL
http://www.esisac.com/publicdocs/assessment methods/AppG AEP ATM.pdf.

23. Foster, James C. “IDS: Signature versus anomaly detection”, 2005.
URL http://searchsecurity.techtarget.com/tip/0,289483,sid14

gci1092691,00.html.

24. Frazer, Kenneth R. “UNIX Architecture”, 2001. URL
http://home.earthlink.net/ krfrazer2/Unix Architecture.pdf.

25. fuzen op. “HideProcessHookMDL”, 2005. URL
http://www.rootkit.com/vault/fuzen op/HideProcessHookMDL.zip.

26. fuzen op. “FU”, 2006. URL http://www.rootkit.com.

27. fuzen op. “FU Readme.txt”, 2007. URL
https://www.rootkit.com/vault/fuzen op/FU README.txt.

28. Heasman, John. Implementing and Detecting a PCI Rootkit. Techni-
cal report, NGSSoftware Insight Security Research (NISR), 15 Nov 2006.
URL http://www.ngssoftware.com/research/papers/Implementing And

Detecting A PCI Rootkit.pdf.

29. Hoglund. “InstDriver”, 2003. URL https://www.rootkit.com/vault/hoglund/

instdvr.zip.

30. Hoglund. “OpenRCE Article Comments: FUTo”, 2006. URL
http://www.openrce.org/articles/view comments/19.

31. holy father. “Antidetection”, 2005. URL http://www.rootkit.com.

65

32. Holy Father. “Hacker defender: readme”, Nov 2005. URL
http://www.hxdef.org.

33. Inc, Imperva. “Signature Detection”, 2006. URL
http://www.imperva.com/application defense center/glossary/signature

detection.html.

34. Inc, McAfee. “McAfee Avert Labs Points to Increasing Preva-
lence of Stealth Technology in Malware (Rootkits)”, 2006. URL
http://phx.corporate-ir.net/phoenix.zhtml?c=104920&p=irol-

newsArticle&ID=843059&highlight.

35. Inc, McAfee. “Rootkits, Part 1 of 3: The Growing Threat”,
2006. URL http://www.mcafee.com/us/local content/white papers

/threat center/wp akapoor rootkits1 en.pdf#search%̄22linux%20rootkits

%20hiding%20techniques%22.

36. Intel. “Intel Architecture Software Developers Manual”, 1997. URL
http://developer.intel.com/design/pentium/manuals/24319001.pdf.

37. Jelena Mirkovic, Peter Reiher, Janice Martin. “A Taxonomy
of DDoS Attacks and DDoS Defense Mechanisms”, 2006. URL
http://lasr.cs.ucla.edu/ddos/ucla tech report 020018.pdf.

38. Kay, Roger L. “How to Implement Trusted Computing”, 2006.
URL https://www.trustedcomputinggroup.org/news/Industry Data

/Implementing Trusted Computing RK.pdf.

39. LINDSTROM, PETE. “A Patch in Time”, Feb 2004. URL
http://infosecuritymag.techtarget.com/ss/0,295796,sid6 iss326

art580,00.html.

40. Livingston, Brian. “IceSword Author Speaks Out On ’Rootkits”’, Jun
2005. URL http://itmanagement.earthweb.com/columns/executive tech/

article.php/3512621.

41. Mar-Elia, Darren. “How the Registry Is Architected”, 2000. URL
http://www.windowsitlibrary.com/Content/224/3.html.

42. Martin, Michael J. “Router Expert: Understanding TCP/IP to prevent network
attacks, part 2”, 2002.

43. McKusick, Marshall Kirk and George V Neville-Neil. The Design and Implemen-
tation of the FreeBSD Operating System. Addison-Wesley, 2005.

44. Mellon, Carnegie. “CERT/CC Overview Incident
and Vulnerability Trends”, 7 May 2003. URL
http://www.cert.org/present/cert-overview-trends/module-2.pdf.

45. Merriam-Webster. “Steganography”, 2007. URL
http://webster.com/dictionary/steganography.

66

46. NSA. “Security-Enhanced Linux”, 2007. URL http://www.nsa.gov/selinux/.

47. for Operating Systems, SIGOPS:Special Interest Group.
“The i386 Interrupt Descriptor Table”, 2002. URL
http://www.acm.uiuc.edu/sigops/roll your own/i386/idt.html.

48. Picasso, Vilkatla, Layzer, Auriell, 99none, Phancy, and Krzysieq. “GMER”, 2007.
URL http://www.gmer.net/index.php.

49. Radcliff, Deborah. “Companies adapt to a zero day world”, 13 Jul 2004. URL
http://www.securityfocus.com/news/9100.

50. RobD. “Re:NDIS.sys”, 2004. URL http://www.pcreview.co.uk/forums/

thread-466431.php.

51. Russinovich, Mark. “DebugView”, 2006. URL
http://www.sysinternals.com/Utilities/DebugView.html.

52. Russinovich, Mark. “Process Explorer”, 2006. URL
http://www.sysinternals.com/Utilities/ProcessExplorer.html.

53. Russinovich, Mark E and David A Solomon. Microsoft Windows Internals, Fourth
Edition. Microsoft Press, 2005.

54. Rutkowska, Joanna. Introducing Stealth Malware Taxonomy. Tech-
nical report, COSEINC Advanced Malware Labs, Nov 2006. URL
http://www.net-security.org/dl/articles/malware-taxonomy.pdf.

55. Rutkowska, Joanna. “Subverting Vista Kernel For Fun And Profit”,
2007. URL http://invisiblethings.org/papers/joanna%20rutkowska%20-

%20subverting%20vista%20kernel.ppt.

56. Rutkowski, Jan Krzysztof. Advanced Windows 2000 Rootkit Detec-
tion (Execution Path Analysis). Technical report, Jul 2003. URL
http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-rutkowski/

bh-us-03-rutkowski-paper.pdf.

57. Schneier, Bruce. “Attack Trees”, Dec 1999. URL
http://www.schneier.com/paper-attacktrees-ddj-ft.html.

58. Schoen, Seth. “Trusted Computing: Promise and Risk”, Oct 2003. URL
http://www.eff.org/Infrastructure/trusted computing/20031001 tc.php.

59. Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. Op-
erating System Concepts. John Wiley & Sons. INC, 2005. URL
http://www.cs.pu.edu.tw/ ychu/class951/OperatingSystem/vendor/

ch21.ppt.

60. Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. Op-
erating System Concepts. John Wiley & Sons. INC, 2005. URL
http://www.cs.pu.edu.tw/ ychu/class951/OperatingSystem/vendor/

ch22.ppt.

67

61. Soeder, Derek and Ryan Permeh. “eEye BootRoot”, 2005. URL
http://www.eeye.com/html/resources/downloads/other/index.html.

62. TheRealAphex. “AFX Rootkit 2005”, 2007. URL
http://www.rootkit.com/vault/therealaphex/AFXRootkit2005.zip.

63. Uninformed.org. “Windows OpenProcess”, Jan 2006. URL
http://uninformed.org/index.cgi?v=3&a=7&p=5.

64. Wichmann, Rainer. “Linux Kernel Rootkits”, 2002. URL
http://www.la-samhna.de/library/rootkits/basics.html.

65. Wikipedia. “Operating System”, 26 Nov 2006. URL
http://en.wikipedia.org/wiki/Operating system.

66. Wikipedia. “Privilege (computer science)”, 3 Sep 2006. URL
http://en.wikipedia.org/wiki/Privilege %28computer science%29.

67. Wikipedia. “ntoskrnl.exe”, 2007. URL http://www.answers.com/topic/

ntoskrnl-exe.

68. www.trustedbsd.org. “TrustedBSD Project”, 2007. URL
http://www.trustedbsd.org/.

69. xshadow. “Vanquish v0.2.1: readme”, 2005. URL http://www.rootkit.com.

70. Zovi, Dino Dai. “Kernel Rootkits”, Jul 2001. URL
http://www.theta44.org/lkr.pdf.

68

Glossary

Rootkit Tools designed to create and maintain an environment

on a computer in which attack tools and activities may

be hidden, such that a user does not know of their

presence on a compromised machine.,

Signature based detection Data is scanned for a pattern that comprise a “finger-

print” that is unique to a particular entity [11].,

Heuristic/behavioral based detection Behavioral based detection seeks to identify actions or

patterns that are abnormal to system operation. These

detection techniques “work by recognizing deviations in

“normal” system patterns or behaviors” [11].,

Crossview based detection Crossview based detection uses the idea of data redun-

dancy (the existence of equivalent data in more than

one location) to find “answers” from multiple sources

that should be the same in order to identify discrepan-

cies. An example of such is a child asking her mother

for permission to go to the park and then asking her

father permission for the same thing. The two answers

should be the same; however, the difference in answers

is what is exploited by the child. Detection techniques

would use the difference in answers to identify the ex-

istence of a rootkit [11].,

Integrity detection Integrity based detection compares a known good en-

tity with a suspected entity in order to verify the cor-

rectness/accurateness of the suspect entity. An ex-

ample of such is comparing “a current snapshot of

the filesystem or memory with a known, trusted base-

line” [11].,

69

Hardware based detection Hardware based detection uses a piece of hardware to

implement signature, heuristic, crossview, or integrity

based detection while separating itself from the sus-

pected operating system [11].,

Steganography Steganography as quoted from the Mirriam-Webster’s

online dictionary is “the art or practice of concealing a

message, image, or file within another message, image,

or file” [45] However, a short definition which describes

how steganography works is: hiding in plain sight.,

70

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2007 Master’s Thesis Sept 2005 — Mar 2007

A Study of Rootkit Stealth Techniques
and Associated Detection Methods

DACA99–99–C–9999

Daniel Nerenberg, 1Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, Bldg 640
WPAFB OH 45433-7765

AFIT/GCE/ENG/07-10

Dr. David Kapp
AT-SPI Technology Office AFRL/SN
2241 Avionics Circle
WPAFB, OH 45433-7320
(937) 320-9068
David.Kapp@wpafb.af.mil

Approval for public release; distribution is unlimited.

In today’s world of advanced computing power at the fingertips of any user, we must constantly think of computer
security. Information is power and this power is had within our computer systems. If we can not trust the information
within our computer systems then we can not properly wield the power that comes from such information. Rootkits are
software programs that are designed to develop and maintain an environment in which malware may hide on a computer
system after successful compromise of that computer system. Rootkits cut at the very foundation of the trust that we
put in our information and subsequent power. This thesis seeks to understand rootkit hiding techniques, rootkit finding
techniques and develops attack trees and defense trees in order to help us identify deficiencies in detection to further
increase the trust in our information systems.

rootkit, attack tree, defense tree

U U U UU 145

Major Paul D. Williams

(937) 255–3636, ext 7253 pwilliam@afit.edu

