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ABSTRACT 

The purpose of this report is to summarize a technological approach for evolving the surveillance 
capability within the Department of Defense from the current slowly evolving stovepipe systems to 
revolutionary multi-sensor, multi-platform, multi-user layered sensing systems.  Enhanced capabilities 
are required in order to address the evolving threats: 

• From a peer/near-peer enemy to an integrated combination of peer/near-peer/lesser nation 
enemies with a coordinated asymmetric threat, 

• From open, reasonably flat terrain to mountainous, foliage-covered, and/or urban terrain. 

As has been demonstrated in Iraq and Afghanistan, the asymmetric threat can be inflicted at a very 
low cost to the enemy.  Therefore, our response to the evolving threats must be a cost-effective upgrade of 
existing surveillance systems and yet have our systems embrace revolutionary disruptive technologies to 
enhance capabilities.  This upgrade must not only build upon fielded systems, but must also continue to 
function as systems are upgraded or replaced with the next generation cyber, airborne and space-based 
intelligence, surveillance and reconnaissance (ISR) systems. 

One thrust of a layered sensing approach is the development of advanced Heuristic and Algorithmic 
Source (signal, image, data, and cyber) Processing (HASP) and system concepts, for a transformational 
approach to surveillance and reconnaissance.  Layered sensing development will be demonstrated via 
mathematical analysis, modeling and simulation, bench top testing, chamber measurements and outdoor 
range experimentation.  Another thrust is to develop technology for new layered sensors and provide 
seamless integration with upgrades to legacy systems, providing a cost effective and technically superior 
capability.  These emerging sensors and systems are computing, cyber, and signal/image/data processing 
centric, and should be designed to address issues associated with current systems that: 1) Are data rich 
but information/knowledge poor; 2) Support individual users without exploiting commonality to support 
multiple users at multiple levels; 3) Cannot be extrapolated without a high cost to fully address futuristic 
threats; 4) Address only the peer/near-peer threat but are unaffordable or even ineffective against lesser 
nations and/or asymmetric threats; 5) Function inadequately in difficult environments without human 
intervention; and 6) Are not cyber secure and net centric efficient. 

The beneficial consequences of HASP technologies are made possible by the combined effects of 
Moore’s and Metcalfe’s laws making the technological equivalent to cognition and social networking 
applicable to heterogeneous sensing. We believe that the impact of these “laws” will cause disruptive 
changes in many fields (i.e. Kurzweil’s singularity) that will have to be embraced and countered in order 
to defeat our ingenious asymmetric enemy.
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1 INTRODUCTION 

1.1 Threat/Problem 

As the weapons, command, control, communications and computing (C4) and countermeasure 
capabilities of emerging threats grow exponentially, it is essential that the United States (US) capabilities 
permit timely, cost effective engagement of the peer/near-peer/lesser nation plus asymmetric threats in 
difficult environments (urban, mountain, foliage, subsurface, etc.) in all battle-space locations; including 
cyber components of the engagement, (see Figure 1 and Figure 2).  Current US command, control, 
communications and computing intelligence, surveillance and reconnaissance (C4ISR) was developed to 
address the peer/near-peer threat and has done so successfully in reasonable environments.  This is true 
even though there is limited integration of the individual sensors (i.e., stovepipes).  In the more difficult 
environments mentioned above, the performance of current fielded systems is limited and thus has 
become an important issue as the requirements evolved to address the asymmetric threat.  More 
importantly, tomorrow’s C4ISR systems need to adequately address the integrated nation 
state/asymmetric threat. 

 
Figure 1.  Capabilities Assessment – Conventional,    

Irregular & Disruptive Warfare 
Figure 2.  Significant Military Engagements 

The asymmetric threat, alone or integrated with other threats, presents unique problems that have the 
capacity to bankrupt the US and our allies as we attempt to mitigate them, (see Figure 3).  By their use 
and complete acceptance of human collateral damage, our current enemy is able to rapidly and 
inexpensively engage our soldiers, destroy our assets and counter our sensors.  They are able to further 
complicate our solving this problem by their use of difficult environment scenarios: areas where terrain, 
foliage, manmade structures and/or significant background traffic are used to the advantage of the 
asymmetric threat to mask their activities.  Extension of our existing technological sensor systems to 
individually address all of these issues (small localized attacks, difficult environments), or to develop a 
full space-based ISR capability, is technically feasible but totally unreasonable in cost. 
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Figure 3.  Capabilities and Cost Evolution 

Today’s threat, as well as future threats, can be addressed in a cost-effective manner if the existing 
ISR capabilities were effectively integrated with each other, with new small, and mobile (asymmetric-
like) assets (which should include cyber).  Arguably the largest issue we face today is having too much 
data with too little actionable information and knowledge.  With our present systems, multiple levels of 
operators and analysts are required to transfer accurate/actionable data and information to a single user, 
and this process often requires days to achieve.  Integrated attacks, including asymmetric actions, require 
that current relevant information be sent to many users at many levels simultaneously on a shortened 
timescale.  Our goal must be: “The right actionable information and knowledge to the right people at the 
right time.”  As an example, this could include: 

• Theater overview with predictions of future hostile activity to the theater commander 
• Locations of critical targets to the appropriate commanders 
• Exact coordinates of kill targets to pilots and gunners 
• Improvised Explosive Device (IED), locations to convoys and patrols 
• Movements, actions and intent of suicide bombers 
• Providing timely information to the individual soldier in the field 

This goal will not be possible without significant advances in autonomous signal/data processing, 
cyber surveillance, and multiple sensor control and integration. 

Figure 4 presents the relationship between the topics discussed in this report: 

• Future operational systems – Multi-User, Multi-Mission, Multi-Int Autonomous C4ISR 
(requirements discussed here in Section 1) 

• Technology required to achieve future system capability – Layered Sensing (some aspects 
discussed in Section 2) 

• The signal/data/image processing aspects of the technology along with sensor concepts with 
unique signal processing requirements – HASP for Integrated Air, Ground, Space, & Cyber 
Sensors (Section 3). 

• A technology area important to this and other future systems – ISR-Human Interface (future 
research, Section 4). 
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Figure 4.  Program/Technology Interfaces 

We envision an evolution of C4ISR: 

• From isolated, stove-piped systems (with limited post-detection integration) 
• To integration at multiple levels (detection, track, classification) of multiple ISR assets on 

multiple platforms (ground, air, space, cyber) 
• Further, to rapidly task, reconfigurable ISR architectures, and systems focusing on a specific set 

of threats 
• Finally, to ubiquitous dynamic multi-theater layered warfare 

To achieve these goals, future weapon systems will require focusing on three major areas: 

• Futuristic and emerging sensor concepts addressing unique issues with the asymmetric threat in 
a cost-effective manner 

• Autonomous processing capability that produces the required actionable information and 
knowledge for each “decision maker” 

• Layered warfare modeling, simulations, experiments and demonstrations 

The future success of C4ISR has three key attributes that currently cannot be achieved: 

• Provide actionable information and knowledge, not just data, in timely and cost-effective manner. 
• Achieve a C4ISR – Human interface that will both permit users at many levels to simultaneously 

request actionable information and knowledge, and provide timely, relevant information to all 
“decision makers’ simultaneously. 

• Satisfy the goals of multiple users with the correct priority. 
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2 TECHNICAL BACKGROUND 

Much of today’s research in cognition focuses on sensory inputs, the interpretation of those by the 
brain and the integration of multiple sensor inputs to form higher level abstractions in order to turn data 
into information and knowledge. HASP will use a cognitive sensing approach and will require an 
understanding of multiple sensor types and sensor signal processing to defeat the integrated peer/near peer 
and asymmetric threat. 

This section describes some selected AFRL enabling technologies and future sensor concepts.  These 
and other technologies/concepts will have to be integrated to provide the required capability. 

2.1 Multistatics and its Relationship to Radio Frequency (RF) Tomography 

In a multistatic radar the transmit/receive aperture is divided into a number of sub-apertures that can 
be placed in selected locations relative to each other.  These locations can be chosen to optimize the 
performance of the radar in terms of some specific task and/or goals. 

For example, multistatic radars can potentially provide significantly improved target tracking when 
the apertures are appropriately configured to provide a large baseline.  The resulting angular resolution 
can be orders of magnitude better than the resolution of a monolithic system (single large radar).  
However, this capability comes with a cost, either large grating lobes (multistatic with evenly spaced 
apertures) or high sidelobes (multistatic with randomly spaced apertures).  See Appendix A. 

The same angular resolution can provide improved interference rejection capability.  For a single 
aperture radar, electromagnetic interference (EMI) sources located near a target of interest cannot be 
nulled without impacting the target return itself.  But the multistatic system, with its large baseline and 
receiver gain on the target can be maintained while simultaneously placing a deep null in the direction of 
the EMI. 

These closely-spaced multistatic systems are also called distributed aperture radars (DARs).  Widely 
separated sub-apertures have the potential to provide improved discrimination by the formation of 
coherent multistatic images (see Appendix B). 

Tomography extends the performance of multistatics further.  It can provide high resolution in 
multiple dimensions and can address both fixed and moving targets (see Appendix C).  This can be 
accomplished with a set of very narrow waveforms and thus it permits operation in many interference 
environments where wideband operation is not possible. 

To date, multistatics and tomography have focused on a limited set of waveforms and processing 
approaches.  For example, our distributed aperture and tomography efforts have all transmitted the same 
waveform bandwidth from each transmitter, simply offset in frequency.  Improved performance should be 
possible if the widest bandwidth waveform possible were radiated at each frequency.  HASP will 
investigate the optimum combination of frequency diversity and spatial diversity to meet various missions 
in various environments (see Appendix I). 
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2.2 Identification/Classification Processing 

2.2.1 Generalized Inner Product (GIP) – Real Beam Radar (RBR) 

Fixed objects on the ground can only be detected by airborne radars if target backscatter sufficiently 
exceeds the return from the ground (clutter).  For point targets, this requires that the target's cross-section 
exceed the cross-section of the clutter patch established by the range and cross-range resolutions of the 
radar.  For extended targets, both the target and clutter patch can be resolved using wide bandwidth 
synthetic aperture radar (SAR) processing.  The result is an image, where the returns from some or all of 
the resolved components of the target exceed the return of their respective clutter patch.  This image is 
interpreted (usually by an analyst) and a target detection declared.  This interpretation is basically an 
incoherent integration process.  

A technique has been developed that can achieve significantly better detection of extended targets in 
clutter.  This GIP algorithm assumes some knowledge of the target of interest and its orientation. Analysis 
has been accomplished for targets whose parameters are known perfectly and for targets whose 
parameters are only known approximately with excellent results.   

2.2.2 Declaration Algorithms for Resonant Targets (DART) 

The goal of DART is to develop, validate and transition algorithms for the detection of a specific 
target set.  These algorithms will also have the ability to estimate the parameters of those targets (i.e., 
declaration).  This development will address the signatures of the specific targets in their environment.  
Signature modeling will employ an accurate and efficient method-of-moments code (Target 
IDEntification Software [TIDES]) that directly solves Maxwell’s equations in an accurate and efficient 
fashion to deal with targets embedded in or above the ground.  Thus, we will avoid the limitations of 
empirical models and rules-of-thumb that have been previously employed because of the lack of 
computational resources.  The development includes a high-fidelity radar simulation that supports the 
analysis of radar systems on various platforms in realistic environments.  This simulation will be 
validated through experiments using a ground vehicle as a test platform.  The validated DART simulation 
with TIDES will permit efficient transition through development and analysis of system concepts based 
on the modifications to existing radars/antennas/platforms.   
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2.3 Multi-Intelligence Sensor Technology (MIST) - Sensor Manager Simulation (SMS) 

2.3.1 Sensor Manager Simulation (SMS) 

The MIST SMS is a knowledge-aided controller that utilizes situational awareness, system feedback, 
user-defined rules, and needs-identification to adapt its functionality to dynamically and optimally meet 
mission goals and objectives.  Its primary objective is to map dynamic situational needs into optimally-
ordered sensor tasks.  The MIST SMS consists of Situational Assessment, Mission Management, and 
Task Scheduling, (see Figure 5a).  The MIST SMS was designed to integrate various simulation 
components and sensor management algorithms to enable performance evaluation of multiple sensor 
resource managers under dynamically varying conditions and objectives.  Currently, the sensor 
controller/scheduler approaches being investigated include Knowledge Based, Markov Decision Based, 
Fuzzy Logic Based Controllers, as well as the Online Greedy Urgency-Driven Preemptive Scheduling 
Algorithm (OGUPSA).  Our multi-sensor simulation implements each of these approaches and provides a 
comparison of their performance.  Each of these controller’s approaches will require a list of tasks for 
each radar and a prioritization of these tasks.  Section 2.3.2 provides a description of the mode set 
currently being used for sensor manager evaluation.   

The simulation architecture and defined interfaces between each module allow for switching of 
system components for effective sensor management evaluation.  A detailed overview of its operation can 
be seen in Figure 5b. 
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Figure 5.  Sensor Manager Simulation Overview 

a) Sensor Manager Simulation Concept & Architecture

b) Sensor Management Simulation System Components
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The SMS architecture provides a closed-loop system which allows sensor manager algorithms, along 
with operator input, to dynamically and simultaneously task multiple sensors to meet mission goals and 
objectives.  The SMS is tasked with dynamically scheduling the modes and submodes of the MIST 
Representative Operational System ultrahigh frequency (UHF) and X-band radar sensors described in 
Table 1, Section 2.3.2, in an optimum way.  Typical SMS operation is as follows.  The Operator can 
interact with the SMS when desired by optionally controlling mission objectives, submitting operator 
tasks, and nominating targets as threats.  The Task Generator is responsible for creating prioritized job 
requests based on situational assessment, operator input, and mission goals and objectives.  The 
Scheduler orders tasks in a dynamically modifiable time window and submits them to the corresponding 
sensor.  The Platform and Sensors are responsible for servicing the requests from the scheduler and 
producing detections based on truth data.  The Tracker produces track reports from the detections 
received and passes them on to the Task Generator, completing the System Loop.  The SMS is currently 
being used for the performance evaluation of a number of scheduling algorithms using the Multi-
Intelligence Sensor Technology Representative Operational System design described below in Section 
2.3.2.  Details of the MIST Sensor Manager Simulation can be found in Appendix D. 

2.3.2 Multi-Intelligence Sensor Technology Representative Operational System (MIST ROS) 

The MIST ROS is a notional, airborne ISR system that is being created to provide a launching point 
for investigating and evaluating multifunction, multi-mission, multi-sensor operations and control on a 
single platform using the MIST Sensor Manager Simulation. 

The baseline MIST ROS consists of a UHF radar subsystem, an X-band radar subsystem, an 
electronic support measures (ESM) subsystem, and an Identification Friend or Foe (IFF) subsystem 
installed on a wide body platform.  The MIST radars provide 360 degree air surveillance with ground 
surveillance of an assigned Ground Referenced Coverage Area (GRCA) in a complex  
environment. 

The MIST UHF requirements include high priority surveillance, early warning and interceptor  
control against the airborne threats over the GRCA, as well as continuous 360 degree-air  
surveillance.  The high priority airborne threats over the GRCA require precision tracking and  
weapon control data.  Additional UHF radar requirements include track, handover to the X-band  
radar, high range resolution ground moving target indications (GMTI) and Ballistic Missile  
Defense. 
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The X-band radar requirements are also expanded from the traditional ground  
surveillance requirements of both GMTI and stationary ground targets (SGT).  The  
expanded requirements include accepting hand over from the UHF radar tracks, precision tracking  
of high priority airborne and ballistic targets (including height measurement), as well as location  
of ESM ground emitters.  The additional X-band radar requirements include both Quick SAR  
and Go-Stop-Go SAR.   
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A summary of the MIST ROS UHF and X-band radar modes and submodes which are dynamically 
scheduled using the Sensor Manager Simulation are presented in Table 1. 

Table 1.  MIST Radar Suite Mode/Submode Summary 

UHF Radar Tasks 

AMTI 
High-Priority Region Search (U1)
Low-Priority Region Search (U2)
UHF Priority Target Track (U3)

BMD  Search (U4) 
UHF Radar Ballistic Missile Defense Track (U5)

X-band Radar Tasks  

AMTI 

High Accuracy Track (X1) Aircraft (X1A)
Cruise Missiles (X1B)

Air Target Classification (X2) High Range Resolution (HRR)/ 1-D Imaging (X2A)
2-D Imaging (X2B)

Height Finding (X3) 
Handoff to Fighter (X4) 

GMTI 

GRCA Search (X5) 
General Search (X5A)
High-Priority Region Search (X5B) 
Low-Priority Region Search (X5C) 

GMTI Track (X6) 
Track While Scan (X6A) 
Priority Target Track (X6B) 
Priority Target in Priority Region (X6C) 

Ground Moving Target Classification (X7) HRR (X7A)
Inverse Synthetic Aperture Radar (ISAR) (X7B)

Slow Target Surveillance (X8)

SAR 

Strip-Map (X9) 
Low Resolution (X9A)
Medium Resolution (X9B)
High Resolution (X9C)

Quick-SAR (X10) 

Spotlight (X11) 
Low Resolution (X11A)
Medium Resolution (X11B) 
High Resolution (X11C)

Special SAR (X12) 

BMD Track (X13) 
Boost-Phase (X13A)
Ballistic (X13B)
Terminal-Phase (X13C)

Other 

Go-Stop-Go (X14) 
Mobile TEL Location (X15) 

Emitter Location (X16) Single Radiation (X16A)
Triangulation (X16B)

Combined UHF and X-Band Radar Modes 

AMTI Track Handoff (UX1) Aircraft Sized Targets (UX1A) 
Cruise Missile Sized Targets (UX1B) 

BMD Track Handoff (UX2) 
Xn: n’th mode of the X-band radar 
Un: n’th mode of the UHF radar 
UXn: n’th mode of the UHF to X-band radar target track handoff  
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2.4 Knowledge-Aided CFAR 

Constant False Alarm Rate (CFAR) processors were developed to maintain a constant average false 
alarm rate through adaptive threshold control while maintaining adequate target detection performance.  
The classical Cell Averaging (CA) CFAR processor assumes a homogeneous, Gaussian, thermal noise 
environment.  It is, in fact, optimum under these conditions.  However, in a wide area surveillance radar 
these assumptions are routinely violated, presenting a variety of returns whose statistical characteristics 
are varied and unpredictable and quite unlike those of thermal noise, even after filtering.  The resulting 
effect is such that conventional CA CFAR processing may generate excessive false alarms.  A significant 
amount of research has resulted in new CFAR algorithms developed for target detection in non-
homogeneous clutter environments.  For example, Greatest-Of CFAR is appropriate for improved 
performance near clutter edges, Smallest-Of CFAR was developed to detect two closely spaced targets, 
and Ordered Statistics CFAR was conceived as a robust processor to minimize the effects of outliers.  
However, any single CFAR algorithm is likely to be inadequate in a dynamic environment, such as that 
observed from an airborne platform.  In light of the many constraints imposed upon radar systems, 
improvements in detection performance are most likely to be a result of advanced processing techniques 
which are able to recognize the existence of these situations and apply appropriate processing while 
effectively maintaining a constant false alarm probability and an adequate detection probability.   

The AFRL’s solution was based upon the combined use of algorithms and heuristics (artificial 
intelligence) techniques to assess the characteristics of the environment and apply the most appropriate 
CFAR algorithm.  The solution incorporates many relatively new methods to deal with a wide variety of 
non-homogeneous environments. 

Under the Expert System - CFAR (ES-CFAR) program, AFRL formulated rules dictating the 
dynamic selection of CFAR algorithms by the ES-CFAR Processor.  These rules were incorporated into a 
prototype and refined through extensive testing and evaluation.  Results indicated that the ES-CFAR 
Processor maintains a more uniformly constant false alarm probability (closer to the design value) than a 
conventional CFAR in the same dynamic, non-Gaussian background.  This is also true of the detection 
probability which tends to vary and fall to inadequately low levels for the conventional CFAR processor.  
In the ES-CFAR Processor, a satisfactorily high value of detection probability is maintained through 
regions of dynamically changing, non-Gaussian interference.  After the rules had been completely 
developed and refined using results obtained from deterministic evaluation, AFRL investigated the 
performance of the system with input data from an external source showing similarly promising results.  
In many non-homogeneous environments the ES-CFAR proved to be superior to conventional CFAR 
techniques resulting in higher probability of detection and significantly lower false alarm rates.  A 
detailed description of the ES-CFAR is presented in Appendix E. 
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2.5 Knowledge –Aided Signal Processing 

The AFRL Sensors Directorate has been instrumental in developing knowledge-aided adaptive 
technologies enabling significantly improved current and future Airborne Moving Target Indications 
(AMTI), GMTI, and SAR sensors.  When operating in complex clutter environments potentially 
encountered in modern military applications, current ISR AMTI, GMTI, and SAR sensor performance 
may fall significantly short of expectations based on typical benign test environments.  These operational 
environs typically contain one or more of the following effects: (1) Complex heterogeneous clutter; (2) 
Dense target backgrounds (military and/or civilian); (3) Urban and littoral clutter plus other large clutter 
discretes; (4) Nonstationary clutter loci arising from bistatic, multistatic and other advanced applications 
and concepts.  Current and planned ISR architectures characterize interference from the same data used to 
detect targets.  While sufficient in benign environments and less-stressing applications, this circa 1950's 
signal processing framework is inadequate when confronted with complex surface target engagement 
applications being addressed by layered sensing.  The instability of the statistical signal processing 
methodology increases with higher adaptive sensor-dimensionality and needs to be avoided to maintain 
the United States’ combat advantage in surface target engagement.   

Over the past 20+ years, the US has gathered a large quantity of information on the physical and 
electrical characteristics of the operational environment, but was not able to adequately apply this 
information in the radar front-end signal processing to address the complex clutter problem.  Recent 
breakthroughs at AFRL and elsewhere in high performance embedded computing (HPEC) and real-time 
database technologies enabled many AFRL developed adaptive knowledge-aided concepts - radically 
altering the fundamental 'front-end' signal processing architectures through intelligent, real-time 
integration of environmental knowledge (Digital Terrain Elevation Data (DTED)/Digital Feature Analysis 
Data (DFAD), SAR Imagery, and other onboard/offboard sources), high performance embedded 
computing, electromagnetic codes, and real-time database query and retrieval technologies (see Appendix 
H), AFRL/RYRT investigated techniques to radically alter the fundamental signal processing 
architectures of traditional ISR radar systems.  Revolutionary concepts for improved sensor signal 
processing performance in complex interference environments through the exploitation of environmental 
knowledge sources within the high-speed front-end processing environment were investigated.  Specific 
areas of research and development included: (1) knowledge-aided adaptive signal processing techniques 
for interference mitigation and constant false alarm detection processing (see Appendix F).  Specific 
examples included, but were not limited to: knowledge-aided intelligent 'training' methods for optimum 
space-time weight vectors (see Appendix G); and knowledge-aided pre-whitening of the space-time 
multichannel received signals to reduce the number of adaptive degrees-of-freedom required; and (2) real-
time knowledge-aided processing architectures.  Hence, compatibility of the adaptive filtering process 
Space-Time Adaptive Processing (STAP) with the (CFAR) detection process and the utilized knowledge 
sources was essential in this effort.  AFRL developed the signal processing, evaluation, analysis, and 
research (SPEAR) signal processing testbed laboratory to evaluate and quantify the performance benefit 
of proposed knowledge-aided algorithms and techniques and related innovations in a systematic manner. 
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2.6 Sensors as Robots  

AFRL’s Sensor-as-Robots program is developing and validating the technologies that support an 
intelligent C4ISR system of systems.  This system of systems will be based upon a signal processing, 
image processing and artificial intelligence architecture that fully orchestrate the operation, tasking, and 
management of multiple sensors on multiple ground, air, and space vehicles.   

An individual sensor system’s performance can be enhanced by changing a sensor’s parameters (e.g., 
waveforms) and algorithms as the environment changes.  It has been shown that if an airborne radar 
system is aware of certain features of the earth (e.g. land/sea interfaces) and its surroundings, then it can 
intelligently improve system performance.  Sensors as Robots leverages and extends this approach 
beyond a single sensor onboard a single platform to multiple sensors on multiple platforms performing 
distributed sensing with heterogeneous sensors.   

The monolithic military adversary of the twentieth century is no longer the number one threat. Single 
function radar systems are necessary but not sufficient for combating the integrated and coordinated threat 
of peer/near-peer countries and asymmetric threat.  The desire to anticipate, find, fix, track, target, 
engage, and assess, anything, anytime, anywhere (AF2T2EA4) by the US Air Force will require changes 
to how we develop sensor systems.   

On-going work is investigating coherent signal level fusion of homogeneous sensors (see Appendices 
A, B and C) and data fusion and mode/parameter control of heterogeneous sensors on a single platform 
(under the MIST program).  Sensors-as-Robots will further integrate these radar systems with 
heterogeneous sensors (e.g. acoustic, IR, EO) located on the ground, in the air, in space, and underground 
(see Appendix K).  The individual radar system of the future must be intelligent and integrated within 
sophisticated systems of heterogeneous sensors that operate on many hypotheses at the same time. 

2.7 GEOsynchronous-orbit Moving Target Indication (GEO-MTI) 

As discussed above, layered sensing considers different domains of layering.  One of those domains is 
physical layering and the outermost physical layer is space.  GEO-MTI (see Figure 6 and Figure 7) is a 
space-based radar concept that provides multiple mission coverage of a single theater at a time.  It can 
provide persistent all-weather coverage of airborne, ground-moving and theater ballistic targets.  In our 
first-order analysis, the system consists of twelve space-based radars at geostationary orbit.  Each of the 
radars has a 50-meter diameter reflector antenna and radiates 10 kilowatts peak power (therefore 10 
kilowatts of average power).  Each radar radiates one of a set of orthogonal waveforms and each radar 
receives all waveforms.  Thus, the system consists of 144 radars (12 monostatic and 132 bistatic).  The 
returns of the 144 radars are coherently and adaptively combined using distributed aperture processing 
technology.  The range resolution is set by the bandwidth of the individual waveforms, < 30m, and the 
cross-range resolution is set by the baseline of the twelve radars (1 – 10 km), therefore <10 m.   
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Figure 6 .  GEO-MTI 

 

 
Figure 7. GEO-MTI Coverage Capability 

GEO-MTI provides coverage of ground/surface-moving targets over the regions from 20o to 60o 
latitude (North or South) and for airborne/ballistic missile targets from 20o to 70o latitude.  It is sized to 
continuously address a 1,000 mile by 1,000 mile theater.  It will operate at either UHF or L-band.  It will 
operate in difficult environments and must operate in conjunction with the other physical layers. 

a)  GEO-MTI Concept b)  GEO-MTI Geometry
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3 SIGNAL PROCESSING FOR LAYERED SENSING 

3.1 Overview 

As described in the Introduction, the threat of the future is more complex and more uncertain than 
that of previous situations that we have faced: including major wars (World War II), smaller wars 
(Vietnam, Korea), and the Cold War.  In addition to these possible peer, near-peer and lesser nation 
conflicts, the asymmetric threat of terrorism can exist either independent of conventional wars, or even 
more importantly, integrated within them.  As we have seen in the last twenty years, asymmetric threats 
can exist in the conflict region, in support locations, and also in our own country. 

Since the asymmetric threat has much more flexibility in choosing when and where to attack, we must 
be prepared to address all terrain and environmental situations: foliage, mountains, urban, storms, snow, 
etc.  A very critical aspect of the asymmetric threat is the overwhelming asymmetry between the terrorist 
cost to attack and our cost to defend. Our major surveillance assets (Airborne Early Warning and Control 
System (AWACS), Joint Surveillance Target Attack Radar System (JSTARS), Rivet Joint, etc.) are vital 
to our ability to effectively accomplish many major missions.  But, to use them to counter one or a few 
terrorist activities would bankrupt the US in short order.  On the other hand, these major assets 
accumulate data that can be of value to many users but their use is usually limited to a single user because 
of the stovepipe approach of most of our ISR systems (see Figure 8). 

Another ever increasing issue is 
our reliance on the cyber world and 
the terrorists’ ability to use this world 
at relatively no cost to them.  How do 
we defend, utilize and deny the 
enemy the current freedom they have 
in the cyber world? 

Layered Sensing is a technology 
thrust to address these issues.  It 
includes existing ISR capabilities and 
many new C4ISR capabilities, some 
of which were presented in Section 2.  

HASP is a necessary component of this initiative.  HASP will support the transformation (see Figure 9) 
from isolated stovepipe ISR to: 

• Multi-level integrated ISR 

• Retaskable/reconfigurable ISR with the ability to quickly and cost-effectively address specific 
threats 

• Multi-theater, multi-platform (space, air, surface, below ground, cyber) ISR 

 
Figure 8.  Classical/Legacy Stovepipe Approach 
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Figure 9. Layered Sensing Approach To The Kill Chain 

HASP will permit the parallel and efficient addressing of multiple goal missions.  Two major aspects 
will be a focus on information (what a user needs) not data (what a sensor provides), and on the 
importance of the interface between the C4ISR and the human (user).  Existing ISR, planned ISR and as 
yet unenvisioned ISR will be supported by HASP. 

3.2 Changing Threat 

The cold war is over but the US continues to face a multitude of threats.  Some threats are similar to 
threats during the Cold War, and yet some are significantly different than they were in the past twenty 
years.  In addition, many threats continue to evolve - just when we have a solution to the problem, the 
enemy changes their tactics just enough to cause the solution to be ineffective.  We have partitioned these 
threats into three categories, i.e., peer or near-peer nations, lesser nations, and the asymmetric threat.  A 
peer or near-peer nation has approximately the same types of weaponry as the US, e.g., it has a nuclear 
capability and delivery system, i.e., chemical, biological, radiological, nuclear, explosives (CBRNE), a 
space program, an air force, army, navy, etc.  They may not match the quantity of weapons the United 
States has in each category but they have similar technologies.  These threats are marginally addressed 
with classical triad and C4ISR assets of today.  A lesser nation may have some of the same types of 
weaponry, i.e., a conventional army, navy, and air force but they don’t have a nuclear capability.  They 
may have a CBRNE capability with a limited delivery system but they don’t have space sensors and a 
communications program, and they may have a limited missile capability.  We can address this enemy in 
offensive engagements abroad with our classical triad and C4ISR assets.  An asymmetric threat has very 
little weaponry and no conventional armies.  They have conventional weapons, i.e., explosives, fire arms, 
shoulder held missile launchers, and they may have some chemical and biological weapons with a crude 
delivery system.  They have conventional communications systems and are well equipped in the cyber 
domain as are all our potential threats.  We can address this enemy in offensive engagements abroad with 
our classical triad and C4ISR assets, however, with very high cost ratios.  We do not have a significant 
institutionalized cost effective defense of the homeland.  In pre-engagement scenarios, we cannot separate 
enemy combatants from the civilian populations.  During engagements we require accurate high precision 
weapons in order to obtain our desired results and minimize collateral damage.  Our old enemies, i.e., 
peer, near-peer and lesser nations, have recognized the cost effectiveness of using the asymmetric tactics 
against the US.  The military must counter this threat abroad and the Department of Homeland Security 
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(DHS) must prevent asymmetric attacks at home with help from the Department of Defense (DoD) and all 
the relevant branches of government and law enforcement.  Figure 10 illustrates our capabilities 
assessment as it relates to the US obtaining local support as related to different enemies; significant 
engagements as it relates to terrain and local support, and the relationship of cost to the US; and our 
asymmetric enemies and their relationships to time, money, C4, and counter measures.  The presence of 
the asymmetric threat and the dependence of our nation on the cyber domain have created the demand for 
more intelligent sensor system architectures.  These sensor architectures must be engineered to be 
intelligent, accurate, precise, and autonomous, and be able to anticipate actions before they occur.   

 
Figure 10.  US Capabilities Assessment 

3.3 Central Role of Net Centric 

Recent research over the last 20 years in bringing artificial intelligence (AI) techniques to radar signal 
processing has been very successful in enhancing a radar’s performance strictly through algorithm 
development, software advances, and higher speed computers.  It is time to leverage these faster computers 
equipped with new signal processing and AI algorithms to assist the US Air Force in transforming how 
sensors are deployed and managed.  Tasking sensors to gather data over a region, where each sensor is 
independently managed by different groups is ineffective when addressing these emerging threats.  One 
approach is to partition the earth into regions where each region manages all the sensors operating within 
its region.  This includes sensors in space, on an aircraft flying within the region, or on or under the 
ground.  Figure 11 provides an abstract diagram of a regional sensor manager (RSM).  RSMs task sensors 
in an abstract manner such as “look for targets leaving roads” or “determine if a vehicle stops near a road 
or side of a road” or “perform persistent tracking of a particular target”.  (A specific task is not “fly a race 
track for 8 hours and save all data for future analysis and hope an operator identifies something out of the 
ordinary”.)  To achieve this capability we must place more intelligent software closer to the sensor.  There 
must be intelligent software on each platform such as on an aircraft, on an Unmanned Air Vehicle (UAV), 
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space asset, etc.  These intelligent software managers will manage all the sensors on its platform and also 
communicate with nearby sensor platforms and the RSM.  They will obtain direction from the regional 
manager and provide results to their current sensor managers, if required, and to the regional manager.  In 
so doing they will reduce the bandwidth required, for example reporting every detection of a GMTI radar 
can be reduced to only reporting those detections that meet the predefined tasks provided by the regional 
manager.  All regional managers will communicate with each other and to a global sensor manager (GSM).  
The number of regional managers can easily expand or contract and any RSM can assume the GSM’s 
responsibilities if it fails. 

 
Figure 11.  Regional Sensor Manager (RSM) Concept 

 

 To put this architecture in perspective consider the following two diagrams of Building Block 1 
(BB1) and Building Block 2 (BB2) as shown in Figure 12 and Figure 13.  These types of sensors or cluster 
of sensors allow us to construct a more complex architecture.  Consider the following diagram as our 
Sensors As Robots architecture (see Figure 14).  
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Figure 12.  Plug and Play Sensor Building Block (BB) for Intelligent or Cognitive Sensors  

(e.g. Cognitive Radio, Airborne Intelligent Radar System (AIRS) with Waveform Diversity, etc.; Appendix J) 

 

  
Figure 13.  Plug and Play Sensor Building Block (BB) for Swarms of Intelligent Sensors or Collections of 
“Dumb” Sensors(Electro-Optic Cameras on Light Posts, Ground Based Seismic Sensors, Ground Based 

Acoustic Sensors, etc.) 
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Figure 14.  Sensors as Robots Architecture 

A more detailed view of a RSM and one of its platforms showing a hypothesized data and control 
flow is shown in Figure 15.  The RSM performs all of the tasking for its platform sensor managers (PSM), 
sets priorities, knows how to fuse sensor data from heterogeneous and homogeneous sensors, has 
knowledge of all of the sensors and what tasks they are performing, has knowledge about waveform 
selection, is knowledgeable of all of the sensors and their capabilities, and is knowledgeable of all of the 
platforms and their architecture, their capabilities and their current status.  The PSMs have access to 
information sources related to weather, maps, Electromagnetic Interference (EMI)/Electromagnetic 
Compatibility (EMC) rules, flight information, etc.  The platform manager manages all the sensors and 
communication systems on board its platform.  It implements the tasks presented by the RSM given the 
priorities of the tasks and the capabilities of its sensors and their signal and data processing algorithms.  
The signal processing software is contained at each of the sensors.  The Intelligent Sensor Software, in 
this architecture design, can assign different algorithms to each sensor depending upon the tasks they 
were directed to perform, e.g., persistent tracking of a specific vehicle, or look for vehicles that pull off 
the side of a road and stop.  Because of waveform diversity, neXt Generation (XG) radios and cognitive 
radar systems, the platform managers must coordinate all of the emissions and waveforms on the platform 
to reduce the probability of electromagnetic (EM) fratricide between sensors and communications 
equipment onboard the platform and other nearby platforms.  The RSM negotiates its tasks with the PSM 
based upon its sensors status, priorities, and unknown parameters that the regional manager may not be 
aware. 
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Figure 15.  RSM Data and Control Flow 

Information is provided and disseminated using the net centric paradigm as illustrated in Figure 16.  
We have enhanced the basic publish and subscribe paradigm to include requests.  In this manner a 
commander or individual airman or soldier can request information based upon their requirements and 
justification.  Developers of information publications will require the assistance of subject matter experts 
(SME) to automatically generate publications in a timely manner for the requesting individuals.  

 
Figure 16.  Illustration of the Net Centric Paradigm 
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The communications capability for retrieving and disseminating sensor information will require 
numerous technologies as shown in Figure 17 below.  The net centric paradigm will utilize classified high 
speed networks, low bandwidth radios, and intelligent software systems such as the Joint 
Communications Airborne Network (JCAN) and Intelligent Mobile Proxy (IMP) in order to produce, 
subscribe and request sensor information in a timely manner.   

 
Figure 17.  Notional Concept Connectivity Capability for Retrieving and Disseminating Information 
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Cyber plays a major role in defending our nation.  As seen in Figure 17 above, the cyber domain is 
used in the gathering and dissemination of sensor data and information.  However, because of its low cost 
it is one of our current enemies’ favorite domains to gather and share data, information and knowledge.  It 
is believed by some that the cyber domain is our asymmetric enemy’s main C4 Intelligence domain.  It is 
also conjectured that our other enemies are also using this domain to spy on us and to do us harm by 
bringing down some of our more important server centers within our government and commercial 
infrastructure.  It is a domain that we must monitor and protect just as we do space, air, ground and 
underground.  We must monitor all communications of our enemies, sensing their every move, their 
planning, and the execution of their warfare tactics.  In so doing we must try and anticipate actions before 
they occur and counter them with a correct and timely response.  

Consider, as an example, the role of cyber in the following anticipate scenario as depicted in Figure 
18.  Imagine a Wi-Fi café within a city threatened by terrorism.  A normal looking native arrives with his 
laptop computer and purchases a cup of coffee and accesses the freely available Wi-Fi.  Intelligent 
software monitoring the Internet server within the café notices that someone is accessing underground 
web sites related to the purchasing of materials required for building a new kind of explosive.  Within the 
immediate vicinity of the café there are hidden cameras and sensors including software that monitor all 
activities both wired and Wi-Fi within the café.  The café’s server is being managed by software that can 
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link the media access control (MAC) address of each computer and has a record of web sites visited.  A 
comparison is made of the visited web sites and the corresponding MAC address is determined.  Hidden 
RF sensors can determine in which portion of the café the laptop with the suspect MAC address is 
located.  By increasing the bit error rate to the MAC address, cameras detect which individual is linked to 
the MAC address since the user will attempt to move his computer closer to the wireless access point, 
and/or complain to the owner about the poor quality of Wi-Fi service.  At this point, the cameras have 
images of the suspect person, who is identified using photo identification software.  Phone records, credit 
card transactions, and news articles are simultaneously searched to obtain all possible information 
concerning this person.  In parallel, imagery databases obtained from strategically placed cameras 
throughout the city are queried to determine through timeline analysis information pertaining to where 
and how he arrived at the café, e.g., on foot or via a vehicle, and if so, its license plate number, etc., are 
obtained.  Also, a simulation with multiple hypotheses will compute when and what the individual may 
likely do next.  Messages will be sent to multiple sensors (acoustic, IR, EO, radar) throughout the city to 
monitor his movements and continuously update software predictions. 

 
Figure 18.  Role of Cyber in Anticipate Scenario (Example) 

We must own the cyber domain just as we own the skies when we encounter many of our potential 
near and near-peer enemies.  We can’t win any war unless we dominate all domains.  Unlike wars before, 
the sensing and reaction to our enemies has to be in minutes or seconds.  We must tear down the 
restrictions that hinder our stove piped sensor systems to work together intelligently to defeat a threat that 
has no boundaries.  Intelligent layered sensing is necessary if we are going to defeat our enemies that use 
asymmetric tactics. 

3.5 Heuristic and Algorithmic Signal Processing (HASP) 

A signal processing initiative will be the central focus of technology required to develop the Layered 
Sensing capability that will address the future threat addressed in Section 1.  This focus will permit the 
integration of legacy systems, future systems and technology (some described in Section 2) and cyber for 
a cost-effective solution. 
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AFRL/RY has a long history of signal processing development that has always included a strong 
leadership role.  This history has included both basic technology and specific applications: 

• Algorithm Development • Integrated ISR 
• Applied Statistics • Multi-Sensor Integration 
• Artificial Intelligence (AI) • Signal and Image Processing 
• Cognitive Radio and Radar • Systems Engineering 
• Detection and Estimation Theory • Radar Technology 
• Detection of Concealed Targets • Waveform Diversity & Design 
• Distributed sensors and Systems • Ultra-Wideband Radar 
• Engineering Mathematics 
 

 

Effectively addressing current and emerging critical challenges demands a willingness to look at the 
scientific and technical problems and innovative solutions arising across the various technical disciplines 
that must come together in order to provide a foundation for a more affordable, more effective and lasting 
technical advantage over our adversaries.  

Research in knowledge based signal and data processing relies heavily upon multidisciplinary 
techniques being brought to bear on the detection, discrimination, and identification of difficult targets in 
a variety of environments.  For almost two decades, AFRL/RY has been investigating the potential for 
significant improvements in enterprise wide performance by bringing all sources of 
data/information/knowledge into the formulation of a comprehensive signal, image and data processing 
solution to the sensing problems at hand.  This approach addressed technology challenges in the 
anticipate, find, fix, track, target and assess aspects of the Air Force S&T Vision long before it was 
articulated as AF2T2EA4. The sources being exploited in this technology development endeavor include 
passive and active sensor data, real time and archival, cultural and geographical data that characterize 
natural formations and man-made structures, census data and dynamic population information, etc. 
Furthermore, we draw upon multi-intelligence sources, including cyber and communications in order to 
formulate the best technical solutions to the sensing problems under investigation. More often than not, 
cues from cyber and communications drive our sensing modalities in the current research, but sensors 
must also be used to drive communications and cyber signal exploitation as well.  
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This comprehensive approach to target detection, tracking, and identification, known as Knowledge-
Based Space-Time Adaptive Processing (KB-STAP), successfully merged algorithmic and heuristic 
signal and data processing into a new paradigm, one in which mathematical rigor was fully compatible 
with intuition-based decision making popularized in game theory. AFRL/RYRT’s research in KB-STAP 
led to the Defense Advanced Research Projects Agency (DARPA)-funded KASSPER (Knowledge-Aided 
Sensor Signal Processing and Expert Reasoning) program that transitioned algorithms and created an 
architecture that enables major weapons systems to perform multiple ISR functions simultaneously and 
autonomously.  The efficient use of prior knowledge in applying mathematical algorithms to signal and 
image processing is a cornerstone of these KB-STAP algorithms and architectures.  Emerging sensors 
now incorporate knowledge based signal processing as a result of this research. 

KB-STAP was derived from the ES-CFAR processor, which was invented in 1985 under the Aircraft 
Defense Initiative (ADI), and was patented by the US Air Force (patent no. 5,499,030), and has impacted 
fielded systems. This research was integral to the formulation of advanced algorithms in KB-STAP. The 
early work in KB-STAP centered on extending concepts developed for detection processing in ES-CFAR 
to include multidimensional filtering, track processing and waveform diversity. An important invention in 
KB-STAP was the non-homogeneity detector (NHD), Appendix F. The fundamental tenet in the theory of 
the NHD is the intelligent selection of parameters and data in adaptive algorithms, specifically in training 
data selection and subspace architecture partitioning. An order of magnitude improvement in radar 
performance has been reliably and consistently demonstrated when applying the NHD and KB-STAP 
technology to phased array radars. 

As a result of these earlier investigations into ES-CFAR and KB-STAP, a number of additional 
research areas were initiated. These included waveform diversity for full adaptivity on transmit and 
receive in radio frequency sensors and systems, with the additional benefits of embedded 
communications, and precision navigation and timing. Waveform diversity technology is essential to the 
success of the Layered Sensing vision of AFRL. In waveform diversity, a single aperture may perform 
active sensing, communications, navigation or electronic warfare as the engagement demands, in addition 
to passive sensing. However, the on-going research also explores the potential for distributed apertures to 
“plug and play” in a coordinated and coherent manner. The goal of this research is to create a theater-
wide radio frequency “hologram”, one in which sensing, electronic warfare, navigation and 
communications signals seen by the enemy and ally alike are of our choosing. In order to facilitate the 
development and deployment of waveform diversity technology, a Tri-Service consortium (AFRL, Naval 
Research Lab, Army Space and Missile Defense Center) was created to accelerate the rate of change and 
acceptance by the user community. Recently, this team was expanded to include NATO allies as well. 
The rapid acceptance of knowledge based signal and data processing and waveform diversity technology 
is a resounding endorsement of the vision AFRL articulated and evolved over the past twenty five years.  

In 2002 a significant new in-house research effort, Sensors as Robots, was initiated by AFRL/RY to 
extend knowledge base and waveform diversity technologies to multi-sensor geographic diversity and 
position control.  Sensors as Robots will permit “action at a distance without human intervention”, even 
in difficult and dynamic environments.  One can easily envision future military operations and emerging 
civilian requirements that will be both complex and stressing and will demand innovative sensors and 
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systems configurations. The goal of Sensors as Robots is to develop a cost effective and extendable 
approach for providing intelligence, surveillance and reconnaissance for a variety of applications in 
dynamically changing military and civilian environments.  Sensors as Robots represents a new ISR 
sensor archetype. In this paradigm, sensor and platform position, modalities and algorithms will be 
autonomously altered depending upon the environment. Sensors, especially radars, will use the same 
returns to perform detection, discrimination and identification, to adjust the platform flight path, and 
change mission priorities.  Active sensors will dynamically and automatically change waveform 
parameters to accomplish these goals. Disparate sensors will communicate and share information and 
instructions in real-time. Intelligent sensor systems will operate within and between sensor platforms 
such that the integration of multiple sensor data provides knowledge needed to achieve dynamic goals 
and avoid electromagnetic fratricide. Intelligent sensor platforms working in partnership will increase 
information flow, minimize ambiguities, and dynamically change multiple sensors’ operations based 
upon a changing environment.  Concomitant with the current emphasis on more flexible defense 
structures, Sensors as Robots will allow the appropriate incremental application of remote sensing assets 
by matching resources to the situation at hand. This research pursues the development of futuristic ISR 
concepts utilizing the innovative integration of cutting edge technologies such as: knowledge-based 
signal processing, cyber defense, robotics, wireless networking, waveform diversity, the Semantic Web, 
advanced computing architectures, and supporting software languages. This concept is projected as an 
autonomous constellation of air, space, cyber, and ground systems that would offer a robust paradigm to 
build toward future deployments. To paraphrase Lt. Gen David Deptula, Deputy Chief of Staff for 
Intelligence, Surveillance, and Reconnaissance, we are drowning in sensor data. With the maturing of the 
technology base, we will be able to take the human out of the loop to the greatest extent possible, and 
thus permit airmen to perform their essential functions without distraction or a lack of actionable 
information. 

The future of ISR relies upon a fully adaptive and autonomous capability connected through net 
centricity and high performance computing.  This capability will rely not just upon transforming stove-
piped intelligence community assets, but also upon the entire surveillance and reconnaissance apparatus, 
both real-time and archival.  Especially important will be the conversion of data and information from all 
sources into actionable knowledge or intelligence automatically, without the need for human 
intervention.  Rapid advances in intelligence and information exploitation will exceed the capability of 
human operators, will rely upon emerging information concepts such as semantic web and web-based 
computing, and will require cyber security, sensing and offensive tactics.  Previous innovations in the 
areas of adaptive processing, knowledge-based control, and space-time diverse waveforms will be crucial 
to the development of this new exploitation capability.  In particular, the work in pre-detection fusion of 
multi-band sensor data is a fundamental predecessor to the required information fusion.  The current 
challenge is the fusion of heterogeneous sensors and information sources.  
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4 TECHNOLOGY PROGRAM 

Based on the technology base described in Section 2, a program plan for HASP was developed (see 
Figure 19.).  The components of this program plan can be divided into two major thrusts: 

 •  Technology  

 • Verification and 
validation (See Section 4.2.1 ). 

The technology thrust has 
the following major 
components, objectives and 
approaches.  Technology 
specific experiments are 
required in some cases in order 
to transition the technology to 
integrated Layered Sensing 
demonstrations which in turn 
will be transitioned to the users 
through integrated 
demonstrations. 

4.1 Anticipatory Tracking [1] 

Most tracking algorithms in use today are memoryless i.e. if a track is dropped their history is also 
dropped from memory. This thrust is to develop and demonstrate the value garnered by maintaining track 
information throughout a sensor’s mission. This is necessary for performing persistent tracking of 
vehicles and personnel within our ever changing war on terrorism.  

4.2 Theory of Heterogeneous Sensing [2] 

Most sensors in use today work independently and some share their findings after establishing tracks. 
It has been shown that the use of heterogeneous sensors (e.g. radar and an EO sensor) can aid in persistent 
tracking of targets with similar characteristics such as radar cross section and kinematics. This thrust will 
extend preliminary efforts and develop the basic knowledge and algorithms for intelligently utilizing 
heterogeneous sensors for the detection, tracking, and identifying of small targets in high clutter 
environments. 

 
Figure 19.  HASP Program Schedule 
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4.3 Intercept Centric Experiment [3] 

This experiment will bring together many of the results of the previous efforts to demonstrate the 
integration of their findings to detect, track, identify and intercept enemy targets in complex 
environments. The concept of operations and the use of multiple heterogeneous sensors within a net 
centric approach rely on supporting technologies in order to be successfully deployed. This thrust will 
develop realistic scenarios, apply the necessary supporting technologies, and demonstrate how they can 
be integrated to outperform current sensors and their deployment tactics.  

4.4 Tomography [4] 

This set of tomography experiments leverages the spatial and geometric diversity of a multistatic 
radar to deliver high resolution MTI and will demonstrate the resolution of conventional wideband radar, 
while using narrowband signals.  These narrowband signals are particularly attractive with consideration 
to the ongoing erosion of spectrum.  In the RF tomography demonstration, some sites will have 
transmitters and receivers, while other sites are receive only.  By locating transmitters and receivers in a 
uniform manner, beneficial effects of geometric diversity will be enhanced.   

4.5 Discrimination: Images, Generalized Inner Product (GIP), Resonances [5] 

Autonomous declaration of target type will be a key component in the successful implementation of 
Layered Sensing.  Imaging (1D – HRR, 2D – SAR) has been used for almost 50 years to provide data on 
the parameters of targets of interest.  But imaging has always required the image analyst.  GIP and 
measurement of target resonances are two technologies with the potential of removing the man-in-the-
loop in the parameter estimation process.  The ongoing program focuses on single radar application of 
these technologies, HASP will extend each technology and integrated imaging/GIP/resonance analysis to 
multiple radars and to multiple sensors of disparate types. 

4.6 Discrimination Experiment [6] 

Experiments will be used to quantify the performance of the various discrimination approaches under 
various scenarios.  These scenarios will include different sensor combinations and target types. 

4.7 Sensor and Information Manager [7] 

Layered Sensing will be ‘layered’ in a number of aspects: physical layers (high Earth orbit, low Earth 
orbit, airborne, surface-based, below ground), component layers (different sensor and command, control 
and communications (C3) types), user layers (national, theater, multiple component types). Each sensor 
and each C3 node can provide information to multiple users, so it is necessary to manage the sensors/C3 
in a way to best meet those multiple information needs.  HASP will develop an Information Manager that 
controls sensor/C3 location, pointing direction and system parameters in order to optimize the 
information for all users. 
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4.8 MIST Controller [8] 

The ongoing MIST program is investigating the control of multiple sensors (low-frequency radar, 
high-frequency radar, Electro-Optic/Infrared (EO/IR), ESM, IFF) on a single airborne platform.  The 
MIST system must address various AMTI, GMTI and imaging missions.  HASP will extend the MIST 
controller to include the impact of new technologies on target detection, tracking and discrimination. 

4.9 Close-in Sensing [9] 

This area is dedicated to the issues related to developing and deploying heterogeneous sensors (e.g. 
RF, audio, video, chemical) in order to anticipate actions before they occur. In so doing we must detect, 
track, discriminate, and engage various targets in high clutter urban and mountainous environments. The 
deployment, communications, signal and data processing, and management of these heterogeneous 
sensors will be the major objective of this thrust along with electronic protection and EM fratricide 
avoidance.   

4.10 GEO-MTI Modeling and Simulation [10] 

GEO-MTI was designed to provide significant initial coverage in a new theater of interest.  It would 
be located in one area but could be redeployed within hours to provide coverage of any theater worldwide 
(+/- 70 degrees latitude).  It was sized to see any moving vehicle (airborne, surface) at any velocity and 
even has the potential to monitor dismounts.  HASP will develop a detailed GEO-MTI system model and 
quantify its performance. 

4.11 GEO-MTI Demonstration [11] 

Multi-aperture experiments will be implemented to validate GEO-MTI performance. Issues 
associated with this demonstration include: 

• Detection of all moving targets in the theater 
• High accuracy positioning on all targets 
• Continuous tracking in dense target environments. 
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5 VALIDATION THROUGH MODELING & SIMULATION / VERIFICATION 
THROUGH EXPERIMENTS & EXERCISES 

Development and validation of the regional controller requires the capability to generate the outputs 
(1) after signal processing, (2) after tracking, and (3) after classification from each of the sensor systems 
in the region.  These outputs will be integrated into a scenario-level simulation.  Meta-models will be 
developed for each sensor type.  These meta-models will provide a reasonable fidelity representation of 
the sensors and communications, including cyber, for the region.  It is envisioned that the scenario must 
run in real-time and up to ten times faster than real-time. 

Interim verification must be accomplished through multi-sensor experiments with some real-time 
control and significant post analysis.  Final verification will be accomplished through multi-sensor/multi-
user real-time exercises where the various decision makers in the region are emulated by the users of the 
future (e.g., AFIT professors and students).   

5.1 Scenario Simulation/Emulation [12]   

An example scenario to be used for performance evaluation is illustrated in Figure 20 which 
represents a generic test scenario where surveillance of a small country is required including continuous 
monitoring of its borders.  The example scenario can be characterized by:  

• One of its bordering nations is a peer nation.  The terrain near the border is very mountainous – 
enemy combatants are known to cross the boarders in vehicles, on foot, horse, donkey, etc., and 
sometimes disappear possibly into caves.  

• There are multiple medium size cities south of the mountains with many roadways connecting 
them – many of these roads are periodically populated with explosives.  

• Inside the cities there are enemy combatants living in buildings with the civilian population.  
Communications between combatants are via email, web sites, cell phones, land line phones, RF 
radios, couriers, etc.  Combatants launch weapons from civilian populated areas, churches, 
schools, etc., and combatants use civilian vehicles for transportation. 
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Figure 20.  Example Scenario for Performance Evaluation 

5.2 Experiments and Demonstrations [13]   

Experiments and exercises should be conducted to demonstrate the layered sensing concept 
incremental readiness.  In Fiscal Year (FY) 13, it is envisioned that planned experiments with 
representative targets and sensors be performed at Wright Patterson Air Force Base, (see Figure 21.).  As 
an illustration consider five sensor types used in the experiments and a final exercise consisting of an:  S-
band radar, C-band radars (five small existing dish radars), bistatic/ESM system, tomographic radar 
system, and video cameras (five).  A combination of controls by the experimentalists and autonomous 
control will be limited to a small number of expert system rules, e.g., approximately 10 expert system 
rules.  Multiple ground targets of interest immersed in background traffic will be employed.  Ground 
vehicles will be used to emulate the actions of a suicide bomber, while dismounts will be utilized to 
emulate the deployment of IEDs along roadsides.  A variety of airborne targets will simultaneously 
overfly the area of interest.  In addition, cyber will play a key role in our demonstrations.  A number of 
cyber monitoring techniques will be employed throughout each experiment and exercise.   
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A second, and  
more comprehensive 
experiment in FY 14 can 
be performed at Wright 
Patterson Air Force Base.  
The FY13 and FY14 
experiments will 
incrementally demonstrate 
the level of readiness of 
our layered sensing 
research and development.  
Final verification will be 
accomplished through a 

multi-sensor/multi-user 
real-time exercise scheduled for FY16 at Wright Patterson Air Force Base.  Full performance capability 
simultaneously addressing all major aspects of the layered sensing concept can be demonstrated.  The 
exercise will include all of the components shown in Figure 22.  The FY14 experiment should include as 
large a subset of those components as possible.  A number of different operational conditions should be 
emulated: Normal operation, Severe counter-measures, Day without space/Global positioning system 
(GPS), and Day without cyber. 

 
Figure 22.  Layered Sensing / Outdoor Range Exercise (Geometry, Missions, and Senor Suite) 
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Figure 21.  FY11 Control Architecture 
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5.3 Systems Engineering & Integration [14] 

The systems engineering & integration effort will focus on the complex technical design and 
management tasks required for realization of the layered sensing approach to surveillance and 
reconnaissance in challenged environments within the Air Force.  Previous efforts have shown that a 
strong systems engineering approach has led to significant performance improvements, risk reduction and 
reduction of costs, as well as many other far reaching benefits.  As illustrated in Figure 23, layered sensing 
is an immensely complex undertaking which will require that a disciplined design approach be employed 
at all levels of mathematical analysis, modeling & simulation, bench top testing, chamber measurements 
and outdoor range experimentation.  In addition, a disciplined approach will be necessary to transform the 
current Air Force battlefield command and control structure to that required by a flexible, rapidly 
deployable layered sensing approach to surveillance and reconnaissance in challenged space, surface, sub-
surface and cyber-space environments.  Thus, both technical and human-centered disciplines will be 
needed to realize the paradigm shifts required by the layered sensing vision. 

 
Figure 23.  Systems Engineering Approach – Surveillance for Layered Sensing 

In its broadest sense, the system engineering & integration approach to realizing layered sensing 
surveillance and reconnaissance will consist of: the identification and quantification of layered sensing 
goals and objectives: creation of alternative layered sensing surveillance and reconnaissance design 
trades; risk assessments;  selection and implementation of the “best” design alternatives; verification that 
the designs are properly built and integrated in a cost effective manner; and post-implementation 
assessment of how well the designs meet the layered sensing surveillance risks and reconnaissance goals 
(see Figure 24).  The identification of new methods and fundamental research opportunities to support 
long-term layered sensing needs is expected to be a natural outcome of this systems engineering focus.  
As such, the systems engineering & integration effort must deal with work-processes and tools to handle 
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layered sensing surveillance and reconnaissance implementation and the transition away from 
conventional warfare apparatus and techniques.  The systems engineering approach to realizing the 
layered sensing surveillance and reconnaissance vision will heavily rely on the use of analysis, modeling 
& simulation, and demonstrations to validate assumptions and theories on systems and subsystems and 
interactions within them as previously identified.  Experiments and demonstrations will be designed to 
generate evidence of the benefits and risks of layered sensing at all “decision maker’ levels in a well 
defined manner for challenged space, surface, sub-surface, and cyber-space environments.  Feedback at 
all stages of development and test will be an integral part of the design and development process. 

 
Figure 24.  The Scope of Systems Engineering 

The implementation of a systems approach will allow AFRL to institute a “Vision-to-Strategy-to-
Task” planning process to develop a balanced S&T project portfolio for AFRL/RY.  This will allow 
“flow-down” from vision through assessment of alternative solutions to a prioritized technology portfolio.  
The power of layered sensing will be demonstrated by defining and executing a set of integrated analyses 
and experiments to demonstrate progress towards appropriate Focused Long term Challenges (FLTCs).  A 
natural outcome of this effort will be the development of Core Technical Competencies (CTC)-specific 
S&T plans to support the analyses and experiments.  This systems engineering approach will then aid in 
the development and implementation of a process that improves the alignment of internal and external 
funding (DARPA, Missile Defense Agency (MDA), …) with the layered sensing vision.  Adjustments of 
funding priorities to emphasize the exploratory investigations that may lead to “game changers” (e.g., 
identify new sensing phenomenologies or concepts) will naturally result with the holistic approach being 
pursued.   

5.4 Holistic Approach 

The systems engineering & integration approach which AFRL should pursue is both a holistic and 
interdisciplinary engineering effort that focuses on the very complex problems posed by the notion of 
layered sensing in challenged environments.  A systems engineering & integration effort should focus on 
defining the “decision maker’s” needs and required functionality as it relates to the entire kill chain. The 
process should include all levels starting early in the development cycle, documenting all requirements, 
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and then proceeding with the system-of-systems, system and subsystem design synthesis and system-of-
systems validation while considering the complete problem, the entire system-of-systems life cycle.  This 
holistic approach will leverage expertise in each sensing modality to provide a balanced solution to these 
very complex problems.  The systems engineering process, then, can be decomposed into a systems 
engineering technical process and a systems engineering management process, i.e., to be effective the 
systems engineering & integration must overlap with both technical and human-centered disciplines.  

5.5 Interdisciplinary Approach 

 Development of a layered sensing surveillance and reconnaissance capability for challenged 
environments will require contributions from many diverse technical disciplines across AFRL, the Air 
Force and beyond.  By providing a systems (holistic) perspective of the development effort, systems 
engineers will meld all of the technical and management contributors into a unified team effort, forming a 
structured development process that will proceed from concept to development & test, to production to 
operation, and to sustainment for long periods.  The interdisciplinary development team will participate 
on the sensor Integrated Product Teams (IPTs) as part of an ISR Task Force, work with designers across 
CTCs to generate roadmaps of future technical needs, engage operators (e.g., onsite with 480th 
Information Warfare (IW), Combatant Commands (COCOMs), NGA-P) in the refinement of the layered 
sensing requirements vision, and engage Air Force senior leadership to gain advocacy for the layered 
sensing vision.  This team will work to gain advocacy for the Sensors Directorate (RY) vision within 
AFRL, e.g., with the Information Directorate (RI), and beyond the AFRL community.  Extensive 
collaborations and user community engagements will be required (universities, labs, industry, Systems 
Program Offices (SPOs), Major Commands (MAJCOMs), other services…).  By these actions the 
interdisciplinary team can develop and communicate the quantitative benefits of layered sensing for 
specific Air Force missions.  This process is expected to provide a balanced approach to meeting layered 
sensing goals while addressing risk, vulnerabilities and anti-tamper needs, concurrently with the design 
process.  In some cases it will be necessary to terminate and dispose of nonproductive or cost ineffective 
solutions as part of this process. 

5.6 Technical Process 

The technical process (mathematical analysis, modeling and simulation, bench top testing, chamber 
measurements and outdoor range experimentation) includes assessing all available information, assessing 
risks at all levels, defining effectiveness measures, creating behavior models, performing trade-off 
analyses & simulations and creating sequential build & test plans.  It is important to ensure that the 
integration of heterogeneous sensing modalities within layers of stand-off/close-in sensing, networking 
and communications are appropriately considered in the over-all design process.  An external, 
independent, comprehensive end-to-end systems analysis that includes options, limitations, need for 
margin, and Concept of Operations (CONOPS) to ensure successful demonstrations must be conducted.  
All experiments, demonstrations and exercises should be designed to provide evidence of the benefits for 
“decision makers” of layered sensing at all levels in challenged space, air, surface, sub-surface and cyber-
space environments.  Once fielded, the technical process will also include evaluation and quantification of 
the performance benefits and cost effectiveness of the layered sensing surveillance and reconnaissance 
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designs.  Long term strategy, plans and roadmaps will be guided by the developed systems concepts, 
capability gaps which can be met, concept of operations, focused mission analyses, cost benefit analyses, 
and key program decision points.  Implementation plans, derived from the strategy plans and roadmaps 
will be utilized to establish the context for technology team execution.  Relationships between the various 
stages will be identified and will incorporate numerous opportunities for feedback.   

5.7 Management Process 

The complexity encountered by transition to and realization of the layered sensing surveillance  
and reconnaissance vision includes not only technical engineering systems and subsystems and  
their complex interactions, but also the logical human organization of data, information, knowledge,  
and communications.  Thus the goal of the technical management process is to organize the  
technical effort in the life cycle expectancy, as well as manage risk.  The sheer size of the effort,  
amount of data involved, number of disparate variables and number of sensors involved in the  
design of a layered sensing surveillance and reconnaissance capability will require a carefully thought  
out and executed plan.  Thus the systems engineering process will encourage the use of structured  
tools and methods to better comprehend and manage this complexity in realizing the benefits of  
layered sensing.  Utilization of systematic work-processes and tools to efficiently handle the transition 
from stove-piped development to layered sensing will include (but is not limited to):         

• Systems analysis 

• Statistical analysis 

• Performance optimization 

• Modeling & simulation 

• Measures of performance and effectiveness 

• System dynamics 

• Risk analysis 

• Reliability & life cycle analysis 

• Decision making processes

Taking an interdisciplinary approach is inherently complex since the behavior of and interaction 
among the system and subsystem components is not always immediately well defined or understood.  
Defining and characterizing the layered sensing surveillance and reconnaissance systems and subsystems 
and their interactions is one of the primary goals of the planned systems engineering & integration effort.  
The gap that exists between informal requirements from users, the “decision makers,” and technical 
specifications must be successfully bridged.  
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5.8 The Systems Engineering Process for Layered Sensing  

The systems engineering tools include strategies, procedures, and techniques that aid in performing 
systems engineering to achieve the layered sensing surveillance and reconnaissance vision.  The purpose 
of these tools can vary significantly from sensor to sensor and subsystem to subsystem.  And depending 
upon their application, these tools will be used for various stages of the systems engineering process. 

Models play a very important and diverse role in our systems engineering process.  A model can be 
defined in many ways such as an abstraction of reality, an imitation, analogue, or representation of a real 
world process or structure, or a conceptual, mathematical representation.  Together, these are defined 
broadly enough to encompass physical models used in the verification of the layered sensing surveillance 
and reconnaissance system design, as well as functional flow diagrams and mathematical (e.g., 
quantitative) models used in the trade study process.  It will be necessary to establish and apply 
disciplined validation approaches that improve the credibility of the models used.  The model fidelity 
across each of the elements of the modeling and simulation (M&S) hierarchy should be linked.  The 
layered sensing development team should ensure that the appropriate level of modeling be used is 
consistent with the requirements of that model, i.e., define and track appropriate fidelity metrics necessary 
to capture the required system dynamics.  Multi-scale modeling technologies derived from distributed 
mission M&S, advanced signal processing, and data compression must be evaluated.  Hardware in the 
loop should be inserted into simulation environments only when necessary to satisfy technical needs. 

Mathematical models and diagrams should be used in the trade studies to provide estimates of the 
layered sensing surveillance and reconnaissance system-of-systems performance and effectiveness, 
technical attributes, and cost from the known and estimable quantities.  Meaningful quantitative causal 
relationships relating inputs and outputs should be developed for all systems and subsystems.   

Once the requirements are understood, the systems engineering function should refine them and make 
an assessment of the best, most cost effective technology for the job and assess the existence of feasible 
solutions.  Constraints will be traded to find one or more feasible solutions.  “Decision maker” 
requirements and desires are typically the most valuable input to such trade studies and cannot be 
assumed.  Usually, several feasible solutions are found and a sufficient set of constraints defined to 
produce an optimum solution.  Various modeling methods can and should be used to solve the problem 
including constraints along with cost functions.  Figure 25 summarizes the general systems engineering 
approach that can be employed during the development and test of the layered sensing surveillance and 
reconnaissance implementations. 



38 

 

 

  

 
Figure 25.  The Layered Sensing Systems Engineering Process 
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6 BEYOND HASP 

Heuristic and Algorithmic Source (signal, image, data, and cyber) Processing (HASP) will develop 
and demonstrate the capability to take data from multiple sources in order to provide autonomously the 
most relevant information to each  user at all levels of the kill chain.  In addition to the processing specific 
to each source, HASP will integrate the ongoing developments in artificial intelligence and man-machine 
interface.  These two technical areas are outside of HASP but will continue to impact its development, as 
will new source concepts as they are developed. 

HASP continues AFRL/RY’s development of intelligent processing to achieve improved sensor 
performance without man-in-the-loop.  Expert System CFAR used data processing with multiple 
algorithms in parallel to provide better detection processing. KB STAP used understanding of the 
environment to more effectively reject interference.  HASP efforts are generating new sensor processing 
outputs that can be more easily integrated autonomously in order to classify and identify targets (GIP, 
DART).  For individual sensor processing, HASP extends the expert-system and knowledge-aided 
approaches of AFRL/RY’s previous work (see Figure 26).   Increased performance requirements and the 
need for autonomy greatly increase the complexity of the intelligent processing, even for an individual 
sensor (see Figure 27).  This complexity will be beyond the capability of individual sensor experts and the 
integration of this processing will require advances in cognitive processing.   

 
Figure 26.  Intelligent Processing Evolution 
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Figure 27.  Cognitive Radar 

Extension from sensors to sensors plus cyber will provide the potential for more data and better 
information.  HASP will develop the processing technology for a broad spectrum of sources and will 
demonstrate these technologies for a limited set of sources and users. 

Development of new source types (sensor, cyber, etc.), and C4 capabilities will continue.  New users 
and user requirements will expand.  Response to these changes will require an extension of HASP that 
includes the expertise of other directorates and other services.  HASP technology and demonstrations will 
provide an excellent opportunity to initiate an effective outreach.   
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8 LIST OF ACRONYMS 

ADI - Aircraft Defense Initiative  

AF2TE4A  - Anticipate, find, fix, track, target, engage, and assess, anything, anytime, anywhere  

AFIT – Air Force  Institute of Technology 

AFRL  - Air Force Research Laboratory 

AFRL/RRS – Air Force Research Laboratory/Rome Research Site 

AI - Artificial Intelligence 

AIRS - Airborne Intelligent Radar System 

AM – Amplitude Modulation 

AMTI – Airborne Moving Target Indicators 

AOA – Angle of Arrival  

AOC – Area Of Concern 

AOI – Area of Interest 

ATOs – Air Traffic Operations, Authority to Operate,  

AWACS - Airborne Early Warning and Control System  

BB - Building Block  

BB1 - Building Block 1  

BB1 - Building Block 2  

BDA – Battle Damage Assessment 

C2 – Command and control 

C3 – Command, Control and Communications 

C4 - Command, Control, Communications and Computing  

C4ISR - Command, Control, Communications and Computing Intelligence, Surveillance and 
Reconnaissance 

CA - Cell Averaging  

CA-CFAR – Cell Averaging-Constant False Alarm Rate 
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CBRNE - Chemical, Biological, Radiological, Nuclear, Explosives 

CEP - Complex Event Processing  

CFAR - Constant False Alarm Rate  

CNR – Clutter-to-Noise Ratio 

COCOMs – Combatant Command 

COM - Communication 

CONOPS - Concept of Operations 

CONUS – CONtinental United States 

CPI – Coherent Processing Interval 

CTC- Core Technical Competencies  

DARPA - Defense Advanced Research Projects Agency  

DAML – DARPA Markup Language 

DARs - Distributed Aperture Radar 

DART - Declaration Algorithms for Resonant Targets  

DB - Database 

dB - decibel 

DCGS - Distributed Common Ground/Surface System 

DEP – Detection Environment Processor 

DFAD - Digital Feature Analysis Data  

DHS - Department of Homeland Security  

DIB – Directory Information Base 

DLG – Digital Line Graph 

DoD - Department of Defense 

DoF – Degree of Freedom 

DTED - Digital Terrain Elevation Data  
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ECCM – Electronic Counter-Countermeasures 

ECEF – Earth Centered Earth-Fixed 

EM - Electromagnetic  

EMC - Electromagnetic Compatibility  

EMI - Electromagnetic Interference  

EO - Electro-Optic  

EO/IR – Electro-Optic/Infrared 

EP - Electronic Protection 

EPD – Excess Path Delay 

ES-CFAR - Expert System - CFAR  

ESM - Electronic Support Measures  

FEBA – Forward Edge of the Battle Area 

FEP – Filter Environmental Processor 

FFT – Fast Fourier Transform 

FLTCs - Focused Long Term Challenges  

FM – Frequency Modulation 

FP – fingerprint 

FTC – Factored Time Space 

FY – Fiscal Year 

GEO-MTI – GEOsynchronous-orbit Moving Target Indication 

GHz - GigaHertz 

GIG – Global Information Grid 

GIP – Generalized Inner Product 

GMTI – Ground Moving Target Indicators 

GO-CFAR – Greatest Of Constant False Alarm Rate 
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GOTCHA – Doesn’t stand-for anything but refers to the AFRL Circular-SAR Development Project 

GPS  - Global Positioning System 

GRCA - Ground Referenced Coverage Area  

GSM - Global Sensor Manager  

HASP - Heuristic and Algorithmic Source (signal, image, data, and cyber) Processing  

HOS - High Order Statistics 

HPEC - High Performance Embedded Computing  

HRR – High Range Resolution 

ICM – Internal Clutter Motion 

ID – Identification 

IED - Improvised Explosive Device  

IFC2P2 – Intelligent Fusion Communications Control, Plug & Play 

IFF – Identification, Friend or Foe 

IID – Independent and Identically Distributed 

IMP - Intelligent Mobile Proxy  

IPT – Integrated Product Team 

IPN – Intelligent Platform Network 

IR - Infrared 

ISAR - Inverse Synthetic Aperture Radar  

ISR - Intelligence, Surveillance and Reconnaissance  

IW – Information Warfare  

JCAN – Joint Communications Airborne Networking 

JEM – Jet Engine Modulation 

JSTARS - Joint Surveillance Target Attack Radar System  

KA – Knowledge Aided 
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KASSPER - Knowledge-Aided Sensor Signal Processing and Expert Reasoning  

KB – Knowledge-Based 

KBC – Knowledge Based Controller  

KBSADP – Knowledge-Based Signal and Data Processing 

KB-STAP - Knowledge-Based Space-Time Adaptive Processing  

km - Kilometer 

LULC – Land Use and Land Cover 

m – Meter 

M&S - Modeling and Simulation 

MAC - Media Access Control  

MAJCOMs  - Major Commands 

MCARM – Multichannel Airborne Radar Measurements  

MDA – Missile Defense Agency 

MFP – Matched Filter Processing 

MHz - MegaHertz 

MIMO - Multiple Input, Multiple Output 

MIST - Multi-Intelligence Sensor Technology 

MIST ROS - Multi-Intelligence Sensor Technology Representative Operational System  

MMSE – Minimum Mean Squared Error 

MNS – MIST National Systems 

MOE – Margin of Error 

MOPS – Measures of Performance 

MSMI - Modified Sample Matrix Inversion 

MSR - Multistatic Radar  

MTI – Moving Target Indicator 
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MTS – Moving Target Simulator 

NAGS – Narrow Area GRCA Surveillance 

NATO - North Atlantic Treaty Organization  

NAV – Navigation 

NED – National Elevation Data 

NGA – National Geospatial-Intelligence Agency 

NGA-P - National Geospatial-Intelligence Agency Program 

NHD - Non-Homogeneity Detector  

NLCD – National Land Cover Data 

OGUPSA - Online Greedy Urgency-Driven Preemptive Scheduling Algorithm  

P/S - Publish/Subscribe 

PDF – Probability Density Function 

PDU – Protocol Distribution Unit 

Pfa – Probability of False Alarm 

PKI – Public Key Infrastructure 

PNT - Positioning, Navigation and Timing 

PPM – Preferred Performance Measure 

PRF – Pulse Repetition Frequency 

PSM - Platform Sensor Manager  

PSP – Pattern Synthesis Processor 

RBR - Real Beam Radar  

RCS – Radar Cross Section 

RF - Radio Frequency  

RI - AFRL Information Directorate 

ROC – Receiver Operator Characteristics 
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RSM - Regional Sensor Manager  

Rx – Receiver 

RY - AFRL Sensors Directorate 

SAR – Synthetic Aperture Radar  

S&T - Science & Technology 

SSR - System Strategy Reasoner 

S/W - Software  

SW – Symmetric Window 

SAML - Security Assertions Markup Language 

SAR - Synthetic Aperture Radar  

SCNR – Signal-to-Clutter-plus-Noise Ratio 

SDGC – secondary data guard cells 

SGT - Stationary Ground Targets  

SINR – Signal-to-Interference plus Noise Ratio 

SJR - Signal-to-Jammer-Ratio  

SME - Subject Matter Experts   

SMI – Sample Matrix Inversion 

SMS - Sensor Manager Simulation 

SNR – Signal-to-Noise Ratio 

SOF – Special Operations Forces 

SPEAR – Signal Processing, Evaluation, Analysis and Research 

SPO - Systems Program Office 

STAP - Space-Time Adaptive Processing  

SSRP – Space/Space Range Processor 

TBM - Tactical Ballistic Missile 
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TEP – Tracker Environmental Processor 

TM-CFAR – Trim Mean-Constant False Alarm Rate 

TRD - Transportable Discriminating Radar  

Tx – Transmitter 

UAS – Unmanned Aircraft System 

UAV – Unmanned Air Vehicle 

UAV Sim – Unmanned Air Vehicle Simulator 

UHF - Ultrahigh Frequency  

UI – Urgency Index 

UIP – User Interface Processor 

US - United States   

USA - United states of America 

USAF – United States Air Force 

USGS – US Geological Survey 

VTA - Virtual Tomographic Array 

W3C – World Wide Web Consortium 

WAGS – Wide Area Ground Surveillance 

WAS – Wide Area Surveillance 

WDD - Waveform Diversity & Design 

WF – Waveform 

WGS84 - 1984 World Geodetic System 

Wi-Fi – Wireless Fidelity 

XG - neXt Generation  
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APPENDIX A 
ANALYSIS OF THE ANTI-JAM PERFORMANCE OF 

MULTILATERATION SYSTEMS 

DISTRIBUTED CONCEPT FOR TRANSPORTABLE DISCRIMINATING RADAR 
(TRD)  

A concept for a new fire control radar is being investigated for regional missile defense.  This system 
will be transportable and will support target discrimination and track for mid-course and endo-
atmospheric engagements (see Figure A- 1).  To make such a concept a reality one might employ some of 
a number of enabling technologies to achieve the desired performance against expected missile threats.  
Such a system will have attributes that support multiple firing doctrines including shoot-look-shoot 
engagements and be interoperable with existing missile defense systems.  An elevated EO/IR sensor may 
support target acquisition and possibly first intercept.   

 

 

 

 

 

 

 

An IPT was formed to perform a feasibility analysis of developing a new TDR to meet the 
requirements of the regional defense concept.  The first concept was a distributed aperture approach 
because it was believed that a single aperture system would not be transportable (the portability issue 
once again).  Further systems analysis determined that the distributed aperture approach was not 
necessary for transportability but still had payoff in terms of performance against jamming and chaff and 
multilateration imaging.   

In this distributed aperture concept for Electronic Counter-Countermeasures (ECCM) and improved 
discrimination there is a main radar that transmits a wideband waveform, and a number of auxiliary radars 
each receive the wideband waveform.  There is coherent integration across all these receive apertures.  
For this X-band system, with the receive apertures distributed across a few kilometers, it would be 
possible to separate targets from chaff only 100 meters apart.  Rejection of jammers that are located close 
in angle to the target is also possible. 

 
Figure A- 1.  Distributed Sub Apertures 
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In another version of this concept the TDR systems located in different countries would operate 
bistatically with each other.  Wideband multistatic imaging could also be used with this concept (see 
Figure A- 2). 

 

 

 

 

 

 

 

Jammer Rejection 

An important application of the distributed aperture concept is the rejection of jammers very close to 
the desired target. The resolution, i.e. the angular distance between the target and a jammer that can be 
rejected, is determined exclusively by the baseline (in terms of wavelength) of the distributed aperture. In 
this regard, increasing the baseline improves resolution. However, if all sub-apertures use the same 
waveform, e.g. operate at the same frequency, a large baseline results in grating lobes, wasting transmit 
energy in unwanted directions or receiving interfering signals from unwanted directions. Similarly, if we 
were to use multiple frequencies, but equally spaced sub-apertures, the grating lobes are reduced, but not 
eliminated. In analyzing the use of distributed apertures for jammer rejection, there are, therefore, two 
dimensions to be investigated: the waveform dimension (choosing a different waveform for each element) 
and the spatial dimension (choosing an optimal spacing between elements).  

In the scenarios under investigation, the overall aperture baseline was of the order of hundreds of 
meters. At the frequencies of operation and range to targets considered in this effort, the targets are within 
the near field of the overall antenna. This implies that the received signals from the target and jammer are 
range dependent, in contrast to the standard model for target signals that are assumed to depend on the 
relative angles only.  

In Phase I of this effort we investigated the ability of a distributed aperture to suppress jammers using 
adaptive processing. The investigation covers the use of distributed apertures in four different scenarios:  

• equal spacing between elements, same signals 
• equal spacing between elements, orthogonal signals (different frequencies) 
• unequal spacing, same signals 
• unequal spacing, orthogonal signals 

 
Figure A- 2.   Regional Defense Layout 
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The analysis undertaken here is an initial effort to document the ability of the distributed aperture to 
suppress interference. We use the traditional fully adaptive algorithm, based on the covariance matrix of 
the jamming interference and noise [A-1]. One extension of this research effort is to understand the 
performance of the several available STAP algorithms in distributed aperture scenarios. Similarly, range 
dependent target and jamming signals are not addressed here and can be considered an extension of this 
effort.  

BACKGROUND 

Consider a distributed aperture with N subapertures with each subaperture possibly transmitting a 
different waveform. Since each subaperture receives target returns from all transmitted waveforms, there 
are N × N returned signals for each radar range. A space-time-waveform-range data hypercube therefore 
replaces the usual space-time-range data cube.  In this effort, the orthogonal waveforms are chosen to be 
relatively narrowband signals offset in center frequency.  In such a system, there are a few unique 
concepts: 

Adaptive space/time/waveform processing: Traditionally, adaptive processing has focused on the 
spatial and temporal dimensions leading to STAP.  The spatial steering vector is related to the look 
direction while the temporal steering vector is determined by the look Doppler frequency.  In our case, the 
time dimension is augmented by the waveform dimension. The space/waveform steering vector is 
determined by the look angle uniquely with a different spatial steering vector for each transmit frequency. 

Spacing of subapertures/waveforms (frequencies): Distributing the apertures and separating the 
transmit frequencies introduces two new degrees of freedom available to the radar designer: the spacing 
between the antenna elements and the frequencies. Equally spaced elements with equally spaced 
frequencies can lead to grating lobes that can reduce the effectiveness of the adaptive process. Here we 
investigate various configurations, comparing them in terms of grating lobes, mainbeam width, etc.   

Targets/interference are not necessarily in the far field: By common definition, the far field region is 
determined by three conditions: R > λ, R > D and R > D2/λ where R is the radial distance, D is the total 
aperture baseline and λ is the frequency of operation.  From a physical point of view, the far field is the 
region where the spatial steering vector is effectively independent of the radial distance. In our example, 
we choose D = 200m with a center frequency 10GHz, i.e., the far field begins at approximately 1500km. 
The target and interference are therefore not necessarily in the far field.  This impacts on the type of 
adaptive processing scheme chosen.  Similar to STAP for bistatic radar, this range dependent steering 
vector reduces the secondary data available to estimate the covariance matrix [A-2]. Another concept 
possibly borrowed from bistatic radar is the use of spatial warping to maintain a fixed patch size, 
necessitating a proper choice of secondary data [A-3][A-4]. 

In addition to the above, another important consideration is position errors in the array. Due to the 
large baseline, a relatively small error in position may be comparable to the wavelength of operation. This 
is especially true for radars operating at X-band.  
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SIGNAL MODELING AND PROCESSING 

The elements of the linear array are not equally spaced and each element in the array may transmit at 
a different frequency. Let {xn , n = 0,1,2…N-1} denote the positions of the N elements, each with 
corresponding frequency {fn , n = 0,1,2…N-1}. Each element receives and processes the signals from all 
N transmissions. Consider a scenario where each element transmits M pulses within a single coherent 
pulse interval (CPI) at a pulse repetition frequency (PRF) of fr. Due to these N transmissions, the return 
signal from a unit target at the nth

 element, kth frequency and mth pulse, for a target at relative velocity v 
and relative angle ϕ is given by 
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where fdk is the Doppler frequency associated with transmit frequency fk, i.e. 
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This signal can be written as a length N2M space-waveform-time steering vector 
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where each length NM vector, sk is the traditional space-time steering vector for center frequency fk 
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Note that both the spatial and temporal steering vectors are defined in terms of the N frequencies of 
operation fk. Also, unlike the traditional spatial steering vector for a linear equi-spaced array, the spatial 
steering vector here is defined in terms of the position of the elements xk.  

The jammer signal has a structure similar to the target signal. Here we model Gaussian barrage noise 
jammers. Hence, the only difference between the target and jammer models is that the temporal steering 
vector is replaced by a vector of independent, complex, Gaussian random variables. The jammer signal, 
for frequency index k is modeled as  

 ( )JJJJ ϕξ kkkk abs ⊗= , (A-8)

where ξJ is the amplitude of the jammer and the temporal vector bJ is the white, complex, Gaussian 
random vector of independent random variables with zero mean and unit variance. The length N2M vector 
of jammer signal is therefore  
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Noise is modeled as a white complex Gaussian random variable for all frequencies, pulses and 
elements. 

The overall received signal, is therefore given by, 

 ( ) nssx ++= J,ϕξ vt , (A-10)

where n is complex Gaussian noise vector.  

Using the signal in Eqn.(A-10), we can now implement a space-time-waveform adaptive processing 
algorithm. The algorithm chosen here is the traditional optimal approach where the N2M elements of the 
received signal x are combined using a weight vector w. The weight vector is determined using the 
relation 

 w ൌ R‐1s, (A-11)

where s is the space-time-waveform steering vector of Eqn. (A-4) and R is the interference plus noise 
covariance matrix.  Note that in practice, this matrix must be estimated. 
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NUMERICAL EXAMPLES 

Data Generation and Implementation of Adaptive Process 

Using Eqn. (A-10) above, we can generate data corresponding to our chosen scenario.  Repeating this 
several times, e.g. (P+1) times, yields a space-time-waveform-range hypercube, organized as a N2M × (P 
+ 1) matrix. Each column of this matrix corresponds to one physical range. To evaluate the performance 
of the adaptive process, this data cube is processed in two ways: first, we implement the adaptive process 
using a sliding window to estimate a space-time-waveform interference covariance matrix.  

In our implementation, the data for the (P + 1) ranges are generated without a target, i.e. ξt = 0. Then 
a target with chosen power is injected into the middle range, p = (P/2+1). For the qth range, an 
interference covariance matrix is estimated by using a sliding window 
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where the superscript H represents the Hermitian of  a complex matrix and xp represents one of (P+1) 
snapshots of data. In general, for a reasonably accurate estimate of R, we need P > 2N2M. The adaptive 
weights are obtained using Eqn. (A-11).  Using these weights we define the modified sample matrix 
inversion (MSMI) statistic, which as the property of having CFAR in Gaussian interference, 
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This statistic is plotted as a function of range. Clearly, if the range corresponds to the one with the 
target, the output statistic should be as large as possible, while if the range does not contain a target, the 
output MSMI statistic should be close to zero. 

The second approach is to estimate an interference covariance matrix using all available data, 
however without injecting any targets, i.e. all the data is target-free 
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Averaging over these data samples yields an estimate of the interference covariance matrix. The 
weights are the obtained using Eqn. (A-11). These weights are then used to obtain the output signal-to-
jammer-ratio (SJR), assuming a unit target, as 
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Note that the jammer signal sJ
 includes the jammer amplitude. In this analysis, to illustrate jammer 

suppression, this SJR is plotted as a function of jammer angle ϕ. 

RESULTS 

Unless stated otherwise, the parameters chosen in the test scenarios are given in Table A - 1.  

Table A - 1.  Parameters for Test Scenario 

Number of elements (N) 6 Pulse Repetition Frequency (PRF) 2kHz 

Center Frequency 10GHz Jammer-to-Noise Ratio 50dB 

Frequency Offset  (if applicable) 100MHz Target Signal to Noise Ratio (SNR) 0dB 

Radar Baseline 200m Target velocity (v) 10m/s 

Pulses in CPI (M) 12 Number of range bins (P + 1) 1728 

The frequency offset given in Table A - 1 is used in the case where different elements transmit on 
different frequencies. When using the frequency offset, each transmission is separated by 100MHz.  The 
first null beam width of such an array is 0.014o. 

The first example uses equally spaced elements. The target is at broadside with a 50dB jammer at 
0.04297o. This jammer location is approximately three first-null beam widths. Figure A- 3 and Figure A- 4 
plot the MSMI statistic versus range for two cases considered here: in Figure A- 3, all six elements 
transmit at the same frequency whereas, in Figure A- 4, each element transmits orthogonal waveforms 
(waveforms separated in center frequency by 100 MHz). Both figures plot the MSMI test statistic versus 
range close to the range cell where the target was injected. As is clear from the figures, when all elements 
transmit at the same frequency, the target cannot be distinguished from the interference. Whereas, when 
each element transmits an orthogonal waveforms (different frequencies), the target is clearly visible, with 
approximately a 6dB separation between target and interference.  
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The rest of the examples present the output SJR as a function of jammer angle. In these examples, the 
target look direction is kept fixed while the jammer direction of arrival is stepped over several angles. For 
each jammer angle, data for several range cells is generated and used to estimate an interference 
covariance matrix. Using Eqn. (A-11) the adaptive weights are generated and the SJR is estimated using 
Eqn. (A-15). The SJR is plotted as a function of jammer angle. Note that the interference covariance 
matrix includes the noise covariance matrix; however, the output SJR only uses the jamming component. 
This approach is chosen to focus on the interference suppression capabilities. Clearly, the ideal output 
would be as high as possible.  

The second example, again, compares the use of the same frequency from each element with using 
multiple frequencies (orthogonal waveforms). The elements of the array are equally spaced. The jammers 
are stepped over angles spaced by 1.4× 10-3 degrees. This example uses only one pulse, i.e. M = 1. 

 
Figure A- 3.   MSMI statistic versus range.  

No frequency offsets. 

 
Figure A- 4.  MSMI statistic versus range. Using  

frequency offsets (orthogonal waveforms).
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Figure A- 5 plots the output SJR versus angle for the case where all elements transmit at the same 
frequency. The output SJR is rather high for most angles. However, at certain angles for the jammer, the 
SJR shows deep nulls as the null in direction of target. The large null at the target look direction is 
expected as the jammer and target cannot be at the same location. The deep nulls in the other directions 
are due to the grating lobes associated with equal spacing and all elements transmitting at the same 
frequency. Figure A-6 plots the SJR for the case where each element transmits at a different frequency. 
The deep null at the target is visible however clearly there is a huge improvement in grating lobes. Off-
target nulls still occur the nulls are much shallower and much further away from the target location. To 
confirm the fact that grating lobes are reduced in this case, in Figure A-6, the analysis is conducted over a 
much larger angular extent than in Figure A- 5. The resolution, however, is the same. Note that the off-
target nulls in Figure A-6 are broader than the off-target nulls in Figure A- 5, i.e., while using multiple 
frequencies helps the off-target nulls broaden. This is true due to the equal spacing between array 
elements. 

 

 
Figure A- 5.  SJR. Equal frequencies and element 

spacing. 

 

Figure A- 6.  SJR versus jammer angle. 
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 Figure A- 7.  SJR. Log spacing and the same 

frequency. 

The next example illustrates the use of unequal spacing, here close to log-spacing. The six elements are 
located at 0m, 20m, 60m, 140m, 190m and 200m. Figure A- 7 plots the output SJR versus jammer angle 
for the case where all elements transmit at the same frequency. In comparing with Figure A- 5, clearly 
the grating lobes are significantly reduced in number. However, note that there still exist grating lobes 
that are spaced further away. Figure A-8 plots the SJR for the case of using orthogonal waveforms 
(unequal frequencies). Here the grating lobes are totally eliminated and the output SJR is high, except at 
extremely close to the target look direction. We estimate the null in less than 1.4×10-3 degrees.  

EXTENSIONS 

The discussion in this section the effort, conducted in Phase I, in investigating the ability to suppress 
jamming. There are two main ways in which this effort can be extended: (i) the inclusion of range 
dependent target and jamming and (ii) the investigation into extensions of the several STAP algorithms 
for the range dependent space-time-waveform case. Another extension based on the two issues described 
here is the use of spatial warping to maintain the radar patch size, thereby retaining the homogeneity of 
the secondary data. 

  

 
Figure A- 8.  SJR. Log spacing and orthogonal 

waveforms. 
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APPENDIX B 
MULTISTATIC RADAR SIGNAL PROCESSING—

IMPROVED INTERFERENCE REJECTION, TRACKING, 
AND DISCRIMINATION 

By:  Russ Brown, Yuhong Zhang, Richard Schneible – Stiefvater Consultants 
Michael Wicks – US Air Force AFRL/RY, Robert McMillan – US Army, SMDC-RDTC-TDT 

INTRODUCTION 

In a multistatic radar (MSR) the transmit/receive aperture is divided into a number of sub-apertures 
that can be placed in various locations relative to each other.  These locations can be chosen to optimize 
the performance of the radar in terms of some specific task.  Two multistatic approaches have been 
investigated: 

• Closely spaced apertures – distributed aperture radar (DAR) 

• Widely spaced apertures 

Realizing the greater capability of MSR’s requires unique waveform and signal processing 
approaches.  A computer simulation has been developed that permits the analysis of MSR signal 
processing.  This paper presents the results of a series of experiments to validate the results of that 
simulation. 

DAR–Interference Rejection and Tracking 

Multistatic radars, in a distributed aperture mode, can potentially provide significantly improved 
target tracking because of the large baseline between the various apertures.  The resulting angular 
resolution can be orders of magnitude better than the resolution of a monolithic system (single large 
radar).  This capability comes with a cost because of the resulting grating lobes (multistatics with evenly 
spaced apertures) or high sidelobes (multistatics with randomly spaced apertures).    

The same angular resolution can provide improved electronic protection (EP) capability.  For a single 
aperture radar, jammers located near to targets of interest cannot be nulled without impacting the antenna 
mainbeam and therefore the target returns.  But the multistatic system, with its very long baseline, receive 
aperture gain on the target can be maintained while a deep null is placed in the direction of the jammer. 
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Imaging and Discrimination 

Two dimensional images of moving targets can be obtained through ISAR processing.  The range and 
cross-range dimensions of radars viewing the target from widely separated angles will achieve target-
centered resolution in different dimensions.  For example, two radars independently viewing an object in 
its plane of motion (linear, rotating) with ninety degrees of separation will provide complementary 
information:  the range resolution of one radar will be the cross-range resolution of the other and vice 
versa.  Coherent fusion processing of the data from these two radars can provide improved resolution.  
Fusion of the data from the bistatic path can further improve the resolution. Also, two or more radars 
viewing an object from different angles not in its plane of motion can provide three-dimension images.   
The overall 3-D resolution of the object will be a function of the range and cross-range resolution of the 
individual radars and their angle separation as viewed from the target location.   

MULTISTATIC INTERFERENCE REJECTION 

Interference can be rejected, if and only if, the target and interference are resolvable in the 
dimensions/domains in which the processing is being performed.   

Continuously radiating point sources (jamming) can be rejected in the spatial dimension if the target 
and EMI are separated in angle and cannot be rejected when that separation is sufficiently small.  In 
general, spatially continuous interference (i.e., exo-atmospheric volume clutter) cannot be adequately 
suppressed by conventional non-adaptive means, i.e. by processing separately in either the spatial or 
Doppler domains.  These techniques fail because they do not handle the space-time coupling inherent in 
the clutter signal return. Consequently leakage from one domain to the other limits the amount of 
suppression that can be achieved by operating in these domains separately.   

For conventional single aperture radars the cross-range resolution may be so large that the target 
effectively falls within the main beam antenna spatial response.  In this case, conventional STAP will not 
be able to adequately reject the interference.  However, assuming a distributed aperture radar with high 
range and cross range resolution, improvements in target-clutter separation is achievable along with 
improvements in interference suppression. Such architectures generally lead to space-time grating lobes 
that can degrade performance. Using simultaneous orthogonal waveforms, however, to form narrow 
spatial main beams, it is possible to develop space/time/waveform adaptive processing to suppress grating 
lobes,  reject the clutter, and detect the target in jamming, clutter and joint jamming/clutter environments. 

We have demonstrated the potential for orthogonal waveforms in DAR architectures in achieving 
improved resolution, interference suppression, and target detection and tracking performance while 
simultaneously controlling space-frequency grating lobes. System operation involves radiating orthogonal 
waveforms from multiple sub-apertures of the DAR and then receiving and processing these waveforms 
at each sub-aperture.  The use of orthogonal waveforms provides an additional dimension (waveform) 
beyond the standard space-time dimensions typically used in conventional STAP for adaptive suppression 
of the interference background.   
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Adaptive processing using frequency diversity was simulated and demonstrated. The interference was 
first modeled as a single point EMI source. The signal theory was then generalized to handle the more 
difficult problem involving distributed volumetric clutter.  

EMI Rejection – Simulation and Analysis 

Several key considerations for systems employing advanced adaptive processing techniques using 
waveform diversity were considered. A distributed aperture system with N sub-apertures was assumed. 
Each sub-aperture is assumed to transmit a different (orthogonal) waveform. Each sub-aperture then 
receives target returns from each of the transmitted waveforms, resulting in a total of N × N returned 
samples for each radar range gate. In this situation, the classical space-time data cube is replaced by a data 
hypercube where the additional dimension is ‘waveform’.  In this effort, the orthogonal waveforms were 
chosen to be relatively narrowband signals offset in center frequency.  For such a system, we note: 

• Adaptive space-time-waveform processing: Traditionally, adaptive processing has focused on the 
spatial and temporal dimensions leading to space-time adaptive processing.  The spatial steering vector 
is related to the spatial look direction while the temporal steering vector is determined by the temporal 
look or Doppler frequency.  In this case, the space dimension is augmented by the addition of the 
waveform domain. The space/waveform steering vector is determined uniquely by the look angle with 
a different spatial steering vector for each transmit frequency. 

• Sub-aperture waveform (frequency) separation: Distribution of the sub-apertures and separation of the 
transmit frequencies introduces two new degrees of freedom to the radar designer: namely the spacing 
between the antenna sub-apertures and spacing between frequencies. Generally sub-apertures and/or 
sub-bands are separated by multiple wavelengths. Consequently, equally spaced elements/sub-
apertures with equally spaced frequencies can lead to grating lobes that can reduce the effectiveness of 
the adaptive process. Analysis has shown that appropriate distribution of the elements in the spatial 
and temporal (frequency) domains along with weighting can eliminate, or at least mitigate grating 
lobes in their respective dimensions and reduce the amount of adaptive processing required to suppress 
interference.  

• Targets/interference are not necessarily in the far field: By standard definition, the far field region is 
determined by three conditions: R > λ, R > D and R > ! where R is the radial distance, D is the total 

aperture baseline and λ is the wavelength of the frequency of operation.  From a physical point of 
view, the far field is the region where the spatial steering vector is effectively independent of the radial 
distance. To illustrate, we assume the distance to the target, D = 200m and center frequency is 10GHz, 
i.e., the far field begins at approximately 1500km. The target and any competing interference are 
therefore not necessarily in the far field.  This may impact the adaptive processing approach.  As in 
bistatic STAP operation, a range dependent interference ridge results, and, if no additional processing 
is assumed, the size of the secondary data available to estimate the covariance matrix is reduced.  This 
in turn may limit STAP performance. Another concept borrowed from bistatic radar applies a spatial 
un-warping to the data to remove the range dependency and allow a larger secondary data set size to be 
used. 
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Based on these considerations a high-fidelity multistatic radar simulation was developed and the 
performance of various geometries predicted.  

Jammer Rejection - Experiment 

A rooftop experiment was accomplished at the AFRL/Rome Research Site (AFRL/RRS) to verify the 
multistatic radar simulation.  Five sub-apertures were located in roughly linear orientation (see Figure B - 
1).  The total separation was about 200 feet.  A moving target and a jammer were located about 6000 feet 
away (see Figure B - 2).  The target was driven through the mainbeams of the five radars. 

The suite of 5 transmitters 
collectively radiated 5 diverse 
frequencies that were recorded on 
each receiver channel. Activation of 
the jammers produced a 30dB 
jammer/noise ratio and completely 
masked out the target vehicle 
return. After multi-channel, multi-
waveform processing, jammer 
cancellation occurred along with 
target detection. 

Figure B - 3 presents a flick run of the jammer 
scene (left side) alongside the cancelled jammer 
scene (right side). The frame rate is 2 seconds 
with each of the range Doppler frame plots 
recorded over a 256 millisecond interval at a 
1kilohertz rate. Note the appearance and fading of 
the target as it moves through the lobe structure of 
the sub-aperture antenna. The target is quite 
visible when it is located at the 10 through 16 
second positions. 

 
Figure B - 1.  Distributed Aperture Radar (DAR) 

 
Figure B - 2.  DAR Test Geometry 

Target

Jammer Rejection Experiment

• 5 Transmitters (Orthogonal WF’s)
• 5 Receivers (All WF’s)
• 76.2m separation
• Making 25 radars

‒ (5 monostatic & 20 bistatic)
• Rejected jammer near (<9m ) target
• Test range ~ 1830m
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Figure B - 3.  Flick Run of Jammer (left) and Cancelled Jammer Range/Doppler Scene 

t = 4 seconds

t = 8 seconds

t = 6 seconds

t = 10 seconds

Target
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Figure B - 3.  Flick Run of Jammer (left) and Cancelled Jammer Range/Doppler Scene.  

t = 12 seconds

t = 14 seconds

t = 16 seconds

t = 18 seconds
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Data was collected and adaptively processed as 
the target vehicle traveled along a course that 
brought it past the jammer. Figure B - 4 shows the 
post processing signal-to-noise ratio (SNR) as the 
target traversed from -10 to +10 milliradians with 
respect to the jammer direction. Note that the SNR 
decreases significantly when the target and jammer 
are in the same direction. Had the sampling interval 
been smaller than 0.3 milliradians, the null may 
have been deeper. 

Exo-Atmospheric Volume Clutter – 
Simulation  

Our simulation was extended to model exo-
atmospheric clutter in addition to jamming.  The 
simulation generates an individual scatterer model that keeps track of particle position and velocity as a 
function of time. These scatterers are range gated and parsed out of the scatterer cloud. Ranges are then 
calculated for a set of spatially diverse sub-apertures each transmitting an orthogonal waveform relative to 
each other. Each sub-aperture however receives each transmitted waveform. Therefore assuming Na sub-

apertures there are Na
 2 different monostatic and 

bistatic radar combinations (Na monostatic radars 
and Na

 2–Na bistatic radars). The range and 
frequency information are then used to calculate 
phase difference values for each of the Na

 2 radars.  

Figure B - 5 and Figure B - 6 represent initial 
scatterer velocities that are normally distributed. 
The result of this scenario is a spherical cloud of 
dipole radiators.  

  

 
Figure B - 4.  Post Cancellation SNR of Target 

Direction with respect to Jammer 

 
Figure B - 5.  Individual Scatterer Positions Starting 
from Initial Velocities that Are Normally Distributed 

 
Figure B - 6.  Quiver Plot of Range Gated Scatterers 

and their Velocities 
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The next plot, Figure B - 7, represents the range gated scatterers that were parsed out from a cloud of 
scatters that contains over 4 million individual scatterers (that is, those scatterers in the same range bin as 
the target of interest). There are approximately 25 hundred individuals in the parsed set. The parsed data 
is then used to calculate the phase differences between the scatterer returns at each aperture relative to 
each other aperture. The result is represented by a Na×Na matrix.  

MULTISTATIC IMAGING 

Analysis and Simulation 

The resolution of a SAR or ISAR image is a 
function of how much of the Fourier space the 
measurements sample.  The bandwidth of the ISAR 
measurement transforms to the radius in two-
dimensional Fourier space.  Bistatic measurements 
are more complex with the transform of the 
frequency being a function of that bandwidth and of 
the bistatic angle.  Figure B - 8 shows the Fourier 
sampling for three sensors (two radars operating 
both monostatically and bistatically).  The aqua and 
blue sectors are the Fourier sampling for the 
monostatic operation of these two radars.  The green sector represents the bistatic sampling.  For this 
geometry (ISAR images as the target flies through the field of view of two radars separated by 90o,  with 
50% bandwidth) the combined multistatic image would have a resolution 2.5 times better than a single 
monostatic image. 

Rooftop Experiment 

This experiment was also performed at the 
AFRL/RRS in Rome NY. The site layout is 
shown in Figure B-9, with the radars shown on 
the right and the target area (Jammer site) shown 
on the left of the figure. The radar path shown in 
yellow indicates the target aspect from the first 
sub-aperture, and the path shown in violet 
indicates the target aspect from second sub-
aperture. 

  

 
Figure B - 7.  Range Gated Scatterers Parsed out of a 

Cloud of 4 Million Individual Scatterers. 

 
Figure B - 8.  Multistatic Imaging 
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Each radar was equipped with programmable waveform generators, frequency conversion equipment, 
timing and coherent local oscillators based on GPS receivers, as well as data recording servers with 
storage, processing, and display capability. A vehicle with two dominant scatterers was driven along the 
road in the target area. The objective of the experiment was to demonstrate an improvement in radar 
imaging capability by using data from both radars compared to monostatic data from a single radar.  
Imaging results are also presented in Figure B-9. 

 

Figure B - 9.  Coherent Fusion Imaging Experiment 

Ongoing Space Object Imaging Experiment 
An experiment is underway to further validate the multistatic imaging simulation (Figure B - 10).  

Two widely separated radars will track and image a space object (RadarSat or similar). 
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Figure B - 10.   Planned Phase II: Fusion Experiment, Multistatic Space Object Imaging 

SUMMARY 

Compared to conventional radars, multistatic radars have the potential to provide significantly 
improved interference-rejection, tracking and discrimination performance in severe EMI and clutter 
environments.   

They can potentially provide significantly improved target tracking accuracy because of the large 
baseline between the various apertures.  The resulting angular resolution can be orders of magnitude 
better than the resolution of a monolithic system (single large radar).  The same angular resolution can 
provide improved interference rejection.  For example, a DAR system with apertures distributed over a 
couple of kilometers can detect a target at 2000 kilometers in the presence of an interfering source that is 
just 100 meters away.   

Two dimensional images of moving targets can be obtained through ISAR processing.  Coherent 
fusion processing of the data from multiple radars can provide improved resolution.  Also, two or more 
radars viewing an object from different angles not in its plane of motion can provide three-dimension 
images.  

(Rome, NY)(Hanscom AFB, MA)
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APPENDIX C 
TOMOGRAPHY 

TOMOGRAPHY 

Typically, information concerning ground and air targets is obtained via monostatic radar.  Increased 
information is often equated with increased bandwidth and dwell time.  However, geometric diversity 
obtained through multistatic radar operation also affords the user the opportunity to obtain additional 
information concerning targets.  With the appropriate signal processing, this translates directly into 
increased probability of detection and reduced probability of false alarm.  In the extreme case, only 
narrow frequency bands of operation may be available.  With narrowband, the need for geometric 
diversity becomes imperative.  In addition, geometric diversity further improves target position accuracy 
and image resolution, which may otherwise remain unavailable. 

In classical radar, frequency diversity offers one method to obtain additional information about threat 
targets.  With the most basic form of frequency diversity, namely increased bandwidth, high range 
resolution is afforded to the user.  With high range resolution comes increased target-to-clutter ratio 
(assuming the target is not over-resolved), while target-to-noise is unavoidably reduced.  Geometric 
diversity also offers the potential for increased resolution, and is a dual to frequency diversity (increased 
bandwidth) in classical monostatic radar.  The extreme case of 360° of geometric diversity offers high 
resolution, even under the narrowband assumption.  Operating with narrowband radar signals permits a 
substantial reduction in thermal noise power as well, further improving overall detection performance. 

RF tomography leverages the spatial or geometric diversity of a multistatic radar to deliver high 
resolution MTI.  RF tomography provides the resolution of conventional wideband radar, while using 
narrowband signals.  These narrowband signals are particularly attractive with consideration to the 
ongoing erosion of spectrum.  In RF tomography, some sites may have collocated transmitters and 
receivers, while other sites are receive only.  By locating transmitters and receivers in a uniform manner, 
beneficial effects of geometric diversity are enhanced.  Radar data is easily mapped onto a polar grid in 
the spatial Fourier domain.  The location of the transmitter(s), receiver(s), and frequency span of the 
signal (bandwidth), determines the mapping to Fourier space via the vector. 

 ܸ ൌ 4 · ߨ · ݂ ܿ⁄ · ܤሺݏܿ 2⁄ ሻ · (C-1)

where f is the frequency, c, is the speed of light, B is the bistatic angle, and ݑis the bistatic bisector unit 
vector [C-1]. 
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Image formation is easily accomplished via Matched Filter Processing (MFP) in the Fourier domain, 
which has its origin in SAR image reconstruction, and is considered a spatial frequency domain image 
reconstruction technique.  This matched filter replicates the signal's expected delay and Doppler, via a 
generalized 'steering' vector used for correlation processing.  The extension to moving target detection is 
not complicated.  For each pixel, matched filters are applied for a wide range of hypothesized target 
velocities.  In classical adaptive processing, a Doppler steering vector is used.  In MFP, the Doppler 
steering vector is generalized to a velocity steering vector.  The receive signal is the superposition of time 
delayed and Doppler shifted target signals plus noise.  Each target has a velocity vector (speed and 
heading) that presents a unique Doppler shift in each transmit/receive pair. 

For MFP, a filter is computed for each scene pixel, as a function of time delay, and target velocity.  
To cover all pixels and target velocities, a bank of filters are employed.  The MFP output is computed as a 
conjugate inner product of the received signals and the matched filter over all transmit and receiver pairs, 
in frequency and space.  The received signal forms a data cube.  The matched filter, for a particular scene 
pixel and target velocity, is also three dimensional.  For multiple operating frequencies, additional cubes 
would be formed.  A single MFP output (pixel, velocity) is the inner product of these cubes.  The process 
is repeated for all pixels and hypothesized target velocities.  Threshold processing is then performed on 
each pixel. 

RF tomography shows promise for providing high resolution surveillance of moving targets using 
geometrically diverse narrowband transmitters and receivers.  Building penetration is also feasible.  The 
narrowband signals provide relief when faced with the consequence of ongoing spectrum erosion.  We 
have begun to probe fundamental issues of imaging quality with diversity in frequency and space. 

 

  

 
Figure C -  1.  Six Non-Specular 

Tomographic Test Targets 
 

Figure C -  2.  Geometry Of The Tomography 
Experiment 
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EXPERIMENTAL RESULTS 

Both wideband (1GHz of signal bandwidth) and 
narrowband (<1kHz of signal bandwidth) 
experimental measurements at X-Band were 
conducted in an indoor test facility in AFRL in 
Rome NY [C-2].  Six cylindrical copper test targets 
were arranged within a 1 m2 test zone as illustrated 
in Figure C-1 above.  The geometry of the 
tomography experiments is presented in Figure C-2.  
The test targets are located in a central region 
surrounded by the measurement apparatus.  Due to 
the static nature of the tests, sequential 
measurements using one movable receiver were conducted.  All six test targets are clearly visible in the 
wideband image presented in Figure C-3.  Here, an X-Band signal with 1 GHz bandwidth was employed.  
In Figure C-4, the signal bandwidth is reduced to 1 KHz.  Three of the test targets are clearly visible, 
while three low SNR test targets remain barely detectable.  The green circles indicate scene calibration 
data.  These measurements, collected sequentially using 60 transmitter locations and 480 receiver 

locations, clearly illustrate the imaging potential of 
narrowband tomographic radar using a single tone.  
In Figure C - 5, adaptive processing via the sample 

matrix inversion algorithm permits weak targets to be 
extracted from clutter and noise.  Qualitative analysis 
indicates an improvement factor of 11 dB is achieved.  In the 
next section, a multi-tone technique is used to reduce the 
number of transmitter and receiver sites to just three. 

 

 

 

 
Figure C - 3.  Wideband Image of Six Test Targets 

 
Figure C -  4.  Ultra Narrowband Image Of Six Test 

Targets 

 
Figure C - 5.  Adaptive Processing Of Ultra 

Narrow Band Image 

Targets

Low SNR
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A NEW CONCEPT:  THE VIRTUAL TOMOGRAPHIC ARRAY 

A tomographic system can be modeled as a spatial filter, and the factors that affect the spatial 
response of the system are the RF frequency and the position of the transmitters and receivers.  Each RF 
measurement has a 1-to-1 mapping from the spatial domain to the spatial frequency domain, and the 
geometry of the tomographic system determines the shape of the spatial frequency response.  SNR is 

influenced by the number of measurements used to form 
an image.  The system designer of a distributed sensor for 
RF tomography is faced with the competing need of 
desiring a large number of transmit/receive nodes to 
provide favorable spatial frequency response and SNR 
and the practicality of using fewer numbers of nodes.  
SNR may also be improved through higher radiated 
power.  Additionally, if the nodes are fixed in position 
the only method of altering the spatial sampling, and 
therefore the impulse response, is the constraining 
limitation of varying the RF frequency.  The concept of a 
Virtual Tomographic Array (VTA) provides a solution to 
these issues.  

Consider an equilateral triangle with active sources located at the three vertices as illustrated in Figure 
C-2.  If one radiates identical tones of equal amplitude from each of the vertices, then the effective phase 
center is located at the centroid of the equilateral triangle.  If one of the elements is amplitude weighted 
by zero, then the phase center of the array is located along the chord connecting the remaining two 
vertices.  This phase center is located at the bisector of the chord if the two elements radiate equal 
amplitude signals.  If the amplitudes are unequal, the phase shifts along the chord towards the stronger 
amplitude source away from the weaker amplitude source (see Figure C - 6). 

 

 

 

 
Figure C - 6.  Virtual Array Formed From 

Three Radiators Using Nine Discrete 
Frequencies 

 
Figure C - 7.  Fourier Sampling Associated With 

Figure C - 6 And  

 

 

Figure C - 8.  Effective Phase Center Formed 
From Two Elements Operating At The Same 

Frequency, With The Amplitude Of 2 Greater 
Than 3. 
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If the two radiating elements are spaced many wavelengths apart, then the array forms an 
interferometric pattern with the number of grating lobes equal to the electrical distance between the 
elements measured in half wavelengths.  Modulating the phase of one element relative to the other causes 
a shift in the interferometric pattern.  The use of multiple tones, each uniquely associated with a phase 
center, allows the existence of potentially large numbers of phase center. Figure C – 8 shows a virtual 
array comprised of three transmit/receive elements and nine effective phase centers.  The three elements 
transmit nine discrete frequencies with the weights shown in Table C - 1.  Three additional frequencies 
are required to incorporate the vertices of the equilateral triangle into the active sensor geometry.  The 
support in the spatial Fourier domain, based on (C-1) is shown in Figure C - 7. 

Table C - 1 .  Frequency weights for the radiators in Figure C - 6 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 

1 .75 .5 .25 .75 .5 .25 0 0 0 

2 .25 .5 .75 0 0 0 .25 .5 .75 

3 0 0 0 .25 .5 .75 .75 .5 .25 

As the number of phase centers (and frequencies) are 
increased, the support in the Fourier domain dramatically 
increases.  The array shown in Figure C - 9 has a similar 
geometry with three radiators, however the number of 
frequencies used is increased such that there are 52 
effective phase centers per side.  The coverage in 
thespatial Fourier domain is apparent in Figure C – 10 
and the number of sample points is approximately equal 
to the square of the number of effective phase centers.  
This has a very favorable impact on the system impulse 
response and SNR. 

In the previous section on experimental results, an ultra 
narrow band signal was radiated in a tomographic sensor 
using 60 transmit/receive locations and 420 receive only 
locations to image complex targets in the field of view 
central to the tomographic sensor.  However with 480 
spatial degrees of freedom, a tomographic sensor would 
be impractical for fielding except in urban centers or areas  

  

 
Figure C - 9.  A Virtual Array Formed From 

Three Radiators And 153 Discrete 
Frequencies. 

 
Figure C - 10.  Fourier Sampling Associated 

With Figure C - 9. 
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of high military value.  Using 480 ultra narrow band tones, and the three element sparse array defined 
above, we can create a number of phase centers which result in a virtual tomographic array.  The Fourier 
sampling of the resulting virtual array has excellent support in the Fourier domain, and this is essential for 
detection and discrimination because of the impact on image quality.  Reciprocity permits the three 
element virtual tomographic array concept to be applied on receive as well.  With as few as three 
elements, a multi-tome ultra-narrow band virtual tomographic array can replicate the results achieved 
with an array containing 60 transmit/receive and 420 receive only elements. 
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APPENDIX D 
SENSOR MANAGER SIMULATION (SMS) SYSTEM 

SMS OVERVIEW 

The SMS System was designed to integrate various simulation components and sensor management 
algorithms to enable performance evaluation of multiple sensor resource managers.  The simulation 
architecture and defined interfaces between each module allow for switching of system components for 
evaluation purposes.  A high-level overview of the SMS System can be seen below[D-1]. 

 
     Figure D - 1.  SMS Architecture 

This architecture provides a closed-loop system which allows sensor manager algorithms, along with 
operator input, to dynamically task multiple sensors to meet mission goals and objectives.  The module 
operation is as follows.  The operator can interact with the system loop when desired by optionally 
controlling mission objectives, submitting operator tasks, and nominating targets as threats.  The Task 
Generator is responsible for creating prioritized job requests based on situational assessment, operator 
input, and mission goals and objectives.  The Scheduler orders tasks in a dynamically modifiable time 
window and submits them to the corresponding sensor.  The Platform and Sensors are responsible for 
servicing the requests from the scheduler and producing detections based on truth data.  The Tracker 
produces track reports from the detections received and passes them on to the Task Generator, completing 
the System Loop. 
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SMS Components Overview 

The SMS system has several system components available for each module.  These components can 
be set up in multiple configurations for the desired simulation.  The entire simulation architecture along 
with all available components and dataflow can be seen below. 

 
Figure D - 2.  SMS Components 

The simulation architecture allows the user to insert various sensor management algorithms and 
functions into corresponding modules. The system components will be discussed briefly below, with 
lower level descriptions of developed components to follow in later portions of the document. 

Operator Tools 

The SMS Visualizer provides the operator with visual feedback of what is currently occurring in the 
simulation.  It also provides for user interaction by allowing them to change the prioritization scheme and 
nominate threats. 

The Scheduler Interface is part of the SMS Scheduler package.  It displays the current Scheduler 
status along with all tasks that have been submitted and their status, and allows the operator to submit 
tasks to the system as desired. 
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The Prioritization Editor allows the operator to modify the current prioritization scheme used by the 
sensor manager.  The operator has the option of filling in individual values for the available mode 
priorities or selecting from pre-define schemes. 

The Threat Nominator provides the operator with the ability to modify the threat levels of existing 
tracks.  The operator can click on a track through the Visualizer, causing this tool window to appear.  
Upon selection of a threat level, the sensor manager will be notified of the change. 

Task Generator 

The Task Generator maps situational needs to sensor tasks based on the requirements defined by 
AFRL.  The current requirements are based on the AFRL MIST Notional System document.  The Task 
Generator consists of the Threat Assessment and Mission Manager modules.  When run together they 
will provide Wide Area Surveillance (WAS), Wide Area Ground Surveillance (WAGS), and Narrow 
Area Ground Surveillance (NAGS), as well as a limited set of threat handling capabilities.  If the Mission 
Manager is run alone without the Threat Assessment module (and thus not receiving system feedback), it 
will act as the Baseline Generator only submitting WAS tasks. 

Scheduler 

The SMS Scheduler architecture contains well-defined interfaces for incorporating various 
scheduling algorithms into the system. 

The OGUPSA is based on the algorithm developed by McIntyre and Hintz in “Sensor Measurement 
Scheduling: An Enhanced Dynamic, Preemptive Algorithm.”[D-2]  It is a rules-based algorithm that 
orders the incoming tasks and submits them to the corresponding sensors. 

The Pass-through algorithm was developed to allow sensor manager algorithms that contain their 
own integrated scheduling to simply pass their tasks on to the sensors.  It performs the necessary 
interpretation/encoding of sensor-specific tasks and submits them to the corresponding sensors in the 
required format.  For example, the MITRE algorithm has an integrated scheduler and utilizes this 
component. 

Sensors 

UAV Simulator (UAVSim) is the main sensor simulation tool.  It models the UHF, X-Band, and IFF 
sensors with all required modes, including meta-models for SAR, HRR and Jet Engine Modulation 
(JEM). 

This MIST ESM Simulation Tool receives electromagnetic emissions and produces ESM detections 
based on an algorithm developed by Lockheed Martin for AFRL. 
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Tracker 

The Parametric Tracker is a tunable tracker that is configurable to the desired performance level.  It 
accepts detection streams and produces realistic track streams with selectable association and track 
accuracy performance. 

Other Tools 

Truth data is broadcast using the Vehicle STA/DYN to DIS Broadcaster tool.  It broadcasts target 
positions and emissions to be read by the sensor simulation tools and Visualizer.  Note:  STA/DYN are 
from VSim (the truth generator) – STA is a static file, and DYN is a dynamic file, both of which define 
the truth and their trajectories.  DIS is Distributed Interactive Simulation and is the data format/definitions 
for the truth entities.  DIS Protocol Distribution Units (commonly referred to as PDUs) are the 
information that is sent around the simulation for truth targets. 

The SMS Time-slice Executive synchronizes simulation operation and time.  It serially distributes 
“run-to” time slices to the system components, coordinating their operation and allowing each component 
the necessary time to complete operation of a given slice. 

The ARFL Tracking Measures of Performance (MOPS) tool is available for post-processing of 
data for tracking performance evaluation. 

SMS as Knowledge-Based Controller 

The SMS is a knowledge-based (KB) controller and is a multi-threaded application that consists of 
Situational Assessment, Mission Management, and Task Scheduling.  Its main objective is to map 
situational needs into intelligently-ordered sensor tasks.  The controller utilizes situational awareness, 
system feedback, AFRL-defined rules, and needs identification to adapt its functionality to meet mission 
goals and objectives.  An overview of its operation can be seen in Figure D - 3, with detailed descriptions 
to follow. 
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Figure D - 3.  SMS KB Controller Operation 

The threat handling processing begins by receiving track reports from a global tracker.  Mission-
specific calculations are performed on the track reports to extract threat data.  Currently available are 
calculations for Complex Event Processing (CEP) radius, distance and time to a specified circular region 
(ex. defended area) based on heading and closest-point-of-attack, and distance and time to a specified 
boundary (ex. Forward Edge of the Battle Area (FEBA)) based on heading and closest-point-of-attack.  
The configurable calculations are stored with the track report data and initial high-level thresholding is 
performed to eliminate definite non-threats (ex. out of area).  This data is stored in a linked list of track 
records.  New records are formed for first-time targets and records are updated for existing monitored 
targets.  The main threat-handling loop iterates over this list of target records to determine if and how it 
should handle the targets.  It begins by updating target data and calculating a threat level based on 
mission-specific criteria, e.g. time-to-go to a FEBA.  If the threat level is above a configurable threshold 
then the target is considered a threat that potentially requires action.  Based on the target characteristics 
and threat-handling history, mode determination logic assigns a sensor mode to satisfy the current target 
needs.  This present logic has evolved through several iterations based on evolving requirements and new 
modes available to the system.  Figure D - 4 displays the current mode handling logic that has been 
developed based on the current MIST Notional System rules/requirements and sensor modes available. 
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Figure D - 4.  SMS Mode Determination Logic Based On MIST National Systems (MNS) Requirements 

Figure D - 4 displays how the threat handling logic will assign modes based on the various stimuli that 
can be present in the simulation system.  A list of the available sensor modes is displayed on the right.  
For an example, the Airborne Track handling functions as follows.  UHF Low Accuracy Track (U3) will 
be used to handle airborne targets until they reach a configurable distance threshold to the FEBA or an 
Area of Interest (AOI, ex. Defended Asset).  Once inside this range, the logic looks at the previous mode 
that handled this target.  If the target has not yet been handled, then U3 will be used.  Upon the next target 
evaluation, if U3 was successful in tracking the target then X-band Acquisition will be used, if not then 
U3 will again be attempted.  If the Acquisition mode is successful in acquiring the target then X-band 
High Accuracy Track (X1) will be used to maintain track on the target.  Once the track is maintained by 
the X-band subsystem, the target is evaluated to see if it is inside the configurable weapons handoff 
distance (ex. in range of a blue attack fighter).  If it is not in weapons range, classification opportunities 
are evaluated based on the current aspect angle of the target and its classification status.  The SRM 
evaluates the benefits of using HRR, 2-D Imaging, and JEM modes to classify the target.  It can choose to 
submit all or none of the modes as desired.  Once the target is inside the weapon’s range, the X-band 
Handoff to Fighter (X4) mode is used until the target is intercepted.  This developed mode logic will be 
updated as necessary as MNS requirements evolve.  After a mode has been selected, the threat handling 
logic will determine if an update is necessary.  This is based on the target characteristics (e.g. velocity, 
range), determined target type (e.g. attack fighter), and the time since the last threat-handling was 
performed on the target.  Target type-specific curves consisting of target range versus update time are 
available for update time lookups.  If the update time is satisfied then radar beam parameters are 
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generated for radar service requests (Risers).  The parameters can be for single dwell bearing referenced 
tasks (azimuth angle, elevation angle, near range, far range, dwell duration, etc.) or for GRCA 
(coordinates, duration, etc.).  After the beam parameters have been calculated, a priority is assigned to the 
task.  The priority is calculated from an adaptable priority scheme (operator and/or configuration 
modifiable), target type, target handling history, threat level, and mission objectives.  The priority can 
shrink or grow over time depending on how well the target has been handled.  Following this, a radar 
service request is generated with the parameters necessary to task the desired sensor.  Feedback is 
received from the scheduling portion of the controller 
informing the threat handler whether the task was 
successfully completed or not completed, which 
influences future threat handling of the target.  A 
human operator has the ability to influence and adapt 
the threat handling process as desired.  They may 
adjust target threat levels and/or modify the priority 
scheme through the simulation operator interfaces at 
any time during the simulation.  The threat handling 
logic reads the operator requests and modifies the 
applicable objects as necessary. 

The surveillance processing is responsible for 
performing WAS over specified ground and air regions 
at configurable update rates and priorities.  Details of 
its major operations are shown in Figure D - 5 

The surveillance processing is divided into two 
main areas, AMTI WAS and WAGS / NAGS.  The 
AMTI WAS consists of partitioning the airspace into 
configurable low priority, high priority, and ballistic 
missile defense volumes.  Three-dimensional 
rectangles are generated based on the configuration file 
inputs, and at each situational assessment, the 
surveillance processing determines which beam 
positions fall over which regions.  If it is determined that the beam position requires an update then a 
radar task is generated based on the region/beam position history, required update time for the region, 
priority scheme, platform location, sensor abilities, and mission objectives.  The WAGS/NAGS consists 
of partitioning the GRCA into a configurable grid with low and high priority regions.  The surveillance 
processing evaluates each section of the grid at each situational assessment and determines which areas 
require updating.  The radar tasks generated to satisfy the updates are computed based on the grid history, 
grid section classification, required update time, priority scheme, platform location, sensor abilities, and 
mission objectives.  As in the threat handling processing, the operator can modify the priority scheme as 
desired. 

  

 
Figure D - 5.  Surveillance Processing 
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All tasks generated by the threat handling and surveillance processing are monitored by the task 
screener.  Its purpose is to eliminate redundant tasks.  For example, if the threat handling has submitted a 
task for an update of an airborne target that coincides with a surveillance update of a beam position, only 
the higher priority task will be passed along if it can satisfy both needs. 

The scheduling portion of the controller is responsible for ordering radar tasks in dynamically 
modifiable time windows.  It is currently based on a modified version of the OGUPSA [D-2].  The 
simulation allows various scheduling algorithms to be used, OGUPSA is the one currently being used.  A 
close-up of the scheduling processing is shown in Figure D - 6. 

 

  

 
Figure D - 6.  Scheduling Processing 



 

86 

 

The scheduling processing begins by generating a table consisting of the modes assigned to each 
sensor and initializing sensor timeline queues.  As tasks arrive from the threat handling and surveillance 
portions of the controller, it assigns them an Urgency Index (UI).  UI is a measure of priority with a tie-
breaker for completion time.  Tasks with the highest UI are moved into the Scheduler Queue.  The task 
with the highest UI in the Scheduler Queue is moved into the appropriate sensor’s Active Queue as 
determined by OGUPSA.  The algorithm allows for prioritized preemption, removing interruptible tasks 
from a sensor’s Active Queue if it is necessary for a higher priority task to be able to be completed.  If a 
task cannot be scheduled to meet a deadline, it is rejected and notification is passed back to the 
appropriate portion of the controller.  Upon successful completion of the tasks, tasks are removed from 
their assigned Active Queues and notification is passed back to the appropriate portion of the controller. 

This is a high-level overview of the Knowledge-Based Controller operation.  More details are 
available as desired.  The controller logic will continue to evolve with evolving MNS requirements and as 
new sensors and modes are incorporated into the system. 
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APPENDIX E 
KNOWLEDGE-AIDED CFAR 

BACKGROUND 

The classical approach to radar signal processing was developed for target detection by a ground-
based radar looking high above near-range clutter.  Interference is suppressed by the use of canceller-
based filters such as MTI, assuming pulse to pulse invariance of the ground clutter.  Additionally, 
Doppler processing is employed to further suppress clutter returns and improve SNR.  Fast Fourier 
Transform (FFT) based filtering provides for excellent results.  Typically, the output of the zero Doppler 
filter is ignored.  The largest source of interference is the return from near-in ground clutter, within the 
first few miles of the radar.  At the long detection ranges of interest, ground clutter is almost non-existent 
and the only limitation to detection is thermal noise, generally accepted to behave as a complex Gaussian 
random vector.  The output of the MTI canceller and/or Doppler filter is processed most appropriately 
using Cell Averaging-CFAR (CA-CFAR) [E-1]. 

Now consider modern long range airborne surveillance radars operating in a complicated interference 
environment.  The steep grazing angles associated with down looking radar may produce clutter returns of 
far greater magnitude than in ground based systems.  As such, clutter backscatter often mask returns from 
targets flying above these regions.  Also, clutter statistics change dramatically as the platform moves.  For 
example, within one scan, we may have to content with clutter returns ranging from calm sea which we 
observe to behave as a Rayleigh distributed random vector, while at other locations within the 
surveillance volume we may encounter clutter returns from a land sea interface.  Since terrain clutter 
backscatter often behaves as a K-distributed random vector, we ultimately must perform detection 
processing along a clutter edge where the statistics vary unpredictably.  Clearly, the classical CA-CFAR 
detection used in ground based radar is not adequate.  Further complicating this problem are spectrally 
spread sidelobe clutter returns which broaden the Doppler spectrum occupied by clutter, making AMTI 
less effective.  Also, FFT-based Doppler filtering is suboptimum because the clutter returns are no longer 
confined to the zero Hertz filter.  Platform motion and sidelobe returns broaden the clutter spectrum, 
spreading clutter energy into adjacent Doppler bins.  This further complicates detection processing.  It is 
in situations such as this that the use of a single combination of filtering and CFAR algorithms will 
produce excessive false alarms, because it cannot be designed to be optimum for each and every scenario 
to which it must be applied.  In light of the many constraints imposed upon radar systems, improvements 
in detection performance are most likely to be a result of advanced processing techniques able to 
recognize the existence of these situations and apply appropriate processing while effectively maintaining 
a constant false alarm rate and an adequate detection probability. 
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Description and Operation of the ES-CFAR Processing 

The ES-CFAR processor presented here is based upon the combined use of algorithmic and heuristic 
(artificial intelligence) techniques designed to assess the characteristics of the environment in order to 
apply the most appropriate filtering and CFAR detection algorithms [E-2].  The concept and structure of 

an Expert System is illustrated in  
Figure E - 1.  Here, input data is compared 
to a data base where like or similar data 
sets are identified.  These characteristics 
and descriptors of the data set are 
analyzed by a knowledge base which 
utilizes an extensive rule base to make 
inferences about the data.  These 
inferences are then interpreted to ascertain 
their meaning in the context of the 
decision problem, and applied to a control 
structure which makes adjustments to the 
system under control based upon the 
nature of the input data.  Feedback may 
also be incorporated where outputs of the 

control structure are input to the database providing additional sources of knowledge.  The control 
structure relays decisions and actions to the user.  The structure of the ES-CFAR Processor as well as the 
many functions performed by it, is 
based on this design, and is to be 
discussed below. 

The basic structure of the 
Expert System presented above can 
be extended to a more detailed level 
of sophistication by adding specific 
functions and knowledge sources.  
Figure E - 2 illustrates the ES-
CFAR Processor with specific 
functions added to provide 
additional knowledge about target 
detection and false alarm control.  
For this particular problem there are 
five functions to be performed, as 
described below. 

 
Figure E - 1.  Basic Structure of an Expert System 

 
Figure E - 2.  Expert System CFAR Processor 
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First consider the background analysis problem.  As radar returns (data) are processed, one of the first 
tasks to be performed is determination of the statistical characteristics of the clutter.  This entails 
identifying the probability density function (pdf) of the data as well as the associated parameters of the 
distribution.  Standard histogram techniques, Quantile-Quantile and Percent-Percent (plot) analysis, 
moment techniques and various hybrid combinations are employed for this analysis. 

Next, consider clutter classification (type).  Also of importance in the selection of an appropriate 
CFAR detection algorithm are the physical attributes of the clutter (i.e., urban, sea, desert, etc.).  For 
example, extensive research has resulted in numerous clutter and interference models which associate 
physical clutter features with particular statistical distributions.  In fact, many CFAR algorithms are 
designed for detection processing in clutter behaving according to these statistical distributions.  This is a 
priori knowledge provides the rule base which dictates the use of one CFAR algorithm over another in a 
given interference environment.  Knowing the physical and statistical nature of the clutter environment, 
combined with performance measures for various CFAR algorithms as a function of clutter type, aids in 
the selection of the most appropriate CFAR algorithm.  For example, it was stated previously that in a 
Gaussian white noise interference environment, CA-CFAR processing is optimum.  If we consider 
performing detection along a clutter edge such as a transition from a thermal noise limited environment to 
sea clutter limited environment, the same CA-CFAR will exhibit excessive false alarms with a 
corresponding degradation in detection probability.  A more prudent choice may be Greatest Of-CFAR 
(GO-CFAR) which will abate the effects of the clutter edge on our ability to perform CFAR detection 
processing. 

The adaptive filtering algorithm library is also important.  As discussed above, various forms of 
clutter suppression and Doppler filtering schemes are available (MTI cancellers, Doppler filtering, space-
time processing, etc.), but generally only one is used.  Here, based on the assessment of the environment, 
we cannot only choose the most appropriate CFAR algorithm, but also the most appropriate filtering 
technique to precede the CFAR detector. 

A complete library of CFAR algorithms is critical.  Many of the rules in the knowledge base control 
the utilization of CFAR algorithms.  For each algorithm in the library, performance under the dynamic 
conditions of interest to the radar system engineer must be available.  The relative performance of each 
CFAR algorithm must be quantified as a function of clutter type/statistic, detection probability, false 
alarm probability and CFAR processing loss.  CFAR algorithm performance will vary widely considering 
the variety of backgrounds likely to be encountered in an airborne radar system.  It is for this reason that 
the library must contain CFAR algorithms with variable parameters such as Cell Averaging, Greatest-Of, 
Ordered Statistic, and Trimmed Mean.  Each of these algorithms exhibit performance advantages that can 
be exploited in an attempt to maintain an adequate level of detection and false alarm probability.  One 
conventional performance measure of a detector is the receiver operating characteristics (ROC) which is a 
plot of detection probability versus false alarm probability.  Intuitively, one would expect that as detection 
probability is increased, the threshold must be lowered, and consequently, false 
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alarm probability will be increased.  Figure E - 3 
is a sample plot of the ROC for two different 
CFAR algorithms.  This illustrates the very 
different behavior of two CFAR algorithms 
under the same conditions.  We may also 
observe detection performance as a function of 
pdf, or more specifically, the variation of the 
parameters of a given pdf.  Figure E - 4 is a plot 
of detection probability versus Weibull shape 
parameters for two (arbitrary) CFAR algorithms.  
Again, we can see the very different behavior of 
these algorithms under identical background 
conditions.  These are examples of the factors 
affecting detection and false alarm probability 
and the extent to which they dictate the use of 
one CFAR algorithm over another. 

Finally, consensus analysis must be considered.  After selection of the most appropriate algorithms, 
detection processing is performed and decisions from the selected CFAR algorithms must be weighted 

and fused to produce a satisfactory 
global detection decision. 

The knowledge sources are 
not limited to the five listed above, 
but may also include exogenous 
variables such as temperature, 
wind speed, and precipitation.  
These factors are not directly 
related to target detection, but can 
certainly play a role in altering the 
statistics of the background we are 
trying to suppress. 

  

 
Figure E - 3.  Receiver Operating Characteristic for 2 

CFAR Algorithms 

 
Figure E - 4.  Probability of Detection vs. Weibull shape parameter for     

2 CFAR Algorithms 
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A conceptual diagram of the ES-CFAR system is illustrated in Figure E - 5.  The input is applied to an 
expert system where analysis (heuristic and algorithmic) produces the statistical and physical 
characteristics of the  This information is used in conjunction with a library of CFAR algorithms, 
containing algorithms such as Cell Averaging, Greatest Of, Smallest Of, Ordered Statistic, and Trimmed 
Mean.  Within each of these individual CFAR algorithms there are many subclasses with various 
combinations of rank, order, window size and multiplicative gain factor.  Preceding each of the CFAR 
algorithms is a filter and detector matched to that particular CFAR algorithm.  In this way one ensures 
that the filtering of radar data corresponds to the method of CFAR detection processing that follows.  
Based on the characteristics of the input data, the expert system assigns weights to the outputs of the 
various CFAR algorithms corresponding to their suitability given the input data.  The weighted outputs 
are then summed to produce a cumulative or global detection output.  This output could be, in simplest 
form, the decision or just one of the CFAR algorithms.  Alternatively, the output could be more complex 
such as a summation of the weighted outputs of all CFAR algorithms.  In this way the most appropriate 
combination of CFAR algorithms and parameters are used to perform CFAR detection processing. 

 

  

 
Figure E - 5.  Expert System CFAR Processor 
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ES CFAR SUMMARY 

The conflicting requirements for a high probability of detection and low probability of false alarm are 
rarely met in a wide area surveillance radar, due to spatial variations in the clutter.  Any single algorithm 
is likely to be inadequate in a dynamically changing environment.  The approach suggested in this paper 
is to select the filtering and CFAR algorithm(s) being executed at any one time based upon the observed 
characteristics of the interference.  This requires sensing the environment, employing the most suitable 
filtering and CFAR algorithms, and applying a consensus algorithm to produce a global detection 
decision.  Based on advances in expert systems, adaptive processing and CFAR algorithms, this approach 
has the potential to provide significant performance improvements to future wide area surveillance radars.  
This could also be utilized as part of a signal processor upgrade to an existing radar system. 
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APPENDIX F 
NON-HOMOGENEITY DETECTION 

INTRODUCTION 

STAP has been proposed as a means for improving detection performance of airborne surveillance 
sensors [F-1-F-3]. To date, theoretical developments and computer simulation comprise much of the 
existing STAP literature. The Multichannel Airborne Radar Measurements (MCARM) program is a 
recently completed airborne data collection effort aimed at facilitating the development of field- capable 
STAP approaches. A very important, practical issue in fielding a STAP-based system concerns accurately 
estimating the interference covariance matrix and then computing an improved adaptive weight vector. 

Nonhomogeneous interference, a feature of real-world airborne radar, complicates interference 
covariance matrix estimation and adaptive weight formulation. Wang anticipated the problem of 
nonhomogeneous interference on STAP in [F-4]. Ward also briefly mentions the difficulties 
nonhomogeneous interferences poses for STAP [F-3]. In [F-5-F-6], the authors discuss the difficulties of 
applying STAP to nonhomogeneous interference in the context of "undernulling". Recently, Melvin, 
Wicks and Brown demonstrated the impact of training data selection on STAP performance using 
MCARM data [F-7]. In addition, [F-7] discusses a scheme to excise nonhomogeneous interference from 
adaptive weight computation, leading to improved STAP performance using measured airborne radar 
data. 

We discuss potential nonhomogeneity detection methods based on ranking and selection [F-8] of the 
generalized inner product [F-7, F-9-F-10], the inner product [F-5-F-6], and the sample matrix inversion 
(SMI) test statistic [F-1], to improve STAP performance. This effort considerably extends our previous 
analysis in [F-7]. We employ measured data from the MCARM program to illustrate the importance of 
sample selection and the capabilities of the aforementioned nonhomogeneity detectors for adaptive 
airborne radar.  

NONHOMOGENEOUS AIRBORNE ENVIRONMENTS 

The output of the space-time adaptive processor is 

ݕ  ୀௐೖ
ಹೖ ,

 (F-1)

where ܹ
ு ൌ   ுݏ ܴିଵ,  ு  is the conjugate transpose of the target steering vector, ܴ is the space-timeݏ

interference covariance matrix estimate for ܺ, and 

 ܺ  ൌ
ሾݔሺ1,1ሻ, ,ሺ1,2ሻݔ … , ,ሻܯ,ሺ1ݔ ,ሺ2,1ሻݔ … , ,ሻܯ,ሺ2ݔ … ,ሺܰݔ 1ሻ, …   ሻሿTܯ,ሺܰݔ

(F-2)
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is the MNxl complex signal vector for the kth range cell [F-1]. In this case, M equals the number of 
receive channels and N indicates the number of coherent receive pulses. The adaptive filter equations 
appear similar to (F-1) - (F-2) for reduced dimension STAP methods (e.g., see [F-2 - F-4]).  

A fundamental issue, evident from (F-1), concerns accurately estimating the true, unknown 
covariance matrix. The true, space- time covariance matrix is, ܴ ൌ /ுܺ/ுுܺൣܧ ൧, where ܺ/ு is ܺ 
under the null hypothesis (interference only). We typically estimate the covariance matrix via the 
minimum mean squared- error (MMSE) estimate as [F-l - F-3], 

 ܴ ൌ  
1
ܲ
  ܺ

ା ଶ⁄ ାீ

ୀି ଶ⁄ ିீ
ܺ
ு; ݅ ് ݇ െ ,ܩ ݇, ݇  ܩ , (F-3)

where G indicates the use of guard cells. The Xi in (F-3) are referred to as secondary data. Similarly, we 
refer to the data to be filtered, Xk, as the test data. It is necessary that the P secondary data vectors in (F-4) 
appear independent and identically distributed (iid) to the interference in the test cell for the MMSE 
estimate to be accurate.  When the interference is Gaussian-distributed, a general "rule of thumb" states 
that choosing P ≈ 2•MN iid secondary data vectors yields a loss ratio of less than 3dB between adaptive 
and optimal systems with a probability of fifty percent [F-11]. In practical adaptive airborne radar, 
complications arise due to nonhomogeneous signal environments. 

Nonhomogeneous interference violates the iid assumption required to accurately compute the 
unknown covariance matrix via (F-3). It was shown in [F-7] that measured airborne data can appear quite 
nonhomogeneous and that adaptive filter performance varies dramatically with secondary data selection 
in such instances. Thus, an important issue arises regarding which secondary data should be selected to 
improve STAP performance in realistic airborne radar environments. In light of the iid assumption, a 
sensible approach is to screen and excise nonhomogeneous secondary data from the MMSE estimate of 
(F-3).  

We designate two secondary data vectors appearing similar in covariance structure as homogeneous. 
Otherwise, the data vectors appear nonhomogeneous. The following definition clarifies the distinction 
between homogeneous and nonhomogeneous signal vectors. 

Definition I (Homogeneous Vectors) Consider two multi-dimensional signal vectors, Xi and Xj, of 
form similar to (F-2). The true covariance matrices of Xi and Xi appear as 

 ܴ ൎ ൣܧ ܺ ܺ
ு൧; ܴ ൎ ൣܧ ܺ ܺ

ு൧, (F-4)

respectively.  Under the Gaussian assumption, signal vectors Xi and Xj are approximately homogeneous 
provided  

 ܴ ܴ
ିଵ ൎ ெேܫ , (F-5)
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where IMN is the MN x MN identity matrix. As the product of the two distinct covariance matrices 
deviates from the identity matrix, the signal vectors appear nonhomogeneous. 

It is important to note from Definition 1 that both amplitude and phase information determine 
homogeneity between multi- dimensional secondary data vectors. Further note that in a strict sense, only 
when testing scalar quantities can amplitude power completely distinguish homogeneity among available 
data.  

Definition 2 (Distinguishing Secondary Data for STAP) We assume the majority of secondary data 
appear homogeneous over limited range intervals. Homogeneous secondary data take the form, 

 ܺ ൌ ܺ/ு ൌ ܥ  ܰ  ܫ  , (F-6)

where Ci is the homogeneous clutter component, Ii is white noise jamming, and Ni is uncorrelated noise. A 
minority of the secondary data may appear nonhomogeneous with respect to (F-6). The nonhomogeneous 
secondary data appear as, 

 Xi ൌ Ci  Ni  Ii  Oi (F-7)

where Oi is the signal component appearing nonhomogeneous in covariance structure.  

Factors making the environment appear nonhomogeneous include spatially varying clutter, system 
errors exacerbating spatial clutter variation, shadowing effects, moving scatterers including targets, 
multiple interfering targets, deceptive jamming and so forth. Since we assume in Definition 2 that the 
homogeneous clutter comprises the majority, computing (F-3) from the identified homogeneous 
secondary data ensures acceptable STAP performance for the majority of the test cells. To avoid 
cancellation of tactically significant signal returns, particularly weak, low velocity targets, the 
nonhomogeneous component of (F-7) should pass through the adaptive processor. Latter stages of signal 
processing, especially the tracker, should make the final determination whether Oi in (F-7) represents 
nonhomogeneous clutter or corresponds to a target. 

NONHOMOGENEITY DETECTORS 

In this section we discuss three methods one may consider for assessing relative homogeneity among 
available secondary data. 

Inner Product 

The inner product does not represent a general approach for nonhomogeneity detection in the 
adaptive airborne filtering problem. In other words, its value remains limited to specific instances which 
may be routinely violated in practice. We now briefly point out the reasons for the preceding statement. 
The inner product, defined as, 
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ܻ ൎ ܺ

ு
ܺ ൎ ݔכ

ேெ

ିଵ

ݔ , (F-8)

is a measure of power in signal vector, Xi. Similarly, this interpretation holds if we consider the inner 
product of the reduced-dimension signal vector. For example, we might take the inner product of Xi after 
Doppler decomposition. Notice that two signal vectors, Xk, and Xj, may have similar inner products while 
exhibiting dramatically different covariance matrices, Rk, and Rj. The expected value of (F-8) is, 

ሿߛሾܧ  ൌ ݁ܿܽݎݐ ሺܴሻ  . (F-9)

Complications arise since distinct covariance matrices may have the same trace, yet possess entirely 
different off-diagonal elements. The inner product serves as a suitable discriminant in testing 
homogeneity of scalar quantities, such as in a CFAR processor. However, nonhomogeneity detection for 
the adaptive filtering problem concerns assessing vector quantities and discriminating variation in both 
amplitude and phase. 

Generalized Inner Product (GIP) 

Next, consider the GIP, 

ݖ  ൌ ܺ
ுܴିଵ ܺ  , (F-10)

where RC, is the test covariance matrix. Chen studied and proposed (F-10) as a test of covariance structure 
in the context of ranking and selection for the radar problem in [F-9 - F-10]. Next, we used (F-10) as the 
basis for characterizing and excising outliers in [F-7] to demonstrate the importance of sample selection 
on STAP performance. In this section, we provide a physically intuitive description to complement 
Chen's analysis and further justify selection of the GIP as a nonhomogeneity detector.  

Define the whitening filter output as the MN x 1 vector, 

 ෨ܺ ൌ ܴ
ିଵ ଶ⁄

ܺ .  (F-11)

 

The MN x MN test covariance matrix, RC, is Hermitian. It can also be shown that ܴ
ିଵ ଶ⁄ is Hermitian 

provided RC is positive definite, which is almost always true. Next, observe that (F-10) can be written as 
the inner product, 

 ܼ ൌ ෨ܺு ෨ܺ , (F-12)
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which equals the sum of the squares of   ෨ܺ . Thus, (F-12) measures the power in the signal vector, Xi, after 
being whitened by ܴ

ିଵ ଶ⁄ . The covariance matrix of ෨ܺ is given as 

 ෨ܴ ൌ ൣܧ ෨ܺ ෨ܺு൧ ൌ ܧ ቂܴ
ିଵ ଶ⁄

ܺ ܺ
ுܴ

ିଵ ଶ⁄ ቃ. (F-13)

Defining the true, unknown covariance matrix of Xi as ܴ ൌ ൣܧ ܺ ܺ
ு൧, we may express (F-13) as 

 ෨ܴ ൌ ܴ
ିଵ ଶ⁄ ܴܴ

ିଵ ଶ⁄ . (F-14)

If Ri ≈ RC , then ෨ܴ ൎ ሿݖሾܧ ெே andܫ ൎ  ,When the true covariance matrix of Xi deviates from RC .ܰܯ
the expected value of zi deviates from the product MN. Thus, the GIP test in (F-10) can be used to assess 
similarity between the unknown covariance matrix of a selected signal vector and a test covariance 
matrix. Alternatively, we regard signal vectors with similar values of zi as homogeneous with covariance 
matrices similar to RC. A signal vector with zi significantly varying from the mean is nonhomogeneous to 
those signal vectors with like GIP values. Note that this test directly assesses both amplitude and phase 
information critical to defining covariance structure. 

In practice, we replace RC, with a MMSE estimate as in (F-3). Notice that (F-3) is typically a 
normalized sum of the outer products of consecutively selected secondary data over a given range 
interval. Thus, an averaging process exists. We attempt to find those secondary data vectors significantly 
deviating from this average result. Then, we excise such vectors from further iterations as we refine the 
computation in (F-3) to best represent the majority of secondary data vectors defining the homogeneous 
set.  

SMI Test Statistic 

Letting Rk = RC in (F-1), the SMI test statistic becomes 

ߟ   ൌ |ଶݕ| ൌ כݕݕ ൌ ܹு
ܺ ܺ

ுܹ , (F-15)

where W = ܴିଵݏ and RC is Hermitian. Using (F-6), we recognize the expected value of the SMI test 
statistic in the homogeneous case to be, 

ሿߟሾܧ  ൎ ܹுܴܹ 

     ܴ ൌ ܥሾሺܧ  ܰ  ܥሻሺܫ  ܰ   .ሻுሿܫ
(F-16)

In the nonhomogeneous case we have, from (F-7) and (F15), 

ሿߟሾܧ  ൎ ܹுܴܹ ܹுሺܴை  ܴை  ܴைሻ ܹ 

     ܴை ൌ ሾܧ ܱሺܥ  ܰ   ;ሻுሿܫ
(F-17)
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ܴை ൌ ܴைு ; ܴை ൌ ൣܧ ܱ ܱ
ு൧. 

One may observe, after comparing (F-16) and (F-17) that the nonhomogeneous component leads to a 
shift in the SMI test statistic from the homogeneous case. The relative power of the nonhomogeneous 
interference and its location in the angle-Doppler domain (i.e. its two-dimensional power spectral density) 
influences the magnitude of the shift. This occurs since the two- dimensional (2-D) Fourier transform of 
the weight vector, W, defines the 2-D filter response. The filter suppresses the homogeneous component 
of Xi characterized by RC while passing nonhomogeneous components outside the filter notch. Therefore, 
the SMI filter discriminates both amplitude and phase variation in the covariance structure of data vector, 
Xi, from the homogeneous condition.  

As previously, we replace RC with a MMSE estimate and seek those secondary data vectors 
significantly varying from the expected value of the SMI test statistic. We then recompute the MMSE 
estimate using the more homogeneous set of training data. If necessary, we then iterate the procedure to 
refine the result. 

REDUCING COMPUTATION COMPLEXITY 

The GIP of (F-10), or the SMI test statistic of (F-15), requires computing the inverse of the MMSE 
estimate of the covariance matrix given in (F-3). This computation is the most burdensome step in the 
adaptive filtering problem. Using appropriate techniques, we must initially compute the inverse 
covariance matrix. However, after this initial computational expense, a more efficient approach exists for 
updating the inverse covariance matrix estimate after excising or adding secondary data. We point out two 
simple formulations based on the matrix inversion lemma [F-12], also known as Woodbury's identity, to 
improve the efficiency of integrating nonhomogeneity detection with STAP.  

First consider the case of adding a sample to the covariance matrix estimate. Define ܴሺܲሻ as the 
MMSE estimate of the interference covariance matrix using P samples. Further, let ܴሺܲ  1ሻ represent 
the MMSE estimate using P+l samples, computed as 

 
ܴሺܲ  1ሻ ൌ

1
ܲ  1

൭ ܺ



ିଵ
ܺ
ு  ܺାଵܺାଵு ൱

ൌ
1

ܲ  1
൫ܲ ܴሺܲሻ  ܺାଵܺାଵு ൯. 

(F-18)

Then, via the matrix inversion lemma, we may write, 

 
ܴିଵሺܲ  1ሻ ൌ

ܲ  1
ܲ

ቈܴିଵሺܲሻ െ
ܴିଵሺܲሻ ܺାଵ ܺାଵு ܴିଵሺܲሻ
ܲ  ܺାଵு ܴିଵሺܲሻ ܺାଵ

 (F-19)

Similarly, if we let ܴሺܲ െ 1ሻ represent the MMSE estimate after removing a sample from the 
estimate using P samples, then 
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 ܴିଵሺܲ െ 1ሻ ൌ
ܲ െ 1
ܲ

ቈܴିଵሺܲሻ െ
ܴିଵሺܲሻ ܺா ܺாுܴିଵሺܲሻ
ܺாுܴିଵሺܲሻ ܺா െ ܲ

, (F-20)

where XE represents the excised secondary data vector and ܲ ് ܺாுܴିଵሺܲሻ ܺா. 

ILLUSTRATION 

We use measured airborne radar data from the MCARM Program to illustrate enhanced STAP 
capability resulting from the use of a NHD. The NHD leads to enhanced adaptive weight computation via 
improved secondary data selection.  

The radar data under consideration is a single CPI of 128 pulses taken from MCARM Flight 5, 
Acquisition 575. Twenty-two independent channels comprise the array, organized in an eleven over 
eleven planar configuration. We inject a 
synthetic target at Doppler bin 10 (41.5 
mph), range cell 290 (16.4 miles from the 
airborne platform and less than half the 
unambiguous range of 41.6 miles), and at 
the transmit azimuth of zero degrees 
(broadside). This injected target has a 
signal-to-clutter plus noise ratio (SCNR) of 
-56 dB with respect to the mainlobe clutter 
and an SCNR of -25 dB with respect to the 
competing sidelobe clutter in Doppler bin 
10. 

Figure F - 1 overviews the basic signal 
processing chain applied to the measured 
data [F-13]. We compare the three NHDs 
described in the preceding section. The 
factored-time space (FTS) algorithm  [F-2 - 
F-3] represents the specific STAP algorithm 
used in this analysis, thereby dictating the data structure used in the nonhomogeneity detection scheme. 
Initialization of the GIP and SMI-based NHDs uses a covariance matrix, RC(0), computed from the 
available secondary data using (F-3). Homogeneous secondary data result in NHD outputs falling 
between the upper and lower thresholds, Vlo, and Vhi. The range indices of identified homogeneous 
secondary data comprise the vector, Q(n), in Figure F - 1. We only consider a single-pass through the 
secondary data set (i.e., nmax = 1). An improved covariance matrix is computed using a minimum subset 
of the homogeneous secondary data. This minimum subset size is forty-four samples, or twice the data 
vector length. Then, the processor applies the adaptive weight vector computed from this homogeneous 
secondary data set to filter the test data. 

 
Figure F - 1.  Multipass Nonhomogeneity Detection Scheme 

 
Figure F - 2.  MSMI Test Statistic Versus Range Using SW 

Method And GIP And SMI-Based Nonhomogeneity Detection 
Schemes. 
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Figure F - 2 and Figure F - 3 compare the performance of the FTS algorithm with varied sample 
selection and adaptive weight computation. Each 
subplot shows the output of the FTS algorithm for 
Doppler 10 versus range, normalized by ݏு ܴିଵݏ. The 
literature refers to this normalization of the SMI test 
statistic as the modified SMI (MSMI) algorithm   [F-
14]. Under the Gaussian assumption, it yields an 
embedded CFAR characteristic such that a fixed 
threshold may be applied over all range for a fixed 
probability of false alarm. This allows us to assess 
detection performance improvement or degradation 
resulting from the different nonhomogeneity 
detection schemes.  

The top plot in Figure F - 2, labeled "FTS_SW", 
corresponds to the most commonly accepted 
approach for sample selection. In this case, a 
symmetric window (SW) about the test cell defines 
the secondary data to be used in the MMSE estimate of (F-3) and the ensuing adaptive weight 
computation. The SW approach uses a total of twenty-two range cells and two guard cells on each side of 
the test cell, for a total of forty-four secondary data. The basic idea behind this approach is that data most 
local to the test cell will appear most statistically similar. Notice in this scenario that the injected target at 
a range of 16.4 miles goes undetected. The mean signal power computed over all range depicted in the 
plot is 11.2 dB. On the other hand, the bottom plot in Figure F - 2 shows the normalized adaptive filter 
output computed following the nonhomogeneity detection stage of Figure F - 1. The GIP of (F-10) is used 
as the NHD. Thresholding the output of the NHD normalized to its mean with Vlo = 0.7 and Vhi = 1.1 
yields forty-four secondary data identified as most homogeneous according to their GIP values. The 
processor computes an adaptive weight vector from this set of forty-four homogeneous secondary data 
and applies it to all test range cells in the subject interval. Observe that the injected target is clearly 
visible! Another signal peak at 20.3 miles corresponds to a highway appearing in the radar field of view, 
and thus we speculate it represents vehicular motion. In this case, the mean power over the range interval 
shown in the plot is 9.5 dB. 

Next, consider Figure F - 3. The top plot shows the resulting FTS output that uses the SMI-based 
nonhomogeneity detector. The injected target is clearly visible, yet the potential target at range 20.3 miles 
disappears in comparison with the "FTS_GIP" result in Figure F - 2. Thresholds for the NHD output 
normalized to its mean are Vlo = 0.1 and Vhi = 0.5, resulting in the selection of forty-four homogeneous 
secondary data. We compute the mean power of the normalized FTS output over range to be 9 dB.  

 
Figure F - 3.  MSMI Test Statistic Versus 

Range Using SW Method And Inner 
Product (IP)-Based Nonhomogeneity 



 

101 

 

In a similar fashion, the bottom plot in Figure F - 3 shows the FTS output when the Doppler inner 
product (section A of preceding section) assesses relative homogeneity. The "FTS_IP" curve corresponds 
to the case where values of Vlo = 0.2 and Vhi = 1.0 serve to threshold the normalized NHD output, 
identifying the forty-four most homogeneous secondary data in terms of their Doppler inner product. The 
injected target cannot be detected in this instance without a dramatic increase in the number of false 
alarms. Alternatively, the "FTS_IPstrong" curve corresponds to selecting the secondary data appearing 
strongest in power (or, most nonhomogeneous with respect to the Doppler inner product), as proposed in 
[F-5-F-6]. This appears to provide improved results over the "FTS_IP" case. The computed mean power 
values are 8.5 dB and 7.8 dB, respectively, for "FTS_IP" and "FTS_IPstrong" processing. 

To further analyze the different processing methods 
leading to the results shown in Figure F - 2 and Figure F - 
3, we plot the corresponding adapted patterns. Figure F - 4 
depicts the adapted patterns for the processor selecting 
secondary data using the SW method and the GIP and 
SMI-based nonhomogeneity detection schemes. Note that 
the adapted patterns remain the same over all range for 
the GIP and SMI-based results, yet changes for the SW 
method since the secondary data set varies over range. 
Due to the nonhomogeneous nature of the interference 
environment, we observe that these patterns can change 
quite dramatically over relatively limited range extent. 
One conclusion from Figure F - 4 is that the adapted 
patterns appear quite different for all three approaches 
shown. 

Figure F - 5 shows the adapted patterns for the 
SW method and the two cases where the secondary 
data is selected based on the inner product as the 
NHD. Again notice the dramatic variation in the 
adapted patterns. Also, observe that while the 
"FTS_IPstrong" results appear better than the 
FTS_IP"' results in Figure F - 3, the related adapted 
pattern is seriously distorted, revealing significant 
loss in gain in the desired signal direction of zero 
degrees. Nulling in the desired signal direction 
further suggests that training on the most powerful 
secondary data, in terms of the inner product 
measure, can lead to disaster in an electronic 
countermeasure (ECM) environment. 

  

 
Figure F - 4.  Adapted Patterns For SW 

Method And GIP And SMI- Based 
Nonhomogeneity Detection Techniques. 

 
Figure F - 5.  Adapted Patterns For SW Method  

And Inner Product (IP)-Based  
Nonhomogeneity Detection Schemes. 



 

102 

 

IMPROVING PRACTICAL SPACE TIME ADAPTIVE RADAR CONCLUSIONS 

In this section we show the impact of sample selection on the performance of space-time adaptive 
processing for airborne radar. Furthermore, we discuss a scheme to improve sample selection, referred to 
as (multipass) nonhomogeneity detection, and consider several potential nonhomogeneity detectors. The 
nonhomogeneity detectors discussed include the inner product, generalized inner product and the sample 
matrix inversion test statistic. Analysis of measured airborne radar data shows, at least for the specific 
data considered, that incorporating nonhomogeneity detection with the space-time adaptive filter 
dramatically improves detection performance.  

Our results indicate that perhaps no single nonhomogeneity detector provides superior performance, 
but that capability is situation dependent. In the future we will analyze more measured data so that we 
may better identify those scenarios when a given nonhomogeneity detector yields superior performance, 
or adequate performance combined with reduced computational complexity. Furthermore, we plan to 
investigate other possible nonhomogeneity detectors. 
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APPENDIX G 
KNOWLEDGE AIDED DETECTION AND TRACKING 

By:  C. Capraro, G. Capraro (Capraro Technologies); and M. Wicks (AFRL, Sensors Directorate) 

INTRODUCTION 

Sensor performance may be enhanced by selecting algorithms adaptively as the environment changes. 
It has been shown [G-1 – G-7], that if an airborne radar system uses prior knowledge concerning certain 
features of the earth (e.g. land-sea interfaces) intelligently, then performance in the filtering, detection and 
tracking stages of a radar processing chain improves dramatically. As an example the performance of an 
intelligent radar can be increased if the characteristics and location of electromagnetic interference, 
mountainous terrain, and weather conditions are known. The Sensors Directorate of the AFRL conducted 
and sponsored research and development in the use of prior knowledge for enhancing radar performance, 
as did the DARPA under the KASSPER program. 

One design of an 
intelligent radar system that 
processes information from 
the, filter, detector, and 
tracker stages of a 
surveillance radar, 
investigated by AFRL and 
under the KASSPER 
program, was specifically 
designed for an AIRS. This 
architecture design leveraged 
advancements pursued by 
the World Wide Web 
Consortium (W3C) and 
DARPA Agent Markup 
Language (DAML) program 
for constructing the next 
generation internet. 
Futuristic advanced 
intelligent radar systems will 
cooperatively perform signal and data processing within and between sensors and communications 
systems while utilizing waveform diversity and performing multi-sensor processing, for reconnaissance, 
surveillance, imaging and communications within the same radar system. A high level description of 
AIRS is shown in Figure G - 1 and is described in detail, [G-6, G-8], in the literature.  

  

 
Figure G - 1.  Airborne Intelligent Radar System (AIRS) 
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There are other efforts concerned with dynamically controlling the emission and reception of radio 
frequencies in addition to AIRS, for example, the XG Communications program sponsored by DARPA.  
This program developed an architecture that will open up the spectrum for more efficient use by first 
sensing and then using portions of the spectrum for XG radio transmissions adaptively. 

The goals of the XG program are: 1. Demonstrate through technological innovation the ability to utilize 
available (unused, as opposed to unallocated) spectrum more efficiently, and 2. Develop the underlying 
architecture and framework required to enable the practical application of such technological advances. 

Figure G - 2 is a diagram representing 
the operational concepts of an XG policy-
agile spectrum user, which employs a 
computer understandable spectrum policy 
capability, [G-9].   

Another effort related to 
communications, and having similar goals 
to the XG program, is the Cognitive 
Radio [G-10].  Its objectives are to 
efficiently utilize the radio frequency 
spectrum and to provide reliable 
communications at all times. A basic 
cognitive cycle view of the radio is 
illustrated in Figure G - 3.  

All of the aforementioned efforts are using advanced 
technologies being developed in the artificial intelligence 
and user community to manage processing resources. In 
addition, most of the efforts sponsored by the KASSPER 
program leveraged outside sources of knowledge to enhance 
the performance of a radar system. Most of these efforts 
were related to ground looking radar systems on board one 
or more aircraft. Some of the efforts used measured radar 
data to develop and demonstrate algorithms. Other efforts 
used simulated data provided by DARPA. Our investigations 
have primarily been concerned using map data to assist in 
selection of the best training data for STAP in airborne 
radar. We used radar data taken from the MCARM program 
sponsored by AFRL Sensors Directorate [G-3, G-4, G-5, G-

11]. The prior knowledge we used consisted of land use and land cover (LULC) map data provided by the 
US Geological Survey (USGS). Other researchers have used digital line graph (DLG) data to take into 
consideration ground traffic on roads [G-11]. The MCARM data used in these works were taken in the 
Delaware, Maryland and Virginia region within the USA, where the terrain is relatively flat.  

 
Figure G - 2.  Policy-Agile Operation Of XG Spectrum-Agile 
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Figure G - 3.  Basic Cognitive Cycle 
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Within this effort our goal was to determine how DTED could be used in a very mountainous 
environment where the LULC data was relatively unchanged from location to location. In Section II a 
description of the terrain and our algorithm for registering the location of the radar range cell is provided. 
In Section III our performance measure is described, and the results from the analysis of experiment radar 
data are presented. Section IV provides a summary and conclusions.   

DIGITAL TERRAIN DATA AND REGISTRATION 

There is a large assortment of geospatial data available to assist in the development of Knowledge 
Aided (KA) radar signal processing algorithms. The National Geospatial-Intelligence Agency (NGA) and 
the USGS offer digitized geospatial data containing terrain elevation, classification (urban, agricultural, 
forested, etc.), and feature (roads, power lines, railroads, etc.) information. These publicly available 
datasets cover most of the United States as well as other parts of the world. The majority have a resolution 
of about 90 meters although more are being offered at 10 meters. Other data such as terrain radar cross-
section measurements, synthetic aperture radar imagery and satellite imagery also aid in KA radar signal 
and data processing.  

For this effort we used National Elevation Data (NED) [G-12]. The NED data was obtained from the 
USGS with a resolution of 10 meters. This data was collected between 1999 and 2001. The datasets were 
in a binary grid-cell format. Each value corresponded to an elevation in meters above mean sea level. A 
header file was included that contained the number of columns, number of rows, geographic location of 
the lower left corner and the size of each cell. As part of this effort, the data was converted to a non-
projected global geodetic coordinate system (latitude, longitude, and elevation) and stored in a relational 
database for flexible search and retrieval. 

Registration Techniques 

Registering the radar with the terrain data is a complex task and requires an advanced knowledge of 
geographic science. Data sources are geo-referenced using various geodetic datums (frames of reference), 
reference ellipsoids, and map projections.  

Geo-coordinate System:  

An Earth-Centered Earth-Fixed (ECEF) Cartesian system was chosen for registration of the radar 
with the earth. Figure G - 4 shows a diagram of the ECEF coordinate system in contrast with the standard 
geodetic coordinate system. The x-axis of the ECEF system lies in the equatorial plane and intersects the 
Prime Meridian. The z-axis points through the axis of rotation of the earth (geographic North pole) and 
the y-axis lies in the equatorial plane, forming a right-handed global coordinate system. The origin of this 
system corresponds to the center of mass of the earth.  
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This coordinate system was chosen because it is a non-projected system and, therefore, it is not 
distorted as in planar map projections. It is 
also a global three-dimensional system with 
values measured in length, not degrees. This 
makes it easier to calculate distances between 
points. 

Earth Model:   

A more accurate model of the earth is a 
geoid defined as the shape of the gravitational 
equipotential of the earth’s surface.  However, 
geoid models are often complex, 
computationally intensive to implement, and 
are constantly being refined as technology 
improves. 

As a result, a spherical earth model is 
typically used because it simplifies the calculations and it provides a good approximation at shorter slant 
ranges. However, at longer slant ranges, the spherical approximation can be in error by hundreds of feet. 
A better approximation is to model the earth as an ellipsoid where its curvature flattens near the poles. 

After choosing an ellipsoidal model, the frame of reference used was the 1984 World Geodetic 
System (WGS84) which globally approximates the mean sea level of the earth. In certain areas of the 
world, more accurate local frames of reference are available and are easily substituted. 

Registration Equations:  

A system of three nonlinear equations was 
developed to calculate the position of a point on 
the earth given a slant range, either a Doppler or 
spatial frequency, and an ellipsoidal model of the 
earth. It is assumed that the earth is smooth (no 
elevation) and that the radar data is unambiguous 
in Doppler. Figure G - 5 illustrates the registration 
geometry. Under conditions where the terrain 
varies significantly, the registration equations 
shown below are used in conjunction with digital 
elevation data. 

In Figure G - 5, the point Pr(xr,yr,zr) represents the position of the radar, and the point Pe(x,y,z) 
designates the point on the earth to be determined. Also shown is the slant range of the lth range sample, 
Rl, and the iso-frequency (Doppler or spatial) contour of interest. The intersection of the slant range with 
the iso-frequency contour and the earth surface occurs at two points: Pe and a mirror point on the contour.  

 
Figure G - 4.  ECEF And Geodetic Coordinate Systems 

(Latitude, Longitude, Height). 

 
Figure G - 5.  Registration Geometry 
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The first equation is related to the slant range and is simply the squared Euclidian distance between 
the points, Pe and Pr. The functional form of the equation is given as 

 
 (G-1)

The second equation models the earth surface as an ellipsoid and is defined as 

 

 
(G-2)

 

where a and b are the semi-major and semi-minor radii of the earth, respectively. Values for these 
parameters were obtained from the WGS84 world geodetic datum. The last equation represents the iso-
frequency contour as mapped onto the earth. One of the following two equations may be used in 
conjunction with (1) and (2) to complete the system of equations. 

Doppler Frequency Equation 

For a given Doppler frequency, fd, the third registration equation was derived from  

 

 
(G-3)

where, after normalizing by Rl, k is the unit vector pointing from the radar to the earth, vr is the radar 
velocity vector and λ is the wavelength of the radar. After some manipulation, the third equation is 

 

 
(G-4)

where vrx, vry, vrz are the components of the radar velocity vector.  

Spatial Frequency Equation 

For a given spatial frequency, υ, assuming a one-dimensional linear array, the third registration 
equation was derived from 

 
 

(G-5)

where d is the interelement spacing vector along the array horizontal axis. After some manipulation, the 
third equation is 
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 (G-6)

where dx, dy, dz are the components of d. 

In order to find solutions for x, y and z, an iterative Newton-Raphson method [G-13] was used until 
the method converged. The initial point for the iteration was calculated from a spherical earth model and 
was chosen to be near the point of interest, Pe. This helped the Newton-Raphson method rapidly converge 
to a solution for Pe, and not to its mirror point.  

Assuming a smooth earth, a grid with 
a resolution matching that of the digital 
elevation data was created for each range-
Doppler cell. These cell grid-points were 
then registered to the earth using [G-1] – 
[G-5], [G-8]. In order to determine the 
elevation at each grid-point in a cell, a 2-D 
nearest neighbor interpolation was 
performed with the elevation terrain grid. 
Because of the inclusion of elevation data, 
the slant ranges to each cell grid-points 
were recomputed, and the cells were 
sorted into their proper range bins by the 
average slant range of their grid-points. 
Next, a mesh of triangular patches for each 
cell was created using Delaunay 
triangulation [G-14]. This produced an 
approximate three-dimensional surface 
which modeled the actual terrain. 

In order to make comparisons between 
cells based upon their surface models, the backscattering angle of each patch contained within a cell was 
determined (see Figure G - 6). A 3-element terrain vector for each cell was developed which included the 
average backscattering angle of its patches, the standard deviation of the backscattering angles, and the 
percent of shadowed (obscured from radar due to terrain) patches. The shadowed patches were 
ascertained by determining if the terrain obstructed the line of sight from the radar to the patch. 
Diffraction or atmospheric refraction were not taken into account. Figure G - 7 is an example of some 
shadowed regions computed by the KA elevation algorithm. 

( ) ( ) ( )3( , , ) ( ) 0r x r y r z sF x y z x x d y y d z z d Rυλ= − + − + − − =

 
Figure G - 6.  Surface Model Of Range-Doppler 

Cell Generated From Digital Elevation Data.  The 
Backscattering Angle, Φ, Is The Angle Between A 

Patch Normal, N, And The Unit Vector, K, Pointing 
To The Patch From The Radar. The Black Dots 

Represent Cell Grid-Points Registered On A 
Smooth Earth. 
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KA SECONDARY DATA SELECTION APPROACH 

An airborne phased array radar was used 
to experiment and test our algorithm [G-
5]. The radar is located at approximately 
60 kilometers from the illuminated earth 
at an elevation of approximately 30,000 
feet. Six different CPIs were evaluated 
with three different filtering algorithms. 
A CA-CFAR detector algorithm was 
used. The probability of detection 
threshold level was the same for each 
CPI, and the number of false alarms was 
computed for each filtering algorithm. A 
false alarm was defined as any detection 
that occurred where truth data indicated 
there were no ground targets. The number 
of false alarms for each of the three 
different STAP filtering algorithms and 
CA-CFAR detector is shown in Table G 
- 1. Also shown is the number of false 
alarms for the same CPIs after the KA 
algorithm eliminated those detections 
whose locations were within shadowed 
regions. Averaging the number of false alarms for the three different filtering algorithms and the CA-
CFAR detector and comparing it to the average number of false alarms for the KA algorithm; a reduction 
of approximately 9.4 dB was obtained, i.e. 10Log(52/18)/(2/6) = 9.4 dB. As shown, the KA algorithm still 
exhibited two false alarms. It is conjectured that these may have occurred because of multipath and/or 
strong reflections from sidelobe regions of the antenna that were not shadowed.  

 

Table G - 1.  KA Performance Results 

 
Figure G - 7.  Shadow Region Example Using The KA 

Elevation Algorithm.  Shadowed Cells (Blue) In A 
Mountainous Terrain Are Highlighted. The Radar Is 

Located North-West Of This Area With Its Main 
Beam Pointing South-East. 

CPI 
No. 

Filter 
Algorithm 1  - 
No. of False 
Detections 

Filter 
Algorithm 2 - 
No. of False 
Detections 

Filter 
Algorithm 3 - 
No. of False 
Detections 

KA Filter  No. 
of False 

Detections 

KA Gain 

09 3 3 3 1  

11 0 0 0 0  

13 12 12 10 1  

15 0 0 0 0  

17 1 1 1 0  

20 2 2 2 0  

Total 18 18 16 2 9.4 dB 
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As demonstrated, performing a post detection filtering of potential targets utilizing digital elevation 
data in mountainous regions can significantly reduce the number of false alarms passed on to the tracker 
portion of a radar. This same approach can also be used in urban environments where buildings rather 
than mountains can obstruct or shadow targets. In general, knowledge of the environment can 
significantly increase the performance of a radar. 

SUMMARY AND CONCLUSIONS 

This paper has provided a brief introduction to some of the work sponsored by the AFRL and 
DARPA related to KA algorithms for airborne ground looking radar systems. It briefly describes three 
different architectures for using artificial intelligence technologies for controlling the reception and 
analysis of electromagnetic signals for radar and communication systems. The paper describes an 
algorithm for registering the main beam of a radar to the earth, and identifying those areas where the 
beam is shadowed because of terrain elevation. The paper concludes with the development of a new 
algorithm which performs post detection filtering of false targets prior to track processing. This approach 
will reduce errors in tracking. Identifying shadowed regions may also be used to determine where, why, 
and for how long targets may be obscured. The results of an experiment are presented where three 
different filtering algorithms and a cell averaging CFAR detector are compared to our KA post detection 
filtering algorithm. The limited results computed using experimental radar data demonstrates a 9.4 dB 
average reduction of false alarms passed to the tracker. 

The use of this advanced filtering algorithm in regions of mountainous terrain significantly enhances 
radar performance. This algorithm requires more testing, verification and numerical processing 
optimization before fielding. It should also be investigated for applicability in other shadowed 
environments such as urban terrain. Computer models of these dense urban environments can be used in a 
manner similar to the DTED model constructed herein to register the main beam of a radar and detect and 
eliminate false alarms before passing them on to the tracker.  
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APPENDIX H 
IMPLEMENTING DIGITAL TERRAIN DATA IN 

KNOWLEDGE-AIDED STAP 
By:  C. Capraro, G. Capraro, I. Bradaric, Capraro Technologies; D. Weiner, Syracuse University;  

M. Wicks, W. Baldygo, AFRL Sensors Directorate 

INTRODUCTION 

In order to estimate the clutter covariance matrix needed for STAP, range samples located close to the 
sample under test are normally chosen as secondary (or training) data. If N samples are required for 
estimation, N/2 above the test sample and N/2 below the test sample, excluding guard samples, are 
typically chosen. It is assumed that this sliding window method of secondary data selection chooses 
samples that are representative of the clutter in the test sample. However, in a nonhomogeneous terrain 
environment this assumption may not be valid. The amount of secondary data required for proper 
estimation of the covariance matrix in a stationary environment is between 2 and 5 times the number of 
degrees of freedom (DOF) of the radar assuming the clutter is Gaussian distributed [H-1]. As a result, the 
sample support needed may geographically span hundreds of meters, or even kilometers, depending on 
the range resolution and the DOF of the radar. Terrain boundaries such as land-water or urban-grassland 
interfaces are likely to occur. This nonstationarity due to nonhomogeneous terrain can lead to poor 
estimation of the clutter covariance matrix and, in turn, poor cancellation of the clutter. 

Several authors [H-2]-[H-4] have proposed statistical nonhomogeneity detectors, in both Gaussian 
and non-Gaussian distributed clutter environments, to excise outliers contained within the secondary data. 
They have shown the deleterious effects of nonhomogeneous secondary data and have improved STAP 
performance by filtering the outliers in the selection process. Melvin [H-5] has modeled STAP 
performance with respect to heterogeneous clutter and has demonstrated that, in specific cases, loss in 
signal-to-interference plus noise ratio (SINR) can be greater than 16 dB. Other researchers [H-6] have 
also recognized the limitations of STAP and have investigated new methods for incorporating a priori 
knowledge as part of DARPA’s KASSPER program. Some knowledge sources have already proven 
valuable when integrated into other portions of the radar signal processing chain such as detection [H-7] 
and tracking [H-8]. 

We propose an approach, in the area of KA-STAP, which employs digital terrain data to aid in 
choosing representative secondary data. The assumption is that estimation of the covariance matrix will 
improve by choosing secondary data whose terrain characteristics match the range sample under test. 
Properly utilized a priori knowledge in STAP will enable the adaptive filter to use limited degrees of 
freedom more effectively thereby improving clutter rejection. This approach can also be implemented in 
conjunction with other data independent and data dependent secondary data selection algorithms in order 
to remove any unknown nonhomogeneities. 



 

 

114 

 

Implementing digital terrain data in KA STAP requires a wide breadth of knowledge in several areas. 
In this paper we extend our prior work [H-9]-[H-11], identify some of the practical problems that arise, 
and present numerical solutions. 

In Section H-2.1, a description of the measured radar data and the digital terrain data used is 
provided. In Section III an approach to knowledge-aided secondary data selection is presented. In Section 
H-3.1 techniques for registering the radar return data with the terrain data are described. In Section H-3.2, 
an analysis leading to an understanding of the conditions needed for equivalent secondary data is 
presented. In Section H-3.3, a description of the STAP algorithm that was chosen is provided. In Section 
H-3.4, corrections for certain factors affecting STAP performance such as array misalignment, range, 
reflectivity, atmospheric propagation, and vertical gain are developed. In Section H-3.5, a method for 
producing a rudimentary terrain image from actual surveillance radar returns is described. The terrain 
image helps in evaluating how well the terrain data represents the environment and also aids with 
registration. In Section H-3.6, a KA secondary data selection algorithm for both digital land classification 
data and digital elevation data are described. In Section H-3.7, an approach for improving sample support 
using terrain data is given. In Section H-3.8, a simple method for mitigating the effects of range spread is 
provided. In Section H-4, results are presented that compare our KA approach to the standard sliding 
window method. Finally, in Section H-5, we provide our conclusions. 

BACKGROUND 

Measured Radar Data 

Measured airborne radar data was obtained from the AFRL Sensors Directorate’s MCARM program 
[H-12]. The datasets consist of multi-channel clutter data collected by an airborne platform with a side 
looking radar. The radar was configured with a 2 by 11 channel linear array including sum and delta 
analog beamformers. MCARM operated at L-Band in low, medium and high PRF modes. It had a range 
resolution of approximately 120 meters with about 500 range samples of data. Each coherent processing 
interval (CPI) consisted of 128 pulses and the clutter was typically unambiguous in Doppler. Northrop 
Grumman collected the data during flights over the Delmarva Peninsula and the East coast of the US in 
the mid-1990s. There were eleven flights with an in-scene moving target simulator (MTS) in some of the 
data collection experiments. The MTS transmitted five “Doppler” tones (0, -200, -400, -600, -800 Hertz) 
and was used as the basis for evaluating our results.  Table H - 1 provides some of the MCARM radar’s 
system parameters. 
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Table H - 1.  MCARM Radar System Parameters 

Symbol Description Value 

N Number of array elements 22 

M Number of pulses per CPI 128 

L Number of usable range samples 500 

Pt Peak transmit power 1.5 kW 

Tp Transmit pulse width (uncompressed) 50.4 μs 

B Instantaneous bandwidth 800 kHz 

fr Pulse repetition frequency (PRF) 1984 Hz 

D Interelement spacing 0.109 m 

f Radar frequency 1.24 GHz 

ΔR Range resolution 120  
 

Digital Terrain Data 

There is a large assortment of geospatial data sources available that can assist in the development of 
KA radar signal processing algorithms. The NGA and the USGS offer digitized geospatial data containing 
terrain elevation, classification (urban, agricultural, forested, etc.), and feature (roads, power lines, 
railroads, etc.) information. These publicly available datasets cover most of the US and other areas of the 
World. The majority have a resolution of about 90 meters although more are being offered at 10 meters. 
Other data such as terrain radar cross-section measurements, synthetic aperture radar imagery and satellite 
imagery could also aid in KA radar signal processing algorithms.  

For this paper two types of digital terrain data were used in the development of our KA approach. The 
first called National Land Cover Data (NLCD) [H-13] was used to classify the ground environment 
illuminated by the MCARM radar. The second called NED [H-14] contained elevation measurements of 
the terrain. 

The NLCD data was obtained from the USGS with a spatial resolution of 30 meters. In the NLCD 
format the terrain is hierarchically grouped by 9 major classifications such as urban areas, barren land, 
water, etc., and subgrouped into 21 minor classifications such as high intensity residential urban areas, 
low intensity residential urban areas, etc. (see Table H - 2). These data were collected in the 1990s at 
about the same time as the MCARM experiments. 
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Table H - 2.  NLCD Land Cover Classifications 

Code Major Classifications Minor Classifications 

11 Water Open Water 

12 Water Perennial Ice/Snow 

21 Developed Low-Intensity Residential 

22 Developed High-Intensity Residential 

23 Developed Commercial/Industrial/Transportation 

31 Barren Bare Rock/Sand/Clay 

32 Barren Quarries/Strip Mines/Gravel Pits 

33 Barren Transitional 

41 Forested Upland Deciduous Forest 

42 Forested Upland Evergreen Forest 

43 Forested Upland Mixed Forest 

51 Shrubland Shrubland 

61 Non-natural Woody Orchards/Vineyards/Other 

71 Herbaceous Upland Grasslands/Herbaceous 

81 Herbaceous Planted/Cultivated Pasture/Hay 

82 Herbaceous Planted/Cultivated Row Crops 

83 Herbaceous Planted/Cultivated Small Grains 

84 Herbaceous Planted/Cultivated Fallow 

85 Herbaceous Planted/Cultivated Urban/Recreational Grasses 

91 Wetlands Woody Wetlands 

92 Wetlands Emergent Herbaceous Wetlands 
 

The NED data was also obtained from the USGS with a resolution of 10 meters. It was collected 
between 1999 and 2001.   

Both datasets were in a binary grid-cell format although other data formats were available. Each value 
corresponded to either a land classification code for NLCD or an elevation in meters above mean sea 
level for NED. A header file was included that contained the number of columns, number of rows, 
geographic location of the lower left corner and the size of the cells. As part of this effort, the data was 
converted to a non-projected global geodetic coordinate system (latitude, longitude, and elevation) and 
stored in a relational database for flexible search and retrieval. 
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KA SECONDARY DATA SELECTION APPROACH 

Registration Techniques 

Registering the radar with the terrain data is a complex task and requires a good knowledge of 
geographic science. Data sources are geo-referenced using various geodetic datums (frames of reference), 
reference ellipsoids, and map projections. Careful attention to how data sources are geo-referenced is 
required in order to perform accurate registration. 

Geo-coordinate System:  

An ECEF Cartesian system was chosen for 
registration of the radar with the earth. Figure H - 1 shows 
a diagram of the ECEF coordinate system in contrast with 
the standard geodetic coordinate system. The x-axis of the 
ECEF system lies in the equatorial plane and intersects 
the Prime Meridian. The z-axis points through the axis of 
rotation of the earth (geographic North pole) and the y-
axis lies in the equatorial plane forming a right-handed 
global coordinate system. The origin of this system 
corresponds to the earth’s center of mass.  

This coordinate system was chosen because it is a 
non-projected system and, therefore, it is not distorted like 
planar map projections. It is also a global three-
dimensional system with its values measured in length, 
not degrees, which makes it easier to calculate distances 
between points. 

Addendum A contains methods for converting between the standard geodetic system and the ECEF 
Cartesian system. 

Earth Model 

The most accurate model of the earth is a geoid defined as the shape of the gravitational equipotential 
of the earth’s surface. However, geoid models are often complex, computationally intensive to 
implement, and are constantly being refined as technology improves.  

As a result, a spherical earth model is typically used because it simplifies the calculations that need to 
be performed and it provides a good approximation at shorter slant ranges. Though at longer slant ranges, 
the spherical approximation can be in error by hundreds of feet. A better approximation is to model the 
earth as an ellipsoid where its curvature flattens near the poles. 

 
Figure H - 1.  ECEF And Geodetic 

Coordinate Systems (Latitude, Longitude, 
Height). 
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After choosing an ellipsoidal model, the frame of reference used was the WGS84 which globally 
approximates the mean sea level of the earth. In certain areas of the world though, more accurate local 
frames of reference are available and can easily be substituted. 

Registration Equations 

A system of three nonlinear equations was developed to 
calculate the position of a point on the earth given a slant 
range, either a Doppler or spatial frequency, and an 
ellipsoidal model of the earth. It is assumed that the earth is 
smooth (no elevation) and that the radar data is 
unambiguous in Doppler. Figure H - 2 illustrates the 
registration geometry. 

In Figure H - 2 the point, Pr(xr,yr,zr), represents the 
position of the radar and the point, Pe(x,y,z), designates the 
point on the earth to be determined. Also shown is the slant 
range of the lth range sample, Rl, and the iso-frequency 
(Doppler or spatial) contour of interest. The intersection of 
the slant range with the iso-frequency contour and the 
earth’s surface occurs at two points, Pe and a mirror point 
on the contour. However, since the radar data was gathered 
by a side looking radar, the location of the point on the same side as the radar is of interest. 

The first equation is related to the slant range and is simply the squared Euclidian distance between 
the points, Pe and Pr. The functional form of the equation is given as 

 ( ) ( ) ( ) 0),,( 2222
1 =−−+−+−= lrrr RzzyyxxzyxF  (H-1)

The second equation models the earth’s surface as an ellipsoid and is defined as 
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where a and b are the semi-major and semi-minor radii of the earth, respectively. Values for these 
parameters were obtained from the WGS84 world geodetic datum. The last equation represents the iso-
frequency contour on the earth. One of the following two equations may be used in conjunction with (1) 
and (2) to complete the system of equations. 

  

 
Figure H - 2.  Registration Geometry 
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Doppler Frequency Equation 

For a given Doppler frequency, fd, the third registration equation was derived from  

 ( )2
df

λ
⋅

= rk v  (H-3)

where, after normalizing by Rl, k is the unit vector pointing from the radar to the earth, vr is the radar’s 
velocity vector and λ is the wavelength of the radar. After some manipulation, the third equation is 
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where vrx, vry, vrz are the components of the radar’s velocity vector.  

Spatial Frequency Equation 

For a given spatial frequency, υ, assuming a one-dimensional linear array, the third registration 
equation was derived from 

 ( )
υ

λ
⋅

=
k d  (H-5)

where d is the interelement spacing vector along the array’s horizontal axis. After some manipulation, the 
third equation is 

 ( ) ( ) ( )3( , , ) ( ) 0r x r y r z sF x y z x x d y y d z z d Rυλ= − + − + − − =  (H-6)

where dx, dy, dz are the components of d. 

In order to find solutions for x, y and z, an iterative Newton-Raphson method [H-15] was used until 
the method converged to a solution. The initial point for the iteration was calculated from a spherical 
earth model and was chosen to be near the point of interest, Pe. This helped the Newton-Raphson method 
rapidly converge to a solution for Pe as opposed to its mirror point. A check was performed to ensure that 
the result for a side looking radar was on the correct side of the platform. 
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Atmospheric Propagation Model 

Typically the 4/3rd earth-radius model [H-16] is used as an approximation to compensate for normal 
atmospheric refraction. This model, however, is only accurate for altitudes up to 1 or 2 km. Ray-tracing 
and parabolic equation methods are more accurate but are often computationally intensive. As a result, we 
turned to propagation models developed for the GPS. In general these models are empirically based, are 
more accurate than the 4/3rd earth-radius model, and are relatively easy to implement. Also, the MCARM 
radar’s operating frequency is within the range of frequencies (1-2 GHz) supported by the models. 

In the GPS literature excess path delay (EPD) refers to the difference in time it takes for an 
electromagnetic wave (ray) to travel between two points in free-space versus the time it takes the wave to 
travel between the same two points through the atmosphere. EPD occurs because the velocity of an 
electromagnetic wave decreases when propagating through the atmosphere, thereby increasing the time it 
takes for it to travel. EPD also includes the delay that occurs at smaller elevation angles due to 
atmospheric bending. Even though these two phenomena are referred to as delays, they are often given in 
measurements of length. 

Since the MCARM radar flew at an altitude of 3 km we were only interested in propagation models 
of the tropospheric layer (from the ground to about 12 km). Therefore, assuming a neutral (nondispersive) 
atmosphere, the tropospheric EPD is expressed as the sum of two terms: the first represents the delay due 
to the velocity decrease and the second denotes the delay due to bending. The EPD is given in meters as  

 ( ) 1total
trop bD n r dr δ⎡ ⎤= − +⎣ ⎦∫  (H-7)

where n(r) is the refractive index along the ray path, r, and δb denotes the ray path bending term.  

Equation (H-7) has been widely studied and is dependent on the index of refraction or its more 
common representation called refractivity, N, where N = (n – 1)106. The refractivity is composed of two 
parts, hydrostatic refractivity and nonhydrostatic refractivity, often referred to as wet refractivity. These 
components, and thus the refractivity, are dependent on a variety of atmospheric factors such as 
temperature, dry air pressure, water vapor density, etc.  

The current empirical models used for modeling the first term in (H-7) have the general form given 
by 

 )()( '' θθ wetwethydhydtrop MDMDD +=  (H-8)
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where D’hyd is the hydrostatic zenith delay, Mhyd is the hydrostatic mapping function, D’wet is the wet 
zenith delay, Mwet is the wet mapping function, and θ is the elevation angle [H-17]. The zenith delays are 
the delays incurred by a ray traveling perpendicular to the earth’s surface and the mapping functions 
modify the zenith delays to include elevation angle for rays traveling at a slant to the earth’s surface. The 
most accurate models of the form given by (H-8) were developed by Herring [H-18] and Neill [H-19] and 
are valid for elevation angles as small as 2-3 degrees. These models have an error of less than 1 meter 
under normal conditions. 

Typically, the amount of tropospheric delay that can be expected is about 25 meters starting from the 
top of the troposphere at an elevation angle of 5 degrees [H-20]. The delay decreases with decreasing 
altitude or increasing elevation angle. For our research, the tropospheric delay was ignored because the 
MCARM radar flew at a low altitude and its range resolution was 120 meters. On the other hand, the 
delay might become significant for KA STAP algorithms using data having a resolution of 25 meters or 
less. 

Next, in order to evaluate the 
significance of, δb, the second term in 
(H-7), a numerical analysis was 
performed. It is known that significant 
ray path bending can occur especially 
at higher altitudes and low elevation 
angles. To estimate the effect of 
tropospheric bending on registration, 
we determined the displacement, Δx, 
between where a straight-line path 
hits the ground and a bent path 
starting from the same position hits 
the ground. 

Consider two ray paths of the 
same length, R, that start from the 
same point (x0, h0), but have different 
initial elevation angles as shown in 
Figure H - 3. The path of the first ray 
was determined without considering 
bending while bending was 
considered for the second.  

  

 
Figure H - 3.  Model For Numerical Analysis Of  

Tropospheric Bending. 
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To model tropospheric bending it was assumed that the refractive index has an exponential profile as 
expressed by 

 ( ) -1 e hn h βα= +  (H-9)

where h is height in meters, α = 315x10-6 and β = 0.136x10-3 m-1 (α and β are derived from standard 
atmospheric parameters) [H-21]. Since the refractive index is only dependent upon height, a two-
dimensional spherical earth model was employed. Subsequently, the troposphere was modeled by 
dividing it into sub-layers with each sub-layer having a thickness, Δh, and a constant index of refraction 
determined by (H-9). Then a ray path with a starting height of h0 and an initial elevation angle of θ0 was 
calculated using Snell’s Law in spherical coordinates which is given by 

 
1 1 1sin sini i i i i in r z n r z+ + + =  (H-10)

where ni is the refractive index of the ith sub-layer, 
ri is the distance of the ray to the earth’s center of 
mass from the ith sub-layer, and zi is the zenith 
angle (90º - θi) at which the ray leaves the ith sub-
layer.    

Figure H - 4 is a plot of the displacement 
between a straight-line ray path and a bent ray path 
as a function of the straight-line path’s initial 
elevation angle for an altitude of 12 km (worst 
case scenario). The results show that the 
displacement and, therefore, δb is negligible. Even 
for the small elevation angles (long trajectories) 
the displacement is only a few of centimeters. 

  

 
Figure H - 4.  Plot Of Displacement Due To 

Tropospheric Bending (Altitude 12 Km). 
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EQUIVALENT SECONDARY DATA 

Ward's general clutter model [H-22] is employed to determine whether or not available secondary 
data may be useful in estimating the clutter covariance matrix of a test range sample. Ward approximates 
a continuous field of clutter by modeling the clutter return from each range sample as the superposition of 
a large number of independent point 
scatterers that are evenly distributed in 
azimuth about the radar. For simplicity, we 
assume unambiguous range.  

 As illustrated in Figure H - 5, let a 
range sample be subdivided into a total of Nc 
clutter patches such that each patch has an 
angular extent given by Δφ = 2π/Nc. The 
location to the center of the kth clutter patch 
in the lth range sample is specified by a slant 
range, Rl, and an azimuthal angle, φk. The 
slant range is determined by the elevation 
angle, θl. The airborne radar platform is 
assumed to be moving along the x-axis with 
a velocity, vr.  

Consider the clutter return from the kth clutter patch in the lth range sample. Treating the patch as a 
point scatterer, the down-converted and match filtered response in the nth spatial channel due to the mth 
pulse of the coherent processing interval is given by 

 e  = )   +   (2j lklk nm
lknmlkx υωπα  (H-11)

where the normalized Doppler frequency is 
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the normalized spatial frequency is 
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λ
υ kllk

d sin cos  =  (H-13)

αlk is the complex amplitude of the lkth clutter patch, fr is the pulse repetition frequency, λ is the 
wavelength of the transmitted wave, and d is the horizontal interelement spacing of the radar array. 

 
Figure H - 5.  Diagram Of Ward’s General Clutter 
Model And The Location Of Competing Ground 

Clutter For Single-Bin Post-Doppler STAP. 
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Summing over all of the clutter patches in the lth range sample, the total response in the nth channel due to 
the mth pulse is 
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(H-14)

Note that the various clutter patches contribute to the total response separately, with different 
normalized Doppler and spatial frequencies and complex amplitudes determined by the scattering 
properties of each patch. 

The clutter covariance matrix for the lth range sample is expressed as 
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where E[•] denotes the expectation operator, H is the conjugate transpose and vlk is the space-time 
steering vector expressed by 

 )()( lklklk υω abv ⊗=  (H-16)

which is the Kronecker matrix product of the temporal steering vector, 

 [ ]T2)1(2 ,,,1)( lklk Mjj
lk ee πωπωω −= Kb  (H-17)

and the spatial steering vector, 

 T2 ( 1)2( ) 1, , ,lk lkj j N
lk e eπυ πυυ −⎡ ⎤= ⎣ ⎦a K  (H-19)

Hence, estimation of the clutter covariance matrix reduces to the estimation of E[|αlk|2], the mean-
squared value of the complex amplitude magnitude for each clutter patch in the range sample, assuming 
there is no mismatch in the steering vectors. 
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Next, assume the test sample in which a target is to be detected is located in the lth range sample. 
Since Ml, the clutter covariance matrix of the lth range sample is unknown, the objective is to select 
secondary data from other range samples in order to estimate Ml. Suppose attention is focused on the (l′)th 
range sample where l′≠l. The question that arises is, "Is the clutter in the (l′)th range sample representative 
of the clutter in the lth range sample?"  This will be the case provided that for each clutter patch in the lth 
range sample having a specific mean-square complex amplitude magnitude and a specific pair of 
normalized Doppler and spatial frequencies there is a corresponding clutter patch in the (l′)th range sample 
having approximately the same mean-square complex amplitude and approximately the same normalized 
Doppler and spatial frequencies. 

Consider the (k′)th clutter patch in the (l′)th range sample. The normalized Doppler and spatial 
frequencies are ωl’k’ and υl’k’, as given by (H-12) and (H-13). Assume ωl′k′ = ωlk. This implies that cosθl’ 
sinφk′ = cosθl sinφk. As a result, υl′k′ = υlk. We see that if two clutter patches, each in a different range 
sample, have the same normalized Doppler frequency, then they also have the same normalized spatial 
frequency. 

Let the normalized Doppler and spatial frequencies for a clutter patch equal ω0 and υ0, respectively. 
Assuming a flat earth, the constant Doppler frequency contour for ω0 is a hyperbola given by  
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where h is the height of the radar platform and (xc, yc) are the coordinates of the clutter point scatterer. 
Similarly, the constant spatial frequency contour for υo is a hyperbola given by 
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It can be shown that the hyperbola given by (H-19) is identical to the hyperbola given by (H-20) 
using the fact that ωo = (2vr/frd)υo. 

 

Even though the pairs of normalized Doppler and spatial frequencies remain invariant from one range 
sample to another and even if clutter patches are identified such that ωl′k′ = ωlk, it is unlikely in a 
nonhomogeneous clutter environment that E[|αl′k′|2] = E[|αlk|2] for all Nc pairs of clutter patches in the two 
range samples. 
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STAP Algorithm  

The concept of equivalent secondary clutter data is still meaningful though, on a selective basis. For 
example, consider post-Doppler adaptive beamforming in which non-adaptive Doppler filtering is first 
performed separately on the M pulses from each array element. Because the residual clutter in normalized 
Doppler and spatial frequencies is confined to a localized region along the clutter ridge, it is no longer 
necessary that the range sample from which secondary data is being collected be equivalent in its entirety 
to the range sample in which the test is located. Now the clutter in only a few patches of each range 
sample need to be equivalent, as illustrated in Figure H - 5, for our approach to be successful in canceling 
the dominant ground clutter. 

Corrections for Deleterious Factors 

One of the advantages of the sliding window method of secondary data selection is that the data, 
including the test sample, are close in range. As a result, they are less susceptible to deleterious factors 
such as differences in power due to range, clutter reflectivity, and vertical gain and differences in phase 
due to array misalignment. Since our post-Doppler secondary data selection algorithm may choose data 
which extend over a larger range, corrections were performed to account for these factors. The following 
is a description of these corrections which were applied to each CPI in a preprocessing step before 
Doppler filtering and STAP were done. More specifically, the corrections were applied to each space-time 
snapshot. A space-time snapshot for a radar with N elements and M pulses per CPI is an MN x 1 vector 
defined as 

 [ ]T,1,1,0 ,,, lMlll −= xxxχ K  (H-22)

where xm,l is an N x 1 vector of array element outputs of the mth pulse and lth range sample also known as a 
spatial snapshot. 

Other factors including internal clutter motion (ICM), channel mismatch and range walk are 
discussed in [H-23]. 

Array Misalignment 

One of the assumptions made in the analysis of equivalent secondary data was that the Doppler 
frequency contours and the spatial frequency contours were aligned. However, in practice, this is usually 
not true. 
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In order for the array to be aligned 
properly the velocity vector of the radar, vr, 
should point in the same direction as the 
horizontal axis of the array, d. This causes 
the Doppler and spatial frequency contours 
to overlap. On the other hand, when the two 
vectors point in different directions, because 
of crabbing or pitch of the radar platform, 
the contours do not overlap and cause an 
increase in the rank of the clutter. Figure H - 
6 shows a normalized angle-Doppler plot 
produced from the MCARM radar data for 
two range samples. 

To correct for misalignment, the ground 
position of the 0 Hertz spatial frequency 
contour (mainbeam) for each range sample, 
using (H-1), (H-2), and (H-6), was calculated. Next, a unit vector from the radar’s location pointing to 
each ground position is created. Then, using (H-3), the Doppler frequency of the iso-Doppler contour 
passing through each ground position was determined (0 Hertz if no misalignment). From [H-24], an M x 
N correction matrix is formed using a linear phase taper and is defined as 
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where Δωl is the amount of normalized Doppler frequency shift from 0 Hertz calculated for the lth range 
sample. The correction matrix was reshaped into an MN x 1 vector and applied to each space-time 
snapshot as defined by 

 align
l l l=χ χ C% o  (H-24)

where ○ is the Hadamard matrix product. This shifts the Doppler frequency of the radar return data 
thereby compensating for the misalignment and aligning the two frequency contours (see Figure H - 7). 

 
Figure H - 6.  Clutter Ridge (Backlobe Not Shown) 
Plotted From MCARM Flight 5, Acquisition 575 
Radar Return Data Before Array Misalignment 

Correction.  The Dashed Line Represents 
Theoretical Clutter Ridge With No Misalignment. 
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Power and Reflectivity 

Consider two of the kth clutter patches, one in the lth range sample and one in the (l’)th range sample, 
and assume there is no array misalignment. Using Ward’s general clutter model [H-22], the mean-squared 
value of the complex amplitude magnitude of the lkth clutter patch given by E[|αlk|2] = σ2ξlk where σ2 
represents the thermal noise power per element and ξik is the clutter-to-noise ratio (CNR). The CNR is 
given by 
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where 

 
lllkolk RR ψφθφσσ sec),( ΔΔ=  (H-26)

Gt(φk,θl) is the transmit gain, g(φk,θl) is the element pattern, No is the spectral density of the receiver noise 
power, Ls accounts for system losses, σo(φk,θl) is the area reflectivity and ψl is the grazing angle. 

  

 
Figure H - 7.  Clutter Ridge Plotted From MCARM Flight 5, Acquisition 575 Radar Return Data After Array 

Misalignment Correction.  The Dashed Line Represents Theoretical Clutter Ridge With No Misalignment 
Which Is Almost Covered By The Corrected Measured Clutter Ridge. 



 

 

129 

 

We are interested in formulating a correction, clk, such that ξl’k = clkξlk. If we presume that 
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it follows that 
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The area reflectivity, σo, for the lkth clutter patch was approximated using the constant gamma model 
[H-25] given by 

 
lo ψγσ sin=  (H-29)

where γ is a terrain dependent parameter. It is important to note that (H-28) is invariant with respect to 
azimuthal angle and, therefore, is the same for all k clutter patches in a range sample. Substituting (H-28) 
into (H-27) and assuming γl’ = γl (same type of terrain in each cell) produces the following correction for 
power and reflectivity given by, 
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where a range sample from the middle of the range represents the (l’)th range sample in (H-29) and was 
fixed for all other samples. This correction was then applied to each space-time snapshot creating a 
corrected snapshot defined by  

 power
l l lc=χ χ%  (H-31)

The square root of the correction was taken since the radar return data was in voltage and not power.  

Vertical Gain Correction 

In the previous section we assumed that the gain in different range samples was approximately the 
same (as implied by (H-26)). For horizontal gain this is a good assumption since the iso-Doppler contours 
lie along azimuthal angles. However, depending on the vertical beamwidth of the radar, the orientation of 
the array, the roll of the airborne platform, and atmospheric propagation, the vertical gain can vary with 
range. Consequently, this would impact our approach. 
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To correct for this problem, an estimate of the vertical gain pattern was calculated and the result was 
used to normalize the return data. Alternatively, we could have used the measured gain patterns that were 
provided. Though they were measured on the ground under controlled conditions, and may not be 
representative of the actual gain pattern when airborne. 

In order to determine the vertical gain pattern, the return data was non-adaptively filtered in space and 
time. This was accomplished by first filtering the data in Doppler. Then an estimate of the power 
returning from each range-Doppler cell was obtained by using 

 2H
,( )ml lk m lP υ= a x  (H-32)

where υlk is the spatial frequency in the kth patch of the lth range sample corresponding to the same angle 
of arrival (AOA) as the iso-Doppler contour of the mth

 Doppler bin. The powers were then averaged over 
all M Doppler bins for each range sample as given by 
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A polynomial fit of the results of (H-32) was made in order to smooth any anomalies. The correction 
for vertical gain in the lth range sample was then normalized by the maximum average power across all 
range samples and is defined as 
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It was applied to each space-time snapshot creating a corrected snapshot expressed by 

 l
l vgain

lc
=

χχ%  (H-35)

Figure H - 8 is a plot of the relative estimated vertical gain of a MCARM CPI. It can be seen from 
Figure H - 8 that the returns from range samples near the radar have significantly less gain then those 
beyond range sample 300. This occurred even though the array for this acquisition was tilted down from 
horizontal over 10 degrees due to roll of the platform and array orientation. 
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RADAR TERRAIN IMAGE 

It is important to realize that digital terrain 
data is time dependent. There are several 
factors that can modify the terrain environment 
over time such as: weather, seasonal changes, 
man-made development, etc. As a result, digital 
terrain data may not represent the terrain being 
illuminated by the radar. 

In order to gain some insight into how well 
the terrain data compared with what the radar 
“saw”, a rudimentary image of the terrain was 
created from the radar return data. If there was 
a correlation between the digital land 
classification data and the clutter returns, then it 
should be evident from the image. On the other hand, if the terrain image did not correlate well with the 
terrain data it would serve as an indicator that other factors, as mentioned above, might have altered the 
environment such as a weather front. 

The terrain image was produced by using the results from (H-31) since they represent the estimated 
power returned from each range-Doppler cell. Given the relationship between the Doppler of ground 
clutter and azimuthal angle, it was possible to map the powers. However, because of the narrow 
beamwidth of the radar, the horizontal gain pattern was estimated and used to normalize the powers 
similar to the vertical gain correction.  

To estimate the horizontal gain, the powers from (H-31) were averaged over all L-1 range samples for 
each mth Doppler bin as defined by 
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A polynomial fit of the results of (H-35) was made (see Figure H - 9). Then gain corrections given by 
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and (H-33) were applied to the powers thereby normalizing them as defined by 

 
Figure H - 8.  Relative Estimated Vertical Gain 

Pattern From MCARM Flight 5, Acquisition 575. 
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The final results from (H-37) were registered using (H-1), (H-2), and (H-4) and geographically 
plotted. 

The resolution of the terrain image using a single 
CPI is dependent on the DOF of the radar. Yet, a 
composite image using multiple CPIs can be produced, 
by normalizing the results of (H-37) for each CPI by the 
average of all the individual CPI results.   

Figure H - 10 and Figure H - 11 shows a comparison 
of a terrain image generated from multiple MCARM 
CPIs with the digital land classification map of the same 
area. It can be seen from these images that large 
homogeneous terrain features such as bodies of water 
(blue in color) can clearly be identified. Other features 
such as urban areas and some possible discretes (red in 
color) are evident as well. 

 
 

Figure H - 10.  NLCD Terrain Data Representing 
Terrain Illuminated By MCARM Flight 5, 

Acquisition 575. 

 

Figure H - 11.  Radar Terrain Image Generated 
Using 3 Cpis From MCARM Flight 5 (Acquisitions 

575, 576, And 577). 

Figure H - 9.  Relative Estimated Horizontal 
Gain Pattern From MCARM Flight 5, 

Acquisition 575. 
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The terrain image can also aid in evaluating and possibly correcting for errors in registration 
assuming enough distinguishing features can be identified between the terrain image and the digital 
terrain data. 

Secondary Data Selection Algorithm 

The secondary data selection algorithm is dependent upon the environment of the area of interest and 
the type or types of digital terrain data used to represent the area. Presented are two algorithms: one using 
digital land classification data and one using digital elevation data. 

Algorithm for land classification data  

Given a Doppler of interest, the position of 
four boundary points defining the area of each 
range-Doppler cell was calculated using (H-1), 
(H-2), and (H-4) as illustrated in Figure H - 12. 
Since these boundary points will probably not 
align with latitude and longitude like the digital 
land classification cells, a rectangle bounding 
them was determined that does align. It should 
be noted that this provides an approximation to 
a range-Doppler cell’s true boundary and was 
done for simplicity. However, more accurate 
results can be obtained by subdividing the 
range-Doppler cells and applying the same 
procedure on the sub-areas. 

Once the bounding rectangle for a range-
Doppler cell was defined, the database was 
queried to determine the terrain cell count for 
each type of land classification contained 
within the rectangular area. The results were 
stored in a 21-element vector with each element 
corresponding to a land classification type (see 
Table H - 2). The vector was then normalized by dividing it by the total number of terrain cells contained 
in the range-Doppler cell. This was necessary in order to account for the variation in area of the range-
Doppler cells. The normalized vector for the lth range sample is represented by 

 T
,1 ,2 ,21, , ,l l l lt t t⎡ ⎤= ⎣ ⎦t K  (H-39)

 
Figure H - 12.  Determining Land Classifications 
Types Contained Within A Range-Doppler Cell 
For Secondary Data Selection Algorithm.  Black 
Dots Represent Centers Of Land Classification 

Terrain Cells. Black Squares Represent Boundary 
Points Of Range-Doppler Cell. Dashed Rectangle 

Approximates Area Of Range-Doppler Cell.  
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Once this was performed for all of the range-Doppler cells at the Doppler of interest, the vectors of 
potential secondary data cells were compared with the vector of the test cell by computing the squared 
error between their elements. This gave a measurement or grade of how close the (l’)th range-Doppler cell 
matched the test cell and is defined by 

 ( )
21 2

' , ',
1

l l i l i
i

grade t t
=

= −∑  (H-40)

where tl,i is the ith element of the test cell terrain vector and tl’,i is the ith element of the of the potential 
secondary data terrain vector. Cells with lower grades matched the test cell more closely. The grades were 
then sorted and the top cells were chosen as secondary data. 

Although we chose a squared error minimal distance estimator for grading, others may be used. Also, 
our algorithm equally weights each of the land classification types. In practice, certain types of land 
classifications produce stronger clutter than others. Therefore, a weight vector, perhaps derived from 
terrain radar cross-section (RCS) measurements, could be applied to the terrain vectors before grading. 
This would create an adjusted terrain vector defined as 

 
l l t=t t w% o  (H-41)

where 

 [ ]T1 2 21, , ,t w w w=w K  (H-42)

 
Figure H - 13.  Surface model of range-Doppler cell generated from digital elevation data. The backscattering 
angle, φ, is the angle between a patch normal, n, and the unit vector, k, pointing to the patch from the radar. 

The black dots represent cell grid-points registered on a smooth earth. 
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Algorithm for Elevation Data 

Assuming a smooth earth, a grid with a resolution matching that of the digital elevation data was 
created for each range-Doppler cell. These cell grid-points were then registered to the earth using (H-1), 
(H-2), and (H-4). In order to determine the elevation at each grid-point in the cell, a nearest neighbor 
interpolation was performed with the elevation terrain grid corresponding to each cell. Because of the 
inclusion of elevation data, the slant ranges to each cell’s grid-points were recomputed and the cells were 
sorted into their proper range bins by the average slant range of their grid-points. Next, a mesh of 
triangular patches for each cell was created using Delaunay triangulation [H-26]. This produced an 
approximate three-dimensional surface which modeled the actual terrain.  

In order to make comparisons between cells based upon their surface models, the backscattering angle 
of each patch contained within a cell was determined (see Figure H - 13 above). A 3-element terrain 
vector for each cell was developed which included the average backscattering angle of its patches, the 
standard deviation of the backscattering angles, and the percent of shadowed (obscured from radar due to 
terrain) patches. The potential secondary data terrain vectors were then compared to the test cell vector 
using a squared error measure as was done in (H-39), and the top cells were chosen as secondary data. 

Figure H - 14 and Figure H - 15 are examples of how the KA elevation algorithm chose secondary 
data in a mountainous region.  

Figure H - 14.  Example Of KA Secondary 
Data Selection Algorithm Using Elevation Data 

To Identify Shadowed Cells (Blue) In A 
Mountainous Terrain. The Radar Is Located 
North-West Of This Area With Its Mainbeam 

Pointing South-East. 

Figure H - 15.  Example Of KA Secondary Data 
Selection Algorithm Using Elevation Data To Chose 

Secondary Data (Yellow) That Matches The Test 
Cell (Red) In A Mountainous Terrain. The Radar Is 

Located North-West Of This Area With Its 
Mainbeam Pointing South-East. 



 

 

136 

 

Improving Sample Support 

One of the practical limitations of STAP is the amount of sample support required for proper 
estimation of the covariance matrix as analyzed in [H-1]. Although the amount of potential samples to 
choose from is fixed by the radar’s 
operating parameters, there is a way 
to improve the sample quality using 
terrain data and some of the 
corrections previously described.  

As mentioned previously, post-
Doppler STAP confines the residual 
clutter in normalized Doppler and 
spatial frequencies along the clutter 
ridge. Instead of choosing 
secondary data along the Doppler of 
interest, which limits our KA 
selection algorithms to a small 
region of terrain, the search space 
can be expanded to include all 
range-Doppler cells. Therefore, 
secondary data with a higher 
quality match to the test cell should 
result (see Figure H - 16). 

Once the best matches are 
determined an M x N correction matrix for a range-Doppler cell in the mth Doppler bin and the lth range is 
expressed by 
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where Δω is the difference in normalized Doppler frequency between the secondary data cell and the 
Doppler of interest and Δυ is the difference in normalized spatial frequency between the secondary data 
cell and the spatial frequency of interest. The correction matrix can then be applied to the space-time 
snapshots for each secondary data cell and post-Doppler STAP may be subsequently performed. 

 

 

Figure H - 16.  Improving Sample Support By Shifting 
Range-Doppler Cells To The Iso-Doppler Of Interest 

Which Have Similar Terrain As That Of The Competing 
Ground Clutter Patch. 
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Secondary Data Guard Cells 

As part of our approach, issues concerning range-Doppler spread were addressed. During the analysis 
of the MCARM data containing the MTS simulated targets, we noticed that a certain amount of range-
Doppler spread occurred. This may have been caused by numerous factors. As a result, cells experienced 
signal contamination from neighboring cells. This violates the requirement that secondary data be iid 
when used in estimating the clutter covariance matrix. In order to mitigate this effect, guard cells were 
placed around the range-Doppler cells selected for secondary data. Including these secondary data guard 
cells (SDGC) is analogous to the standard practice of placing guard cells around the test cell. The number 
of SDGC used was chosen by the amount of spread measured. 

RESULTS WITH MEASURED DATA 

The results presented compare the sliding window method of secondary data selection to our KA 
method. For both methods, the corrections in Section 3.4 were applied to the radar return data before 
STAP was performed. Only the KA algorithm utilizing digital land classification data was employed 
since the Delmarva area that the MCARM radar illuminated was flat (less than 90 meters between 
maximum and minimum elevations). It should be noted that in areas of homogeneous terrain, the KA 
method selected the same samples as the sliding window method. All secondary data was chosen from the 
same Doppler of interest as the competing ground clutter. Finally, a single-bin post-Doppler STAP 
algorithm was used with a 65-dB Chebyshev temporal taper. 

A CPI from flight 5, acquisition 151, of the MCARM program, was processed which contained 
simulated target signals from the MTS. A modified sample matrix inversion (MSMI) test statistic [H-27] 
was plotted versus range bin for each of the results obtained. The ratio of the MTS signal’s MSMI value 
to the range averaged MSMI value is our preferred performance measure (PPM) in this paper. 

 
Figure H - 17.  Sliding Window Method Using 

Full Array. 

 
Figure H - 18.  Knowledge-Aided Approach Using Full 

Array. 
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In Figure H - 17 and Figure H - 18, all 22 channels of the MCARM array were used for STAP. A 
total of 44 secondary data samples were chosen for the estimation of the covariance matrix. Guard cells 
were placed around the cell under test. However, no secondary data guard cells were included. The 
simulated target is located at range bin 450 (see arrow) and its MSMI value and PPM are given in each 
figure. The range averaged MSMI value is also given and represented by a dashed line. 

The PPM of our KA approach, as illustrated in Figure H - 17 and Figure H - 18, was approximately 
4.7 dB better than the sliding window method. Notice that the KA approach not only raised the MSMI 
value of the target but it also lowered the range averaged MSMI statistic. 

As mentioned above, there was some range-Doppler spread in the radar data. Figure H - 19 and 
Figure H - 20 show the results obtained when guard cells were placed around the secondary data as well 
as the cell under test. It can be seen that the range averaged MSMI value was significantly lowered, in 
both cases, by 6-8 dB. Furthermore, the PPM of the MTS target, using the sliding window method and 
SDGC, was almost 3 dB better. However, the KA approach did not do as well with SDGC. This may be 
caused by the reduction in sample support due to the inclusion of guard cells. The grading algorithm of 
the KA approach represented by (H-41) may need to be examined more closely when there is a small pool 
of potential secondary data. 

 
Figure H - 19.  Sliding Window Method 
Using Full Array And Secondary Data 

Guard Cells. 

 
Figure H - 20.  Knowledge-Aided Approach 

Using Full Array And Secondary Data Guard 
Cells. 

In Figure H - 21 and Figure H - 22, the returns from only the top row of the MCARM array, 
consisting of 11 of the 22 available channels, were used for STAP to compensate for the reduction in 
available secondary data because of SDGC. Although this reduces the number of degrees of freedom for 
the adaptive filter, it also reduces the amount of sample support needed from 44 samples to 22. The 
results show an increase in performance, for both cases, and the KA approach performed best.  
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Figure H - 21.  Sliding Window Method Using Top 

Half Of The Array And Secondary Data Guard 
Cells. 

 
Figure H - 22.  Knowledge-Aided Approach Using 

Top Half Of The Array And Secondary Data 
Guard Cells. 

However, the most notable results can be seen when comparing Figure H - 17, the sliding window 
method using the full array and no SDGC, with Figure H - 22, the KA method using half of the array with 
SDGC. The range averaged MSMI value was lowered by 7 dB while the MTS MSMI value increased 
slightly, resulting in almost an 8 dB increase in the PPM. Similar results were obtained for other CPIs. 
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CONCLUSION 

In this paper we present solutions to some of the practical problems that arise when trying to 
incorporate a priori digital terrain data into STAP.  The issues addressed include spatially registering the 
radar data with the terrain data, correcting for factors that affect the performance of STAP, choosing 
secondary data based on land classification and elevation terrain data, generating a terrain image from the 
radar returns to evaluate the environment, improving the quality of sample support with the aid of terrain 
data, and mitigating the effects of range spread. 

We compared our KA approach to the standard sliding window method of secondary data selection. It 
is important to note that the sliding window method has an inherent advantage over most selection 
algorithms because it chooses secondary data near in range to the sample under test. As a result, it does 
not suffer as much from factors such as differences in power due to range, clutter reflectivity, and vertical 
gain and differences in phase due to array misalignment, all of which vary as a function of range. 
Therefore, the corrections we presented will aid any secondary selection algorithm which may chose 
samples that are not close in range.  

 
The results illustrate the benefits of using terrain information, a priori data about the radar, and the 

importance of statistical independence when selecting secondary data for improving STAP performance. 
We have demonstrated that almost an 8 dB improvement can be gained. 

Further study is needed to determine how well terrain classification data correlates with airborne 
radar clutter statistics.  In addition, research on fusing a radar terrain image with digital terrain data 
should be pursued, thereby producing a more accurate model of the terrain environment. The fused 
imaged will help, for example, to account for time varying effects such as weather. Other types of terrain 
data and knowledge sources should be studied as well in order to explore their potential as an aid for 
STAP and to determine how to integrate multiple knowledge sources. This will aid in excising additional 
types of clutter including discretes, moving vehicles, and known targets that affect STAP performance 
[H-29]. Further study is also required to establish if secondary sample support can be improved by using 
our approach described in Section H-5.2. This would be a preferable solution to the problem of limited 
sample support as oppose to reducing the DOF of the adaptive filter. 

Future work will also include integrating this novel approach into the AFRL Signal Processing 
Evaluation, Analysis and Research (SPEAR) Testbed, configuring and evaluating it with several STAP 
algorithms and measured GMTI radar datasets.  The SPEAR Testbed provides a means of assessing 
performance against a variety of signal processing metrics to aid in the comparison of multiple competing 
adaptive signal processing approaches. 

An ultimate goal is to incorporate knowledge sources in the filter, detection, and tracking stages with 
the ability to share information between them [H-30]-[H-31]. 
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ADDENDUM TO APPENDIX H.  

 CONVERSION BETWEEN STANDARD GEODETIC COORDINATES AND ECEF 
COORDINATES 

This addendum presents the equations necessary to convert between standard geodetic coordinates 
(latitude, longitude, and height) and ECEF Cartesian coordinates (x, y, and z). Figure H - 1 is a diagram 
representing both coordinate systems. 

To convert from geodetic coordinates to ECEF coordinates the following system of equations can be 
used and is given by 

 )cos()cos()( lonlathvx +=  

)sin()cos()( lonlathvy +=  
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where 
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a is the semi-major axis of the reference ellipsoid, h denotes height, lat is the latitude, lon is the longitude, 
e is the eccentricity defined as e2 = 2f – f2 with f being the inverse flattening of the ellipsoid. 

To convert from ECEF coordinates to geodetic coordinates an iterative method from [H-28] was used. 
The conversion is giving by  
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where 



 

 

142 

 

 22 yxp +=  (H-47)

 
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= −

r
a

p
zu

2
1 ef1tan  (H-48)

and 

 22 zpr +=  (H-49)

This method converges to an accurate result very quickly (usually within 2 iterations).  
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APPENDIX I 
WAVEFORM DIVERSITY FOR DIFFERENT MULTISTATIC 

RADAR CONFIGURATIONS 
By:  I. Bradaric, G.T. Capraro, Capraro Technologies, Inc.; M. Wicks, AFRL Sensors Directorate 

INTRODUCTION 

Sensors as Robots is a US Air Force (USAF) project that is performing research in applying 
knowledge based techniques to radar signal processing. A sensor system’s performance can be enhanced 
by changing a sensor’s algorithms as the environment changes. It has been shown that if an airborne radar 
system is aware of certain features of the earth (e.g. land/sea interfaces) and its surroundings, then it can 
intelligently improve performance. We need to leverage this approach beyond a single sensor onboard a 
single platform to multiple sensors on multiple platforms performing distributed sensing. 

The monolithic military adversary of the twentieth century is no longer the number one threat. Single 
function radar systems are necessary but not sufficient for combating terrorism.  The desire to AF2T2EA4 
by the USAF will require changes to how we modify, build, and deploy radar systems. Coherent signal 
level fusion of homogeneous sensors and data fusion of heterogeneous sensors are being studied and 
implemented in order to obtain sensor coverage consistent with AF2T2EA4. However, we must also 
integrate these radar systems with heterogeneous sensors (e.g. acoustic, IR, EO) located on the ground, in 
the air, in space, or even underground. The radar systems of the future must be intelligent and integrated 
within sophisticated systems of heterogeneous sensors that operate on many hypotheses at the same time. 
Within this paper we make a case that there are obtainable benefits of pre-detection fusion of multiple 
radar receivers. Our approach is based upon the development and use of a multistatic ambiguity function.  

The ambiguity function is a widely used tool for the analysis of radar systems. In the case of 
monostatic radar systems, the ambiguity function was shown to play an important role in quantifying 
system performance measures such as probability of detection, probability of false alarm, estimation 
accuracy, resolution, clutter cancellation, etc. In recent years there have been considerable efforts to 
formulate the ambiguity function for bistatic and multistatic radar systems [I-1]-[I-6]. In [I-1] the authors 
developed the ambiguity function for bistatic radar systems. This work was extended in [I-2] to the case 
of multistatic radar systems. In [I-3]-[I-5] the multistatic ambiguity function was used for assessing 
waveform selection and coherent signal processing strategies. It was demonstrated through examples that 
multistatic radar system performances can be improved by shaping the multistatic ambiguity function 
through waveform selection and adequate weighting of different receivers during pre-detection fusion.  
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In this work we follow the approach presented in 
[I-3]-[I-5]. In [I-3] the shaping of the multistatic 
ambiguity function was achieved by solely relying 
on the waveform selection process. In [I-4] the 
shaping was accomplished by optimizing the 
weighting coefficients associated with different 
receivers, while in [I-5] these two approaches were 
combined. This time we add the third way of shaping 
the ambiguity function that might be at our disposal 
– the adequate repositioning of the sensors. In all 
works mentioned above the multistatic system 
configuration was assumed to be fixed. However, in 
some applications it might be possible to move the 
transmitter (and/or receivers) to achieve better 
performance. It is our goal in this paper to provide 
some preliminary simulation results that combine 
waveform selection, receiver weighting and sensor placement strategies. These results will hopefully be a 
good starting point and serve as a guideline for future multistatic fusion rule development. 

MATHEMATICAL BACKGROUND 

In this section we will briefly outline the basic system assumptions and concept behind the multistatic 
ambiguity function. A more in depth mathematical framework can be found in [I-1]-[I-4]. We consider a 
single transmitter multiple receiver radar system as shown in Figure I - 1. The problem formulation for the 
case of multiple transmitters is in essence very similar but requires additional signal processing at each 
receiver to form a matched filter. The corresponding analysis can be found in [I-6]. 

We assume that a coherent processing interval consists of a single pulse ( )s t  given as: 

 ( ) ( ){ }2 Re cj ts t E f t e ω= %
, 0 dt T≤ ≤  (I-1)

where Re{}⋅  denotes the real part operator, ( )f t%  is the complex envelope of the transmitted pulse, E  and 

dT  are the energy and duration of the pulse, respectively , and 2c cfω π=  is the carrier frequency.  
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Figure I - 1.  Multistatic System Geometry 
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Let the complex envelope of the ith receiver input ( )1, 2,...,i N=  be denoted by ( )tri
~ .  According to 

whether a target is absent (Ho) or present (H1), the two hypotheses are presented by:  

 ( ) ( )
( ) ( ) ( )tnetsatrH

tntrH

i
tj

aiii

ii

Dai ~~~~:

~~:

1

0

+−=

=
ωτ  

(I-2)

where ia%  is a complex gain which accounts for propagation and scattering effects along the ith path 

between the transmitter, target and ith receiver.  aiτ  and Daiω  denote the actual total delay and Doppler 

shift experienced by the transmitted signal along the ith path, and ( )tni
~  denotes the complex envelope of 

the additive noise present at the ith receiver input.  

Assuming additionally that the envelopes ( )tni
~  are complex Gaussian random processes with zero-

mean and white in quadrature components with power spectral densities 0 2iN , the signal at the output of 
the matched filter of the ith receiver becomes: 

 ( ) ( )∫
∞

∞−

−−= dtetf
N

tr
d tj

Hi
i

i
i

DHiωτ*

0

~~

 
(I-3)

where ( )tf *~  denotes complex conjugate of ( )tf~ , and Hiτ  and DHiω  denote the hypothetical total delay 

and Doppler shift experienced by the transmitted signal assuming a target present in the radar cell under 
test.  

Signals id , 1, 2, ...i N= , represent local statistics obtained at each receiver. The ambiguity function 
for the ith receiver becomes [I-2]:   

 ( ) ( )∫
∞

∞−

−−= dtetf
N

tr
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i

i
i

DHiωτ*

0

~~

 
(I-4)

The global ambiguity function is then given as a weighted sum of the bistatic ambiguity functions:  
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where 
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and ic , 1,...,i N=  are the weighting coefficients that satisfy the relationship 
1

1
N

i
i

c
=

=∑ . 

The ambiguity function ( ), , ,H a DH Daτ τ ω ωΘ  for a given target (fixed aτ  and Daω ) is a 2N - 

dimensional function.  Since we are ultimately interested in target position (defined by its coordinates, 
e.g. x , y  and z ) and its velocity vector (defined by its components, e.g. x& , y&  and z& )  it is more 
practical to express the ambiguity function as a function of these quantities. The highly nonlinear nature 
of mapping between the delays and Doppler shifts on one hand, and target coordinates and its velocity 
vector components on the other, makes the analysis of multistatic radar systems especially challenging 
and the system geometry very important. It should be pointed out that this nonlinearity does not exist in 
monostatic radar systems.  

Thus, to simplify the analysis, but more importantly, to account for the system geometry when 
formulating the multistatic ambiguity function, we align all receivers with respect to the target position 
and velocity. In addition, in order to visualize the problem we usually select two fixed dimensions to 
present the multistatic ambiguity function. For example, in [I-3]-[I-5] the range between the transmitter 
and the target cell and true target velocity direction were used. More generally, we can define the 
multistatic ambiguity function as a function of any subset of coordinates needed to fully define target 
position and velocity in a 6-dimensional parameter space.  

In this paper we will consider 2-D system geometries and concentrate on target position only. Thus, 
the multistatic ambiguity function will be presented as a function of  x  and y  coordinates only.  
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The flexibility to arbitrarily select weighting coefficients gives us one way of shaping the multistatic 
ambiguity function. The second way of shaping the ambiguity function is by changing the waveform. 
Finally, the multistatic ambiguity function can also be shaped by changing the system geometry.  In the 
next Section we will combine these three methods to improve desired system performance. 

SIMULATION RESULTS AND ANALYSIS 

We will illustrate the significance of adequate sensor 
placement, waveform selection and receiver weighting 
strategies with several examples.  Let us first consider a 
2-D multistatic system configuration with 4 receivers and 
one transmitter as shown in Figure I - 2.  

Without the loss of generality, the target is placed at 
the origin (labeled Tgt), four receivers are shown as Ri, 

1, 2,3, 4i =  and the transmitter is shown as T. The distance 
between the target and all the sensors (transmitter and 
receivers) is assumed to be 10 km.  We will assume that 
we are interrogating a relatively small area (100 m x 100 
m) as compared to distances between the sensors and that range resolution is our primary concern. In this 
example the transmitted waveform is a single pulse Barker 13 waveform with the pulse width of 44ns. We 
will also assume that all receivers are weighted equally (a reasonable assumption since all distances are 
the same). 

The multistatic ambiguity function (presented in x-y plane) is shown in Figure I - 3, while the 
corresponding 3-dB main lobe contour plot is shown in Figure I - 4.  

 
Figure I - 3.  Multistatic Ambiguity Function 

 
Figure I - 4.  Multistatic Ambiguity 

Function (3-Db Contour Plot)  

 
Figure I - 2.  Multistatic System Geometry 
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The area of the 3-dB main lobe contour in this example is 0.7886 m2. We will try to improve this 
result by combining three different approaches discussed above.  

First we will assume that positions of all 
receivers are fixed, while the position of the 
transmitter can change as long as the distance 
from the origin remains the same (10 km). 
Because of the symmetry it is sufficient to 
move the transmitter along the arc shown in 
Figure I - 5.  

Figure I - 6 shows the 3-dB main lobe 
contour area results for different transmitter 
positions (angle α was varied between 0 and 
π/2 (see Figure I - 5). 

As can be seen in Figure I - 6 in order to achieve 
the best range resolution, the transmitter should be 
placed right in the middle between receivers R1 and R2. 
This is a somewhat expected result. What might not be 
so expected is that by changing the position of the 
transmitter we can significantly improve the 
resolution. For example, for 0.1α π=  the 3-dB area 
equals 0.7886 m2, while for 0.25α π= (best case 
scenario), the 3-dB area equals 0.6012 m2 (23.76% 
reduction). This comparison is shown in Figure I - 7. 

 
Figure I - 5.  Multistatic System Geometry (Moving 

Transmitter) 

 
Figure I - 6.  3-dB Main Lobe Area Results 

(Moving Transmitter) 
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We can additionally improve the resolution by changing the transmitted waveform. We evaluated the 
3-dB contour area for two different waveforms – Barker 13 (a bi-phase waveform) and Frank 16 (a poly-
phase waveform) and for different transmitter 
positions as in the previous example. Both waveforms 
were assumed to be a single pulse with the pulse 
width of 44ns. The results are shown in Figure I - 8.  

As can be seen, Frank 16 waveform outperforms 
the Barker 13 waveform for the entire range of 
different transmitter positions. 

Finally, the third way of 
improving the system resolution (shaping the 
multistatic ambiguity function) is by changing 
the weights associated with different receivers. 
So far we have assumed the all weights are equal 
( 1 2 3 4 0.25c c c c= = = = ). For the Frank 16 
waveform and for different positions of the 
transmitter we optimized the weighting 
coefficients to achieve the minimal 3-dB main 
lobe contour area.  The optimization was 
performed using an exhaustive search on a finite 
grid with a step size of 0.05 and under the 

constraint that 
1

1
N

i
i

c
=

=∑ .  

  

 
Figure I - 7.  3-dB Contour Plot Comparison 

 
Figure I - 8.  3-dB Area Results (Waveform 

Comparison) 
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The results of the optimization are shown in Table I-1.The corresponding 3-dB  contour area 
results are shown in Figure I - 9. 
 

Table I - 1.  Optimal weighting coefficients 

Transmitter Angle Optimal Weighting Coefficients 

α=0.05π c1=0.35, c2=0.35, c3=0,00 c4=0.30 

α=0.10π c1=0.35, c2=0.40, c3=0.00, c4=0.25 

α=0.15π c1=0.40, c2=0.40, c3=0.00, c4=0.20 

α=0.20π c1=0.45, c2=0.45, c3=0.00, c4=0.10 

α=0.25π c1=0.45, c2=0.45, c3=0.05, c4=0.05 

α=0.30π c1=0.45, c2=0.45, c3=0.10, c4=0.00 

α=0.35π c1=0.40, c2=0.40, c3=0.20, c4=0.00 

α=0.40π c1=0.40, c2=0.35, c3=0.25, c4=0.00 

α=0.45π c1=0.35, c2=0.35, c3=0.30, c4=0.00 
 

 

  

 
Figure I - 9.  3-dB area results 

(optimal and non-optimal 
weighting  comparison) 

 
Figure I - 10.  3-dB contour plot comparison 
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One can see that a significant reduction in the 3-dB area is achieved by adequately changing the 
weighting coefficients associated with different receivers. For example, with 1 2 3 4 0.25c c c c= = = =  and  

0.25α π=  the 3-dB area equals 0.4831 m2.  On the other hand,  for 1 2 0.45c c= = , 3 4 0.05c c= =  and 
0.25α π= , the 3-dB area equals 0.3405 m2  (29.52% reduction).   This comparison is illustrated in  

Figure I - 10 
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APPENDIX J 
AN AIRBORNE INTELLIGENT RADAR SYSTEM (AIRS) 

By:  G. Capraro, Capraro Technologies, Inc., and M. Wicks, AFRL Sensors Directorate 

INTRODUCTION 

A design of an intelligent airborne radar system that processes information from end-to-end, i.e. filter, 
detector and tracking stages of a surveillance radar is presented. This architecture design leverages 
advancements being pursued by the W3C and the DARPA DAML program for constructing the next 
generation Internet. In the near future, advanced intelligent radar systems will cooperatively perform 
signal and data processing within and between platforms of sensors and communication systems while 
exercising waveform diversity, performing multistatic processing, and performing reconnaissance, 
surveillance, imaging and communications within the same radar system.    

The next section provides a global view of how a radar and sensor systems will be built in the near 
future, i.e. away from stove pipe systems to cooperative and sharing systems. The third section describes 
the major knowledge base components of an AIRS.  The fourth section provides an overview of how the 
AIRS processes data within different states. The last section provides a summary.  . 

GLOBAL VIEW 

A sensor system’s performance can be enhanced by changing a sensor’s algorithms as the 
environment changes. It has been shown in [J-1] – [J-2] that if an airborne radar system knows about 
certain features of the Earth (e.g. land sea interfaces) and its surroundings then it can use this information 
intelligently and increase its performance. The sharing of information in real-time with other sensors is 
beneficial. Radar performance is increased with information from other sensors, e.g. sensor fusion. Also 
an intelligent radar’s performance can be increased if the characteristics and location of jammers are 
known. 

If radar systems are going to share and receive information from multiple sources they must be able to 
communicate and understand the information.  A solution for the exchange of information between 
heterogeneous sensors is for each sensor to publish information based upon an agreed upon format and 
protocol. For example, when a sensor publishes its track data multiple sensors interpret its contents 
without ambiguity.   Conformity must be established, e.g. one method for defining the Earth’s surface, 
one coordinate system, synchronized clocks, and one standard time stamping method for all 
communications.   
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Each communication between sensors must include its time and its coordinates.  Information 
regarding a track/target must include unique identifiers, the aircraft’s velocity, pitch, yaw, and role and 
meta data describing the transmitted data along with encryption/decryption keys.  The unique identifier 
will allow the receiving sensor to acquire, within its resident database management system, all of the 
sender’s radar characteristics.  Sensor characteristics include such things as nomenclature, power output, 
bandwidth, frequency, antenna pattern, pulse width, PRF, etc.  Platform characteristics as to the position 
of the antenna on the platform, number of elements, the pattern of the elements, the pointing vector of the 
radar, etc.  These data and numerous rules are used to understand information published by any sensor. 
This information can be used by the receiving sensor to perform functions such as sensor fusion, track 
correlation, and target identification.  

How can this be obtained in the near future? One key in building an intelligent sensor system is 
leveraging the efforts of the AI, the Internet, and the software communities.  The Internet community is 
building technologies that allow software agents not only to read, but to understand documents and 
resources available on the World Wide Web.  Its goal is to enhance the exchange of information and to 
provide the tools for the Web to become more business friendly and more profitable.  However, these 
technologies can also be used to build intelligent sensor systems where multiple sensors can communicate 
and understand each other with only minimum human intervention. 

The Internet community is represented by an organization whose definition is found at www.w3c.org: 

“The World Wide Web Consortium (W3C) develops interoperable technologies (specifications, 
guidelines, software, and tools) to lead the Web to its full potential. W3C is a forum for information, 
commerce, communication, and collective understanding.”  They, along with DARPA’s Agent Markup 
Language (DAML) program, are building the next generation Internet, the Semantic Web. The goal of the 
Semantic Web is to provide mechanisms for Web publications that can be read and understood by 
software.  Currently, most Internet content requires a human to understand its meaning, and is designed to 
push text, audio, and images to individuals. Search engines usually provide a wide array of varied results 
that must be filtered by a human. The Semantic Web is being designed in a manner similar to a large 
knowledge base such that a domain is defined specifically in an ontology, or series of ontologies that 
standardize the terms, relationships and meanings within the domain, such as radar or sensors in general.  
A radar or signal processing ontology may be defined in the same manner as other Internet ontologies.  
Dr. Tom Gruber defines an ontology at http://www-ksl.stanford.edu/kst/what-is-an-ontology.html:  

“An ontology is a specification of a conceptualization….What is important is what an ontology is for. 
… For pragmatic reasons, we choose to write an ontology as a set of definitions of formal vocabulary. 
Although this isn't the only way to specify a conceptualization, it has some nice properties for knowledge 
sharing among AI software (e.g., semantics independent of reader and context). Practically, an ontological 
commitment is an agreement to use a vocabulary (i.e., ask queries and make assertions) in a way that is 
consistent (but not complete) with respect to the theory specified by an ontology. We build agents that 
commit to ontologies. We design ontologies so we can share knowledge with and among these agents.” 

http://www.w3c.org:
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html:
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Sharing information between sensors on the same platform is also required, especially if one or more 
sensors are adaptively changing its waveform parameters to meet the demands of a changing 
environment.  Figure J - 1 depicts a hypothesized intelligent sensor system.  Each of the sensors has its 
own signal and data processing functional capability.  In addition to this capability we have added an 
intelligent processor to address fusion between sensors, communication between sensors, and control of 
the sensors i.e. RF Intelligent Platform Network (IPN) or a System Strategy Reasoner (SSR) (XG Policy 
Language Framework in [http://www.darpa.mil/ato/programs/XG/]).  The goal is to be able to build this 
processor so that it can interface with any sensor and communicate with the other sensors using 
ontological descriptions via the intelligent platform network.  The IPN/SSR will be able to coordinate the 
communications between the sensors on board and to off platform sensor systems.  There are approaches 
we can exploit to build this system by using fiber optic or wire links on board the platform.  RF links 
using Bluetooth or 802.11 technologies can be exploited for linking these sensors on board the platform.  
Between platforms other technologies may be 
exploited such as mobile Internet protocol over RF 
communications links.  The communications issues 
need to be addressed for the sharing of information 
and for minimizing the potential of electromagnetic 
EM fratricide.  The intelligent platform should 
determine if there is EM interference EMI potential 
when a sensor varies their antenna’s main beam 
pointing vector, or changes its PRF and may thereby 
cause interference to a receiving sensor.  Rather than 
have each sensor on a platform operate as an 
independent system we need to design our platform 
as a system of sensors with multiple goals managed 
by an IPN/SSR that can manage the dynamics of 
each sensor to meet the common goal(s) of the platform.  This is one of the major areas we are pursuing 
under our sensors as robots initiative.  This initiative is addressing attended and un-attended sensor 
platforms.     

The design presented in Figure J - 1 has three levels of AI algorithms to share information. The first 
set of algorithms is contained within the Knowledge Based Signal and Data Processing (KBSADP) and 
represents the work being performed on the KASSPER program and by the USAF Sensors Directorate [J-
1] –[J-7]. For communications equipment, this work is being pursued under DARPA’s XG program 
[http://www.darpa.mil/ato/programs/XG/]. The next level of AI algorithms interfaces KBSADP with the 
intelligent platform network. 
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Figure J - 1.  An Intelligent Sensor System 
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The Intelligent Fusion Communication Control, Plug & Play (IFC2P2) software module will share 
information with the KBSADP and XG modules and the IPN/SSR based on the ontologies. This sharing 
will allow each sensor and communication system to request/provide information from/to other sensor 
and communication systems for intelligent processing. The IFC2P2 could reside on a separate processor 
with a network connection to the IPN/SSR and a connection to KBSADP, or it could reside on the 
KBSADP (or XG) processor. For existing sensor and communication systems, software will be created to 
translate data to/from their own specific data formats to the formats defined by a common ontology. The 
IFC2P2 processor may have a graphical user front end, depending upon the sensor and communication 
system, to view information, control the KBSADP processor, and assess the results of the sensor fusion. 
Sharing information is valuable for new sensor systems in order to exercise waveform diversity functions, 
as well as for older systems lacking waveform diversity functions. For those non-adaptable equipment, 
the IPN/SSR will be preloaded with the appropriate ontology-based data. The following section provides 
a detail description of the KBSADP for an airborne radar system. 

AN AIRBORNE INTELLIGENT RADAR SYSTEM (AIRS) 

A KB signal and data processing portion shown in Figure J - 1 represents one radar sensor system.  If 
this radar system is built using knowledge based techniques then there exists intelligence to control its 
processing.  A modified design obtained from the KB STAP effort [J-2] is shown in Figure J - 2.  This 
section will describe the major components of this knowledge base radar design.  The major components 
in the figure are labeled as processors with the knowledge base controller as the major integrator for 
communications and control of the individual processors.  These processors operate independently and 
cooperatively.  Each can be implemented on a separate computer or on the same computer and operate as 
separate software processes.  The knowledge base controller (KBC) receives information from many 
sources.  Data about the radar, its frequency of operation, antenna configuration, where it is located on the 
aircraft, etc. is provided by the block labeled in Figure J - 2, configuration information.  The map data is 
preloaded before each mission for estimating clutter returns and for registering its location relative to the 
Earth and with other sensor platforms.  It is also preloaded with its flight profile data and is updated 
continuously from the platform’s navigation system.  It also will receive information from the intelligence 
community both before a mission and throughout the mission.  During flight, the KBC will receive 
information about weather, jammer locations, requests for information, discrete locations, fusion 
information, etc.  The radar system is assumed to be aboard a surveillance aircraft flying a known and 
repeatable path over the same terrain.  Therefore it can learn by monitoring the performance of different 
algorithms over repeatable passes of terrain. 
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The KBC performs the overall control functions of the AIRS.  It assigns tasks to all processors, 
communicates with outside system resources, and "optimizes" the system’s global performance.  Each 
individual processor "optimizes" its individual performance measures, e.g. SNR and probability of 
detection.  The tracker with the KBC, for example, "optimizes" the number of correct target tracks and 
"minimizes" the number of missed targets, incorrect tracks, and lost tracks.  The KBC handles all 
interrupts from the User Interface Processor, assigns tasks to the individual processors based upon user 
requested jobs, generates information gathered from sources to enhance the performance measures of the 
individual processors, works with other sensors and outside sources for target identification, and provides 
the User Interface Processor periodic and aperiodic data for answering queries and requests from the user. 
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Space/Space Range Processor (SSRP), Pattern Synthesis Processor (PSP), Filter 
Environmental Processor (FEP) and KBC Interfaces 

The KBC will provide geographical information e.g. it will periodically provide the direction the 
receiver is looking, clutter maps, the location of the emitter, locations of hot clutter jammers, locations of 
direct jammers or electromagnetic interference sources, and discretes.  The KBC will also provide tasks to 
the SSRP, PSP and FEP.  For example, sources of "interference" shall be reduced by a defined amount.  
Sources of interference will be prioritized.  The SSRP, PSP, and FEP, will implement and control their 
own algorithms and processing.  The processors will optimize the KBC's request given the number of 
available degrees of freedom and their physical operational constraints.  

The KBC will provide control and operational requests based upon global optimization considerations 
and/or input directions from the user.  For example, the user may want to execute multiple algorithms and 
compare their results or restrict portions of an algorithm from being executed.  This may require parallel 
processing on the same set of data. This approach of executing parallel algorithms, as directed by the user, 
will allow AIRS to learn which algorithms perform better under identical conditions.     

The results of the KBC's tasks will be reported to the KBC, as a joint or cooperative accomplishment 
of the three processors.  The amount of interference cancellation obtained for each interference source 
will be reported by the FEP.  The information will include the amount of dB attenuation per interference 
source, whitening, and gain loss.  All three processors (SSRP, PSP, FEP) will report to the KBC, the 
algorithms used and their parameter values. 

The three processors' general operating procedure is to use all of their available resources while 
attempting to exceed KBC tasks.  If the resultant global performance measures are not met then the KBC 
can change the tasks to these processors during the next iteration. The KBC is looking ahead based on the 
aircraft’s flight plan and is preplanning for future processing. 

Detection Environmental Processor (DEP) and KBC Interface   

The KBC provides the DEP filter output data, clutter map data and results from the tracker such as the 
degree of belief or weights/importance of previously detected targets.  This information allows the DEP to 
choose its models for the next iteration of data.  For instance, the algorithm may adjust its threshold if a 
high priority target is entering a different clutter background.   

The KBC directs the DEP through tasks as discussed in the previous stage.  The results of the KBC's 
tasks will be communicated back to the KBC.  Probability of detection, probability of false alarm, 
algorithms used, and their parameter values will be reported to the KBC. 
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Tracker Environmental Processor (TEP) and KBC Interface      

The KBC provides data to the TEP that are not contained in the detection data provided by DEP e.g. 
priority of targets/tracks.  The KBC provides control information to the TEP similarly as discussed above 
based upon parallel processes, choices of algorithms and their parameters, and any definitive requests 
made by the user or other outside sources such as multistatic operations. 

The TEP will report back to the KBC for each process, each track's probability, the probability of 
missed tracks or lost tracks, and additional performance measures associated with the algorithms used and 
their parameter values. 

User Interface Processor (UIP) and the KBC Interface 

The KBC provides data and receives control from the user via the UIP.  Directed by the user the KBC 
will task the Process Manager and Data Manager (not shown in Figure J - 2) to pre-configure the 
computers and algorithms for each of the above processors for the next flight iteration or CPI.  It will 
provide information related to intermediate results, performance measures, how AIRS arrived at its 
solutions, and assist the UIP in configuring the antenna and processors. 

Configuration Information and KBC Interface 

The exchange between the Configuration Information and the KBC contains for example data 
regarding the radar, the radar’s location, antenna, and transmitter characteristics.  Some of these data can 
be modified by the user and are pre-stored in the Data Manager and accessed via the UIP.  

 

Clutter Map and KBC Interface 

The Clutter Map is defined given the flight profile of the aircraft.  This file contains those parameters 
required by the AIRS’ algorithms obtainable from actual terrain files such as LULC, digital elevation 
model and DLG databases.  These data are provided by the USGS.  These data will be stored in an 
environmental data file and accessed via the Data Manager along with clutter map data computed on the 
fly during flight. 

Intelligence Data and KBC Interface 

Intelligence community data are provided to the AIRS.  These data may contain the location of 
jammers, a jammer’s parameters, target parameters and a target's kinematics.  These data will be used by 
different AIRS’ algorithms and knowledge sources. 
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Flight Profile and KBC Interface 

Flight profile data are stored and maintained in a database via the Data Manager.  These data contain 
parameters required by AIRS’ algorithms. 

Antenna and KBC Interface 

This antenna represents the communications link to outside sources for gathering and providing 
information during flight. 

AIRS STATE PROCESSING 

AIRS is a dynamic system, i.e., it changes its processing dependent upon its goals and the 
environment.  This section provides an overview of a hypothetical AIRS and its operation during 
changing conditions.  AIRS’ processing begins by loading its computers with pre-flight mission, 
intelligence, and terrain data.  The process will go through four states; pre-flight, initial transient state, 
correlation/performance/assessment/learning state, and steady state.  Steady state probably won't occur 
until the aircraft flies at least one to two race tracks over the same area.  The initial transient state will 
take 20+ CPIs before tracks can be formed and AIRS starts identifying interrogation-friend-or foe related 
tracks.  The intermediate state: to correlate discretes, objects, shadow regions, and jammers, evaluate 
performance measures and set thresholds, and deciding which objects require nulling, how much nulling, 
and when nulling should occur. Described below are the four different states and the functions of the 
KBC, its performance processor, and the three main radar intelligent system processors (filter, detector 
and tracker).  We have partitioned the KBC into two processor functions: one to control the AIRS and one 
to monitor and report its performance throughout its different stages. 

 

States 1-2 Pre-Flight - KB Performance Processor & Controller 

Locate and load all potential discretes, clutter boundaries, shadow regions, jammers, obstacles and set 
system parameters.  

State 3 Pre-Flight – Intel. Filter 

Define initial settings and performance measure thresholds. These data represent flight in-variant 
antenna characteristics, e.g. number of antenna elements and their configuration, antenna tilt angle and 
pointing direction, and location of the antenna on the aircraft, initial radar parameters, e.g. prf, transmitter 
frequency, size of data cube, and bandwidth of signal, and performance thresholds for evaluating antenna 
beam distortion parameters. 
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State 4 Pre-flight – Intel. Detector 

Define initial settings and thresholds for probability of false alarm (Pfa). These data represent data 
that are initialized but are not necessarily fixed, e.g. range resolution, Doppler resolution, top percentile 
for trim mean constant false alarm rate (TM-CFAR), and bottom percentile for TM-CFAR.  Performance 
measure data are also set such as Pfa thresholds for normal, low and very low levels of interest. 

State 5 Pre-flight – Intel. Tracker 

This state has similar data requirements as the pre-flight KB processor States 1-2.  All three 
processors have access to the same data.  This state also sets the tracker processor performance measures 
and parameters, e.g. number of correct tracks, number of dropped or lost tracks, and kinematics of 
potential targets. 

State 6 Initiate System - KB Performance Processor 

The processor will monitor the AIRS queues for number of potential targets and registration of 
obstacles, discretes, clutter boundaries, shadow regions, and jammers. 

State 7 Initiate System - KB Controller 

The processor will initiate the antenna processing and monitor the system queues, auxiliary data 
correlations, feedback from the different processors, system errors, number of potential targets and 
registration of obstacles, discretes, clutter boundaries, shadow regions, and jammers. 

State 8 Initiate System – Intel. Filter 

Execute non-STAP algorithm, determine the secondary rings for each cell under test given the stored 
terrain features, run the NHD algorithm if necessary, compute beam performance, and compute antenna 
weights based upon hypothesized KBC nulling tasks.  Note for this state we don't want to distort the 
antenna beam pattern but gather data so the KBC can determine if nulls should be placed in the direction 
of interferers and whether STAP is feasible. 

State 9 Initiate System – Intel. Detector 

The processor will implement thresholds as assigned, will default to the standard detection cell 
averaging algorithm, and use standard window sizes unless the cell of interest is at a clutter boundary. 
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State 10 Initiate System – Intel. Tracker 

To initiate a track requires multiple CPIs.  Correlations with objects and shadow regions are just 
beginning, performance measures are computed, (number of correct tracks, number of dropped tracks, 
and number of incorrect tracks) and tracks are being formed.  Tracker reports tracks and potential 
correlations along with other entities. 

State 11 Learning – KB Performance Processor 

Correlate discretes, clutter boundaries, shadow regions, potential jammers, and obstacles, evolve 
rules, insert synthetic targets and measure performances. This processor will use the correlations obtained 
by the KB Controller [in state 12] for the first portion of its processing, i.e. until it has correlated or 
discounted all the discretes, clutter boundaries, road traffic, and shadow regions with a high degree of 
confidence.  Once this task is completed the processor will insert synthetic targets of varying sizes and 
velocities to test the performance of the AIRS.  During the second complete scan of an area the KB 
performance processor will be able to determine if the performance measures have improved.  Based 
upon these results the performance processor may place targets in other locations and/or direct the 
controller where they should or should not use STAP. 

State 12 Learning – DB Controller 

Correlate discretes, clutter boundaries, shadow regions, potential jammers, obstacles and evolve rules. 
There are two levels of correlation required: 1) position of the above entities within a defined range ring 
and 2) the power level at the receiver given the distance to the entity.   Note the definition of the range 
rings relative to the Earth contain different entities as the aircraft moves.  In addition, as the aircraft 
moves different entities may require nulling, the AIRS may or may not want to place a null in their 
direction.  Correlating entities by power may be done along with correlations with road traffic and 
shadowed regions using data from the Intel. Tracker. 

State 13 Learning – Intel. Filter 

Compute number of secondary rings, run NHD, compute beam performance measures, set nulls, 
determine when and where STAP is feasible and evolve rules. Rules as to when STAP should and should 
not be applied are required.  During the first complete flight over the defined scene the AIRS could 
execute a standard non STAP algorithm.  The KB performance processor should place targets in non-
homogeneous areas e.g. near roads and clutter boundaries.  The position and type of synthetic targets are 
not made known to the KBC.  In the second complete scan the KBC should attempt to use STAP where 
ever it can.   
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A method for determining if there is a sufficient number of training range rings for STAP is required.  
A method is to correlate each range ring with the terrain map to identify where there are discontinuities, 
major roads, etc. and label each region or sector-range with a terrain type.  A classification code range 
ring correlator algorithm will implement this method in collaboration with the intelligent filter processor.  
The major or minor classification codes used in the USGS database, e.g. urban, forest, water, etc. will be 
used.  Once range rings are chosen they can be evaluated for their homogeneity by using NHD.  With a 
combination of the pre-flight loaded database, the use of the radar returns and the NHD, the system can 
"learn" which areas are homogeneous and evolve its rules as to which filter algorithms to employ. 

During this state the controller will assign a low, medium, and high performance threshold levels for 
beam performance.  This information along with requests of where to place nulls in the beam pattern will 
be provided to the intelligent processor.  After a number of CPIs the KBC will evaluate performance 
measures from all the processors.  Based upon this evaluation the KBC may assign different performance 
threshold levels and null requests for the filter processor. 

State 14 Learning – Intel. Detector 

Compute detections, re-compute and adjust pfa thresholds and evolve rules. This state uses the 
correlation data provided by the KBC to recognize terrain boundary locations.  For those test cells within 
homogeneous regions the standard detection cell averaging algorithm and window sizes will be used.  For 
those test cells near boundaries the CFAR processors will choose reference cells, algorithms, and window 
sizes as developed under the ES-CFAR program [J-1].  The processor will perform detections, implement 
thresholds as assigned, re-compute and adjust Pfa thresholds, evolve rules to apply the standard cell 
averaging rules, determine when to apply different algorithms, and when to recommend changing the 
detection threshold. 

State 15 Learning – Intel. Tracker 

Correlate Federal Aviation Administration (FAA) data with tracks, compute performance measures 
e.g. number of tracks, number of dropped tracks, number of incorrect tracks and evolve rules. Discrete 
objects, shadow regions, roads, and FAA data will be obtained from the KB Controller and used to help 
correlate with existing targets and tracks.  Correlations of dropped tracks and highways will be performed 
with the KBC.  Performance measures (number of correct tracks, number of dropped tracks, number of 
incorrect tracks) and sorting of tracks will be computed.  It will report back to the KBC all its tracks and 
any discrepancies with the data obtained from the KBC.  Discrepancies will be settled by the KBC and 
the other processors.  As corrections are made the AIRS will evolve its rules and learn. 
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State 16 Steady - KB Performance Processor 

The performance processor will constantly measure the performance of all processors to determine 
whether AIRS is performing better.  The processor will continually look for changes or requests 
submitted by the user or changes in data from outside sources.  It will monitor performance by checking 
the beam pattern performance data, detection data, and track data.  It will insert known RCS synthetic 
targets at locations where there are boundaries in terrain types and evaluate the detection capability of the 
system.  By placing different targets at different locations the performance of the current rules can be 
computed.  If performance is low then the rules being used by the KBC will be modified.    

State 17 Steady - KB Controller 

The KBC will access the same performance measures as presented in state 16.  Based upon these 
performance values the KBC will asses its current rules and apply changes accordingly.  The rules the 
KBC can change are based upon a processor's reported data and the user requests, such as change in the 
antenna’s beam pattern and the aircraft’s flight path. 

State 18 Steady – Intel. Filter Processor  

This processor will monitor its beam pattern performance.  It will change its rules based upon the 
environment and the number of nearby jammers and discretes.  For example, the processor should 
manage the number of degrees of freedom required to notch jammers and descretes and yet maintain 
enough degrees of freedom to perform STAP processing.  It will measure its own performance and report 
it to the KBC for total sensor performance evaluation. 

State 19 Steady – Intel. Detector Processor 

During this state its processor measures performance based upon the number of detections and 
number of false alarms.  It will increase or decrease the threshold level, change window sizes for CFAR 
algorithms, and change rules for choosing CFAR algorithms based upon previous flights over the same or 
similar clutter interfaces. 

State 20 Steady - Intel. Tracker Processor  

This state measures performance based upon number of correct tracks, missed tracks, and number of 
false tracks.  Based upon these numbers and the terrain, the processor will adjust its rules and thresholds 
to increase its performance.    
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SUMMARY 

Integrating KB techniques within an airborne radar’s signal and data processing chain was presented 
along with a detail design of an airborne intelligent radar system. Advances in technologies being pursued 
by the W3C and DARPA are required in order to field the next generation intelligent sensor systems.  
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APPENDIX K 
SENSORS AS ROBOTS 

By:  G. Capraro, Capraro Technologies, Inc.; M. Wicks, AFRL Sensors Directorate;  
W. Szczepanski, Helios Remote Sensing Systems, Inc. 

INTRODUCTION 

The monolithic military adversary of the twentieth century is no longer the number one threat. Single 
function radar systems are necessary but not sufficient for combating terrorism.  The desire to AF2T2EA4 
by the US Air Force will require changes to how we modify, build, and deploy radar systems.  Coherent 
signal level fusion of homogeneous sensors and data fusion of heterogeneous sensors are being studied in 
order to obtain sensor coverage consistent with AF2T2EA4.  However, we must also integrate these radar 
systems with heterogeneous sensors (e.g. acoustic, IR, EO) located on the ground, in the air, in space, and 
underground.  The radar systems of the future must be intelligent and integrated within sophisticated 
systems of heterogeneous sensors that operate on many hypotheses at the same time. 

The USAF Research Laboratory is attacking these issues from a sensor and information perspective and 
has generated a way forward in their defining of layered sensing. From reference [K-1]:  

 “Layered Sensing provides military and homeland security decision makers at all levels with timely, 
actionable, trusted, and relevant information necessary for situational awareness to ensure their 
decisions achieve the desired military/humanitarian effects.  Layered Sensing is characterized by the 
appropriate sensor or combination of sensors/platforms, infrastructure and exploitation capabilities to 
generate that situation awareness and directly support delivery of “tailored effects”.” 
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The asymmetric enemy of the twenty-first century is causing havoc throughout the world.  Layered 
sensing will give us the necessary ability to anticipate and counter their actions before they occur in 
today’s dynamic and ever changing environment.  In order to accomplish this goal we must begin by 
employing a synergistic approach of queuing, triggering, and intelligently aggregating information 
sources throughout our C4ISR systems.  Specifically we must use intelligence and reconnaissance 
systems to help queue sensors looking for “triggers” that may indicate an action to be taken by an enemy 
combatant i.e. to anticipate an action before it occurs.  The intelligent use of radar surveillance sensors is 
ideal for helping in identifying “triggers”, especially in non urban areas.  Detections can be made and 
observables can be “tracked” with the use of monostatic and multistatic radar systems where dedicated 
tracks of specific targets can be maintained using heterogeneous sensors.  The use of dedicated EO/IR 
sensors can also be employed for ISR purposes and to assist radar sensors in their persistent tracking of 
mounted or dismounted combatants within urban and mountainous terrain.  The use of heterogeneous 
sensors dynamically deployed based upon triggers, target detection, tracking, and identification will allow 
for expedient global decision making and engagements.  If the USAF is going to anticipate actions before 
they occur, generate situational awareness, and directly support delivery of effects - then intelligent 
aggregation of sensor data, information sources, and knowledge in real-time is required.   

The C4ISR system of the future must be able for example, to meet the following test scenario implicit 
requirements.  Generic C4ISR Test Scenario: C4ISR for a country and its borders; One of its bordering 
nations is a peer nation; The terrain near the border is very mountainous – enemy combatants are known 
to cross the boarders in vehicles, on foot, horse, donkey, etc. and sometimes disappear possibly into 
caves; There are multiple medium size cities south of the mountains with many roadways connecting 
them – many of these roads are periodically populated with explosives; Inside the cities there are enemy 
combatants living in buildings with the civilian population; Communications between combatants are via 
email, Web sites, cell phones, land line phones, RF radios, couriers, etc.; Combatants launch weapons 
from civilian populated areas, churches, schools, etc., and Combatants use civilian vehicles for 
transportation. 

How can the C4ISR system of the future detect and identify threats and meet the implicit 
requirements of this scenario in a timely manner?  We must, as a first step to full automation, implement 
the following ground breaking changes: place more compute intensive resources closer to the source of 
the data and information gathering – (e.g. assign tasks to sensors to look for “triggers” created from ISR 
sources), provide for the analysis of  intelligence data automatically and without human involvement, 
move the human sensor operator from managing data - to managing actionable knowledge and sensor 
aggregation, and develop “triggers” and rules for automatic assignment and management of 
heterogeneous sensors to meet dynamic and abstract requirements, e.g. track a specific vehicle or 
dismount. 
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The following sections address each of these changes with examples and where appropriate, reference 
works that are representative of portions of what needs to be done.  This portion of the report provides a 
brief overview of the efforts being performed under the Sensors as Robots program. 

AIRBORNE GMTI/SAR SYSTEMS 

Modern surveillance radar systems are 
capable of detecting, tracking, and imaging 
surface, fixed [K-2] and moving targets.  With the 
use of precision PNT data and software 
algorithms these detections can be displayed on 
background map data as shown in Figure K - 1, 
created using simulated radar data.  The objective 
of this figure is to illustrate the capability to 
associate target tracks with detections on known 
roadways as compared to boats operating in the 
bay.  The figure shows through the use of USGS 
data, that the knowledge of the terrain can be used 
to indicate whether targets are in an urban, forest 
or littoral zones, for example.  By studying different geographic areas and hypothesizing different actions 
that a combatant may perform, triggers may be developed to indicate a possible anticipated action.  For 
example, tracking vehicles on roads does not provide any significant additional information than what one 
would expect.  However, if a vehicle leaves the road and or stops for any significant amount of time, then 
this may indicate a localized region worthy of additional analysis regarding activities at that location.  KB 
algorithms can be written that integrate PNT data, USGS data, and tracking data that would alert an 
operator that a target has left the roadway and stopped.  Once alerted that a trigger has been activated, the 
operator can pursue either redirecting the platform to obtain a radar image or use onboard IR/EO sensors 
to obtain thermal or optical signatures of the target.  If IR/EO sensors are not available, the operator can 
request a nearby UAV with the required sensor to obtain images of the scene.  These images can be 
processed in real-time via pattern recognition software and sent to an onboard analyst to determine the 
type of vehicle and whether there are humans near the road, or alternatively a compressed version of the 
image can be sent to a ground analyst for a similar quick assessment. Their gross findings can then be sent 
back to the platform along with messages to the command center.  High resolution images can be saved 
for a ground based analyst to gather more details about the vehicle and humans if required for further 
study. 

  

 
Figure K - 1.  Mapping The Threat 
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CYBER SURVEILLANCE 

Imagine a Wi-Fi café within a city threatened by terrorism.  A typical looking native arrives with 
his/her laptop computer and purchases a cup of coffee and accesses the freely available Wi-Fi.  Intelligent 
software, monitoring the Internet server within the café, notices that someone is accessing web sites 
related to the purchasing of materials required for manufacturing a new kind of explosive, i.e. a trigger 
has been set.  Within the immediate vicinity of the café there are cameras and sensors including software 
that monitors all activities both wired and Wi-Fi within the café.  The café’s server is being managed by 
software that can link the MAC address of each computer and has a record of web sites visited.  A 
comparison is made of the visited web sites and the corresponding MAC address is determined. RF 
sensors using algorithms [K-3] can locate in which portion of the café the laptop with the suspect MAC 
address is located.  By increasing the bit error rate to the MAC address, cameras detect which individual 
is linked to the MAC address since the user will attempt to move his computer closer to the wireless 
access point, and/or complain to the owner about the poor quality of Wi-Fi service.  At this point, the 
system will notify the command center; they can view the images of the suspect person and apply 
techniques to automatically identify the individual.  The command center will monitor the automated 
processes and can override or redirect actions based upon information obtained.  Phone records, credit 
card transactions, news articles, etc. are simultaneously searched to obtain all possible information 
concerning this person.  In parallel, imagery databases obtained from strategically placed cameras 
throughout the city are queried to determine through timeline analysis information pertaining to where 
and how the target arrived at the café, e.g. on foot or via a vehicle, if so its license plate number, etc.  
Also, a simulation with multiple hypotheses will compute when and what the individual may likely do 
next.  Messages will be sent to multiple sensors (acoustic, IR, EO, RF) throughout the city to monitor his 
movements and continuously update predictions.  Once the target is ready to leave the café the command 
center can engage the cameras near the café and begin tracking the target whether he is dismounted or 
not.  

CLOSE IN SENSING 

If the target from the café enters a vehicle then the 
command center will dispatch and alert sensors as to 
what to look for, i.e. an image of the person, an image 
of the vehicle, and if possible its license plate number.  
If we can’t track the vehicle with fixed EO sensors 
because of a lack of sensors or inadequate lighting, one 
may want to use, for example, a UAV with a radar 
and/or an IR sensor. Consider Figure K - 2 with three 
vehicles traveling down a two lane road. 

 
Figure K - 2.  Scenario with Multiple Targets 



 

 

171 

 

If the receivers are placed as in shown in Figure K - 
3 where target (Tgt) represents the position of the three 
targets, then we will be able to clearly discriminate 
motion among them.  This is illustrated in Figure K - 4, 
and presents a 3-D plot of normalized radar returns 
(assuming no noise and that all three targets have the 
same reflectivity).  See reference [K-4] for a detailed 
discussion of these results.  

This example uses only one transmitter and one 
waveform.  See references [K-5]-[K-11] for additional 
results using waveform and geometric diversity and the 

use of multiple receivers and transmitters.  Additional 
work using transmitters of opportunity and waveforms 
of opportunity (e.g. FM, AM transmissions, cell phone 
transmissions, etc.) needs to be investigated to improve 
the multistatic ambiguity function and hence target 
detection and discrimination. 

Consider the same scenario where our target of 
interest will merge with one or more targets with 
similar kinematics.  It is assumed that the targets have 
been detected by a radar system, they are already in 
track, and that a preliminary classification [K-12] is 

available.  Also assume that there is only one airborne platform with radar and imaging sensors.  There 
can be a video camera, an IR camera, and/or a high resolution spotlight SAR onboard.  The target image 
provided by one or more imaging sensors is then exploited to support the track operation in difficult 
situations, e.g. when similar targets travel close to each other.  An example of such a scenario is described 
in Figure K - 5, in the case of two similar vehicles.  

 
Figure K - 3.  Geometric Diversity 

 
Figure K - 4.  Multistatic Ambiguity 

Function For Three Targets 
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In Figure K - 5, the two vehicles 
have similar kinematic parameters.  
Let us assume that target A is under 
track by the radar.  After its trajectory 
crosses that of target B, an ambiguous 
situation arises such that the target 
track could be lost, even momentarily. 
In a surveillance environment, this 
situation is undesirable.  The suspect 
target must be continuously 
monitored.  In this uncertain scenario 
the use of additional heterogeneous 
sensors provides an opportunity to 
collect more complementary 
information on the target and to use it 
in order to improve upon discrimination performance.  

Even though the solution described has some similarities with classical estimation or with model 
based classification techniques, it is actually quite different from the standard classification problem, 
since in those cases the target to be recognized or classified is usually compared with a set of available 
templates or with models stored in a database. In the case considered here, a template for the target does 
not exist.  The template must be constructed concurrently with the tracking and before the discrimination 
tasks by exploiting one snapshot of target data (or more snapshots, when and where available) provided 
by an imaging sensor before the target track is lost or the uncertainty situation arises.  

Scenarios were generated and simulations 
were performed using an EO sensor in 
conjunction with an airborne radar.  The set of 
images used to test performance is represented 
by three classes of similar vehicles for seven 
different viewing angles, from 0° to 30° with a 
step of 5° between each image.  Three classes of 
vehicles for view angles of 0° and 30° are 
shown in Figure K - 6, with infinite SNR. 

It is assumed that only one snapshot of the 
image is available to construct a fingerprint (FP) for each of the three classes.  Each FP is constructed 
from the target image for the first view angle (0°) and it is represented by a single realization of the data 
affected by noise; the SNR is fixed and it is the same for the three FPs.  Five values of SNR are 
considered for the FP: ∞ (clean FP), 20 dB, 10 dB, 0 dB, and -5 dB.  

 
Figure K - 5.  Two Similar Vehicles with Merging and Crossing 

Routes 

 
Figure K - 6.  Images for Three Similar Vehicles 
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Consider the following three FPs created with a SNR of 20 dB at 0 degrees view angle for each of the 
three classes of vehicles shown in Figure K - 7.  Each of the images in Figure K - 6 is composed of 197 x 
197 pixels with a grey scale depth of 256 bits.  After removing the background pixels, i.e. the blackened 
area, a representation of the images is shown in Figure K - 7 as a histogram of 15 bins. 

 
Figure K - 7.  FP’s Histograms at View Angle 0 Degrees and SNR = 20 dB for Three Similar Vehicles 

If a second image of the vehicle is taken later during the tracking period when the view angle is not at 
0 degrees or the SNR is not 20 dB, then the image’s histogram will vary, thus increasing the difficulty to 
discriminate among targets.  Consider the histograms in Figure K - 8 where the view angle is 30 degrees 
and the SNR is 0 dB.  It can be seen that, like the images in Figure K - 6, the histograms vary when 
viewed at different angles and at different SNRs. 

In the surveillance scenario described, the analysis of the performance with respect to the view angles 
is useful in evaluating which angles allow us to better discriminate between the monitored targets and 
similar targets nearby.  Two image matching algorithms were investigated, i.e. a chi-square, using the 
histogram approach, and a cross-correlation test performed on the images directly.  The comparisons 
between the images under test and the FPs are performed by extracting some specific features from the 
target image and by performing an appropriate decision test.  Preliminary results indicate that for best 
performance the view angle should be within fifteen degrees of the FP’s view angle.  This analysis can 
help develop similar rules for a KB system [K-13] to instruct the platform of sensors on how to adjust its 
trajectory and how to orient the imaging sensors involved in the surveillance operation.  This use of 
heterogeneous sensors for persistent situational awareness requires further investigation and testing within 
realistic environments. 

 
Figure K - 8.  Histograms at View Angle 30 Degrees and SNR = 0 dB for Three Similar Vehicles 
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As an example for future study, the return from a tracking radar itself may contain enough 
information to discriminate between two or more similar targets/vehicles.  Consider, in Figure K - 9, a 
simulated response from an airborne radar illuminating one of the vehicles shown above.  Can similar 
algorithms developed for the EO sensor be used to quantize the resultant RF response of the target? 

 
Figure K - 9.  Simulated Radar Response 
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SUMMARY AND CONCLUSIONS 

Appendix K of this report provided a brief overview and some highlighted results of the Sensors as 
Robots program.  Geographically distributed radars and sensors, controlled by knowledge based systems 
and exercising waveform diversity offer technology that the USAF needs to implement to meet its 
AF2T2EA4 goal.  A generic C4ISR scenario was presented along with three examples of how sensors can 
be dynamically engaged based upon “triggers” to detect, track and identify targets, and allow for 
expedient global decision making in order to direct future engagements.  Numerous other examples can 
be envisioned but they must be dynamically implementable in real-time in order to engage and defeat the 
asymmetric threat.  The key to the success of Sensors as Robots is that we must place sensors close in,  
with advanced computing closer to each node, automate low level functions, and develop triggers and 
rules for the automatic management of heterogeneous sensors.  
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