
Security Inference from Noisy Data

Li Zhuang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-32

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-32.html

April 8, 2008



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
08 APR 2008 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2008 to 00-00-2008  

4. TITLE AND SUBTITLE 
Security Inference from Noisy Data 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720-1700 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

121 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Copyright © 2008, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Security Inference from Noisy Data

by

Li Zhuang

B.E. (Tsinghua University) 2000
M.S. (University of California, Berkeley) 2005

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor J. D. Tygar, Chair
Professor David Wagner
Professor Paul K. Wright

Spring 2008



The dissertation of Li Zhuang is approved:

Professor J. D. Tygar, Chair Date

Professor David Wagner Date

Professor Paul K. Wright Date

University of California, Berkeley

Spring 2008



Security Inference from Noisy Data

Copyright c© 2008

by

Li Zhuang



Abstract

Security Inference from Noisy Data

by

Li Zhuang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor J. D. Tygar, Chair

My thesis is that contemporary information systems allow automatic extraction

of security-related information from large amounts of noisy data. Extracting this

information is the security inference problem: attackers or defenders extract infor-

mation from noisy data that helps to compromise an adversary’s security goals. I

believe security inference is an important problem. Security inference often reveals

a large amount of sensitive information that may be useful either to attackers or to

system administrators. Attackers can use security inference to extract private infor-

mation; system administrators can use security inference to determine the nature of

attackers. Security inference is often a challenging problem because of the size and

noisy nature of many real-world datasets. Our solution is to apply statistical anal-

ysis to this problem. We present two case studies that extract meaningful security

knowledge from noisy data using statistical analysis. One goal is to explore selection

of proper statistical analysis tools for security inference. The two case studies use a

diverse set of statistical methods, which we believe to be applicable to other settings.

We also propose a general framework for modeling security inference problems, which

identifies key steps in the security inference process.

In the first case study, we examine the problem of keyboard acoustic emanations.

1



Attackers use security inference to analyze sound signals from typing on computer

keyboards. We present a novel attack that takes as input a 10-minute sound recording

of a user typing English text on a keyboard and recovers up to 96% of the characters

typed. There is no need for a labeled training recording. Moreover, the recognizer

bootstrapped this way can even recognize random text such as passwords: in our

experiments, with 20 or fewer attempts to guess a random letter-only password, an

attacker can guess 90% of 5-character passwords and 70% of 10-character password.

This case study demonstrates that applying statistical analysis to security problems

provides new tools for drawing powerful conclusions.

In the second case study, system administrators (or defenders) use security infer-

ence to determine the nature of attackers. We develop new techniques to map botnet

membership and other characteristics of botnets using spam traces. The data consist

of side channel traces from attackers: spam email messages received by Hotmail, one

of the largest Web mail services. The basic assumption is that spam email messages

with similar content often originate from the same controlling entity. These email

messages share a common economic interest, so it is likely that a single entity also

controls the machines sending these spam email messages. By grouping spam email

messages with similar content and determining the senders of these email messages,

one can infer the composition of the botnet. This approach can analyze botnets re-

gardless of their internal organization and means of communication. This work also

reports new statistics about botnets.

In this thesis, we leverage recent developments in the areas of applied data mining,

statistical learning, and distributed data analysis. The approaches we discuss are

easily deployable to real systems.

2



Professor J. D. Tygar, Chair Date

3



Acknowledgements

I would like to thank my advisor J. D. Tygar for introducing me to the area

of security and privacy and guiding me through my research. I benefited from the

encouragements I received from him to pursue interesting research ideas, or simply

to to keep improving writing or presentation. His trust and support allowed me to

explore research problems that intrigue me most. This work would not have been

materialized without his valuable guidance.

I would like to thank Professor David Wagner for much good advice and help

during my Ph.D. study. I would like to thank Professor Paul K. Wright for serving

on my qualifying exam and dissertation committee. His early feedback to my thesis

proposal was very helpful. I would like to thank Ben Y. Zhao for help on Cash-

mere and other projects, and help with how to conduct research in general. I would

like to thank Marco Barreno for useful feedback on drafts of this thesis and previ-

ous projects. I would like to thank Feng Zhou for insightful discussions during the

keyboard emanations study and the Cashmere project. I would like to thank John

Dunagan, Dan Simon, Helen Wang, Ivan Osipkov and Geoff Hulten from Microsoft

Research for collaborating and supporting in the botnet detection project.

I would like to thank the following people for enlightening discussions and help

while I was at Berkeley: Wei Xu, Jimmy Su, Yitao Duan, Ling Huang, Qi Zhu,

Chris Karlof, Yaping Li, Hao Chen, Jingtao Wang, Hao Zhang, Rachna Dhamija and

Monica Chew.

Portion of the work described in this thesis were first reported in conference pa-

pers [Zhuang et al., 2005; Zhuang et al., 2008].

This work was supported in part by the National Science Foundation through

CITRIS (NSF award number EIA-01225989) and the TRUST (Team for Research

i



in Ubiquitous Secure Technology), which receives support from the National Sci-

ence Foundation (NSF award number CCF-0424422) and the following organiza-

tions: AFOSR (#FA9550-06-1-0244), Cisco, British Telecom, ESCHER, HP, IBM,

iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm, Sun, Symantec, Telecom Italia,

and United Technologies. The opinions expressed here are my own and do not nec-

essarily reflect the views of the US government, the National Science Foundation or

any other funding sponsors.

ii



Dedicated to my husband, Feng

iii



Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Side Channel Information . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Challenges in Side Channel Information Analysis . . . . . . . . . . . 5

1.3 Towards Statistical Analysis of Side Channel Information . . . . . . . 7

1.4 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Side Channel Information and Its Security Implications 11

2.1 Timing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Consumption of Certain Resources . . . . . . . . . . . . . . . . . . . 13

2.3 Unprotected Emanation Channels . . . . . . . . . . . . . . . . . . . . 15

2.4 Unintended Usage of Information . . . . . . . . . . . . . . . . . . . . 16

3 Side Channel System Attack: Keyboard Acoustic Emanations 18

3.1 The Case: Keyboard Acoustic Emanations . . . . . . . . . . . . . . . 18

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 The Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Side Channel System Defense: Detecting Botnets from Spam Email

Messages 55

4.1 The Case: Identifying Botnets from Spam Email Messages . . . . . . 55

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Metrics and Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Conclusion 90

5.1 Experience with Security Inference . . . . . . . . . . . . . . . . . . . 95

5.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 100

v



List of Figures

3.1 Recognition rates using FFT and cepstrum features . . . . . . . . . . 22

3.2 Overview of the attack . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The audio signal of a keystroke . . . . . . . . . . . . . . . . . . . . . 28

3.4 Energy levels over the duration of 5 keystrokes . . . . . . . . . . . . . 29

3.5 The Hidden Markov Model for unsupervised key recognition . . . . . 31

3.6 Trigram language model with spell correction . . . . . . . . . . . . . 36

3.7 Length of recording vs. recognition rate . . . . . . . . . . . . . . . . . 42

3.8 Password stealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Cumulative distribution function of time . . . . . . . . . . . . . . . . 47

4.1 Probability density function of IP reassign duration . . . . . . . . . . 72

4.2 Probability density function of the campaign merge weight . . . . . . 72

4.3 Cumulative distribution function of spam campaign duration . . . . . 79

4.4 Cumulative distribution function of spam campaign duration weighted

by email volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Cumulative distribution function of botnet size . . . . . . . . . . . . . 81

4.6 Cumulative distribution function of spam email messages sent per bot 81

4.7 Average active size of botnets vs. average number of spam email mes-

sages sent per active bot . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



4.8 Average number of spam email messages per active bot vs. active

duration of botnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Cumulative distribution function of relative active size of botnets . . 83

4.10 Botnet size vs. relative active size . . . . . . . . . . . . . . . . . . . . 83

4.11 Cumulative distribution function of botnets and spam campaign dura-

tion from a per-day-activity aspect . . . . . . . . . . . . . . . . . . . 85

4.12 Number of countries in botnets . . . . . . . . . . . . . . . . . . . . . 85

4.13 Top 20 countries with the largest number of bots . . . . . . . . . . . 85

4.14 Top 20 countries with the largest number of botnets . . . . . . . . . . 85

5.1 A general framework for security inference . . . . . . . . . . . . . . . 91

vii



List of Tables

3.1 Statistics of each test set . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Text recovery rate at each step . . . . . . . . . . . . . . . . . . . . . 41

3.3 Recognition rates of classification methods in supervised learning . . 43

3.4 Text recovery rate at each step (In this example, we used different

keyboards) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Recognition rate in supervised training: with timing information vs.

without timing information . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Recognition rate of repeat key hits and article input using classifier

trained by repeat key hits . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Applying the general frame to two case studies . . . . . . . . . . . . . 93

viii



Chapter 1

Introduction

My thesis is that contemporary information systems allow automatic extraction of

security-related information from large amounts of noisy data. Extracting this infor-

mation is the security inference problem: attackers or defenders extract information

from noisy data that helps to compromise an adversary’s security goals. Security

inference is often a challenging problem because of the size and noisy nature of many

real-world datasets. The bulk of this dissertation comprises two case studies in se-

curity inference using statistical and data mining approaches. The application of

statistical analysis methods is a relatively recent development in security. One goal

of this work is to explore the selection of proper statistical analysis tools for security

applications. We also propose a general framework for modeling security inference

problems using the two cases as examples. In the first case study, we present a method

to recover typed characters from the sound of typing on keyboards. In this case, we

show that by analyzing the sounds from typing on computer keyboards, attackers can

compromise user security and privacy. In the second case study, we present a novel

approach to identifying botnets and monitoring their behavior by analyzing spam

email. When botnets run spam campaigns to generate profit, they leave traces of

1



Chapter 1. Introduction

their identities in spam email as side effects. The second case shows that defenders

use side effects in attacker activity to extract information that helps to improve se-

curity. These two case studies illustrate that security inference can be used either

by attackers or by defenders. Attackers can use it to extract private information;

defenders can use it to determine the nature of attackers.

In the first case study, we examine the problem of keyboard acoustic emanations.

Attackers use security inference to analyze sound signals from typing on computer

keyboards. We present a novel attack that takes as input a 10-minute sound recording

of a user typing English text on a keyboard and recovers up to 96% of the characters

typed. There is no need for a labeled training recording. Moreover, the recognizer

bootstrapped this way can even recognize random text such as passwords: in our

experiments, with 20 or fewer attempts to guess a random letter-only password, an

attacker can guess 90% of 5-character passwords and 70% of 10-character passwords.

Our work removes the requirement of labeled training samples, implying key-

board emanation attacks are more serious than previous work suggests. We test our

approach in both quiet and noisy environments, recovering significant information

about the typing in both settings. We successfully apply our approach to three dif-

ferent models of keyboards, suggesting that many keyboards are vulnerable to this

attack. We find that the length of recording necessary to recover typed characters

can be as short as five minutes.

The key insight in this case study is that typed text is usually not random: most

typing is text in English or another language, and has a highly structured form (in

particular, a relatively small number of common words and word combinations). Our

attack uses the statistical properties of the English language to reconstruct text from

sound recordings without any labeled training data. The attack uses a combination

of standard machine learning and speech recognition techniques, including cepstrum

features, hidden Markov models, linear classification, and feedback-based incremen-

2



Chapter 1. Introduction

tal learning. Practical technical challenges in this work include modeling language

constraints, addressing errors in clustering algorithms, and automatically improving

recovery rate over time. Chapter 3 details how our work addresses these challenges

to mount a successful attack.

In the second case study, system administrators (or defenders) use security infer-

ence to determine the nature of attackers. We develop new techniques to map botnet

membership and other characteristics of botnets using spam traces. The data con-

sist of side channel traces from attackers hidden in spam email messages received by

Hotmail, one of the largest Web mail services. A single large botnet can participate

in many spam campaigns (coordinated mass mailings of spam). The basic assump-

tion is that spam email messages with similar content often originate from the same

controlling entity. These email messages share a common economic interest, so it is

likely that a single entity also controls the machines sending them. Each email mes-

sage records in its header the entire relay chain from the sender to the destination,

which can reveal the sender of each message. By grouping spam email messages with

similar content and determining the senders of these email messages, we can infer the

composition of the botnet.

As we show in Chapter 4, this case study contrasts with most previous studies of

botnets. The statistical perspective yields several benefits. First, the email data is

readily available for analysis. Second, the approach is easier to deploy than previous

approaches. Third, by focusing analysis on features tied to the economic motivations

behind many botnets, it is harder for botnet controllers to evade detection than with

previous approaches.

We detect 294 botnets and about 460 thousand bots in the spam email traces and

identify a set of important metrics for measuring botnets and their activities. We find

that more than half of botnets that send spam contain over 1000 machines. Botnets

use only some of their machines in each campaign: more than 80% of botnets use

3



Chapter 1. Introduction

fewer than half of their machines in each campaign. Large botnets send fewer spam

messages per bot, which makes them harder to detect using volume-based rules. This

work also shows that some botnets are dedicated to the spamming business: 60%

of botnet-related spam is from long-lived botnets. We also find that botnets are

widely distributed over the Internet: more than half of the botnets we study contain

machines from at least 30 countries. Statistical analysis provides us with insight into

the characteristics of botnets.

1.1 Side Channel Information

The relentless improvement of computing technology and expansion of networking

infrastructure have changed many aspects of society. One particular change is the

creation and retention of tremendous amounts of digital data, along with the means

to access the data from anywhere, anytime. Important and sensitive information is

being digitized, stored and sent over the Internet, intentionally or unintentionally. For

example: people routinely communicate using VoIP or video conferencing, sending

audio and video data of themselves and their surroundings; Internet services, such as

search engines and email services, collect data reflecting people’s intentions, needs,

and other personal traits; server systems generate log data, which contain information

about the systems. The data are often noisy, containing uncertain, contradictory, or

incorrect information, alongside useful and correct information.

The explosion in the amount of data has security and privacy implications. It

presents both challenges and opportunities for the security community. On the one

hand, digitization and increased availability of data could result in unintentional

leaks of personal or secret information. Seemingly innocuous data can contain hidden

sensitive information. Attackers now have more data available, so they will extract

more information from it. On the other hand, more data can mean better monitoring,

4



Chapter 1. Introduction

analysis, and tools for catching the attackers. The large quantity and diversity of data

could make it easier to identify the source of problems accurately at an early stage.

The information we use in this dissertation is side channel information or side

effects. In cryptography, side channel information refers to information gained from

the physical implementation of a cryptosystem rather than theoretical weakness in

the algorithm. A related concept is side effects: a function or expression produces a

side effect if it modifies some state (such as static variables or files on disk) in addition

to returning a value. When talking about a computer system (for example, a desktop

computer or a large distributed system such as the Internet), we generalize the con-

cepts of both side channel information and side effects to mean any information that

leaks out where such exposure is not explicitly indicated in the system design. As

we show in Chapter 2, side channels such as timing information, resource consump-

tion, unprotected emanations, and unintended usage of certain data can provide the

necessary information for security analysis.

1.2 Challenges in Side Channel Information Analysis

Several trends in hardware, software and services indicate the need for new methods

for security analysis of side channel information.

• More types of information are available for analysis. In recent years, new con-

sumer electronic products have entered the market, such as the Apple iPod and

the Microsoft Zune. These new devices and others, such as smart cards and

RFID chips, introduce new ways of communication and sharing data. For ex-

ample, the Nike+iPod Sport Kit is a new wireless accessory for the iPod Nano.

The Kit transmits information from a sensor on the user’s shoes to a receiver

on the iPod when the user runs or walks. The receiver and iPod interpret

5



Chapter 1. Introduction

that information and provide interactive audio to the user about his workout.

This type of information exposure is new and requires new forms of security

analysis [Saponas et al., 2007]. Furthermore, new types of Internet services are

appearing and traditional services such as email are increasing in use. People

depend heavily on email, search engines, e-commerce, online banking, instant

messaging, social websites, and other Internet services in everyday life. These

new services have enjoyed wide adoption before security researchers have had the

opportunity to thoroughly study the main channels of information exchanged

and exposed by such systems, not to mention the possible of side channels.

• More interconnections arise between different types of information. The situ-

ation is complicated as data collected by different services are connected. For

example, a user may use the same username and password at different websites,

such as an online banking website and a web forum. Because different web-

sites provide different levels of security protection to users, a weakly protected

forum website could endanger the user’s banking account. Unfortunately, with-

out careful study of these connections, these security threats remain hidden. In

another example (see Section 3.6.1), when a person types on a keyboard, the

combination of acoustic information and timing information may reveal typed

characters. (As we discuss later, it is an open problem to determine whether the

combination of timing and acoustic information yields more information than

timing or acoustic information alone.)

• Data collected from side channels are noisy in nature. As byproducts from a

running system, data collected from side channels are noisy. For example, sound

recordings have some level of environmental noise. Each email message in any

given spam campaign can be slightly different because of random text. Noisy

data is harder to analyze. Data collected from side channels can be inconsistent,

6



Chapter 1. Introduction

can depend on invisible internal states, or can be insufficient to describe parts

of the state space. Data analysis requires developing methods to extract the

most important information and eliminate noise. While it is infeasible to elim-

inate noise completely from data, statistical analysis algorithms are sufficiently

robust to tolerant some noise. For example, Fast Fourier Transform (FFT)

features and cepstrum features capture important frequency information from

acoustic signals emitted by keyboards even with significant noise in the signal

(see Section 3.4.1).

• The ability to process massive datasets has become a necessity. As large-scale

distributed systems and Internet services become widely available, datasets col-

lected from these systems (including side channel information) can exceed the

processing ability of a single machine. Infrastructure and tools for processing

massive datasets are key requirements for performing security analysis in many

cases. For example, Hotmail receives thousands of terabytes of spam email each

day. Even a down-sampled subset requires hundreds of gigabytes per day to

preserve meaningful results. Without proper infrastructure and tools, just one

day’s dataset requires weeks of computation on a single machine and infeasible

storage capacity. I present more details about data processing in Section 4.4.2.

These trends demonstrate the need for new approaches to security problems that

are data-centric, especially when data are collected from side channels.

1.3 Towards Statistical Analysis of Side Channel In-

formation

In this thesis, we leverage methods in statistical learning and recent developments in

data analysis infrastructures to address the challenges above.

7



Chapter 1. Introduction

We focus on features that are hidden in the data and find techniques to extract

them reliably. In most data collected from side channels, different occurrences of

the same event often have small variations each time. Statistical analysis can over-

come these small variations and find the inherent consistency across occurrences. For

example, we show how to use a statistical learning algorithm called Expectation Max-

imization (EM) to infer character keystrokes from the varying sounds they emit (see

Section 3.4).

When the data come from multiple domains, we focus on the features that connect

instances from all domains. One way to approach inter-domain connections is similar

to the “join” operation in database queries. The features common across two datasets

serve as foreign keys in database to join feature vectors from both domains. This

operation expands the feature vector of each sample. We apply statistical analysis to

these expanded feature vectors to find inherent connections, and group the samples

from the same event. Another way to approach the inter-domain connections is to

aggregate information from each domain. We first apply statistical learning methods

to features in each domain separately, extracting inherent structure from each domain.

We then combine aggregated knowledge about the same event at a higher level. This

mechanism appears in the second case study, where we combine aggregated knowledge

from instant messenger log and spam email traces to overcome the problem of a single

computer having different IP addresses at different times. (see Section 4.4.5).

To process large datasets that exceed the capacity of a single machine, we leverage

cluster infrastructure for our data analysis. Specifically, we rewrite statistical learning

algorithms using existing APIs for parallel processing. For example, to process the

giant dataset of spam email messages, we use the Dryad [Isard et al., 2007] distributed

infrastructure APIs as discussed in Section 4.4.2.

In practice, we also find that domain specific knowledge is important to represent

features in a format that facilitates further processing.

8



Chapter 1. Introduction

1.4 Contributions of this Work

In this thesis, we study the problem of security inference, or inferring high-level

security-related knowledge automatically from large, noisy datasets. Specifically, we

propose a data mining approach to security inference problems and use two case

studies to demonstrate the feasibility of this approach. This work makes the following

contributions.

• We demonstrate a method that combines data mining, statistical analysis, and

new infrastructure tools to create a practical, scalable, general approach for

security analysis of large noisy datasets. We demonstrate how to select ap-

propriate statistical tools for different types of side channel information, then

we show that these techniques are practical in today’s hardware and software

environment.

• This work generalizes the study of side channel information. Most research

in the past has used side channel information in attacks only. Side channel

information can be especially useful to attackers because side channel data

collection easily escapes the notice of defenders. However, the same properties

that make side channel information useful to an attacker can also make it useful

to the defender. In this thesis, we study side channel information in a broader

context. When defenders collect side channel information leaked from attacking

systems, they can use it to defend against attacks and improve security.

• The case study of keyboard acoustic emanations presents important results.

We are able to recover up to 96% of characters from the sound of typing on

computer keyboards. This implies that keyboard acoustic emanation attacks

are far more serious than previous work [Asonov and Agrawal, 2004] suggests.

We build keystroke classifiers directly from sound recordings without any pre-

9



Chapter 1. Introduction

labeled sound samples, using only the assumption that the typing represents

English text. A keystroke classifier bootstrapped this way can recognize any

random sequence of characters, such as passwords. This case study demon-

strates that applying statistical analysis to security problems provides new tools

for drawing powerful conclusions.

• The case study of spam email provides a new way to study the botnet problem.

We study botnets from the perspective of the economic motivations of botnet

controllers. This work is the first to analyze the behavior of entire botnets (in

contrast to individual bots) from spam email messages. Because of the economic

perspective we use in this study, our approach can analyze botnets regardless of

their internal organization and means of communication, and it is not thwarted

by encrypted traffic or customized botnet protocols, unlike previous work using

IRC trackers [Cooke et al., 2005; Freiling et al., 2005] or DNS lookup [Rajab

et al., 2006; Ramachandran et al., 2006; Rajab et al., 2007]. This work also

reports new classes of information about botnets. For example, we report on

the relationship between botnet usage and basic properties such as size. We

also confirm previous reports on capabilities of botnet controllers and botnet

usage patterns.

In summary, this thesis studies the security inference problem — in particular, side

channel information analysis — in a practical way. We leverage recent developments

in areas of applied data mining, statistical learning, and distributed data analysis

infrastructure. The approaches we discuss in this thesis are easily deployable to real

systems.

10



Chapter 2

Side Channel Information and Its

Security Implications

In this chapter we present an informal categorization of side channel information and

its security implications. This provides context for the later concrete discussion.

2.1 Timing Information

Timing information refers to the duration of a event or the time it takes between

events in a sequence of events.

Previous research has used timing information to attack cryptosystems. Timing

attacks exploit the fact that different cryptographic operations, and even the same

operation with different inputs, can take different amounts of time to execute. By

measuring the amount of time the system takes to respond various queries, it is

possible to infer operations and parameters in a cryptosystem. Generally, timing

attacks are used to target a specific implementation of a cryptosystem.

For example, Brice Canvel et al. show how to attack OpenSSL versions prior

to 0.9.6c [Canvel et al., 1993]. They attack the implementations by exploiting the

11



Chapter 2. Side Channel Information and Its Security Implications

way OpenSSL pads messages. Each message contains the raw message, a message

authentication code (MAC), and padding. OpenSSL encrypts each message as a

whole in transmission and adds padding after the MAC, since messages must have a

specified length. The padding in this specific implementation has a specific form: if

2 bytes are added then the padding is “1,1”, a three-byte padding is “2,2,2”, etc.. To

decrypt the message, OpenSSL first checks the padding and then computes the MAC

only after determining that the padding is correct. If the padding is not correct, the

protocol exits without computing the MAC. The vulnerability is that the amount of

time consumed is significantly different depending on whether the padding is correct

or incorrect, because checking the MAC is a relatively time consuming operation.

Using this fact, Brice Canvel et al. implement a timing attack for the case of cipher

block chaining (CBC) mode:

The attack assumes that multiple SSL or TLS connections involve a com-

mon fixed plaintext block, such as a password. An active attacker can

substitute specifically made-up ciphertext blocks for blocks sent by legit-

imate SSL/TLS parties and measure the time until a response arrives:

SSL/TLS includes data authentication to ensure that such modified ci-

phertext blocks will be rejected by the peer (and the connection aborted),

but the attacker may be able to use timing observations to distinguish

between two different error cases, namely block cipher padding errors and

MAC verification errors. This is sufficient for an adaptive attack that

finally can obtain the complete plaintext block. [Canvel et al., 1993].

Kocher describes a timing attack exploiting the execution time for square-and-

multiply algorithm used in modular exponentiation, which depends linearly on the

number of “1” bits in the key [Kocher, 1996]. Private key operations in RSA [Rivest

et al., 1983], Diffie-Hellman [Diffie and Hellman, 1976] and many other cryptographic

12



Chapter 2. Side Channel Information and Its Security Implications

algorithms involve computing R = yx mod n, where n is public, x is the private

key and y can be selected by an attacker. To mount an attack, the attacker asks

the victim to compute yx mod n for several careful chosen values of y and measures

the response time for each operation. With enough queries, the attacker can recover

information about secret key x.

More recently, Boneh and Brumley have demonstrated a network-based remote

timing attack using Chinese Remainder Theorem optimization on SSL-enabled web

servers [Brumley and Boneh, 2003]. They exploit two algorithmic data dependencies

in OpenSSL that cause timing variations in RSA decryption. They test their attack

in local network environment with low network latency and successfully recover a

server’s private key in a matter of hours.

Two different timing attacks by Percival [Percival, 2005] and Bernstein [Bernstein,

2005] exploit extra time caused by cache misses. In Hyper-Threading processors,

threads share not only processor resources such as execution units but also access

to the memory caches. Shared caches can create a cryptographic side channel, for

example, through virtual memory paging. Loading a page from disk on a cache

miss takes longer than the time to return from a cache hit. This can leak a bit of

information from one process to another. L1 and L2 cache misses also create similar

information channels. Shared access to memory caches therefore permits a malicious

thread to monitor the execution of another thread, enabling in many cases the theft

of cryptographic keys.

2.2 Consumption of Certain Resources

Computer systems, especially real-time systems, consume a certain amount of re-

sources during execution. The amount of resources consumed can provide informa-

tion about the internal states of a system. The resources consumed could be power,

13



Chapter 2. Side Channel Information and Its Security Implications

network bandwidth, storage, memory, etc. It is often possible to monitor consump-

tion of resources from outside of a system and use these observations to infer states

inside a system.

As one concrete example, consider the power consumption of a cryptographic

hardware device (such as a smart card or microchip). If the amount of power con-

sumed by different cryptographic operations varies, statistical analysis may be able

to correlate the differences with inputs or stored cryptographic keys, causing power

consumption to leak crucial information about the cryptosystem.

Kocher et al. demonstrate that an attacker can compute intermediate values of

data blocks and key blocks by statistically analyzing data collected from multiple

cryptographic operations [Kocher et al., 1999]. They propose two power monitor-

ing attacks. The first one, called Simple Power Analysis (SPA), directly interprets

power consumption variations due to sequences of cryptographic operations. When

continuously monitoring power consumption across a single cryptographic operation,

the 16 rounds of the Data Encryption Standard (DES) [Wikipedia, 2008a] are clearly

distinguishable. SPA uses the power consumed in each round to infer the sequence of

instructions executed. This analysis can reveal information in cryptographic imple-

mentations in which the execution path depends on the data being processed, such

as the DES key schedule, DES permutations, comparisons, multipliers, and exponen-

tiators.

The second, more powerful attack is Differential Power Analysis (DPA). The power

consumption is correlated with the data values being manipulated, through these

variations are smaller and can be overshadowed by measurement errors and noise.

DPA uses statistical functions tailored to the target algorithm to analyze power con-

sumption. Signal processing and error correction techniques can extract secrets from

measurements that are too noisy to be analyzed by Simple Power Analysis (SPA).

14



Chapter 2. Side Channel Information and Its Security Implications

2.3 Unprotected Emanation Channels

In the context of computer security, emanations traditionally refer to electric or elec-

tromagnetic radiation produced by electronic equipment. Emanations from electronic

devices have long been a topic of concern in the security and privacy communi-

ties [Briol, 1991]. Emission Security or Emanations Security (EMSEC) has been a

national security concern as well. For example, TEMPEST is a U.S. government code

word that identifies a classified set of standards for limiting electric or electromagnetic

radiation emanations from electronic equipment.

In public research, Kuhn has recovered the display on CRT and LCD monitors us-

ing indirectly reflected optical emanations [Kuhn, 2002; Kuhn, 2003]. In 2002, Kuhn

showed that the intensity of the light emitted by a raster-scan screen as a function

of time corresponds to the video signal convolved with the impulse response of the

phosphors. Enough high-frequency content remains in emitted light to permit recon-

struction of readable text by deconvolving the signal received with a fast photosensor.

The optimal emanations from cathode-ray tube (CRT) displays are recoverable even

after distortion or diffuse reflection from a wall at distances from tens up to hundreds

meters.

In 2003, Kuhn further showed that modern flat-panel displays can be at least as

vulnerable to electromagnetic eavesdropping [Kuhn, 2003], especially when connected

by the Digital Video Interface (DVI) cables: even shielded cables leak detectable

radio waves to the environment. The serial transmission of DVI cables effectively

modulates the video signal in ways that provide an eavesdropper with better reception

quality than VGA cables. Kuhn discusses several new attacks and defenses involving

emanations from flat-panel displays and DVI cables.

Acoustic emanations provide another source of information. Researchers have

shown that acoustic emanations of matrix printers carry substantial information

15



Chapter 2. Side Channel Information and Its Security Implications

about the printed text [Briol, 1991]. Some researchers suggest it may be possible

to discover CPU operations using acoustic emanations [Shamir and Tromer, 2004].

Another example of acoustic emanations is the sound emitted while typing on

computer keyboards, which is a side effect of using a computer. This is the subject of

Chapter 3 of this dissertation. Here is a brief overview — Two observations provide

clues about recovering information from these emanations. First, different keystrokes

can sound different given the non-uniformity of the keyboard supporting plate and

individual keys. Second, people tend not to type random text: for example, English

speakers type English most of the time. By exploiting these two observations, attack-

ers who overhear the acoustic emanations of typing can recover the actual characters

typed.

2.4 Unintended Usage of Information

Some systems log certain information during execution. When combined with other

sources, information logs can be used in ways unintended by their designers.

Frankowski et al. demonstrate a method for associating user identities across their

blogs and forum discussions [Frankowski et al., 2006]. People sometimes publish

reviews of movies on blogs or forums to share opinions with others. However, this

information might also be used for the unintended and perhaps undesirable purpose

of linking identities. A person may write opinionated reviews about movies in a

blog under a pseudonym while participating in a forum or web site for scholarly

discussion without a pseudonym or anonymity. It is often possible to link these

separate identities because different blogs or forums show common features such as

mention of certain movies, authors, and journal articles.

Attackers can also leak information when they use systems to mount attacks.

Some attackers compromise machines remotely and control illicit networks (called

16



Chapter 2. Side Channel Information and Its Security Implications

botnets) of these machines. Botnet controllers typically want to hide information

about propagation and command-control traffic, to avoid discovery and neutraliza-

tion of compromised machines. In Chapter 4, we discuss our hypothesis that the

economic motivation behind such networks almost always leaves traces to be found.

For example, when botnets send spam email, similarities between spam email mes-

sages can reveal information about botnet identities and botnet membership of the

source computer. The connections among spam email messages form a type of side

channel beyond the design specifications of botnets. We show in Chapter 4 that

security can be enhanced by analyzing these hidden connections. In this case, the

identities of email senders are logged as part of the SMTP protocol. This log in-

formation is used to infer botnet membership, which is a different purpose from its

intended use.

17



Chapter 3

Side Channel System Attack:

Keyboard Acoustic Emanations

3.1 The Case: Keyboard Acoustic Emanations

Emanations produced by electronic devices have long been a topic of concern in

the security and privacy communities [Briol, 1991]. Sound of typing on computer

keyboards is a type of acoustic emanations, called keyboard acoustic emanations.

Keyboard acoustic emanations leak information about keystrokes typed. This chapter

reports on recovering keystrokes typed on a keyboard from a sound recording of the

user typing.

Acoustic keyboard emanations, are not uniform across different instances, even

when the same device model is used, and they are affected by the environment.

Different users on a single keyboard or different keyboards (even of the same model)

emit different sounds, making reliable recognition hard [Asonov and Agrawal, 2004].

Asonov and Agrawal achieved relatively high recognition rate (approximately 80%)

when they trained neural networks with text-labeled sound samples of the same user

18



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

typing on the same keyboard. Their attack is analogous to a known-plaintext attack

on a cipher – the cryptanalyst has a sample of plaintext (the keys typed) and the

corresponding ciphertext (the recording of acoustic emanations). This labeled training

sample requirement suggests a limited attack, because the attacker needs to obtain

training samples of significant length. Presumably these could be obtained from video

surveillance or network sniffing. However, video surveillance in most cases should

render the acoustic attack irrelevant, because even if passwords are masked on the

screen, a video shot of the keyboard could directly reveal the keys being typed.

In this chapter we argue that a labeled training sample requirement is unnecessary

for an attacker. This implies keyboard emanation attacks are more serious than

previous work suggests. The key insight in our work is that the typed text is often

not random. When one types English text, the finite number of mostly used English

words limits possible temporal combinations of keys, and English grammar limits

word combinations. One can first cluster (using unsupervised methods) keystrokes

into a number of acoustic classes based on their sound. Given sufficient (unlabeled)

training samples, a most-likely mapping between these acoustic classes and actual

typed characters can be established using the language constraints.

This task is not trivial. Challenges include: 1) How can one mathematically

model language constraints and mechanically apply them? 2) In the first sound-

based clustering step, how can one address the problem of different keys clustered in

the same acoustic class and a single key clustered in multiple acoustic classes? 3) Can

we improve the accuracy of the guesses by the algorithm to match the level achieved

with labeled samples?

Our work answers these challenges, using a combination of machine learning and

speech recognition techniques. We show how to build a keystroke recognizer that

has better recognition rate than labeled sample recognizers in [Asonov and Agrawal,

2004]. We only use a sound recording of a user typing.

19



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

Our method can be viewed as a machine learning version of classic attacks to

simple substitution ciphers. Assuming the ideal case in which a key produces exactly

the same sound each time it is pressed, each keystroke could be easily given an

acoustic class according to the sound. The acoustic class assignment would be a

permutation of the key labels. This is exactly an instance of substitution cipher.

Early cryptographers developed methods for cryptoanalyzing substitution ciphers.

Our attack can be viewed as an extension of these methods – but our problem is

more difficult because the sound of a particular keystroke varies even when it is

produced by the same typist.

We built a prototype that can bootstrap the recognizer from about 10 minutes

of English text typing, using about 30 minutes of computation on a desktop com-

puter with a Pentium IV 3.0G CPU and 1GB of memory. After the bootstrap step,

it could recognize language-independent keystrokes in real time, including random

keystrokes occurring in passwords, with an accuracy rate of about 90%. When

language-dependent constraints are applied to English text, we achieve a 90-96%

accuracy rate for characters and a 75-90% accuracy rate for words.

The purpose of this chapter is to show that after applying machine learning tech-

niques to side channel information, the types of information leak regarded as safe

before can be sources of severe attacks. We also show in this chapter about how to

select proper combinations of feature extraction and learning algorithms in order to

perform statistical analysis.

3.2 Related Work

We briefly review two related previous research studies examining recovery of keystrokes,

each using a different type of side channel information.

To the best of our knowledge, Asonov and Agrawal were the first researchers

20



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

to publish a concrete attack exploiting keyboard acoustic emanations [Asonov and

Agrawal, 2004]. They note that the sound of keystrokes differ slightly from key to

key. They give a concrete method to recover information about typing on keyboards,

using neural networks as acoustic classifiers. Their approach is to first “teach” the

neural networks about what the different keys sound like. To do this, each key is

typed 100 times. The neural network is trained with the label (the key being typed)

and the corresponding sound. The raw digitalized sound input is too large for their

neural networks, so each keystroke is represented as a vector of Fast Fourier Transform

(FFT) features. The trained neural network then can be used to recognize subsequent

keystrokes.

Based on the supervised learning approach above, Asonov and Agrawal show:

• A wide variety (e.g. different keyboards of the same model, different models,

different brands) of keyboards have keys with distinct acoustic properties.

• Sound recordings from as far away as 15 meters suffice for neural network su-

pervised learning if sophisticated microphones such as parabolic microphones

are used.

• Their neural network supervised learning is sensitive to training errors: if input

label are inaccurate, their recognition rates drop sharply. The effectiveness

of the approach also depends a lot on the comprehensiveness of the training

samples, i.e. whether it contains enough samples for each key or not.

Asonov and Agrawal’s work opened a new field. However, there are limitations in

their approach:

• Their attack is for labeled acoustic recordings. Their attack works well only

with the same settings (i.e. the same keyboard, person, recording environment,

etc.) as the training recording, and such training data are hard to obtain in

21



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

��������	�

�����
���

����

����

����

����

����

����

����

����

����

����

����


��������
�
 
�

�
�
�� 
�

�
�
��

��� ���

���

����������	
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

������������ ���������� ����������

��� ��������

�����������	
����


�




��



��



��



��



��



��



��



��



��


��




����������
 
��
���
�� 
��
���
��

��� ����
���

Figure 3.1: Recognition rates using FFT and cepstrum features. The Y axis shows the
recognition rate. Three different classification methods are used on the same sets of FFT
or cepstrum features.

many cases. Training on one keyboard and recognizing on another keyboard of

the same model yields much lower accuracy rates, at around 25%. Even if we

count all occasions when the correct key is among the top four candidates, the

accuracy rate is still only about 50%. Lower recognition rates are also observed

when the system is trained for one typist and then applied to another typist.

• The set of acoustic classification techniques used leaves room for improvement.

In our work, we found features superior to FFT and acoustic classifiers superior

to neural networks. Figure 3.1 compares FFT and cepstrum features and also

compares three classifiers: linear classification, neural networks and Gaussian

mixtures. The classifier is trained on the training set data and is then used to

classify the training set itself and two other data sets. Character recognition rate

using cepstrum features (discussed below) on average is better than character

recognition using FFT. This is true for all data sets and classification methods.

Neural networks perform worse than linear classification on the two test sets. In

this experiment, we could only approximate the experiment settings in [Asonov

and Agrawal, 2004]. But the significant performance differences indicate that

there are better alternatives to FFT and neural networks combination.

22



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

Timing information is a different type of side channel information related to key-

board typing. Timing information includes the time between two keystrokes, the time

between keystroke push to keystroke release, etc. Song, Wagner and Tian showed how

to extract information based on the time between two consecutive keystrokes [Song

et al., 2001]. They considered interactive login shells encrypted with the SSH pro-

tocol. In this scenario, an eavesdropper can detect the time between consecutive

keys. Statistical analysis shows that the distribution of time between a pair of keys

vary for different key pairs. Contributing factors include: whether keys are typed

with alternating hands or the same hand, with different fingers or the same fingers,

etc. The types of pairs defined in their work capture the physical distances between

keys and also the the response time of human beings. However, many different pairs

may belong to the same type, e.g. two letters typed by alternating hands. Timing

information is generally not helpful in distinguishing different pairs in the same type.

Their work gives some analysis of the amount of information leaked by timing infor-

mation. In Section 3.6.1, we give an approach to combine timing information with

our acoustic emanation recognition. However, to date we have only observed modest

improvements by adding timing information. It remains an open question whether

the two methods together can yield substantially higher recognition rates.

3.3 The Attack

In this section, we present an overview of our attack. Section 3.4 presents the attack

in full.

23



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

ex
tra

ct
 th

e 
sta

rt 
of

ea
ch

 k
ey

str
ok

e
co

m
pu

te
 sp

ec
tru

m
fe

at
ur

es

Sa
m

pl
e

C
ol

le
ct

or

pr
ob

ab
ly

−c
or

re
ct

sa
m

pl
es

cl
as

sif
ie

r)

(fe
ed

ba
ck

to
 im

pr
ov

e
ke

ys
tro

ke
s

La
ng

ua
ge

 M
od

el
C

or
re

ct
io

n

la
be

ls 
of

ke
ys

tro
ke

s
ke

ys
tro

ke
cl

as
sif

ie
r

ex
tra

ct
 th

e 
sta

rt 
of

ea
ch

 k
ey

str
ok

e
co

m
pu

te
 sp

ec
tru

m
fe

at
ur

es
la

be
ls 

of
ke

ys
tro

ke
s

La
ng

ua
ge

 M
od

el
C

or
re

ct
io

n

K
ey

st
ro

ke

Bu
ild

er

fe
at

ur
es

(s
ig

na
l)

Fe
at

ur
e 

Ex
tr

ac
tio

n 
M

od
ul

e
U

ns
up

er
vi

se
d

Le
ar

ni
ng

M
od

ul
e

C
la

ss
ifi

er

(s
ig

na
l)

fe
at

ur
es

C
la

ss
ifi

er

Fe
at

ur
e 

Ex
tr

ac
tio

n 
M

od
ul

e
K

ey
st

ro
ke

(b
) R

ec
og

ni
tio

n 
Ph

as
e:

 R
ec

og
ni

ze
 k

ey
str

ok
es

 u
sin

g 
th

e 
cl

as
sif

ie
r f

ro
m

 (a
).

(a
) T

ra
in

in
g 

Ph
as

e:
 B

ui
ld

 k
ey

str
ok

e 
cl

as
sif

ie
r u

sin
g 

un
su

pe
rv

ise
d 

le
ar

ni
ng

F
ig

ur
e

3.
2:

O
ve

rv
ie

w
of

th
e

at
ta

ck

24



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

We take a recording of a user typing English text on a keyboard, and produce a

recognizer that can, with high accuracy, determine subsequent keystrokes from sound

recordings if it is typed by the same person, with the same keyboard, under the same

recording conditions. These conditions can easily be satisfied by, for example, placing

a wireless microphone in the user’s work area or by using parabolic or laser micro-

phones from a distance. Although we do not necessarily know in advance whether a

user is typing English text, in practice we can record continuously, try to apply the

attack, and see if meaningful text is recovered.

Figure 3.2 presents a high level overview of the attack.

The first phase (Figure 3.2(a)) trains the recognizer. It contains the following

steps:

• Feature extraction. We use cepstrum features, a technique developed by re-

searchers in voice recognition [Childers et al., 1977]. As we discuss below,

cepstrum features give better results than FFT.

• Unsupervised key recognition using unlabeled training data. We cluster each

keystroke into one of K acoustic classes, using standard data clustering methods.

K is chosen to be slightly larger than the number of keys on the keyboard. As

we discuss in Section 3.1, if these acoustic clustering classes correspond exactly

to different keys in a one-to-one mapping, we can easily determine the mapping

between keys and acoustic classes. However, clustering algorithms are imprecise.

Keystrokes of the same key are sometimes placed in different acoustic classes

and conversely keystrokes of different keys can be in the same acoustic class. We

let the acoustic class be a random variable conditioned on the actual key typed.

A particular key will be in each acoustic class with a certain probability. In

well clustered data, probabilities of one or a few acoustic classes will dominate

for each key. Once the conditional distributions of the acoustic classes are

25



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

determined, we try to find the most likely sequence of keys given a sequence of

acoustic classes for each keystroke. Naively, one might think picking the letter

with highest probability for each keystroke yields the best estimation and we

can declare our job done. But we can do better. We use a Hidden Markov

Model (HMM) [Rabiner and Juang, 1986]. HMMs model a stochastic process

with state. They capture the correlation between keys typed in sequence. For

example, if the current key can be either “h” or “j” (e.g. because they are

physically close on the keyboard) and we know the previous key is “t”, then the

current key is more likely to be “h” because “th” is more common than “tj”.

Using these correlations in English1, both the keys and the key-to-class mapping

distributions can be efficiently estimated using standard HMM algorithms. This

step yields accuracy rates of slightly over 60% for characters, which in turn yields

accuracy rates of over 20% for words.

• Spelling and grammar checking. We use dictionary-based spelling correction and

a simple statistical model of English grammar. These two approaches, spelling

and grammar, are combined in a single Hidden Markov Model. This increases

the character accuracy rate to over 70%, yielding a word accuracy rate of about

50% or more. At this point, the text is quite readable (see Section 3.4.3).

• Feedback-based training. Feedback-based training produces a keystroke acoustic

classifier that does not require an English spelling and grammar model, enabling

random text recognition, including password recognition. In this step, we use

the previously obtained corrected results as labeled training samples. Note that

our corrected results are not 100% correct. We use heuristics to select words

that are more likely to be correct. For examples, a word that is not spell-

1Other languages than English have different probabilistic distributions of pairs, but the method
still applies.

26



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

corrected or one that changes only slightly during correction in the last step is

more likely to be correct than those that had more changes. In our experiments,

we pick out those words with fewer than 1/4 of characters corrected and use

them as labeled samples to train an acoustic classifier. The recognition phase

(Figure 3.2(b), described below) recognizes the training samples again. This

second recognition typically yields a higher keystroke accuracy rate. We use the

number of corrections made in the spelling and grammar correction step as a

quality indicator. Fewer corrections indicate better results. The same feedback

procedure is performed repeatedly until no significant improvement is seen. In

our experiments, we perform three feedback cycles. Our experiments indicate

both linear classification and Gaussian mixtures perform well as classification

algorithms [Jordan, 2008], and both are better than neural networks as used

in [Asonov and Agrawal, 2004]. In our experiments, character accuracy rates

(without a final spelling and grammar correction step) reach up to 92%.

The second phase, the recognition phase, uses the trained keystroke acoustic clas-

sifier to recognize new sound recordings. If the text consists of random strings, such

as passwords, the result is output directly. For English text, the above spelling and

grammar language model is used to further correct the result. To distinguish between

two types of input, random text or English text, we apply the correction and see if

the result is close to English text.

In practice, a human attacker can typically determine if text is random. An

attacker can also identify occasions when the user types user names and passwords.

For example, password entry typically follows a URL for a password protected website.

Meaningful text recovered from the recognition phase during an attack can also be

fedback to the first phase. These new samples along with existing samples can be

used together to increase the accuracy of the keystroke classifier. Our recognition

27



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 80 60 40 20 0

S
am

pl
e 

V
al

ue

Time (ms)

Touch
Peak

Hit
Peak

Push Peak Release Peak

Figure 3.3: The audio signal of a keystroke

rate improves over time (see below sections).

3.4 Technical Details

Below, we describe in detail the steps of our attack. Some steps (feature extraction

and supervised classification) are used in both the training phase and the recognition

phase.

3.4.1 Keystroke Feature Extraction

3.4.1.1 Keystroke Extraction

Typical users can type up to about 300 characters per minute. Keystrokes consist of a

push and a release. Our experiments confirm Asonov and Agrawal’s observation that

the period from push to release is typically about 100 milliseconds. There is usually

more than 100 milliseconds between consecutive keystrokes, which is large enough

to distinguish the consecutive keystrokes. Figure 3.3 shows the acoustic signal of a

push peak and a release peak. We need to detect the start of a keystroke, which is

28



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 250 200 150 100 50

S
um

 o
f F

FT
 C

oe
ffi

ci
en

ts

Time (ms)

keystrokes start positions

Figure 3.4: Energy levels over the duration of 5 keystrokes. (Smaller peaks are release
peaks.)

essentially the start of the push peak in a keystroke acoustic signal.

We distinguish between keystrokes and silence using energy levels in time windows.

In particular, we calculate the windowed discrete Fourier transform of the signal and

use the sum of all FFT coefficients as energy. We use a threshold to detect the start

of keystrokes. Figure 3.4 shows an example.

3.4.1.2 Features: Cepstrum vs. FFT

Given the start of each keystroke (wav position), features of this keystroke are ex-

tracted from the audio signal during the period from wav position to wav position+

∆T . Our experiments compare two different types of features. First we use FFT fea-

tures with ∆T ≈ 5ms, as in [Asonov and Agrawal, 2004]. This time period roughly

corresponds to the touch peak of the keystroke, which is when the finger touches the

key. An alternative is to use the hit peak, when the key hits the supporting plate.

The hit peak is harder to pinpoint in the signal, so our experiments use the touch

peak.

As shown in Figure 3.1, the classification results using FFT features are not sat-

29



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

isfactory and we can not achieve the levels reported in [Asonov and Agrawal, 2004].

This might be caused by different experimental environment settings, different quality

of recording devices, etc.

Next, we use cepstrum features. Cepstrum features are widely use in speech anal-

ysis and recognition [Childers et al., 1977]. Cepstrum features have been empirically

verified to be more effective than plain FFT coefficients for voice signals. In par-

ticular, we use Mel-Frequency Cepstral Coefficients (MFCCs) [Jurafsky and Martin,

2000]. In our experiments, we set the number of channels in the Mel-Scale Filter Bank

to 32 and use the first 16 MFCCs computed using 10ms windows, shifting 2.5ms each

time. MFCCs of a keystroke are extracted from the period from wav position to

wav position + ∆T ′, where ∆T ′ ≈ 40ms which covers the whole push peak. As

Figure 3.1 reports, this yields far better results than from FFT features.

Asonov and Agrawal’s observation shows that high frequency acoustic data pro-

vides limited value. We ignore data over 12KHz. After feature extraction, each

keystroke is represented as a vector of features (FFT coefficients or MFCCs).

3.4.2 Unsupervised Single Keystroke Recognition

As discussed above, the unsupervised recognition step recognizes keystrokes using

audio recording data only and no training or language data.

The first step is to cluster the feature vectors into K acoustic classes. Possible

algorithms to do this include K-means and Expectation-Maximization (EM) on Gaus-

sian mixtures [Bilmes, 1997]. Our experiments tested values of K from 40 to 55, and

K = 50 yielded the best results. We use thirty keys, so K must be equal or larger

than 30. A larger K captures more information from the sound samples, but it also

makes the system more sensitive to noise. It would be interesting to experiment with

using Dirichlet processes that might predict K automatically [Jordan, 2008].

30



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

A A A A

η η η η

q0 q1 q2 qT

y0 y1 y2 ... ... ... ... yT

π

Figure 3.5: The Hidden Markov Model for unsupervised key recognition

The second step is to recover text from these classes. For this we use a Hidden

Markov Model (HMM) [Rabiner and Juang, 1986]. HMMs are often used to model

finite-state stochastic processes. In a Markov chain, the next state depends only on

the current state. Examples of processes that are close to Markov chains include

sequences of words in a sentence, weather patterns, etc. For processes modeled with

HMM, the true state of the system is unknown and thus is represented with hidden

random variables. What is known are observations that depend on the state. These

are represented with known output variables. One common problem of interest in an

HMM is the inference problem, where the unknown state variables are inferred from

a sequence of observations. This is often solved with the Viterbi algorithm [Russell

and Norvig, 2003]. Another problem is the parameter estimation problem, where the

parameters of the conditional distribution of the observations are estimated from the

sequence of observations. This can be solved with the EM algorithm.

Figure 3.5 shows the HMM we used. It is represented as a statistical graphical

model [Jordan, 2008]2. Circles represent random variables. Shaded circles (yi) are

observations while unshaded circles (qi) are unknown state variables we wish to infer.

Here, qi is the label of the i-th key in the sequence, and yi is the class of the keystroke

we obtained in the clustering step. The arrows from qi to qi+1 and from qi to yi indicate

that the latter is conditionally dependent on the former; the value on the arrow is an

2One might think that a more generalized Hidden Markov Model, such as one that uses Gaussian
mixture emissions [Jordan, 2008], would give better results. However, the HMM with Gaussian
mixture emission has a much larger number of parameters and thus faces the “overfitting” problem.
We find a discrete HMM as presented here gave better results.

31



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

entry in the probability matrix. So here we have p(qi+1|qi) = Aqi,qi+1
, which is the

probability of the key qi+1 appearing after key qi. The A matrix is another way of

representing plaintext bigram distribution data. The A matrix (called the transition

matrix) is determined by the English language and thus is obtained from a large

corpus of English text. We also have p(yi|qi) = ηqi,yi
, which is the probability of the

key qi being clustered into acoustic class yi in the previous step. Our observations

(the yi values) are known. The output matrix η is unknown. We wish to infer the qi

values. Note that one set of values for qi and η are better than a second set if the

likelihood (joint probability) of the whole set of variables, computed by multiplying

all conditional probabilities, is larger with the first set than the second set. Ideally,

we want a set of values that maximize the likelihood, so we are performing a type of

Maximum Likelihood Estimation [Russell and Norvig, 2003].

We use the EM algorithm [Bilmes, 1997] for parameter estimation. It goes through

a number of rounds, alternately improving qi and η. The output of this step is the η

matrix. After that, the Viterbi algorithm [Russell and Norvig, 2003] is used to infer

qi, i.e. the best sequence of keys.

EM is a randomized algorithm. Good initial values make the chance of getting

satisfactory results better. We find initializing the row in η corresponding to the

Space key to an informed guess makes the EM results more stable. This is probably

because spaces delimit words and strongly affect the distribution of keys before and

after the spaces. This task is performed manually. Space keys are easy to distinguish

by ear in the recording because of the key’s distinctive sound and frequency of use.

We mark several dozen space keys, look at the class that the clustering algorithm

assigns to each of them, calculate their estimated probabilities for class membership,

and put these into η. This approach yields good results for most of the runs. However,

it is not necessary. Even without knowing where Space keys occur, EM with different

random initial values eventually yields a good set of parameters. All other keys used

32



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

in our study, including punctuation keys are initialized to random values in η. We

believe that initialization of η can be completely automated in the future.

3.4.3 Error Correction with a Language Model

As we discuss in Section 3.3, error correction is a crucial step in improving the results.

It is used in unsupervised training, supervised training and also recognition of English

text.

3.4.3.1 Simple Probabilistic Spelling Correction

Using a spelling checker is one of the easiest ways to exploit knowledge about the

language. We ran spell checks using Aspell [Atkinson, 2005a] on recognized text and

found some improvements. However stock spell checkers are limited in the kinds of

spelling errors they can handle, e.g. at most two letters wrong in a word. They are

designed to cope well with common errors that human typists make, not the kinds of

errors that acoustic keystroke classifiers make. It is not surprising that their utility

here is limited.

Fortunately, there are patterns in the errors that the acoustic keystroke classifier

makes. For example, it may have difficulty with several keys, often confusing one with

another. Suppose that we know the correct plaintext. (This is of course not true, but

as we iterate the algorithm, we predict the correct plaintext with increasing accuracy.

Below, we address the case of unsupervised step, where we know no plaintext at all.)

Under this assumption, we would have a simple method to exploit these patterns.

We act as if this assumption were true, and run the acoustic keystroke classifier on

training data and record all classification results, including errors. With this, we

calculate a matrix E (sometimes called the confusion matrix in the machine learning

33



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

literature),

Eij = p̂(y = i|x = j) =
Nx=j,y=i

Nx=j

(3.1)

where p̂(·) denotes estimated probability, x is the typed key and y is the recognized

key, and Nx=j,y=i is the number of times x = j, y = i is observed. Columns of E give

the estimated conditional probability distribution of y given x.

Assume that letters are independent of each other and the same is true for words.

(This is a false assumption because there is significant inter-letter dependence in

natural languages, but works well in practice for our experiments.) We compute the

conditional probability of the recognized word Y (the corresponding string returned

by the recognizer, not necessarily a correct word) given each dictionary word X.

p(Y|X) =

length of X∏
i=1

p(Yi|Xi) ≈
∏

i

Eyi,xi
(3.2)

In the equation above, Xi is the i-th character of dictionary word X and Yi is

the i-th character of the recognized word. p(Y|X) represents the probability that the

recognition result is Y but the actual user input word is X.

We compute this probability for each dictionary word, which takes only a fraction

of a second. The word list we use is SCOWL [Atkinson, 2005b] which ranks words

by complexity. We use words up to level 10 (higher-level words are more obscure),

which covers most commonly used words, giving us 95,997 words in total. By simply

selecting the word with the largest posterior probability as our correction result, we

correct many errors.

Because of the limited amount of training data, there will be many zeroes in E if

Equation (3.1) is used directly, that is, the matrix will be sparse. This is undesirable

because the corresponding combination may actually occur in the recognition data.

This problem is similar to the zero-occurrence problem in n-gram models [Jurafsky

34



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

and Martin, 2000]. We assign an artificial occurrence count (we use 0.1) to each

zero-occurrence event.

In the discussion above we assume the plaintext is known, but we do not even have

an approximate idea of the plaintext in the first round of (unsupervised) training.

We work around this by letting Eii = p0 where p0 is a constant (we use 0.5) and

distribute the remaining 1 − p0 uniformly over all Eij where j 6= i. Obviously this

gives suboptimal results, but the feedback mechanism corrects this later.

3.4.3.2 Adding an n-gram Language Model

The spelling correction scheme above does not take into account relative word fre-

quency or grammar issues: for example, some words are more common than others,

and there are rules in forming phrases and sentences. Spelling correction will happily

accept “fur example” as a correct spelling because “fur” is a dictionary word, even

though the original phrase is probably “for example”.

One way to fix this is to use an n-gram language model that models word fre-

quency and relationship between adjacent words probabilistically [Jurafsky and Mar-

tin, 2000]. Specifically, we combine trigrams with the spelling correction method

above and model a sentence using the graphical model shown in Figure 3.6. The hid-

den variables wt are words in the original sentence. The observations vt are recognized

words. p(vt|wt) is calculated using Equation (3.2) above. Note this is a second-order

HMM, because every hidden variable depends on two prior variables. The conditional

probability p(wt|wt−1, wt−2) is determined by a trigram model obtained by training

on a large corpus of English text.

In this model only the wi values are unknown. To infer the most likely sentence,

we again use the Viterbi algorithm. We use a version of the Viterbi algorithm for

second order HMMs, similar to the one in [Thede and Harper, 1999]. The complexity

of the algorithm is O(TN3), where T is the length of the sentence and N is the number

35



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

... ... ... ...
v0 v1 v2 vT

wTw2w1w0

”for”

”fur” ”examplf”

”example” ”the”

”tbe”

Figure 3.6: Trigram language model with spell correction

of possible values for each hidden variable, that is, the number of dictionary words

of the appropriate length. To reduce complexity, only the top M candidates from

the spelling correction process of each word are considered in the Viterbi algorithm,

lowering the cost to O(TM3). That is, for each recognized word vt, we select the

top M possible hidden variables (wt) where p(vt|wt) are the largest values among all

dictionary words. We start from the first word, and each word is chosen from the top

M candidate dictionary words. We find the path with the largest:

p(v1|w1)p(w2|w1)p(v2|w2)
T∏

t=3

p(vt|wt)p(wt|wt−1, wt−2)

We used M = 20 in our experiments. Larger M values provide little improvement.

3.4.4 Supervised Training and Recognition

Supervised training refers to training processes performed with labeled training data.

We apply our feedback-based training processes iteratively, using in each iteration

characters “recognized” in previous iterations as training samples to improve the

accuracy of the acoustic keystroke classifier.

Below, we discuss three different methods of supervised training and recognition

we use in our experiments, including the one used in [Asonov and Agrawal, 2004].

36



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

Like any supervised classification problem, there are two stages:

1. Training: input feature vectors and corresponding labels (the key pressed) and

output a model to be used in recognition;

2. Recognition: input feature vectors and the trained classification model and

output the label of each feature vector (keystroke).

3.4.4.1 Method 1: Neural Networks

The first method is neural networks, also used by Asonov and Agrawal [Asonov and

Agrawal, 2004]. Specifically, we use probabilistic neural networks, which are arguably

the best neural networks available for for classification problems [Wasserman, 1993].

We use Matlab’s newpnn() function, with spread radius parameter as 1.4 (this gives

the best results in our experiments).

3.4.4.2 Method 2: Linear Classification (Discriminant)

The second method is simple linear (discriminant) classification [Jordan, 2008]. This

method assumes the data to be Gaussian and finds hyperplanes in the space to divide

the classes. We use the classify() function from Matlab.

3.4.4.3 Method 3: Gaussian Mixtures

The third method is more sophisticated than linear classification (though it gave

worse results in our experiments). Instead of assuming Gaussian distribution of data,

it assumes that each class corresponds to a mixture of Gaussian distributions [Jordan,

2008]. A mixture is a distribution composed of several sub-distributions. For example,

a random variable with distribution of a mixture of two Gaussians could have a

probability of 0.6 of being in one Gaussian distribution and 0.4 of being in the other

37



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

recording length number of words number of keys
Set 1 12m17s 409 2514
Set 2 26m56s 1000 5476
Set 3 21m49s 753 4188
Set 4 23m54s 732 4300

Table 3.1: Statistics of each test set

Gaussian distribution. This captures the fact that each key may have several slightly

different sounds depending on how the typist hit the key.

We also use the EM algorithm to train the Gaussian mixture model. In our

experiment, we used mixtures of five Gaussian distributions of diagonal covariance

matrices. Mixtures of more Gaussians provide potentially better model accuracy but

need more parameters to be trained, requiring more training data and often making

EM less stable. We find using five components seems to provide a good tradeoff.

Using diagonal covariance matrices reduces the number of parameters. Without this

restriction, EM has very little chance of yielding a useful set of parameters.

3.5 Evaluation

Our experiments evaluated the attacks. In our first experiment, we worked with four

recordings of various lengths of news articles being typed. We used a Logitech Elite

cordless keyboard in use for about two years (manufacturer part number: 867223-

0100), a $10 generic PC microphone and a Soundblaster Audigy 2 soundcard. The

typist was the same for each recording. The keys typed included “a”-“z”, comma,

period, space and enter. The article was typed entirely in lower case so the shift key

was never used. Typists were told to continue typing without using backspace key

for error correction. (We discuss these issues in Section 3.6.)

Table 3.1 shows the statistics of each test set. Sets 1 and 2 are from quiet environ-

ments, while sets 3 and 4 are from noisy environments. Our algorithm for detecting

38



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

the start of a keystroke sometime fails. We manually corrected the results of the

algorithm for sets 1, 2 and 3, requiring ten to twenty minutes of human time per data

set. (Sets 1 and 2 needed about 10 corrections; set 3 required about 20 corrections.)

For comparison purposes, set 4 (which has about 50 errors in determining the start

of keystrokes) was not corrected.

In our second experiment, we recorded keystrokes from three additional models of

keyboards (see Section 3.5.1.2). The same keystroke recognition experiments were run

on these recordings and results compared. We used identical texts in this experiments

on all these keyboards.

3.5.1 English Text Recognition

3.5.1.1 A Single Keyboard

In our experiments, we used linear classification to train the keystroke classifier.

Table 3.2 shows the result after each step. First, the unsupervised learning step (Fig-

ure 3.2(a)) was run. In this unsupervised step, the HMM model shown in Figure 3.5

was trained using EM algorithm described above3. The output from this step is the

recovered text from HMM/Viterbi unsupervised learning, and the text after language

model correction. These two are denoted as keystrokes and language respectively in

the table. Then the first round of feedback supervised training produces a new classi-

fier. The iterated corrected text from this classifier (and corresponding text corrected

by the language model) are shown in the row marked “1st supervised feedback”. We

perform three rounds of feedback supervised learning. The bold numbers show our

final results. The bold numbers in the “language” row are the final recognition rate

we achieve for each test set. The bold numbers in the “keystroke” row are the recog-

3Since the EM algorithm is a randomized algorithm, it might sometimes get stuck in local optima.
To avoid this, in each of these experiments we run the same training process eight times and used
results from the run with the highest log-likelihood.

39



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

nition rates of the keystroke classifier, without using the language model. These are

the recognition rates for random or non-English text.

The results show that:

• The language model correction greatly improved the correct recovery rate for

words.

• The recovery rates in quiet environments (sets 1 and 2) were slightly better that

those in noisy environments (sets 3 and 4). But the difference became smaller

after several rounds of feedback.

• Correctness of the keystroke position detection affected the results. The recov-

ery rate in set 3 was better than set 4 because of keystroke location mistakes

included in set 4.

• When keystroke positions have been corrected after several rounds of feedback,

we achieved an average recovery rate of 87.6% for words and 95.7% for charac-

ters.

40



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

S
et

1
S
et

2
S
et

3
S
et

4
w

or
d
s

ch
ar

s
w

or
d
s

ch
ar

s
w

or
d
s

ch
ar

s
w

or
d
s

ch
ar

s

u
n
su

p
er

v
is

ed
ke

y
st

ro
ke

s
34

.7
2

76
.1

7
38

.5
0

79
.6

0
31

.6
1

72
.9

9
23

.2
2

67
.6

7
le

ar
n
in

g
la

n
gu

ag
e

74
.5

7
87

.1
9

71
.3

0
87

.0
5

56
.5

7
80

.3
7

51
.2

3
75

.0
7

1s
t

su
p
er

v
is

ed
ke

y
st

ro
ke

s
58

.1
9

89
.0

2
58

.2
0

89
.8

6
51

.5
3

87
.3

7
37

.8
4

82
.0

2
fe

ed
b
ac

k
la

n
gu

ag
e

89
.7

3
95

.9
4

88
.1

0
95

.6
4

78
.7

5
92

.5
5

73
.2

2
88

.6
0

2n
d

su
p
er

v
is

ed
ke

y
st

ro
ke

s
65

.2
8

91
.8

1
62

.8
0

91
.0

7
61

.7
5

90
.7

6
45

.3
6

85
.9

8
fe

ed
b
ac

k
la

n
gu

ag
e

90
.9

5
96

.4
6

88
.7

0
95

.9
3

82
.7

4
94

.4
8

78
.4

2
91

.4
9

3r
d

su
p
er

v
is

ed
ke

y
st

ro
ke

s
66

.0
1

9
2
.0

4
62

.7
0

9
1
.2

0
63

.3
5

9
1
.2

1
48

.2
2

8
6
.5

8
fe

ed
b
ac

k
la

n
gu

ag
e

9
0
.4

6
9
6
.3

4
8
9
.3

0
9
6
.0

9
8
3
.1

3
9
4
.7

2
7
9
.5

1
9
2
.4

9

T
ab

le
3.

2:
T
ex

t
re

co
ve

ry
ra

te
at

ea
ch

st
ep

.
A
ll

nu
m

b
er

s
ar

e
p
er

ce
nt

ag
es

.
T

he
ou

tp
ut

s
de

no
te

d
as

“k
ey

st
ro

ke
”

ar
e

re
co

ve
ry

ra
te

s
b
ef

or
e

la
ng

ua
ge

m
o
de

l
co

rr
ec

ti
on

.
T

he
b
ol

d
fa

ce
nu

m
b
er

s
in

th
e

“k
ey

st
ro

ke
”

ro
w

re
pr

es
en

t
re

co
ve

ry
ra

te
s

th
at

co
ul

d
b
e

ac
hi

ev
ed

fo
r
ra

nd
om

se
qu

en
ce

s
of

ch
ar

ac
te

rs
.

T
he

ou
tp

ut
s

de
no

te
d

as
“l

an
gu

ag
e”

ar
e

re
co

ve
ry

ra
te

s
af

te
r

la
ng

ua
ge

m
o
de

l
co

rr
ec

ti
on

.
T

he
b
ol

d
fa

ce
nu

m
b
er

s
in

th
e

“l
an

gu
ag

e”
ro

w
re

pr
es

en
t

re
co

ve
ry

ra
te

s
th

at
co

ul
d

b
e

ac
hi

ev
ed

fo
r

no
n-

ra
nd

om
se

qu
en

ce
s

of
ch

ar
ac

te
rs

,
su

ch
as

E
ng

lis
h

te
xt

.

41



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

 30

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14

Fi
na

l R
ec

og
ni

tio
n 

R
at

e

Length of Recording

word correct rate 
char correct rate

Figure 3.7: Length of recording vs. recognition rate

To understand how different classification methods in the supervised training step

affected the results, we reran the same experiment on set 1, using different supervised

classification methods. Table 3.3 shows our results. The methods in order of qual-

ity are is linear classification, then Gaussian mixtures, and then neural networks.

Experiments with other data sets gave similar results.

In the experiments above, we used recordings longer than 10 minutes. To discover

the minimal amount of training data needed for reasonable results, we took the first

data set (i.e. “Set 1” above) and used only the first 4, 5, 7 and 10 minutes of the

12-minute recording for training and recognition. Figure 3.7 shows the recognition

results we get. This figure suggests that at least 5 minutes of recording data are

sufficient to get good results for this particular recording4.

4The dip in the solid curve probably occurred because of noise during the 2-minute recording
window (between minute 5 and minute 7).

42



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

NN LC MC
words chars words chars words chars

1st supervised keystrokes 59.17 87.07 58.19 89.02 59.66 87.03
feedback language 80.20 90.85 89.73 95.94 78.97 90.45

2nd supervised keystrokes 70.42 90.33 65.28 91.81 66.99 90.25
feedback language 81.17 91.21 90.95 96.46 80.20 90.73

3rd supervised keystrokes 71.39 90.81 66.01 92.04 69.68 91.57
feedback language 81.42 91.93 90.46 96.34 83.86 93.60

Table 3.3: Recognition rates of classification methods in supervised learning. All numbers
are percentages. The outputs denoted as “keystroke” are recovery rates before language
model correction. The bold face numbers in the “keystroke” row represent recovery rates
that could be achieved for random sequences of characters. The outputs denoted as
“language” are recovery rates after language model correction. The bold face numbers in
the “language” row represent recovery rates that could be achieved for non-random se-
quences of characters, such as English text. (NN:Neural Network; LC:Linear Classification;
MC:Gaussian Mixtures)

3.5.1.2 Multiple Keyboards

To verify that our approach applies to different models of keyboards, we performed

the keystroke recognition experiment on different keyboards, using linear classification

in the supervised training step. The models of the keyboards we used are:

• Keyboard 1: Dell Quietkey PS/2 keyboard, manufacturer part number 2P121,

in use for about 6 months.

• Keyboard 2: Dell Quietkey PS/2 keyboard, manufacturer part number 035KKW,

in use for more than 5 years.

• Keyboard 3: Dell Wireless keyboard, manufacturer part number W0147, new.

The same document (2273 characters) was typed on all three keyboards and we

recorded keystroke sounds. Each recording lasted about 12 minutes. In these record-

ings, the background machine fan noise was noticeable. While recording from the

third keyboard, we got several seconds of unexpected noise from a cellphone nearby.

43



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

Keyboard 1 Keyboard 2 Keyboard 3
words chars words chars words chars

unsupervised keystrokes 30.99 71.67 20.05 62.40 22.77 63.71
learning language 61.50 80.04 47.66 73.09 49.21 72.63

1st supervised keystrokes 44.37 84.16 34.90 76.42 33.51 75.04
feedback language 73.00 89.57 66.41 85.22 63.61 81.24

2nd supervised keystrokes 56.34 88.66 54.69 86.94 42.15 81.59
feedback language 80.28 92.97 76.56 91.78 70.42 86.12

Final keystrokes 60.09 89.85 61.72 90.24 51.05 86.16
result language 82.63 93.56 82.29 94.42 74.87 89.81

Table 3.4: Text recovery rate at each step. With different keyboards. All numbers are
percentages. The outputs denoted as “keystroke” are recovery rates before language
model correction. The bold face numbers in the “keystroke” row represent recovery rates
that could be achieved for random sequences of characters. The outputs denoted as
“language” are recovery rates after language model correction. The bold face numbers
in the “language” row represent recovery rates that could be achieved for non-random
sequences of characters, such as English text.

Table 3.4 shows our results. Results in the table show that the first and the second

keyboards achieve higher recognition rate than the third one. However, all keyboards

we tested are vulnerable to the attacks we present in this paper.

3.5.2 Random Text Recognition and Password Stealing

We used the keystroke classifier trained by set 1 to mount password stealing attacks.

All password input recorded in our experiment were randomly generated sequences,

not user names or dictionary words. The output of the keystroke classifier for each

keystroke is a set of posterior probabilities:

p(this keystroke has label i|observed-sound), i = 1, 2, . . . , 30.

Given these conditional probabilities, one can calculate probabilities for all sequences

of keys being the real password. We sorted these sequences by their probabilities

44



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  4  8  16  32  64  128

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Number of Trials Needed

password length = 5
password length = 8

password length = 10

Figure 3.8: Password stealing: distribution of the number of trials required by the attacker.

from the largest to the smallest. This produced a candidate list and the attacker

can try one-by-one from the top to the bottom. To measure the efficacy of the

attack, we used the position of the real password in this list. A user inputed 500

random passwords each of length 5, 8 and 10. Figure 3.8 shows the cumulative

distribution function of the position of the real password. For example, with twenty

trials, 90% of 5-character passwords, 77% of 8-character passwords and 69% of 10-

character passwords are recovered. As Figure 3.8 also shows, after seventy-five trials,

we can recover 80% of 10-character passwords.

3.6 Discussion

3.6.1 Timing Information

We discuss above how to use acoustic information of keystrokes to recover typed keys.

Our experiments show high keystroke recovery rates using only acoustic information.

45



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

As mentioned above, Song, Wagner and Tian point out that the time between con-

secutive keys also carries information about typed keys [Song et al., 2001]. It may be

possible to further improve the recovery rate with timing information. Here we give

one way to combine timing features with acoustic features, however our results show

only a modest improvement in recovery rate.

The time between a pair of consecutive keys is related to many factors, such as the

location of the two keys on the keyboard, typing style, whether the keys are typed by

alternating hands or the same hands, whether the keys are typed by different fingers

or the same finger, etc. We recorded a typist at normal pace, without intentional stops

between keys. Figure 3.9 shows the distribution of time between “a” and subsequent

keys is significantly different from “h” and subsequent keys. The key “a” is located

near the border of a keyboard and touch typists use the small finger of the left hand

to type it; while the key “h” is located in the middle of a keyboard and touch typists

use the index finger of the right hand to type it. Figure 3.9 suggests the time between

a key and a subsequent key carries information about the location of the key on the

keyboard, that is, information related to the label of the key.

In the discussion above we represent acoustic information as a vector of features.

If we assume the length of the time interval between a key and its next key carries

information (as shown in Figure 3.9), we can add time as an additional dimension

in the feature vector. We can then apply new feature vectors with time as one of

the dimensions in our supervised training step. We experimented with the sets 1,

2, and 3, using training approaches as above. Table 3.5 shows that initial and final

recognition rates in supervised training.

The recognition rates in Table 3.5 suggest that time between consecutive keys does

not substantially improve the supervised learning in the feedback based training. The

results are not as good as the results reported by Song, Wagner and Tian. Reasons

for this discrepancy may include:

46



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

C
D

F

Time a pair of keys

a*
h*

Figure 3.9: Cumulative distribution function (CDF) of time: a pair of keys starting with
“a”(“a*”) vs. a pair of keys starting with “h”(“h*”).

• Song et al. used the length of the time interval between consecutive keys in a

very short phase, such as a password. The pace of typing when a user types

his password is probably more consistent than the pace of typing when a user

types an article. In our test sets, the typist sometimes stopped in the middle of

typing an article. Also typing speed for some words are much faster than others

even if those words share common pairs of characters. The newly introduced

timing information (“signal”) comes along with random variations (“noise”)

above. When we add the timing information with acoustic information, the

training methods do not receive a sufficient number of samples with consistent

timing information to improve recovery rates.

• Acoustic information alone yields a high recognition rate. The acoustic infor-

mation has a higher “signal-to-noise” ratio compared to timing information.

Moreover, spelling and grammar correction makes the effects of timing infor-

mation less visible too.

Finding good ways to combine inter-keystroke time interval information with

47



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

without time with time
word char word char

initial keystroke 58.19 89.02 57.95 88.94
set language 89.73 95.94 89.00 95.31
1 final keystroke 66.01 92.04 65.77 92.12

language 90.46 96.34 91.20 96.50
initial keystroke 58.20 89.86 58.20 89.83

set language 88.10 95.64 87.7 95.28
2 final keystroke 62.70 91.20 62.70 91.09

language 89.30 96.09 89.2 96.00
initial keystroke 51.53 87.37 51.39 87.32

set language 78.75 92.55 77.56 92.09
3 final keystroke 63.35 91.21 62.55 91.07

language 83.13 94.72 82.20 94.44

Table 3.5: Recognition rate in supervised training: with timing information vs. without
timing information

acoustic key recovery merits further research.

3.6.2 Why Keys Sound Different

We are interested in finding out why keystrokes of different keys sound different.

There are at least two contributing factors:

• Keyboard layout. Keys are located at different locations on the support plate

of a keyboard. Just as striking a drum at different locations yields different

sounds, the keys on a keyplate yield different sounds.

• Typing patterns. The sound of keystroke is related to how the key is typed; for

example, the direction that a key is hit.

To verify the hypotheses above, we performed an experiment.

In the experiment, each key was repeatedly struck 50 times. The sound samples of

50 hits for each key were used to train acoustic classifiers using different classification

48



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

methods (i.e. linear classification, neural networks and mixture of Gaussians). Then,

the acoustic classifiers trained in this way were used to recognize the training set and

two different sets of new sound samples. The first test set was composed of sound

samples from 30 repeated hits of each key. The second test set is composed of sound

samples from a typist typing an article. Table 3.6 shows our recognition rates.

repeat50 (training) repeat30 article
Linear Classification 95.67% 88.05% 53.49%

Neural Network 100% 81.84% 51.21%
Mixture of Gaussians 98.87% 81.15% 47.44%

Table 3.6: Recognition rate of repeat key hits and article input using classifier trained by
repeat key hits

When a key was repeatedly struck, all keystrokes are made with the similar

strength by a single finger and using almost the same gesture. There is no differ-

ence in typing style between different keys. Table 3.6 shows that the recognition

rates of test samples from keys typed repeatedly are over 80%, which suggests that

the sound differences may come from the physical properties of a keyboard: location

of keys, physical difference between keys, etc. This observation supports our first

assumption that keyboard layout contributes to different sound from keys.

If the keyboard layout were the only reason for different sound of keys, the classifier

trained by sound of repeatedly typing the same key should also work for normal

typing. However, this model was not very effective in classifying normal English text,

because typing normal English text uses a variety of paces, gestures, and key press

strengths. Repeated typing only teaches the acoustic classifiers a portion of sounds

that a key could make. This experiment suggests that keys sound different because

of both the keyboard layout and typing style such as paces, gestures and hitting

strengths, etc.

49



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

3.6.3 Special Keys

The current attack does not take into account special keys such as the Shift key, the

Control key, the Backspace key and the Caps Lock key. There are two issues here.

One is whether keystrokes of special keys are separable from other keystrokes at signal

processing time. Our preliminary experiments suggest this is possible; push peaks of

keystrokes are easily separable in the recordings we looked at. The other issue is how

modifier keys such as the Shift key fit into spelling correction scheme. We hypothesize

ad hoc solutions such as replacing the Shift key or the Caps Lock key with the Space

key will work. The Shift key often appears before the first letter of a word. If it is

recognized incorrectly, the following word will be one letter longer. In spelling and

grammar correction, we can take this into account by not only considering words of

the same lengths, but also those with one fewer letter. For example, if we get “atje”

after initial recognition, the word “the” will also be considered as a candidate word

for correction because we might misrecognize the Shift key as “a”. These keys can

be much more reliably recognized by training a classifier specifically for the Shift key

and the Caps Lock key. Note that we do not need to distinguish between uppercase

and lowercase in the recovered text, so it is not necessary to detect when the Shift

key is released.

The Backspace key is also important. The ideal solution would be to discover what

the final text is after applying the backspaces. But that complicates error correction

algorithms. So one can just recognize these keys and leave the “word” before and

after out of error-correction because they are probably not full words. An interesting

fact about the Backspace key is that this key is sometimes struck repeatedly: a user

sometimes wants to delete a whole word or a whole sentence. Here, a bit of human

aid could be useful because the Backspace key is relatively easy to detect by ear

based on sound and context, although it is harder to detect than the Space key. It

50



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

is not difficult for human ears to detect repeated keystrokes of the Backspace key.

Since the sound of the Backspace key is very different from others, in the acoustic

clustering step, they will normally clustered with the same label. It is possible to

write a program to automatically select sound samples of consecutive keys which are

clustered in a common label. A variety of techniques could be used to decide whether

these are consecutive Backspaces. After sound samples of the Backspace keys are

collected, we train a specific acoustic classifier for the Backspace keys as well.

3.6.4 Attack Improvements

This section discusses topics for future research that could improve our attack:

• One challenge we met in our work was marking keystroke starting points in the

sound signal. This is not trivial because the sound varies in energy level, timing,

frequency distribution, etc., depending on the typist and recording environment.

We use energy level and timing constraints between consecutive keys to mark the

starting positions of keystrokes. Detection rules are manually created based on

past experiences. Our detection program based on this approach has difficulty

in marking keystroke positions in recordings from fast typists. However, there

is additional information we can use: namely frequency, which appears to vary

from the push peak to the release peak. This is a topic for future research. A

robust and consistent keystroke position detection algorithm may also improve

the recovery rate of typed characters.

• Currently, we assume the Space key, Enter key and punctuation keys are de-

tected correctly and use them to divide characters into words. We use candidate

words of the same length as the “words” separated in this way. A topic for future

research is to explore better ways to choose candidate words for correction, with

51



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

the goal of high quality correction even when there are mistakes in separating

words.

• An alternative method for feedback training is Hierarchical Hidden Markov

Models (HHMMs) [Fine et al., 1998]. In a HHMM, HMMs of multiple levels

(grammar level and spelling level in this case) are built into a single model.

Algorithms to maximize global joint probability may improve the effectiveness

of the feedback training procedure. This approach merits further investigation.

• Our experiments tested on FFT features and cepstrum features. However, there

are other types of features for representing sound signals. For each type of

feature, there are multiple parameters to control the extracted information.

Currently, we used ad hoc methods to select these parameters. An entropy

based metric defined specifically for measuring acoustic features may provide

better, more systematic way to compare features and parameters. This metric

may also allow us to compare information leaked by individual keys. Given

current PC keyboard layouts, is the leaking uniform among keys, or should we

pay more attention to specific keys? Is it possible to know which typing styles

leak more information and whether different typists leak different amounts of

information?

• In a controlled environment where we can record isolated typing sounds, the

recovery rate is now high. However, in most realistic situations, environmental

background noise is an issue. In many work spaces, we have multiple users

simultaneously typing. Isolating the sound of a single typist is difficult. It is

interesting to consider recording with multiple microphones, including arrays of

directional microphones. We could get the sound signal of multiple channels in

this way. Similarly, we have shown that the recognition rate is lower in noisy

environments. Attacks will be less successful when the user is playing music or

52



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

talking to others while typing. However, we may be able to use signal processing

techniques (especially in multichannel recordings) to isolate the sound of a single

typist.

• We hope to explore a variety of recording devices including parabolic micro-

phones, laser microphones, telephone receiver microphones, acoustic chat con-

nections such as Skype, etc.

• In future work, it is particularly interesting to try to detect keystrokes typed

in a particular application, such as a visual editor (e.g. emacs) or a software

development environment (e.g. Eclipse). Examining text typed in these envi-

ronment presents challenges because more keys maybe used and special keys

maybe used more often. Furthermore, the bigram or transition matrix will

be different. Nonetheless we believe that our techniques may be applicable to

detecting keystrokes of users in these applications and indeed can even cover

input as different as other small alphabet languages, such as Russian or Arabic,

large alphabet languages, such as Chinese or Japanese, and even programming

languages.

3.6.5 Defenses

Since our attack is based on acoustic signals derived from passively eavesdropping,

it is more difficult to detect this type of attacks than through active attacks where

attackers interact with victims. Here are some preliminary ideas about potential

defenses:

• One can reduce the possibility of leaking acoustic signals. Sound-proofing may

help, but given the effectiveness of modern parabolic and laser microphones,

the standards are high.

53



Chapter 3. Side Channel System Attack: Keyboard Acoustic Emanations

• Quieter keyboards as suggested by Asonov and Agrawal may reduce vulnerabil-

ity. However, the two so-called “quiet” keyboards we used in our experiments

proved ineffective against the attack. Asonov and Agrawal also suggest that

keyboard makers could produce keyboards having keys that sound so similar

that they are not easily distinguishable. They claim that one reason keys sound

different today is that the plate underneath the keys makes different sounds

when hit at different places. If this is true, using a more uniform plate may

alleviate the attack. However, it is not clear whether these kinds of keyboards

are commercially viable. Also, there is the possibility that more subtle differ-

ences between keys can still be captured by an attacker. Further, keyboards

may develop distinct keystroke sounds after months of use.

• Another approach is reduce the quality of acoustic signal that can be acquired

by attackers. We can add masking noise while typing. However, we are not sure

that masking noises might not be easily separable. As we discussed above, an

array of directional microphones may be able to record and distinguish sound

into multiple channels according to the locations of the sound sources. This de-

fense will be less effective when attackers are able to collect more data. Masking

has another problem: it annoys typists. Perhaps a short window of noise could

be added at every predicted push peak. This may be more acceptable to typ-

ists than continuous masking noise. Alternatively, perhaps we could randomly

insert noise windows which sound like push peaks of keystrokes.

• The practice of relying only on typed passwords or even long passphrases should

be reexamined. One alternative is two-factor authentication that combines pass-

words or pass-phrases with smart cards, one-time-password tokens, biometric

authentication and etc. However two-factor authentication does not solve all

our problems. Typed text other than passwords is also valuable to attackers.

54



Chapter 4

Side Channel System Defense:

Detecting Botnets from Spam Email

Messages

4.1 The Case: Identifying Botnets from Spam Email

Messages

In this chapter, we study a type of side channel trace created by attackers, spam email

messages received through the Hotmail Web mail service, to discover information

about collections of machines (botnets) that perform coordinated malicious acts. We

use information logged in headers of email about the sender, receiver and the relay

servers. This information is logged by the SMTP (Simple Mail Transfer Protocol)

widely used for email.

In recent years, malware has become a widespread problem. As a result, malicious

users or organizations have been able to gain remote control of an increasingly large

number of machines. Once compromised, these machines run software that accepts

55



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

and executes commands from the controller. These compromised machines are gen-

erally referred to as bots, and the set of bots controlled by a single entity is called

a botnet. Botnet controllers use techniques such as IRC channels and customized

peer-to-peer protocols to control and operate these bots.

Botnets have multiple nefarious uses: mounting DDoS attacks, stealing user pass-

words and identities, generating click fraud [Daswani et al., 2007], and sending spam

email [Ramachandran and Feamster, 2006]. This anecdotal evidence suggests that a

common strategy for monetizing botnets is sending spam email, where spam is defined

liberally to include both traditional advertisement email, as well as phishing email,

email with viruses, and other unwanted email.

In this chapter, we present new techniques to map botnet membership and other

characteristics of botnets using spam traces. Our primary data source is a large

trace of spam email from Hotmail, one of the largest Web mail services. Using

this trace, we both identify individual bots and analyze botnet membership (which

bots belong to the same botnet). The primary indicator we use to guide associate

individual machines with membership in a single larger botnet is participation in

spam campaigns: coordinated mass emailing of spam. The basic assumption is that

spam email messages with similar content are often sent at the command of a single

controlling entity, because these email messages share a common economic interest.

Through these hidden connections among spam email, we identify a set of botnets.

Our approach easily extends to other methods for estimating email similarity, e.g.,

an OCR algorithm optimized for image spam. Detailed techniques are presented in

Section 4.4.

Our focus on spam stands in contrast with much previous work studying bot-

nets. Previous studies have proposed monitoring remote compromises related to

botnet propagation [Cooke et al., 2005], actively deploying honeypots and intru-

sion detection systems [Krasser et al., 2005], infiltrating and monitoring IRC channel

56



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

communication [Binkley and Singh, 2006; Cooke et al., 2005; Freiling et al., 2005;

Rajab et al., 2006], redirecting DNS traffic [Dagon et al., 2006] and using passive

analysis of DNS lookup information [Rajab et al., 2007; Ramachandran et al., 2006].

Focusing on spam has benefits. The analysis can be done on email traces from

a large email provider. Spam email gives us new insights into trade-offs in botnet

design in practice, such as botnet size versus the average number of message sent per

bot. As we discuss here measuring spam allows us to determine whether individual

bots are part of the common larger botnet. This complements analyses in previous

work [Binkley and Singh, 2006; Cooke et al., 2005; Freiling et al., 2005; Rajab et al.,

2006; Dagon et al., 2006; Rajab et al., 2007; Ramachandran et al., 2006] that require

monitoring IRC channels or sometimes monitoring DNS caches.

Analyzing a large trace of spam email messages presents a number of technical

challenges. These challenges include:

1. It is not easy to identify the “same” spam email sent to different inboxes, as

each one is often slightly different. Spammers routinely employ tricks to evade

detection by changing each email message.

2. The presence of hosts with dynamic IP addresses means that simply counting

the number of originating IP addresses is insufficient to estimate the host pop-

ulation (more generally, one cannot easily infer host equality from IP address

equality).

3. Because one botnet may be involved in multiple spam campaigns at the same

or different times, estimating the number of botnets involved in sending all

observed spam email requires estimating whether two spam campaigns originate

from the same botnet or not.

Our work answers these challenges. We found hundreds of botnets by examining a

subset of the spam email received by Hotmail. The botnets we found range in size from

57



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

tens of hosts to more than ten thousand hosts. The number of bots and botnets found

in our study are comparable to those identified in previous work [ShadowServer.Org,

2007]. Basic metrics reported in this chapter are consistent with those from previous

work [Rajab et al., 2007]. This demonstrates that our approach is able to catch a

significant number of active botnets.

The primary contributions of our approach in this case study are:

• We are the first to analyze entire botnets behavior from spam email messages

rather than just the behavior of individual bots. We propose and evaluate meth-

ods to identify bots and cluster bots into botnets using spam email traces. Our

approach can identify botnets regardless of their internal organization and com-

munication. Our approach is not thwarted by encrypted traffic or customized

botnet protocols, unlike previous work using IRC trackers [Cooke et al., 2005;

Freiling et al., 2005] or DNS lookup [Rajab et al., 2006; Ramachandran et al.,

2006; Rajab et al., 2007].

• We report new classes of information about botnets. For example, we report on

the relationship between botnets usage and basic properties such as size. We

also confirm previous reports on capabilities of botnet controllers and botnet

usage patterns.

We believe our measurement results will be useful in several ways. First, knowing

the size and membership gives us a better understanding on the threat posed by

botnets. Second, the membership and geographic locations are useful information

for deployment of countermeasurement infrastructures, such as firewall placement,

traffic filtering policies, etc. Third, characterizing behaviors of botnets in monetizing

activities may help in fighting against botnets in these businesses, perhaps reduce their

profits in sending spam, generating click fraud, and other nefarious activities. Finally,

58



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

such information about botnets may also give law enforcement help in combating

illegal activities from botnets.

We also believe that the techniques presented here may also be applicable to re-

lated domains, such as identifying botnet membership through click fraud (analogous

to spam) identified in search engine click logs (analogous to email traces).

The application of machine learning and data mining to security is an area of

great debate: there has been significant recent interest in doing this [Maloof, 2006],

while there have also been a number of papers describing challenges with this ap-

proach [Barreno et al., 2006; Chan and Lippmann, 2006]. We hope that this case

study provides a new and interesting example of how data mining techniques can be

applied to security problems.

4.2 Related Work

We study botnets by analyzing spam email received by Hotmail Web mail service.

Our work thus provides an approach to studying global Internet behavior (botnets,

in this case) through a single observation point. Several previous studies [Anderson

et al., 2007; Ramachandran and Feamster, 2006] also use spam email collected at a

single or small number of points to gain insight into different aspects of the Internet.

Spamscatter [Anderson et al., 2007] studies the scam hosting infrastructure by fol-

lowing the embedded links in spam email and clustering snapshots of the destination

Websites. Spamscatter uses image shingling (e.g. comparing whether small portions

of images are identical) to determine spam campaigns. Their study produced valuable

findings about the geographic distribution, host lifetimes, degree of sharing among

hosts, and other aspects of the scam hosting infrastructure. Our work is different in

that we cluster email based on content and study the source (sending) infrastructure

instead of the destination websites linked to from the spam email.

59



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

Ramachandran and Feamster [Ramachandran and Feamster, 2006] collect spam

email by creating a sinkhole and study network-level behavior of spam, such as the

IP ranges that generate the most spam and the spam-generating lifetimes of hosts.

They also provide a case study of the Bobax botnet by intercepting its “command and

control” IRC traffic. Both their work and ours study the interaction between spam

and botnets. However, their work is more about characteristics of bots in general,

and studies network-level characteristics among all email and sender IP addresses (or

bots). Only in the case study of one specific botnet, Bobax, is botnet membership

monitored, using analysis of IRC traffic.

In contrast, our work identifies the membership of many botnets and compares

metrics across them, such as botnet size, number of active hosts in a botnet and

spam email sent per bot in a botnet. One of the major results of our work is detailed

information about botnet membership, which is not included in the previous work.

We also take into consideration IP dynamics when detecting bots and botnets, unlike

some previous work. Work on IP dynamics [Xie et al., 2007] shows that a significant

portion of IP addresses are reassigned within some time window ranging from a few

hours to a couple of days. Our approach is more accurate because the estimation of

bot and botnet characteristics is not just simple aggregation among IP addresses.

Our work is also related to literature on botnets in general. Techniques to gather

botnets for study fall mainly into two categories [Rajab et al., 2007].

The first category of techniques collects botnets traffic from inside. At least two

major approaches have been proposed: IRC channel infiltration and traffic redirec-

tion. In the first approach, IRC infiltration, a modified IRC client joins the IRC

channel of a botnet and plays the role of a “mole”. This mole executes commands

from the botnet controller and mimics actual bots, while more importantly monitor-

ing any “command and control” traffic in the channel. The IRC tracking approach

has been examined in detail in [Cooke et al., 2005; Freiling et al., 2005]. An algorithm

60



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

for anomaly-based botnet IRC traffic detection was proposed in [Binkley and Singh,

2006]. A second approach is traffic redirection, in which DNS traffic related to the

command and control server is redirected to a sinkhole for study [Dagon et al., 2006].

The sinkhole intercepts and redirects all connection attempts from bots of a botnet.

Data collected using both approaches can be quite accurate. However, both methods

must be tailored for each concrete botnet implementation. In particular, infiltration

requires significant effort to modify the bot client for each botnet, especially for those

botnets using customized protocols instead of IRC command and control channels.

As both approaches actively probe botnets traffic, it is possible for the botnet con-

trollers to discover the probing. These approaches known by botnet controllers, so

botnet controllers may disable broadcast feature on their IRC channels or suppress

bot identity information from IRC traffic.

The second category of techniques track botnets from external traces. Cooke et

al. suggested that secondary bot behavior such as propagation and attacks should be

used [Cooke et al., 2005] in botnet detection. A set of DNS-based botnet detection

approaches [Rajab et al., 2006; Ramachandran et al., 2006] exploits one specific type

of external trace, i.e. DNS lookup information. Rajab et al. exploits the fact that

most bots issue DNS queries to resolve the IP addresses of their IRC servers and

then probe caches of a large number of DNS server to infer the footprint of a partic-

ular botnet [Rajab et al., 2006]. In [Ramachandran et al., 2006], DNS blackhole list

(DNSBL) lookups are used to detect botnet membership, since attackers frequently

query DNS blacklists to find out which of their hosts are blacklisted. Krasaridis et al.

[Karasaridis et al., 2007] present a method for detecting botnets by employing scal-

able non-intrusive algorithms that analyze summary traffic data collected on selected

network links (mostly at the transport layer).

Our work falls into the second category, and it exploits another type of external

trace from botnets: actual received email spam. Spam email is readily available for

61



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

analysis at certain observation points (for example, mail service providers). This data

source is interesting because it is relatively easy to collect and is comprehensive in

nature. In contrast, DNS probing [Rajab et al., 2006; Ramachandran et al., 2006;

Rajab et al., 2007] requires extra queries to DNS servers, and could be limited by

the querying rate to DNS servers. Botnet detection from flow data across a large

Tier 1 ISP network [Karasaridis et al., 2007] demands extraordinarily data collection

efforts. While previous work focuses on traffic generated by botnets, our work is the

first to study botnet traces based on economic motivation and monetizing activities.

Our work also reports on more metrics than previous work.

4.3 Overview

This section presents an overview of our approach. Section 4.4 presents the techniques

in detail.

Our technique takes as input a set of email messages that have been labeled as

spam; in the particular data set that is the main focus of Section 4.5, these labels are

human-generated. From each spam email message, we extract its sender IP address,

sending time and content. We assume spam email messages with the same specific

topic are sent from the same controlling entity, and then detect botnet membership

in three steps.

1. Cluster email into spam campaigns. We compute a set of fingerprints

(e.g. 10 in our case) from the content of each spam email. The fingerprint

set is a digest of the email content. If the fingerprints of two spam email

messages overlap significantly, these email messages have the same or near-

duplicate content. A set of email that shares common fingerprints are clustered

together. In this way, we cluster email with the same or near-duplicate content

62



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

into a spam campaign. Intuitively, a spam campaign is a set of email with the

same content or almost the same content, or other connections such as linking

to the same target URL.

2. Assess IP dynamics of each C-subnet. For each class C-subnet, we extract

1) the average time until an IP address gets reassigned; 2) the IP reassignment

range. Using these parameters, we propose a way to estimate the probability

whether two events ((IP1, t1) and (IP2, t2)) are initiated from the same machine.

3. Merge spam campaigns into botnets. Based on the first two steps, we

merge individual spam campaigns together into a set of spam campaigns initi-

ated by the same botnet if the sending hosts significantly overlap. For each spam

event in a spam campaign (SC1), we use the previously-calculated IP dynamics

to estimate the likelihood that the host sending the spam also participates in

another spam campaign (SC2). Then, if a large number of senders participate in

both spam campaign SC1 and spam campaign SC2, we merge the two together.

To estimate the number of machines in a botnet, we further leverage the previously-

calculated IP dynamics. A machine may send several spam email messages at

different times, with different IP addresses appearing in the corresponding spam

events because of IP reassignment. We describe an approach in Section 4.4 to

remove the IP reassignment effect and then estimate the actual membership of

the botnets.

4.4 Methodology

We first define a set of terms we will use in the following discussion.

• A spam email is an unsolicited bulk email, often sent to many people with little

or no change in content. In the particular dataset that is the main focus of

63



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

Section 4.5, the spam label is human generated.

• A spam campaign is a set of email messages with the same or almost the same

content, or content that is closely related—for example, linking to the same

target URL.

• A botnet is a set of machines that collaborate together to run one or more spam

campaigns.

In this section, we discuss in detail our approach to extracting botnet membership

by analyzing spam email data.

4.4.1 Datasets and Initial Processing

We work on two email datasets collected in different ways1 from Hotmail.

The first dataset (referred to as “Email Samples (ES)” later) is a uniformly dis-

tributed sample of all email received by Hotmail every day. This sampled set is

reviewed by a group of volunteer users who are willing to mark whether an email is

spam or not based on their personal subjective decisions, and the non-spam email is

removed. In this way, the ES dataset gives us a large daily corpus of spam email.

The other dataset (referred to as “Junk Mail Samples (JMS)” later) is collected

from Hotmail using a different method. JMS is collected from email in inboxes that

is reported as spam (or “junk”) by users. To derive our estimates (see Section 4.4.7),

we use the approximation that spam labeled email is a uniform subsample of all

spam received. A previous study similarly used an email spam sample derived by

this technique to estimate global spam behavior [Hulten et al., 2004]. We only know

that the JMS dataset contains a fixed percentage of all “junk” reports, so we need to

estimate the sample rate of the JMS dataset among all spam email. To do this, we

1To perform our study, we collected approximately ten million spam email messages from a large
web email service.

64



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

compare the size of the JMS dataset and the ES dataset: we will call the ratio of the

JMS dataset size to the ES dataset size s and the sample rate of the ES dataset r

(0 < r < 1). We also know the fraction f of email spam that Hotmail detects before

it reaches the user’s inbox. Supposing that the total number of spam email messages

received by Hotmail is N , we get the following equation:

N ∗ r ∗ s = N ∗ (1− f) ∗ jms-real-sample-rate

This gives us the sample rate of the JMS dataset among all spam email. The sample

rate will be used in Section 4.4.7 to estimate total size of botnets.

Related work [Anderson et al., 2007] indicates that one week is a reasonable

duration to analyze spam campaigns, given the fact that spam campaigns change

fast over time. To support our analysis, we used the ES and JMS datasets for the

nine-day period from May 21, 2007 to May 29, 2007. The amount of spam email

identified during the nine-day period was on the order of ten million messages. It is

about the same size as that used in [Ramachandran and Feamster, 2006] (collected

over 1.5 years) and one order of magnitude larger than that used in [Anderson et

al., 2007] (collected during 7 days). The email messages are in a raw format with all

headers and all MIME body parts included. We parse each email to get the sender IP

addresses from the header. We use a method similar to the one discussed in [Brodsky

and Brodsky, 2007] to identify each email’s source IP address. Basically, we trust

the sender IP reported by Hotmail in the Received headers, and if the previous relay

IP address (before any server from Hotmail) is on our trust list (e.g. other good

mail service), we continue to follow the previous Received line, till we reach the first

unrecognized IP address in the email header. This IP address is then assumed to

be the email source. We also parse the body parts to get both HTML and text

from each email. After some initial processing, we extract sending time and content

65



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

(HTML/plaintext), along with sender IP address, for each email.

4.4.2 Data Analysis Infrastructure

Data analysis of massive data is much easier nowadays, thanks to tools in statis-

tical learning and new advancement on distributed infrastructures for storage and

computation.

Distributed storage and computation infrastructure for massive data analysis have

been of huge interests in the systems area in recent years. In 2004, Google first dis-

cussed the Google File System (GFS) that is running across thousands of machines in

a cluster environment [Ghemawat et al., 2003]. GFS provides a transparent interface

that application can view it as a single huge filesystem (e.g. in petabytes) without

knowing underlie implementation details. GFS is an append-only filesystem. GFS

made it possible to store huge data set and retrieve the data sequentially. In 2005,

Google further discussed a distributed computation infrastructure called MapReduce

that transparently distributes data processing tasks over thousands of machines in

the same cluster [Dean and Ghemawat, 2004]. Similar systems include Dryad [Isard

et al., 2007] and a open source project called Hadoop [Hadoop, 2007], etc. We lever-

age these infrastructures to facilitate data analysis. We are able to analyze security

problems efficiently using massive data set, which was not possible in the past.

In this case study, we use a system similar to MapReduce as our computation

infrastructure to process the dataset.

4.4.3 Identifying Spam Campaigns

A spam campaign consists of multiple related email messages. The messages in a

spam campaign share a set of common features, such as similar content, or links

(with or without redirection) to the same target URL. By exploiting this feature, we

66



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

can cluster spam email with same or near-duplicate content together as a single spam

campaign.

Since many anti-spam filters work by searching for patterns in headers or bodies

of email messages, spammers obfuscate the message content such that each email in

a spam campaign has slightly different text from the others. One common obfuscat-

ing technique is misspelling commonly filtered words or inserting extra characters.

HTML-based email offers additional ways to obfuscate similarities in messages, such

as inserting comments, including invisible text, using escape sequences to specify

characters, and presenting text content in image form, with randomized image ele-

ments.

Because of this message content obfuscation, identifying whether two email mes-

sages are from the same campaign is not trivial. The algorithm to cluster spam email

messages with the same or near-duplicate content must be robust enough to overcome

most of the obfuscation. Fortunately, most obfuscation does not significantly change

the main content of the email messages after being rendered, because it still needs to

be readable and deliver the same information. Thus, we first use ad hoc approaches

to pre-clean the content, and then compare parts of the email messages (as suggested

by [Broder et al., 1997] in his shingling algorithm). We briefly describe our approach

below.

We first apply a sophisticated HTML parser to the HTML portion of the email

body. The HTML parser returns the actual content rendered to users, which we will

refer to as real text. We remove extra spaces, line breaks, and similar extraneous

characters from the text. We also extract embedded HTML links from the email.

Later we use the HTML links together with cleaned text to measure content similarity.

After this pre-cleaning step, the real text is used to compute a “fingerprint”. We

compute fingerprints from all possible substrings of length l (we call these substrings

text chunks) [Manber, 1994]. The fingerprints are “digests” computed as follows [Ra-

67



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

bin, 1981]. Denote the text string by t1t2 · · · tn. The fingerprint for the first text

chunk will be:

F1 = (t1 · pl−1 + t2 · pl−2 + · · ·+ tl) mod M,

where p and M are constants. Thus, the fingerprint for the second text chunk will

be:

F2 = (t2 · pl−1 + t3 · pl−2 + · · ·+ tl+1) mod M = (p · F1 + tl+1 − t1 · pl−1) mod M.

Continuing thusly, we compute the fingerprint of each text chunk based on the fin-

gerprint of the previous text chunk, getting n− l + 1 fingerprints in total.

Next, we deterministically select m fingerprints out of all n − l + 1 fingerprints.

In our experiment, we select the m largest fingerprint values from the entire set.

We set the text chunk length l to 50 and m to 10 (these values were suggested in

an earlier study [Zhou et al., 2003]). If five matching fingerprints are found out of

the ten generated for each of two text strings, we regard them as having connected

content. Selecting the number of matching fingerprints presents a tradeoff between

false positives and false negatives. If we use a larger number of matching fingerprints,

we are less likely to group two different email messages together (i.e. a false positive).

If we use a smaller number of matching fingerprints, we are less likely to miss email

messages that are actually similar (i.e. a false negative). In previous work [Zhou et al.,

2003] we found that the threshold of five fingerprints provides sufficient tolerance to

content modifications in email messages while keeping the false positive rate extremely

low.

Now, we consider each email message as a node in a graph, and draw an edge

between two nodes if the corresponding two messages are connected in content (e.g.

have at least five matching fingerprints) or share a single embedded link. Email

service providers sometimes add advertisement tails to messages, which often contain

68



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

embedded links. These links appear in non-spam email messages as well as spam

email messages. We build a whitelist using this feature to filter out links in these

tails by domain or site names. After removing these popular tailer links, we find that

even a single shared link is a strong evidence of connection among messages. We

then define each connected component in the graph as a spam campaign. Using the

Union-Find algorithm [Cormen et al., 2001], we can label all connected components

on the graph, with each label representing a spam campaign. We can thus generate a

list of detected spam campaigns. To assign labels, we associate each spam campaign

with the list {(IPi, ti)} of IP events consisting of the IP address IPi and sending time

ti (see Section 4.4.1) extracted from each email message in the campaign.

We use only one approach (i.e. text shingling) to group email messages into spam

campaigns. However many others exist (and will be developed in the future to adapt

to changing characteristics of email campaigns) and may be used together with text

shingling as part of the overall approach described in this paper2.

4.4.4 Skipping Spam from Non-bots

Spam that comes from non-bots is excluded from our study.

• We build a white list of IP addresses, which includes known email service

providers, ISP MTA servers, some popular proxies, open relays, etc. If the

sender IP address of a message (e.g. the first Received header) is on the white

list, we exclude that email from further analysis.

• We also remove campaigns whose senders are narrowly located in a small IP

range, which could be an IP range controlled by a spammer. Sender IPs that

2For example, text shingling misses image spam messages and associated spam campaigns. URL-
based detection may also miss spam campaigns that contain different URLs in messages that redirect
to a common website. See [Anderson et al., 2007].

69



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

show a wide range of IP addresses indicate that the spam campaign was sent

through different ISP providers and networks.

• We only include campaigns whose senders are from at least three geographic

locations.

Hotmail blocks most spam messages from spammer servers and many open relays

using volume-base policies and excludes these messages from user inboxes. Since the

JMS dataset includes a sample of spam in inboxes, we rule out most (if not all) spam

from non-bots using approaches above. It is very likely that spam campaigns that

originate from hundreds or even thousands of geographic locations are operated by

botnets. We can also characterize spam coming from smaller numbers of geographic

locations, allowing us to conduct further analysis in future work.

4.4.5 Assessing IP Dynamics

In order to obtain accurate metrics on spam campaigns and botnets, we need to

know whether two IP events (IP1, t1) and (IP2, t2) (t1 6= t2) occurring at different

times originate from the same machine or not. If all IP addresses were static, then

determining the answer to this question would simply be a matter of comparing IP1

and IP2 for equality. Unfortunately, a significant number of IP addresses are dynamic.

Many home computer users currently connect to the Internet through dial-up,

ADSL, cable or other services that assign them new IP addresses constantly—anywhere

from every couple of hours to every couple of days for most common cases. We need

to know how dynamic each IP address is, before we can know whether to “merge” it

with another IP address in the same spam campaign [Xie et al., 2007].

We begin by assuming that within any particular class C-subnet (256 consecutive

IP addresses differ only in the last 8 bits), the IP address reassignment strategy

is uniform. We also assume that IP address reassignment is a Poisson process (a

70



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

stochastic process used for modeling random events in time that occur to a large extent

independently of one another) and measure two IP address reassignment parameters

in each class C-subnet: the average address lifetime Jt on a particular host, and the

maximum distance Jr between IP addresses assigned to the same host.

The dataset from which Jt and Jr are measured is the log of 7 days’ user login and

logout events (June 6-12, 2007) from the MSN Messenger instant messaging service.

For each login and logout event, we obtain an anonymized username and IP address

for that session. We associate login and logout events for the same username to

construct a sequence:

username :

(IP1, [login-time1, logout-time1]),

(IP2, [login-time2, logout-time2]),

(IP3, [login-time3, logout-time3]),

. . .

We assume that each user connects to the MSN Messenger service from a small,

fixed set of machines (e.g. an office computer and a home computer), and detect cases

where multiple IP addresses are associated with a particular username. We label each

such change as an IP address reassignment if the IP addresses are sufficiently “close”:

we define “close” as within a couple of consecutive class B-subnets (i.e. IP addresses

differ only in the last 16 bits); otherwise, we assume that two different machines are

involved. We then aggregate our detection among all IP addresses in the same class

C-subnet and remove anomalous events. We then calculate, based on the Poisson

process assumption, Jt and Jr for each individual class C-subnet.

Thus, given two IPs at two different times, (IP1, t1) and (IP2, t2), if either IP1 or

IP2 is out of the distance range (Jr) of another, we regard these two events as from

two different machines. If both IP1 and IP2 are within the distance range (Jr) of each

71



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

 0  1  2  3  4  5  6  7

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Duration (Days)

Figure 4.1: Probability density function of
IP reassign duration

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
(L

og
-S

ca
le

)

Connectivity Degree

Figure 4.2: Probability density function of
the campaign merge weight

other, we make the computation below.

P[IP1 = IP2| actually the same machine] =
Jr − 1

Jr

∗exp

(
−(t2 − t1)

Jt

)
+1/Jr = w(t1, t2).

This is the probability that a machine has kept the same IP address after an interval

of duration t2 − t1.

P[IP1 6= IP2| actually the same machine] =
Jr − 1

Jr

∗
[
1− exp

(
−(t2 − t1)

Jt

)]
= 1−w(t1, t2).

This is the probability that a machine changes its IP address – that is, that an IP

reassignment happens – during an interval of duration t2 − t1.

We define IP reassignment time as the mean period of time that a single machine

holds an IP address. Figure 4.1 shows a probability density function of IP reassign-

ment time among all class C-subnets (about 25% of class C-subnets never see IP

reassignment in the 7 day log). According to our data, a large portion of IP addresses

get reassigned almost every day.

72



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

4.4.6 Identifying Botnets

Each spam campaign is represented as a sequence of events (IP, t), where each event

is a spam email that belongs to the spam campaign. The question is, given two spam

campaigns SC1 and SC2, how do we know whether they share the same controller

(i.e. they are part of the same botnet)? We put two spam campaigns in the same

botnet if their spam events are significantly connected.

Given a event (IP1, t1) from spam campaign SC1 and a event (IP2, t2) from spam

campaign SC2, we assign a connection weight between them. The connection weight

is the probability that these two events would be seen if they were actually from

the same machine. Section 4.4.5 defines w(t1, t2) if two IP addresses are equal, or

1−w(t1, t2) if two IP addresses are not equal but within distance range of each other,

or 0 otherwise. For all events in a spam campaign SC1, we use

W =

∑
i maxj[w(ti, tj) or (1− w(ti, tj)) or 0]

|SC1|

to measure the fraction of events in SC1 that are connected to some events in SC2,

where i and j represents IP events in SC1 and SC2. W is called the connectivity

degree.

We use the connectivity degree W to decide whether we should associate different

spam campaigns with a single botnet. Here we explain why we define W in the format

above.

• W intuitively attempts to represent the fraction of events in a spam campaign

that are related to another spam campaign. Therefore, we expect W ranges

from 0 to 1. If W goes to 1, it means a significant portion of the events in SC1

are connected to events in SC2, and thus, we should merge SC1 into SC2. The

definition above satisfies this requirement.

73



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

• At first, we may expect the definition of W to be symmetric. For example, one

possible symmetric definition would be as follows:

W =

∑
i

∑
j[w(ti, tj) or(1− w(ti, tj)) or 0]

|SC1||SC2|
.

However, an asymmetric definition of W is more proper in our scenario, because

we want to compare the relationship between a pair of sets. The metric should

measure the portion of set SC1 that is related to set SC2, which is not symmetric

by definition. For example, when SC1 is a subset of SC2, we want to merge all

events in SC1 to SC2. We require W as 1 in this scenario and the symmetric

definition does not satisfy this requirement.

• We compute W values from each spam campaign to all other spam campaigns in

the JMS dataset. We expect most W values are small, which indicate one spam

campaign is not connected to another spam campaign; while a small portion of

W values are relatively large, which indicate one spam campaign is connected

to another spam campaign. There should be few W values in the middle. We

expect to see a bimodal pattern in the probability density function of W values.

Figure 4.2 shows the probability density function of W values computed from

the JMS dataset. The curve in Figure 4.2 matches our expectation and indicates

that a W value in the range between 0.05 and 0.35 is a reasonable threshold to

merge spam campaigns.

• We expect our detection is not sensitive to the threshold of W . We select 0.2

as a reasonable threshold to decide whether spam campaigns should be merged.

We use the botnet detection results of this value as a baseline for comparison.

In our experiments, we compare baseline results with results of thresholds from

0.05 to 0.35. We find that the change of threshold has very little effects to the

74



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

botnet detection results. Because the detection is not sensitive to the threshold,

it gives us more confidence in the validity of the clustering.

• We also examined alternative, simpler definitions of W , by counting pairs of

matching IP addresses. However, IP address matching is insufficient to merge

all related spam campaigns together. We have found spam campaigns from a

single botnet but are not merged by simple IP address matching.

The connectivity degree W is also related to the way that botnet controllers use

their botnets. If a botnet controller always use all its bots to run each spam campaign,

we will observe that each spam campaign has W = 1 to other spam campaigns from

this botnet. However, as we will show in Section 4.5.2 botnet controllers use only a

subset of available bots each time.

If a spammer uses two individual botnets for the same spam campaign, there is a

chance that our strategy will incorrectly merge two individual botnets into one. We

define a botnet as a set of machines that collaborate together. A manual examination

of the detected botnets shows that the definition W and the merging strategy works

well: most pairs of IP addresses in a single botnet participate together more than one

spam campaigns at different time. This indicates our selection of W works well under

our definition of botnets: if a pair of IP addresses were actually from two botnets, we

should not see their collaboration in multiple campaigns over time.

Spuriously introduced IP addresses in spam campaigns may add noise to W . In

our experience, the detection result is not sensitive to the threshold of W : the value

W can tolerate up to 15% spurious events in a spam campaign according to the

parameter selection above. Each spam campaign contains hundreds of thousands

of events. It is hard to introduce a large number of spurious events without being

discovered. In practice, a few number of spurious events does not affect the results.

75



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

4.4.7 Estimating Botnet Size

After identifying botnets (see Section 4.4.6), each botnet contains a sequence of events

(IP, t) that correspond to all spam sent by this botnet. We want to identify distinct

machines that generate these events. In Section 4.4.5, we have already defined the

probability that two events are from the same machine. We use this definition to

examine events in a botnet: when an event (IP2, t2) is from the same machine of

a previous event (IP1, t1), IP2 is a reoccurrence of IP1. So, we can estimate the

probability that an IP address is a reoccurrence of any previous IP address:

c = 1−
∏

i

P[IP is not a reoccurrence of IPi],

where i ranges over all events that happened before this IP event. The value of c

equals 1 if the IP address is a reoccurrence, 0 if the IP address is not a reoccurrence. In

this way, we can count the number of distinct machines appeared in the downsampled

dataset (JMS).

Furthermore, we want to estimate the total size of botnets from the downsampled

dataset (JMS). We assume bots in the same botnet behave similarly — each bot sends

approximately the same number of spam messages. As we explain in Section 4.4.1,

we assume the dataset is uniformly downsampled and estimate overall sample rate of

the JMS dataset as 0.001.

We define the following quantities:

• r: sample ratio of the dataset among all email received by this large mail service

• N : number of spam email messages observed

• N1: number of bots observed with only one spam email in the dataset

We want to measure botnets size and number of spam email messages sent per

bot:

76



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

• s: the mean number of spam email messages sent per bot

• b: number of bots (i.e. botnet size)

For s spam messages sent from a bot, with a sample rate r, the probability that

exactly one spam message appears in our dataset is

r ∗ (1− r)s−1 ∗
(

s

1

)
.

If the number of bots is b, the expected number of bots observed with only one

spam email message in the dataset is

b ∗
[
r ∗ (1− r)s−1 ∗

(
s

1

)]
,

which is N1 according to our definition above. We also know that the expected

number of spam email messages from a botnet is N/r = s∗ b. Note that N = s∗ b∗ r,

so,

N1 = b ∗
[
r ∗ (1− r)s−1 ∗

(
s

1

)]
= s ∗ b ∗ r ∗ (1− r)s−1 = N ∗ (1− r)s−1.

The number of spam email messages sent per bot (s) and botnet size (b):

s =
log(N1/N)

log(1− r)
+ 1, b =

N

rs

The assumption that each bot sends approximately equal number of spam mes-

sages works well for many botnets. However, it is an unverified assumption and the

conclusions that follow are conditional upon the validity of this unchecked assumption.

Verifying this assumption poses challenges, but with capture of a significant fraction

of email traffic, an observer could estimate the number of email messages sent by a

single machine. Currently, we expect that the number of messages sent per bot would

77



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

not vary significantly and the assumption would work well for most botnets. This is

because each botnet controller uses specific vulnerabilities to compromise machines

— it is likely that bots in a botnet are machines with similar processing power and

network bandwidth.

4.5 Metrics and Findings

In this section, we study characteristics of botnets and their behavior in sending spam.

These metrics are measured on spam campaigns and botnets detected as described

in Section 4.4.

4.5.1 Spam Campaign Duration

Instead of compromising machines and creating botnets themselves, spammers often

rent currently existing botnets from the market. How long is a botnet being rented

to run a single spam campaign? To answer this question, we must know how long

spam campaigns last, i.e. the spam campaign duration.

We define the spam campaign duration as the time between the first email message

and the last email message seen in a given spam campaign in our datasets (JMS &

ES). In the calculation, we remove 7% of the spam email messages in the JMS dataset

because an insufficient amount of similar spam email messages (where similarity is

calculated by shingling, see Section 4.4.3) appeared for us to confidently group it into

a single spam campaign. We performed a similar calculation on the ES dataset, and

found results consistent with the JMS dataset – we therefore focus only on the JMS

dataset for the rest of the discussion.

In this section, we look at all spam campaigns that start on a specific day, and

study the duration of these campaigns in our datasets. The cumulative distribution

78



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

 0

 0.2

 0.4

 0.6

 0.8

 1

 168 144 120 96 72 48 24 0

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Last Time (Hours)

JMR

Figure 4.3: Cumulative distribution func-
tion of spam campaign duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 168 144 120 96 72 48 24 0

W
ei

gh
te

d 
C

um
ul

at
iv

e 
D

is
tri

bu
tio

n 
 F

un
ct

io
n

Last Time (Hours)

JMR

Figure 4.4: Cumulative distribution func-
tion of spam campaign duration weighted
by email volume

function of spam campaign duration in the JMS dataset is shown in Figure 4.3. The

dataset contains email from a nine-day period. For those spam campaigns appearing

on the first day, we do not have enough information to know their actual start time

from the dataset itself. Because of this, we use only spam campaigns that start to

appear on the second day (that is, no appearance on the first day) to calculate the

distribution. We find that about 20% of spam campaigns in the JMS dataset persist

through the last day of our observation window and they might continue beyond the

time window of our dataset. In these graphs, we draw the cumulative distribution

function line in the time window from zero hour to 168 hours (seven days).

Figure 4.4 shows the cumulative distribution function of each spam campaign,

weighted by email volume. This figure demonstrates the distribution of spam cam-

paign duration in terms of spam email volumes. By comparing the cumulative dis-

tribution function and the weighted cumulative distribution function, we find that

short-lived spam campaigns have large volume and are often found to send a large

amount of email during a short time window.

While over half of spam campaigns end within one day, over 20% of spam cam-

paigns in the JMS dataset that continue through our entire observation window (i.e.

nine days). These long-lived spam campaigns have larger effects from the point of

79



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

view of the email receiver (as we will discuss in section 4.5.3).

4.5.2 Botnets Size

The capability of a botnet controller is related to number of bots in control. The

capability of botnet controllers and level of activity of botnets are two important

metrics for understanding botnets. To measure the capability, we need to estimate

the total size of each botnet based on our nine days of observation. To measure the

level of activity, we estimate the active working set of each botnet in a one hour

window. As botnet population is dynamic over time, we use “botnet size” to refer

to the estimated number of bots actually used for activities during the time window.

This size is estimated as explained in Section 4.4.7. Infected machines are often not

cleaned for several weeks. During the period of infection, machines have activities at

least every few days. Thus, bots actually used during an observation window of nine

days give a good approximation of the number of machines controlled by a botnet

controller.

We detected 294 botnets in the JMS dataset and the following measurements are

based on these 294 botnets. We estimate the total size of botnets as described in

Section 4.4.7. The estimated total sizes of the botnets give us some idea of an upper

bound on the capabilities of spammers or botnet controllers – they likely have only

compromised this many machines total. We compute 90% confidence intervals of

botnet sizes and find that the range of the confidence intervals is less than 20% of the

estimated botnet sizes.

Figure 4.5 shows the cumulative distribution function of estimated botnet size3.

In our dataset, the estimated total sizes of botnets ranges from a couple of machines

to more than ten thousand machines; about 50% of botnets contain over 1000 bots

3This is the estimation of the number of bots actually used, not just those seen in our dataset.

80



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Size (Log-Scale)

Total Size
Active Size

Figure 4.5: Cumulative distribution func-
tion of botnet size

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Spams per Bot (Log-Scale)

Overtime
In Active Window

Figure 4.6: Cumulative distribution func-
tion of spam email messages sent per bot

each, which is consistent with a similar metric in [Rajab et al., 2007]. The number of

spam email messages sent per bot ranges from tens to a couple thousands during the

nine-day observation window (Figure 4.6). Some botnet controllers are conservative

in the number of spam email messages sent per bot, with about ten messages from

each bot.

4.5.2.1 “Average Active Size per Botnet” and “Average Number of Spam

Email Messages Sent per Active Bot”

In a time window t (one hour in our experiments):

• “Active size” of a botnet is defined as the number of machines/IPs used for

sending spam email by this botnet during this time window t.

• “Spam sent per active bot” in a botnet is defined as the number of spam email

messages sent from each bot in a botnet during this time window t.

We now use these two metrics to measure the activity of a botnet.

In the experiment, we study events of a botnet in each time window t during

the nine-day duration. Since we limit t to one hour, we can reasonably assume that

IP reassignment does not happen. To measure the active size and number of spam

email sent per active bot during all time windows (one hour each), we calculate

81



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

characteristics in each time window and then average results over all time windows

during the nine-day period.

IP blacklisting or volume-based filtering per IP are candidate techniques used for

anti-spam in practice. Email service providers constantly update the blacklist, while

spammers work hard to avoid getting on the list. In such a situation, the active size

of a botnet and the number of spam email messages sent per active bot has a strong

impact on the efficiency and effectiveness of these two techniques in filtering spam

sent by botnets. Spammers generally use two methods to evade IP based filtering: 1)

they send fewer spam messages per bot (which looks like legitimate use); 2) they use

a small portion of machines at one time and round-robin among all machines in their

control.

Figure 4.7 shows the relationship between the average active size of a botnet and

the number of spam email messages sent per active bot. In this figure, we see that

large-size botnets tend to send less spam per bot, small-size botnets tend to send

more spam per bot, while mid-size botnets behave both ways. This suggests that

spam controllers may have clear plans about the number of spam messages to be sent

and then stop after these goals are met. Alternatively, the number of email addresses

that spammers possess may limit the total number of spam messages sent from their

botnets.

On the other hand, Figure 4.8 shows that there is no significant relationship

between active botnet duration and the number of spam messages sent per bot. Taken

together with Figure 4.7, we conclude that botnet size is the primary factor that

determines the number of spam messages sent per bot.

4.5.2.2 Average Relative Active Size

The relative active size is defined as the ratio of active size to estimated total size

of a botnet. The relative active size in each time window (one hour) is calculated

82



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000

A
vg

. #
 o

f S
pa

m
s 

pe
r A

ct
iv

e 
B

ot
 

(L
og

-S
ca

le
)

Avg. Active Size of Botnets (Log-Scale)

Figure 4.7: Average active size of botnets
vs. average number of spam email mes-
sages sent per active bot

 0.1

 1

 10

 100

 1000

 1  10  100  1000  10000

A
ct

iv
e 

D
ur

at
io

n 
of

 B
ot

ne
ts

 (H
ou

rs
)

Avg. # of Spams per Active Bot (Log-Scale)

Figure 4.8: Average number of spam email
messages per active bot vs. active duration
of botnets

and then averaged over nine days. This metric helps us to understand the spamming

behavior of botnets and discover different ways spammers use botnets. The average

relative active size ranges in (0, 1]. The value of 1 means the botnet uses all machines

it controls; while 0 means a botnet uses none of its machines. The average relative

active size indicates whether botnets controllers use all machines they have, or use a

small fraction of machines and round robin among these machines.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Average Relative Size

Figure 4.9: Cumulative distribution func-
tion of relative active size of botnets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000  10000  100000

A
vg

. R
el

at
iv

e 
A

ct
iv

e 
S

iz
e

Botnet Size (Log-Scale)

Figure 4.10: Botnet size vs. relative active
size

Figure 4.9 is the cumulative distribution function of relative active size of botnets.

About 80% of botnets use less than half of bots at a time in their network. Figure 4.10

shows that the relative active size and the total size are not related. That is, in general,

a botnet controller might use any portion of bots in his or her control regardless of

83



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

the total number controlled.

4.5.3 Per-day Aspect: Life Span of Botnets and Spam Campaigns

If we look at all spam email received in a day by an email server (or an end user),

how much spam is from long-lived botnets or spam campaigns? In other word, is

it worthwhile to monitor these long-lived botnets? If a new botnet is being rented

or borrowed every day for a new spam campaign, monitoring botnets might not be

helpful to anti-spam filters. On the other hand, if some botnets are devoted to the

spamming business, identifying these botnets is more promising.

We study the duration of botnets and spam campaigns on a per-day basis. We look

at spam email received on a particular day, identify the botnets or spam campaigns

these spam messages belong to, and compute the distribution of these botnets and

spam campaigns with activity on that particular day. In contrast, in Section 4.5.1 we

studied the spam campaign duration among all spam campaigns start on a specific

day.

In our experiment, we study botnets with activity on the last day of our nine-day

observation window, and then look backward to their first activity. We know that each

botnet is at least active for x (1 ≤ x ≤ 9) days. Figure 4.11 shows that about 60% of

spam received from botnets each day are sent from long-lived botnets. This is a good

indication that monitoring botnet behavior, membership, and other properties using

the approaches proposed in this paper can help to reduce significantly the amount of

spam received on a daily basis.

4.5.4 Geographic Distribution of Botnets

The geographic distribution of botnets is an interesting metric about the ability of

botnet controllers in compromising and taking over machines. Figure 4.12 shows

84



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

 0

 0.2

 0.4

 0.6

 0.8

 1

>=0d>=1d>=2d>=3d>=4d>=5d>=6d>=7d>=8d>=9d

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Duration (Days)

Botnet
Spam Campaign

Figure 4.11: Cumulative distribution func-
tion of botnets and spam campaign dura-
tion from a per-day-activity aspect

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

# of Countries Participated

Figure 4.12: Number of countries in bot-
nets

that about half of botnets detected from the JMS dataset control machines in over

30 countries. Some botnets control machines in over 100 countries. Others [Shad-

owServer.Org, 2007; Wikipedia, 2008b] observe that a botnet typically sends spam

messages with the same topic from all over the world, especially from those IP ranges

assigned to dial-up, ADSL or cable services. The wide geographic distribution in our

results is consistent with their observations.

�

�����

�����

�����

�����

�����

�����

�����

	����



�

�



�
�

�� �



�



�



�



�
�

�



�
�

�� �
�

�
�

�
�

�� �� 

�

�



�
�

�
�
�
 
!
"#
$
%#
�
$
&'

Figure 4.13: Top 20 countries with the
largest number of bots

�

��

���

���

���

���

�
�

�
�

	
�



�

�
�

�
�



�

�
	

�� �
�

�
�

�
�

�� �� 

�

�� �
	

�
�

�
�

�
�

�
�
�
�
�
��
�
 �
�
�
!"
�
!#

Figure 4.14: Top 20 countries with the
largest number of botnets

Using the estimation method proposed in Section 4.4.7, the total number of bots

involved in sending spam email all over the world during the nine-day observation

period of the JMS dataset is about 460,000 machines. The top twenty countries with

85



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

the largest number of bots are shown in Figure 4.13. Figure 4.14 shows the top twenty

countries with the largest number of botnets detected from the JMS dataset. It is

surprising at first that Spain, France, the United States and Italy have the most bots,

since many people report seeing large amounts of spam originating from China, South

Korea, and other east Asian countries. As we discussed, our study excludes non-bot

spam, e.g. spam sent from spammer servers and open relays. Thus, a large number

of bots in a country does not necessarily suggest a large number of spam messages

coming from that same country.

4.6 Open Problems

Our work leaves several open problems.

First, we have not provided a ground truth to validate our detection results. Given

an IP address, it is hard to verify whether it belongs to a botnet unless we have

physical access to the machine that owns the IP address. Our work use intuitive rules

to decide whether a set of events are really from botnets: IP addresses of these events

must be geographically distributed all over the Internet, the fraction of dynamic IP

addresses must be large compared to static IP addresses, etc. In the future, it would

be interesting to validate botnets detected from spam email by cross-referencing with

results inferred from other techniques such as IRC infiltrating. Comparing with other

detection results will also let us know the portion of botnets that do not spam at all

and are missed from our approach.

Second, our techniques could strengthen spam filtering. For example, we assign

different volume thresholds to senders belong to different botnets given their previous

behavior. We may also check the existence of same botnets in query log or ad click

log.

Third would be to extend our results to image spam. Certain techniques such as

86



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

image shingling are promising for spam clustering.

Finally, it is interesting to further study possible countermeasurements available

to botnet controllers to avoid being detected by our approach. Botnet controllers may

add even more random variances that make spam email messages different enough

from being grouped into spam campaigns. They may also divide a big botnet into

multiple smaller ones and use sophisticated strategy for renting. They may be able to

introduce errors into our detection. Since this is the first study of its kind, it unlikely

that anyone would use countermeasurements against it. It is unknown at this stage

how different countermeasurements would affect our approach.

4.7 Summary

Our work opens new directions in understanding botnet activity. By directly tracing

the actual operation of bots using one of their primary revenue sources (spam email),

we get a picture of bot activity; one that confirms and deepens the understanding

suggested by previous work. By identifying common characteristics of user labeled

spam email, we associated email with botnets. This allows us to make estimates

about the size of a botnet, behavioral characteristics (such as the amount of spam

sent per bot), and the geographical distribution of botnets.

This work allows us to collect new classes of information about botnets: as Fig-

ure 4.7 shows, we now have much more detailed estimates of the relationship between

the active size of botnets and the average number of spam e-mail messages sent by

each bot. In particular, we observe that for many botnets there appears to be an

inverse relationship between the size of the botnet and the number of spam messages

sent per bot.

We are also able to show that the relationship between the geographical distribu-

tion of botnets and bots differs in significant ways (Figures 4.13 and 4.14). In par-

87



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

ticular, we see that a small number of countries account for most of the bots: Spain,

France, the United States and Italy having by far the largest number of bots. In con-

trast, we see the distribution of botnets is much more uniform. Perhaps, this suggests

that most botnets are relatively widely distributed across geographical boundaries, so

even countries with a relatively low number of bots still have representation among

major botnets.

Our results have wide applicability. First, these results suggest new techniques for

email systems designed to catch bot-originated spam. But more than that, they give

a forensic insight into the size, geographic locations, amount of gross activities, and

amount of activities per bot of specific botnets. This information can be collected

dynamically (by analyzing email spam as it arrives) or after the fact – allowing law

enforcement to analyze not only current botnets but botnets from previous points in

time. Our approach is particularly robust – it does not require creation of new logging

mechanisms or depend on continual monitoring of DNS caches. Our approach ap-

pears more robust to countermeasures against previous IRC-based botnet monitoring

techniques. A botnet can shield messages in IRC exchanges, but as long as a botnet

sends out spam messages, it can be analyzed by our approach.

This work is part of a larger effort to develop methods for inferring information

from statistical analysis of side-channels (see for example [Zhuang et al., 2005]). Our

work leads to some specific opportunities for future research: we have an opportunity

to analyze and monitor botnets identified through this work to trace other activities,

besides the transmission of spam e-mail messages. This type of monitoring could lead

to valuable “early warning” indicators of new classes of malicious undertakings. For

example, we could analyze other logged activity (such as search logs, ad click logs,

online message logs, firewall logs, exploit logs, etc.) This, in turn, could shed light on

the economic motivation of those controlling botnets, and detect links among their

actions. Finally, analysis of attacks made by botnets could suggest new classes of

88



Chapter 4. Side Channel System Defense: Detecting Botnets from Spam Email Messages

defenses – in particular, they could suggest new methods for detecting a broad class

of spam e-mail messages.

89



Chapter 5

Conclusion

This thesis examined extracting security-related information from large, noisy datasets

— the security inference problem. As people develop and deploy more software appli-

cations and smart, networked devices, service providers as well as eavesdroppers can

collect a growing wealth of digital information, including text logs, email, sound, and

even video. On the one hand, this wealth of information increases the risk of leak-

ing important information through unexpected side channels. On the other hand, it

also creates opportunities for researchers to better understand many security-related

problems. This work presented two case studies that approach the problem from

both attacker and defender perspectives. We focused on techniques that extract fea-

tures reliably from noisy data and then group related samples by correlating similar

features.

In both case studies, we followed a five-step framework for security inference. This

framework, depicted graphically in Figure 5.1, uses a systematic procedure to group

connected samples:

1. Define what constitutes a connection between samples. This generally requires

identifying hidden connections within a dataset. These hidden connections are

90



Chapter 5. Conclusion

Summarize security
knowledge

Group connected
samples

to extract features
Use mathematical tools

Identify hidden connections
within datasets

within each group
Aggregate security infomation

Figure 5.1: A general framework for security inference

91



Chapter 5. Conclusion

used as criteria for grouping samples.

2. Extract features from the data. Several mathematical tools are available to

extract features that support finding connections.

3. Group the samples. This step uses statistical analysis and machine learning

algorithms based on the extracted features.

4. Aggregate security information within each group. The security information

might be simple statistics about the samples in each group or a more complex

mathematical model.

5. Summarize security knowledge in a usable form.

This general framework applies to both case studies in this thesis as well as other

problems in security inference.

Table 5.1 shows how each case study fits into to the general framework:

• The first case study approaches the security inference problem from an attacker’s

perspective. The data in this case are sound emissions from typing on a com-

puter keyboard. We identify two hidden connections in the data: 1) keystrokes

of the same key sound similar while keystrokes of different keys sound different;

2) typed text is often not random, for example, English speakers mostly type

English text. We capture these two observations with mathematic tools. For the

first observation, we use frequency features (such as FFT or cepstrum features)

during time window around each keystroke in the signal. For the second obser-

vation, we use hidden Markov models (HMMs) that represent conditional prob-

ability distributions between consecutive characters or words. Unsupervised

clustering algorithms on the observations can group keystrokes into a number

of acoustic classes based on their sound (represented by frequency features).

92



Chapter 5. Conclusion

Keyboard Acoustic Emana-
tions

Botnet Detection

Data trace Sound of typing on computer
keyboards

Spam email messages

Identify hidden
connections
within dataset

1) Different keystrokes sound
different;

1) Spam email messages in
the same campaign share
similar content;

2) Non-randomness (lan-
guage constraints) in typed
text.

2) Bots in a botnet partici-
pate in the same spam cam-
paigns repeatedly.

Use
mathematical
tools to extract
features

1) FFT/Cepstrum features; Rabin fingerprints
2) Hidden Markov Models
at character level and word
level.

Group connected
samples

Sound samples of keystrokes
from the same key (Using K-
Means, EM and Viterbi algo-
rithm)

Email messages with simi-
lar content and spam cam-
paigns sharing senders (Us-
ing union-find algorithm)

Aggregate security
information within
each group

Acoustic information about
keystrokes in the same group

Sender identities of email
messages in the same group

Summarize secu-
rity knowledge

Language-independent
keystroke classifier

Botnets membership and
other metrics

Table 5.1: Applying the general frame to two case studies

93



Chapter 5. Conclusion

Given a recording of sufficient length, HMMs can use language constraints to

establish a most likely mapping between these acoustic classes and actual typed

characters. The most likely sequence of characters generated from this mapping

provides labels for the keystrokes. Using these labels, we group keystrokes from

the same key together and train a supervised keystroke classifier. In this way,

taking as input a 10-minute sound recording of typed English text, we recover

the typed text in this recording as well as create a language-independent clas-

sifier. The usable summary of security knowledge in this case is a keystroke

classifier, bootstrapped from a sound recording of typed English text, that can

recognize even random text such as passwords.

• The second case study approaches the problem from a defender’s perspective,

discovering security knowledge that can help improve security. The primary

data source is a large trace of spam email from Hotmail. Again, two observa-

tions reveal connections. First, spam email messages originating from the same

controlling entity usually have similar content because these email messages

share a common economic interest, so it is likely that a single entity controls

the machines sending these messages. Second, bots in the same botnet often

participate together in many spam campaigns. We use the Rabin fingerprint al-

gorithm as a mathematical tool to represent content similarity, and group email

messages into campaigns. We use the union-find algorithm as a mathematical

tool to group spam campaigns together and connect machines to botnets. The

security knowledge in this case includes botnet membership and other related

metrics.

94



Chapter 5. Conclusion

5.1 Experience with Security Inference

We have presented two case studies that use data mining to extract security infor-

mation. While the keyboard acoustic analysis case study analyzes data traces of

legitimate users, the botnet detection project focuses on data traces of attackers.

Experience with these two sides of the problem leads to several important insights:

• Domain knowledge is key to identifying hidden connections among data sam-

ples. Successful security inference requires extracting clearly defined security

information (the hidden state) and knowledge of how it appears in collected

data (the link from hidden state to observations). In the first case study, the

hidden states are the actual keys pressed. Domain knowledge informs the as-

sumption that observations of the same key sound similar and different keys

sound different. In the botnet study, the hidden state of a computer is its

botnet membership. Domain knowledge suggests the assumption that botnet

owners send out massive numbers of spam email messages (the observations)

with similar content.

• It is useful to review the internal operations of a system and identify all exposed

information. For example, normal use of a desktop computer exposes network

packets (contents, sending/receiving speed, timing pattern, etc.), optical ema-

nations from the screen, sound from typing on the keyboard, wireless radio if

a wireless keyboard or mouse is used, noise from the CPU and machine fans,

electricity usage, and other signals. It is useful to consider possible variations in

data collected from side channels and how they might correlate with other infor-

mation. This analysis can highlight features of data samples that are connected

and provide a source of side channel information.

• Choosing appropriate tools from the vast repertoire of statistical algorithms and

95



Chapter 5. Conclusion

methods available is a key step in solving the problem. We employ the hidden

Markov model in the keyboard study and the “shingling” method for identifying

similar texts in the botnet study. For example, after extracting features from

data, unsupervised learning methods such as K-means and clustering algorithms

are useful to group samples with similar features. The K-means algorithm is

useful here because we know the approximate number of clusters (i.e. the k

parameter in the algorithm). When we get the labeled samples from bootstrap-

ping recordings, classifiers such as neural networks and Gaussian mixtures can

train a classification model, and then give any new sample a label based on the

trained model.

Feature extraction is generally a case-by-case issue. A good feature extraction

algorithm can significantly improve the learning results. For example, after

replacing FFT features with cepstrum features in the keyboard emanation case

study, the recovery rate improves by about 10%.

It can also be important to make good modeling choices. For example, when

using naive hidden Markov model with Gaussian mixtures in the first case study,

the training process encounters the overfitting problem. By using a clustering

step first, we reduce the number of unknown parameters in the HMMs and can

then successfully estimate parameters using the EM algorithm.

• Flexible and scalable computing infrastructures enable the processing of giant

datasets. The ability to extract knowledge from giant datasets is often limited

by processing power. This is particularly true in the botnet study, where we

analyzed over 10TB of log data. We conjecture that access to a large cluster of

computers is critical for many security inference problems.

96



Chapter 5. Conclusion

5.2 Open Problems

This work is a first step in the direction of automatically inferring security knowledge

from large, noisy datasets. Challenges ahead arise from rapidly emerging new types

of data, increasing quantities of data, and complicated connections across different

datasets. Here we suggest several open problems in this area that deserve future

study.

1. In the domain of keyboard acoustic emanations, typing could leak other types

of information besides just the characters. For example, each user may have

different typing patterns and it may be possible to train a classifier that can

recognize the identity of the typist in a recording [Monrose and Rubin, 2000].

The information that would be useful for recognizing typist identity includes

time between consecutive keys, average typing speed, energy level of typing on

each key, etc. It would be interesting to find out: 1) what is the minimum

information required to distinguish one user from another; 2) whether the min-

imum information requirement increases as the total number of users in the

database increases; and 3) whether it is easier to verify a user’s identity (a

yes/no question) instead of classifying a user’s identity (choosing among many

users).

2. Remote audio (sometimes with video) services such as Skype and Live Messen-

ger are increasing in popularity. As a side effect, remote audio provides a way

to collect the sound of typing remotely. If an attacker has both an audio chan-

nel and a text channel open with a remote victim at the same time, this setup

would provide text-labeled sound samples. For example, an attacker could use

a game that employs both voice and text channels simultaneously.

3. Measuring household power consumption reveals information about people liv-

97



Chapter 5. Conclusion

ing inside. Electrical devices have different patterns of power consumption when

turned on, running, or turned off. A device that can sample the power con-

sumption at a sufficiently frequent basis can capture this information enabling

inference about activities.

4. Social networking websites make new types of data available on the Internet.

Public user profiles in many social networks combined with other publicly avail-

able data over the Internet (such as news, homepages, forum posts, etc.) can

potentially reveal a large amount of information about a person’s personal life.

Understanding the threats to privacy posed by large-scale correlation of personal

information is the first step towards developing strong protections.

5. Query logs and advertisement click logs are promising sources of information

about bot behavior. One important question is whether we can distinguish

machine (or bot) behavior from human behavior in query logs. As most search

engine service providers use user behavior to improve search quality, Web spam-

mers and search engine optimization (SEO) providers often use machines to

issue queries, misleading the search engine about user behavior in an attempt

to affect ranking strategies of search engines. It is known [Daswani et al., 2007]

that botnets are also used to generate fraudulent advertisement clicks. Our

success in detecting and characterizing botnets from spam email traces gives

hope that similar success may be possible in the domain of advertisement click

logs.

6. Cheating players and computers posing as human players (robots) are common

in massively multiplayer online role-playing games (MMORPGs) and real-time

strategy games. Cheating players and robots behave differently than other

users. For example, they may pretend to have high packet loss to move more

quickly. Robots respond much faster than human players. We may be able to

98



Chapter 5. Conclusion

detect them by extracting features and building a classifier. Supervised learning

and online learning algorithms might be useful here.

7. Our techniques can help detect blog comment spam. Spammers use software

to post comments containing advertisements on public blogs. Spammers use

comments to attract traffic to certain websites, or to create link farms to boost

search engine rank. The content of spam comments is often similar or identical,

and URLs in these comments often link to each other. Statistical learning

algorithms could use such connections to identify blog comment spam.

8. Similarly, our techniques can help identify web spam. Classifying based on

sets of features may identify these spam websites. It is also likely that hosts

of websites advertised in spam email messages overlap with web spam hosts

websites. Cross-checking datasets from these two services could yield interesting

results.

9. Security inference could be applied to analyzing system log data of Internet

servers. For example, log data may include messages related to persistent or

temporary failures, abnormal volume of particular operations, workload pattern

during a day, etc. Can data mining find connections and infer new conclusions

from the information inside system logs? We believe it is possible to process

these data, discover hidden knowledge inside, and infer relevant information

not only for protecting security and privacy, but also for other purposes such

as distributed monitoring, system management, bug finding, etc.

Ultimately using security inference to understand massive, noisy datasets enables

system designers to find new security vulnerabilities and more effectively track at-

tacker identities and activities.

99



Bibliography

[Anderson et al., 2007] David S. Anderson, Chris Fleizach, Stefan Savage, and Geof-
frey M. Voelker. Spamscatter: Characterizing Internet Scam Hosting Infrastruc-
ture. In Proceedings of the USENIX Security Symposium, pages 135–148, 2007.

[Asonov and Agrawal, 2004] Dmitri Asonov and Rakesh Agrawal. Keyboard Acoustic
Emanations. In Proceedings of the IEEE Symposium on Security and Privacy, pages
3–11, 2004.

[Atkinson, 2005a] Kevin Atkinson. GNU Aspell, 2005. http://aspell.

sourceforge.net/.

[Atkinson, 2005b] Kevin Atkinson. Spell Checker Oriented Word Lists, 2005. http:

//wordlist.sourceforge.net/.

[Barreno et al., 2006] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D.
Joseph, and J. D. Tygar. Can Machine Learning Be Secure? In Proceedings of
the ACM Symposium on InformAtion, Computer, and Communications Security
(ASIACCS’06), pages 16–25, 2006.

[Bernstein, 2005] Daniel J. Bernstein. Cache-timing Attacks on AES, 2005. http:

//cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[Bilmes, 1997] Jeff A. Bilmes. A Gentle Tutorial of the EM Algorithm and its Ap-
plication to Parameter Estimation for Gaussian Mixture and Hidden Markov Mod-
els. Technical Report ICSI-TR-97-021, International Computer Science Institute,
Berkeley, California, 1997.

[Binkley and Singh, 2006] James R. Binkley and Suresh Singh. An Algorithm for
Anomaly-based Botnet Detection. In SRUTI’06: Proceedings of the 2nd conference
on Steps to Reducing Unwanted Traffic on the Internet, pages 43–48, 2006.

[Briol, 1991] R. Briol. Emanation: How to Keep Your Data Confidential. In Proceed-
ings of Symposium on Electromagnetic Security For Information Protection, pages
225–234, 1991.

100

http://aspell.sourceforge.net/
http://aspell.sourceforge.net/
http://wordlist.sourceforge.net/
http://wordlist.sourceforge.net/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf


BIBLIOGRAPHY

[Broder et al., 1997] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and
Geoffrey Zweig. Syntactic Clustering of the Web. In Selected papers from the sixth
international conference on World Wide Web, pages 1157–1166, 1997.

[Brodsky and Brodsky, 2007] Alex Brodsky and Dmitry Brodsky. A Distributed Con-
tent Independent Method for Spam Detection. In HotBots’07: Proceedings of the
1st workshop on Hot Topics in Understanding Botnets, pages 18–27, 2007.

[Brumley and Boneh, 2003] David Brumley and Dan Boneh. Remote Timing Attacks
are Practical. In SSYM’03: Proceedings of the 12th conference on USENIX Security
Symposium, pages 1–13, 2003.

[Canvel et al., 1993] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuag-
noux. Timing-based Attacks on SSL/TLS with CBC Encryption, 1993. http:

//www.openssl.org/news/secadv_20030219.txt.

[Chan and Lippmann, 2006] Philip K. Chan and Richard P. Lippmann. Machine
Learning for Computer Security. Journal Machine Learning, Vol. 7, pages 2669–
2672, 2006.

[Childers et al., 1977] D. G. Childers, D. P. Skinner, and R. C. Kemerait. The Cep-
strum: A Guide to Processing. In Proceedings of the IEEE, Vol. 65, No. 10, pages
1428–1443, 1977.

[Cooke et al., 2005] Evan Cooke, Farnam Jahanian, and Danny McPherson. The
Zombie Roundup: Understanding, Detecting, and Disrupting Botnets. In
SRUTI’05: Proceedings of the Steps to Reducing Unwanted Traffic on the Internet
on Steps to Reducing Unwanted Traffic on the Internet Workshop, pages 39–44,
2005.

[Cormen et al., 2001] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Second Edition. The MIT Press,
September 2001.

[Dagon et al., 2006] David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnet Prop-
agation Using Time Zones. In Proceedings of the 13th Annual Network and Dis-
tributed System Security Symposium (NDSS’06), pages 226–240, 2006.

[Daswani et al., 2007] Neil Daswani, Michael Stoppelman, and the Google Click
Quality and Security Teams. The Anatomy of Clickbot.A. In HotBots’07: Pro-
ceedings of the 1st workshop on Hot Topics in Understanding Botnets, pages 80–91,
2007.

101

http://www.openssl.org/news/secadv_20030219.txt
http://www.openssl.org/news/secadv_20030219.txt


BIBLIOGRAPHY

[Dean and Ghemawat, 2004] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified Data Processing on Large Clusters. In OSDI’04: Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Implementation, pages
137–150, 2004.

[Diffie and Hellman, 1976] Whitfield Diffie and Martin E. Hellman. New Directions
in Cryptography. IEEE Transactions on Information Theory, Vol. IT-22, No. 6,
pages 644–654, 1976.

[Fine et al., 1998] Shai Fine, Yoram Singer, and Naftali Tishby. The Hierarchical
Hidden Markov Model: Analysis and Applications. Machine Learning, Vol. 32,
No. 1, pages 41–62, 1998.

[Frankowski et al., 2006] Dan Frankowski, Dan Cosley, Shilad Sen, Loren Terveen,
and John Riedl. You are What You Say: Privacy Risks of Public Mentions. In
SIGIR’06: Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 565–572, 2006.

[Freiling et al., 2005] Felix C. Freiling, Thorsten Holz, and Georg Wicherski. Botnet
Tracking: Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks. In Proceedings of the 10th European Symposium on Research in
Computer Security (ESORICS’05), pages 319–335, 2005.

[Ghemawat et al., 2003] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. In SOSP’03: Proceedings of the Nineteenth ACM Sym-
posium on Operating Systems Principles, pages 29–43, 2003.

[Hadoop, 2007] Hadoop. Hadoop, 2007. http://lucene.apache.org/hadoop/.

[Hulten et al., 2004] Geoff Hulten, Joshua Goodman, and Robert Rounthwaite. Fil-
tering Spam E-mail on a Global Scale. In WWW Alt.’04: Proceedings of the 13th
International World Wide Web Conference on Alternate Track, pages 366–367,
2004.

[Isard et al., 2007] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed Data-parallel Programs from Sequential Building
Blocks. SIGOPS Operating Systems Review, Vol. 41, No. 3, pages 59–72, 2007.

[Jordan, 2008] Michael I. Jordan. An Introduction to Probabilistic Graphical Models.
2008. In preparation.

[Jurafsky and Martin, 2000] Daniel Jurafsky and James H. Martin. Speech and Lan-
guage Processing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition. Prentice Hall, 2000.

102

http://lucene.apache.org/hadoop/


BIBLIOGRAPHY

[Karasaridis et al., 2007] Anestis Karasaridis, Brian Rexroad, and David Hoeflin.
Wide-scale Botnet Detection and Characterization. In HotBots’07: Proceedings
of the 1st workshop on Hot Topics in Understanding Botnets, pages 49–56, 2007.

[Kocher et al., 1999] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
Power Analysis. In Proceedings of the 19th Annual International Cryptology Con-
ference on Advances in Cryptology, pages 388–397, 1999.

[Kocher, 1996] Paul Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology, pages 104–113, 1996.

[Krasser et al., 2005] Sven Krasser, Gregory Conti, Julian Grizzard, Jeff Gribschaw,
and Henry Owen. Real-time and Forensic Network Data Analysis Using Animated
and Coordinated Visualization. In IAW’05: Proceedings of the 6th IEEE Informa-
tion Assurance Workshop, pages 42–49, 2005.

[Kuhn, 2002] Markus G. Kuhn. Optical Time-Domain Eavesdropping Risks of CRT
Displays. In Proceedings of the IEEE Symposium on Security and Privacy, pages
3–18, 2002.

[Kuhn, 2003] Markus G. Kuhn. Compromising Emanations: Eavesdropping Risks of
of Computer Displays. Technical Report UCAM-CL-TR-577, Computer Labora-
tory, University of Cambridge, 2003.

[Maloof, 2006] Marcus A. Maloof. Machine Learning and Data Mining for Com-
puter Security: Methods and Applications (Advanced Information and Knowledge
Processing). Springer, 2006.

[Manber, 1994] Udi Manber. Finding Similar Files in a Large File System. In Pro-
ceedings of the USENIX Winter 1994 Technical Conference, pages 1–10, 1994.

[Monrose and Rubin, 2000] Fabian Monrose and Aviel D. Rubin. Keystroke Dynam-
ics as a Biometric for Authentication. Future Generation Computer Systems, Vol.
16, No. 4, pages 351–359, 2000.

[Percival, 2005] Colin Percival. Cache Missing for Fun and Profit, 2005. http://

www.daemonology.net/papers/htt.pdf.

[Rabin, 1981] Michael O. Rabin. Fingerprinting by Random Polynomials, 1981. Har-
vard Aiken Computational Laboratory TR-15-81.

103

http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf


BIBLIOGRAPHY

[Rabiner and Juang, 1986] L. R. Rabiner and H. Juang. An Introduction to Hidden
Markov Models. In IEEE Acoustics, Speech, and Signal Processing Magazine, Vol.
3, pages 4–16, 1986.

[Rajab et al., 2006] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas
Terzis. A Multifaceted Approach to Understanding the Botnet Phenomenon. In
IMC’06: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measure-
ment, pages 41–52, 2006.

[Rajab et al., 2007] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas
Terzis. My Botnet is Bigger than Yours (Maybe, Better than Yours). In Hot-
Bots’07: Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets,
2007.

[Ramachandran and Feamster, 2006] Anirudh Ramachandran and Nick Feamster.
Understanding the Network-level Behavior of Spammers. In SIGCOMM’06: Pro-
ceedings of the 2006 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pages 291–302, 2006.

[Ramachandran et al., 2006] Anirudh Ramachandran, Nick Feamster, and David
Dagon. Revealing Botnet Membership Using DNSBL Counter-intelligence. In
SRUTI’06: Proceedings of the 2nd Conference on Steps to Reducing Unwanted
Traffic on the Internet, pages 49–54, 2006.

[Rivest et al., 1983] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtain-
ing Digital Signatures and Public-key Cryptosystems. ACM Communication, Vol.
26, No. 1, pages 96–99, 1983.

[Russell and Norvig, 2003] Stuart Russell and Peter Norvig. Artificial Intelligence:
A Modern Approach, 2nd edition. Prentice Hall, 2003.

[Saponas et al., 2007] T. Scott Saponas, Jonathan Lester, Carl Hartung, Sameer
Agarwal, and Tadayoshi Kohno. Devices That Tell On You: Privacy Trends in
Consumer Ubiquitous Computing. In Proceedings of the 16th USENIX Security
Symposium, pages 55–70, 2007.

[ShadowServer.Org, 2007] ShadowServer.Org. Shadow Server Foundation, 2007.
http://www.shadowserver.org/.

[Shamir and Tromer, 2004] Adi Shamir and Eran Tromer. Acoustic Cryptanalysis,
2004. http://www.wisdom.weizmann.ac.il/~tromer/acoustic/.

104

http://www.shadowserver.org/
http://www.wisdom.weizmann.ac.il/~tromer/acoustic/


BIBLIOGRAPHY

[Song et al., 2001] Dawn Song, David Wagner, and Xuqing Tian. Timing Analysis
of Keystrokes and Timing Attacks on SSH. In Proceeding of the 10th USENIX
Security Symposium, pages 337–352, 2001.

[Thede and Harper, 1999] Scott M. Thede and Mary P. Harper. A Second-order Hid-
den Markov Model for Part-of-speech Tagging. In Proceedings of the 37th conference
on Association for Computational Linguistics, pages 175–182, 1999.

[Wasserman, 1993] Philip D. Wasserman. Advanced Methods in Neural Computing.
Wiley, 1993.

[Wikipedia, 2008a] Wikipedia. Wikipedia: Data Encryption Standard, 2008. http:

//en.wikipedia.org/wiki/Data_Encryption_Standard.

[Wikipedia, 2008b] Wikipedia. Wikipedia: E-mail Spam, 2008. http://en.

wikipedia.org/wiki/E-mail_spam.

[Xie et al., 2007] Yinglian Xie, Fang Yu, Kannan Achan, Eliot Gillum, Moises Gold-
szmidt, and Ted Wobber. How Dynamic are IP Addresses? In SIGCOMM’07:
Proceedings of the 2007 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages 301–312, 2007.

[Zhou et al., 2003] Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang, Anthony D.
Joseph, and John D. Kubiatowicz. Approximate Object Location and Spam Fil-
tering on Peer-to-peer Systems. In Proceeding of Middleware, pages 1–20, 2003.

[Zhuang et al., 2005] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard Acoustic
Emanations Revisited. In CCS’05: Proceedings of the 12th ACM Conference on
Computer and Communications Security, pages 373–382, 2005.

[Zhuang et al., 2008] Li Zhuang, John Dunagan, Daniel R. Simon, Helen J. Wang,
Ivan Osipkov, Geoff Hulten, and J. D. Tygar. Characterizing Botnets from Email
Spam Records. In LEET’08: Proceedings of the First USENIX Workshop on Large-
Scale Exploits and Emergent Threats, 2008.

105

http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/E-mail_spam

	List of Figures
	List of Tables
	Introduction
	Side Channel Information
	Challenges in Side Channel Information Analysis
	Towards Statistical Analysis of Side Channel Information
	Contributions of this Work

	Side Channel Information and Its Security Implications
	Timing Information
	Consumption of Certain Resources
	Unprotected Emanation Channels
	Unintended Usage of Information

	Side Channel System Attack: Keyboard Acoustic Emanations
	The Case: Keyboard Acoustic Emanations
	Related Work
	The Attack
	Technical Details
	Evaluation
	Discussion

	Side Channel System Defense: Detecting Botnets from Spam Email Messages
	The Case: Identifying Botnets from Spam Email Messages
	Related Work
	Overview
	Methodology
	Metrics and Findings
	Open Problems
	Summary

	Conclusion
	Experience with Security Inference
	Open Problems

	Bibliography

