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ELECTRONICS AND ELECTROMAGNETICS

Generalized FFT Beamsteering

J.O. Coleman
Radar Division

Introduction: A receive antenna’s beam, the 
direction of maximum gain or sensitivity, need not 
be rigidly oriented to the physical antenna. An array 
antenna, hundreds or thousands of small antenna 
elements laid out along a line or, more usefully, on a 
2D lattice, offers an electronically controlled, agile 
beam or even multiple beams associated with mul-
tiple antenna outputs, a technology that can enable a 
military radar to precisely track many objects in flight 
simultaneously. The classic approach to efficiently 
realizing many simultaneous beams uses fast Fourier 
transforms (FFTs) for computational efficiency but 
severely restricts choices of system parameters. Gen-
eralized FFT beamsteering as described here loosens 
those restrictions to give system designers a larger 
tradeoff space and therefore opportunities for cost 
savings and performance gains, particularly for large 
digital radar arrays.

Classic Array Basics: The simplest array has 
antenna elements spaced along a line at half-wave-
length intervals. Referring to Eq. (1) in Fig. 1, suppose 
the pth element output is processed by its own receiver 
to create complex signal output sp (a function of time, 
though that is not shown here). Array output or beam 
sum X of Eq. (1) can be made to strongly favor signals 
from array boresight directions normal to the array, by 

designing weights wp so that such signals add construc-
tively in the sum while other signals largely cancel. Here 
p formally ranges from – ∞ to ∞ in the sum, but weight 
wp is nonzero only for the finite number of p for which 
actual array elements exist.

Beam steering can be included in the beam-sum 
computation using the fact that a nonboresight signal 
arrives at the elements in sequence, with net propaga-
tion delays stepped element by element. For narrow-
band signals, which are more or less sinusoidal, stepped 
phase shifts result, so we aim the beam sum by modify-
ing it to cancel those phase shifts for some direction of 
interest as in Eq. (2) of Fig. 1, where phase-step param-
eter θ selects the favored direction. To simultaneously 
create beams for N different θ values spread around 
the circle and thereby spread beams across all direc-
tions, specialize Eq. (2) to θ = 2 θpk/N as in Eq. (3) and 
compute a beam sum Xk for each of k = 0 … N – 1.

This computation can be restructured to practi-
cal advantage. First, write each p as Nn' + n with n' an 
arbitrary integer but with the existence and uniqueness 
of the decomposition guaranteed by drawing n only 
from the N modulo-N integers, classically taken to be 
0 ... N – 1. Then define intermediate quantities xn as in 
Eq. (4) and rewrite beam sum Xk of Eq. (3) as shown in 
Eq. (5).

This classic formulation expresses the N beam 
sums Xk as the size-N discrete Fourier transform (DFT) 
of the N intermediate variables xn, which are precom-
puted using weighting and folding. This formulation 
makes the extraordinary computational efficiency of 
FFT algorithms available for computing the DFT. (For 

FIGURE 1
The key mathematics. Here Eq. (7) is for the Fig. 2 example. The other 
equations are general.
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FFT basics see Ref. 1 or any other digital signal process-
ing text.)

This FFT beamsteering approach is well known, 
as is its separate application in each of two dimensions 
to create beam rows and columns from a 2D array of 
element rows and columns.

NRL Generalizes to a Matrix FFT Size: Our work 
generalizes the latter 2D approach to add design flex-
ibility. The subscripts on sp, wp, xn, and Xk become 
length-two integer vectors, with k a row vector and the 
others columns. The original number of directions N 
becomes a nonsingular 2 × 2 integer matrix with the 
number of directions now just the magnitude |N |  of its 
determinant.

When N was a scalar, the set of “all mod-N values” 
summed over in Eq. (5) of Fig. 1 was any fixed set of N 
integers that ensured a unique decomposition p = Nn' 
+ n for every integer p, with n = 0 ... N − 1 the custom-
ary choice. A similar unique decomposition is required 
now as well, but now p = Nn' + n involves matrix N 
and vectors n, n', and p, and n is drawn from any fixed 
set of |N |  modulo-N column vectors. Similarly, k now 
ranges over a set of modulo-N row vectors that gives 
every length-two integer row vector a unique decom-
position k'N + k. In Eq. (5), exponent k N − 1n is still a 
scalar but is now the product of a row vector, a square 
matrix, and a column vector.

Remarkably, if the array elements are laid out on 
a regular lattice, whether square, triangular, or neither, 
Eq. (5) of Fig. 1 with all these generalizations still 

creates a family of |N |  distinct beams and the prin-
ciples underlying the classic FFT here lead to analogous 
algorithms. The efficiency of classic FFTs arises through 
factoring common factors out of sums and systemati-
cally sharing intermediate results. That is just as true 
here, and the results are just as computationally power-
ful.

The modulo-N ideas extend cleanly to the vector-
matrix case because their scalar and vector versions 
both derive fundamentally from the same ideas in 
elementary group theory. Likewise, classic FFT algo-
rithms and the generalized FFT algorithms of this 
work are both special cases of fast Fourier transforms 
on groups, a well-developed area in the mathematics 
community.

More Classics—The Grating-Lobe Offset Lattice: 
Beam-pointing parameter θ in Eq. (2) of Fig. 1 is a 
length-two vector with coordinates plotted horizontally 
and vertically in Fig. 2. In that θ space the globe shown 
has latitude and longitude lines corresponding respec-
tively to a direction’s elevation and azimuth relative 
to array boresight. A visible beam, one with θ inside 
the globe, is a signal direction of arrival favored in the 
corresponding beam sum. An invisible beam, one with 
θ outside the globe, is irrelevant to the array’s physical 
operation.

There are always invisible beams in the mathemat-
ics, however, because beam sum X in Eq. (2) of Fig. 1 
is periodic in θ. If X has a beam characterized by a 
particular θ, then it also has one characterized by θ plus 

FIGURE 2
The θ plane. Dots in the direction-of-arrival coordinate globe represent beam locations 
computed by the generalized FFT. The beam layout and the structure of that FFT is 
determined by the choice of a coarse grid, which must include the basis vectors (green) 
of the grating-lobe lattice.
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any member of a grating-lobe offset lattice compris-
ing integer-weighted combinations of the large basis 
vectors shown as arrows in Fig. 2. Element spacing 
and placement geometry are ordinarily chosen—this 
is where the classic half-wavelength spacing arises—so 
that one period of the grating-lobe offset lattice com-
pletely contains the visible globe. Then no periodic 
replica of a desired beam can ever become visible and 
thus become a grating lobe.

The Increased Design Choice of the NRL 
Approach: In the design process a coarse grid is 
laid out in the θ space with grid lines at arbitrary 
orientations and angles—in Fig. 2 they make large 
diamonds—but such that the grating-lobe basis vectors 
fall on grid points with small integer coordinates, here 
[−1  1] and [2  2].

A matrix L is constructed with those two vectors 
as its rows. This will result in some (nonunique) set of 
|L |  grid cells exactly tiling the plane. Within each of 
those |L |  grid cells are rrows rows by rcols columns of 
θ values, here shown by dots, corresponding to beam 
directions realized in this scheme. The Fig. 2 example 
has rrows = rcols = 8. By varying these two parameters 
and how the coarse grid is chosen, many beam-position 
layouts are possible.

Matrix N is then constructed as N = LR, where R 
is a diagonal matrix of the rrows and rcols as in Eq. (6) 
of Fig. 1. Matrix N for the Fig. 2 example is shown in 
Eq. (7).

The N = LR factorization yields a generalized FFT 
algorithm built from |L |  blocks, each built in turn from 
rrows ordinary FFTs of size rcols and rcols ordinary FFTs 
of size rrows. Complex-exponential “twiddle factors” 
(the traditional name) that were factored out of sums 
in the FFT derivation are applied to the block outputs, 
and the final array output to realize a beam then 
requires only a one-term-per-block linear combination 
of those twiddled block outputs. The computations 
leading to twiddled block outputs are shared across all 
beams. Only the final linear combinations of |L |  terms 
are specific to beams. (In the Fig. 2 example |L |  = 4.) 
Values of θ outside the globe are irrelevant, as are those 
inside the globe but impractically close to its edge, so 
not all of the linear combinations need even be com-
puted.

For a detailed treatment of this generalized FFT 
beamsteering technique, see Ref. 2.
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