
Final Performance Report

Contract # FA9550-08-C-0006:

Hearing Protection for High-Noise Environments

Period of Performance: Oct 01, 2007 – Nov 30, 2009

Attachment 1

Development of Elastoacoustic Integral-Equation Solver:
Surface and Volumetric Integral Equations

Prepared by:

MONOPOLE RESEARCH
739 Calle Sequoia, Thousand Oaks, CA 91360
tel: (805) 375-0318 fax: (805) 499-9878

Approved for public release, distribution unlimited



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2009 2. REPORT TYPE 

3. DATES COVERED 
  01-10-2007 to 30-11-2009  

4. TITLE AND SUBTITLE 
Development of Elastoacoustic Integral-Equation Solver: Surface and
Volumetric Integral Equations 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
MONOPOLE RESEARCH,739 Calle Sequoia,Thousand Oaks,CA,91360 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

80 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Contents

1 Introduction 1

2 Summary of the integral equations in elasticity 1

3 Differential equations in elasticity 7
3.1 Second-order differential equations for isotropic media . . . . . . . . . . . . 7
3.2 Second-order differential equations for anisotropic media . . . . . . . . . . . 8
3.3 First-order differential equations for isotropic media . . . . . . . . . . . . . 9
3.4 An alternative form of differential equations (for isotropic media) in the L-S

form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Green functions in elasticity 14

5 Surface integral equations 18
5.1 Derivation of surface integral equations for scattering problems . . . . . . . 18
5.2 Basis functions and discretization of surface integral equations . . . . . . . 20
5.3 Structure of the stiffness matrix and computation of matrix elements . . . . 21

6 Volumetric integral equations 23
6.1 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 Piecewise linear scalar basis functions . . . . . . . . . . . . . . . . . 23
6.1.2 Piecewise linear vector basis functions . . . . . . . . . . . . . . . . . 26

6.2 Integral equations in first-order formulation . . . . . . . . . . . . . . . . . . 26
6.2.1 Matrix elements: general expressions . . . . . . . . . . . . . . . . . . 31
6.2.2 Matrix elements with composite linear basis functions . . . . . . . . 32
6.2.3 Matrix elements with elementary linear basis functions . . . . . . . . 33
6.2.4 Summary of the expressions for the “basic” matrix elements . . . . . 34

6.3 Integral equations in second-order formulation . . . . . . . . . . . . . . . . . 35
6.3.1 Matrix elements for the “basic” form of second-order equations: gen-

eral expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.2 Matrix elements for the “high-contrast” form of second-order equa-

tions: general expressions . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.3 Matrix elements with composite linear basis functions . . . . . . . . 42
6.3.4 Matrix elements with elementary linear basis functions . . . . . . . . 43
6.3.5 Summary of the expressions for the “basic” matrix elements . . . . . 49

6.4 Representation of matrix elements . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.1 Matrix elements for second-order equations . . . . . . . . . . . . . . 51

6.5 Tetrahedron-tetrahedron contributions to stiffness matrix elements . . . . . 54
6.6 Construction of the stiffness matrix . . . . . . . . . . . . . . . . . . . . . . . 55

7 Implementation of the volumentric integral-equations code for elasticity 59
7.1 The code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

i



8 Summary of the developments in formulation and implementation of in-
tegral equations for elasticity 74

References 76

ii



List of Figures

1 A schematic representation of regions Ω and interfaces S appearing in integral
equations 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 A schematic representation of coupled integral equations: a volume integral
equation for the displacement field u in the inhomogeneous region Ω and a
surface integral equation for the displacement and traction fields, u and t,
on the boundary of the homogeneous material region Ωm embedded in Ω. . 6

3 Schematics of construction of matrix blocks. Data are marked with ovals,
the remaining entries are routines called in the code. . . . . . . . . . . . . . 62

iii



1 Introduction

We give below a rather complete account of the integral-equation formulations as they are
being implemented in our solver for elasticity problems.

We start, in Sec. 3, with a discussion of several equivalent forms of the Lamé differen-
tial equation in elasticity, including also its first-order representation as a set of coupled
equations for the displacement and the stress tensor. In addition, we derive forms of the
differential equations with separated terms describing solution in the “background medium”
(such as air) and interaction terms describing effects of the deviations of the medium prop-
erties from those of the background material.

Next, we discuss (in Sec. 4) the Green functions associated with the Lamé equation for
the displacement field. In particular, we obtain there a form of the Green function which
explicitly exhibits a nonsingular behavior of its dyadic-derivative part, which facilitates
discretization of the resulting integral equations.

In the following Sections, 5 and 6, we are concerned with integral-equation formulations
in elasticity, in three cases: (A) purely surface (boundary-element) equations, (B) purely
volumetric (Lippmann-Schwinger, or L-S) equations, and (C) a coupled system of volume
and surface equations. The last of these is a novel approach we developed, mostly in order
to be able to efficiently model geometry components – in our case, the middle and inner
ear – characterized by small sizes and intricate surfaces, and embedded in a larger volume
of an inhomogenous material.

2 Summary of the integral equations in elasticity

We briefly the describe here the three considered types of the integral equations, and then
list the genral forms of the equations themselves.

(A) Surface integral equations. The surface integral equations – or boundary integral
equations, BIEs – are applicable to piecewise homogeneous materials, and provide solutions
for the displacement and traction fields defined on interfaces separating different material
regions. Fields in the individual regions are described in terms of the appropriate Green
functions for elastic materials. We envisage using this type of equations in several situations,
such as

1. Modeling of man-made objects of possibly complex geometrical shapes, but consisting
of only few homogeneous materials.

2. Solution of the auxiliary surface problems arising in solution of the volumetric integral
equations for materials characterized by large-contrast discontinuities in the material
properties (we return to this problem below).

3. More generally, verification and checks of the solutions obtained with the volumetric-
equations code in the case of piecewise homogeneous materials.

1



(B) Volumetric integral equations. Volumetric integral equations, on the other hand,
can be used for inhomogeneous media, with (generally) different material properties as-
signed to the individual tetrahedra into which the volume has been discretized. We use
here Lippmann-Schwinger equations with the Green function associated with the infinite
(unbounded) background medium – in our case, air.

We consider two types of volumetric integral equations:

(i) Equations derived from differential equations in their first-order form. In this case
the unknowns in the integral equations are the displacement and stress tensor fields
defined in the considered volume.

(ii) Equations derived from differential equations in their second-order form. In this for-
mulation the unknowns are only the components of the displacement field.

In both cases we discretize the integral equations in terms of piecewise linear basis
functions. Each such basis function is associated with the vertices of the tetrahedral mesh,
and supported on sets of tetrahedra adjacent to the considered vertex.

In designing our integral-equation formulation we pay a particular attention to the
problem of a possible discontinuous behavior of the material properties, which is, clearly,
always present when considering a mechanically dense (biological) material immersed in air.

Such problems are known to cause difficulties in solving integral equations in acoustics
and, in that case, we have devised an approach [1] in which the original system of equations
is reformulated in terms of a surface problem associated with the contrast interface(s)
(characterized by a large ratio of densities of the adjacent materials) and a “residual”
volumetric problem. The analogous problem in elasticity appears to be considerably more
complex, and we have put much effort into deriving appropriate forms of integral equations,
in both first- and second-order formulations ((i) and (ii) above).

(C) Coupled volume-surface integral equations. A coupled system of volumetric and
surface integral equations arises, e.g., when a homogeneous material region is embedded, as
an inclusion, in an inhomogeneous material. We briefly summarize the structure of such a
system of equations below.

General forms of the integral equations. We give below formulae for the systems of
integral equations used in this Report. The derivations are given and properties of these
equations are discussed in detail in Sections 5 and 6.

(A) Surface integral equations. We first present the general form of the surface in-
tegral equations for a set of homogenous regions Ωm separated by interfaces; one of these
regions, Ω0, is the unbounded background medium. The displacement and traction fields
are assumed to be continuous across the interfaces.

The resulting system of integral equations simply consists of two equations per interface
(oriented surface) Smn separating the regions Ωm (on the negative side of the interface) and

2



Ωn (on its positive side),

1
2 u(r) +

∫
Smn

d2r′
[
ΓT

m(t, r′) · u(r′) +GT
m(r, r′) · t(r′)

]
−

∑
S

im
∈∂Ωm

i�=n

∫
Sim

d2r′
[
ΓT

m(t, r′) · u(r′) +GT
m(r, r′) · t(r′)

]
= δm0 uin(r) for r ∈ Smn , (2.1a)

1
2 u(r) −

∫
Smn

d2r′
[
ΓT

n (t, r′) · u(r′) +GT
n (r, r′) · t(r′)

]
+

∑
S

nj
∈∂Ωn

j �=m

∫
Snj

d2r′
[
ΓT

n (t, r′) · u(r′) +GT
n (r, r′) · t(r′)

]
= δn0 uin(r) for r ∈ Smn . (2.1b)

With reference to Fig. 1, Eq.(2.1a) represents contributions to the displacement field u on
the interface Smn due to the displacement and traction fields u and t on the same interface
(the first integral) and on other interfaces, Sim, forming boundaries of the region Ωm with
other regions Ωi, i �= n. These intervals involve Green functions Gm and Γm (defined by
Eqs. (4.20) and (5.4) in Sec. 5.1), describing propagation of the fields in the region Ωm.
Similarly, Eq.(2.1b) represents contributions to the field u on the interface Smn due to
the fields on the boundaries of the other region, Ωn, adjacent to the interface. The r.h.s.s
of Eqs. (2.1) are the incident fields due to distant sources in the region Ω0 (hence the
delta-functions δm0 and δn0).

Figure 1: A schematic representation of regions Ω and interfaces S appearing in integral
equations 2.1.

(B) Volumetric integral equations. We obtained our volumetric equations are the
Lippmann-Schwinger (L-S) equations, describing the elastic fields as propagating in the
background medium (characterized by some density ρ0 and Lamé coefficients λ0 and μ0),
modified by the presence of the actual medium with material parameters ρ, λ, and μ. The
interaction of the elastic wave with the medium may be described in many equivalent ways,

3



resulting in various forms of the L-S equation. Our forms of these equations are not the
conventionally used ones, as we took special care to ensure their favorable properties in
problems involving large density contrasts.

(B i) Equations in the “first-order” form. In this formulation, derived from the
Lamé equation in its first-order form, the unknowns are the velocity vi := −i k ui (where
k is the wave number in the background medium), the pressure p := − 1

3 τkk, and the
symmetric traceless part σij of the stress tensor τ ij . The equations involve the Green
function g(r) = exp(ikr)/(4πr) of the Helmholtz equation in the background medium, as
well as its derivatives,

gmn(r) :=
(

1
3 δmn k

2 + ∂m∂n

)
g(r) . (2.2)

The obtained system of integral equations, Eqs. (6.35), is then

ρ(r)
ρ0

vi(r) +
∫

d3r′
(
∂i∂m g(r − r′)

) (ρ(r′)
ρ0

− 1
)
vm(r′)

+
1
k2
∂m

[
μ(r)
λ0

(
∂i vm(r) + ∂m vi(r)

)]
+

1
k2

∫
d3r′

(
∂i gmn(r − r′)

) 2μ(r′)
λ0

∂′m vn(r′)

+
i k
λ0

∫
d3r′

(
∂i g(r − r′)

) (
ϕ(r′) − 1

)
p(r′)

= vin
i (r) ,

p(r) − k2

∫
d3r′ g(r − r′)

(
ϕ(r′) − 1

)
p(r′)

+
2i
3k

μ(r)
λ0

∂m vm(r) +
i
k

∫
d3r′ gmn(r − r′)

2μ(r′)
λ0

∂′m vn(r′)

= pin(r) ,

σij(r) −
i
k

μ(r)
λ0

[
∂i vj(r) + ∂j vi(r) − 2

3 δij ∂m vm(r)
]

= σin
ij (r) ,

(2.3)

with a dimensionless material parameter

ϕ =
λ0

λ+ 2
3μ

. (2.4)

4



(B ii) Equation in the “second-order” form. In this case we have only a single
equation Eq.(6.51) for the three-component displacement field u,

ui(r) − k−2 ∂j

[(
1 − ξλ(r)

)
δij∂kuk(r) − ξμ(r)

(
∂iuj(r) + ∂jui(r)

)]
− k−2

(
∂j

ρ0

ρ(r)

)
[
ηλ(r) δij ∂kuk(r) + ημ(r)

(
∂iuj(r) + ∂jui(r)

)]
− k−2

∫
d3r′ ∂i ∂l ∂j g(r − r′)[(

1 − ξλ(r′)) δlj ∂
′
kuk(r

′) − ξμ(r′)
(
∂′luj(r

′) + ∂′jul(r
′)
)]

− k−2

∫
d3r′ ∂i ∂l g(r − r′)

(
∂′j

ρ0

ρ(r′)

)
[
ηλ(r′) δlj ∂

′
kuk(r

′) + ημ(r′)
(
∂′luj(r

′) + ∂′jul(r
′)
)]

= uin
i (r) ,

(2.5)

with the auxiliary material-dependent coefficients defined as

ξλ =
ρ0

ρ

λ

λ0

, ξμ =
ρ0

ρ

μ

λ0

, ηλ =
λ

λ0

, ημ =
μ

λ0

. (2.6)

Properties of the integral equations in high-contrast problems. The volumetric
integral equations (2.3) and (2.5) have quite different (although equivalent) forms; they
share, however, common features, which become relevant in problems involving large con-
trast. Such cases, in our applications, are characterized by large ratios of material density
and the Lamé parameter λ values in the considered material and in the background medium,
with moderate values of the wave propagation speed, i.e.,

ρ

ρ0

∼ λ

λ0

� 1 . (2.7)

In this limit only some terms in the integral equations are dominant and, moreover, they
represent contributions of interfaces at which there occur large jumps in the parameters
ρ and λ. This structure of the equations facilitates their discretization and solution in
high-contrast problems.

(C) Coupled volumetric and surface integral equations. A simple example of a
system involving both volumetric and surface fields is visualized in Fig. 2. In this case
surface fields u and t are defined on the boundary ∂Ωm of a homogeneous region Ωm

embedded in an inhomogeneous region Ω, supporting the volumetric field u.

5



Figure 2: A schematic representation of coupled integral equations: a volume integral equa-
tion for the displacement field u in the inhomogeneous region Ω and a surface integral
equation for the displacement and traction fields, u and t, on the boundary of the homoge-
neous material region Ωm embedded in Ω.

In notation similar to that in Eqs. (2.1), the resulting coupled integral equations have
then the general form

u(r) −
∫

Ω
d3r′G(r − r′)S(u(r′))

−
∫

∂Ωm

d2r′
[
ΓT(t, r′) · u(r′) +GT(r, r′) · t(r′)

]
= uin(r) for r ∈ Ω , (2.8a)

1
2 u(r) −

∫
∂Ωm

d2r′
[
ΓT

m(t, r′) · u(r′) +GT
m(r, r′) · t(r′)

]
= 0 for r ∈ ∂Ωm , (2.8b)

1
2 u(r) +

∫
∂Ωm

d2r′
[
ΓT(t, r′) · u(r′) +GT(r, r′) · t(r′)

]
−
∫

Ω
d3r′G(r − r′)S(u(r′))

= uin(r) for r ∈ ∂Ωm , (2.8c)

where S(u(r)) is a functional of the displacement field, representing a volumetric source,
whose specific form depends on the implementation of the volumetric (Lippmann-Schwinger)
equations. The Green functions labeled with the index m refer to the material of the region
Ωm, while those without the label are the background-medium Green functions.

6



3 Differential equations in elasticity

3.1 Second-order differential equations for isotropic media

General Lamé equation. From the frequency-domain elasticity equation for the dis-
placement field u(r),

ω2 ρ ui + ∂j τ ij = 0 , (3.1)

the constitutive relation
τ ij = Cijkl εkl , (3.2)

and the definition of the strain tensor,

εij = 1
2 (∂i uj + ∂j ui) , (3.3)

one obtains, upon setting

Cijkl = λ δij δkl + μ (δik δjl + δil δjk) , (3.4)

the basic form of the Lamé equation

ω2 ρ ui + ∂i

(
λ ∂j uj

)
+ ∂j

[
μ
(
∂i uj + ∂j ui

)]
= 0 . (3.5)

The above equation is equivalent to the set of two first order equations, Eq.(3.1) and the
definition of the stress tensor in terms of the displacement,

τ ij = λ δij ∂k uk + μ
(
∂i uj + ∂j ui

)
. (3.6)

In order to derive the L-S equation for elasticity, we now represent Eq.(3.5) in a form
exhibiting the background-medium operator and interaction terms. The background mate-
rial is characterized by the density ρ0 and the Lamé coefficients λ0 and μ0 ≡ 0, such that
the wave vector k in that medium is

k2 =
ρ0

λ0

ω2 . (3.7)

In terms of k, the basic form of the Lamé equation (3.5) is

k2 ρ

ρ0

ui + ∂i

(
λ

λ0

∂j uj

)
+ ∂j

[
μ

λ0

(
∂i uj + ∂j ui

)]
= 0 . (3.8)

7



Lamé equation in L-S form. We will use three alternative forms of the differential
equation, equivalent to Eq.(3.8),(

∂i∂j + δij k
2
)
uj − k2

(
1 − ρ

ρ0

)
ui − ∂i

[(
1 − λ

λ0

)
∂juj

]
+ ∂j

[
μ

λ0

(
∂iuj + ∂jui

)]
= 0 , (3.9a)(

∂i∂j + δij k
2
)
uj − ∂i

[(
1 − ρ0 λ

ρλ0

)
∂juj

]
+
ρ0

ρ
∂j

[
μ

λ0

(
∂iuj + ∂jui

)]
−
(
∂i

ρ0

ρ

)
λ

λ0

∂juj = 0 , (3.9b)(
∂i∂j + δij k

2
)
uj − ∂j

[(
1 − ξλ

)
δij ∂lul − ξμ

(
∂iuj + ∂jui

)]
−
(
∂j

ρ0

ρ

)[
ηλ δij ∂lul + ημ

(
∂iuj + ∂jui

)]
= 0 , (3.9c)

where the dimensionless parameters ξλ, ξμ, ηλ, and ημ are defined as

ξλ =
ρ0

ρ

λ

λ0

, ξμ =
ρ0

ρ

μ

λ0

. (3.10)

and
ηλ =

λ

λ0

, ημ =
μ

λ0

. (3.11)

In air we have, by definition, ξλ = ηλ = 1 and ξμ = ημ = 0, while in typical biological media
ρ0/ρ � 1, ηλ � 1, and ημ � 1, but the coefficients ξλ and ξμ (which are proportional to
the refraction coefficients squared) remain of order 1.

The heuristics behind Eq.(3.9b) involves representing the pressure in terms of the dis-
placement, p = −λ∂iui, “removing” one differentiation, and adding the shear term with the
Lamé coefficient μ. An important feature of Eq.(3.9b) is the last term with the manifestly
appearing gradient of ρ0/ρ.

Similar remarks apply to Eq.(3.9c), in which, additionally, the terms proportional to ξλ

and ξμ combine to form expressions proportional to the stress tensor (see Eq.(6.52) below).

3.2 Second-order differential equations for anisotropic media

In the following we will also consider equations for anisotropic media; the main reason
for this is that we will impose kinematic constraints in elastic shell theories by means of
anisotropic material properties. In addition, we may need to model anisotropic shells, such
as the basilar membrane.

For an anisotropic medium the elasticity tensor C of Eq.(3.2) is a general fourth rank
tensor satisfying the symmetry relations

Cijkl = Cjikl , Cijkl = Cijlk , Cijkl = Cklij , (3.12)

and the condition that the quadratic form

W := Cijkl εij εkl (3.13)

8



is positive-definite. The symmetry properties (3.12) imply that the tensor C involves 21
independent material parameters.

With a general elasticity tensor C, the frequency-domain form of Eq.(3.1) becomes, in
analogy to Eq.(3.8),

k2 ρ

ρ0

ui +
1

2λ0

∂j

[
Cijkl

(
∂k ul + ∂l uk

)]
= 0 . (3.14)

3.3 First-order differential equations for isotropic media

General first-order equations. The second-order Lamé equation (3.8) can be then
written as a system of two first-order equations

k2 ρ

ρ0

ui +
1
λ0

∂j τ ij = 0 , (3.15a)

τ ij − λ δij ∂k uk − μ
(
∂i uj + ∂j ui

)
= 0 , (3.15b)

containing no derivatives of material parameters.
As a matter of notation, we define the “velocity” v as

v = − i k u (3.16)

and rewrite the above equations in the form

i k
ρ

ρ0

vi +
1
λ0

∂j τ ij = 0 , (3.17a)

i k τ ij + λ δij ∂k vk + μ
(
∂i vj + ∂j vi

)
= 0 . (3.17b)

Next, we try to represent these equations in such a form that the material parameters do
not appear as factors of the differential operators. At the same time, it should be possible
to split those equations into terms describing fields in the background medium (ρ = ρ0,
λ = λ0, μ = 0) and interaction terms; this structure is required in order to derive the L-S
equations.

A straightforward decomposition into background and interaction terms. We
represent now Eqs. (3.17) as

i k vi +
1
λ0

∂j τ ij + i k
(
ρ

ρ0

− 1
)
vi = 0 , (3.18a)

i k
1
λ0

σij + δij ∂k vk + δij

(
λ

λ0

− 1
)
∂k vk +

μ

λ0

(
∂i vj + ∂j vi

)
= 0 (3.18b)

or
KF ≡ (D + V)F = 0 (3.19)

with ⎡⎢⎣ Dvv
ik Dvω

ikl

Dωv
ijk Dωω

ijkl

⎤⎥⎦ =

⎡⎢⎣ i k δik δik ∂l

δij ∂k i k δik δjl

⎤⎥⎦ , (3.20)

9



⎡⎢⎣Vvv
ik Vvω

ikl

Vωv
ijk Vωω

ijkl

⎤⎥⎦ =

⎡⎢⎣ i k δik (λ/λ0 − 1) 0

δij (λ/λ0 − 1) ∂k + μ/λ0 (δik ∂j + δjk ∂i) 0

⎤⎥⎦ , (3.21)

and ⎡⎢⎣Fv
i

Fω
ij

⎤⎥⎦ =

⎡⎢⎣ vi

ωij

⎤⎥⎦ ≡

⎡⎢⎣ vi

σij/λ0

⎤⎥⎦ (3.22)

The Green function corresponding to the background-medium differential operator (3.20)
is defined by the equation

DG(r) = −I δ2(r) , (3.23)

where I is the unit tensor (we discuss more general Green functions for elastic media in
Sec. 4).

By taking the Fourier transform of Eq.(3.23) we can obtain an algebraic equation for
the Fourier representation

G(r) =
∫

d3q

(2π)3
eiq·r G̃(q) (3.24)

of the Green function. It has the form⎡⎢⎣ i k δik − i δik ql

− i δij qk i k δik δjl

⎤⎥⎦
⎡⎢⎣ G̃vv

km G̃vω

kmn

G̃ωv

klm G̃ωω

klmn

⎤⎥⎦ (q) = −

⎡⎢⎣ δim 0

0 1
2 (δim δjn + δin δjm)

⎤⎥⎦ . (3.25)

Separation of dilatational and distortional components. In order to disentangle the
dependences of equations on the Lamé coefficients λ and μ, we separate the stress tensors
into its volumetric (dilatational) part, related to the pressure, and distortional (deviatoric)
part, related to shear deformations. We decompose the stress tensor τ as

τ ij = − δij p+ σij , (3.26)

where
p := − 1

3 tr τ ≡ −1
3 τkk (3.27)

is the pressure. The tensor σ is then, by construction, symmetric and traceless.
By substituting the decomposition (3.26) in Eqs. (3.17) we find

i k
ρ

ρ0

vi −
1
λ0

∂i p+
1
λ0

∂j σij = 0 , (3.28a)

i k p− (λ+ 2
3μ) ∂k vk = 0 , (3.28b)

i k σij + μ (∂i vj + ∂j vi − 2
3 δij ∂k vk) = 0 ; (3.28c)

Eq.(3.28b) is obtained by taking the trace of Eq.(3.17b). The desired form of the differential
equations is then simply

i k
ρ

ρ0

vi −
1
λ0

∂i p+
1
λ0

∂j σij = 0 , (3.29a)

i k ϕp − λ0 ∂k vk = 0 , (3.29b)
i k σij + μ (∂i vj + ∂j vi − 2

3 δij ∂k vk) = 0 , (3.29c)

10



with a dimensionless parameter

ϕ =
λ0

λ+ 2
3μ

. (3.30)

We did not eliminate the Lamé coefficient μ multiplying the derivatives in Eq.(3.29c); had
we divided that equation by μ, the background medium limit μ→ 0 would not exist.

Equations in the L-S form. In the following we will represent Eqs. (3.29) in the matrix
operator form as

KF = 0 , (3.31)

where the solution (field) vector F is defined as

F =
[
vi p σij

]T
(3.32)

and the action of the operator K, say, F ′ = KF , is represented as⎡⎢⎢⎢⎢⎣
v′i

p′

σ′ij

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Kvv

ik Kvp
i Kvσ

ikl

Kpv
k Kpp Kpσ

kl

Kσv
ijk Kσp

ij Kσσ
ijkl

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
vk

p

σkl

⎤⎥⎥⎥⎥⎦ . (3.33)

The above equation illustrates our indexing conventions: elements of a set of functions
(v, p, σ) are assigned three possible sets of indices: (i, , ij) or (k, , kl) or (m, ,mn).

In order to derive the L-S equations, we split the operator K as K = D + V , where
D describes the fields in the background medium, and V the remaining interactions. We
then define the Green function G as the negative of the inverse of the operator D, or, more
physically, as a field generated by a point-like “unit” source, i.e., a solution of the equation

DG(r) = −I δ2(r) , (3.34)

where I is an appropriately defined “unit” tensor. In our case we have to keep in mind
that the symmetric traceless tensor field σ has to be generated by a source satisfying those
constraints; hence the tensor I must be symmetric and traceless in the indices associated
with the field σ.

In our case the system of equations (3.34) for the Green function takes the form⎡⎢⎢⎢⎢⎣
i k δik − ∂i δik ∂l

− ∂k i k 0

0 0 i k δik δjl

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Gvv

km Gvp
k Gvσ

kmn

Gpv
m Gpp Gpσ

mn

Gσv
klm Gσp

kl Gσσ
klmn

⎤⎥⎥⎥⎥⎦ (r)

= −

⎡⎢⎢⎢⎢⎣
δim 0 0

0 1 0

0 0 Δijmn

⎤⎥⎥⎥⎥⎦ δ3(r) ,
(3.35)

11



where the tensor
Δijmn := 1

2

(
δim δjn + δin δjm − 2

3 δij δmn

)
(3.36)

defines a symmetric and traceless source of the field σ. It is also an idempotent (or projec-
tion) operator,

Δijkl Δklmn = Δijmn , (3.37)

which follows immediately from the tracelessness property,

Δiikl = 0 = Δijkk , (3.38)

and implies
I2 = I. (3.39)

Having specified the background medium operator D (Eq.(3.35)), we define the inter-
action term as V := K − D. From the system of equations (3.29), with Eq.(3.29c) written
as

i k σij + 2μΔijlk ∂l vk = 0 , (3.40)

we find

V =

⎡⎢⎢⎢⎢⎣
Vvv

ik Vvp
i Vvσ

ikl

Vpv
k Vpp Vpσ

kl

Vσv
ijk Vσp

ij Vσσ
ijkl

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
i k (ρ− 1) δik 0 0

0 i k (ϕ− 1) 0

2μΔijlk ∂l 0 0

⎤⎥⎥⎥⎥⎦ . (3.41)

In order to simplify the notation, we have temporarily set ρ0 = λ0 = 1; these parameters
will be restored in the final form of the integral equations.

We note that the coupling between the “acoustic fields” (v and p) and the “shear field”
σ is given here by a differential operator proportional to μ. It is also important to note
that the Green function G and the operator (3.41) satisfy, by construction, the projection
conditions

G I = G = I G (3.42)

and
V I = V = I V . (3.43)

3.4 An alternative form of differential equations (for isotropic media) in
the L-S form

We derive here yet another form of differential equations, which may be well suited as
a basis of the L-S equation for high contrast problems. As a guideline we will use the
behavior of various physical quantities at material interfaces at which the density (and
other parameters) are discontinuous: some of the quantities are continuous across such
interfaces, and some not.

12



We start with the Lamé equation in the first-order, Eq.(3.8), and temporarily set ρ0 =
λ0 = 1,

k2 ρ ui + ∂j τ ij = 0 , (3.44a)

τ ij − λ δij ∂k uk − μ
(
∂i uj + ∂j ui

)
= 0 . (3.44b)

On this basis, we will first obtain, in a very elementary way, two complementary equations,
one for the pressure and other for the displacement, in both of which the discontinuity of
material parameters is “isolated” in a similar way. We will then try to generalize those
equations to the case of elasticity.

Acoustics. For acoustics (μ = 0), Eqs. (3.44) become

k2 ρ ui + ∂j τ ij = 0 , (3.45a)

τ ij − λ δij ∂l ul = 0 . (3.45b)

By representing the stress tensor in terms of the pressure p,

τ ij = − δij p , (3.46)

one obtains a system of coupled first-order equations

k2 ρ ui − ∂i p = 0 , (3.47a)
p+ λ∂l ul = 0 . (3.47b)

Acoustics: L-S form of equations for the pressure. After dividing Eq.(3.47a) by ρ,
taking its divergence, and eliminating the displacement, we obtain the usual second-order
equation for pressure,

k2 p+ λ∂i

(
1
ρ
∂i p

)
= 0 , (3.48)

where the expression in the parentheses is continuous. An equivalent L-S form of the last
equation is

(
∂i∂i + k2

)(1
ρ
p

)
− k2

(
1
ρ
− 1
λ

)
p− ∂i

[(
∂i

1
ρ

)
p

]
= 0 . (3.49)

We note two important features of this equation:

1. The equation is not really for the pressure p (which is continuous) but for p/ρ (which
is discontinuous).

2. The potentially singular gradient of 1/ρ is multiplied by p (which is continuous).

13



Acoustics: L-S form of equations for the displacement. By taking the gradient of
Eq.(3.47b) and eliminating the pressure p, we find an alternative second-order equation for
the displacement, equivalent to the usual Lamé equation with μ = 0,

k2 ui +
1
ρ
∂i

(
λ∂l ul

)
= 0 . (3.50)

Here, again, the expression in the parentheses is continuous. An equivalent L-S form of the
last equation, analogous to Eq.(3.49), is then(

∂i∂j + δij k
2
) (
λuj

)
− k2

(
λ− ρ)ui − ∂i

[(
∂j λ
)
uj

]
= 0 . (3.51)

Evidently, Eq.(3.51) is (apart from the different tensor structure) analogous to Eq.(3.49),
under the replacements

ρ −→ 1
λ
, λ −→ 1

ρ
. (3.52)

Eq.(3.51) has now properties analogous to those of of Eq.(3.49):

1. The unknown in the equation is not for the displacement ui (which is continuous
across interfaces) but rather λui (which is not continuous).

2. The possibly singular gradient of λ is multiplied by uj, which is continuous.

Elasticity. There is, of course, no exact counterpart of Eq.(3.51) in the case of μ �= 0.
However, a closely analogous equation is(

∂i∂j + δij k
2
) [

(λ+ 2μ)uj

]
− k2 (λ+ 2μ− ρ)ui − ∂i

[(
∂j λ
)
uj

]
− ∂j

[
2 ∂i (μuj) − μ

(
∂i uj + ∂j ui

)]
= 0 .

(3.53)

The first three terms in this expression have the same form as the corresponding terms in
Eq.(3.51), and the Lamé coefficient μ appears only in the last term.

4 Green functions in elasticity

As an initial step in formulating surface (boundary) integral equations we discuss here
the Green functions of the Lameé equation for the displacement field in a general elastic
medium. This form of the Green function will be used in the surface integral equations
(Sec. 5).

On the other hand, in the Lippmann-Schwinger integral equations we will only need the
Green function for the background medium – in our case, air.

For completeness, we give here a short derivation of the formulae for the Green function.
We then represent it in the form most suitable for discretization of the integral equations,
avoiding potential difficulties associated with its singular short-distance behavior.

14



The Green function of the Lamé equation. The Green function of Eq.(3.1) – a
second-rank tensor – is defined by the equation[

ω2 ρ δij + ∂m (Cimkj ∂k)
]
Gjn(r) = − δin δ

3(r) (4.1)

and the radiation boundary conditions at infinity. Physically, the function Gjn(r) is the
displacement in the direction j generated by a point-like force located at the origin and
acting in the direction n.

In the case of an infinite homogeneous medium the explicit form of the Green function
(4.1) is known [2, 3], and can be derived as follows:

We represent the Green function G in terms of its Fourier transform G̃,

Gjn(r) =
∫

d3q

(2π)3
eiq·r G̃jn(q)

=
∫

d3q

(2π)3
eiq·r [f0(q) δjn + f2(q) qj qn

]
,

(4.2)

where the Ansatz for G̃ is based on the assumption of the medium isotropy. By substituting
Eq.(4.2) in Eq.(4.1) and solving for f0 and f2 we find

G̃ij(q) =
1
μ

(
δij −

qi qj

k2
S

)
1

q2 − k2
S

+
1
μk2

S

qi qj

q2 − k2
C

(4.3)

with
k2

C = ω2 ρ

λ+ 2μ
, k2

S = ω2 ρ

μ
. (4.4)

The two wave-numbers,
kC =

ω

cC
, kS =

ω

cS
, (4.5)

correspond to two sound speeds,

cC =

√
λ+ 2μ
ρ

, cS =
√
μ

ρ
, (4.6)

for longitudinal (compressional) and transverse (shear) waves.
In the acoustics limit (μ → 0) (4.3) becomes

G̃ij(q)μ=0 = − 1
λk2

C

(
δij −

qi qj

q2 − k2
C

)
. (4.7)

The coordinate-space Green functions are then

Gij(r) =
1
μ

(
δij +

1
k2

S

∂i ∂j

)
gS(r) − 1

μk2
S

∂i ∂j gC(r) , (4.8a)

and

Gij(r)μ=0 = − 1
λk2

C

(
δij δ

3(r) + ∂i ∂j gC(r)
)
≡ − 1

ω2 ρ

(
δij δ

3(r) + ∂i ∂j gC(r)
)
, (4.8b)

15



where

gC(r) =
eikCr

4πr
≡ ikC

4π
h(1)

0 (kCr) , gS(r) =
eikSr

4πr
≡ ikS

4π
h(1)

0 (kSr) , (4.9)

and the spherical Hankel functions of the first kind (Ref. [4], Ch. 10) are

h(1)
0 (z) = − i

z
eiz , h(1)

1 (z) = − i
z2

(1 − iz) eiz , h(1)
2 (z) = − i

z3
(3 − 3iz − z2) eiz . (4.10)

By using relations between the Hankel functions and their derivatives, we find

1
k2
∂i ∂j g(r) ≡

1
k2

{
δij

g′(r)
r

+ r̂i r̂j

(
g′′(r) − g′(r)

r

)}
=

ik
12π

{
−δij

[
h(1)

0 (kr) + h(1)
2 (kr)

]
+ 3 r̂i r̂j h(1)

2 (kr)
} (4.11)

and (
δij +

1
k2
∂i ∂j

)
g(r) =

ik
12π

{
δij

[
2 h(1)

0 (kr) − h(1)
2 (kr)

]
+ 3 r̂i r̂j h(1)

2 (kr)
}
. (4.12)

Hence,

Gij(r) =
i kC

12π (λ+ 2μ)

[
δij h(1)

0 (kCr) + (δij − 3 r̂i r̂j) h(1)
2 (kCr)

]
− i kS

12π μ

[
−2 δij h(1)

0 (kSr) + (δij − 3 r̂i r̂j) h(1)
2 (kSr)

]
.

(4.13)

In the limit μ→ 0 Eq.(4.13) becomes

Gij(r)μ=0 =
i kC

12π λ

[
δij h(1)

0 (kCr) + (δij − 3 r̂i r̂j) h(1)
2 (kCr)

]
− 1
λk2

C

δij δ
3(r) ,

(4.14)

i.e., the shear-wave contribution reduces to a delta-function term.

A dyadic form of the the Green function. The Green function (4.8a) or (4.13) may
be represented in a equivalent form involving dyadic derivatives. We first express the Green
function and its derivatives in terms of the spherical Hankel functions of the first kind,
(Ref. [4], Ch. 10),

g(r) ≡ eikr

4π
=

i
4π

h(1)
0 (kr) ,

g′(r) =
ik
4π

h(1)
0

′
(kr) ,

g′′(r) =
ik2

4π
h(1)

0

′′
(kr) ;

(4.15)

16



these expressions apply to both the Green functions (4.9). Hence,

∇r ⊗∇r g(r) = Î
g′(r)
r

− r̂⊗ r̂
[
g′′(r) − g′(r)

r

]
=

ik2

4π

{
Î

h(1)
0

′
(kr)
kr

− r̂⊗ r̂
[
h(1)

0

′′
(kr) − h(1)

0

′
(kr)
kr

]}
.

(4.16)

By using relations between the Hankel functions and their derivatives,

h(1)
0

′′
(z) = h(1)

2 (z) − h(1)
1 (z)
z

= h(1)
2 (z) +

h(1)
0

′
(z)
z

,

h(1)
2 (z) = −h(1)

0 (z) +
3
z
h(1)

1 (z) = −h(1)
0 (z) − 3

z
h(1)

0

′
(z)

= − 4π
ik2

[
k2g(r) + 3

g′(r)
r

]
,

h(1)
2 (z) + h(1)

0 (z) =
3
z
h(1)

1 (z) = − 4π
ik2

3g′(r)
r

,

h(1)
2 (z) − 2h(1)

0 (z) = h(1)
0 (z) +

3
z
h(1)

1 (z) = −3
4π
ik2

[
k2g(r) +

g′(r)
r

]
,

(4.17)

we obtain

∇r ⊗∇r g(r) =
ik2

4π

[
h(1)

0

′
(kr)
kr

− r̂⊗ r̂h(1)
2 (kr)

]
,

r̂⊗ r̂h(1)
2 (kr) =

4π
ik2

[
Î
g′(r)
r

−∇r ⊗∇r g(r)
]
,

(Î − 3 r̂⊗ r̂) h(1)
2 (kr) = h(1)

2 (kr) − 3
4π
ik2

[
Î
g′(r)
r

−∇r ⊗∇r g(r)
]

=
4π
ik2

[
−k2g(r) − 6

g′(r)
r

+ ∇r ⊗∇r g(r)
]

h(1)
0 (kr) + (Î − 3 r̂⊗ r̂) h(1)

2 (kr) =
4π
ik2

[
−6

g′(r)
r

+ 3∇r ⊗∇r g(r)
]
,

−2 h(1)
0 (kr) + (Î − 3 r̂⊗ r̂) h(1)

2 (kr) =
4π
ik2

[
−3 k2g(r) − 6

g′(r)
r

+ 3∇r ⊗∇r g(r)
]
,

(4.18)

and, finally,

G(r) =
kC

λ+ 2μ

(
−2

g′C(r)
r

+∇r ⊗∇r gC(r)
)
− kS

μ

(
−k2

S gS(r)− 2
g′S(r)
r

+∇r ⊗∇r gS(r)
)
.

(4.19)

An alternative form of the Green function: a reduced degree of singularity. In
the same dyadic notation as above, we can also represent the Green function (4.8a) in the
form

G(r) = Î C(r) + ∇r ⊗∇rD(r) , (4.20)

17



with

C(r) :=
1
μ
gS(r) , (4.21a)

D(r) :=
1
μk2

S

[
gS(r) − gC(r)

]
. (4.21b)

The above representation exhibits an important property of the Green function (4.20):
since the function D(r) of Eq.(4.21b) is regular for r → 0 (due to cancellation of the
singularities in the two Green functions), the second term of the Green function (4.20)
is also nonsingular, while, without the cancellation, it would have contained a ∼ 1/r3

singularity. The reduced degree of singularity is particularly important in the discretization
of surface integral equations (Sec. 5).

5 Surface integral equations

We discuss here briefly the form of the surface boundary equations and their discretization,
which is now being implemented in our solver.

5.1 Derivation of surface integral equations for scattering problems

Surface integral equations in elasticity can be derived from boundary-value problems in-
volving boundary conditions defined on interfaces separating homogeneous material regions
(for which unbounded-space Green functions, such a discussed in Sec. 4, are known).

The conventional procedure is to start with representation theorems expressing the fields
in a region as an integral of an appropriate Green function and the values of the fields and
(possibly) their derivatives on the boundary of the region; typically, such representations
arise from the Green theorems and their generalizations. By imposing boundary conditions
on the region-region interfaces, one can then obtain integral equations for the field values
on those interfaces.

More precisely, the above approach is known as the “direct method”. Other forms
of integral equations can be obtained by “indirect methods” by postulating expressions
(Ansätze) for the fields in terms of other sources supported on boundaries of the material
regions.

In elasticity, a convenient form of the representation theorems [2, 5] involves the dis-
placement field u(r) defined in a given domain Ω and on its boundary ∂Ω, and the traction
field t(r) expressed in terms of the stress tensor τ , and defined on the (smooth) region
boundary,

t(r) := n̂(r) · τ(r) , (5.1)

where n̂ is the exterior unit normal to ∂Ω.
In addition to the second-rank tensor Green function G (Eq.(4.20)) for the displacement

field, the representation theorems also require a third-rank tensor Green function Σ for the
stress tensor; this quantity is defined as

Σ(r) := λ∇ · G(r) + μ
[
∇G(r) +G(r)∇

]
, (5.2)

18



or, in index notation,

Σijk(r) := λ δij ∂lGlk(r) + μ
[
∂iGjk(r) + ∂j Gik(r)

]
, (5.3)

i.e., Σ is related to the displacement Green function G in the same way as the stress tensor
is related to the displacement field (Eq.(3.6)). We note that the Green function Σijk is
symmetric in its first two indices.

It is also convenient to introduce a second-rank tensor Green function Γ as a contraction
of Σ with the normal vector,

Γ(r, r′) := − n̂(r′) · Σ(r− r′); (5.4)

we note that Γ(r, r′) does not only depend on the relative distance r − r′, but rather on r
and r′ separately. In analogy to Γ(r, r′), we also write G(r, r′) ≡ G(r − r′). Actually, the
representation theorems involve the transpose Green functions, denoted by GT and ΓT.

It is of interest to note here that, since the displacement Green function (4.20) contains
only an ∼ 1/r singularity, the stress-tensor Green function Γ may contain at most ∼ 1/r2,
but not ∼ 1/r3 singularities. This fact facilitates discretization of the integral equations
and computation of the matrix elements.

With the above definitions, the basic form of the representation theorem, applicable to
a displacement field satisfying the homogeneous Lamé equation in the domain Ω ≡ Ω−, is

∫
∂Ω

d2r′
[
ΓT

Ω−(t, r′) · u(r′) +GT
Ω−(r, r′) · t(r′)

]
=

⎧⎪⎪⎨⎪⎪⎩
u(r) for r ∈ Ω− ,

1
2u(r) for r ∈ ∂Ω ,

0 for r ∈ Ω+ .

(5.5a)

In the second representation theorem the region Ω− is interchanged with its complement
Ω+ := R

3 \ Ω,

∫
∂Ω

d2r′
[
ΓT

Ω+
(t, r′) · u(r′) +GT

Ω+
(r, r′) · t(r′)

]
= −

⎧⎪⎪⎨⎪⎪⎩
0 for r ∈ Ω− ,

1
2u(r) for r ∈ ∂Ω ,

u(r) for r ∈ Ω+ .

(5.5b)

More precisely, the representation theorem (5.5b) assumes that the displacement field sat-
isfies the Lamé equation in Ω+ and the radiation boundary conditions at infinity; this fact
implies that the displacement in Eq.(5.5b) is the scattered field, rather than the total field.
It is also important to remember that the Green functions appearing in Eqs. (5.5a) and
(5.5b) correspond to different regions, Ω− ≡ Ω and Ω+. Finally, the expressions for r ∈ ∂Ω
have to be interpreted as improper integrals.

According to the general “direct method” procedure, the representation theorems (5.5)
are now supplemented with the boundary conditions on an interface of two solids, which
simply require continuity of the displacement and traction fields on the boundary ∂Ω. It is
now straightforward to obtain the set of integral equations for the unknown fields u and t

19



on the boundary ∂Ω,

1
2 u(r) −

∫
∂Ω

d2r′
[
ΓT

Ω+
(t, r′) · u(r′) +GT

Ω+
(r, r′) · t(r′)

]
= uin(r) , (5.6a)

1
2 u(r) +

∫
∂Ω

d2r′
[
ΓT

Ω−(t, r′) · u(r′) +GT
Ω−(r, r′) · t(r′)

]
= 0 ; (5.6b)

uin is here the incident field. Both equations hold at points r ∈ ∂Ω and in both equations
the unknowns are two three-dimensional vectors: the displacement and the traction fields
u and t.

The above form of surface integral equations applies to the simple case of a single domain
Ω immersed in a background medium. It can be generalized in a rather straightforward way
to the case of multiple regions (domains) separated by interfaces. The general form of the
resulting system of equations is given in Section 2, Eqs. (2.1).

5.2 Basis functions and discretization of surface integral equations

In order to solve the surface integral equations (5.5) numerically, it is necessary to make
assumptions on the discretization of the solution, i.e., on the trial basis functions, and on
the test basis functions.

In our implementation we use a discretization uniquely determined by our choice of
discretization in the volumetric equations (discussed in detail in Sec. 6). We also use,
similarly to the volumetric problem, the Galerkin discretization, i.e., identical trial and
testing basis functions.

In the volumetric problem we assume the displacement field is expanded in piecewise
linear basis functions supported on sets of tetrahedra. In the corresponding surface problem
we use, therefore, restrictions of these basis functions to the facets of the tetrahedra to
their boundary facets (triangles). The resulting surface basis functions are piecewise linear
vector basis functions describing the components of the displacement field u. By symmetry
between the displacement and traction fields in the integral equations, we assume analogous
linear basis functions for the components of t.

According to the above criteria, we specify the basis functions as follows:
For each vertex vα of the surface mesh we define three vector basis functions, denoted

ψα(r), representing displacements in the x, y, and z directions. Correspondingly, the index
α refers to the vertex and the direction, α = (vα,m), m = 1, 2, 3 (or m = x, y, z).

Each such function, ψα(r), is associated with a vertex vα and supported on a set of
triangles (facets) fα sharing that vertex. We parametrize the basis function as

ψα(r) ≡ ψvα,m(r) = em φvα
(r) , (5.7)

where em is the unit vector along the m-the axis, and φvα is a scalar basis function defined
by

φα(r) ≡ φvα
(r) =

∑
fα∈Fα

φvα, fα
(r) , (5.8)

where the sum is taken over the set Fα of all facets fα sharing the vertex vα. Further, each
of the linear functions φvα, fα

(r), supported on the facet fα, is uniquely defined by setting

20



its value to unity at r = vα and to zero at the remaining vertices of the facet. An explicit
expression is

φvα, fα
(r) =

[
1 − 1

hvα, fα

n̂vα, fα
· (r − vα)

]
χfα

(r) , (5.9)

where χfα
(r) is the characteristic function of the facet fα, n̂vα, fα

is the unit outer normal
to the facet edge opposite the vertex vα, and hvα, fα

is the facet height relative to that edge.
Components of the basis function ψα are then

ψi
α(r) ≡ ψi

vα,m(r) = δmi φvα
(r) . (5.10)

As follows from the construction, the scalar and vectorial basis functions (5.8) and (5.7)
are two-dimensional analogues (actually, restrictions) of the piecewise linear basis functions
supported on tetrahedra and used in the volumetric formulation (Secs. 6.1.1 and 6.1.2). The
advantage of this discretization scheme is that the solutions of the surface and volumetric
equations can be directly compared with one another.

5.3 Structure of the stiffness matrix and computation of matrix elements

Galerkin discretization of the integral equations (5.6) results in two types of matrix elements,

AG
αβ =

∫
Fα

d2r1

∫
Fβ

d2r2ψα(r1) ·GT(r1, r2) ·ψβ(r2) (5.11a)

and

AΓ
αβ =

∫
Fα

d2r1

∫
Fβ

d2r2ψα(r1) · ΓT(r1, r2) · ψβ(r2) , (5.11b)

with the Green functions corresponding to one of the regions in question. The integrals are
taken here over sets of facets, Fα and Fβ, sharing the vertices vα and vβ ; therefore, they
can be expressed as sums of integrals taken over pairs of facets fα and fβ.

We give now some examples of more explicit expressions for the matrix elements (5.11b).
They are still comparatively simple relative to those for the volumetric equations, discussed
in detail in Sec. 6. The procedures of simplifying the matrix elements are similar in both
cases and involve, mostly, integration by parts and using the defining equations for the
Green functions.

We consider below the more involved matrix element AΓ
αβ , in which we set α = (vα,m)

and β = (vβ , n). A contribution to this matrix element from a pair of facets fα and fβ has

21



the form

AΓ
αβ(fα, fβ) ≡ AΓ

vα,m;vβ,n(fα, fβ)

= −
∫

fα

d2r1

∫
fβ

d2r2 φvα, fα
(r1) em · ΓT(r1, r2) · en φvβ , fβ

(r2)

= −
∫

fα

d2r1

∫
fβ

d2r2 φvα, fα
(r1)Σinm(r1 − r2)ni(r2)φvβ , fβ

(r2)

= −
∫

fα

d2r1

∫
fβ

d2r2 φvα, fα
(r1)

{
λ δin ∂l Glm(r1 − r2)

+ μ
[
∂iGnm(r1 − r2) + ∂nGim(r1 − r2)

]}
ni(r2)φvβ , fβ

(r2) .

(5.12)

Further manipulations of the matrix element involve substitution of the representation of
the displacement Green function (4.20), e.g.,

Glm(r1 − r2) = δlm C(|r1 − r2|) + ∂l ∂mD(|r1 − r2|) . (5.13)

One of the resulting terms, involving the Lamé coefficient λ and the function D, becomes
then

−λ

∫
fα

d2r1

∫
fβ

d2r2 φvα, fα
(r1) ∂l ∂l ∂mD(r1 − r2)nn(r2)φvβ , fβ

(r2) . (5.14)

This expression can be further simplified by using the relation

∂l ∂lD(r) ≡ ∇2D(r) =
1

λ+ 2μ
gC(r) − 1

μ
gS(r) , (5.15)

following from Eq.(4.21b) and the defining equations for the Green functions gC and gS.
Finally, integration by parts transforms Eq.(5.14) into

λ

∫
fα

d2r1

∫
fβ

d2r2 ∂m φ
vα, fα

(r1)
[

1
λ+ 2μ

gC(r1 − r2) −
1
μ
gS(r1 − r2)

]
nn(r2)φvβ , fβ

(r2) .

(5.16)
Since the basis function φvα, fα

is linear on the facet fα, its gradient is the sum of a constant
on that facet and of linear delta-functions supported on its boundaries. In the sum over
the facets contributing to the full matrix element AΓ

αβ the contributions of delta-functions
from adjacent facets cancel. This cancellation is complete in the problem of a single domain
Ω, for which ∂Ω is a closed surface; however, delta-function contributions from facet edges
may remain for more complex topologies with several material regions.

Other terms in the matrix element can be treated in a similar way. For instance, the
term inolving λ and the function C(r) is very similar to Eq.(5.16),

λ

μ

∫
fα

d2r1

∫
fβ

d2r2 ∂m φ
vα, fα

(r1) gS(r1 − r2)nn(r2)φvβ , fβ
(r2) . (5.17)

22



The more involved term proportional to the Lamé coefficient μ is∫
fα

d2r1

∫
fβ

d2r2 ∂i φvα, fα
(r1) δmn gC(r1 − r2)ni(r2)φvβ , fβ

(r2)

+
∫

fα

d2r1

∫
fβ

d2r2 ∂n φvα, fα
(r1) gC(r1 − r2)nm(r2)φvβ , fβ

(r2)

− 2
k2

S

∫
fα

d2r1

∫
fβ

d2r2 ∂i φvα, fα
(r1) ∂m ∂n

[
gC(r1 − r2) − gS(r1 − r2)

]
ni(r2)φvβ , fβ

(r2) .

(5.18)

Although the third term in this expression involves two derivatives, the result is well defined,
since the difference of the Green functions appearing there is nonsingular.

6 Volumetric integral equations

We describe here two formulations of the volumetric (L-S) integral equations, based, respec-
tively, on first- and second-order differential equations of elasticity. In addition, we recast
the more conventional of the equations into forms better suited to handling high-contrast
problems.

On the level of the differential and integral equations themselves, these two approaches
are exactly equivalent. They differ, however, in the choice of the unknowns and in the
treatment of the material properties, hence in discretization aspects.

In order to allow direct comparison of the two formulations, we use in both cases the
same basis functions; Therefore, we discuss the basis functions at the beginning of this
Section.

6.1 Basis functions

Before deriving integral equations following from the differential equations analyzed above,
we introduce basis functions which will be used in the discretization.

6.1.1 Piecewise linear scalar basis functions

As an underlying form of basis functions we will be assuming piecewise linear scalar functions
supported on sets of tetrahedra sharing a common vertex, and interpolating between 1 at
that vertex and 0 at the remaining vertices of the set of tetrahedra. We represent such a
function φα as

φα(r) ≡ φ
vα

(r) =
∑

tα∈Tα

φ
vα, tα

(r) , (6.1)

where the sum is taken over the set T α of all tetrahedra tα sharing the vertex vα, and each
of the linear functions φvα, tα(r), supported on the tetrahedron tα, is defined to be unity at
r = vα and zero at the remaining vertices of tα. An explicit expression is

φvα, tα(r) =
[
1 − 1

hvα, tα

n̂vα, tα · (r − vα)
]
χtα(r) , (6.2)

23



where χtα(r) is the characteristic function of the tetrahedron tα, n̂vα, tα is the unit outer
normal to the tetrahedron face opposite the vertex vα, and hvα, tα is the tetrahedron height
relative to that face. When using such basis functions we assume, as before, that the
material parameters are constant on the tetrahedra.

First derivatives of the basis function φα. The basis function φα is, obviously, contin-
uous and differentiable (except for interfaces between the tetrahedra, where the derivatives
do not exist). However, the individual functions φvα, tα are not continuous, because they
characteristic functions are not; therefore, their gradients are constant inside the tetrahe-
dra, but involve also delta-functions concentrated on the interfaces between the tetrahedra
in the set T α. Explicitly,

∇φvα, tα(r) = − 1
hvα, tα

n̂vα, tα χtα(r) − φvα, tα(r) n̂(r) δ∂tα
(r) (6.3a)

= − 1
hvα, tα

n̂vα, tα χtα(r) −
∑

fα∈∂tα

φvα, fα
(r) n̂fα, tα

δfα
(r) . (6.3b)

Here, in Eq.(6.3a), δ∂tα is the delta function concentrated on the tetrahedron boundary,
and n̂(r) is the outer unit normal to that boundary. In Eq.(6.3b), fα ∈ ∂tα are faces of
the tetrahedron tα, n̂fα, tα is the unit normal to the face fα in the direction out of the
tetrahedron tα, and φvα, fα

is the basis function φvα, tα restricted to the face fα. Because of
continuity of φα, the function φvα, fα

is well defined; it is linear, and interpolates between 1
at the vertex vα and 0 at the remaining vertices of the face.

The delta-function contribution to the gradient (6.3) vanishes on the exterior boundary
of the set T α of the tetrahedra (because the basis function φvα, tα vanishes there), but it is
nonzero on the other faces.

The delta-function terms cancel pairwise in the sum over the tetrahedra tα ∈ T α, hence
the gradient of function φvα is regular, consistently with the fact that the function φvα itself
(given by the sum of (6.1)) is continuous.

However, the delta functions may give nonzero contributions if the vertex vα is located
on the object boundary ∂Ω, and thus some of the facets fα are not interfaces but rather
the boundary facets of the object.

Second derivatives of the basis function φα. Several expressions for matrix elements
(e.g., (6.59d) and (6.59e) in the following) involve second derivatives of the basis function
φvα

, which are delta functions and derivatives of delta functions, concentrated on the in-
terfaces of the tetrahedra in the set T α (i.e., tetrahedra sharing the vertex vα). From the
expression (6.3b) for the first derivatives we obtain, for each of the basis functions supported
on a tetrahedron tα,

∂m ∂i φvα, tα(r) =
1

hvα, tα

∑
fα∈∂tα

(
n̂m

vα, tα n̂
i
fα

+ n̂i
vα, tα n̂

m
fα

)
δfα

(r)

−
∑

fα∈∂tα

n̂m
fα
n̂i

fα
φvα, fα

(r) δ′fα
(n̂fα

, r) .
(6.4)

24



The notation used here for the delta function derivative actually means

δ′fα
(n̂fα

, r) = χfα
(rfα

) δ′fα
(n̂fα

· r) , (6.5)

where rfα
is the projection of r on the facet fα along the direction n̂fα

. The derivatives of
delta function contribute only for facets fα having vα as one of their vertices, since on the
facet opposite the vertex vα the function φvα, fα

(r) vanishes.
In the double derivatives of the basis function φvα

(r) (Eq.(6.1)) each interior facet
fα ∈ Fα contributes to two adjacent tetrahedra, and the derivatives of the delta functions
cancel, since δ′fα

(n̂fα
, r) + δ′fα

(−n̂fα
, r) = 0. For boundary facets (fα ∈ ∂Ω), however, the

derivatives of the delta functions remain; hence

∂m ∂i φvα
(r) =

∑
tα∈Tα

1
hvα, tα

∑
fα∈∂tα

(
n̂m

vα, tα n̂
i
fα

+ n̂i
vα, tα n̂

m
fα

)
δfα

(r)

−
∑

fα∈Fα∩ ∂Ω

n̂m
fα
n̂i

fα
φvα, fα

(r) δ′fα
(n̂fα

, r) (6.6a)

= −
∑

fα∈Tα

[
1

hvα, tα+

(
n̂m

vα, tα+ n̂
i
fα

+ n̂i
vα, tα+ n̂

m
fα

)
− 1
hvα, tα−

(
n̂m

vα, tα− n̂
i
fα

+ n̂i
vα, tα− n̂

m
fα

)]
−

∑
fα∈Fα∩ ∂Ω

n̂m
fα
n̂i

fα
φvα, fα

(r) δ′fα
(n̂fα

, r) . (6.6b)

The second form of this expression is obtained by grouping contributions from each facet
fα and denoting by tα+ and tα− tetrahedra on the positive and negative sides of the facet
(according to the direction of the normal n̂fα

). The sum in Eq.(6.6b), however, is taken over
all facets fα belonging to any tetrahedron in the set T α, not only over facets fα ∈ Fα

sharing the vertex vα; we indicate this by writing fα ∈ T α. If the facet fα is an exterior
facet of the set T α, i.e., fα ∈ ∂T α, the contribution of the tetrahedron tα+ is absent.

A simple geometrical analysis shows that, for interfaces fα, the linear combination of
the normals n̂vα, tα+ and n̂vα, tα− in Eq.(6.6b) is proportional to n̂fα

,

n̂vα, tα+

hvα, tα+

−
n̂vα, tα−
hvα, tα−

∼ nfα
. (6.7)

Therefore, Eq.(6.6b) can be written as

∂m ∂i φvα
(r) = − 2

∑
fα∈Fα

(
n̂vα, tα+ · n̂fα

hvα, tα+

−
n̂vα, tα− · n̂fα

hvα, tα−

)
n̂m

fα
n̂i

fα
δfα

(r)

+ 2
∑

fα∈∂Tα

1
hvα, tα

n̂m
fα
n̂i

fα
δfα

(r)

−
∑

fα∈Fα∩ ∂Ω

n̂m
fα
n̂i

fα
δ′fα

(n̂fα
, r)φvα, fα

(r) .

(6.8)

We have separated here contributions from the facets sharing the vertex vα and the facets
on the boundary ∂T α of the set of tetrahedra. In the latter contribution hvα, tα is the height
of the tetrahedron adjacent to the facet fα, measured from the vertex vα.

25



6.1.2 Piecewise linear vector basis functions

In the following we consider linear vector-valued basis functions ψα(r) associated with
vertices and supported on sets of tetrahedra sharing the given vertex. For each vertex
vα we define three vector basis functions representing displacements in the x, y, and z
directions; the index α in ψα refers thus to the vertex and the direction, α = (vα,m),
m = 1, 2, 3 (i.e., m = x, y, z).

We parametrize these functions ψα as

ψα(r) ≡ ψvα,m(r) = em φvα
(r) , (6.9)

where em is the unit vector along the m-the axis, and φvα is the scalar basis function defined
by Eq.(6.1). Components of the basis function ψα (as appearing in Eqs. (6.58)) are then

ψi
α(r) ≡ ψi

vα,m(r) = δmi φvα
(r) . (6.10)

The derivatives of the basis functions appearing in Eqs. (6.58) represent either the
pressure or the strain tensor,

Ψvα,m(r) ≡ ∂i ψi
vα,m(r) = ∂m φvα

(r) (6.11)

or

Ψij
vα,m(r) ≡ 1

2

[
∂i ψj

vα,m(r) + ∂j ψi
vα,m(r)

]
= 1

2

[
δmi ∂

j φvα
(r) + δmj ∂

i φvα
(r)
]

;
(6.12)

these expressions are valid, of course, for any (not only linear) scalar basis functions φ. We
note that the divergence of the basis function representing displacement in the direction m
is, actually, a derivative of the scalar basis function in that direction.

6.2 Integral equations in first-order formulation

General structure of the L-S equations. The system of equations (3.29) with a pre-
scribed source S has the form

KF ≡ (D + V)F = −S , (6.13)

where the source is assumed to act in the space of traceless symmetric tensor fields σ,

I S = S . (6.14)

It can be now verified, with the use of projection properties (3.39), (6.14), (3.42), and (3.43),
as well as the definition (3.34) of the Green function, that Eq.(6.13) can be represented as
the L-S equation

(I − G V)F = G S =: F in, (6.15)

where F in is the incident field.

26



It follows immediately from Eq.(3.35) that some blocks of the Green function are iden-
tically zero,

G =

⎡⎢⎢⎢⎢⎣
Gvv Gvp Gvσ

Gpv Gpp Gpσ

0 0 Gσσ

⎤⎥⎥⎥⎥⎦ . (6.16)

Therefore, the kernel G V appearing in the L-S equation (6.15),

W := G V =

⎡⎢⎢⎢⎢⎣
Gvv Gvp Gvσ

Gpv Gpp Gpσ

0 0 Gσσ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Vvv 0 0

0 Vpp 0

Vσv 0 0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Wvv Wvp 0

Wpv Wpp 0

Wσv 0 0

⎤⎥⎥⎥⎥⎦ , (6.17)

also exhibits a number of zero blocks.

Evaluation of the Green function. The system of equations (3.35) for the Green
function components can be easily solved in terms of the Fourier transforms

Gab
... (r) =

∫
d3q

(2π)3
eiq·r G̃ab

... (q) , a, b = v,p, σ . (6.18)

Eq.(3.35) becomes then⎡⎢⎢⎢⎢⎣
i k δik − i qi i δik ql

− i qk i k 0

0 0 i k δik δjl

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
G̃vv

km G̃vp

k G̃vσ

kmn

G̃pv

m G̃pp G̃pσ

mn

G̃σv

klm G̃σp

kl G̃σσ

klmn

⎤⎥⎥⎥⎥⎦ (q)

= −

⎡⎢⎢⎢⎢⎣
δim 0 0

0 1 0

0 0 Δijmn

⎤⎥⎥⎥⎥⎦ .

(6.19)

By considering the last row of equations in the system we find immediately

G̃σv

klm(q) = 0 , (6.20a)

G̃σp

kl (q) = 0 , (6.20b)

G̃σσ

klmn(q) =
i
k

Δklmn . (6.20c)

27



After substituting these expressions in the remaining equations, we obtain

i k G̃vv

im(q) − i qi G̃
pv

m (q) = − δim , (6.21a)

i k G̃vp

i (q) − i qi G̃
pp

(q) = 0 , (6.21b)

i k G̃vσ

imn(q) − i qi G̃
pσ

mn(q) + i ql

i
k

Δilmn = 0 , (6.21c)

− i qk G̃
vv

km(q) + i k G̃pv

m (q) = 0 , (6.21d)

− i qk G̃
vp

k (q) + i k G̃pp
(q) = − 1 , (6.21e)

− i qk G̃
vσ

kmn(q) + i k G̃pσ

mn(q) = 0 . (6.21f)

The subsystem of equations (6.21a), (6.21b), (6.21d), and (6.21e) is associated with the
acoustic problem, described by the fields v and p. It can be easily solved by substituting
the Ansätze based on rotational invariance,

G̃vv

km(q) = a(q) δkm + b(q) qk qm , (6.22a)

G̃vp

k (q) = G̃pv

k (q) = c(q) qk , (6.22b)

G̃pp
(q) = d(q) . (6.22c)

The solution is then

G̃vv

km(q) =
i
k

(
δkm − qk qm

q2 − k2

)
, (6.23a)

G̃vp

k (q) = G̃pv

k (q) =
−i qk

q2 − k2
, (6.23b)

G̃pp
(q) =

−i k
q2 − k2

. (6.23c)

Out of the remaining equations, Eq.(6.21f) allows us to express G̃pσ
in terms of G̃vσ

,

G̃pσ

mn(q) =
ql

k
G̃vσ

lmn(q) , (6.24)

and the last equation to be solved, (6.21c), becomes

(k2 δil − qi ql) G̃
vσ

lmn(q) = − i ql Δilmn

≡ − i
2 (δim qn + δin qm − 2

3 qi δmn) .
(6.25)

By substituting here the Ansatz

G̃vσ

lmn(q) = A(q)Δklmn qk +B(q)Δijmn qi qj ql (6.26)

we find, finally, solutions for G̃vσ
and then G̃pσ

as

G̃vσ

lmn(q) = − i
k2

(
Δklmn qk −

Δijmn qi qj ql

q2 − k2

)
, (6.27a)

G̃pσ

mn(q) =
i
k

Δijmn qi qj

q2 − k2
. (6.27b)

28



These expressions are manifestly symmetric and traceless in the indices m,n.
The structure of the Green function matrix and its blocks (Eqs. (6.23), (6.20c), and

(6.27)) can be summarized as

G̃(q) =

⎡⎢⎢⎢⎢⎣
G̃vv

km G̃vp

k G̃vσ

kmn

G̃pv

m G̃pp G̃pσ

mn

G̃σv

klm G̃σp

kl G̃σσ

klmn

⎤⎥⎥⎥⎥⎦ (q)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

i
k

(
δkm − qk qm

q2 − k2

)
−i qk

q2 − k2
− i
k2

(
Δklmn ql −

Δijmn qi qj qk

q2 − k2

)
−i qm

q2 − k2

−i k
q2 − k2

i
k

Δijmn qi qj

q2 − k2

0 0
i
k

Δklmn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.28)

The Green function in coordinate space. Fourier transformation (6.18) of the Green
function operator (3.41) back to the coordinate space involves just the substitutions qk →
−i ∂k and the usual Helmholtz-equation Green function

g(r) ≡ g(r) :=
∫

d3q

(2π)3
eiq·r 1

q2 − k2 − i 0
=

eikr

4πr
(6.29)

(with r := |r|), satisfying the equation

(∇2 + k2) g(r) = − δ3(r) (6.30)

and the radiation boundary condition. Hence,

G(r) =

⎡⎢⎢⎢⎢⎣
Gvv

km Gvp
k Gvσ

kmn

Gpv
m Gpp Gpσ

mn

Gσv
klm Gσp

kl Gσσ
klmn

⎤⎥⎥⎥⎥⎦ (r)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i
k

[
δkm δ3(r) − ∂k g(r) − 1

k2

[
Δklmn ∂l δ

3(r)

+ ∂k∂m g(r)
]

+ Δijmn ∂i∂j∂k g(r)
]

− ∂m g(r) −i k g(r) − i
k

Δijmn ∂i∂j g(r)

0 0
i
k

Δklmn δ
3(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.31)

By using the definitions (3.36) and (6.30) of the tensor Δ and the Green function g, one
can further simplify the blocks Gvσ and Gpσ to

Gvσ
kmn(r) = − k−2

[
1
2 (δkm ∂n + δkn ∂m) δ3(r) + ∂k gmn(r)

]
, (6.32a)

Gpσ
mn(r) = − i k−1 (1

3 δmn δ
3(r) + gmn) , (6.32b)

29



where we defined, for convenience, an auxiliary symmetric Green function

gmn(r) :=
(

1
3 δmn k

2 + ∂m∂n

)
g(r) . (6.33)

The L-S integral equations. An explicit form of the integral equations (reflecting the
structure of Eq.(6.17)) is

ρ(r) vi(r) +
∫

d3r′
[
∂i∂m g(r − r′)

] [
ρ(r′) − 1

]
vm(r′)

+
1
k2

∫
d3r′

{[
∂m δ3(r − r′)

]
μ(r′)

[
∂′i vm(r′) + ∂′m vi(r

′)
]

+
[
∂i gmn(r − r′)

]
2μ(r′) ∂′m vn(r′)

}
+ ik

∫
d3r′

[
∂i g(r − r′)

] [
ϕ(r′) − 1

]
p(r′)

= vin
i (r) , (6.34a)

p(r) − k2

∫
d3r′ g(r − r′)

[
ϕ(r′) − 1

]
p(r′)

+
2i
3k

μ(r) ∂m vm(r) +
i
k

∫
d3r′ gmn(r − r′) 2μ(r′) ∂′m vn(r′)

= pin(r) , (6.34b)

σij(r) −
i
k
μ(r)

[
∂i vj(r) + ∂j vi(r) − 2

3 δij ∂m vm(r)
]

= σin
ij (r) . (6.34c)

In particular, because of the vanishing third column of the kernel W of Eq.(6.17), the stress
tensor σ does not appear at all in the first two equations, (6.34a) and (6.34b). These
equations can be thus solved for v and p, and, if desired, the stress tensor can be evaluated
by using Eq.(6.34c), which just reproduces Eq.(3.29c).

The integral equations (6.34) above are written in the form assuming ρ0 = λ0 = 1. After

30



reintroducing these parameters, equations (6.34) take the final form

ρ(r)
ρ0

vi(r) +
∫

d3r′
(
∂i∂m g(r − r′)

)(ρ(r′)
ρ0

− 1
)
vm(r′)

+
1
k2
∂m

[
μ(r)
λ0

(
∂i vm(r) + ∂m vi(r)

)]
+

1
k2

∫
d3r′

(
∂i gmn(r − r′)

) 2μ(r′)
λ0

∂′m vn(r′)

+
i k
λ0

∫
d3r′

(
∂i g(r − r′)

) (
ϕ(r′) − 1

)
p(r′)

= vin
i (r) , (6.35a)

p(r) − k2

∫
d3r′ g(r − r′)

(
ϕ(r′) − 1

)
p(r′)

+
2i
3k

μ(r)
λ0

∂m vm(r) +
i
k

∫
d3r′ gmn(r− r′)

2μ(r′)
λ0

∂′m vn(r′)

= pin(r) , (6.35b)

σij(r) −
i
k

μ(r)
λ0

[
∂i vj(r) + ∂j vi(r) − 2

3 δij ∂m vm(r)
]

= σin
ij (r) . (6.35c)

6.2.1 Matrix elements: general expressions

We discretize the L-S equations (6.35) by using the Galerkin method, in terms of vector
and scalar basis functions ψα and φα for the fields v and p. The resulting stiffness matrix
takes then the form

A =

⎡⎢⎣Avv Avp

Apv App

⎤⎥⎦ , (6.36)

31



with the blocks

Avv
αβ =

∫
d3r ψi

α(r)
ρ(r)
ρ0

ψi
β(r)

−
∫

d3r1

∫
d3r2

(
∂i

1ψ
i
α(r1)

) (
∂j

1 g(r1 − r2)
) (ρ(r2)

ρ0

− 1
)
ψj

β(r2)

− 1
k2

∫
d3r
(
∂iψj

α(r)
) μ(r)
λ0

(
∂iψj

β(r) + ∂jψi
β(r)
)

− 2
k2

∫
d3r1

∫
d3r2

(
∂i

1ψ
i
α(r1)

)
gkl(r1 − r2)

μ(r2)
λ0

(
∂k

2ψ
l
β(r2)

)
, (6.37a)

Avp
αβ = − i k

λ0

∫
d3r1

∫
d3r2

(
∂i

1ψ
i
α(r1)

)
g(r1 − r2)

(
ϕ(r2) − 1

)
φβ(r2) , (6.37b)

Apv
αβ =

2i
3k

∫
d3r φα(r)μ(r)

(
∂jψj

β(r)
)

(6.37c)

+
2i
k

∫
d3r1

∫
d3r2 φα(r1) gkl(r1 − r2)μ(r2)

(
∂k

2ψ
l
β(r2)

)
, (6.37d)

App
αβ = − k2

∫
d3r1

∫
d3r2 φα(r1) g(r1 − r2)

(
ϕ(r2) − 1

)
φβ(r2) . (6.37e)

6.2.2 Matrix elements with composite linear basis functions

In the following we assume piecewise linear vector and scalar basis functions, as described
in Sections 6.1.2 and 6.1.1. By expressing the vector basis functions in terms of the scalar
ones (Eq.(6.9)), we can represent Eqs. (6.37) as

Avv
vα,m;vβ ,n = δmn

∫
d3r

ρ(r)
ρ0

φvα
(r)φvβ

(r)

−
∫

d3r1

∫
d3r2

(
∂m

1 φvα
(r1)
) (
∂n

1 g(r1 − r2)
)(ρ(r2)

ρ0

− 1
)
φvβ

(r2)

− 1
k2

∫
d3r

μ(r)
λ0

[
δmn

(
∂jφvα

(r)
) (
∂jφvβ

(r)
)

+
(
∂nφvα

(r)
) (
∂mφvβ

(r)
)]

− 2
k2

∫
d3r1

∫
d3r2

(
∂m

1 φvα
(r1)
)
gkn(r1 − r2)

μ(r2)
λ0

(
∂k

2φvβ
(r2)
)
, (6.38a)

Avp
vα,m;vβ

= − i k
λ0

∫
d3r1

∫
d3r2

(
∂m

1 φvα
(r1)
)
g(r1 − r2)

(
ϕ(r2) − 1

)
φvβ

(r2) , (6.38b)

Apv
vα;vβ ,n =

2i
3k

∫
d3r φvα

(r)μ(r)
(
∂nφvβ

(r)
)

+
2i
k

∫
d3r1

∫
d3r2 φvα

(r1) gkn(r1 − r2)μ(r2)
(
∂k

2φvβ
(r2)
)
, (6.38c)

App
vα;vβ

= − k2

∫
d3r1

∫
d3r2 φvα

(r1) g(r1 − r2)
(
ϕ(r2) − 1

)
φvβ

(r2) ; (6.38d)

as before, vector basis functions are labeled by pairs of indices (vα,m) or (vβ , n), represent-
ing the vertex and the Cartesian component of the vector, and the scalar basis functions
are indexed by the vertices only.

32



6.2.3 Matrix elements with elementary linear basis functions

As before, we now have to express, in Eqs. (6.38), the “composite” basis functions (sup-
ported on sets of tetrahedra) in terms of “elementary” basis functions supported on individ-
ual tetrahedra or facets. By using the relations of Section 6.1.1 we find the displacement-
displacement matrix elements in the form

Avv
vα,m;vβ ,n = δmn

∑
tα∈Tα

ρ(tα)
ρ0

∫
tα

d3r φvα, tα(r)φvβ , tβ
(r) (6.39a)

− k−2
∑

tα∈Tα

μ(tα)
λ0

vα

1
hvα, tα

1
hvβ , tα[

δmn n̂
i
vα, tα n̂

i
vβ , tα + n̂n

vα, tα n̂
m
vβ , tα − 2

3 n̂
m
vα, tα n̂

n
vβ , tα

]
(6.39b)

+
∑

tα∈Tα

∑
tβ∈Tβ

(
ρ(tβ)
ρ0

− 1
)

1
hvα, tα

n̂m
vα, tα∫

tα

d3r1

∫
tβ

d3r2 φvβ , tβ
(r1)

(
∂n

1 g(r1 − r2)
)

(6.39c)

+
∑

fα∈Fα∩ ∂Ω

∑
tβ∈Tβ

(
ρ(tβ)
ρ0

− 1
)
n̂m

fα, tα∫
fα

d2r1

∫
tβ

d3r2 φvα, fα
(r1)φvβ , tβ

(r1)
(
∂n

1 g(r1 − r2)
)

(6.39d)

− 2
k2

∑
tα∈Tα

∑
tβ∈Tβ

μ(tβ)
λ0

1
hvα, tα

1
hvβ , tα

n̂m
vα, tα n̂

k
vβ , tβ∫

tα

d3r1

∫
tβ

d3r2
(
∂k

1 ∂
n
1 g(r1 − r2)

)
(6.39e)

− 2
k2

∑
fα∈Fα∩ ∂Ω

∑
tβ∈Tβ

μ(tβ)
λ0

1
hvβ , tα

n̂m
fα, tα n̂

k
vβ , tβ∫

fα

d2r1

∫
tβ

d3r2 φvα, fα
(r1)

(
∂k

1 ∂
n
1 g(r1 − r2)

)
, (6.39f)

where vα is the volume of the tetrahedron tα. The last two terms, Eqs. (6.39e) and (6.39f),
can be integrated by parts and rewritten in a form involving only first derivatives of the
Green function, e.g.,∫

dDr1

∫
tβ

d3r2 · · ·
(
∂k

1 ∂
n
1 g(r1 − r2)

)
=
∑

fβ∈∂tβ

n̂n
fβ , tβ

∫
dDr1

∫
fβ

d2r2 · · ·
(
∂k

1 g(r1 − r2)
)
.

(6.40)

After substituting this identity in Eqs. (6.39) we would find that some contributions of the
facets fβ cancel: this happens whenever the two tetrahedra t adjacent to the face have the

33



same Lamé coefficient μ(t). In other words, the contributions to the r2-integral come only
from the discontinuities of μ. We can obtain the same result by integration-by-parts in
Eq.(6.38a), which would pick derivatives of μ, hence delta-function contributions.

Similarly, the displacement-pressure and pressure-displacement matrix elements are

Avp
vα,m;vβ

=
i k
λ0

∑
tα∈Tα

∑
tβ∈Tβ

(
ϕ(tβ) − 1

) 1
hvα, tα

n̂m
vα, tα∫

tα

d3r1

∫
tβ

d3r2 φvβ , tβ
(r2) g(r1 − r2) (6.41a)

+
i k
λ0

∑
fα∈Fα∩ ∂Ω

∑
tβ∈Tβ

(
ϕ(tβ) − 1

)
n̂m

fα, tα∫
fα

d2r1

∫
tβ

d3r2 φvα, fα
(r1)φvβ , tβ

(r2) g(r1 − r2) , (6.41b)

and

Apv
vα;vβ ,n = − 4i

3k

∑
tα∈Tα

μ(tα)
1

hvβ , tα

n̂n
vβ , tα

∫
tα

d3r φvα, tα(r) (6.42a)

− 2i
3k

∑
tα∈Tα

∑
tβ∈Tβ

μ(tβ)
1

hvβ , tβ

n̂k
vβ , tβ∫

tα

d3r1

∫
tβ

d3r2 φvα, tα(r1)
(
∂k

1 ∂
n
1 g(r1 − r2)

)
. (6.42b)

The second derivatives of the Green function can be eliminated, as in Eqs. (6.39e) and
(6.39f), by using the identity (6.40).

Finally, the pressure-pressure matrix elements are given by

App
vα;vβ

= − k2
∑

tα∈Tα

∑
tβ∈Tβ

(
ϕ(tβ) − 1

)
∫

tα

d3r1

∫
tβ

d3r2 φvα, tα(r1)φvβ , tβ
(r2) g(r1 − r2) .

(6.43)

6.2.4 Summary of the expressions for the “basic” matrix elements

The basic matrix elements appearing in Eqs. (6.39) – (6.43) are as follows:

tetrahedron-tetrahedron matrix elements:

constant-linear:

TT1 A(tα;vβ , tβ) =
∫

tα

d3r1

∫
tβ

d3r2 φvβ , tβ
(r2) g(r1 − r2)

TT2 Ai(tα;vβ , tβ) =
∫

tα

d3r1

∫
tβ

d3r2 φvβ , tβ
(r2) ∂

i g(r1 − r2)

34



linear-linear:

TT3 A(vα, tα;vβ , tβ) =
∫

tα

d3r1

∫
tβ

d3r2 φvα, tα(r1)φvβ , tβ
(r2) g(r1 − r2)

tetrahedron-facet matrix elements:

constant-constant:

TF1 Ai(tα; fβ) =
∫

tα

d3r1

∫
fβ

d2r2 ∂
i g(r1 − r2)

linear-constant:

TF2 Ai(vα, tα; fβ) =
∫

tα

d3r1

∫
fβ

d2r2 φvα, tα
(r1) ∂

i g(r1 − r2)

linear-linear:

TF3 A(vα, tα;vβ , fβ) =
∫

tα

d3r1

∫
fβ

d2r2 φvα, tα(r1)φvβ , fβ
(r2) g(r1 − r2)

TF4 Ai(vα, tα;vβ , fβ) =
∫

tα

d3r1

∫
fβ

d2r2 φvα, tα(r1)φvβ , fβ
(r2) ∂

i g(r1 − r2)

facet-facet matrix elements:

linear-constant:

FF1 Ai(vα, fα; fβ) =
∫

fα

d2r1

∫
fβ

d2r2 φvα, tα(r1) ∂
i g(r1 − r2)

Whenever derivatives of the Green function appear, they are not normal derivatives.

6.3 Integral equations in second-order formulation

Eqs. (3.9) have the general form of an “L-S-type” differential equation with three alternative
expressions for the differential operator V . It can be easily verified that the background-
medium Green function g = −D−1 is given by

gij(r) = −k−2
[
δij δ

3(r) + ∂i ∂j g(r)
]
, (6.44)

and satisfies the equation

(k2 δij + ∂i ∂j) gjl(r) = − δil δ
3(r) (6.45)

and the outgoing-wave boundary conditions. The resulting L-S equation

ui(r) −
∫

d3r′ gil(r − r′)V lj(r
′)uj(r

′) = uin
i (r′) (6.46)

35



becomes then, with Eq.(6.44),

ui(r) + k−2 V ij(r)uj(r
′) + k−2

∫
d3r′ ∂i ∂l g(r − r′)V lj(r

′)uj(r
′) = uin

i (r′) . (6.47)

Depending on the form of the differential equation, various forms of the L-S equations can
be obtained. In the following we consider three such forms, corresponding to Eqs. (3.9a),
(3.9b), and (3.9c), and we refer to them as equations of type (a), (b), and (c).

The interaction operator V derived from the differential equation (3.9a) gives rise to an
L-S equation of the “basic” form

ui(r) −
(

1 − ρ(r)
ρ0

)
ui(r) − k2 ∂i

[(
1 − λ(r)

λ0

)
∂juj(r)

]
+ k2 ∂j

[
μ(r)
λ0

(
∂iuj(r) + ∂jui(r)

)]
−
∫

d3r′ ∂i ∂l g(r − r′)
(

1 − ρ(r′)
ρ0

)
ul(r

′)

− k−2

∫
d3r′ ∂i ∂l g(r − r′) ∂′l

[(
1 − λ(r′)

λ0

)
∂′juj(r

′)
]

+ k−2

∫
d3r′ ∂i ∂l g(r − r′) ∂′j

[
μ(r′)
λ0

(
∂′luj(r

′) + ∂′jul(r
′)
)]

= uin
i (r) .

(6.48)

With the operator V corresponding to Eq.(3.9b) we obtain

ui(r) + k−2 ρ0

ρ(r)
∂j

[
μ(r)
λ0

(
∂iuj(r) + ∂jui(r)

)]
− k−2

(
∂i

ρ0

ρ(r)

)
λ(r)
λ0

∂juj(r)

+
∫

d3r′ ∂i g(r − r′)
[
1 − ρ0 λ(r′)

λ0 ρ(r′)

]
∂′j uj(r

′)

+ k−2

∫
d3r′ ∂i ∂l g(r − r′)

ρ0

ρ(r′)
∂′j

[
μ(r′)
λ0

(
∂′l uj(r

′) + ∂′j ul(r
′)
)]

− k−2

∫
d3r′ ∂i ∂l g(r − r′)

(
∂′l

ρ0

ρ(r′)

)
λ(r′)
λ0

∂′j uj(r
′)

= uin
i (r) ,

(6.49)

where ∂ and ∂′ denote derivatives with respect to r and r′.
In deriving Eq.(6.49) we applied integration by parts to the term

−k−2

∫
d3r′ ∂i ∂l g(r − r′) ∂′l

{[
1 − ρ0 λ(r′)

λ0 ρ(r′)

]
∂′j uj(r

′)
}
,

resulting from directly from the original L-S equation of (6.47). We apply here the derivative
∂l to the Green function, and use its defining equation to obtain the fourth term in Eq.(6.49)
with a single derivative of the Green function.

The boundary term in integration by parts vanishes because the material-dependent
term (in the square brackets) vanishes outside Ω.

36



Finally, with the operator V of Eq.(3.9c) the L-S equation takes the form

ui(r) (6.50a)

+ k−2 ∂j

[
ξμ(r)

(
∂iuj(r) + ∂jui(r)

)]
(6.50b)

− k−2

(
∂j

ρ0

ρ(r)

)
ρ(r)
ρ0[

ξλ(r) δij ∂kuk(r) + ξμ(r)
(
∂iuj(r) + ∂jui(r)

)]
(6.50c)

+
∫

d3r′ ∂i g(r − r′)
[
1 − ξλ(r′)

]
∂′kuk(r

′) (6.50d)

+ k−2

∫
d3r′ ∂i ∂l g(r − r′) ∂′j

[
ξμ(r′)

(
∂′luj(r

′) + ∂′jul(r
′)
)]

(6.50e)

− k−2

∫
d3r′ ∂i ∂l g(r − r′)

(
∂′j

ρ0

ρ(r′)

)
[
ηλ(r′) δlj ∂

′
kuk(r

′) + ημ(r′)
(
∂′luj(r

′) + ∂′jul(r
′)
)]

(6.50f)

= uin
i (r) , (6.50g)

or, after some rearrangements and integration by parts,

ui(r) O(1) (6.51a)

− k−2 ∂j

[(
1 − ξλ(r)

)
δij∂kuk(r) − ξμ(r)

(
∂iuj(r) + ∂jui(r)

)]
O(ρ0/ρ) (6.51b)

− k−2

(
∂j

ρ0

ρ(r)

)
[
ηλ(r) δij ∂kuk(r) + ημ(r)

(
∂iuj(r) + ∂jui(r)

)]
O(1) (6.51c)

− k−2

∫
d3r′ ∂i ∂l ∂j g(r − r′)[(

1 − ξλ(r′)) δlj ∂
′
kuk(r

′) − ξμ(r′)
(
∂′luj(r

′) + ∂′jul(r
′)
)]

O(ρ0/ρ) (6.51d)

− k−2

∫
d3r′ ∂i ∂l g(r − r′)

(
∂′j

ρ0

ρ(r′)

)
[
ηλ(r′) δlj ∂

′
kuk(r

′) + ημ(r′)
(
∂′luj(r

′) + ∂′jul(r
′)
)]

O(1) (6.51e)

= uin
i (r) . O(1) (6.51f)

In the last forms of the L-S equation we indicated, next to each term, its expected magnitude
in the high contrast limit ρ0/ρ→ 0 (the origin of these estimates is discussed below).

There are two reasons we consider Eq.(6.51) our preferred form of the L-S integral
equation:

(i) As shown by the estimates above, only two nontrivial terms in the equation, (6.51c)
and (6.51e), remain sizable in the high contrast limit. Both of these terms involve
the gradient of the inverse of density, and, therefore, give rise to surface contribution
from interfaces of regions of large density ratios.

37



(ii) The term (6.51e) involves an expression proportional to the stress tensor σ,

ηλ δij ∂lul + ημ

(
∂iuj + ∂jui

)
≡ 1
λ0

σij . (6.52)

Contraction of this quantity with the gradient of the inverse density, i.e., with the
normal to the surface of density discontinuity, is proportional the traction vector ,
which is known to be continuous across that surface. The latter property facilitates
discretization of the equations in the case of a discontinuous density distribution,
since the product of the gradient of the density ratio (a surface delta function) and a
continuous function is unambiguously defined.

The estimates of the magnitudes of the terms in Eq.(6.51) follow from an important
scaling property of Eqs. (3.9c) and (6.51): while the coefficients involving gradients of ρ0/ρ
grow proportionally to ρ/ρ0, their product with the solution remains finite, since the stress
tensor (6.52) is finite in the high density limit, and thus the gradients of the displacement
in Eq.(6.51) are small :

∂i uj ∼
ρ0

ρ
(6.53)

(we recall that Eq.(3.10) implies ξλ ∼ ξμ ∼ 1 for finite values of refraction coefficients). This
is the reason why, in Eq.(6.51), the terms without derivatives of the density and factors ρ/ρ0,
are small. In particular, the fifth term (6.51e) in the equation, involving the gradient of ξμ

(and thus possibly a surface delta function due to a discontinuity in μ) is small compared
to the dominant terms, (6.51c) and (6.51e).

6.3.1 Matrix elements for the “basic” form of second-order equations: general
expressions

The most basic form of the L-S equation, (6.48), gives rise to the nontrivial Galerkin matrix
elements1

A
(ρ)
αβ = −

∫
d3r1

∫
d3r2 ψ

i
α(r1)

(
∂i

1 ∂
l
1 g(r1 − r2)

) (
1 − ρ(r2)

)
ψl

β(r2)
)
, (6.54a)

A
(λ)
αβ = − k−2

∫
d3r1

∫
d3r2 ψ

i
α(r1)

(
∂i

1 ∂
l
1 g(r1 − r2)

)
∂l

2

[(
1 − λ(r2)

)
∂j

2 ψ
j
β(r2)

]
, (6.54b)

A
(μ)
αβ = k−2

∫
d3r1

∫
d3r2 ψ

i
α(r1)

(
∂i

1 ∂
l
1 g(r1 − r2)

)
∂j

2

[
μ(r2)

(
∂l

2 ψ
j
β(r2) + ∂j

2 ψ
l
β(r2)

)]
(6.54c)

1In order to simplify the notation, we assume here, temporarily, ρ0 = λ0 = 1.

38



(the other matrix elements involve single integrals only). After integrating by parts with
respect to r1, we find, alternatively

A
(ρ)
αβ =

∫
d3r1

∫
d3r2

(
∂i

1 ψ
i
α(r1)

) (
∂l

1 g(r1 − r2)
) (

1 − ρ(r2)
)
ψl

β(r2)
)
, (6.55a)

A
(λ)
αβ = k−2

∫
d3r1

∫
d3r2

(
∂i

1 ψ
i
α(r1)

) (
∂l

1 g(r1 − r2)
)

∂l
2

[(
1 − λ(r2)

)
∂j

2 ψ
j
β(r2)

]
, (6.55b)

A
(μ)
αβ = − k−2

∫
d3r1

∫
d3r2

(
∂i

1 ψ
i
α(r1)

) (
∂l

1 g(r1 − r2)
)

∂j
2

[
μ(r2)

(
∂l

2 ψ
j
β(r2) + ∂j

2 ψ
l
β(r2)

)]
(6.55c)

or

A
(ρ)
αβ =

∫
d3r1

∫
d3r2

(
∂l

1 ψ
i
α(r1)

) (
∂i

1 g(r1 − r2)
) (

1 − ρ(r2)
)
ψl

β(r2)
)
, (6.56a)

A
(λ)
αβ = k−2

∫
d3r1

∫
d3r2

(
∂l

1 ψ
i
α(r1)

) (
∂i

1 g(r1 − r2)
)

∂l
2

[(
1 − λ(r2)

)
∂j

2 ψ
j
β(r2)

]
, (6.56b)

A
(μ)
αβ = − k−2

∫
d3r1

∫
d3r2

(
∂l

1 ψ
i
α(r1)

) (
∂i

1 g(r1 − r2)
)

∂j
2

[
μ(r2)

(
∂l

2 ψ
j
β(r2) + ∂j

2 ψ
l
β(r2)

)]
(6.56c)

Expected features of the matrix elements. We note that in Eqs. (6.55) the basis
function ψα appears only in its divergence. For linear basis functions (Section 6.1.1), this
divergence involves constant basis functions supported on tetrahedra and delta functions
supported on facets located on the boundary ∂Ω of the object, since (as discussed following
Eq.(6.3)) the other delta-function contributions cancel pairwise, due to continuity of the
basis function.

Eqs. (6.56) involve, instead of the divergence of ψα, a general element of the strain tensor
associated with this basis functions. However, the regularity structure of this expression is
similar to the previous one.

On the other hand, derivatives of the basis function ψβ do, in general, include delta-
function contributions from facets shared by tetrahedra supporting the basis function (since
material parameters may have different values on different tetrahedra).

Further, Eqs. (6.55b) and (6.55c), as well as Eqs. (6.56b) and (6.56c), include, in general,
delta functions due to discontinuities of the material parameters on facets. In Eqs. (6.56b)
and (6.56c) the product of these delta functions and the derivatives of the basis function
should be well defined, for reasons analogous to those in acoustics: We note that the sum of
the matrix elements (6.55b) and (6.55c) the considered delta functions appear only through

39



the expression

−
∫

d3r2
(
∂l

1 g(r1 − r2)
)

[(
∂l

2 λ(r2)
)
∂j

2 ψ
j
β(r2) +

(
∂j

2 μ(r2)
) (
∂l

2 ψ
j
β(r2) + ∂j

2 ψ
l
β(r2)

)]
= −

∫
f2

d2r2
(
∂l

1 g(r1 − r2)
)

n̂j
2

[(
λ(t2+) − λ(t2−)

)
δlj ∂

p
2 ψ

p
β(r2)

+
(
μ(t2+) − μ(t2−)

) (
∂l

2 ψ
j
β(r2) + ∂j

2 ψ
l
β(r2)

)]
= −

∫
f2

d2r2
(
∂l

1 g(r1 − r2)
)
n̂j

2{[
λ(t2+) δlj ∂

p
2 ψ

p
β(r2) + μ(t2+)

(
∂l

2 ψ
j
β(r2) + ∂j

2 ψ
l
β(r2)

)]
−
[
(t2+ → t2−)

]}
≡−

∫
f2

d2r2
(
∂l

1 g(r1 − r2)
)
n̂j

2

{
σlj(t2+) − σlj(t2−)

}
.

(6.57)

40



6.3.2 Matrix elements for the “high-contrast” form of second-order equations:
general expressions

We denote in the following by the subscripts (a) to (f) the contributions to the matrix
elements corresponding to terms in Eqs. (6.51a) to (6.51e):

A
(a)
αβ =

∫
d3r ψi

α(r)ψi
β(r) , (6.58a)

A
(b)
αβ = k−2

∫
d3r
(
∂i ψj

α(r)
)

[(
1 − ξλ(r)) δij ∂

kψk
β(r) − ξμ(r)

(
∂i ψj

β(r) + ∂j ψi
β(r)
)]
, (6.58b)

A
(c)
αβ = − k2

∫
d3r ψi

α(r)
(
∂j ρ0

ρ(r)

)
ρ(r)
ρ0[

ξλ(r) δij ∂
kψk

β(r) + ξμ(r)
(
∂iψj

β(r) + ∂jψi
β(r)
)]
, (6.58c)

A
(d)
αβ = − k−2

∫
d3r1

∫
d3r2

(
∂i

1 ∂
l
1 ψ

l
α(r1)

)
g(r1 − r2)

∂j
2

[(
1 − ξλ(r2)

)
δij ∂

k
2ψ

k
β(r2) − ξμ(r2)

(
∂i

2 ψ
j
β(r2) + ∂j

2 ψ
i
β(r2)

)]
≡ k−2

∫
d3r1

∫
d3r2

(
∂l

1 ψ
l
α(r1)

) (
∂i

1 g(r1 − r2)
)

∂j
2

[(
1 − ξλ(r2)) δij ∂

k
2ψ

k
β(r2) − ξμ(r2)

(
∂i

2 ψ
j
β(r2) + ∂j

2 ψ
i
β(r2)

)]
, (6.58d)

A
(e)
αβ = − k−2

∫
d3r1

∫
d3r2

(
∂i

1 ∂
l
1 ψ

l
α(r1)

)
g(r1 − r2)

(
∂j

2

ρ0

ρ(r2)

)
[
ηλ(r2) δij ∂

k
2ψ

k
β(r2) + ημ(r2)

(
∂i

2ψ
j
β(r2) + ∂j

2ψ
i
β(r2)

)]
≡ k−2

∫
d3r1

∫
d3r2

(
∂l

1 ψ
l
α(r1)

) (
∂i

1 g(r1 − r2)
)(

∂j
2

ρ0

ρ(r2)

)
[
ηλ(r2) δij ∂

k
2ψ

k
β(r2) + ημ(r2)

(
∂i

2ψ
j
β(r2) + ∂j

2ψ
i
β(r2)

)]
. (6.58e)

41



6.3.3 Matrix elements with composite linear basis functions

After carrying out the index algebra in Eqs. (6.58), the matrix elements can be represents
in terms of the scalar basis functions as follows:

A
(a)
vα,m;vβ ,n = δmn

∫
d3r φvα

(r)φvβ
(r) , (6.59a)

A
(b)
vα,m;vβ ,n = − k−2

∫
d3r
(
∂iφvα

(r)
)

[
ξλ(r) δnl δim + ξμ(r)

(
δni δlm + δnm δli

)] (
∂l φvβ

(r)
)
, (6.59b)

A
(c)
vα,m;vβ ,n = − k2

∫
d3r φvα

(r)
(
∂i ρ0

ρ(r)

)
ρ(r)
ρ0[

ξλ(r) δnl δim + ξμ(r)
(
δni δlm + δnm δli

)] (
∂l φvβ

(r)
)
, (6.59c)

A
(d)
vα,m;vβ ,n = k−2

∫
d3r1

∫
d3r2

(
∂m

1 φvα
(r1)
) (
∂i

1 g(r1 − r2)
)

∂j
2

{[(
1 − ξλ(r2)) δnl δij − ξμ(r2)

(
δni δlj + δnj δli

)] (
∂l

2 φvβ
(r2)
)}

≡ − k−2

∫
d3r1

∫
d3r2

(
∂m

1 ∂i
1 φvα

(r1)
) (
∂j

1 g(r1 − r2)
)

[(
1 − ξλ(r2)) δnl δij − ξμ(r2)

(
δni δlj + δnj δli

)] (
∂l

2 φvβ
(r2)
)

≡ − k−2

∫
d3r1

∫
d3r2

(
∂m

1 ∂i
1 φvα

(r1)
)
g(r1 − r2)

∂j
2

{[(
1 − ξλ(r2)) δnl δij − ξμ(r2)

(
δni δlj + δnj δli

)] (
∂l

2 φvβ
(r2)
)}

, (6.59d)

A
(e)
vα,m;vβ ,n = k−2

∫
d3r1

∫
d3r2

(
∂m

1 φvα
(r1)
) (
∂i

1 g(r1 − r2)
)(

∂j
2

ρ0

ρ(r2)

)
[
ηλ(r2) δnl δij + ημ(r2)

(
δni δlj + δnj δli

)] (
∂l

2 φvβ
(r2)
)

≡ − k−2

∫
d3r1

∫
d3r2

(
∂m

1 ∂i
1 φvα

(r1)
)
g(r1 − r2)

(
∂j

2

ρ0

ρ(r2)

)
[
ηλ(r2) δnl δij + ημ(r2)

(
δni δlj + δnj δli

)] (
∂l

2 φvβ
(r2)
)
. (6.59e)

In the following we specialize to the case of material parameters constant on tetrahedra,
and to piecewise linear basis functions φv(r). The matrix elements Eq.(6.59) exhibit then
analogies to the acoustic problem with piecewise linear basis functions, since a derivative of
a linear basis function is a constant – plus, possibly, a delta-function at the boundary of the
tetrahedron. The main difficulty lies in treating the possible delta-function contributions.

Eqs. (6.59d) and (6.59e) appear in several equivalent forms related by integration by
parts: they differ in the numbers of derivatives acting on the Green function and on the
basis functions ψα or ψβ (Eq.(6.9)). The forms with fewer derivatives acting on on the
Green function are more appropriate for computing matrix elements at small distances
(for overlapping basis functions’ supports), and the other forms are more useful for larger
distances, where the derivatives of the Green function reflects the large-distance behavior
of the matrix elements.

42



6.3.4 Matrix elements with elementary linear basis functions

Eqs. (6.59) involve “composite” linear scalar basis functions associated with vertices, i.e.,
supported on sets of tetrahedra. In the following we use the relations of Section 6.1.1 to
express these functions in terms of “elementary” basis functions supported on individual
tetrahedra or facets (the latter arise as a result of differentiation of the volumetric basis
functions).

We give below explicit expression for the individual contributions to the matrix elements.
We will generally concentrate on the expressions with the largest numbers of derivatives of
the basis functions, since such terms may contain surface contributions.

The term A(a): In this simplest case we obtain a sum of contributions of tetrahedra t
shared by the vertices vα and vβ , i.e., belonging to the set T α ∩ T β. Each term is an
analytic expression for the integral of a product of two linear functions supported on the
tetrahedron t.

The terms A(b) and A(c): The term A(b) involves derivatives of the basis function ψvα,m

which, according to Eqs. (6.1) and (6.3), can be expressed in terms of basis functions
supported on tetrahedra as

∂iφvα
(r) = −

∑
tα∈Tα

[
1

hvα, tα

n̂i
vα, tα χtα(r) +

∑
fα∈∂tα

φvα, fα
(r) n̂i

fα, tα δfα
(r)
]
, (6.60)

where, we recall, hvα, tα the height of the tetrahedron tα measured from the vertex vα,
n̂vα, tα is the exterior unit normal to the tetrahedron facet opposite the same vertex, and
n̂fα, tα is the unit normal to the face fα, in the direction exterior to the tetrahedron tα.

The outer sum in Eq.(6.60) runs over tetrahedra tα ∈ Tα, sharing the selected vertex
vα. The inner sum runs over faces fα ∈ ∂tα of each tetrahedron tα. As already discussed
in Section 6.1.1, in the latter sum the delta-function contributions vanish on the outer
boundary of the set ∂T α and cancel pairwise for interior facets fα, although not for the
boundary facets (fα ∈ ∂Ω). Therefore, Eq.(6.60) reduces to

∂iφvα
(r) = −

∑
tα∈Tα

1
hvα, tα

n̂i
vα, tα χtα(r) −

∑
fα∈Fα∩∂Ω

n̂i
fα, tα δfα

(r)φvα, fα
(r) , (6.61)

where Fα is the set of facets sharing the vertex vα.
The term A(c) involves only the basis function ψvα,m, i.e., according to Eqs. (6.1) and

(6.2), is given by

φvα
(r) =

∑
tα∈Tα

[
1 − 1

hvα, tα

n̂vα, tα · (r − vα)
]
χtα(r) , (6.62)

where χtα(r) is the characteristic function of the tetrahedron tα. This basis function is
multiplied by the gradient of the inverse density, which is proportional to a surface delta
function on each facet on which the density is discontinuous. In the matrix element A(c)

43



such delta-function contributions arise on facets shared by the tetrahedra tα and tβ (the
tetrahedra may be identical).

In both of the terms A(b) and A(c) the basis function φvβ
appears only through the

expression

Ξim(ψvβ ,n(r)) :=
(
1 − ξλ(r)

)
δim ∂l ψl

vβ ,n(r) − ξμ(r)
(
∂iψm

vβ ,n(r) + ∂mψi
vβ ,n(r)

)
≡
[(

1 − ξλ(r)
)
δnl δim − ξμ(r)

(
δni δlm + δnm δli

)] (
∂l φvβ

(r)
) (6.63)

(see Eq.(6.10)), which is related to the stress tensor σim associated with the basis function
ψvβ ,n(r).

Eq.(6.63) has to be represented, by using Eqs. (6.1), (6.2), and (6.3), in terms of the
basis functions φv, t supported on the individual tetrahedra. The result is

Ξim(ψvβ ,n(r)) =
∑

tβ∈Tβ

Ximnl(tβ) ∂l φvβ , tβ
(r)

≡ −
∑

tβ∈Tβ

Ximnl(tβ)
[

1
hvβ , tβ

n̂l
vβ , tβ

χtβ
(r) +

∑
fβ∈∂tβ

φvβ , fβ
(r) n̂l

fβ , tβ
δfβ

(r)
]
,

(6.64)

where

Ximnl(tβ) :=
(
1 − ξλ(tβ)

)
δim δnl + ξμ(tβ)

(
δin δml + δil δmn

)
, (6.65)

and ξλ(tβ) and ξμ(tβ) are the values of the coefficients ξλ and ξμ on the tetrahedron tβ. It
is worth noting here that, by construction, the coefficients Ximnl have the same symmetry
properties (Eq.(3.12)) as the general elasticity tensor for an anisotropic medium

Ximnl = Xminl , Ximnl = Ximln , Ximnl = Xnlim . (6.66)

We will use this property in the following. A related remark is that the manipulation we
are carrying out now could be probably generalized to anisotropic media, and the resulting
stiffness matrix would have a similar structure to that in the present case.

By changing the order of summation, Eq.(6.64) can be recast in the form

Ξim(ψvβ ,n(r))

= −
∑

tβ∈Tβ

Ximnl(tβ)
1

hvβ , tβ

n̂l
vβ , tβ

χtβ
(r)

−
∑

fβ∈Fβ

φvβ , fβ
(r) δfβ

(r)
∑

tβ∈Tfβ

Ximnl(tβ) n̂l
fβ , tβ

,

(6.67)

where T fβ
is the set of (up to two) tetrahedra sharing the facet fβ. The last sum in Eq.(6.67)

is thus, in general, a difference of two terms associated with the tetrahedra adjacent to the
given face fβ. Therefore, we can write Eq.(6.67) as

Ξim(ψvβ ,n(r))

= −
∑

tβ∈Tβ

Ximnl(tβ)
1

hvβ , tβ

n̂l
vβ , tβ

χtβ
(r)

−
∑

fβ∈Fβ∩∂Ω

[
Ximnl(tβ+) −Ximnl(tβ−)

]
n̂l

fβ
δfβ

(r)φvβ , fβ
(r) ,

(6.68)

44



where tβ+ and tβ− are tetrahedra on the positive and negative sides of the facet fβ (relative
to the direction of the normal n̂fβ

to the face). We also used here the fact (discussed in
connection with Eq.(6.61)) that the delta-function contributions cancel pairwise on all facets
fβ except those located on the exterior object boundary ∂Ω.

Finally, we note that we can drop the delta-function contributions (i.e., the second sum
in Eq.(6.69)), altogether: the reason is that we can think of the object boundary ∂Ω as an
interface between the object and the external region discretized with “fictitious” tetrahedra
having properties of the background medium (ξλ = 1 and ξμ = 0, hence X = 0). With this
interpretation, the surface ∂Ω is no longer a boundary (we have used a similar argument in
acoustics). Hence, we have, eventually,

Ξim(ψvβ ,n(r)) = −
∑

tβ∈Tβ

Ximnl(tβ)
1

hvβ , tβ

n̂l
vβ , tβ

χtβ
(r) . (6.69)

It will be also useful to introduce a quantity related directly to the stress tensor,

Σim(ψvβ ,n(r)) :=
1
λ0

σim(ψvβ ,n(r)) , (6.70)

which can be represented, in analogy to Eq.(6.69), as

Σim(ψvβ ,n(r))

= −
∑

tβ∈Tβ

Eimnl(tβ)
1

hvβ , tβ

n̂l
vβ , tβ

χtβ
(r)

−
∑

fβ∈Fβ∩∂Ω

[
Eimnl(tβ+) − Eimnl(tβ−)

]
n̂l

fβ
δfβ

(r)φvβ , fβ
(r) ,

(6.71)

where

Eimnl(tβ) := ηλ(tβ) δim δnl + ημ(tβ)
(
δin δml + δil δmn

)
, (6.72)

and

ηλ(tβ) :=
ρ(tβ)
ρ0

ξλ(tβ) =
λ(tβ)
λ0

, ημ(tβ) :=
ρ(tβ)
ρ0

ξμ(tβ) =
μ(tβ)
λ0

(6.73)

(cf. Eqs. (3.10) and (3.11)). The expression Σim(ψvβ ,n(r)) appears in the matrix element
A(c).

In terms of the tensors (6.63) and (6.70), the contributions to the matrix elements are
then given simply by

A
(b)
vα,m;vβ ,n = − k−2

∫
d3r
(
∂iφvα

(r)
)
Ξim(ψvβ ,n(r)) (6.74)

and

A
(c)
vα,m;vβ ,n = − k2

∫
d3r φvα

(r)
(
∂i ρ0

ρ(r)

)
Σim(ψvβ ,n(r)) . (6.75)

45



The terms A(d) and A(e): The remaining terms in the matrix elements involve several
common expressions:

Second derivatives of the basis function φα. These expressions (Eq.(6.8)) were
given in Section 6.1.1. Clearly, they cannot be used directly in evaluating the matrix
elements: derivatives of the delta function have to be eliminated in favor of derivatives of
the Green function. We will carry out this rearrangement in the following.

The stress tensor associated with the basis function φvβ
. In Eqs. (6.59d) and

(6.59e) the basis function φvβ
appears only through the quantity

Ξij(ψvβ ,n(r)) := ξλ(r) δij ∂
l ψl

vβ ,n(r) + ξμ(r)
(
∂iψj

vβ ,n(r) + ∂j ψi
vβ ,n(r)

)
≡
[(

1 − ξλ(r)
)
δnl δij − ξμ(r)

(
δni δlj + δnj δli

)] (
∂l φvβ

(r)
) (6.76)

(cf. Eq.(6.63)), related to the stress tensor σij associated with the basis function ψvβ ,n(r).
It can be expressed, as in Eq.(6.69), in terms of constant basis functions supported on the
tetrahedra.

Similarly to Eqs. (6.74) and (6.75), Eqs. (6.59d) and (6.59e) take the form

A
(d)
vα,m;vβ ,n = k−2

∫
d3r1

∫
d3r2

(
∂m

1 ∂i
1 φvα

(r1)
) (
∂j

1 g(r1 − r2)
)

Ξij(ψvβ ,n(r2))
(6.77)

and

A
(e)
vα,m;vβ ,n = k−2

∫
d3r1

∫
d3r2

(
∂m

1 ∂i
1 φvα

(r1)
)
g(r1 − r2)(

∂j
2

ρ0

ρ(r2)

)
Σij(ψvβ ,n(r2)) .

(6.78)

Full expressions for A(d) and A(e). After substituting Eq.(6.8) in Eq.(6.77) we
integrate one of the terms by parts in order to eliminate the derivatives of the delta function
in the expression for the derivatives of the basis function φvα

. We obtain, instead, an
additional derivative of the Green function contracted with the normals to the facets on
which the derivative of φvα

is supported (n̂p
fα
∂p

1 g(r1 − r2) in the third term of Eq.(6.79)

46



below). The result is

A
(d)
vα,m;vβ ,n

= − 2 k−2
∑

fα∈Fα

(
n̂vα, tα+ · n̂fα

hvα, tα+

−
n̂vα, tα− · n̂fα

hvα, tα−

)
n̂m

fα
n̂i

fα∫
fα

d2r1

∫
d3r2

(
∂j

1 g(r1 − r2)
)
Ξij(ψvβ ,n(r2))

+ 2 k−2
∑

fα∈∂Tα

1
hvα, tα

n̂m
fα
n̂i

fα∫
fα

d2r1

∫
d3r2

(
∂j

1 g(r1 − r2)
)
Ξij(ψvβ ,n(r2))

+ k−2
∑

fα∈Fα∩ ∂Ω

n̂m
fα
n̂i

fα
n̂p

fα∫
fα

d2r1

∫
d3r2

(
∂j

1 ∂
p
1 g(r1 − r2)

)
Ξij(ψvβ ,n(r2)) .

(6.79)

Similarly, we obtain

A
(e)
vα,m;vβ ,n

= 2 k−2
∑

fα∈Fα

(
n̂vα, tα+ · n̂fα

hvα, tα+

−
n̂vα, tα− · n̂fα

hvα, tα−

)
n̂m

fα
n̂i

fα∫
fα

d2r1

∫
d3r2 g(r1 − r2)

(
∂j

2

ρ0

ρ(r2)

)
Σij(ψvβ ,n(r2))

− 2 k−2
∑

fα∈∂Tα

1
hvα, tα

n̂m
fα
n̂i

fα∫
fα

d2r1

∫
d3r2 g(r1 − r2)

(
∂j

2

ρ0

ρ(r2)

)
Σij(ψvβ ,n(r2))

− k−2
∑

fα∈Fα∩ ∂Ω

n̂m
fα
n̂i

fα
n̂p

fα∫
fα

d2r1

∫
d3r2

(
∂p

1 g(r1 − r2)
)(

∂j
2

ρ0

ρ(r2)

)
Σij(ψvβ ,n(r2)) .

(6.80)

Finally, by substituting Eq.(6.69) in Eq.(6.79), we obtain a sum of several terms, involv-

47



ing integrals over tetrahedra and facets,

A
(d)
vα,m;vβ ,n

= 2 k−2
∑

fα∈Fα

∑
tβ∈Tβ

(
n̂vα, tα+ · n̂fα

hvα, tα+

−
n̂vα, tα− · n̂fα

hvα, tα−

)
n̂m

fα
n̂i

fα

Xijnl(tβ)
1

hvβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
tβ

d3r2 ∂
j
1 g(r1 − r2)

− 2 k−2
∑

fα∈∂Tα

∑
tβ∈Tβ

1
hvα, tα

n̂m
fα
n̂i

fα
Xijnl(tβ)

1
hvβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
tβ

d3r2 ∂
j
1 g(r1 − r2)

− k−2
∑

fα∈Fα∩ ∂Ω

∑
tβ∈Tβ

n̂m
fα
n̂i

fα
n̂k

fα
Xijnl(tβ)

1
hvβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
tβ

d3r2 ∂
j
1 ∂

k
1 g(r1 − r2) .

(6.81)

Similarly, Eq.(6.71) substituted in Eq.(6.80) yields

A
(e)
vα,m;vβ ,n

= 2 k−2
∑

fα∈Fα

∑
tβ∈Tβ

∑
fβ∈∂tβ

(
n̂vα, tα+ · n̂fα

hvα, tα+

−
n̂vα, tα− · n̂fα

hvα, tα−

)
n̂m

fα
n̂i

fα(
ρ0

ρ(fβ+)
− ρ0

ρ(fβ−)

)
Eijnl(tβ)

1
hvβ , tβ

n̂j
fβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
fβ

d2r2 g(r1 − r2)

− 2 k−2
∑

fα∈∂Tα

∑
tβ∈Tβ

∑
fβ∈∂tβ

1
hvα, tα

n̂m
fα
n̂i

fα(
ρ0

ρ(fβ+)
− ρ0

ρ(fβ−)

)
Eijnl(tβ)

1
hvβ , tβ

n̂j
fβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
fβ

d2r2 g(r1 − r2)

− k−2
∑

fα∈Fα∩ ∂Ω

∑
tβ∈Tβ

∑
fβ∈∂tβ

n̂m
fα
n̂i

fα
n̂k

fα(
ρ0

ρ(fβ+)
− ρ0

ρ(fβ−)

)
Eijnl(tβ)

1
hvβ , tβ

n̂j
fβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
fβ

d2r2 ∂
k
1 g(r1 − r2) .

(6.82)

48



By reversing the order of summation, the above expression can be written as

A
(e)
vα,m;vβ ,n

= 2 k−2
∑

fα∈Fα

∑
fβ∈∂Tβ

(
n̂vα, tα+ · n̂fα

hvα, tα+

−
n̂vα, tα− · n̂fα

hvα, tα−

)
n̂m

fα
n̂i

fα(
ρ0

ρ(tβ+)
− ρ0

ρ(tβ−)

)
Eijnl(tβ)

1
hvβ , tβ

n̂j
fβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
fβ

d2r2 g(r1 − r2)

− 2 k−2
∑

fα∈∂Tα

∑
fβ∈∂Tβ

1
hvα, tα

n̂m
fα
n̂i

fα(
ρ0

ρ(tβ+)
− ρ0

ρ(tβ−)

)
Eijnl(tβ)

1
hvβ , tβ

n̂j
fβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
fβ

d2r2 g(r1 − r2)

− k−2
∑

fα∈Fα∩ ∂Ω

∑
fβ∈∂Tβ

n̂m
fα
n̂i

fα
n̂k

fα(
ρ0

ρ(tβ+)
− ρ0

ρ(tβ−)

)
Eijnl(tβ)

1
hvβ , tβ

n̂j
fβ , tβ

n̂l
vβ , tβ∫

fα

d2r1

∫
fβ

d2r2 ∂
k
1 g(r1 − r2) .

(6.83)

All the contributions to the r2-integrals in Eq.(6.82) come from discontinuities of the
inverse density, ρ0/ρ(fβ+) − ρ0/ρ(fβ−), where ρ(fβ+) and ρ(fβ−) are densities in tetra-
hedra on the positive and negative sides of the face fβ, as defined by the normal n̂fβ , tβ
(which is, by definition, exterior to the tetrahedron tβ).

In the alternative expression Eq.(6.83) come from discontinuities of the inverse density,

6.3.5 Summary of the expressions for the “basic” matrix elements

The fundamental matrix elements, required in the computation of the matrix elements
the second-order formulation are listed in the following. Symbols (d) and (e) indicate the
contribution in which the given matrix element appears.

tetrahedron-facet matrix elements:

constant-constant:

TF2(d) Ai(tα; fβ) =
∫

tα

d3r1

∫
fβ

d2r2 ∂
i g(r1 − r2)

TF3(d) Ai
n(tα; fβ) = n̂j

fβ

∫
tα

d3r1

∫
fβ

d2r2 ∂
i ∂j g(r1 − r2)

49



facet-facet matrix elements:

constant-constant:

FF1(e) A(fα; fβ) =
∫

fα

d2r1

∫
fβ

d2r2 g(r1 − r2)

FF2(e) An(fα; fβ) = n̂i
fα

∫
fα

d2r1

∫
fβ

d2r2 ∂
i g(r1 − r2)

The subscript “n” in An(·) is used to indicate matrix elements involving the normal deriva-
tive of the Green function.

6.4 Representation of matrix elements

We recast here matrix elements evaluated in the previous Subsections in a general represen-
tation used in the following in computation of the compressed stiffness matrix. This purpose
of using this representation is to facilitate programming and allow an efficient ordering of
operations in the matrix construction stage (as described in Section 6.6).

We give here a somewhat schematic expression for the matrix – the details of its imple-
mentation will be given in Section 6.6.

The representation has an almost factorized form2

A
(ν)
αβ =

∑
ν1 ν2

Bν ν1 ν2∫
dr1

∫
dr2C

(1 ν1) I1
α; M1

φM1
(r1)

[
DI1 I2 g(r1 − r2)

]
φM2

(r2)C
(2 ν2) I2
β; M2

.

(6.84)

In this expression:

1. The indices α and β are unknown numbers.

2. The indices νj, j = 1, 2, label specific contributions to the matrix. In the practical
implementation they are simply integers uniquely identifying the given contribution
to the matrix and the given coefficient C.

3. The matrix B is a set of coefficients 0 or 1 indicating which contributions are included
in the sum.

4. The multi-indices M j , j = 1, 2 (generally, M) label the “fundamental” basis functions
φM . In the present case, they are constant or linear basis functions supported on
tetrahedra or facets.

5. The operators DI1 I2 are differential operators representing partial derivatives specified
by the (multi-)indices I, acting on the scalar Green function g. In practice, derivatives
only up to the second order will appear.

2Full factorization does not seem possible, because some matrix elements are modified by hand through
integration by parts and similar manipulations.

50



6. The coefficients C(j νj) Ij

α; Mj
provide a link between the unknowns and the basis functions.

The indices νj are additional labels indexing possible types of unknowns. In general,
the coefficients C (especially C(2)) will depend on the material parameters. In the
following we consider a given set C(j νj) ·

··· ; ··· of coefficients as a sparse matrix whose rows
are labeled by the unknowns α.

In addition to the coefficients C (which provide a mapping from the unknowns to the
fundamental basis functions), we also need an “inverse” mapping D from the fundamental
basis functions to the unknowns. As we discuss later, these mapping are used in the matrix
assembly.

The idea of the representation (6.84) is to provide a universal scheme for matrix element
computation, and allow full flexibility in defining and modifying the form of the integral
equations.

Sets of the coefficients C are precomputed and then supplied as arguments to an “assem-
bly” routine, which constructs contributions to the output matrix elements from the “basic”
matrix elements defined in terms of the “fundamental” basis functions and the Green func-
tion or its derivatives. The same coefficients are used in evaluation of the MoM-Cartesian
mapping coefficients V , as the mapping of unknowns will be expressed in terms of mappings
of the fundamental basis functions.

The coefficients C are also incorporates as a component in the compressed stiffness
matrix. The reason is that elements of the map V α for the unknowns may be linear com-
binations of many map elements for the fundamental basis functions; therefore, it is more
economical to store those basic mappings and convert the MoM variables into equivalent
sources (and vice versa) in two stages.

In the above description we assumed that the far-field part of the matrix is represented
not only in terms of the Green function, but also of its derivatives. However, this type of
representation has to be carefully examined on the case-by-case basis, particularly from the
point of view of storage. If we decide to use the Green function only, the far-field coefficients
will be different than the coefficients C above; nevertheless, storage of the expansion of the
mappings for the fundamental basis functions may be still more economical than for the
unknowns.

In the expressions below the symbols C(t) and C(f) refer to functions constant on
tetrahedra and facets, and L(v, t) and L(v, f) to functions linear on tetrahedra and facets;
in the latter case, v is the selected vertex (at which the basis function has value 1). Extra
overall coefficients are included in the B.

6.4.1 Matrix elements for second-order equations

We give here examples of expressions for the matrix elements in the second-order formulation
of Eqs. (6.74), (6.75), (6.81), (6.82) (these are the most complicated ones).

We give alternative expressions for some coefficients C, differing by the presence of
absence of one factor n̂·; those with the missing factor are used with basic matrix elements
involving the normal derivative of the Green function. For notational simplicity, some of
the constant coefficients are not displayed in these formulae, and are absorbed in the factors
B appearing in Eq.(6.84).

51



The contribution A(d):

C
(1 e C) i
vα,m; fα

=
(

n̂vα, tα+ · n̂fα

hvα, tα+

−
n̂vα, tα− · n̂fα

hvα, tα−

)
n̂m

fα
n̂i

fα
, fα ∈ Fα , (6.85a)

C
(1 e C) i
vα,m; fα

=
1

hvα, tα

n̂m
fα
n̂i

fα
, fα ∈ ∂T α , (6.85b)

C
(1 e C) ik
vα,m; fα

=
1

hvα, tα

n̂m
fα
n̂i

fα
n̂k

fα
, fα ∈ ∂T α ∩ ∂Ω , (6.85c)

C
(1 eCn) i
vα,m; fα

=
1

hvα, tα

n̂m
fα
n̂i

fα
, fα ∈ ∂T α ∩ ∂Ω , (6.85d)

C
(2 eC) ij
vβ ,n; tβ

= Xijnl(tβ)
1

hvβ , tβ

n̂l
vβ , tβ

, tβ ∈ T β , (6.85e)

C
(2 e L) ij
vβ ,n;vβ , fβ

=
[
Xijnl(tβ+) −Xijnl(tβ−)

]
n̂l

fβ
, fβ ∈ Fβ . (6.85f)

In terms of these coefficients, the matrix element (6.81), written in the form of Eq.(6.84),

52



is

A
(d)
vα,m;vβ ,n =

∑
ν1 ν2

B(dXX)(ν1, ν2)
∫

dr1

∫
dr2

C
(1 e ν1) I1
vα,m; M1

φM1
(r1)

[
DI1 I2 g(r1 − r2)

]
φM2

(r2)C
(2 e ν2) I2
vβ ,n; M2

=
∫

dr1

∫
dr2{

C
(1 e C) i
vα,m; fα

χfα
(r1)

[
∂j g(r1 − r2)

]
χtβ

(r2)C
(2 eC) ij
vβ ,n; tβ

+C
(1 e C) i
vα,m; fα

χfα
(r1)

[
∂j g(r1 − r2)

]
φvβ , fβ

(r2)C
(2 e L) ij
vβ ,n;vβ , fβ

+C
(1 e C) i
vα,m; fα

χfα
(r1)

[
∂j g(r1 − r2)

]
χtβ

(r2)C
(2 eC) ij
vβ ,n; tβ

+C
(1 e C) i
vα,m; fα

χfα
(r1)

[
∂j g(r1 − r2)

]
φvβ , fβ

(r2)C
(2 e L) ij
vβ ,n;vβ , fβ

+C
(1 e C) ik
vα,m; fα

χfα
(r1)

[
∂k∂j g(r1 − r2)

]
χtβ

(r2)C
(2 eC) ij
vβ ,n; tβ

+C
(1 e C) ik
vα,m; fα

χfα
(r1)

[
∂k∂j g(r1 − r2)

]
φvβ , fβ

(r2)C
(2 e L) ij
vβ ,n;vβ , fβ

}
≡C(1 e C) i

vα,m; fα
C

(2 e C) ij
vβ ,n; tβ

Aj(fα; tβ)

+C
(1 e C) i
vα,m; fα

C
(2 e L) ij
vβ ,n;vβ , fβ

Aj(fα;vβ , fβ)

+C
(1 e C) i
vα,m; fα

C
(2 e C) ij
vβ ,n; tβ

Aj(fα; tβ)

+C
(1 e C) i
vα,m; fα

C
(2 e L) ij
vβ ,n;vβ , fβ

Aj(fα;vβ , fβ)

+C
(1 e C) ik
vα,m; fα

C
(2 e C) ij
vβ ,n; tβ

Akj(fα; tβ)

+C
(1 e C) ik
vα,m; fα

C
(2 e L) ij
vβ ,n;vβ , fβ

Akj(fα;vβ , fβ)

≡C(1 e C) i
vα,m; fα

C
(2 e C) ij
vβ ,n; tβ

Aj(fα; tβ)

+C
(1 e C) i
vα,m; fα

C
(2 e L) ij
vβ ,n;vβ , fβ

Aj(fα;vβ , fβ)

+C
(1 e C) i
vα,m; fα

C
(2 e C) ij
vβ ,n; tβ

Aj(fα; tβ)

+C
(1 e C) i
vα,m; fα

C
(2 e L) ij
vβ ,n;vβ , fβ

Aj(fα;vβ , fβ)

+C
(1 e Cn) i
vα,m; fα

C
(2 eC) ij
vβ ,n; tβ

Aj
n(fα; tβ)

+C
(1 e Cn) i
vα,m; fα

C
(2 eL) ij
vβ ,n;vβ , fβ

Aj
n(fα;vβ , fβ) .

(6.86)

53



The contribution A(e):

C
(1 f C) i
vα,m; fα

=
(

n̂vα, tα+ · n̂fα

hvα, tα+

−
n̂vα, tα− · n̂fα

hvα, tα−

)
n̂m

fα
n̂i

fα
, fα ∈ Fα , (6.87a)

C
(1 f B) i
vα,m; fα

=
1

hvα, tα

n̂m
fα
n̂i

fα
, fα ∈ ∂T α , (6.87b)

C
(1 f B) ij
vα,m; fα

=
1

hvα, tα

n̂m
fα
n̂i

fα
n̂j

fα
, fα ∈ ∂T α ∩ ∂Ω , (6.87c)

C
(1 f Bn) i
vα,m; fα

=
1

hvα, tα

n̂m
fα
n̂i

fα
, fα ∈ ∂T α ∩ ∂Ω , (6.87d)

C
(2 f C) i
vβ ,n; tβ

=
(

ρ0

ρ(fβ+)
− ρ0

ρ(fβ−)

)
ρ(tβ)

ρ0

Xiknl(tβ)

1
hvβ , tβ

n̂k
fβ , tβ

n̂l
vβ , tβ

, tβ ∈ T β , fβ ∈ ∂tβ . (6.87e)

In terms of these coefficients, the matrix element (6.82), written in the form of Eq.(6.84),
is

A
(e)
vα,m;vβ ,n =

∑
ν1 ν2

B(dXX)(ν1, ν2)
∫

dr1

∫
dr2

C
(1 f ν1) I1
vα,m; M1

φM1
(r1)

[
DI1 I2 g(r1 − r2)

]
φM2

(r2)C
(2 f ν2) I2
vβ ,n;M2

=
∫

dr1

∫
dr2{

C
(1 f C) i
vα,m; fα

χfα
(r1) g(r1 − r2)χfβ

(r2)C
(2 f C) i
vβ ,n; fβ

+C
(1 f B) i
vα,m; fα

χfα
(r1) g(r1 − r2)χfβ

(r2)C
(2 f C) i
vβ ,n; fβ

+C
(1 f B) ij
vα,m; fα

χfα
(r1)

[
∂j g(r1 − r2)

]
χfβ

(r2)C
(2 f C) i
vβ ,n; fβ

}
≡C

(1 f C) i
vα,m; fα

C
(2 f C) i
vβ ,n; fβ

A(fα; fβ)

+C
(1 f B) i
vα,m; fα

C
(2 f C) i
vβ ,n; fβ

A(fα; fβ)

+C
(1 f B) ij
vα,m; fα

C
(2 f C) i
vβ ,n; fβ

Aj(fα; fβ)

≡C
(1 f C) i
vα,m; fα

C
(2 f C) i
vβ ,n; fβ

A(fα; fβ)

+C
(1 f B) i
vα,m; fα

C
(2 f C) i
vβ ,n; fβ

A(fα; fβ)

+C
(1 f Bn) i
vα,m; fα

C
(2 f C) i
vβ ,n; fβ

An(fα; fβ) .

(6.88)

6.5 Tetrahedron-tetrahedron contributions to stiffness matrix elements

Each of the matrix elements for “composite” basis functions is, generally, a sum of many
contributions of pairs of “fundamental” basis function. This is, in particular, the case for
node based functions, where a vertex may be shared by many tetrahedra and facets.

54



We now estimate the number of contributing tetrahedra and facets, e.g., the number
of tα, fα, etc., entries in each “row” of the coefficient matrices of Eqs. (6.85) and (6.87).
We are considering here the generic case of a vertex located in the interior of a regular
tetrahedral mesh (approximately constant edge lengths).

First, we note that the number of tetrahedra tα in the set T α, or, equivalently, the
number of facets fα in the set ∂T α, is approximately equal to the number of triangles
in a regular triangulation of the unit sphere. Since the area of a triangle is A �

√
3/4,

the number of such triangles covering the sphere is about 4π/A � 4π/(
√

3/4) = 16π/
√

3.
Secondly, the number of facets fα sharing the given vertex, i.e., the number of elements in
the set Fα, is equal to the number of edges in the considered triangulation of the sphere,
which is about 3/2 the number of facets, hence (3/2) 16π/

√
3 = 8

√
3π. Hence,

#T α = #∂T α � 16π√
3

� 29.0 (6.89a)

and
#Fα � 8

√
3π � 43.5 . (6.89b)

6.6 Construction of the stiffness matrix

In designing the solver code, we have to allow sufficient flexibility in order to accommodate
various types of equations, various sets of unknowns, and expressions for matrix elements.

General structure of matrix elements. All the expressions for the matrix elements
involving the Green function,3 i.e., Eqs. (6.81), (6.82), and (6.39) – (6.43) have the struc-
ture indicated in Eq.(6.84). More explicitly, for a given equation type, a matrix block
corresponding to two fixed types of unknowns4 has the form

Aαβ =
∑
ν1 ν2

B(ν1, ν2)
∑
g1, b1

∑
g2, b2

∑



C
(1 ν1) I1(
)
α; g1,b1

C
(2 ν2) I2(
)
β; g2,b2

A(M(ν1,ν2)) I(
)(g1, b1; g2, b2) .

(6.90)
The notation here is as follows:

1. Within the considered block, unknowns are labeled locally by integer indices α, β.

2. The sets of coefficients C are stored as arrays indexed by the indices νj, j = 1, 2; the
order of the entries in the array is arbitrary.

3. Similarly, the “basic” matrix elements A(ν) I(·) are labeled by an index ν, which defines
the type of the matrix element (e.g., between a linear function on a tetrahedron and
a constant function on a facet, and with the normal derivative of the Green function).
Actually, in the actual code implementation the matrix elements A are not stored,
but rather computed as needed (in a loop which ensures there no replication of work);
in this case the index ν is an argument of the routine computing the matrix elements
and specifies which element is to be evaluated.

3The matrix elements given by single integrals, as well as projections of the incident or scattered waves
on the basis function, can be treated as special cases.

4E.g., the row indices α may refer to displacement, and the column indices β to pressure.

55



4. The indices νj , j = 1, 2, refer to consecutive sets of the coefficients C; they form an
array of coefficient sets, and may be ordered in an arbitrary way.

5. Accordingly, the coefficients B(ν1, ν2) define weights with which pairs of coefficients
C contribute to the sum.

6. Similarly, the integer indices M(ν1, ν2) specify which type of a matrix element is to
be used with the given coefficients C.

7. The indices g1 and g2 refer to g-element types (in the present problems, tetrahedra
or triangles), and the indices b1 and b2 to consecutive numbers of basis functions
associated with a given g-element; e.g., if the considered basis functions are linear and
the g-element is a tetrahedron, the index b may take values from 1 to 4, and indicate
the tetrahedron vertex at which the basis function value is 1.

8. The coefficients C(j νj) Ij

α, gj , bj
provide relations between the unknowns and the basis func-

tions; they depend, in general, on the material properties of the object.

9. The quantities A(ν) I(g1, b1; g2, b2) are the “basic” matrix elements, such as listed in
Section 6.3.5. As we mentioned before, the index ν may be used to specify various
types of matrix elements.

10. The integer indices Ij in the coefficients C(j νj) Ij

α, gj , bj
specify vector or tensor indices. If

C is a rank-1 tensor and is labeled by a single index, Ij may be identified with that
index. If C is a rank-2 tensor, then the index Ij may refer to pairs of Cartesian
indices; for example, if the tensor is symmetric,5 the consecutive values 1, 2, . . . , 6 of
Ij may correspond to pairs (1, 1), (1, 2), . . . , (3, 3).

11. The indices I in the matrix elements A(ν) I(·) have the same meaning as in the coef-
ficients C. (In practice, I will be usually just a single Cartesian index.)

12. The tensor algebra (index contraction) is handled by taking the sum over �: the arrays
Ij(�) and I(�) define then the matching tensor indices, their pairs, etc.

Matrix storage. In practice, for larger problems it is always necessary to use matrix
compression. Hence, the matrix blocks Aν1 ν2 are stored as sparse matrices, involving only
couplings between spatially close geometry elements. Therefore, an important aspect of
matrix construction is determination of its sparsity structure, based on distances between
the geometry elements; the problem is relatively complex, since different near-field ranges
will be needed for various types of matrix elements (near-field matrix element computation
and storage is expensive, hence we want to reduce the near field range as much as possible).
In addition, of course, we will have to store additional matrix data required in compression,
such as coefficients for mapping basis functions into equivalent Cartesian-grid sources.

Further, parallel implementation of the solver requires utilization of geometry segments
(slices or stacks of slices) rather than a single global geometry. Thus, matrix blocks are
always constructed, on a given processor, by using locally available geometry segments.

5The symmetry may follow, e.g., from the relations (6.66).

56



Organizing matrix construction. Obviously, the most time consuming element in the
matrix computation is the evaluation of the basic matrix elements A(g1, b1; g2, b2) them-
selves. Therefore, in order to minimize the computational cost without introducing addi-
tional storage, many (perhaps all) matrix blocks should be created incrementally, but in
parallel – in the sense that, having computed a given matrix element A(g1, b1; g2, b2), one
should add its contribution to all relevant matrix elements. One sould also carry out far-
field subtractions on-the-fly, while storing near-field matrix elements (this is particularly
important in the parallel computation).

The envisaged scheme is as follows

1. Compute blocks of coefficients C(j νj).

2. Compute MoM-Cartesian mappings.

3. Compute maps D “inverse” to the maps C, in the sense of mapping a given geometry
element onto a set of unknowns. We define separate maps D for the types of geometry
elements involved (here, tetrahedra and facets) and for the types of unknowns (e.g.,
pressure and displacement). I.e., for each type of the g-element g and each type of
unknown ν we define a matrixD(j νj)

g;α , in integer compressed sparse row format (integer
CSR); rows of this matrix will be labeled by the g-elements and each row will contain
a list of unknown numbers corresponding to the basis function numbers b.

4. Compute sparsity patterns of matrix blocks (or “sub-blocks”, if various types of ele-
ments are involved – e.g., interface and interior elements, etc.). In the parallel code,
the computed sparsity patterns must take into account location of elements in geom-
etry segments; e.g., row indices must always refer to the “home” geometry slice, while
column indices may refer to elements in the stack of slices.

5. On the basis of nonzero coefficients C(j νj) and the sparsity patterns, create lists of
geometry elements that will be required in the matrix computation (or, maybe, set
flags for elements in the input geometries). For instance, we may use all tetrahedra
in the geometry, but only some triangles (those at interfaces), etc.

6. Carry out loops over selected geometry elements. For each pair of elements:

(a) compute all basic matrix elements (as required by the coefficients C(j νj) and
sparsity patterns);

(b) compute far-field subtractions (in terms of the MoM-Cartesian mappings) and
modify the evaluated matrix elements;

(c) add their contributions to the required blocks.
Schematically, if we assume the sparsity patterns are stored in terms of g-
elements, the structure of the loop is

57



for ng1 = 1, . . . ,nng1
// get geometry data γ1 of g-element ng1
// compute and store MoM-Cartesian mapping coefficients for g-elem. ng1:

W 1 = W (1)(γ1)
// get number of near elements in the sparsity pattern:
nng2 = . . .

for ng2 = 1, . . . , nng2
// get geometry data γ2 of g-element ng2
// compute MoM-Cartesian mapping coefficients for g-elem. ng2:

W 2 = W (2)(γ2)
// store W 2 only for γ2 in home slice
// get basic MoM matrix element for the g-elements γ1, γ2:

AMoM = A(γ1, γ2)
// get basic far-field matrix element for the g-elements γ1, γ2:
// [this should be modified to take into account derivatives of g]

AFar = W 1 gW
T
2

// get numbers of unknowns associated with γ1 and γ2:

kkx1 = K(D(1)(ng1))

kkx2 = K(D(2)(ng2))
for kx1 = 1, . . . , kkx1

// get unknown number from inverse mapping:

nx1 = D(1)(ng1, kx1)
// get the coefficient relating the unkn. nx1 and the g-elem. ng1:

c1 = C(1)(nx1, ng1)
for kx2 = 1, . . . , kkx2

// get unknown number from inverse mapping:

nx2 = D(2)(ng2, kx2)
// get the coefficient relating the unkn. nx2 and the g-elem. ng2:

c2 = C(2)(nx2, ng2)
// add computed contribution to the output matrix element:

A(nx1, nx2)+= c1 c2 (AMoM −AFar)
endfor kx2

endfor kx1
endfor ng2

endfor ng1

(6.91)

We stress that in the above scheme the MoM-Cartesian mapping is computed on-the-
fly. Out of all the mapping coefficient sets W we store only those which are needed in the

58



matrix-vector multiplication.

7 Implementation of the volumentric integral-equations code
for elasticity

We describe here the initiated implementation of the integral solver code for elasticity. The
work is in progress, and its main goal is to develop a comprehensive library of functions
covering various types of integral equations described in this report.

7.1 The code structure

The present version of the code contains several routines written to allow testing of various
types of integral equations in acoustics.

The general idea of the code is to use combinations of as simple routines as possible.
In particular, geometry data, mapping between geometry elements and unknowns, and
material data are kept separate, and handled, as far as possible, by separate routines.
Thus, for example, there are separate routines for

1. Computing mapping between geometry elements (“g-elements”) and unknowns, using
as input geometry and material data.

2. Generating sparsity pattern of the near-field matrix blocks, using as input geometry,
geometry-unknown mapping, and compression data.

3. Generating sparsity pattern of the near-field matrix blocks, using as input geometry,
geometry-unknown mapping, and compression data.

4. Generating blocks of “basic” matrix elements between the “fundamental” basis func-
tions supported on g-elements, using as input geometry, geometry-unknown mapping,
and matrix sparsity patterns.

5. Generating sets of material-depending coefficients appearing in matrix elements for
the actual equations (defined in terms of the “composite” basis functions).

6. Assembling matrix blocks of the final matrix for the given integral equation, using
as input geometry (its connectivity data), matrix blocks for the “fundamental” basis
functions, and the material-dependent coefficients computed in the previous step.

7. Generating MoM-to-Cartesian mapping coefficients for the “fundamental” basis func-
tions, using as input geometry and geometry-unknown mapping.

8. Assembling MoM-to-Cartesian mapping coefficients for the “composite” basis func-
tions, using as input geometry, the previously computed mapping, and the material-
dependent coefficients.

59



Blocks of the MoM matrix are computed according to the formula

A
(ν)

α1=K1(ν,κ) ρ1(ν,κ,r1)+I1(ν,κ,t) , α2=K2(ν,κ) ρ2(ν,κ,r2)+I2(ν,κ,t)

+ =
∑
σ1

∑
σ2

∑
γ1

∑
γ2

νmax∑
ν=1

Kν∑
κ=1

B(ν)
κ

∑
r1

∑
r2

tκ∑
t=1

C(1)(ν, κ, r1, I1(ν, κ, t))C
(2)(ν, κ, r2, I2(ν, κ, t))A

(ν, κ, I(ν,κ,t))
σ1γ1 , σ2γ2

,

(7.1)

which is more explicit from of Eq.(6.90).
The expression (7.1) represents a set of νmax matrix blocks, ν = 1, . . . , νmax. The ν sum

on its r.h.s. has to be understood as a loop in which contributions to the individual matrix
blocks are being accumulated. In this loop the unknown numbers α1 and α2 are expressed
in terms of the tensor indices I1 and I2, which are given by the tensor multiplication table
for the given matrix block number ν and the given pair κ of mapping data. The tensor
index I – selecting an element from the set of the basic matrix elements – is also determined
by the tensor multiplication table. The unknowns indices α1 and α2, labeling the output
matrix element, are functions of the sum (loop) indices ν, κ, r1, r2, and t.

The actual implementation of the expression (7.1), in terms of loops and variables in
the code, is given by Eq.(7.18). To facilitate the comparison of the formula (7.1) and the
pseudo-code, we show here the correspondence between the relevant quantities, particularly

60



the indices (labeled by j = 1, 2):

νmax → nnu (number of matrix blocks) ,
σj → kgtj (g-element type) ,

γj → ngj (g-element number) ,

ν → nu (matrix block number) ,
Kν → kkcc

= ppcb[nu]->pcob->na (number of pairs of mapping data sets) ,
κ→ kcc (index of a pair of mapping data sets) ,

B(ν)
κ → cb

= ppcb[nu]->pcob->paa[kcc] (value of the coupling coefficient) ,
c1 → ncaj

= ppcb[nu]->pcob->pia[kcc] (index of the first mapping data set) ,
c2 → ncaj

= ppcb[nu]->pcob->pja[kcc] (index of the second mapping data set) ,
Kj → kkxcj

= ppcaj[ncaj]->kkx (number of unknowns per reduced unkn.) ,
rj → narj (g-element → unkn. mapping index) ,

ρj → nrj

= ppcaj[ncaj]->pcsr->pja[narj] (reduced unknown index) ,
t→ nat (number of tensor multipl. table) ,
I1 → ni1

= ppcb[nu]->ppcot[kkc]->pia[nat] (first tensor index) ,
I2 → ni2

= ppcb[nu]->ppcot[kkc]->pja[nat] (second tensor index) ,
I → nia

= ppcb[nu]->ppcot[kkc]->paa[nat] (tensor index of the basic matrix element) ,
αj → nxj

= kkxcj * nrj + nij (unknown number) .
(7.2)

Running summation (loop) indices are marked with boldface descriptions.
The main point of using the scheme of computation of Eq.(7.1) and the code (7.18) is to

minimize the amount of work and storage in the most expensive operations of computing
the “basic” matrix elements (between the “elementary” basis functions). A set of such
elements, with all required tensor indices I, is evaluated for the given pair of g-elements, γ1

and γ1, as soon as these indices are set, i.e., outside the sums/loops over the indices ν, κ,
r1, and r2. This set of values is only stored temporarily, and its contributions to all blocks
and elements of the matrix are evaluated in the inner loops (through ν, κ, r1, r2).

61



The procedure of generating input data for the computation of the stiffness matrix
blocks, and the actual computation is shown, schematically, in Fig. 3. We will repeatedly
refer to this Figure and explain its details in the following.

Figure 3: Schematics of construction of matrix blocks. Data are marked with ovals, the
remaining entries are routines called in the code.

7.2 Data structures

Geometry elements, basis functions, and unknowns. As an input to construction
of the stiffness matrix, we consider two types of geometries:

1. Two-dimensional manifolds discretized with triangles. The triangles (or facets, de-
noted by f) are referred to as s-elements (surface elements) and the edges as the as
b-elements (boundary elements). Those geometries form boundaries of and inter-
faces separating various material regions.

2. Three-dimensional manifolds discretized with tetrahedra (a generalization to hexahe-
dra is possible but only partly implemented). In this case the tetrahedra (denoted
by t) are referred to as s-elements and the their boundaries (i.e., triangular facets,
denoted by f) as b-elements.

Hence,

2-dim: s-element: facet f b-element: edge e , (7.3a)
3-dim: s-element: tetrahedron t b-element: facet f . (7.3b)

62



We refer to all these geometry elements as “g-elements”. The elements are oriented, i.e., an
edge are defined as an ordered pair of vertices, and a facet as an ordered triplet, defining
the direction of the normal according to the right-handed screw rule.

In the code s-elements are usually indexed by ns and b-elements by nb. The index ng
is normally used for general g-elements.

Geometries are described in the code by the structure CGEO, whose main elements are:

1. cdim: number of dimensions of the geometry (as a manifold), i.e., 1 for a curve, 2 for
a surface, 3 for a volume.

2. nnv: number of vertices.

3. nns: number of s-elements.

4. nnb: number of b-elements.

5. nsvx: number of vertices per s-element, e.g., 4 for tetrahedra.

6. nbvx: number of vertices per b-element, e.g., 3 for triangles (facets).

7. nnsd: number of sides of an s-element, e.g., 4 for tetrahedra.

8. pvx: array of sequentially stored (x, y, z) coordinates of the vertices, hence 3 * nnv
floating point numbers.

9. psv: array of numbers of vertices defining s-elements, hence nsvx * nns integers,
with values from 1.

10. pbv: array of numbers of vertices defining b-elements, hence nbvx * nnb integers,
with values from 1.

11. psb: array of numbers of b-elements forming boundaries of s-elements, hence nnsd *
nns integers, with signed values from ±1. The signs define orientation of a b-element
with respect to the s-element. E.g., for cdim = 3, psb > 0 if the facet (b-element)
orientation is away from the tetrahedron (s-element). Similarly, for cdim = 2, psb > 0
if the edge (b-element) orientation relative to the facet (s-element) is counter-clockwise
(looking from the positive side of the facet).

12. pbs: array of numbers of s-elements adjacent to b-elements, hence 2 * nnb integers,
with values from 1. The first entry in each pair is the number of the s-element on the
negative side of the b-element. If the b-element is a facet, its negative side is opposite
the direction of the normal. If it is an edge, its negative side is the left side when
looking from the positive side of the surface. If the b-element has only one adjacent
s-element, the missing entry in the pair is zero.

We also consider several types of “fundamental” basis functions associated with s-
elements of the geometry:

(i) For cdim = 2:

63



1. Constant scalar basis functions supported on facets.

2. Linear scalar basis functions supported on facets.

3. Linear vector basis functions supported on facets.

(ii) For cdim = 3:

1. Constant scalar basis functions supported on tetrahedra.

2. Linear scalar basis functions supported on tetrahedra.

3. Linear vector basis functions supported on tetrahedra.

The above basis functions can be combined to form “composite” basis functions sup-
ported on sets of s-elements, and associated with various g-elements. There are also relations
between some of these basis functions and derivatives of other functions.

Material parameters. We assume material parameters constant over s-elements. In the
code they are described by the pair (kkms, pms), where int kkms is the number of parameters
per s-element, and COMPLEX pms[] is the array of parameter values stored sequentially for
all s-elements (i.e., kkms * nns complex numbers). For example, in acoustics we have
kkms = 2, corresponding, e.g., to relative density and relative compressibility of the material.
In elasticity we need kkms = 3 in order to access relative density, and relative values of Lamé
coefficients.

Tensor tables. The tables used to combine tensor indices of basis functions into in-
dices of matrix elements are stored in predefined integer matrices in the coordinate format,
MI_COO *pcot. They appear in Fig. 3 under the generic name pcot_.... A set of various
tables is defined and then used as input to further operations.

Unknown ↔ g-element mapping tables. These tables are stored as integer matrices
in the sparse-row format, MI_CSR *pcsg (for the “forward” mapping from unknowns to
g-elements) and MI_CSR *pcsr (for the inverse mapping). More details on these mappings
are given below in the description of the structure CCFA of the mapping coefficients.

Unknown ↔ g-element mapping data. Sets of tables coefficients relating basis func-
tions to g-elements (such as ppca1 and ppca2 in Fig. 3) are stored in structures CCFA defined
in the header vmax_ccfa.h as

64



/* structure for storing C coefficients -- prefix ca */
typedef struct
{
char name[80]; /* name to identify the object */
int kxt[3]; /* unknown type:

kxt[0] -- unknowns associated with:
0(vertex) 1(edge) 2(facet) 3(tetrahedron)
kxt[1] -- physical quantity (tensor rank)
0(pressure) 1(displacement) 3(stress tensor)
kxt[2] -- physical problem type

*/
int kgt; /* g-element type:

0(vertex) 1(edge) 2(facet) 3(tetrahedron) */
int kbt; /* basis function type: 0(const) 1(linear) */
int nnx; /* number of unknowns */
int nnr; /* reduced number of unknowns */
int kkx; /* number of unknowns per "reduced unknown" */
int nni; /* additional number of tensor components (not used) */
/* mapping: unknowns --> geometry elements

-- allocation: nnr (if nnr > 0) or nnx */
MI_CSR *pcsg; /* arrays of lists of g-elements for (red.) unkns.

* row # (from 0) = nr = reduced unknown #
* col # (from 1) = ng = g-element #
* value (from 1) = kb = # of the basis fn. (< kkx)
*/

/* inverse mapping: geometry elements --> unknowns
-- allocation: nng
constructed as transpose of pcsg, except that the values
are addresses nag in pcsg */

MI_CSR *pcsr; /* arrays of lists of (red.) unknowns for g-elems.
* row # (from 0) = ng = g-element #
* col # (from 1) = nr = reduced unknown #
* value (from 1) = nag = storage # in pcsg
*/

/* coefficient values: */
COMPLEX *pgc; /* array of values with access given by pcsg:

C = pgc[nag][kx][ni]
for each element of pcsg: [kkx][nni] values
(nni not used) */

} CCFA;

(7.4)

In this structure:

1. The array is given a name name for identification.

2. The array of three integers kxt[3] characterize the unknown type: the g-element with
which the unknown is associated and the tensor rank related to the given physical
quantity; the third number is currently not used (it is set to an undefined value, -1).

65



3. The integer kgt defines the g-element type.

4. The integer kgt defines the basis function type.

5. The integer nnx denotes the number of unknowns.

6. The integer nnr denotes the “reduced number of unknowns”, i.e., generally, the num-
ber of unknowns not counting the number of their tensor components. E.g., for vector
displacement unknowns nnr is equal to the number of vertices, while nnx is three
times that number. By using nnr instead of nnx we can avoid replicating identical
coefficients for several tensor components.

7. The related entry, kkx, is the number of unknowns per reduced unknown, e.g., 3 for
a vector displacement unknown.

8. The entry nni is the number of tensor components characterizing the basis function.

9. The integer sparse-row format matrix MI_CSR *pcsg defines the mapping from re-
duced unknowns to geometry elements: its rows are indexed by reduced unknown
numbers, columns by g-element numbers, and the values store the numbers of basis
functions (up to kkx). Usually, to one unknown there correspond several g-elements;
e.g., a vector displacement unknown associated with a vertex is supported by a set of
tetrahedra sharing that vertex.

10. The integer sparse-row format matrix MI_CSR *pcsr defines the mapping inverse to
the previous one, i.e., from geometry elements to the reduced unknowns: its rows
are indexed by g-element numbers, and columns by reduced unknown numbers. In
this case the values stored in the the matrix are storage numbers of elements in the
previous matrix, pcsg. This information is used in constructing matrix elements in a
loop through g-elements in the routine SetAAnCC, as described below.

11. Finally, the coefficient values are stored in the complex array pgc. The array contains
kkx * nni values for each element of the mapping array pcsg. These values may, in
general, depend on the material parameters.

Tables of coupling coefficients. Each MoM matrix block6 is constructed by specifying
a set of “coupling coefficients” which specify how to combine products of basis functions
(associated with unknowns) into matrix elements. These coefficients are stored in a structure

6Compressed matrix blocks will be created in a similar scheme.

66



/* structure for storing coefficients B and multiplication tables T
-- prefix cb */

typedef struct
{
char name[80]; /* name to identify the object (matrix block) */
MC_COO *pcob; /* array of coefficients B defining couplings

* row # (from 0) = nu1 = number of the set C^1
* col # (from 1) = nu2 = number of the set C^2
* value = b = complex value of the coeff.
* elements are assumed to be sorted by rows and cols
*/

MI_COO **ppcot; /* array of index (tensor) multiplication tables
* one MI_COO matrix for each element of pcob
*/

TNAME *ptname; /* array of names of multiplication tables
* one name for each element of pcob
*/

} CBFA;

(7.5)

In this structure:

1. The name name identifies the set of coupling coefficients and thus the resulting matrix
block.

2. The complex coordinate-format matrix MC_COO *pcob specifies a set of pairs of un-
known ↔ g-element mapping data (C(1), C(2)), identified by their numbers, and com-
plex coefficients with which contributions of those pairs are to be added to the result.

3. To each element of the matrix MC_COO *pcob there corresponds a pointer to a tensor
multiplication table.

4. Names of the above multiplication tables are also stored in an array.

7.3 Operations

We describe here the main operations executed by the code in assembling blocks of MoM
matrix elements, according to the procedure represented in Fig. 3.

Structure of the matrix construction “driver”. We reproduce below parts of the
present main program which serves as a driver for generating blocks of the MoM matrix.
This code is a simple illustration of the data flow shown in Fig. 3.

67



// set up material data: kkms1, pms1, kkms2, pms2

// set up two tensor multiplication tables
MI_COO *pcot = NULL;
// s s -> s (scalar scalar -> scalar)
StoreICOO(pcot_sss, 1, 1, 1);
// v v -> t (vector vector -> symmetric_tensor)
StoreICOO(pcot_vvt, 1, 1, 1); StoreICOO(pcot_vvt, 1, 2, 2);
StoreICOO(pcot_vvt, 1, 3, 3);
StoreICOO(pcot_vvt, 2, 2, 4); StoreICOO(pcot_vvt, 2, 3, 5);
StoreICOO(pcot_vvt, 3, 3, 6);

// create nnu = 2 sets of coupling data ppcb[]
nnu = 2;
// first set
pcb = ppcb[0];
AddCb(pcb, 1, 1, COMPLEX(1.), pcot_sss, "t_sss");
AddCb(pcb, 2, 1, COMPLEX(2.), pcot_sss, "t_sss");
// second set
pcb = ppcb[1];
AddCb(pcb, 1, 1, COMPLEX(2.), pcot_vtv, "t_vtv");
AddCb(pcb, 2, 1, COMPLEX(1.), pcot_vtv, "t_vtv");

// set up 3 unknown - g-element mapping tables pcsg...
// and inverse mapping tables pcsr...
// for G1:
pcsgC_f_dTvD = pcsSetGC_f_dTvD(pcgeo1);
pcsrC_f_dTvD = pcsSetR(pcsgC_f_dTvD);
pcsgL_f_Fv = pcsSetGL_f_Fv(pcgeo1);
pcsrL_f_Fv = pcsSetR(pcsgL_f_Fv);
// for G2:
pcsgC_t_Tv = pcsSetGC_t_Tv(pcgeo2);
pcsrC_t_Tv = pcsSetR(pcsgC_t_Tv);

// create nnca1 = 2 sets of mapping data for G1, nnca2 = 1 sets for G2
nnca1 = 2; nnca2 = 1;
// create elements of arrays of mapping data
// for G1:
ppca1[0] = pcaSetC1_C_f(pcgeo1, kkms1, pms1,

pcsgC_f_dTvD, pcsrC_f_dTvD, "C_f");
ppca1[1] = pcaSetC1_L_f(pcgeo1, kkms1, pms1,

pcsgL_f_Fv, pcsrL_f_Fv, "L_f");
// for G2:
ppca2[0] = pcaSetC2_C_t(pcgeo2, kkms2, pms2,

pcsgC_t_Tv, pcsrC_t_Tv, "C_t");

// compute nnu = 2 matrix blocks ppcsAn[]
SetAAnCC(ak0, pcgeo1, pcgeo2, nnu, ppcb, nnca1, nnca2, ppca1, ppca2, &ppcsAn);

(7.6)

68



Construction of tensor multiplication tables. In the initial stage of code execution
we define a set of tables for operations on tensor indices of the basis functions and matrix
elements. They are generated “by hand” by calling the routine StoreICOO (Fig. 3) and
specifying nonzero elements of the tables. E.g., the table specifying a symmetric tensor in
terms of two vectors is constructed by

// v v -> t (vector vector -> symmetric_tensor)
pcot = pcoICOOz();
StoreICOO(pcot, 1, 1, 1);
StoreICOO(pcot, 2, 2, 4);
StoreICOO(pcot, 2, 3, 5);
StoreICOO(pcot, 1, 2, 2);
StoreICOO(pcot, 1, 3, 3);
StoreICOO(pcot, 3, 3, 6);
MI_COO *pcot_vvt = pcoSortICOO(pcot); (7.7)

These instructions (in which table elements may be entered in any order – they are sorted
in the result) create a table named pcot_vvt which is shown in the test output as

T_vvt:

1 2 3
--------------

1 1 2 3
2 4 5
3 6 (7.8)

It indicates how the pairs of components of two vectors are assigned to the six independent
components of the symmetric tensor; the row numbers refer to the first, and the column
numbers to the second vector.

Construction of mapping tables. The code constructs a set of tables describing map-
ping between the unknowns and the g-elements (pcsgC_... and pcsgC_... in Fig. 3).

The forward mappings are generated, for specific cases, by separate routines, called with
one of the geometries as the argument. For example, the forward mapping for linear basis
functions supported on faces f in sets of faces Fv sharing a vertex v, in the first geometry,
is generated by the routine

// Returns pcsg for linear b.f., f in F_v.
// input:
// pcgeo = geometry
MI_CSR *pcsSetGL_f_Fv(CGEO *pcgeo) (7.9)

in vmax_cffa_c.cpp. It is called as

MI_CSR *pcsgL_f_Fv = pcsSetGL_f_Fv(pcgeo1); (7.10)

69



and stores the output as the array pcsgL_f_Fv.
All inverse mappings are generated from the forward ones by calling the same routine

pcsSetR. E.g., in the considered example, the inverse mapping is obtained by

pcsrL_f_Fv = pcsSetR(pcsgL_f_Fv); (7.11)

Construction of mapping data. The final set of mapping data, representing relations
between the unknowns and g-elements (ppca1 and ppca2 in Fig. 3)

Specific tables of coefficients C for various sets of unknowns and basis functions are
generated by specialized routines. For example, a set of coefficients C(1) for linear basis
functions supported on faces is generated by the routine

// Computes and returns a set of C coefficients for a specific set
// of unknowns and basis functions
// input:
// pcgeo = geometry
// kkms = number of material parameters per s-element
// pms = array of material parameters values for s-elements
// pcsg = a mapping table: unknowns --> g-elements
// pcsr = a mapping table: g-elements --> unknowns
// szName = name of the set
//
// C for set 1 of linear basis functions supported on facets
CCFA *pcaSetC1_C_f(CGEO *pcgeo, int kkms, COMPLEX *pms,

MI_CSR *pcsg, MI_CSR *pcsr, char *szName) (7.12)

It may be called with various unknown ↔ g-element mappings. E.g., the call

pca1 = pcaSetC1_L_f(pcgeo1, kkms1, pms1,
pcsgL_f_Fv, pcsrL_f_Fv, "L_f"); (7.13)

creates the coefficient set named L_f by using as arguments the geometry pcgeo1, material
parameters specified by kkms1 and pms1, and the mapping tables pcsgL_f_Fv and its inverse
pcsrL_f_Fv. These mapping tables have been created previously (Eqs. (7.10) and (7.11))
for basis functions supported on faces f in sets of faces Fv sharing a vertex v.

One of the sets of the mapping data is shown in the test output as

70



C^(1)2:
----------------------
name: L_f
kxt: 0 1 -1
kgt: 2
kbt: 1
nnx: 375
nnr: 125
kkx: 3
nni: 3
pcsg:
125 rows, 1020 columns, 3060 elements
rows: 1 ... 125 (125), columns: 1 ... 1020 (1020)
pcsr:
1020 rows, 125 columns, 3060 elements
rows: 1 ... 1020 (1020), columns: 1 ... 125 (125)
#g: 3060 #g / #r: 24.5
pgc: 27540 elements |C|: 13139.8 (7.14)

Construction of coupling data. The coupling data (an array of which is denoted by
ppcb in Fig. 3) are constructed “by hand” by selecting specific sets of mapping data pairs
(C(1), C(2)), the corresponding coefficients, and the tensor multiplication tables. For in-
stance, the second set of coupling data in the example code is generated by the instructions

pcb = ppcb[1];
AddCb(pcb, 1, 1, COMPLEX(2.), pcot_vtv, "t_vtv");
AddCb(pcb, 2, 1, COMPLEX(1.), pcot_vtv, "t_vtv"); (7.15)

The result of these assignments is shown in the test output as

B^2_nu1_nu2
-------------------------------------
nu1 nu2 Re B Im B C^(1) C^(2) T

-------------- -------------- --------------
1 1 2 0 C_f C_t t_vtv
2 1 1 0 L_f C_t t_vtv

(7.16)

Construction of a set of matrix blocks. The final stage of assembling a set of nnu
matrix blocks ppcsa (Fig. 3) is carried out by the routine

71



// Allocates and computes set of near-field matrices ppcsa
// for a set of coupling coefficients B = ppcb,
// and mapping coefficients ppca1 and ppca2
// input:
// ak0 = wave number
// pcgeo1 = geometry 1
// pcgeo2 = geometry 2
// nnu = number of matrices to be created
// ppcb = array of nnu coupling coefficients B
// nnca1 = number of sets of mapping coefficients C^1
// nnca2 = number of sets of mapping coefficients C^2
// ppca1 = array of nnca1 sets of coefficients C^1
// ppca2 = array of nnca2 sets of coefficients C^2
// output:
// ppcsa = array of nnu matrix blocks
void SetAAnCC(FLOAT_T ak0, CGEO *pcgeo1, CGEO *pcgeo2,

int nnu, CBFA **ppcb,
int nnca1, int nnca2, CCFA **ppca1, CCFA **ppca2,
MC_CSR ***pppcsa)

(7.17)

in vmax_ccfa.cpp.
The routine uses as input:

1. The wave number ak0.

2. The geometries G1 and G2 (pcgeo1 and pcgeo2), set of nnu coupling-coefficient data
ppcb.

3. Numbers nnca1 and nnca2 of sets of mapping coefficients C(1) and C(2) to be used in
the construction (they are only used to check index values).

4. Arrays ppca1 and ppca2 of mapping coefficient data C(1) and C(2).

The output generated by the routine – a set of nnu matrices – is stored in the array of
matrices ppcsa.

The general structure of the routine is summarized in the pseudo-code

72



// loops through g-element types for geometries G1 and G2

for kgt1 = 1, . . . , 3

nng1 = nngk1[kgt1] // number of g-elements of type kgt1

// get pointer to the required type kgt1 of g-elements for geom. G1:

pg1 = pcgeo1-> · · ·
for kgt2 = 1, . . . , 3

nng1 = nngk1[kgt1] // number of g-elements of type kgt1

// get pointer to the required type kgt2 of g-elements for geom. G2:

pg2 = pcgeo2-> · · ·
// loops through g-elements in geometries G1 and G2

for ng1 = 1, . . . , nng1

for ng2 = 1, . . . , nng2

// compute set of basic matrix elements, store in paan

SetAg1g2(pg1, ng1, pg2, ng2, paan)

// loop through numbers nu of blocks to be generated

for nu = 1, . . . , nnu

pcb = ppcb[nu] // coupling coefficient data for the matrix block nu

pcob = pcb->pcob // array of coupling coefficients for sets of basis functions

kkcc = pcob->na // number of pairs of mapping data sets

ppcot = pcb->ppcot // set of tensor-component multiplication tables

// loop through pairs of mapping data sets (C(1), C(2))

for kcc = 1, . . . , kkcc

// get coupling coefficient B and tensor multiplication table

// (for later use)

cb = pcob->paa[kcc] // coupling value

pcot = ppcot[kcc] // tensor multiplication table

nnat = naICOO(pcot) // number of its elements

// get numbers of mapping data sets (C(1), C(2)) (row and col.)

nca1 = pcob->pia[kcc]

nca2 = pcob->pja[kcc]

pca1 = ppca1[nca1] // mapping data 1

pca2 = ppca2[nca2] // mapping data 2

// get numbers of unknowns per reduced unknown

kkxc1 = pca1->kkx

kkxc2 = pca2->kkx

pcsr1 = pca1->pcsr // inverse mapping table 1

pcsr2 = pca2->pcsr // inverse mapping table 2

pgc1 = pca1->pgc // mapping coefficients 1

pgc2 = pca2->pgc // mapping coefficients 2

// get bounds for loops through inverse mappings elements

nnar11 = pcsr1->pia[ng1]

nnar12 = pcsr1->pia[ng1 + 1]

nnar21 = pcsr2->pia[ng2]

nnar22 = pcsr2->pia[ng2 + 1]

73



// loop through elements of of the inverse map 1

for nar1 = nnar11, . . . , nnar12

nr1 = pcsr1->pja[nar1] // reduced unkn. 1 number

nag1 = pcsr1->paa[nar1] // dir. map. storage number 1

// loop through elements of of the inverse map 2

for nar2 = nnar21, . . . , nnar22

nr2 = pcsr2->pja[nar2] // reduced unkn. 2 number

nag2 = pcsr2->paa[nar2] // dir. map. storage number 2

// loop through elements of the tensor multipl. table

for nat = 1, . . . , nnat

// get tensor indices

ni1 = pcot->pia[nat]

ni2 = pcot->pja[nat]

// get basic matrix element tensor index

nia = pcot->paa[nat]

// get unknown numbers

nx1 = kkxc1 * nr1 + ni1

nx2 = kkxc2 * nr2 + ni2

// get mapping coefficients

ac1 = pgc1[kkxc1 * nag1 + ni1]

ac2 = pgc2[kkxc2 * nag2 + ni2]

// multiply basic matrix element by coefficients

cba = cb * ac1 * ac2 * paan[nia]

// add to element in output block nu

StoreAddCSRna(ppcsa[nu], nx1, nx2, cba)

endfor nat

endfor nar2

endfor nar1

endfor kcc

endfor nu

endfor ng2

endfor ng1

endfor kgt2

endfor kgt1

(7.18)

8 Summary of the developments in formulation and imple-
mentation of integral equations for elasticity

We have described the formulation of several types of integral equations we are implementing
in our solver, and the detailed expressions for the resulting matrix equations. As the
presented material shows, the structure of the equations is quite complex and requires a
significant amount of analytic and programming work.

74



In the area of code implementation, we have designed a general and flexible solution
scheme involving construction of the stiffness matrix, its compression, and matrix-vector
multiplication routines, which allows relatively easy implementation of various types of
integral equations, including volumetric and surface equations, equations based on first- and
second-order formulations, and equations specially adapted to high-contrast problems, hence
involving different unknown fields and treating material properties in various ways. Our
general goal, however, is not to unnecessarily restrict the allowable types of equations, but
rather keep the scheme open-ended and allow incorporating new formulations in a possibly
straightforward way. To this end, we are developing a comprehensible and extensible library
of routines for constructing particular blocks and sets of matrix elements, as well as their
compressed representations, appearing in various integral-equation formulations. These
routines create input data used by a general routine whose task is to assemble the entire
matrix and store it in a compressed form; the overall scheme of the matrix construction is
visualized in Fig. 3 and exemplified with a set of routines described in Sec. 7.3.

75



References

[1] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Fast volumetric integral-equation
solver for high-contrast acoustics,” J. Acoust. Soc. Am., vol. 124, pp. 3684–3693, 2008.

[2] Y.-H. Pao and V. Varatharajulu, “Huygens’ principle, radiation conditions, and integral
formulas for the scattering of elastic waves,” J. Acoust. Soc. Am., vol. 59, pp. 1361–1371,
1976.

[3] A. Ben-Menahem and S. J. Singh, Seismic Waves and Sources. New York: Springer-
Verlag, 1981.

[4] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. Cambridge, MA:
National Bureau of Standards, 1964.

[5] F. J. Rizzo, I. J. Shippy, and M. Rezayat, “A boundary integral equation method for
radiation and scattering of elastic waves in three dimensions,” Intern. Journal for Nu-
merical Methods in Engineering, vol. 21, pp. 115–129, 1985.

76


