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AFIT/GAE/ENY/10-M12 

Abstract 

This research proposes a conceptual design tool to determine optimal performance 

requirements of a hybrid-power system for Micro Air Vehicles (MAVs) comparable in 

size to the Cooper’s Hawk.  An inviscid aerodynamic code, Athena Vortex Lattice 

(AVL), and a motor-propeller analysis code, QPROP, provide overall lift, drag, and 

thrust data for power-required calculation as functions of many variables to include mass, 

platform geometry, altitude, velocity, and mission duration.  Phoenix Technologies’ 

Model Center was used to integrate these multi-disciplinary components with a power 

management algorithm that can determine propulsion system mass for a given specific 

power and specific energy in order to perform the requested mission.  Any component or 

subcomponent can be analyzed within Model Center using trade studies and optimization.  

As additional analysis software becomes available, it will be easily interchangeable 

within the Model Center architecture.  This proof-of-concept study demonstrates a high-

level analysis tool for MAV propulsion system design and improvement.  The tool was 

used to simulate an Intelligence, Surveillance, and Reconnaissance (ISR) mission for the 

fixed wing Generic Micro Aerial Vehicle (GenMAV) and determined system level power 

and hybrid-power source requirements.  The sizing strategy between a high specific 

power source and a high specific energy source was investigated.  Due to the current 

technology of small fuel cells with low specific power, results show that a MAV fuel 

cell-battery hybrid-power system would not perform better than a pure battery or battery-

battery power system.  However, a feasible fuel cell capability requirement of at least 325 



 

v 

W/kg matched with at least 921 W-hr/kg was identified as a fuel cell – Li-Po solution for 

a defined 30 min mission resulting in reduced power system mass compared to using only 

Li-Po batteries.  Utilizing enhanced specific power and energy fuel cell properties and 

current Li-Po battery properties, both a 30 min and 60 min mission were shown to have a 

reduced mass through hybridization.  The feasibility and sizing strategy of hybrid-power 

components depends upon both mission requirements and power source component 

intrinsic properties.  
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CONCEPTUAL DESIGN TOOL FOR FUEL-CELL POWERED  

MICRO AIR VEHICLES 

 

I. Introduction 

I.1. Motivation 

I.1.1. Unmanned Aircraft Systems (UASs):  For Today and Tomorrow 

Execution of Operation Enduring Freedom (OEF) and Operation Iraqi Freedom 

(OIF) cost 5308 U.S. lives and wounded 36,350 U.S. personnel by the end of 2009.
1
  The 

vast majority of these casualties occurred during OIF post combat operations when 

patrols and convoys became more susceptible to Improvised Explosive Devices (IEDs).  

Any additional reconnaissance and situational awareness critically aids the mission and 

those charged with accomplishing the mission.  Because lives and resources are at stake, 

one of the most instrumental uses of UASs is Intelligence, Reconnaissance, and 

Surveillance (ISR).  

However, UASs can be used for many additional mission essential applications.  

In addition to ISR, UASs could find useful employment in the placing of sensor 

equipment, relaying of communications, monitoring of the environment, controlling of 

crowds, surveying of land, and miscellaneous security.
2
  They can be used for homeland 

security, law enforcement, border security, weather monitoring, and aerial video capture 

for sports events.
3
  UASs can be tailored for ―environmental compatibility‖

4
 with low 

acoustic, thermal, visual, or pollutant emission designs.  In fact, UASs are ideal for any 

aerial job that may be dull, dirty, or dangerous.
5
  The hand-launched and man-carried 

variety find applications to irregular warfare, such as personal ISR, Signals Intelligence 
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(SIGINT), cyber warfare, Electronic Warfare (EW), Counter-UAS, and automatic sentry 

duty.
6,7

  These families of systems are quite limited currently, but with technological 

maturation will transform the way wars are fought.  

The UAS market continues to grow.  The Department of Defense (DoD) 

requested $5.4 billion in line items specifically designated to UASs,
8
 and global UAS 

spending will easily reach $5.8 billion by 2014.
9
  This high rate of expenditure indicates 

that UASs are becoming valuable commodities, and continued research and development 

is necessary for capability enhancement.  Two beneficial paths of research and 

development include making the UAS smaller for ISR missions in and between 

buildings, and improving the energy capacity by including fuel cells.  

I.1.2. Future UASs:  Fuel Cell-Powered Micro Aerial Vehicles (MAVs) 

The next step for technology is to offer all of the capabilities provided by UASs in 

a smaller package.  Once sensor equipment became miniaturized to less than 18 g in the 

mid 1990s, the utility of MAVs became apparent.
10

  Not only can MAVs be used for 

―over the hill‖ battlefield employment and ―around the corner‖ urban reconnaissance, but 

also for non-typical applications such as hostage rescue and counter drug operations.
10

  

These lightweight aircraft can be carried by soldiers and launched by hand.
3
  Some even 

see MAVs carrying small explosives.
11

  The Air Force Research Laboratory (AFRL) 

strategic vision describes future MAVs as ―ubiquitous sensors and shooters.‖
12

 

MAVs can especially benefit from fuel cells because of stealth characteristics 

inherent to fuel cells.  Low acoustic and heat signatures are even more important as 

reduced size allows the MAV to get closer to the target.  Stealth applications and the 

potential for extended endurance make the fuel cell an important power source.  Other 
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motivations for a fuel cell-powered UAS are for environmental research.  Fuel cells can 

provide power with low pollution released into the atmosphere during use, and some 

types of fuel cells can do this without releasing any harmful pollution during use.
13

    

Observation or sampling tasks that require a closer field of view than afforded by 

satellites, such as vegetation mapping, deforestation or urbanization studies, and habitat 

analysis are all prime candidates for a low and slow remote sensing platform.  

When comparing fuel cells with the use of rechargeable batteries, the Proton 

Exchange Membrane Fuel Cell (PEMFC) is only limited by the amount of hydrogen it 

can store, and can be recharged by replacing a hydrogen cartridge.  This takes only 

seconds compared to hours that might be required for a battery recharge.
3
  Power is 

continuous over the duration of fuel and oxidant availability.
13

  A further cited benefit of 

fuel cell use is that individual fuel cell subcomponents may be distributed to some degree 

within the volume available.  Currently, batteries exhibit excellent specific power, but 

often lack sufficient specific energy.  Fuel cells, on the other hand, supply superior 

specific energy, but yield lower specific power.  Furthermore, fuel cell efficiency and 

power-available can be significantly reduced when the fuel cell is subjected to a 

fluctuating load.  As technology matures, the fuel cell will be the most attractive choice 

for low power, high endurance applications.
15

  Because of the endurance fuel cells offer 

compared to high powered sources such as batteries or jet fuel, fuel cells can enable high 

altitude UASs to act as satellites at low relative cost compared to actually launching a 

satellite.
15

 

Due to the future importance of MAV technology, a MAV steering group that 

includes representatives from AFRL directorates has established the strategic vision for 
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MAVs.  Integrated Product Teams (IPTs) include propulsion, power, payload, CONOPS, 

and integration specialists.  Because the future flavor of MAVs and their applications are 

so undefined, MAVs offer the perfect opportunity for conceptual design.
16

  

I.1.3. The First Step:  Conceptual Design of Fuel Cell-Powered MAVs 

Reducing the size and changing the power source requires a system level analysis.  

Creating a fuel cell-powered UAS is much more than simply integrating a fuel cell into 

an existing battery powered UAS; due to low power to weight ratios and Balance of Plant 

(BOP) considerations, all other aircraft components should be designed around the fuel 

cell since it is the primary component.
17

  A manufacturer of fuel cells, ProCore, says that 

when compared to batteries, fuel cells can achieve 62% weight savings, 50% size 

reductions, and 20% cost reductions.
3
  The United States Air Force (USAF) needs an in-

house tool to enable fuel cell technology to be integrated into MAVs. This conceptual 

design tool is a first step in the right direction.  

This effort builds upon Lt. Mustafa Turan’s work of establishing and 

demonstrating an integrated model of previously autonomous aircraft design software for 

the purpose of MAV design.  He established a basis for further integration.
88

  Where he 

focused primarily on aerodynamic issues of a tail-sitting coaxial MAV, this effort is 

geared toward the needs of the power systems engineer who must decide on an optimum 

power system.  It could also lay the groundwork for future gains in MAV design.  

Integration is complicated.  Even though the internal combustion engine or jet 

engine design in itself is a complex multidisciplinary endeavor,
18

  the design and 

subsequent integration within the airframe has matured to such a point that one might just 

think of the engine as merely another component.  Economic and ecological assessments 
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now require the consideration of alternative and renewable power sources in any 

upcoming engineering endeavor, and the use of fuel cells appears to be just around the 

corner to widespread application.  Unfortunately, very few fuel cell integrated conceptual 

design tools exist.
19

  Not far off in the future, the design space of a fuel cell-powered 

aircraft, UAS or MAV, will be better known, and integration of a fuel cell will be as 

simple as replacing a battery, or even a jet engine.  This conceptual design tool will be a 

foundation for future realization.  

After a fuel cell integrated conceptual design tool for fixed wing MAVs is 

established, it is reasonable to branch out to a flapping wing or rotary wing MAV.  A 

trade study between multiple configurations might be conducted, making general 

assumptions, and then revising the assumptions as this new body of research grows.  

With a tool such as this, if it turns out that a flapping wing configuration that requires a 

voltage converter uses less total power to do the job, it will be easy to identify.  Or, if the 

theory predicts other modes of flight consuming less power, but technology is not ready, 

a study utilizing the conceptual design tool described in this thesis might set the 

groundwork for future gains.
16

 

I.2. Background 

 The intent of the following paragraphs is to rationalize the need for a conceptual 

design tool for a fuel cell-powered MAV.  First, the use of fuel cells in aircraft is 

discussed.  Then, fuel cell use at the UAS and MAV size is discussed.    

Hydrogen fuel cells have been considered for general aviation, but have so far 

been too impractical for widespread use.  It is speculated that fuel cell efficiencies must 
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increase to 60% and power plant power to mass ratios increase to 600 W/kg for fuel cells 

and motors to compete with internal combustion engines run on hydrocarbon fuel.
20

  

Estimates vary, but fuel cell system specific power must increase 20-fold before all-

electric vehicles will be used for general aviation.  Though not technologically mature, 

Solid Oxide Fuel Cell (SOFC) power sources appear to be the most likely future 

candidate for internal combustion replacement.  A comparison between fuel cell systems 

that can carry enough energy as an internal combustion engine showed that the SOFC can 

provide greater overall reduced aircraft weight and greater range than pure hydrogen 

based fuel cell.
13

 

  A National Aeronautics and Space Administration (NASA) study looked at the 

feasibility of using a compressed hydrogen PEM fuel cell in a propeller driven small 

electric light sport airplane.  A commercially obtained Numerical Propulsion System 

Simulator (NPSS) code was used to simulate propeller thrust and calculate air/hydrogen 

flow rates.  NASA’s Flight Optimization System (FLOPS) code was used for aircraft 

mission performance.  A supercharger was included in the fuel cell model in order to 

supply the required flow.  Automotive fuel cell scaling allowed for the prediction of 

weight and volume.  Due to power, weight, and heat management issues, this study 

determined that fuel cells could not yet compete with internal combustion engine aircraft, 

but it is feasible to produce aircraft with current fuel cell technology that can fly 

adequately with reduced performance.
14

 

Often, when technology reaches a certain readiness level, it is simply inserted by 

direct replacement into old technology at the subsystem level.  In many cases, direct 

replacement fails to exploit cross-functional benefits of the new technology, which 
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hinders total benefit at the system level.  Instead of asking where a new technology can 

fit, one should ask which applications could benefit from the new technology.  This has 

the advantage of leveraging the new technology at its fullest potential.  One study applied 

this type of approach to fuel cell-powered aviation.  After the concept space was defined, 

candidate architectures were determined.  These capabilities were then mapped onto 

performance measures to identify a broader range of possibilities.  Even when an 

expanded design space was considered to accommodate the fuel cell, the study 

determined that internal combustion engines are best suited for aviation today, especially 

where excess power is necessary.  Due to fuel cell specific requirements and potential for 

dual-use application, the study also found that for long endurance missions not excess 

power dependent, fuel cells become the most efficient option.
21 

 This thesis will present 

high-level means to evaluate when fuel cells should be considered.  

 Fuel cell progress continues to intensify.  Already, certain aircraft components 

such as an Auxiliary Power Unit (APU) have been replaced by fuel cells.  This was done 

on the Airbus A320.  Recently, the first propeller driven, 25 kW Antares DLR-H2 

developed by the German aerospace center became the first manned aircraft to take off 

with all power coming from a fuel cell.
22 

 Fuel cell-powered aircraft should continue 

following the typical technology maturation path of reduced size and increased 

performance. 

I.2.1. Propulsion Emphasis  

 With regard to aviation platforms, the reduced size of MAVs  could drive 

consideration of additional means of propulsion.  A considerable problem with 

development at the MAV scale is the lack of consensus on how a MAV should be 
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propelled.  The shape of the vehicle could be based on a fixed wing platform, but could 

also be driven by a flapping wing configuration.  The aerodynamic form may also be 

driven by a requirement that the MAV perch like a bird.
16

  Each type has different power 

requirements and may have different optimal propulsion systems.  Flapping wing MAVs 

make an attractive option due to biological similarity, but the required voltage may be 

quite high due to high power needs.  Efficiency losses caused by on-board step-up 

voltage conversion make high power generation in small MAV packages very 

challenging.   

A typical task for the electrochemical/thermal branch of AFRL might be 

optimizing the power for a given flight vehicle and mission, or determining what kind of 

mission can be supported with a given flight vehicle and power source.  Some limited 

power profiles are available for some platforms, but experimental conditions of the sparse 

data are often not available in enough detail to be useful.  However, since such a standard 

MAV flight vehicle has not been yet defined, and since power options such as fuel cells 

are more intertwined with the airframe, both questions could benefit from a conceptual 

design tool for MAVs.  

I.2.2. MAV Size 

The literature exhibits a wide range of sizes for MAVs.  Perhaps the most 

prevalent dimensions are those initiated by a Defense Advanced Research Projects 

Agency (DARPA) workshop in 1995 that precluded a phase one Small Business 

Innovation Research (SBIR), indicating that a 15.24 cm MAV was feasible.
10,23

  As such, 

air vehicles with no linear dimension greater than 15.24 cm became the most well known 

standard for the maximum dimension of a MAV.  Further refinement of MAV size 
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incorporates a weight of roughly 200 g.
24

  Currently, the technology exists to build a 

MAV with Commercial off the Shelf (COTS) subcomponents weighing only 14 g with a 

9.9 cm wingspan.
25

  However, not everyone accepts this convention.  Reference 26 

generally agrees with the maximum length to be less than 20 cm, but allows the mass to 

be up to 500 g.  Increasing in size, reference 27 allows a wingspan to be between 15.24 

cm and 30.48 cm with a chord length of about 10.16 cm.  A solar powered ―MAV‖ called 

the Sunbeam I used a 38.1 cm wingspan.
28

  At the lower size bounds, truly small flight 

vehicles could also be called MAVs.  Cutting-edge research continues into insect sized 

MAVs that are usually referred to as nano aerial vehicles, but technology readiness is still 

far off.
12

  

The previously mentioned MAV Steering Group has suggested that even though 

the long-term goal for MAV size is that of an insect, a reasonable size goal for UAS 

miniaturization is that of a Cooper’s Hawk.
16

  Currently, this is the most realistic size 

needed to exploit fuel cell technology.  The average male Cooper’s Hawk (―accipiter 

cooperi‖) is 0.312 kg with a wingspan of 0.71 m, and the average female is 0.500 kg, 

with a wingspan of 0.83 m.
30

   It flies at 11.2 m/s with a planform area of 0.09 m
2
.
31

  For 

comparison, other birds in this class are the broad-winged hawk (―buteo platypterus,‖ at 

m = 0.385 kg, b = 0.84 m, S = 0.101 m
2
, and V =9.9 m/s), and the American coot (―fulica 

americana‖ at m = 0.443 kg b = 0.64, S = 0.06 m
2
, and V =13.8 m/s).

31
  

Although not common nomenclature, a class of aerial vehicles sized between 

UASs and MAVs exists within this undeveloped architecture.  Mini-UASs are a 

representative class of UASs defined as those with a maximum wingspan of 70 cm.
32

  

Examples of MAVs within this size envelope that are in service are the Battlefield Air 
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Targeting Micro Air Vehicle (BATMAV), which is Aeroenvironment’s WASP III, the 

Battlefield Air Targeting Camera Autonomous Micro-Air Vehicle (BATCAM), which is 

an AFRL research platform, and the Generic Micro Aerial Vehicle (GenMAV), which is 

one of AFRL’s newest research platforms.  Notably, the USAF UAS Flight Plan from 

2009 classifies these aircraft as Small Unmanned Aircraft Systems (SUASs).
6
  

For a starting point, by 2015, the MAV size goal is that of a Cooper’s Hawk with 

mass of 0.350 to 0.500 kg.  By 2030, insect -sized MAVs should be attainable.  An initial 

concept would be to send out a MAV for 30 days, and allow it to perform daily one-hour 

missions while recharging by some means between sorties.  The MAV would be 

―biometrically compatible,‖ either visually or mechanically, so that it could hide in plain 

sight.
16

 

 The following information is included in order to share an appreciation for the 

sizes, along with some tradeoffs that can be expected in both natural flight and aerospace 

engineering.  Figure 1 illustrates the geometric similarity between speed and weight 

across species from insect to bird, and then all the way up to a Boeing 747.
31

  The trend 

line equates wing loading to a cubed constant multiplied by the square root of weight.  

Entries to the left of the trend line show potentially underpowered insects, birds, or 

aircraft.  Entries to the right show highly maneuverable insects, birds, or aircraft.  This 

figure provides a snapshot of reasonable characteristics one would expect to find in a new 

flying vehicle.  Not only does it provide quantitative values for wing loading, but also 

gives insight into the realm of the possible. 

As mass increases, velocity must increase to support the wing loading.  Likewise, 

as mass decreases, the velocity is expected to drop as well.  The problem with reduced 
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velocity is that the aircraft has less flying capability in environments with even modest 

disturbances.  At best, the aircraft might not get to its destination.  At worst, it could be 

blown out of the sky.  Figure 1 demonstrates a strong physical relationship despite size, 

but the disparity between these propulsion and fuel mass fraction numbers is empirical 

evidence that propulsion requirements are not that clear.  Decreased propulsion and fuel 

mass fraction should be the main goal for MAV research.  MAVs must fly faster to 

support additional weight required by inefficient propulsion, despite possible operational 

requirements more suitable to slower flight.  

 

Figure 1. Wing loading, weight, and speed of small insects up to jumbo jets. 



 

12 

For this study, power-required better expresses the metric typically conferred by size.  

See Table 1 for general correlation.
3
  The power boundaries are not yet rigid at this point 

in technological development. 

Table 1. Power requirements for fuel cell-powered air vehicles 

 Low [W] High [W] 

Large UAS 10
5
 10

5
+ 

Medium UAS 10
3
 10

4
 

Small UAS 50 300 

MAV 1 20 

 

 Although Figure 1 shows that a smaller platform should fly at slower speeds, to 

overcome the propulsion inefficiencies, higher velocity and more power is required.
56

  

Here lies a challenge for MAVs.  It is very difficult to package enough power and energy 

for maneuverability and endurance within the MAV size.  The tradeoffs require an 

optimization:  either carry just enough fuel (low power) and risk the perils of slow flight, 

or carry much more fuel (higher power) to fly faster.  Better performing MAVs of the 

future will likely have increased power than those values shown in Table 1, but this is 

limited by technology maturation rates of available power sources.  

I.2.3. Modes of Flight 

Modes of flight typically fall within three varieties:  fixed wing, rotary wing, and 

flapping wing.  Each mode has its merits and cost.  With the intent of designing MAVs 

with the lowest possible power required, it is sensible to consider which mode offers 

flight with minimum power.  A study compared theoretical calculations, performed a 

literature review of small bird and insect flight, and carried out experimental analysis to 
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find power requirements for fixed wing, rotary wing, and flapping wing flight.  It was 

determined that for the 50 g class subject to low Reynolds number flight, fixed wings 

required the least power and offer best efficiency when no hover requirement exists.  

When there is a hover requirement, flapping wings offer best efficiency at low speed 

flight.  When both high speed and hovering is required, rotary wings are most efficient.
33

  

Unfortunately, flapping wing flight can require four times the power when compared to 

fixed wing.
31

 

I.2.4. Unique Issues with Respect to MAVs 

The Wright Brothers and others fundamentally understood the application of 

flight technology by the first decade of the 20
th

 century.  Through experiment and dogged 

perseverance, these innovators devised the concepts that have held for over 100 years.  

Once the potential of UASs took root, technologists and engineers tried to apply the same 

lessons learned from full-scale aircraft to smaller platforms.  In the case of UASs, 

however, individual subcomponent efficiencies had to improve in order to make useful 

systems.  Most critically, the propulsion system had to get a lot more efficient.
10

   The 

reason for this is that aerodynamic control becomes more difficult at lower moments of 

inertia and smaller size.  Operation within gusts and crosswinds further complicates the 

problem.  Avoidance of obstacles and ground/wall effects are significant issues.
34

 

Aerodynamic similarity separates MAVs and smaller vehicles from UASs and 

larger vehicles.  The most important differences come from flight in the low Reynolds 

number regime and the use of low aspect ratio planforms.  Because of these aerodynamic 

phenomenon, the miniaturization of aircraft to MAVs hit a technological speed bump 

after reaching the small UAS (SUAS) class.   
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I.3. Research Objectives  

The propulsion directorate (AFRL/RZ) is fielding a SBIR regarding flapping wing 

MAV feasibility.  Current power options are limited to batteries, fuel cells, and capacitors 

while a future option might include biological power.  Near-term, analysis of hybrid 

systems made of electrochemical/thermo combustion is being done to achieve required 

energy and power.
16

  Though this research does not directly relate to the issue of flapping 

wing aircraft, the conceptual design tool will form the basic structure in which a flapping 

wing system could be integrated.  

This research will build upon the idea that various design software packages can 

be integrated together into a useful, multidisciplinary tool for MAV design.  The intent is 

to tailor the product for the Power and Propulsion branch of AFRL so that they may 

evaluate various power schemes used for MAVs.  This could assist in directing the 

application of resources and may point to solutions that otherwise might not have been 

realized.  

This tool must be able to calculate the first-order power draw from the propulsion 

system over time for a given airframe and mission.  A power profile must be generated 

showing current and voltage for take-off, climb, cruise, loiter and other mission 

segments.   

After simulating the average segment power of each mission segment, the power 

system mass will be calculated using specific energy and specific power values for a 

hybrid system.  The hybrid system will be made up of a high specific energy component, 

which could represent a fuel cell, and a high specific power component, which probably 

would represent a battery, but could represent a capacitor.  
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I.4. Hypothesis and Scope 

A useful conceptual design tool can be built to enhance the ability of the 

propulsion/power specialist to analyze and compare MAVs and MAV propulsion/power 

strategies.  The objective of this research is to focus on the propulsion power 

requirements of MAV design, while maintaining adequate system-level analysis to 

improve the mission-dependent selection and optimization of the power source.   

In this proof-of-concept endeavor, certain disciplines have largely been ignored 

and can be included later.  For example, structural integrity, aeroelasticity, material 

selection, and any volume related requirements are not modeled.  Active control 

strategies and navigation are also not incorporated at this initial stage.  Furthermore, this 

tool only addresses fixed wing configurations and does not model flapping or flexible 

wings.  

Efforts of this thesis are initiated within the mini-UAS class, which is at the larger 

end of the MAV class.  Future development is geared toward smaller MAVs.  For reasons 

explained later in the text, the tool developed here will also be applicable for larger 

classes of air vehicles such as UAVs that fly at a chord Reynolds numbers of 

approximately 10
5
 or greater.  

In response to the sponsor’s need for power system optimization, this tool 

analyzes a power system based on a set airframe, although iterations on MAV design 

could easily be performed with only minor changes.  A much greater need exists for near-

term integration opportunities than farther off feasibility studies, so this tool is tailored to 

provide realistic information and answer questions about what can be done today.      
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Much discussion is provided within this thesis regarding the importance of 

building the aircraft design around a well-integrated fuel cell and Balance of Plant (BOP).  

This remains the end goal.  Any complex effort can be simplified into a series of steps.  

The first step toward the goal is to develop a power system analysis tool that incorporates 

system level aerodynamics.  With a mission power profile, combinations of high specific 

energy and high specific power components can be evaluated and used in the most 

appropriate way.    

I.5. Methodology 

This section lists the key steps performed under this research.  A considerable 

portion of this effort was finding, integrating, verifying, and validating the software 

within the Model Center framework.  Before anything else could be done, the framework 

had to be built.  This involved integrating suitable programs such as QPROP and AVL 

into Model Center.  Since QPROP and AVL require a specific airframe, an initial task 

was to find an applicable MAV airframe and build an adequate model.  Some possible 

alternatives were the GenMAV, the BATCAM, or the BATMAV.  Building the AVL and 

QPROP model required considerable effort, and included some speculation as will be 

discussed.  This was due to the unavailability to certain information.  Integration within 

Model Center required an in-depth understanding of how each subcomponent operates.  

Once the aerodynamics could be established with AVL and QPROP, each 

component needed to be thoroughly verified for proper execution within the Model 

Center environment.  This involved many iterations and continual evaluation of results.  

Development of a means to estimate a theoretical power requirement necessitated 
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incorporation of additional tools such as Mathwork’s Matlab and Microsoft’s Excel into 

the Model Center environment.  Development of how to choreograph all subcomponents 

to run a designated mission proved challenging.  Once the mission driver component was 

built, the power profile became available for analysis.  

With the power profile in hand, various means of satisfying the mission 

dependent power needs could be studied.  The tool assumes that a high specific energy 

source and a high specific power source will be used together to minimize the overall 

power system mass.  

All of these results were verified as well as possible by comparing to available 

literature.  This study seeks to assess near-term feasibility of using a fuel cell and to 

identify trends and options for a hybrid-power system with trade studies, 

parameterization, and optimization.   

I.6. Thesis Overview 

Chapter 1 discussed the importance of MAV research and why a conceptual 

design tool is necessary.  Clearly, MAVs are instrumental in the wars of today and 

enhanced capability could dramatically change the way in which wars are executed 

tomorrow.  A brief background explained that this effort is being initiated in order to 

improve the propulsion subsystem, which has been identified as a key MAV research 

area.  Some peculiarities due to small MAV size, such as low aspect ratio wings flying in 

low Reynolds number regime, and how they are related were discussed.  Lastly, a 

hypothesis was offered explaining that a fuel cell-powered MAV conceptual design tool 
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can aid the power system designer.  The steps and goals of the research were then 

explained.  

Chapter 2 includes a more detailed literature review of some fielded MAVs, 

important UASs and MAVs that integrated fuel cells, and key software used for design.  

The transition between what has been done and what is being done is made in Chapter 3.  

Chapter 3 addresses the specific steps taken to develop a conceptual design tool within 

Model Center.  Results and analysis are provided within Chapter 4.  Finally, conclusions, 

lessons learned, shortfalls, and recommendations are made in Chapter 5.  
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II. Literature Review 

Since aircraft conceptual design is a multidisciplinary endeavor, many 

components and subcomponents must work together to build a useful product.  Each 

discipline offers important challenges with respect to fuel cell-powered MAV conceptual 

design, and a discussion of all issues would quickly grow beyond the scope of this effort.  

This chapter is designed to provide a broad view of some types of MAVs that benefitted 

from conceptual design, followed by critical subcomponents such as aerodynamic 

software, fuel cell concepts, and propulsion software.  The chapter ends by integrating all 

subcomponents in the Model Interactions section.  Equations are provided where they 

may aid in understanding, but the details of the actual models used will be presented in 

Chapter 3.  

II.1. Notable System Level Efforts 

II.1.1. Technology Survey 

Over the last 15 years, many MAV attempts have been made, but most were not 

well known.  A technology survey
2, 24

 found in the literature highlights some successful 

MAVs.  A short list includes the DARPA funded Black Widow and WASP, both 

produced by AeroVironment, as well as a number of commercial crafts:  Mite by US 

Naval Research Laboratory (NRL), MicroSTAR by BAE Systems, DO-MAV by 

European Aeronautic Defense and Space Company (EADS), and Trochoid by MLB.
10

  

These crafts tend to use a single, conventional, center-line tractor propeller design with 

carbon fiber or structural foam bodies.  DARPA and AeroVironment’s Black Widow 
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were catalysts for widespread MAV research.  In order to design a craft capable of 

carrying the required surveillance equipment, a Multi-disciplinary Design Optimization 

(MDO) methodology was used.
23

  Currently, numerous companies and agencies are 

considering a wide variety of MAV options.  One such non-conventional MAV is the 

Sunbeam I:  A solar powered MAV weighing 71 g, using 3.5 W, with a span less than 

38.1 cm.
28

   MAV technology continues to mature as researchers, students, and hobbyists 

participate in the annual International Micro Air Vehicle Competition that started in 

1997.  The winner must use the smallest MAV to observe a target located at some 

distance, and transmit the information back to the judges.
10

 

II.1.2. MAV Successes  

In addition to the MAVs listed in the Technology Survey section, MAVs 

discussed here are those in which the conceptual design techniques have been more 

readily accessible in the literature.  The most successful and well-known MAV is 

arguably the Black Widow.  MDO consisted of five components:  vehicle and propeller 

aerodynamics, battery and motor performance, and a weight buildup.  Vehicle 

aerodynamics used lifting line theory for induced drag, Blasius skin friction formulas for 

friction drag, Hoerner equations for interference drag, and equivalent parasite areas for 

produrbance drag.  A minimum induced loss methodology determined the propeller 

aerodynamics.  The motor and battery performance relied on experimental data.  A 

design envelope was defined and an Excel solver determined the optimal configuration 

that enabled the 80 g MAV to fly up to 234 m high, 1.8 km out, for 30 minutes.  A 

notable result of this effort is that on the MAV scale, 80% propeller efficiency is 

possible.
23
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 After the Black Widow showcased MAV possibilities, students and universities 

drove research and MAV design.  An extraordinary effort came from Brigham Young 

University.  They utilized straightforward aircraft design equations and techniques to 

perform a feasibility study on a solar powered MAV called the Sunbeam I.
28

  The 

following equations drove the design.
36

  By setting the lift, L, equal to the weight, W, the 

coefficient of lift,
LC , for steady, level flight can be determined with Eq. (1), 

 
LSCVWL 2

2

1
  (1) 

when the density,  , velocity, V, and planform area, S, are known.  Power-required from 

the power source, reqP , can be determined by multiplying the thrust-required, reqT , by the 

propeller by the freestream velocity, V, and dividing by the propeller efficiency, p , and 

motor efficiency, m , as in Eq. (2).   
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Thrust-required by the airframe, reqT , is determined by setting the thrust equal to the drag, 

defined by the drag coefficient, CD, in Eq. (3). 
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The drag polar is defined by Eq. (4), which includes the zero lift drag coefficient, CD,0, 

and K defined by Eq. (5).  
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where AR is the aspect ratio and e0 is the span efficiency factor.  These same equations 

were used within the research presented in this thesis.  

Soon, MAV interest became high enough for the International Society of 

Structural and Multidisciplinary Optimization to hold a MAV competition in 1998. One 

team used a multidisciplinary design optimization software called NEWSUMT-A to 

create a potentially nonconventional aircraft for remotely piloted reconnaissance.  Wing 

loading was set to 53.9 Pa and a flight Reynolds number goal was determined to be 

2.0x10
5
.  A Selig airfoil was selected based on its ability to fly at expected stall Reynolds 

number of 10
5
.  A vortex lattice model was used to compare various planforms by 

minimizing induced drag, and empirical skin friction coefficients were integrated to 

estimate viscous drag.  This analysis showed that a biplane would be the best choice.  

Geometry size and control-surface fractions came from the MDO.  The vortex lattice 

program SUB3D was linked to the MDO for aerodynamics.
29 

  

MAV design became so popular that the University of Florida began an annual 

competition to promote MAV research.  Each year, the winning MAV became smaller, 

while its utility became greater.  Students and researchers often submitted entries as part 

of class projects.  In 2000, Notre Dame designed a MAV for the 4
th

 annual Micro Aerial 

Vehicle Student Competition.
37

  This MAV used a small internal combustion engine for 

propulsion and a nickel-cadmium battery for payload power.  Today, they might have 

chosen to use an electric motor and a lithium ion battery instead due to technology 

maturation.  Also, at the time, little was known about low aspect ratio and low Reynolds 

number flight, so experimental tests were performed on multiple planforms to determine 

optimal MAV design.  During conceptual design, it was desired to select the planform 
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that offered the lowest angle of attack at the lowest drag coefficient.  Using a force 

balance and the speed required for chord Reynolds numbers between 7.0x10
4
 and 

1.4x10
5
, it was determined that the Inverse Zimmerman planform was best.  When 

viewed from above, this planform has a circular leading edge and an elliptic trailing edge.  

A second-degree polynomial curve fit proved that the best aspect ratio was 1.5 flying at 

an angle of attack of 10°.  Brigham Young University participated in the sixth 

International Micro Air Vehicle competition and created a 14 g, 9.9 cm span, 2 min 

endurance MAV by utilizing the OptdesX optimization software.
25

  Known airfoils were 

analyzed with Java-Foil, and new airfoils with X-foil.  The resulting airfoil required a 

positive pitching moment and a good lift to drag ratio at Reynolds numbers between 

7.0x10
4
 – 9.0x10

4
.  Additional research determined that a 6% camber and 3% to 4% 

thickness is best when Re is less than 10
5
.  The reflexed trailing edge of an E330 flying 

wing airfoil was combined with an S7055 low Reynolds number airfoil leading edge.  

JavaProp and wind tunnel testing determined the optimum propeller, and COTS 

components were picked for the battery and motor that best reduced an optimization 

penalty.  

Air Force Special Operations currently flies AeroVironment’s WASP III under 

the BATMAV (Battlefield Air Targeting Micro Air Vehicle) program.  This 72.3 cm 

wingspan MAV uses rechargeable lithium ion batteries and an electric motor.  It has 

provided beyond-line-of-site capability to Airmen since 2007.
38

  The BATMAV batteries 

can be charged in the field with the Jenny-BRITES fuel cell charging system.  

Obviously, MAV interest is increasing and more research is necessary for better 

capabilities.  One vehicle called the BATCAM became surplus inventory when it was not 
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chosen as an operational asset, yet it has been very useful for research collaboration 

between AFIT and the AFRL.  This reliable test platform has been invaluable to 

navigation, aerodynamics, and controls research.  It has a 53 cm wingspan and uses 

lithium polymer batteries.  It could easily become a fuel cell test craft as well.
12

  

However, testing revealed some deficiencies that were better addressed through a new 

platform.  The AFRL Munitions Directorate recognized this opportunity and developed a 

research MAV called the GenMAV that it hopes will be adopted as a standard MAV 

research platform.  The GenMAV has a wingspan of 60 cm, planform area of 0.75 m
2
, 

and is designed for a cruise speed of 13.4 m/s.  It was designed to fit within the mini-

UAS or larger MAV class because this is the size best positioned for useful research 

near-term gains.
39

 

II.1.3. Hybrid-Powered Fuel Cell UASs/MAVs 

Despite an increase in complexity, power source hybridization has the potential to 

increase endurance.
40

  Between the use of various types of batteries, fuel cells, capacitors, 

or internal combustion engines, matching parameters of the power source to the power 

sink appears to be key in overall power minimization.  In many cases, current systems 

will be retrofitted with a combination of smaller batteries and fuel cells.  The following 

hybrid-power UASs and MAVs have been built for either demonstration or actual 

military service.  

AeroVironment’s WASP, one of the original successful DARPA MAVs, became 

somewhat of a test bed for the use of fuel cells within MAVs through the creation of the 

Hornet.  This slightly heavier, 380 g MAV integrated a 10 W PEMFC into the wing 

surface for a dual purpose (structural and power) application.  It used sodium borohydride 



 

25 

hydrogen storage.  In today’s multidisciplinary design environment, any double 

application can pay dividends.
41

  This platform demonstrated that a fuel cell-powered 

MAV could be built, but as a demonstrator, the Hornet did not add operational capability 

not already available with batteries.  

In order to break the UAS endurance record, a 150 W compressed hydrogen PEM 

fuel cell and 2100 mAh lithium polymer battery hybrid-power system has been produced 

to fly a craft weighing 5 kg with a 4 m wingspan.  This was California and Oklahoma 

State University’s bid for the Federation Aeronautique Internationale competition within 

the R/C class powered by ―any single or combined source of current.‖  Fuel cells are 

obvious candidates for endurance power due to high specific energy and steady power 

production.  In this case, 60 W were needed for optimal cruise efficiency and an 

additional 75 W were provided by the battery for take off.  This effort illustrates some of 

the unique integration concerns when using a fuel cell.  First, fuel cells require a specific 

amount of humidity for proper operation.  This fuel cell was self-hydrating, but needed 

ambient air for the reaction and cooling.  In order to provide air, inlet and exhaust ducts 

had to be incorporated into the structure.  Power hybridization was regulated with 

PMOSFET gates and a Schottky diode was used to protect the fuel cell from incoming 

current.  These losses due to hybridization were calculated as 0.2% of total energy 

available.
42

 

 At the large end of the spectrum, the Georgia Institute of Technology designed 

and built a 6.7 m wingspan, 500 W PEM compressed hydrogen fuel cell-powered UAS 

that they believed to be the largest fuel cell power plant used for aircraft yet.  The 
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technology is not ready for general aviation, but the hope is that efforts such as these will 

motivate further research toward full-scale fuel cell passenger aircraft.
43

 

After Georgia Tech’s UAS success, the Office of Naval Research created the Ion 

Tiger, which is a 500 W PEM compressed hydrogen fuel cell driven UAS that will carry 

a 2.27 kg payload for 24 hours.  To facilitate a rapid acquisition schedule, they leveraged 

technology from the automotive industry instead of tailoring the fuel cell design for the 

mission.  Aviation specific fuel cell research will likely provide even longer endurance on 

future platforms.
44

  The Naval Research Laboratory also created the Spider-Lion MAV.  

This 1.8 kg craft used a 100 W PEMFC with storage capability of 15 g of hydrogen gas.  

Though a bit larger than the Ion Tiger, AeroVironment’s 2.6 m wingspan small 

UAS called the PUMA proves that hybridization can work.  A Protonex fuel cell said to 

perform at a peak 1000 W/kg and a lithium ion battery can fuel the hand-launched 5.7 

kg PUMA for 9 hours.  SBIR cooperation between AFRL and AeroVironment continues 

to push the performance envelope.  

II.2. Documented Conceptual Design Efforts 

Design and development of aircraft is arguably one of the more difficult 

engineering challenges of the 21
st
 century.  Many disciplines must come together and 

collaborate to meet system level objectives.  Aerodynamics, thermodynamics, propulsion, 

structures, and stability/control are some areas critical for satisfactory design.  

Unfortunately, the optimization of one specialty area usually hinders other specialty 

areas.  Because of these complexities, production aircraft are designed through iteration 

among the various design groups.
45

  To make things more challenging, technology is 
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always in a state of flux.  Conceptual design occurs at the ―big picture‖ level.  At this 

point, first-order relationships and models provide the designer a feasibility analysis, with 

detailed design analysis postponed.  The speed of this analysis usually comes at the cost 

of its fidelity.  

 Relatively few conceptual design studies have been accomplished specifically for 

fuel cell-powered UASs and MAVs, but the Georgia Institute of Technology has done 

extensive work in this area.
15, 19, 46, 47, 49, 50

  The common theme among all of their work is 

to assemble a set of models cast as Contributing Analysis (CA), and let an optimization 

routine determine the design variable values within a designated design space.  The CAs 

are often parameterized low-fidelity approximations.
50

  It is desired to let the design 

space be as large as reasonably possible.  Much of their work, however, focuses on a 

technology demonstrator the size of a medium UAS.  Despite the size difference from 

MAVs, much can be learned from their efforts.  The following paragraphs provide 

relevant information on their research.  

II.2.1. Variable Fidelity 

Georgia Institute of Technology has developed a conceptual design environment 

that provides the designer the ability to select the depth of analysis required at the 

conceptual design stage.  The depth of analysis is proportional to the computational cost 

and the accuracy of results.  Obviously, when the design architecture is completely 

unknown, at the beginning, a large number of quick trade studies provide invaluable 

information on the general form.  Later in the design, when the form and overall 

specifications are better known, a more thorough and complex analysis is desired.  When 

a large design space is available for analysis, one might want to use many models of 
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varying fidelity to yield solutions not apparent at the start.  For this purpose, Georgia 

Institute of Technology utilized Model Center to integrate an assortment of subtools.
46

 

The model choices for airfoil analysis included an inviscid airfoil program called 

Potential flow around Airfoils with Boundary Layer coupled One-way (PABLO) for low-

fidelity and XFOIL for medium-fidelity.  Aircraft geometry was modeled in 2-D for the 

simple model, and NASA’s Vehicle Sketch Pad (VSP) was used for medium-fidelity.  

These geometry tools were used as a basis for friction drag calculations by way of a low-

fidelity empirical form-factor method and high-fidelity airfoil numerical integration.  

Structure was represented through regressed equations for low-fidelity and a finite 

element program called DYMORE for medium-fidelity.  Lastly, lookup tables were used 

for low-fidelity propulsion and an assortment of models incorporated into 

MATLAB/Simulink represented high-fidelity propulsion.  Power management for hybrid 

architectures relied on a surrogate model for specific energies.  Sizing is dependent on a 

single point in the flight envelope, the mission, and cruise conditions.  Because the 

overall design model is verified by simulation using the high aspect ratio Pathfinder Plus, 

only combinations of solar and compressed hydrogen/oxygen are considered for 

nonconventional propulsion.
46

  Other researchers on this team took the work further by 

identifying a method of reducing uncertainty that included a sensitivity analysis meshed 

into the optimization technique.
50

  

II.2.2. Fuel Cell Case Studies and Limiting Assumptions 

A closer look at fuel cell conceptual design examines some assumptions used to 

create multidisciplinary fuel cell UAS designs.
15, 47

  Convenient assumptions are of two 

main varieties.  The first is that a simple and direct replacement of a battery with a fuel 
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cell into an aircraft will produce desired aircraft performance.  The second assumption is 

that fuel cells designed for other purposes, such as cell phones or automobiles, will scale 

to produce the desired aircraft performance.  Both assumptions greatly simplify the 

design process, but often fail to incorporate enough subsystem detail required for overall 

performance optimization.  The study that identified a lack of fuel cell specific analysis 

offers a model for hydrogen storage tank thickness, hydrogen storage tank mass, and fuel 

cell efficiency.  Wings2004, a potential flow analysis code, was used for airframe 

analysis, Goldstein’s vortex theory of screw propellers was used for propeller 

performance,
51

 and propeller-fuselage interactions were calculated from Lowry’s 

Performance of Light Aircraft.  Results showed that when the BOP and the fuel cell stack 

are decoupled, and then compared to a conventionally sized fuel cell using power system 

specific energy and energy density as performance proxies, the optimization routine 

called for a larger fuel cell stack and a smaller BOP.  In other words, treating the BOP as 

an individual component within the airframe not directly linked to the fuel cell provided a 

better system-level result.  This result indicates that a fuel cell should have a larger stack 

to run at a lower current, closer to its most efficient operating point.  Operating there will 

allow for greater endurance time when compared to the conventionally designed 

propulsion system.  Including fuel cell and aircraft interactions, albeit with a more 

complex model, leads to a much bigger fuel cell for the same weight, offering greater 

endurance.  For endurance, the fuel cell BOP should be adequate for 45-50% of active 

area limited power, and not 90% as used in the automotive industry.
47, 48, 52

 

The Georgia Institute of Technology took a closer look at the feasible design 

space for a PEM fuel cell-powered medium UAS and built a matrix of alternatives that 
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included thousands of options.
15

  Prior experiences drove most of the down-selecting, but 

the rest was left to an optimization technique that included areas of aerodynamics, 

propellers, propeller interference, fuel cell performance and weight, fuel cell BOP, 

compressed hydrogen storage, electric motor, wing weight, and performance.  A low 

Reynolds number airfoil was selected.  Then, Wings2004 provided induced drag and lift.  

Parasitic drag was calculated from experimental data.  Propeller analysis was based on 

Goldstein’s vortex theory of screw propellers using the Betz condition.
51

  Fuselage and 

propeller interaction effects are based on the Lowry method.  Static polarization curves 

and published data for Gore 58 series membrane electrode assemblies were used to model 

fuel cell performance, with max current density of 1100mA/cm
2
/cell and max specific 

power of 0.6 W/cm
2
/cell.  The BOP power consumption of the compressor, water pump, 

and radiator was found by scaling.  The motor was modeled as a lumped parameter 

equivalent circuit and overall performance was calculated using drag polar and gross 

weight.  Cruise performance was found by matching required thrust at pre-stall airspeed 

and climb performance is based on maximum available thrust.  The most important 

finding related to specific energy.  If specific energy is the electrical output at cruise 

divided by aggregate system weight, it was confirmed that maximizing specific energy 

does not provide maximum endurance or maximum range.  The hydrogen and hydrogen 

storage amounted to 48%.  The fuel cell and BOP was 21%.  When including the fuel 

cell, BOP, and hydrogen storage, this long endurance, medium sized UAS had a total 

propulsion mass fraction of 69%.
15

 

More experimental in nature, another effort at the Georgia Institute of Technology 

utilized a design methodology for the conceptual design of a PEMFC UAS.
49

  Despite 
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their objective size being larger than the MAV class, their work illustrates an approach to 

multidisciplinary design.  The design space was limited to six fuel cells with varying 

capacity storage (18-370 standard liters), several propellers of varying length and pitch, 

aspect ratio of between 10 to 20, a designated wing area range, and a standard tractor 

propeller and empennage.  It had to be within the R/C aircraft class under 25 kg.  

Aerodynamic analysis was performed with a Rapid Aircraft Modeler (RAM) to generate 

geometry inputted into the Boeing Design and Analysis code (BDAP), which was used to 

calculate skin friction drag.  VORLAX vortex lattice code was used to find lift and 

induced drag and Goldstein’s Vortex Theory of Screw Propellers was used as the 

propeller model.
51

  Motor analysis was done with a lumped parameter model, with fuel 

cell analysis based on weight, power, and volume.  Contrary to use in an automobile, 

since a fuel cell for aircraft generally operates in near steady state, polarization curves 

can be used to determine performance.
52

  Polarization curves are plots of voltage verses 

area normalized current.  Over 15 million combinations resulting from the possible 

motors, gear ratios, fuel cells, propellers, storage tanks, aspect ratios, wing areas, and 

aerodynamic configurations resulted in 2000 feasible cases.  It is notable that almost no 

combinations were feasible under 300 W.  The most important aspect of efficiency was 

matching the motor and propeller with the fuel cell’s peak operating current at cruise.  

It was shown that when the design task starts conceptually, and then later 

becomes more detailed, large areas of the design space could be cleared and more 

focused, thorough, and computationally intensive analysis could be done within a more 

narrow design space.  Furthermore, this study identified that fuel cell BOP should be 

considered at the conceptual design stage.
49
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 In conjunction with the above effort, they also sought to better characterize the 

fuel cell-powered aircraft design process by breaking up the fuel cell power plant system 

into segments and integrating them into an aircraft model.
19

  The power plant consists of 

the fuel cell stack, temperature control system, air management, and hydrogen storage 

management system.  A 500 W, 32 cell PEM self-humidified hydrogen-air fuel cell was 

selected, and the static polarization curve provided performance data.  Various pumps 

and compressors must be used to regulate fuel flow, air flow, and temperature.  

Additional equipment is necessary to create the optimal conditions for 90% hydrogen 

utilization.  Just as efficiency was considered for the fuel cell power supply, efficiency 

was also important in propeller selection.  Efficient propulsion comes from large 

propellers, driven slowly by high torque motors.  This demonstrator/proof-of-concept fuel 

cell aircraft attained a propulsion system that was 57% of the total weight.  This relatively 

high value is partially attributed to a big downscaling challenge:  the compressed 

hydrogen storage tank.  As it becomes smaller, its weight fraction increases due to the 

structural needs of containing high pressure gas.  Flight tests revealed that energy 

efficiency, taken by comparing propulsive hydrogen high-heating-value fuel to rotational 

energy, was near zero at idle, 14% during full power climb, and 18% during cruise.  A 

full 15% of electrical output power was required by the BOP to sustain cruise.
19

 

II.3. Aerodynamic/Stability Codes 

MAVs offer unique aerodynamic challenges such as flight within low Reynolds 

number regime, low aspect ratio wings, thin airfoils, and limited experimental data.  

These challenges cannot be met with standard aerodynamic software and require 
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something specifically tailored to the flight regime.  High accuracy in aircraft 

aerodynamic design may be achieved by numerically solving the full three-dimensional 

Navier-Stokes equations.  This comes at great computational cost and time.  Because of 

these costs, inviscid solvers are often used to speed up the process.  Though acceptable 

for UASs and larger aircraft, this simplification is known to yield results that do not 

adequately predict performance of small MAVs due to the high relative influence of wing 

tip vortices.
53

  This section begins with an explanation of why low Reynolds numbers and 

low aspect ratios require special attention, and then introduces several useful 

aerodynamic/stability software codes applicable to MAV design.  

II.3.1. Low Reynolds Numbers and Aspect Ratios 

Unlike an average UAS built by downscaling a general aviation aircraft, MAVs 

encounter both the challenge of subcomponent miniaturization and less-than-fully-

understood aerodynamics.  Given these challenges, one might compare MAV 

development with the Wright Brother’s effort, when fundamental relationships were 

identified empirically.
24

  Of all aerodynamic measures, the Reynolds number is most 

important.  The Reynolds number quantifies the ratio of inertial forces to viscous forces.  

Large airplanes, such as those used for general aviation, fly in the high Reynolds number 

regime.  For comparison, a small Cessna aircraft flies within the Reynolds number 

regime of 10
6
.
11

  Naturally, high mass and high velocity permits inertial forces to 

dominate.  Since MAVs have low mass, inertial forces are low when compared to strong 

viscous forces within the flight regime, leading to low Reynolds numbers on the order of 

10
4
 to 10

5
.
26, 27, 54, 55

  Conventional fixed wing MAVs fly at about 65 km/hr with chord 

Reynolds numbers between 4.5x10
4
 to 1.8x10

5
 at altitudes under 100 m.

26
   The smallest 
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MAVs can fly in Reynolds numbers of only 10
3
, and velocities of about 10 m/s.

27
  Figure 

2 shows the relationship between size and Reynolds number.
12

  

 

Figure 2. MAVs have small Reynolds numbers 

Aerodynamic efficiency is measured by the lift-to-drag ratio.  Most UASs have 

glide ratio greater than 10, but birds, insects, and MAVs are typically less than eight.
24,26

  

Contrary to well-understood large flight vehicles, lift-to-drag ratios actually decrease for 

smooth airfoils at Reynolds numbers less than 10
4
.
56

  Equation (6) shows a further 

inconsistency for low Reynolds number flight where the reference Reynolds number is 

1.5x10
4
.
57

  This states that within the Reynolds number regime of 1.5x10
4
, more lift is 

required when the ratio of profile drag to induced drag increases.
24

  Profile drag is yet 

another unique parameter peculiar to low Reynolds number aircraft.  Low Reynolds 

number airfoil data report slightly higher than expected profile drag coefficients of 

around 0.05.
58
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In order to account for this disparity not predicted from scaling, new research is 

needed within this flight regime.  At Reynolds numbers of about 10
5
, laminar boundary 

layer flow tends to separate, and at 10
3
, turbulence is important.

27, 54
  Other problems 

unique to these MAVs include turbulent transition, separated shear layer and 

reattachment with separation bubbles, strong tip vortices, tip vortex destabilization, and 

roll instability.
26,27,55

  Furthermore, the laminar separation bubble movement is nonlinear 

and difficult to predict.
24

  Separation is typically only an issue near stall, but low 

Reynolds number MAVs exhibit separation during normal flight.
59

  Due to the small size, 

positive static margins severely limit center of gravity travel.  Because the flow is highly 

three-dimensional, computational analysis is intensive and does not yet lend itself to 

design at the conceptual level.  Particle Image Velecometry (PIV) is an experimental 

videographic technique used to visualized fluid flow.  Although PIV is often not 

appropriate for conceptual design, it is an invaluable experimental tool for investigating 

MAV flow phenomenon.
55

     

Typical MAV aspect ratios are between one and two,
10

 but the upper limit for 

MAVs can be expanded to five.  Non-linear tip vortex effects are reduced and lift 

enhanced as aspect ratio increase, so MAV aspect ratios are only low due to limiting 

design criteria, such as the stipulation of a maximum dimension.
11

  This is a design 

challenge since at aspect ratios less than two and Reynolds numbers less than 10
5
, 

performance deteriorates.  As aspect ratios drop below one, tip vortices produce most of 
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the lift.  This process is highly nonlinear and has a destabilizing effect not predicted by 

existing thin airfoil data.
26

  

II.3.2. Xwing 

Xwing is an aerodynamic code that uses a two-dimensional boundary layer and a 

three-dimensional flow matching technique to produce better results through boundary 

layer iteration than by use of an inviscid solver alone.  Efficiency is optimized through 

the ability to parameterize taper ratio, sweep angle, and twist.  The key advantage to 

Xwing is that it is specifically designed for low aspect ratio wings and low Reynolds 

numbers.  Although Xwing appears to be the perfect aerodynamic software tool for this 

application, it is currently undergoing validation and has not been released to the public 

for use.
53

 

II.3.3. Athena Vortex Lattice  (AVL) 

Athena Vortex Lattice software has proven to be accurate and robust for diverse 

applications.
60, 61

  AVL is a vortex lattice code developed by Drs. Mark Drela and Harold 

Youngren at the Massachusetts Institute of Technology.  It focuses on the aerodynamic 

and flight-dynamic analysis of rigid body aircraft for a wide variety of configurations.  It 

uses an extended vortex lattice model for lifting surfaces that can be combined with a 

slender-body model for the fuselage.  It utilizes linearized equations of motion for any 

given flight conditions.
62

  Outputs of AVL include various measures of lift and drag, 

stability and control derivatives, and Eigenmode analysis.  AVL was used to accurately 

predict the stability of a design submitted to a DARPA MAV competition.
63

  Wind tunnel 

tests of the GenMAV are currently in-work to validate the use of AVL with the 

GenMAV.  No literature has been found that provides a lower limit on Reynolds number 
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for use with AVL, but the GenMAV wind tunnel tests will be able to validate AVL for 

similarly sized platforms.  Preliminary results indicate that AVL accurately predicts flow 

conditions for low and moderate angles of attack.  

II.3.4. Other Aerodynamic/Stability Codes 

As of 1998, when computational analysis gained widespread use within 

universities at the graduate and undergraduate level, two separate sets of code were 

readily available for use.  These included Digital Datcom and HASC (VORLAX).  

Digital Datcom automates the process of calculating stability derivatives.  It is a built up 

analysis that runs in batch mode.  Various cases with different speeds can be run at once, 

and induced drag is provided.  Unfortunately, zero-lift drag is not very accurate, partly 

due to the inability to model inlets, canopies, and other small scale drag contributions.  

An improvement upon Digital Datcom was made with High Alpha Stability and Control 

(HASC) model, built on the well-established VORLAX code, which is a generalized 

vortex lattice code.  This provides better vortex lattice analysis by taking into account 

discrete body vortex and wing vortex burst effects.  While each has its specific strengths 

and weaknesses, only Digital Datcom provides static and dynamic derivatives.  Both will 

provide force and moment coefficients and take into account ground effect.
64

 

 Gambit and Fluent Computational Fluid Dynamics (CFD) models were used to 

validate the Rochester Institute of Technology MAV that utilized an inverse Zimmerman 

planform and Selig low Reynolds number airfoil.  This code adequately predicted overall 

drag and lift coefficients, but could not provide consistent induced drag coefficients.
11
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II.3.5. Airfoil Design 

 Specific design requirements often demand new airfoils.  This is certainly the case 

for low Reynolds number MAVs.  One group of researchers at the University of Illinois 

sought to create a design methodology for this purpose using PROFOIL, Eppler, XFOIL 

codes, and extensive experience.
65

  The lower Reynolds number bound of this research 

appears to be 2.0x10
5
, which is much higher than expected values for MAVs, but 

illustrates a process.  

Rough design utilized PROFOIL, which is an inverse design method that uses the 

integral boundary layer approach.  Flow characteristics can be set on the velocity 

distribution, and is constrained by the boundary layer and the thickness.  In PROFOIL, 

the laminar boundary layer of the lower surface can be set to separate at the lift 

coefficient given on a desired lower corner of the drag polar.  This requires the upper 

surface to adjust for the constraint.  The analysis function of Eppler code was then used 

to determine inviscid velocity distributions by a third-order panel method, followed by an 

integral boundary layer method using inviscid velocity distribution for performance.  

Laminar separation bubbles were not included in the calculations.  After Eppler, XFOIL 

confirmed the design with a viscous/inviscid linear vorticity second-order panel method 

joined with an integral boundary layer method.  

The most common planform is the Inverse Zimmerman type, which has shown to 

be most efficient for low Reynolds number flight.
11

  The crafts are typically flying wings 

with aspect ratios near 1.5.
2
  Adequate control capability can be achieved through the use 

of leading edge sweep for wing dihedral, fins to improve lift through reduced tip vortices, 
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symmetrically operated elevators for pitch control, and asymmetrically operated elevators 

for roll control.
2
  

II.4. Specific Power and Specific Energy 

Batteries provide an excellent source of power and various chemistries allow for a 

customized direct current supply for nearly any use.  Unfortunately, stored energy can be 

quite limited, especially at high power rates.  Fuel cells, on the other hand tend to have an 

abundance of energy, but cannot reach the maximum power values of batteries.  The 

following sections discus the power and energy attributes of batteries and fuel cells.  

II.4.1. Batteries:  High Specific Power 

The primary performance properties used to compare electric power systems are 

specific energy and specific power.  These are the energy capacity and instantaneous 

power normalized by weight.  Unfortunately, selecting the best electric power source is 

not as simple as choosing the highest specific energy and highest specific power because 

these two performance metrics are proportional to discharge rate and not simultaneously 

maximized.   

 

Figure 3. Cell voltage varies with type of battery and state of charge. 
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Batteries must be experimentally tested to truly understand the performance 

envelope.  The electrical voltage draw correlates to the State Of Charge (SOC), as seen in 

Figure 3.  The voltage also depends on the rate of discharge (C), and the capacity as 

shown in Figure 4.
70

 

 

Figure 4. Cell voltage varies with discharge rate 

The following terms are useful when evaluating battery terminology.  Capacity is 

the amount of current load that the battery can provide over an hour before the voltage 

drops to an unusable level.  This corresponds to a C rating of 1.  Discharge rate (―C rate‖) 

is how fast the battery can be safely discharged.  Another common use of the term is C/1 

for a C rate of 1 and C/2 for a C rate of 2.  Duration in hours is the inverse of the 

discharge rate.  

In 2007, DARPA sponsored a Naval Research Laboratory (NRL) study that 

surveyed commercially available lithium polymer batteries that weigh less than 5 g.  

Since the study, availability and performance has greatly expanded, but some of their 
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results illustrate concerns regarding performance criteria.  Table 2 lists the test battery 

specific power and specific energy results at low and highest discharge rates.
67

  

Table 2. Survey of commercial small lithium polymer batteries (2007). 

  

Discharge 
Rate 
 [C] 

Specific 
Energy 

 [W-hr/kg] 

Specific 
Power 
[W/kg] 

Discharge 
Rate 
[C] 

Specific 
Energy 

[W-hr/kg] 

Specific 
Power 
[W/kg] 

1 1 127 123 12 32 1147 

2 1 145 137 20 119 2383 

3 1 159 157 12 130 1637 

4 1 108 97 18 60 1394 

5 1 96 25 15 68 1511 

6 1 109 95 20 85 1700 

7 1 138 119 20 113 2125 

8 1 109 115 12 25 1040 

  Average 124 109 16 79 1617 
 

The biggest take-away from this table is a concern well known to those familiar 

with battery technology:  performance metrics vary greatly depending on discharge rate.  

When the discharge rate is 1, the specific energy value can reach the maximum because 

the battery can expend nearly all the stored energy.  When the discharge rate is 20, the 

actual energy available is much less, but the specific power can be maximized.  In fact, 

these data display a 9 to 20-fold increase in power at fast discharge rates compared to 

power available during a slow discharge coupled with a 60% decrease in specific energy.  

Ragone plots illustrate this relationship.  The user must have an appreciation for this 

tradeoff and choose specific energy and specific power values for the same discharge 

rate.   

Batteries do not downscale linearly.  Nearly the same amount of packaging 

material such as wrapping and insulation is needed for a smaller battery while the amount 
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of energy producing material decreases.  This ratio introduces a weight penalty as 

batteries are downscaled.  Utilizing the overall battery performance specifications of the 

three ―best‖ batteries from the NRO study, realistic values are 120 W-hr/kg for specific 

energy and 2050 W/kg for specific power.  These average values are for the highest 

discharge rates.  At high discharge rates, the specific energy is lower and the specific 

power is greater than what one would expect from a Li-Po battery.  The tradeoff is 

duration.  These small batteries can provide power and energy at these rates for only a 

few minutes.  These data and other generalized battery specific energy and specific power 

performance specifications are summarized in Table 3.  

Table 3. Various battery characteristics found in literature. 

Type of Battery 
Specific 
Energy 

[W-hr/kg] 

Specific 
Power 
[W/kg] 

Ref. 

Battery (in general) 200 -  15 

Li-Ion Polymer (129 W-hr) 160 1203 68 

Li-Ion Polymer 200 2800 42 

Li-Ion Polymer 148 -  14 

Li-Ion Polymer 150 4000 withheld 

Li-O2 1000 50 withheld 

Li-Po (small, high C avg) 120 2050 67 

Li-Po (current technology) 130-200 2800 69 

Li-Po (future technology) 290-420 2500-5900 69 

Li-S 350-400 -  42, 24 

Nickel Metal Hydride 80 1000 42 

Nickel Cadmium 60 150 42 

Sodium Borohydride 7100 -  42 
 

It has been shown in the previous sections that maximum specific energy and 

maximum specific power are not independent.  Furthermore, the rate of discharge affects 

available power and energy as well.  The Ragone plot captures this complex relationship.  
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A Ragone plot specifically created for these types of lithium polymer batteries used in 

MAVs is shown in Figure 5.
72

   

 

Figure 5. Ragone plot of Li-Ion batteries used in MAVs. 

New battery chemistries continually improve possibilities.  Lithium sulfur 

batteries are expected to have specific energy in excess of 400 W-h/kg.
24  

The newest and 

most promising batteries combine a high specific energy source and a high specific 

power source to produce a carbon monofluoride silver vanadium oxide (Li/CFx-SVO).
79 

  

II.4.2. Fuel Cells:  High Specific Energy 

Fuel cells are not new.  They have been around since the mid 1800’s.
73

  The US 

space program used them on the Apollo and currently uses them for water on the Space 

Shuttle.
74

  Between high energy prices and more concern for the environment, fuel cells 
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have once again become attractive.  High specific energy as compared to batteries is the 

main benefit.  For example, fuel cell systems using compressed hydrogen have a 28% 

higher energy to weight ratio than advanced research lithium sulfur batteries.
14   

Simply put, fuel cells convert the chemical energy of fuel and an oxidant into 

electrical energy that can do work.  Electrons break away from a chemical species.  The 

remainder is in a charged state that passes through a membrane before recombining with 

the oxidant at the cathode.
13

  The membrane catalyst, often made of precious metals, 

motivates this process.  Plates of Membrane Electrode Assemblies (MEAs) fit together in 

stacks not conceptually different then battery cells.  

II.4.2.1.  Types of Fuel Cells   

One of the most simple classifications of fuel cells are those that need pure fuel, 

and those that need to process an impure fuel to make it useable.  The preprocessing 

technique is called reforming.  Reforming separates the hydrogen into a usable form not 

contaminated by other byproducts.  Generally speaking, due to the small size of MAVs, 

the current state of technology does not allow for reformation in flight.  This leaves two 

primary fuel cell candidates for MAVs:  Polymer Electrolyte Membrane Fuel Cells 

(PEMFC), and Direct Methanol Fuel Cell (DMFC).  

 Polymer Electrolyte Membrane Fuel Cells (PEMFCs) take advantage of a proton 

conducting membrane between two platinum impregnated porous electrodes.  They 

operate at a low temperature of around 80° C and a pressure of between 7.0x10
4
-7.0x10

5
 

Pa gauge.  Unfortunately, at these low temperatures, carbon monoxide poisons the 

platinum catalysts that sustain the reaction.  Even at only 10 parts per million, carbon 

monoxide negatively affects performance.  Another challenge is maintaining the right 
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amount of humidity.  Resistance is reduced when the membrane is wet.  The flow of 

water through the cell is an osmotic process and dependent on the current and material 

characteristics of the membrane and electrodes.  As current density increase, the osmotic 

process decreases, reducing cell performance.  These fuel cells are very much 

temperature and pressure dependent.
35

 

  DMFCs are an attractive option to pure hydrogen PEMFCs because the fuel does 

not need to be reformed prior to use.  Liquid transport is easier than gaseous, but 

methanol crossover and high overpotentials are challenges.
35

 

II.4.2.2. Fuel Cell Losses 

 Real fuel cells are subject to irreversibilities that reduce the actual voltage from an 

ideal voltage dependent upon the amount of current drawn.  The main losses are 

activation polarization (reaction rate loss), ohmic polarization (resistance loss), and 

concentration polarization (gas transport loss).  Losses can be minimized, but usually 

require operation at a higher temperature, which causes other design tradeoffs.
35

 

Polarization is a term that is used for irreversible losses.  These losses can be 

summed within the static polarization curve.  A polarization curve that includes the BOP 

can be used to predict performance.
4
  In general, the fuel cell performs best when it 

delivers steady low-load power.  Efficiency decreases with increases loading due to mass 

transfer and ohmic losses.
4, 75

 

The complexity and multidisciplinary nature of the fuel cell system explains why 

only limited design models are available.
50

  Many fuel cell disciplines, to include 

electrochemistry, heat transfer, mechatronics, and controls need further research with 

special attention to airframe system level integration.   
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II.4.2.3. Fuel Cell Specific Energy and Specific Power Performance 

As complicated specific energy and specific power metrics are for batteries, they 

can be even less clear for fuel cells.  Power output follows a similar polarization pattern 

of decreased voltage and decreased energy capacity at higher current draw, but the term 

―discharge‖ leads to confusion.  Whereas a battery has a certain amount of stored 

electrochemical energy that discharges over time, a fuel cell is an electrochemical 

conversion device that could theoretically continue to provide energy so long as the fuel 

is available.  

 

Figure 6. Fuel cell stack voltage is dependent on current draw. 

Power available from the fuel cell is a function of the number of individual cells 

and the power draw as shown in Figure 6.
70

  Best operating efficiency is achieved when 
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current draw is low, and within the middle linear region.  Fuel cells perform poorly with 

fluctuating current demand.  Conventional wisdom dictates that the fuel cell shall be 

operated at the average power demand level, and this effort will test that theory.  Results 

are provided in section IV.  Specific power can then be determined by normalizing the 

output power by the weight, which includes the BOP.  

Unlike the rather straightforward means to determine specific power of a fuel cell, 

the specific energy is technically infinite, and therefore, can be an unreliable specification 

unless one is clear about how the specific energy was determined.  The amount of 

reactant fuel available is the only constraint on the amount of energy that the fuel cell can 

provide.  This is analogous to the internal combustion engine used in automobiles where 

the weight of the gasoline must be included in a system level specific energy calculation.  

Fuel cells generally operate on cartridges.  Therefore, a meaningful value of specific 

energy for a fuel cell must be system level, include the BOP, and be clear about how 

much fuel is included (how many cartridges).  It can be very difficult to ascertain how 

much of the BOP is included within an energy or power per unit mass specification 

because no common convention exists.  Table 4 gives a brief summary of available 

values found in the literature.  The numbers vary wildly between various subtypes of fuel 

cells, storage solutions, and BOP makeup.  The extremely small value of specific power 

given by Ref. 42 is the result of a system built to provide a low level of power for a long 

period, and does not indicate a maximum capability.  A sample Ragone plot that displays 

multiple electrochemical sources is shown in Figure 7.
71
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Table 4. Sample of fuel cell energy/power found in literature. 

Type of Fuel Cell Qualifier [W-hr/kg] [W/kg] Ref. 

FC, Ragone plot (in general)  up to  1000 100 66 

FC (in general) greater than 800   15 

PEMFC, H2 gas   1000   19 

PEMFC, Liquid H greater than 10000   19 

Given system in paper (PEMFC)   7.1 52 19 

PEMFC (PUMA)   350 500 3 

FC, H2 gas, automotive     245 20 

FC, Liquid H     442 20 

Given system in paper (PEMFC)   450 0.07 42 

FC, automotive, scaled   1240   14 

 

 

 

Figure 7. Ragone plot for various electrochemical storage devices. 
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II.4.2.4. Other MAV Fuel Cell Alternatives  

 More fuel cell varieties are commercially available then ever before.  This 

research focuses on MAVs, so fuel cell types that do not require reformation such as 

PEMFCs and DMFCs are the most likely candidates.  Protonex, a company that makes 

PEMFCs, can achieve up to 500 W-hr/Kg at relatively low temperatures of 20-90 °C.
3,13

   

A battery-PEMFC hybrid with battery charging capability can have a system level 

specific energy of over 800 W-hr/kg, which beats a battery alone, even at low charging 

efficiencies.
15

  In addition to PEMFCs, possible MAV alternatives are DMFCs and 

Reformed Methanol Fuel Cells (RMFC).  Samsung Electronics recently announced a 25 

W DMFC capable of 550 W-hr/kg that is rugged enough for portable use by soldiers.
76

  

Another portable soldier power effort utilizing RMFCs was announced by UltraCell that 

can supply 25 W and is expected to provide 800 W-hr/kg.
3
  It has already passed military 

safety tests for variations in altitude, temperature, humidity, dust, and vibration.  Lastly, 

Solid Oxide Fuel Cells (SOFC) are mentioned because they are likely candidates for 

larger systems, such as UASs.  SOFCs operate at 600-1000 °C, so they are not 

appropriate for small applications such as MAVs, but have found use in ground power 

plants.  SOFCs may be used for large aircraft in the future because waste thermal energy 

can run other processes, less pre-reformation is necessary, they are more tolerant to 

impurities such as sulfur, and because they can use carbon dioxide as a fuel.
13

 

II.4.2.5.      Balance of Plant 

The Balance of Plant (BOP) consists of any subcomponents to the fuel cell system 

required for the fuel cell to generate power.  The BOP could be called the fuel cell 

―overhead.‖  BOP designs and sizes require MDO in much the same way as an aircraft 



 

50 

would.  Compressors are often needed to provide adequate air supply.  Humidity and 

temperature must be controlled.  Tradeoffs exist for each subcomponent.  Activation, 

mass transport, and overpotential losses are high when fuel cell temperature is too low.  

When the fuel cell temperature is too high, greater than about 65 °C, the fuel cell self-

humidification is compromised, and the fuel cell membrane cannot conduct at full 

performance.
76

 

One primary component of the BOP is the reformer.  This is required any time 

pure hydrogen is not supplied to the PEM fuel cell stack.  Furthermore, the reformation 

process typically releases carbon dioxide, which may negate some environmental 

benefits.
13

 

II.4.2.6. Storage 

 Any fuel cell system must take into account the volume necessary to store the 

required energy.  This research does not attempt to integrate volume requirements into 

the MAV conceptual design, but these requirements are key limitations.  The simplest 

dichotomy is storing fuel as a compressed gas verses a cryogenic liquid.  Gas storage is 

simplest to use, but requires the most volume.  

 Hydrogen is often a better choice of fuel because of its ready-to-use purity.  

Liquid hydrogen, however, carries far less energy than other liquid fuels, such as 

kerosene, but costs an additional 40% in volume.  Energy verses volume tradeoffs are 

illustrated in Figure 8.  Heavier fuels, such as methanol or liquid methane weigh more 

and need to be reformed.
13

  



 

51 

 

Figure 8. Lower heating value energy density of select fuels. 

II.5. Energy Management of Hybrid Systems 

Minimum fuel consumption control strategies are effective for internal 

combustion engines, but less understanding exists for pure electric-powered aircraft.
80

  

Recent research indicates that power minimization planning for hybrid-electric aircraft is 

somewhat counterintuitive.  In fact, neither hybridization, nor flight path optimization 

extends endurance when the batteries must maintain a certain state of charge.  As 

compared to the climbing and gliding flight path required for internal combustion engine 

aircraft, electric aircraft are optimum at straight and level flight.  Because fuel cells 

operate most efficiently at a constant load, the overall efficiency can improve if the fuel 

cell is decoupled from the total power requirement.  It is suggested to separate the climb 

rate constraints from endurance constraints.  An example of this strategy is to use 

batteries for take-off and the fuel cell for cruising, which would produce longer 

endurance.  With no need to recharge, the batteries would become unused payload after 

take-off.
4
  Because fuel cells can reach specific energy levels of up to five times that of 
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batteries, long endurance flights might be optimal without carrying any batteries.
4
  The 

optimal degree of hybridization between batteries and fuel cells would differ for different 

missions, but an initial investigation of a large, 700 W, fuel cell-battery-powered aircraft 

system designed for endurance showed that a fuel cell sized to provide between 60-80% 

of the system power could optimize endurance.
4
  

The hybridization will likely be necessary for any MAV utilizing a fuel cell due to 

relatively high power fluctuations caused by stability and control requirements.  The 

conceptual design tool described here could answer these types of power management 

questions.   

II.6. Propeller and Motor Models 

Both the propeller and motor are major subcomponents to any electrically 

propelled system.  In system-level design, two separate, but dependent models are 

required.  Fortunately, a software program called QPROP assimilates two highly 

developed models for the propeller and the motor.  

II.6.1. QPROP 

QPROP is a performance model for propeller-motor combinations.  It uses a 

relatively sophisticated and accurate propeller aerodynamic model and a generalized 

motor model.
81,82

  The propeller aerodynamic model employs an advanced blade-element 

and vortex method.  The QPROP documentation says that the additions to the method are 

based on the work of Larrabee and correct for self-induction to improve accuracy at high 

disk loading.  The blade airfoil lift characteristic is assumed a simple linear CLα line with 

CLmax and CLmin stall limiting.  The profile drag characteristic is a quadratic function of 
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CD dependent on CL, with an approximate stall drag increase and includes power-law 

scaling with Reynolds number.  Inputs to QPROP are shown in Figure 9.  Qprop Model Overview

Flight Conditions
(a,µ, ρ)

Propeller Geometry
(C, R, β, Cl, Cd) 

Motor Parameters
(R, Io, Kv)++

=

 

Figure 9. QPROP inputs. 

 QPROP internally optimizes four parameters:  RPM, pitch rate change, thrust, and 

velocity.  Outputs of QPROP are speed, RPM, pitch rate change, thrust, torque, shaft 

power, voltage, current, motor efficiency, propeller efficiency, advance ratio, thrust 

coefficient, torque coefficient, slipstream velocity increment, electrical power, propeller 

power, power weighted average of local CL and power weighted average of local CD.  

QPROP must have at least two inputs of the four key parameters, or it will not run.     

II.6.2. Motor 

 Brushless motors are now available that provide significantly more power and 

better efficiencies than brushed motors.  Despite the requirement of an electronic speed 

control device, the weight difference is negligible.
2
  Researchers at a Swedish university 

recognized that the propulsion system, to include the battery, motor, controller and 

propeller is key to optimizing MAV capabilities.  Focusing primarily on the battery, they 

discovered that standard equations for brushless DC motors could be improved upon, 
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manufacture’s data should not be trusted, and the motor controller model is complex.  

However, this study would be very useful to someone seeking to improve the motor 

model characteristics based on more vigorous and faithful motor tests.
85

  Any motor 

model can be incorporated into QPROP.  Since QPROP analyzes the propulsion system 

performance, it must have both a propeller and a motor as input files and cannot run one 

without the other.   

II.7. Software Linkage and Model Center 

 Historically, aircraft design relied upon groups of specialists who iterated on a 

design until all or most of each group’s requirements had been satisfied.  In the computer 

age, with software, a single person can orchestrate the effect of multiple groups’ efforts.  

Because engineering is specialized, multidisciplinary design usually requires the 

interaction of several pieces of software.  When each software piece was not originally 

designed to interact with others, it can take extensive computer programming skill to 

enable these interactions.  A program called Model Center provides a means for inter-

software communication and offers a graphical user interface for model manipulation.  

 Other researchers are focusing not only on the conceptual design of aircraft, but 

also on the collaboration among geographically separated people.
86

  A conceptual design 

environment called Distributed Analysis Modeling Environment (DAME) has previously 

been developed to quickly incorporate multiple models not necessarily collocated so that 

numerous contributors could collaborate on a multidisciplinary project.  Due to 

networking challenges, efforts such as these would prove tangent to this paper’s goal, but 

is notable because architecture concept verification employed Model Center with many 
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subcomponents for the purpose of air vehicle design.  DAME used Flight Optimization 

System (FLOPS) as the airframe model, which is limited to a single set of input 

conditions to generate flight performance metrics.  In this case, multiple mission 

segments such as climb, cruise, loiter, and descent could not be independently inputted 

into FLOPS, so various mission segment input deck configurations were written into 

Model Center so that the system could generate a more dynamic flight performance 

profile.  For the project mentioned here, a paired layering approach was used to keep 

subcomponents modular.  The concept required interfaces in the form of script files to 

relay information between various components.  Despite a slight increase in complexity, 

the user can effectively ―swap out‖ components with similarly configured components 

with relative ease.
87

  In addition to FLOPS and Model Center, some other optimization 

codes used for this purpose are NEWSUMT-A, OptdesX, Mathworks Matlab, and 

Microsoft Excel Solver.  

Model Center allows a variety of file types to be linked together to form 

input/output relationships.  It supports popular utilities such as Mathworks Matlab and 

Microsoft Excel with plug-ins, and batch mode executables such as QPROP and AVL 

with user-created file wrappers.  These require some knowledge of MS-DOS, server 

based architecture, Visual Basic, and VBscript.  Any number of component files can be 

linked together to build a single program model.  Then, built-in capability such as trade 

studies, Design Of Experiments (DOE), or any other user-determined analysis can be run 

on the single interconnected Model Center model.  Note that, like any model, the Model 

Center model must contain component models that are dynamically and geometrically 

similar for realistic results.  Otherwise, individual components within the model must be 
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revised to support a separate analysis.  A more detailed description of Model Center’s 

capabilities can be found in Chapter 3.  

Chapter 2 started with an introduction to MAV and UAS platforms that either 

demonstrated alternative power systems such as fuel cells and hybrid-power sources or 

illustrated the MDO concept.  When many disciplines must collaborate to produce new 

technology that might not operate the same as a scaled up version, MDO becomes 

critical.  Various aerodynamic and propulsion codes were reviewed along with important 

aspects of batteries and fuel cells.  Lastly, the Model Center framework was introduced as 

a means to tie all the pieces together.   

In Chapter 3, the operational details of each chosen component will be explained.  

AVL, QPROP, and airframe power required models will be thoroughly examined.  The 

importance of subcomponent models for fuel cell and battery performance will be shown 

as it pertains to the conceptual design tool.  Lastly, an introduction to Model Center’s 

built-in trade study and optimization techniques will be discussed.  
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III. Methodology 

Within the methodology chapter, all components and interactions within the 

model will be explained.  Relevant theory and assumptions will be discussed and modes 

of operation will be described.  

III.1. Conceptual Design Tool Overview 

Various models and components are integrated into a single interface to assist the 

power systems engineer in the implementation of an optimum power system.  In addition 

to the power system focus, aerodynamic performance available from AVL blended with 

the propeller and motor analysis of QPROP offer the ability to separate each component 

for a tailored sub-optimization if desired.  

The conceptual design tool developed here is meant to be used in one of two 

modes of operation.  The first mode is set within the context of a single mission segment.  

The user supplies the flight conditions by specifying altitude and velocity, and the 

program calculates the required power that must be supplied from the power system.  The 

organization diagram of this mode of operation is shown in Figure 10, which also is the 

Model Center component interface.  It is the inner loop used for any mission segment.  
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Figure 10. Single iteration inner loop for power-required calculation 

The second mode of operation creates a sortie of five mission segments linked in 

series.  The user describes what altitude, and climb rate each segment will have, along 

with the type of mission segment such as cruise and loiter.  Velocity can be either a 

specific speed or the speed that requires minimum power or minimum thrust for 

endurance or max range, respectively.  A simple baseline mission profile is illustrated in 

Figure 11. 
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Figure 11. Baseline mission profile. 

The program runs each prescribed mission segment and calculates average power 

required for each segment.  An additional power measurement is taken at the midpoint of 

the climbing and descending mission segment.  Once all the average power values are 

logged, the user-inputted specific energy and specific power are checked against the 

mission power required.  An aggregate power system mass is calculated.  A graphic of 

the outer loop used to simulate this series of mission segment points is depicted in Figure 

12.  The component called Threshold Values is the gradiaent optimizer that can be used 

to analyzie the optimal split of power components.  

Leg 1 

Climb 

Leg 4 

Cruise 

Leg 2 

User Speed 

Leg 3 

Loiter 

Leg 5 

Descend 

+ 1.5 m/s - 1.0 m/s 

4.0 min 7.0 min 5.0 min 5.6 min 8.5 min 

Vend Vend 

500 m 

17 m/s 13.2 m/s 13.5 m/s 
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Figure 12. Outer loop used to run mission segment simulations. 

This process can be iterated and optimized on any design variable or variables to 

answer questions pertaining to feasibility or to determine requirements for a variety of 

changes.  Each component of the model will be explained in detail in the following 

sections. 

III.1.1. Model Center 

Model Center is the integrator used to connect all software internally and provides 

a graphic user interface from which variable values and attributes can be modified.  It 
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also orchestrates the execution sequence of each component.  Trade studies, DOEs, and 

optimization can be performed within the Model Center environment.  

 Software interfaces with Model Center through various means depending on the 

type of software.  Popular applications such as Matlab, Mathcad, CAD programs, and 

Excel have a specially designed interface called a plug-in.  The plug-ins are written by 

Phoenix Technologies, the company that owns Model Center.  These plug-ins have 

version numbers like any other program so that they can keep up to date with both Model 

Center changes and third party software changes.  The plug-in provides a Graphic User 

Interface (GUI) for the user to simplify software connection, and in most cases, makes 

connections easier.  The model used in this study takes advantage of Matlab and Excel 

plug-ins.  The main way Model Center connects to other programs is by way of the 

Analysis Server.  Analysis Server is a complementary program that Model Center uses to 

manage connections with batch mode executable components.  It runs in the background 

and is separate from Model Center.  Batch mode applications that run with an executable 

program from the command window require Analysis Server.  On some machines, it runs 

as a service in the background, but must be started independently on others.  In addition 

to batch mode components, scripts also use Analysis Server.  Scripts can be written in a 

variety of languages to include VB, VBScript, C++, and JAVA, directly within the Model 

Center environment or outside.  Examples of the components used for this effort, along 

with explanation are included in Appendix C.  All Model Center components are typically 

saved and written to within the same file directory as Analysis Server.  The user must 

have read/write access to the drive where Analysis Server is installed.  
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 Once all of the components are connected within Model Center and the variables 

are defined, the entire model can be run with a single button.  Model Center usually 

knows when to run each component automatically by starting at the bottom (output) of 

the model tree.  It checks for validity of each end variable.  Validity is whether the 

variable is up to date.  If the end variable is invalid, or stale, Model Center knows to 

reach back to the previous component.  It does this all the way until it reaches the user 

input variables at the first component.  This backward approach is ideal for most models.  

When a model does not operate in a linear fashion, as a complicated model might, the 

Script Scheduler can determine how to run the model.  The Script Scheduler is a script 

written to explain to Model Center exactly when to run each component.  The Script 

Scheduler was initially used for the multi-segment mission runs, until a more powerful 

technique that used a driver was discovered.   

 In addition to the Script Scheduler, other components can orchestrate a model.  

Sometimes certain tasks must be performed until a condition is met.  For these 

applications, a driver is needed.  A driver was used here to run the mission profile.  In 

order to run the mission profile, reference variables within the driver tracked and changed 

input conditions for each iteration so that they either matched the previous iteration or 

were as described by the driver script.  After each mission segment ran, data was 

collected and saved for post processing and plotting.   

III.2. Detailed Description of All Subcomponents 

This conceptual design tool integrates various components within the Model 

Center environment.  The major models represented by distinct software components are 
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AVL and QPROP.  Other models based on simple sets of equations have been written 

into Matlab script for execution with the MatLab Plug-in.  These include models for 

airframe power-required, fuel cell, battery, power system management, and mass 

determination.  

III.2.1. Aerodynamics Model:  Athena Vortex Lattice (AVL)  

As previously introduced, AVL is a vortex lattice method of aerodynamic analysis 

and was chosen for this endeavor because it fits well at the conceptual design level and 

has been proven acceptable for the large MAV size.  Some inherent limitations come 

with the use of any vortex lattice method and will be briefly summarized in this section.  

Despite the limitations, AVL is a very good choice among various other possibilities.  

The fundamental equations used in its analysis and how this analysis is integrated with 

the MAV conceptual design model will be explained.  

Vortex lattice methods are a subset of Computational Fluid Dynamics (CFD), and 

can be summarized as the modeling of a series of infinitely long, discrete vortices along 

the lifting surface.  By integrating forces of each vortex, lift and induced drag are 

calculated.  Geometry and boundary conditions strongly influence the calculation’s 

validity.  The author of AVL reminds users of some basic vortex lattice rules generally 

required for good data, but also explains how the program accounts for the less than 

expert user in the help file ―avl_doc.txt,‖ available from the software website.
62

  First, 

trailing vortex legs must not pass close to a downstream control point.  If they do, they 

should have the same spacing.  Second, spanwise vortex spacing should not have 

discontinuous changes in spanwise strip width.  More strips are required at points of 

geometric change such as dihedral and chord breaks, control surface ends, and wing tips.  
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Chordwise strips of narrow width are required on control surfaces along hinge lines.
62

  

These guidelines are helpful when creating a vortex lattice structure used in conceptual 

design, but it is recommended to corroborate a new vortex lattice structure design with 

someone familiar with good CFD methodology.  Figure 13 shows the GenMAV AVL 

model.  

 

Figure 13. GenMAV AVL model illustrating mesh, camber, and trailing vortices. 

III.2.1.1. AVL Theory of Operations 

AVL first calculates the lift/span loading, L’.  By means of the calculated 

circulation,  , the local lift coefficient, cL , is determined by Eq. (7).
62
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Note that cL is only a measure of chordwise loading intensity in the streamwise direction.  

Boundary layer development depends on more than just the streamwise pressure 

gradients, so cL may not be a good indicator of local stall.  Therefore, AVL should only 

be used for low angles of attack where stall is not suspected.  

In addition to lift, the total drag coefficient is found by cumulative surface force 

integration over each lifting aerodynamic surface, and induced drag is calculated from the 
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wake trace in the Y-Z plain far downstream.  Parasitic drag, CD,0, cannot be calculated by 

AVL and is a user supplied input.  The span efficiency factor, e, is given by Eq. (8).   
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The value of span efficiency depends upon loading.  Induced drag, CD,i, is the AVL 

internally-computed Trefftz Plane drag coefficient calculated from the wake trace in 

theY-Z downstream plane.  CD, CY, and CL are each the sums of forces in the respective 

X, Y, and Z directions each normalized by the product of dynamic pressure and planform 

area.  AR is the aspect ratio found with reference values. 

AVL has a simple interface for making flight condition changes during steady 

flight.  For any single user input, AVL tries to balance Eqs. (9) – (13),   
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where an arbitrary bank angle is , and is positive right wing down.  Mass is m, gravity is 

g, air density is ρ, turn radius is R, and turn rate is ω.  Pitch rate, q, is positive nose up, 

and yaw rate, r, is positive for a right turn. 

 Mass, gravity, and dynamic pressure are predetermined from either the ―.mass‖ or 

―.run‖ input files, or can be directly entered.  When velocity is changed, the coefficient of 

lift must also change for equilibrium.  Note that AVL will fail to converge at 
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unreasonably high CL values required for very slow velocities, or high angles of attack.  

This is not a direct measure of stall, but the user is required to recognize the onset of stall 

and diligently avoid this regime.  

 AVL is capable of more than described here, such as Eigenmode Analysis and 

looping flight, but these functions were not ultimately employed within the conceptual 

design model.  

III.2.1.2. AVL Operation:  Inputs 

AVL requires several inputs.  First, the specific geometry of all lifting surfaces 

must be described.  All spatial locations, chord lengths, control surfaces, and airfoils are 

written to a main file that essentially describes the geometry.  Basic information such as 

air density, Mach number, velocity, center of gravity, wing reference area, chord 

reference length, and span reference length are inputted here.  Default profile drag 

coefficient (CD,p or CD,0) added to the geometry can also be included, but is assumed zero 

if absent.  AVL handles compressibility with the Prandtl-Glauert compressibility factor 

shown in Eq. (15), where M is freestream Mach number.  

 
21

1

M
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 For slow flight, Mach less than 0.2, the AVL manual suggests that the Mach 

number could be set to zero to save computational time.  The Prandtl-Glauert corrections 

allow AVL to provide reasonable results up to Mach 0.6.  Furthermore, the users guide 

suggests that if the fuselage is not expected to contribute much to the lifting distribution, 

it could be omitted in the AVL model.    
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Exact dimensions of the airfoils are included within the geometry file.  This data 

can either be transcribed from an airfoil reference, or can be calculated by a secondary, 

well-respected MIT software program called XFOIL.  The main purpose of XFOIL is to 

calculate real aerodynamic airfoil coefficients for unique airfoils.
90

  XFOIL was used to 

analyze the GenMAV lifting surfaces.  The airfoil geometry file consists of non-

dimensionalized X and Y coordinates from the trailing edge to the leading edge, and back 

to the trailing edge.  

In addition to airfoil data within the main geometry file, information about the 

desired lattice structure must be provided.  This includes the number of chordwise 

horseshoe vortices placed on the surface and the chordwise vortex spacing parameter.  

These spacing parameters describe how the vortex lattice panels are discretized within the 

geometry, and determine the spanwise and lengthwise horseshoe vortex node 

distributions.  The underlying AVL vortex lattice solver is only concerned with the 

overall collection of the individual horseshoe vortices, so each surface need not be 

described in great detail.  Only the minimum detail for clean interpolation between 

sections is required.  The geometry file, genmav2pt2.avl, can be seen in Appendix C.1.e.  

In addition to the main geometry file, the GenMAV model includes 11 different airfoil 

files that describe the changing shape of the wing from root to tip.  These are documented 

in Appendix C.1.g.  Although the ability to see the lifting surfaces was not enabled 

through Model Center, when the GenMAV is run within AVL independently, a pictorial 

view of the MAV can be generated by AVL.  Whenever a new model is written for AVL, 

it is highly recommended to view this graphic to ensure the encoding matches the desired 

MAV shape.  AVL’s graphic of the GenMAV was shown in Figure 13.  
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Once the geometry is established, AVL requires a mass file.  The mass file 

provides AVL all mass data, moment of inertia data, cross moments of inertia data and 

Center of Gravity (CG) data for each subcomponent.  The aircraft may be broken up into 

as many subcomponents as desired.  The mass file also tells AVL what units to use 

during trim analysis.  If units are not metric, scale factors must be included within this 

file.  The mass file, genmav2pt2.mass, can be found in Appendix C.1.j.    

The last important file is the run-case file.  Although all options for the run case 

can be input via the AVL command prompt, it is much more convenient to write a file to 

track and vary each case, or to simultaneously load multiple cases.  If present, 

information within the run case file overwrites any conflicting mass, moment of inertia, 

drag, and CG data from other files.  This provides a single location to change multiple 

parameters without interfacing with menus.  All parameters may be put into the run-case, 

but since certain parameters may be held as constraints, such as for trimmed flight, some 

variables will be changed internally.  The parameters that may be input as constraints are 

alpha, beta, roll rate, pitch rate, yaw rate, roll moment, pitch moment and yaw moment.  

During program execution for trim, the user must review each parameter to check for 

feasibility.  For example, a common example of an impossible case might be where CL 

wasn’t constrained, so AVL called for a CL that exceeded the airfoil’s capability, which 

will happen when velocity is slower than stall speed.  Reasonable inputs were confirmed 

by inputting desired conditions, running the case, and then using the converged variable 

values as a basis for single parameter changes.  Common parameters for the run case are 

the above constraints, as well as CD,o, bank angle, elevation, heading, Mach, velocity, 

gravity, turn radius, a load factor, and mass.  Despite guidance in the user guide to the 
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contrary, CD,o was only changeable through the run file, and not through the AVL 

geometry file.  AVL uses the aforementioned three files to assimilate all input data for 

analysis as shown in Figure 14.  Upon program execution, trim conditions are 

determined, along with aerodynamic coefficients, control surface deflections, and 

stability axis derivatives about the CG.  These are functions of CL and angle of attack. 

 

Figure 14. AVL inputs and outputs 

  Incorporation of AVL within the Model Center framework required several more 

files.  AVL is a batch mode executable, so Analysis Server must be running in the 

background.  Model Center recognized all the critical variables with a separate script 

called a ―file wrapper.‖  The ―file wrapper‖ tells Model Center exactly which files AVL 

needs, and where to locate all the important variables within the file.  A ―bat‖ file issues 

the required commands to the command prompt and a ―batch‖ file spells out the sequence 

of operations to perform within the AVL context.  Model Center requires a copy of each 

of these files to serve as templates.  The original input file is modified to suit the Model 

Center user’s instructions while the ―template‖ files are not changed between runs.  
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Lastly, there is an optional ―initial‖ file used by Model Center to retrieve initial values.  A 

copy of all of these files can be found in Appendix C.1.  

III.2.1.3. AVL Operation:  Outputs 

AVL is a powerful tool capable of various complex analyses in its standalone 

form.  However, when connected to Model Center, its power greatly increases by 

allowing the user to choose what is important.  For example the conceptual design model 

uses only the span efficiency calculation from AVL for reasons mentioned later.  This is 

not due to any shortfall, but it was determined to be the best fit with the other pieces of 

the model.  Regardless of which pieces ultimately are connected to other components, by 

identifying variables in the ―file wrapper,‖ all output variables are accessible.  

 

Figure 15. Partial breakout of AVL variables 

A partial breakout of AVL input and output variables available from Model 

Center are displayed in Figure 15.  In addition to standard aerodynamic variables, AVL 
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can also provide useful stability analysis.  All of AVL’s stability and control derivatives 

have been mapped to the Model Center interface.  One simple illustration of a stability 

concern applicable at the conceptual design point is longitudinal stability.  A positive 

static margin, identified by Eq. (15), suggests a longitudinally stable aircraft.
91

   

 Positive Static Margin = cgnp XX  > 0 (15) 

AVL provides a neutral point calculation, which is the aerodynamic center of total lift, 

each time it is run.   

III.2.1.4. AVL Use in Model Center:  Track 1 and Track 2 

 AVL outputs both span efficiency factor and total drag coefficient.  The power-

required and thrust-required can be calculated either from the drag polar constant, which 

is a function of span efficiency as shown in section III.2.4, or from the total drag 

coefficient.  Within this conceptual design model, Track 1 is denoted to be the airframe 

power-required calculation that uses drag polar coefficient, K, attained by including 

AVL’s span efficiency, e.  Track 2 is denoted to be the airframe power-required 

calculation that uses AVL’s total drag coefficient, CD.  Both of these calculation methods 

should produce identical results, and in fact only differ very slightly at slowest and fastest 

velocities.  A comparison is provided in section IV.1.1.  Because of these results, and the 

ease of attaining the span efficiency and drag polar constant, Track 1 is used for all 

subsequent analysis, and Track 2 has been relegated to a means of verifying Track 1.  

III.2.2. Propulsion and Motor Model:  QPROP 

 QPROP seeks to quantify the performance of propeller and motor combinations.  

Theory of operation is founded on classical blade element vortex theory and a detailed 

explanation is available through the QPROP website.
82

  Circulation is defined as a 
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function of local chord length, velocity, rotation speed, and local radius.  Parametric 

derivatives are determined and residuals are set to zero.  A quadratic Newton iteration 

scheme is used to determine circulation for the flow condition.  The circulation is then 

used to determine thrust and torque.  By these means, an analysis can be performed based 

on velocity, thrust or torque, rotation rate, and pitch.  

 Inputs into QPROP cannot describe more than three design variables (velocity, 

thrust or torque, rotation rate, and pitch), or the problem will be over defined.  When this 

occurs, QPROP tries to satisfy the inputs, but at least one output will not reflect the 

desired input.  QPROP evaluates performance with Eqs. (16) - (25),   
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where motor, propeller, and overall efficiency is η, shaft power, electric power, and 

propeller power is P, torque is Q , rotational speed is ω, velocity is V, thrust is T, and 

advance ratio is J with radius R. 

QPROP can support any kind of motor, so long as a motor model file is 

developed.  The basic configuration is for a brushed DC motor and uses the following 

Eqs. (26) - (29),  
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where Q is torque, I is current, Io is no-load current, Kv is in units of rad/s /Volt, ω is 

rotation speed, V is voltage, R is resistance in ohms, η is efficiency, and P is mechanical 

power in Watts.  Ref. 82 provides further explanation of how these equations are used.  

Outside the algorithm, the motor constant, Kv, is specified in traditional units of 

RPM/Volt.  Resistance can include system resistance, which would be added to the motor 

resistance.  A gearbox can also be included within the motor model.  QPROP provides an 

optional motor model template that includes frictional torque, temperature-dependent 

resistance, and magnetic lags. 
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Unit conversion between English to Metric units is specified in the propeller 

template file.  The QPROP algorithm requires SI units.  All powers, efficiencies, advance 

ratio, thrust, and power coefficients are calculated values from inputs current, voltage, 

velocity, and RPM.  The theory document explains the four parameters that are 

optimized:  RPM, pitch rate change, thrust, and velocity.  QPROP requires at least two of 

the four inputs, or it will not run.  When more than three inputs are provided, the problem 

is over-constrained, and does not produce desired results.  (When RPM is an open design 

variable, the desired thrust is returned).  Figure 16 lists a partial breakout of QPROP 

variables.  All QPROP program files can be found in Appendix C.5.   

 

Figure 16. Partial breakout of QPROP variables. 

III.2.3. Endurance Velocity, Cruise Velocity, and Rate of Climb 

Best theoretical speeds for optimum performance relate directly to certain CL/CD 

ratios.  The ideal ratio depends on whether the airplane is propeller driven or jet 

propelled.  They can also depend on whether the propeller driven aircraft has a piston 

engine or an electric motor.  
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III.2.3.1. Endurance and Loiter Velocity 

Endurance is how long an aircraft can stay in the air and is the same as loiter.  

Maximum endurance occurs when the aircraft flies at minimum power-required.  A 

propeller driven aircraft achieves the maximum endurance when operating at minimum 

power.  In order to operate at minimum power, it can be shown that the aircraft must fly 

at a ratio of 
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Equation (30) requires the drag polar constant, K, in order to provide the 

endurance velocity.  The drag polar constant is dependent on span efficiency factor, e, 

which depends on the induced drag and lift coefficients shown in Eq. (8).  Both the drag 

and lift coefficients are functions of velocity.  Therefore, the drag polar constant 

indirectly depends upon velocity.  Fortunately, this complicated relationship can be 

simulated with Model Center’s converger application that will change the inputs of a 

function until the outputs match the inputs.  In this case, a velocity is input into AVL.  A 

drag polar constant is calculated from AVL’s resulting span efficiency factor.  The drag 

polar constant and input velocity is evaluated with Eq. (30) to find the endurance 

velocity.  When the left hand side matches the right hand side, the equation has 

converged.  This normally takes only a couple of iterations.  This technique provides the 

best theoretical endurance velocity of Vend  = 10.22 m/s for the GenMAV. 
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III.2.3.2. Range and Cruise Velocity 

In much the same way as the endurance velocity corresponds to flight at the 

minimum power-required value, range is maximized by flying at the minimum airframe 

thrust-required.  The cruise velocity is equivalent to the maximum range velocity.  It can 

be shown that for a propeller driven aircraft, the maximum range velocity is the flight 

velocity of maximum lift-over-drag.
83

  This formula is Eq. (31), 
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which should not be confused with the minimum thrust-required and maximum range for 

a jet engine, which occurs at 
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 Equation (31) also requires the drag polar constant, K, in order to provide the max 

range velocity.  With the same relationship explained for the endurance velocity, K is 

dependent on the input velocity.  Model Center’s converger application was again used to 

change the input velocity and check the calculated range velocity.  This technique 

provides the best theoretical best range velocity of Vrange  = 13.46 m/s. 

III.2.3.3. Maximum Climb Rate Velocity 

 The maximum rate of climb is proportional to the excess power available, where 

excess power is the difference between power-available from the power plant at the flight 

condition and power-required to overcome drag while flying at the flight condition.  As 

previously explained, the minimum power-required condition occurs during flight at the 

endurance velocity.  The power-available, however, is strongly dependent on the type of 

power plant.  A jet engine can produce increasing power with proportional increasing 
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velocity.  Power-available from a propeller driven piston engine is relatively constant as 

velocity increases.  Power-available from an electric power plant is strongly dependent 

on properly matching motor capability and propeller requirements, which infers that 

power-available will not be constant as velocity increases.
84

  A poor match provides 

substantially low efficiency values.  Furthermore, electric motor and propeller matching 

must be tailored to the design flight envelope because no one set of components can 

provide optimized performance for all conditions.  QPROP can determine the operating 

efficiencies at any desired flight condition in order to calculate the power-required, but it 

cannot provide the power-available.  This must be done experimentally.  The real power-

available curve for an electric powered MAV is likely to be as shown in Figure 17,
84

 but 

without experimental data, the assumption is made that the most excess power will occur 

at a speed slightly higher than the endurance velocity.  As such, the true maximum rate of 

climb cannot yet be determined.  

 

Figure 17.  PA  and PR for small electric UAS. 
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III.2.4. Airframe Power and Thrust Required  

This section relies on the Equations of Motion (EOM) to develop theory necessary 

to determine the required thrust and required power for the airframe.  The analysis is 

applicable for an electrically powered, propeller driven aircraft, and is independent of the 

inefficiencies associated with the motor and propeller.
83

  

Beginning with Newton’s Second Law, maF  , and utilizing the Flat Earth frame 

of reference, the EOM for flight parallel to the flight path can be shown in Eq. (32),  

  sincos WDT
dt

dV
m   

(32) 

where   is the angle of thrust relative to the flight path, W is weight, V is velocity, D is 

drag, and   is the instantaneous climb angle.  The EOM for flight perpendicular to flight 

path in the vertical plane can be shown to be Eq. (33),  
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where   is the roll angle and 
1r  is the local radius of curvature of the flight path with 

respect to the vertical plane.  A third EOM exists to describe motion perpendicular to the 

flight path in the horizontal plane, but two-dimensional motion is acceptable for a first-

order conceptual design tool.  Since we are only concerned with steady, unaccelerated 

flight, 
dt

dV
= 0 and 

1

2

r

V
 = 0.  Furthermore, a reasonable approximation can be made that 

the thrust line is in the direction of flight so that   also = 0, so that Eq. (32) and Eq. (33) 

simplify to Eq. (34) and Eq. (35).  

 sin0 WDT   
(34) 
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 cos0 WL   (35) 

Lift is defined by Eq. (36), and drag is defined by Eq. (37), where the dynamic 

pressure, q , is defined by Eq. (38).  

 SqCL L  
(36) 

 SqCD D  (37) 

 2

2

1
Vq   

(38) 

The coefficient of drag follows a pattern called the drag polar defined by Eq. (39), where 

oDC ,  is the zero-lift-drag coefficient and K is defined by Eq. (40).   

 2

0, LDD KCCC   (39) 
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 A recent paper discussing the Unicorn MAV, which is of similar magnitude to the 

GenMAV, confirmed that this simple form of the drag polar is sufficient.
84

  The drag 

polar constant Eq. (40) includes e, the span efficiency factor, and AR, the aspect ratio.  

Lift from Eq. (35) is substituted into Eq. (36), and the resulting lift coefficient is 

substituted into Eq. (39).  A more elaborate form of Eq. (37) is then represented by Eq. 

(41). 
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The power-available,
AP , is primarily dependent on the ability of the power plant to 

produce thrust-available, TA, and is the thrust multiplied by the velocity as shown in Eq. 

(42).  The power-required,
RP , is the power the airframe requires to overcome drag and is 

shown in Eq. (43). 

 VTP AA   
(42) 

 DVPR   (43) 

The Rate of Climb, ROC, is simply the trigonometric relationship between the vertical 

velocity verses the horizontal velocity represented by Eq. (44).   

 sinVROC   
(44) 

Conveniently, when the EOM from Eq. (34) is multiplied by 
W

V , a new EOM is 

expressed that includes the ROC, as shown in Eq. (45).   
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The drag from Eq. (41) can be inserted into Eq. (45) to yield Eq. (46). 
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(46) 

Noting that airplanes typically fly at low climb angles, let cos  = 1 for the drag 

expression only, so that Eq. (46) is simplified to Eq. (47).   
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Ref 83 further asserts that this approximation has also been confirmed to be valid by W. 

Austyn Mair and David L. Birdsall, Aircraft Performance, Cambridge University Press, 

Cambridge, England, 1992.  When the thrust-available is not known, as in the current 

effort, and the aircraft is desired to fly at a certain velocity and/or rate of climb, Eq. (47) 

can be solved for thrust, which then becomes thrust-required as shown in Eq. (48). 
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Eq. (48) is very useful because it is valid for both climbing and non-climbing flight by 

setting ROC = 0 for level flight.  

Models that represent the airframe, propeller, motor, and power required have 

been described in this section.  The next section discusses the power system models.  

III.2.5. Fuel Cell Model 

Given that fuel cells are highly multi-disciplinary, the literature contains a broad 

range of potential fuel cell models for various applications.  Perhaps the most striking 

difference among the models is the frequency of which scientists and engineers from 

different backgrounds produce models tailored to a single discipline while minimizing or 

ignoring the rest.  In this case, only a high-level mechanical engineering perspective is 

required, while the details of thermodynamics, and electro-chemical interactions are less 

of a concern.  The following model produces the polarization curve.
75

 

Theoretical open circuit voltage for a hydrogen fuel cell is given by 
F

g
E

f

2


 , 

where E is the reversible electromotive force (EMF) or reversible open circuit voltage, 

fg  is the molar specific Gibbs free energy, and F  is the Faraday constant.  Gibbs free 
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energy ([kJ/mol]) varies with temperature.  The product will be water below 80 °C and 

vapor above this temperature.   

Loss models are specific to the type of loss.  Activation losses can be estimated by 

the Tafel or Butler-Vollmer equation, given by Eq. (49) and Eq. (50),   
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which includes crossover and internal current density losses.  The charge transfer 

coefficient,  , is dependent on type of reaction and electrode material.  It can be 

approximated as 0.5.  The universal gas constant, R, is 8314 J/mol.  Temperature, T, is in 

Kelvin.  Current density, i, has units of mA/cm
2
.  Exchange current density, io, is 

dependent on electrode material, and ranges from 2.5x10
-13

 to 4x10
-3

 A/cm
2
.  The internal 

current density, ni , is often negligible.  Ohmic losses due to electrical resistance of 

electrodes and ion flow follow Eq. (51),  

 riVohmic   (51) 

where r is the area specific resistance in kΩ/cm
2
.  Mass transport loss empirical equation 

is shown as Eq. (52),  
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where m and n are constants of approximate values of 3x10
-5

 volts and 8x10
-3

 cm
2
/mA.  

Together, all losses of Eqs. (49), (51), and (52) combine into the Eq. (53).   
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Eq. (53) can be reduced as Eq. (54) for most cases. 
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 Hydrogen storage requirements can be found from Eq. (55), and hydrogen flow 

rate can be determined from Eq. (56),
50

 but under predicts the flow rate, possibly due to 

leaks and hydrogen crossover effects.   
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Hydrogen utilization, util , is approximately 90%.  The Faraday’s number, F, is 96485 

C/mol.  The cell current is I, and E is the aircraft endurance.  The number of cells is cellsn .   

The polarization equation shown in Eq. (54) was originally built into this 

conceptual framework.  Later, it was decided that a more practical first step would be to 

rely solely on specific energy and specific power values, thereby only symbolically 

including a fuel cell into the framework.  Utilizing an actual fuel cell model as described 

here could provide more conclusive results regarding fuel cell hybridization.  

III.2.6. Battery Model 

In the same context as the fuel cell model, two battery models were originally 

included within the conceptual design framework.  Later, it became evident that a more 

useful tool could be built within the available time that utilized specific power and 

specific energy as proxies for a more accurate battery model.  This is especially true since 
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the State of Charge (SOC) is not tracked and battery charging capability is not developed 

here.  However, the simple models presented here would be an ideal next step.  

As shown in Figure 3 and Figure 4, battery cell voltage depends on the SOC and 

discharge rate.  A higher voltage is available at a lower discharge rate and careful 

monitoring will help ensure terminal voltage stays within the middle linear region.  A 

standard battery can be modeled as a current source in series with an internal resistance 

as shown in Figure 18.
77

  Terminal voltage follows Eq. (57) where the current source 

voltage is E, terminal voltage is V, and internal resistance is R0. 

 0IREV   (57) 

 

Figure 18. Standard battery model schematic. 

 

A very common type of battery cell is the 18650 lithium polymer, which was used 

in AeroVironment’s 150 g, 30 cm WASP MAV.
 24

   It supplies 3.7 volts per cell and is 

connected in series for higher voltage.  The power supplied by battery cells connected in 

series can be modeled by Eq. (58).
4
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 2

intbatt oc bP V I R  (58) 

 A slightly more complicated model is offered by reference 78.  This equivalent 

circuit is shown in Figure 19 and follows Eq. (59).     

 

Figure 19. Equivalent circuit for lithium ion cells. 
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It is well suited for lithium ion cells.  The current, I, is constant.  The nominal capacity is 

Q, and V0 is the nominal SOC dependent open current voltage. 

 Individual fuel cell and battery models need to be integrated to provide system 

level power.  Another model called the power management model brings the power 

subcomponents together.    

III.2.7. Power Management Model 

Fuel cells lack the required robustness to power a system with highly fluctuating 

power needs, as is theorized for future MAVs.  Therefore, in order to build or retrofit a 

useful MAV with today’s COTS materials, the most likely power scheme is a fuel cell-

battery hybrid system.  

Fuel cells provide high specific energy and batteries contribute high specific 

power.  These dominant attributes dictate the sizing of each component.  In order to 
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capitalize on the fuel cell’s main benefit, the fuel cell must run at its most efficient 

operating point.  A fuel cell runs most efficiently when its load is constant and when that 

load is relatively low.  Therefore, the accepted convention is to size the fuel cell for 

average load throughout the mission according to Eq. (60).   

 )(avgFCtotBat PPP   (60) 

It was previously mentioned that in the interest of providing a tool for the power 

system designer to use in the very near future, a SOC battery model and a polarization 

curve dependent fuel cell model are not yet incorporated into the conceptual design tool.  

Therefore, a first step is to base the battery and fuel cell on their specific energy and 

specific power properties.  Eq. (60) is now recast into Eq. (61) using the terms of Table 5,  

Table 5. Specific power and specific energy notation. 

Energy Dense Source, Specific Power  (EDSSP) 

Energy Dense Source, Specific Energy  (EDSSE) 

Power Dense Source, Specific Power  (PDSSP) 

Power Dense Source, Specific Energy (PDSSE) 

 

 )(avgEDStotalPDS PPP   (61) 

where the fuel cell represents the Energy Dense Source (EDS), and the battery represents 

the Power Dense Source (PDS).  

The battery, capable of providing higher short-term power, is sized to level the 

peaks of the power profile.  This may not necessarily be optimal.  The following relations 

lay the foundation to find the answer to this question on a case-by-case basis.  The 

conceptual design tool includes a power profile generator that provides a vector of power 

values based on the flight conditions of each segment.  Each mission segment has a 
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distinct duration and represents average power except for climb and descent where some 

post processing of multiple measurements reduce to a segment power average.  The 

mission power average can then be determined by Eq. (62).   

  





total

averagesegmentsegment

average
t

Pt
P

_*
 

(62) 

 averageEDS PP *  (63) 

EDS power is determined with Eq. (63) by a user input denoted as differential and shown 

with the symbol  .  The differential is set as a certain percentage of the average power.  

Time is represented by t.  A value of zero calls for no EDS, where a value of 1 or 100% 

sets the EDS power to be the average mission power, a typical arrangement.  The PDS 

then provides the additional power per Eq. (64). 

 EDSPDS PPP  max  (64) 

 Energy, E, is simply the power times the time shown in Eq. (65).  Energy 

requirements for the PDS accumulate across the mission segments according to the PDS 

power requirement shown in Eq. (66). 

 totalEDSEDS tPE *  (65) 

   
_#_

0
*)(

SegmentMax

segmentEDSsegmentPDS tPPE  (66) 

 The PDS and EDS must be sized to meet both power and energy requirements.  In 

nearly all cases, the source will have either excess power or excess energy.  The power is 

an instantaneous requirement, and the energy relates to the endurance of the aircraft.  

Often, excess energy must be carried as a consequence of meeting the power 
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requirement.  In order to address both requirements, the mass of each component was 

calculated based on the ratio of the requirement and the specific power or energy 

property, as shown in Eqs. (67) - (71).    
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Both the energy requirement and the power requirement of each component determined a 

minimum weight.  In order to satisfy both requirements, the largest of the power and 

energy mass is then selected for each component as shown in Eqs. (71) and (72). 

  )__()__( ,max drivenenergyPDSdrivenpowerPDSPDS mmm   (71) 

  )__()__( ,max drivenenergyEDSdrivenpowerEDSEDS mmm   (72) 

 Total power system mass is the sum of the PDS and EDS mass subject to an 

overhead mass percentage penalty for power system packaging shown in Eq. (73).  In the 

model, 10% was used for packaging.  

  EDSPDSmTotalPowerSyste mmoverheadm  *  (73) 

This power system model would be just as appropriate for comparing two 

batteries with different properties as it is for comparing a battery (PDS) and a fuel cell 
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(EDS).  A useful battery-battery hybrid-power source would have one with high specific 

energy and another with a high specific power.  

As suggested elsewhere in this text, it is important for the user to understand that 

maximum specific energy and maximum specific power is not available simultaneously.  

Therefore, it is imperative that the user recognize and input reasonable values for 

reasonable results.  

Each component described in this chapter, such as AVL, QPROP, and power 

management can be integrated within the Model Center environment.  Model Center 

provides many means to run models and better understand data.  

III.3. Model Center Trade Studies 

 Model Center offers a variety of tools useful for analysis.  Of the simplest is the 

parametric study, which captures output variable values as input variable parameters are 

changed.  A bit more complex is the Design of Experiments (DOE), which helps it 

identify the most important design variables.  Most complex are the optimizations.  Not 

only can a model be set to determine maximums, minimums, or find specific values, a 

whole suite of data visualization tools help interpret the best designs.  

III.3.1. Parametric Study and Carpet Plots 

 A parametric study in Model Center is a sweep on an input variable while 

capturing results of a single or any number of output variables.  This is useful for 

identifying trends and locating candidate design points for optimization.  More 

complexity is added when a carpet plot is run.  A carpet plot is a two-dimensional 

parametric study.  The number of steps and step size are set by the user.  After the carpet 
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plot is run, surface and contour plots are readily available.  These are very useful in 

realizing dependencies and constraint effects not evident with the parametric plot.  

III.3.2. Design of Experiments 

Often, with complicated models, the magnitude of effects caused by changing a 

certain input variable is unclear.  Laboratory experimentation across the spectrum of 

possible input conditions is usually too costly and time consuming.  DOE tools simplify 

this problem.  By modifying potentially important input variables and then tracking the 

output effects, a well designed DOE can statistically illustrate which variable are most 

important or which conditions are most sensitive to change.  Model Center allows the 

user to select one of twelve algorithms to correlate with most appropriate desired DOE 

application. The default is a full-factorial, which may or may not be the best choice, 

depending on desired results.  A standard output of Model Center’s DOE tool is the 

―main effects‖ plot.  This plot identifies the impact of each model variable on the 

response variables.  

III.3.3. Design Optimization Tools 

 Model Center also offers the ability to perform optimization.  The Design 

Optimization Tools (DOTs) modify the design variables until a specified condition is 

met.  These are cast in the conventional nomenclature by using an objective function, 

constraints, and convergence criteria.  Instead of a mathematical cost function, 

optimization is performed by analyzing the results from running the model’s components.  

Model Center’s DOT methods include variable metric, conjugate gradient, feasible 

directions, sequential linear programming, and sequential quadratic programming.  
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Various outputs such as convergence plots and iteration reports are available after the 

optimization completes.  

III.4. Validation Platform 

Given that various MAV platforms are not easy comparable in this nascent 

research field, the AFRL Munitions Directorate decided to create a platform that will be 

used as a baseline for future collaboration.
39,61

  This platform is called GenMAV, and will 

be modeled in this study as well.  The GenMAV has a positive 7° dihedral, 5° angle of 

incidence high wing, circular fuselage, tractor propeller, and empennage with a standard 

tail. The wingspan is 60.2 cm with a 12.7 cm chord length.  AVL was used for 

GENMAV.  All analysis thus far has been through AVL, flight tests are underway.  The 

system power requirements could be validated by putting a small voltage and current 

recorder in the GenMAV to get the power.  A second GenMAV with an articulated wing, 

called the GenMAV 2, was created to add flexibility and better study the aerodynamic 

control.  The AFRL Munitions Directorate graciously shared the AVL model for this 

platform, and it therefore became the baseline platform for this study.  Figure 20 is a 

picture of the GenMAV 2.
61

    



 

92 

 

Figure 20. Flight-Ready GenMAV 2. 

Chapter 3 discussed all of the various subcomponents within the conceptual 

design tool.  Each piece of software relied on individual models that were not initially 

meant to interoperate.  The Model Center environment is built for that connectivity, 

which in turn can provide relatively simple systematic analysis capability.  One must first 

test each component within the model before taking the system-view.  To this end, 

Chapter 4 shows how each major model was verified within the Model Center 

framework.  Then system-level parametric studies were performed to both confirm good 

operation and provide insight into the test article.  Lastly, mission simulations and power 

system optimization provided useful results.  
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IV. Analysis and Results 

IV.1. Verification and Validation (V&V) 

This effort was as much about building a model as researching useful results.  

Before any actionable information can be attained from the conceptual design tool, each 

major sub-model must be verified and checked to confirm that it not only acts as 

designed, but also produces accurate results.  All analysis was performed from the Model 

Center GUI.  Verification confirms that something performs as designed.  Validation 

confirms that something produces desired results.  AVL and QPROP will be verified and 

validated as much as possible.  

IV.1.1. AVL Verification 

An important means to verify AVL is to iteratively determine the drag and lift 

coefficients, and plot the drag polar for visual inspection.  A range of velocities at sea 

level was input into the AVL GenMAV model and vectors of lift and drag coefficients 

were collected.  Preliminary wind tunnel tests on the GenMAV 2 show a zero-lift-drag 

coefficient of 0.102.  This value was input into AVL, and used for all analysis.  AVL 

failed to converge for velocities less than 9.23 m/s, when it produced lift coefficient 

requirements higher than the known maximum lift coefficient.  Preliminary wind tunnel 

data also predicts a maximum lift coefficient of 1.16, which was used as the maximum 

lift coefficient within the model.  Considering the power required to fly at high speeds, a 

reasonable upper bound is 25 m/s.  Figure 21 shows the derived drag polar associated 

with the GenMAV for the given input conditions.  The data are curve fit to a linear model 

shown by Eqs. (74) and (75).   
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 2

0 LDD KCCC   (74) 

 2
0637.01038.0 LD CC   (75) 

Graphically shown by Figure 21, the linear model matches the data set.  The use of a 

single value for K is acceptable for a first-order approximation.
84

  It can be seen from this 

assessment that AVL does a adequate job of honoring the prescribed value of the zero-

lift-drag coefficient.  
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Figure 21. AVL generated GenMAV drag polar. 
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The drag polar shown in Eq. (75) was calculated for the GenMAV based on 

velocity runs with AVL.  The resulting value of K within the drag polar is the slope of the 

line on the plot of CD vs. CL
2
.  Knowing the aspect ratio, AR, and the drag polar 

coefficient, K, the average span efficiency factor, e, is computed with Eq. (76).   

 

eAR
K



1
 = 0.0637,   e = 0.97  (76) 

Such a high span efficiency is likely to be optimistic.  Actual span efficiencies range from 

approximately 80-95% and shall be illustrated in Figure 34.  However, it is entirely 

possible that AVL provides span efficiency values not directly comparable to 

conventional values.  As previously mentioned, the conceptual design tool has two 

somewhat distinct tracks.  Track 1 utilizes the span efficiency output of AVL to calculate 

a drag polar constant, which is then used to determine the endurance and maximum range 

velocities.  Track 2 is a means to check Track 1 by using AVL’s total drag coefficient to 

determine minimum power and minimum thrust.  Figure 22 illustrates power and thrust 

results for both of these approaches.  Both overlap, as they should, except at the lowest 

velocity.  The difference is due to Track 2 not incorporating a changing span efficiency.  

This appears to be a negligible difference.  The minimum points within the data are 

displayed in Table 6.  

Use of the converger to determine minimum velocities is considered to be closer 

to the true analytic value because the feedback loop confirms that the span efficiency and 

drag polar coefficient are matched to the input velocity.  A comparison of the numbers of 

Table 6 identify Track 1 as the better choice.  Therefore, Track 1 was used for all 

analysis, and Track 2 was only retained as an additional check. 
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Table 6. Calculation of endurance and maximum range velocities. 

# Approach Vend (m/s) Vmax_range (m/s) 

1 Model Center converger function 10.23 13.46 

2 AVL Velocity Iteration (e), Track 1 10.47 13.32 

3 AVL Velocity Iteration (CD), Track 2 10.68 13.27 

 

 

Figure 22. Iterative approach to find endurance and max range velocity. 

IV.1.2. AVL Validation 

Validation of AVL is not possible at this time since wind tunnel data was not 

obtained.  However, an AFRL team is currently evaluating GenMAV wind tunnel results 

and will publish them soon.  Preliminary results look very promising.    
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IV.1.3. QPROP Verification  

 QPROP predicts performance of propeller and motor combinations.  Without 

deriving the theory of operations, a good method of verifying that the code works 

properly is to check the outputs with values obtained independently.  

 Figure 23 illustrates data directly from QPROP.  Advance ratios, thrust 

coefficients, and power coefficients are direct outputs from QPROP and are available to 

the user without further processing.  As a check to better understand the output, the 

QPROP Eqs. (16)-(25) were independently recalculated in MatLab using only non-

derived variables such as velocity, power, thrust, and RPM.  The independent 

calculations overlap QPROP outputs, so this proves that the QPROP outputs follow the 

provided equations.  
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Figure 23. Verification of QPROP application of Eqs. (16)-(25). 
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 Equation (17) described the propeller efficiency and is therefore very important to 

any model.  This equation was checked with Figure 24 by calculating the efficiency using 

the underlying thrust and power coefficients.  The calculated values overlap QPROP 

outputs perfectly.  

 One concern about QPROP outputs is that magnitudes of coefficients and advance 

ratios are much smaller than one would expect.  After appropriately scaling the outputs, it 

was found that QPROP actually does produce expected results shown in Figure 25 

through Figure 27.  Further explanation is provided in subsequent pages.  When utilizing 

individual QPROP outputs, it would be important for any user to confirm that Eqs. (16)-

(25) reflect the user’s desired methodology.  
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Figure 24. Verification of QPROP’s application of Eq. (17). 
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IV.1.4. QPROP Validation 

 Validation posed a challenge due to the availability of data and nonstandard data 

reporting procedures.  However, reference 93 provides test data for propellers similar to 

the one chosen for this work.  The research presented in this reference has two important 

conclusions.  First, prediction capability is poor at low Reynolds numbers.  Second, 

scatter at low Reynolds number exists because advance ratios are defined in numerous 

ways.   

 Research presented here is based on a 9.5x5 Aeronaut (AE) CAM propeller.  

However, geometric data for for this propeller, as required by QPROP, was not available.  

Instead, available Graupner 6x3 propeller data was extrapolated up to the correct sizes.  

In hindsight, this may have not been wise since test data is not available for this 

imaginary propeller.  Despite this, it still allowed for high level analysis, and can be 

improved in the future.  Test data found in the above reference came from experiments 

performed at the Langley Aeronautical Research Center’s Basic Aerodynamics Research 

Tunnel (BART).  Comparable data are for two different 9.5x5 AE CAM folding 

propellers.  

 In order to compare data, it was first necessary to recompute advance ratios and 

associated coefficients into the same form presented in the test data.  These equations are 

Eqs. (77)-(80),  
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(77) 
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(80) 

where CQ is the torque coefficient, n is the propeller rotational speed in revolutions per 

second, and D is the propeller diameter. 

 Although not re-represented here, the BART data trends identically to the QPROP 

data shown in Figure 25 and Figure 26.  The thrust coefficient slopes downward linearly 

at approximately the same pitch shown.  The torque coefficient follows the same concave 

slope as shown.  At the same advance ratios, the QPROP thrust coefficient results are 

approximately 30% less than the BART data.  Also, at the same advance ratios, the 

QPROP torque coefficient results are approximately 35% less than the BART data.  
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Figure 25. QPROP thrust coefficient data. 
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Figure 26.  QPROP torque coefficient data. 

 BART test efficiency data were also compared to the ―imaginary‖ propeller.  For 

the selected test propeller, efficiency data exists at an advance ratio of 0.2 to 0.6.  This 

range is comparable to QPROP advance ratio range of 0.33 to 0.43 as shown in Figure 

27.  The test data matches QPROP data in magnitude of approximate maximum 

efficiency of 57% at near the same advance ratio of 0.37.  Another researcher found that 

for a single GWS-HD 9x5 propeller tested in the University of Illinois wind tunnel, 

QPROP over-predicted maximum efficiency by 17% within the same advance ratio range 

as the BART tests.
94

  The QPROP under-prediction of thrust coefficients when compared 

to BART data and the QPROP over-prediction of efficiency when compared to a test 

performed on a different propeller at an Illinois wind tunnel may appear to be a 

contradiction, but it is not.  Efficiency is determined by QPROP with Eq. (17), which 



 

102 

includes the ratio CT/CP.  If both of these coefficients are calculated by similar methods 

by the same source, the ratio should not be different.  Therefore, efficiency data may not 

be proportional to independent non-dimensionalized coefficients.  Data available from 

Illinois is of interest because someone utilized QPROP, but a proper comparison to 

research presented here is not applicable because the propeller geometry was not 

rigorously modeled.  Obviously, a better propeller geometry file could have been 

developed, but at this point, all that can be surmised is that QPROP provides adequate 

estimations for conceptual design. 
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Figure 27. QPROP propeller efficiency data. 

The GenMAV uses an AXI 2808/20 motor.  This is a brushless DC outrunner 

with 0.105 ohms resistance, 1.30 A no-load current and a voltage constant of 1490 

RPM/Volt.  The motor model was not directly validated, but a comparison to a similar 

type of motor in the literature was used to provide a rough check on results.  Most 

literature suggests that manufacture’s data should not be trusted and test data was not 
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found for this specific motor.  However, a research paper was found that specifically 

investigated motors of approximately the same size and operating conditions.  This paper 

identifies a maximum efficiency of between 75 and 85%.
85

  QPROP results show a 

maximum motor efficiency of 77%, which is within the acceptable literature range.  

IV.1.5. Power Profile Verification 

An example power profile will be shown in section IV.3.  As expected, the 

maximum power-required for the given mission occurs when the vehicle is climbing.  

Power-required then increases with altitude.  During the cruise portion of the flight, 

power is reduced some, but remains high due to flight faster than endurance speed.  The 

loiter mission segment is flown at endurance speed, which has the minimum power-

required.  The descent, naturally, requires the least power.  These results trend as 

expected.  

IV.1.6. Power Profile Validation 

Power profile validation will require flight testing.  Lightweight inductance 

Ampere meters are now available for flight test data logging.  Candidates for flight test 

vehicles, if not the GenMAV, are the BATMAV, the BATCAM, the AeroVironment 

Raven, or the AFIT OWL.  A flight vehicle other than the GenMAV could still validate 

trends and power proportions between flight segments.  

IV.2. Parametric and Carpet Plot Analysis 

Model Center offers a wide variety of means to analyze data.  Section III.3 

introduced some of the trade study capability available once the complete model has been 

built.  The various disciplines and software that make up this MAV conceptual design  
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tool must be comprehensively tested to ensure that they each provide the desired 

functionality.  The best way to perform these tests is to run a series of parametric studies.  

After initial verification, it is not too difficult to modify the model to produce speculative 

simulations with far greater ease than by experiment.  Later, powerful optimization can 

highlight immediate possible improvements. 

In order to further verify the model and explore the GenMAV capability, a set of 

outputs were analyzed against three changing inputs:  altitude, MAV mass, and rate of 

climb.  For all cases, the input freestream velocity was increased in finite steps from 9.5 

m/s to 25 m/s.  Altitude was varied from 0 to 500 m, total MAV mass was varied by 

approximately +/- 25%, and rate of climb was varied between -1 to 1 m/s.  The outputs 

were motor efficiency, propeller efficiency, overall efficiency, airframe power required, 

and total electric power required.  

IV.2.1. Velocity and Altitude 

When compared to velocity, altitude plays a minor role in the observed motor 

efficiency outputs as seen in Figure 28 and Figure 29.  Motor efficiency increases to 77% 

percent as velocity increases.  Given the slope, it could increase further.  Altitude is 

shown to be more important at low speeds than at high speeds.  Propeller efficiency on 

the other hand, appears generally unaffected by velocity until a relatively high speed 

when efficiency increases by a small amount as shown in Figure 30 and Figure 31.  The 

range between 55 and 57% is typical.  Given the increasing trend, propeller efficiency 

was calculated up to 50 m/s (not shown) to find a maximum of 64% at 41 m/s.  This 

demonstrates that the propeller is not matched to the motor or the airframe, and the 

efficiencies given by Figure 27 and the slower region of Figure 30 are local maximums.  



 

105 

The models confirm that the propeller is not ideal for the GenMAV.  The abilty of the 

conceptual design framework to illustrate this poor match further verfies the tool.  Figure 

30 also shows that for a given velocity, altitude impedes propeller efficiency, as expected.  

Overall, a higher speed is required to maintain efficiency at higher altitudes, as shown in 

Figure 32 and Figure 33.  

0.7745

0.76813

0.76177

0.7554

0.74903

0.74267

0.7363

0.72993

0.72357

0.7172

Freestream Velocity, m/s
25201510

M
o

to
r 

E
ff

ic
ie

n
c

y

0.77

0.76

0.75

0.74

0.73

0.72

Altitude, m

500

400

300

200

100

 

Figure 28. Motor efficiency vs. velocity and altitude, carpet plot. 
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Figure 29. Motor efficiency vs. velocity and altitude. 
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Figure 30. Propeller efficiency vs. velocity and altitude, carpet plot. 
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Figure 31. Propeller efficiency vs. velocity and altitude. 
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Figure 32. Overall efficiency vs. velocity and altitude, carpet plot. 
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Figure 33. Overall efficiency vs. velocity and altitude. 
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 In order to better understand the importance of span efficiency, it is plotted 

against velocity and altitude in Figure 34 and Figure 35.  It is shown that peak efficiency 

occurs near the endurance velocity, and decreases as speed increases.  With higher speed, 

the coefficient of lift decreases and induced drag increases, so Eq. (8) calls for a 

decreased span efficiency.   
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Figure 34. Span efficiency factor vs. velocity and altitude, carpet plot. 
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Figure 35. Span efficiency factor vs. velocity and altitude. 

 Airframe power-required follows the expected trend shown in Figure 36 and 

Figure 37.  Minimum power-required is achieved at the endurance velocity and increases 

in a cubic nature.  Increased altitude is demonstrated to have a slightly higher cost at high 

velocities, but plays a relatively minor role.  

 Overall total electrical power-required simply reflects the inefficiencies of the 

motor (Figure 28) and propeller (Figure 30) cast against airframe power-required (Figure 

36).  The plots of Figure 38 and Figure 39 show the same trend as the airframe power 

required, but with increased magnitude.  

 This trade study of velocity and altitude demonstrated that of these two variables, 

velocity is significantly more important than altitude.  This is as expected because the 

power-required Eqs. (42) and (48), include velocity raised to the third power.  The only 

effect of altitude is on density, which decreases with increasing altitude.  
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Figure 36. Airframe power required vs. velocity and altitude, carpet plot. 
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Figure 37. Airframe power required vs. velocity and altitude. 
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Figure 38. Total electric power required vs. velocity and altitude, carpet plot. 
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Figure 39. Total electric power required vs. velocity and altitude. 
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IV.2.2. Velocity and MAV Mass 

The effect of altitude was analyzed because it is an important flight parameter.  

The effects of mass are now shown because mass is arguably the main design variable for 

a new flight vehicle.  Figure 40 through Figure 49 demonstrate that when compared to 

velocity, mass plays a minor role in the observed outputs.  Figure 40 and Figure 41 show 

motor efficiency increasing from 69% to 77% as velocity increases for the light 

configuration.  The heavier configuration shows an increase from 73% to 77%.  This 

increase is anticipated up to a certain design point, but efficiency should then decrease to 

zero as the motor reaches stall torque at maximum current. 
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Figure 40. Motor efficiency vs. velocity and mass, carpet plot. 
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Figure 41. Motor efficiency vs. velocity and mass. 

Even though the GenMAV propeller and motor selection were the result of 

collective design experience, the components were not rigorously matched to the airframe 

or each other.  Furthermore, the results shown here illustrate an ill-conceived propeller 

geometry model that clearly does not reflect an optimal selection.  The results of Figure 

40 and Figure 41 illustrate an insufficient torque requirement on the motor.  As less mass 

would drive a lower torque requirement at slower speeds, a motor efficiency minimum of 

69% is conceivable.  The propeller results shown in Figure 42 and Figure 43 reflect the 

same trend as the propeller efficiency verses velocity plot of Figure 30, where a local 

maximum efficiency is found near the endurance speed, with another high efficiency 

region at higher speeds.  However, the advance ratio plot of Figure 27 suggests that the 

higher velocities may not reflect a realistic condition.  Another reason why this may be 
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true is that propellers generally perform worse at higher speeds, but the propeller 

illustrated here has best performance at the highest velocity.    
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Figure 42. Propeller efficiency vs. velocity and mass, carpet plot. 
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Figure 43. Propeller efficiency vs. velocity and mass. 
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Propeller efficiency is shown here to be more dependent on mass at lower speeds than at 

higher speeds, where the plots show a maximum of approximately 58%.  Figure 44 and 

Figure 45 reflect the fact that overall efficiency is the product of the motor and propeller 

efficiencies.  These plots demonstrate that mass plays a much greater role at low 

velocities than at higher velocities. 
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Figure 44. Overall efficiency vs. velocity and mass, carpet plot. 
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Figure 45. Overall efficiency vs. velocity and mass. 
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Airframe power-required and total power required exhibit the same behavior in Figure 46 

through Figure 49 as previously shown in the velocity-altitude trade study.  In the case of 

mass, the required power is noticeably different between low mass and high mass at slow 

velocities.  At higher velocities, since a tremendous amount of relative power is required 

to overcome drag, the mass is less of a concern. 
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Figure 46. Airframe power required vs. velocity and mass, carpet plot. 
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Figure 47. Airframe power required vs. velocity and mass. 
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Figure 48. Total electrical power required vs. velocity and mass, carpet plot. 
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Figure 49. Total electrical power required vs. velocity and mass. 
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IV.2.3. Velocity and Rate of Climb 

Nearly the same results illustrated for the velocity-mass trade study are reflected 

in the velocity-rate of climb study shown by Figure 50 through Figure 59.  This is 

because where mass drives an aircraft wing loading requirement, rate of climb drives a 

wing loading performance requirement that results from a higher required lift.  

Again, it is seen in Figure 50 and Figure 51 that the motor efficiency varies 

greatly at low speed depending on the rate of climb, but is rather constant at increased 

velocity independent of the rate of climb.  However, the slope at peak velocity appears to 

have decreased compared to Figure 28 and Figure 40 of the previous studies, which may 

suggest that a maximum motor efficiency of 77% is nearly reached.   

Propeller efficiency shown in Figure 52 and Figure 53 suffers at a descending rate 

of climb because the propeller is not loaded.  At higher rates of climb and higher 

velocities, the propeller nears the expected 60%.  At a rate of climb of zero, the same 

value of approximately 57% is displayed.  This matches Figure 27.  

Overall efficiency, shown in Figure 54 and Figure 55 demonstrate the combined 

results from the motor and propeller efficiencies.  A rate of climb increase from level 

flight to 1 m/s requires approximately 50% more power, as shown in the airframe total 

electric power-required plots of Figure 56 through Figure 59.   

The total electrical power-required of Figure 58 and Figure 59 displays a 

minimum near the endurance velocity, which is typical for an electric motor/propeller 

aircraft.  
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Figure 50. Motor efficiency vs. velocity and rate of climb, carpet plot. 
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Figure 51. Motor efficiency vs. velocity and rate of climb. 
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Figure 52. Propeller efficiency vs. velocity and rate of climb, carpet plot. 
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Figure 53. Propeller efficiency vs. velocity and rate of climb. 
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Figure 54. Overall efficiency vs. velocity and rate of climb, carpet plot. 
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Figure 55. Overall efficiency vs. velocity and rate of climb. 
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Figure 56. Airframe power required vs. velocity and rate of climb, carpet plot. 
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Figure 57. Airframe power required vs. velocity and rate of climb. 
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Figure 58. Total electric power req’d vs. velocity and rate of climb, carpet plot. 
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Figure 59. Total electric power required vs. velocity and rate of climb. 
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 This section highlighted the means in which trade studies can identify or confirm 

relationships between design variables.  Parametric carpet plots confirmed that the 

airframe aerodynamic model and the propulsion model provide expected results over a 

range of inputs.  The next section will bring together these components to simulate a 

mission.   

IV.3. Mission Simulations  

Even though various parts of the MAV can be optimized for specific flight 

conditions, the real intent of the work is to optimize the MAV power source selection for 

a set mission.  This mission includes defined durations, altitude designations, and defined 

speeds for each mission segment.  Several mission profiles that look like the baseline 

mission profile of Figure 11 were analyzed.   

The first simulation was for a typical mission requiring a climb to 500 m at a rate 

of climb of 1.5 m/s.  It then cruised to station at a user specified speed of 17 m/s, loitered 

at endurance velocity, and returned at cruise velocity.  Finally, it descended at 1 m/s.  

Because both the endurance and cuise velocities (10.22 m/s and 13.46 m/s) were below 

stall (13.97 m/s), both were increased by a small fraction to be above stall.  From the 

power profile of Figure 60, it is seen that mission segments 3 and 4 reflect this situation.  

With the EDS taking 50% of the average power load, the battery uses less and less as the 

mission elapses.  
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Figure 60. Power profile for PEDS =50% Pavg , CLmax = 1.16. 

In order to inspect the program’s ability to actually employ the max range speed, 

the maximum lift coefficient was raised from 1.16 to 1.30.  This had the desired effect of 

reducing the stall speed to 13.19 m/s, which allowed the MAV to fly at its true cruise 

velocity, but not at loiter velocity as shown by segments three and four of Figure 61.  

When the fuel cell percentage is reduced from 50% to 32%, the battery must carry 

more of the load as shown in Error! Reference source not found..  Each of these plots 

exhibit the expected behavior and the power requirements are within reason.  The user 

would only have to input desired flight envelope and power parameters, and the entire 

simulation will run automatically.   
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Figure 61. Power profile for PEDS =50% Pavg , CLmax = 1.30. 

 

Figure 62. Power profile for PEDS = 32% Pavg, CLmax = 1.30. 
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With the models established, the next set of analysis looks at varying the power 

system components in order to reduce mass while still satisfying mission requirements.    

IV.4. Power System Design Optimization 

Perhaps the most insightful method of running this conceptual design tool is by 

performing optimizations.  Since this effort was built for the power designer, a useful 

analysis is determining how to size the fuel cell with respect to the battery.  Energy 

requirements are highly dependent upon mission and duration, so this investigation used 

the same mission from Figure 60 with the original maximum lift coefficient of 1.16.  In 

all cases, the PDS was not required to maintain a certain SOC, and there were no 

recharging requirements.  This section continues to use the notation defined by Table 5. 

IV.4.1. Analysis Overview 

The analysis is divided into four distinct sections.  The first step was to sample the 

design space by running a full-factorial Design of Experiments (DOE) study.  This 

technique tests specific points to see if they are valid or invalid design points.  The term 

valid is used here to mean that a design point meets a certain criteria, such as total power 

system mass under a certain value.  Results of the samples often suggest where optimal 

design points may exist.  The DOE also identifies the relative importance of each of the 

design variables in the study as compared to the objective.  Two families of solutions 

were identified by the DOE.  The second part of the analysis elaborated on one of the 

solution families identified by the DOE, and the peak energy capability of the PDS was 

limited to 160 and 200 W-hr/kg.  A maximum PDSSE of 160 W-hr/kg correlates to a 

current technology Li-Po battery, and a maximum PDSSE of 200 W-hr/kg correlates to 



 

128 

near-term Li-Po battery.  The five design variables shown in Table 8 were optimized and 

the minimum power system mass hybrid configuration was identified.  The third analysis 

set PDS and EDS values based on practical current and near-term properties of batteries 

and fuel cells.  Here, differential was the only variable optimized to determine 

hybridization potential.  The four families of results are each explained.  The forth set of 

analysis explores how power source component values and their best relative sizing 

change when the mission is extended from 30 to 60 minutes.   

The Model Center Gradient Optimizer allows for single or multiple design 

variable optimizations to meet linear or nonlinear cost functions and constraints.  Instead 

of creating a rigorous mathematical cost function, the user poses the optimization 

problem through a simple GUI where variables are dragged and dropped.  Bounds and 

starting guesses can be set.  Advanced options include a limit on function evaluations and 

iterations.  Constraint, objective function, and projected gradient tolerances have a default 

condition, or can be set by the user.  Model Center decides how to solve the optimization, 

but informative text file outputs allow the user to see many of the evaluations and choices 

made at each iteration.  Some of the methods used are the quadratic, cubic, and bisection 

line search.  Tolerances proved to be very important.  After some investigation, the 

default tolerances were found to be too large, which resulted in convergence to less 

desirable local minimums.  When this happened, Model Center still returned feasible 

points, but they were not optimal.  Although more time was required, better results were 

obtained by decreasing the default tolerances by on order of magnitude to those shown in 

Table 7. 
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Table 7. Optimization tolerances used for analysis. 

Finite difference step size for calculating gradients 0.0001 

Tolerance on objective function 0.0001 

Tolerance on constraint feasibility 0.0001 

Tolerance on projected gradient 0.0001 

 

IV.4.2. Analysis 1:  Design of Experiments 

First, the design space was evaluated by executing a three-level full-factorial 

Design of Experiments (DOE) with the constraints shown in Table 8.  The values chosen 

represent either current or near-term battery and fuel cell possibilities.  A DOE runs all 

design variable permutations and identifies which variables most affect the design.  In 

this DOE, the three levels are the minimum value, middle value, and maximum value of 

each variable, which results in 243 runs.  For example, differential was only tested at 0%, 

67%, and 133%.  This study illustrates the tradeoff between resolution, and ability to 

sample the entire design space.  Results are shown by glyph plots in Figure 63 and Figure 

64.  A table of DOE results is provided in Appendix C.  

Table 8. Input constraints for three-level full factorial DOE study. 

 Units Minimum Maximum Representation 

EDSSP  W/kg 10  500 Small to Large FC 

EDSSE  W-hr/kg    500 1000 Small to Large FC 

PDSSP  W/kg 1200  6000 Current Li-Ion 

PDSSE  W-hr/kg    60 200 Near-Term Li-Po 

Differential Percent 0 133 No Hybrid to Full Hybrid 
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Figure 63. Glyph plot of DOE results. 

The glyph plot representing a sample of the design space is shown in Figure 63.  

This is a five dimensional plot.  The horizontal axes represent the component masses of 

the individual EDS and the PDS.  Total power system mass is shown on the vertical axis.  

Each point represents a potential design.  The forth dimension is shown by the magnitude 

of each point, consistent with its total power system mass.  The level of hybridization is 

represented by color, which is the fifth dimension.  Blue is single component PDS 

system.  Red is a two-component system with the EDS sized to be 133% of the average 

mission power.  Often, a variety of inputs will yield the same result, so most points 

shown on the plots represent families of feasible points.  This provided many invalid 
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designs, but when a more narrow view near the origin is taken, the minimum mass design 

points are apparent as shown in Figure 64.  

 

Figure 64. Glyph plot of reduced design space. 

The minimum mass design points are actually families of approximately 10 points 

that yield the same value.  All total power mass values include a 10% packaging factor 

and all analysis is done on the same half-hour mission and the same platform.  The 

mission required power was determined based on the actual power system mass of 145 g, 

and does not recalculate mission power resulting from a changed power system weight. 

 DOE Solution Family One:  These solutions show that a hybrid system can result 

in a reduced power system mass, and are represented by the lowest green point in 

Figure 64.  Use the EDS at a power value of 67% of average mission power.  If a 

200 W-hr/kg PDSSE is available, design will be driven to and constrained by this.  
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The minimum PDSSP of 1200 W/kg is more than enough.  Power system mass was 

the minimum found of all DOE test points:  147 g.  However, this design chose to 

maximize EDSSP at 500 W/kg.  Note that this split may not be optimal because the 

design point of 67% was technically a ―user-input,‖ as provided by the DOE.  

Furthermore, maximum power and energy cannot be attained simultaneously, so 

values used within the DOE might not reflect real world options.  Optimality will be 

explored in IV.4.3, but the power system mass is reduced as compared to the PDS 

battery only.  

 DOE Solution Family Two:  The second lowest point of Figure 64 is blue, which 

has a differential of 0%, and cannot use the EDS to reduce power system mass.  The 

design will be driven to a 200 W-hr/kg PDSSE if available.  The energy of the PDS 

will still be the bottleneck.  The minimum PDSSP of 1200 W/kg is more than enough.  

Plenty of power capability exists, so mass is determined by energy.  Total power 

system mass was 168 g. 

The DOE identified EDSSP as the primary variable that affects power system mass 

minimization.  These results are shown in Figure 65.  The split between the EDS and the 

PDS, which is the differential, proved to be the next most important.  The value chosen 

for PDSSE only slightly affects the design, while the ranges of EDSSE and PDSSP are high 

enough in most cases that their value does not affect the design at all.  The above DOE 

study provided general information on the design space, but did not focus on the most 

feasible designs.  The next step was to compare what a maximum PDSSE of 160 W-hr/kg 

could do verses 200 W-hr/kg.  
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PDSSE, 2%

EDSSP, 59%

Differential, 38%

PDSSE, 2%

EDSSP, 59%

Differential, 38%

EDSSP, 59%

Differential, 38%

 

Figure 65. Relative importance of each variable to mass minimization 

IV.4.3. Analysis 2:  Compare Current and Near-Term Li-Po Possibilities 

This part of the analysis accomplished two things.  First, it expanded on Solution 

Family One by allowing a five-design variable optimization routine to determine the best 

hybridization split.  Second, it looked specifically at a maximum PDSSE that reflects 

current Li-Po capability.  The previous DOE values for PDSSE were 200 W-hr/kg, where 

160 W-hr/kg would be more realistic.  Except for the PDSSE changes here and the 

limitation on PDSSP to 1200 W/kg, the other design variables (EDSSP, EDSSE, and 

differential) had the limits shown in Table 8.  Results confirmed PDS/EDS hybridization 

has the potential to reduce power system mass as shown in Table 9.  A higher specific 

energy PDS would yield a lower power system mass for a hybrid system.  For reference, 

the Li-Po only system mass with packaging factor resulted in 211 g.  The hybridized 

power system with the near-term battery offers a reduced power system mass as 

compared with that of the current Li-Po battery.  
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Table 9. Hybridization results using different PDSSE values. 

 Units Current Li-Po Near-Term Li-Po 

Maximum PDSSE  W-hr/kg 160 200 

Mission power max  W 86 86 

Mission power average  W 61 61 

Mission energy  W-hr 31 31 

Differential % 90 65 

PDS mass  g 143 133 

Total power system mass  g 157 147 

 

The optimization routine was set to vary the differential between 0 and 133% in 

order to minimize power system mass.  The optimized differential for minimum power 

system mass for the current Li-Po hybrid is shown in Figure 66.  For this set of input 

parameters, the PDS is sized for depletion by the end of the mission when the EDS then 

must carry the entire load.  The differential split between each scenario reflects the 

importance of component properties.  

 

Figure 66. Optimized PDS/EDS split mission power profile. 
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IV.4.4. Analysis 3:  Sample of Practical Power Source Property Inputs 

Next, twelve cases of practical importance were analyzed.  These represent best 

current technology Li-Po and Li-Ion verses properties loosely based on a full-scale 

ground-based fuel cell, properties of a fuel cell sized for a large UAV, and properties for 

a fuel cell sized for a MAV.  Li-Po values of 1200 W/kg and 160 W-hr/kg are used for 

the PDS of runs 1-2 and 5-8.  Li-Ion values of 6000 W/kg and 60 W-hr/kg are used for 

the PDS of runs 2-4 and 9-12.  A futuristic fuel cell with properties of similar order of 

magnitude as a ground-based fuel cell represent the EDS of runs 1-4.  When considering 

how this fuel cell would need to be scaled down for MAV application, it is the specific 

power value used here that make it futuristic.  Fuel cell values of 100 W/kg and 500-1000 

W-hr/kg that are possible for use today in large UAVs represent the EDS of runs 5-6 and 

9-10.  Lastly, small or micro fuel cells with values of 10 W/kg and ambitious 500-1000 

W-hr/kg are used for the EDS of runs 7-8 and 11-12.  

EDS and PDS values were user-inputs, and Model Center fluctuated the 

differential sizing between 0% and 150% of the average mission power.  Optimality was 

judged on minimum power system mass.  Inputs and resulting power system mass are 

shown in Table 10.  
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Table 10. Various cases run to determine best split between PDS and EDS. 

Run 
# 

Result 
Family 

EDSSP 

[W/kg] 
EDSSE  

[W-hr/kg] 
PDSSP 

[W/kg] 
PDSSE 

[W-hr/kg] 
Differential 

 

Power 
System 

Mass [kg] 

1 One 500 500 1200 160 93% 0.157 
2 One 500 1000 1200 160 93% 0.157 

3 Two 500 500 6000 60 122% 0.182 
4 Two 500 1000 6000 60 122% 0.182 

5 Three 100 1000 1200 160 0% 0.211 
6 Three 100 500 1200 160 0% 0.211 
7 Three 10 1000 1200 160 0% 0.211 
8 Three 10 500 1200 160 0% 0.211 

9 Four 100 1000 6000 60 0% 0.562 
10 Four 100 500 6000 60 0% 0.562 
11 Four 10 1000 6000 60 0% 0.562 
12 Four 10 500 6000 60 0% 0.562 

 

Table 10 is sorted by resulting total power system mass.  The data represent four 

distinct families of possibilities based on inputs that yield matching results.  As shown in 

Table 9, the average mission power is 61 W.  For reference, 93% and 122% of this value 

is 57 W and 74 W, respectively.    

 Result Family One:  Minimum power system mass occurs when the EDS is sized 

to 93% of the mission average power.  The PDS is required to provide more energy 

than it is capable of providing, and relies on the EDS for energy.  However, for the 

EDS to share energy, it must supply a certain level of power.  The minimum value of 

500 W/kg is adequate.  When EDSSE of 1000 W-hr/kg is selected, the MAV should 

be capable of longer endurance.  When compared to the other cases, it is shown that 

500 W/kg is enough, but 100 W/kg is not sufficient.  This suggests that a best value 

may exist between these design points.   
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 Result Family Two:  The next best case uses an EDS sized to 122% of the mission 

segment average.  Due to the low value of PDS energy, it must rely on the EDS.  

This situation is very similar to Case 1.  The EDS is capable of providing high 

enough power to make it worthwhile to use.  The EDS must contribute a certain 

amount of power in order to contribute energy.  The only reason this is viable is 

because the EDSSP is quite high.  As in Result Family One, EDSSE of 500 W-hr/kg is 

adequate for this mission, but the 1000 W-hr/kg EDSSE would otherwise provide 

longer endurance.  

 Result Family Three:  A more realistic scenario is illustrated here.  Runs 5-8 agree 

that the Li-Po PDS is good enough to complete the mission with no EDS 

hybridization.  The shaded region refers to values not applicable because it is a PDS 

system only.  The mass is driven up because the PDS must meet the energy 

requirement.   

 Result Family Four:  These results are similar to Result Family Three.  No degree 

of hybridization is better than having the Li-Ion battery alone, as shown by runs 9-

12.  The shaded region refers to values not applicable because it is a PDS system 

only.  The mass calculation is driven by meeting the energy requirement.  The PDSSE 

is not as good as in Result Family Three, so the system weight is greater.  

IV.4.5. Analysis 4: EDS Values for Hour Long Mission 

The final set of analysis seeks to determine the power source composition for a 

lengthened mission, as compared to the shorter mission.  First, inputs from section IV.4.3 

are used to simulate an hour-long mission.  Then, in section IV.4.5.2, Li-Po batteries are 

hybridized with a small fuel cell over a longer mission.  Lastly, in section IV.4.5.3, EDS 
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values are determined for Li-Po and Li-Ion hybridization that will be required to reduce 

the power system mass as compared to a single Li-Po battery.       

IV.4.5.1. Extending the Mission 

It has been shown that for a specified 30 min mission using a hybridized power 

source made up of a large fuel cell and a current-technology Li-Po battery, a reduced 

mass can be achieved by hybridizing.  In the specific case analyzed, the EDS should be 

sized at approximately 90% power of the mission average power.  When the same type of 

mission is extended from 30 to 60 min, energy requirements will increase the power 

system mass.  The new degree of hybridization will be explored.  At this point, however, 

the mass increase will not exceed 125% of the original MAV mass, which has been 

shown to be flyable, but new mission power requirements driven from increased mass 

have not been determined.   

Ten additional minutes were added to each of the middle three mission segments 

shown in Figure 11 to create a 60 min mission with the same speeds, climb, and descend 

rates.  The five design variables are optimized to minimize mass with bounds given in 

Table 11.  This includes an optimistic EDS, and a PDS with values of today’s Li-Po 

batteries.   

Table 11. Design space for large fuel cell and Li-Po battery. 

Design 

Variable 
Units Minimum Maximum Representation 

EDSSP W/kg 10 500 Small to large FC 

EDSSE W-hr/kg 500 1000 Small to large FC 

PDSSP W/kg 0 1200 Current Li-Po 

PDSSE W-hr/kg 0 160 Current Li-Po 

Differential Percent 0 133 No hybrid to full hybrid 
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The results for the 30 and 60 min runs are shown in Table 12.  The optimized 

component values are shown in Table 13, where highlighted numbers indicate active 

constraints.  The hour long, optimized split power profile is shown in Figure 67. 

Table 12. Effect on differential due to mission duration. 

 Units 30 Min Mission 60 Min Mission 

Maximum PDSSE            W-hr/kg 160 160 

Mission power max          W 86 86 

Mission power average  W 61 62 

Mission energy                 W-hr 33 73 

Differential                       % 90 115 

PDS + EDS mass              g 143 155 

Total power system mass   g 157 170 

 

Table 13. Optimized component values for 30 and 60 min mission. 

Design 

Variable 
Units 

30 Min 

Mission 

60 Min 

Mission 

EDSSP  W/kg 500 500 

EDSSE  W-hr/kg    669 721 

PDSSP  W/kg 939 1200 

PDSSE  W-hr/kg    160 160 

Differential Percent 90 115 

 

Table 12 shows that by doubling the duration of the mission, more energy was 

required.  It can be seen in Table 13 that both energy and power were active constraints 

for the PDS.  In both mission durations, the EDSSP and PDSSE were used to the full 

potential.  As the energy requirement increased, so did the amount of hybridization.  The 

relative size of the EDS increased as expected.  It went from 90% to 115%, which 

indicates that for this case, the EDS should be sized for slightly less than average mission 
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power for the shorter mission, and slightly more than average mission power for the 

longer mission.  

 

Figure 67. Optimized split and power profile for hour-long mission. 

 The previous results came from using very high values for a small fuel cell that 

are yet unrealistic for a MAV.  The next analysis reduces the EDS values to make 

conclusions that are more relevant.  

IV.4.5.2. Small DMFC and Li-Po 

Here, the framework is applied to a more realistic situation.  Assuming that the 

DMFC identified in section II.4.2.4 currently being tested for soldier portable power 

could provide an ambitious 25 W/kg and is volumetrically compatible with the 

GenMAV, this DMFC is now used to try to hybridize with a current Li-Po battery.  

Results from the half-hour and hour-long mission are compared in Table 14. 
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Table 14. DMFC and Li-Po power system hybrid results. 

Design Variable Units 30 min 60 min 

EDSSP  W/kg 25 25 

EDSSE  W-hr/kg 550 550 

PDSSP  W/kg 1200 1200 

PDSSE  W-hr/kg 160 160 

Differential Percent 0 0 

Total Mass (battery) g 192 388 

 

Both mission durations failed to utilize the DMFC EDS to save mass.  Total mass 

for the 60 min mission is slightly more than twice the 30 min mission because a small 

increase in average power.  Comparing these battery-only results with the hybrid-power 

results shown in Table 12, for these circumstances, a hybridization scheme could reduce 

power system mass by 18% and 56% for the respective 30 and 60 min missions, if a 

hypothetical 500 W/kg MAV fuel cell were available.  However, this analysis shows that 

given the optimistic fuel cell component combined with a current Li-Po battery, a mass 

reduction cannot yet be achieved by hybridization at the MAV scale. 

IV.4.5.3. What EDS Values Are Necessary?  

Given values for Li-Po and Li-Ion batteries, this section seeks to determine what 

the EDS capabilities need to be in order to compete with the best attainable battery-only 

option.  The EDSSP was initially bounded from 25-500 W/kg, and EDSSE from 550-1000 

W-hr/kg.  The lower bounds represent assumptions of the DMFC previously discussed.  

The higher bounds are unrealistic for a small fuel cell, but possible for a much larger fuel 

cell system.  Model Center’s optimization was used to solve for a total power system 

mass slightly less than the best previously found.  For the half-hour mission, the power 

system mass with 10% packaging factor was found to be 210 g.  In order to find the 
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threshold values that would signal minimum EDS capability requirements for a hybrid 

system of reduced mass, the optimization routine solved for 200 g.  The 10 g difference 

was used to ensure that optimization tolerances did not prematurely stop the search.  For 

the full-hour mission, the Li-Po only solution was 426 g, so the optimization routine 

searched for a total power mass goal of 420 g to signal a threshold value for an EDS.  

Note that these Li-Po solutions are the same as shown in Table 14, but include the 

packaging factor.  Should the resulting differential value be greater than zero, it signals 

minimum values for an EDS.  Realistically, however, the small benefit provided would 

not outweigh the complexity of adding a fuel cell at at such small fractions.  Differential 

values would likely need to be closer to 80% in order for such system to be practical.  For 

this analysis and all subsequent analyses, results are feasible solutions, but not necessarily 

optimal solutions.  This is because results came from solving for a certain mass, 

indicative of a threshold, instead of solving for the minimum value.  Values for the EDS 

and the differential were shown in Table 15. 

Table 15. Possible hybridization with battery and future EDS. 

 PDSSP 

[W/kg] 

PDSSE  

[W-hr/kg]    

EDSSP 

[W/kg] 

EDSSE 

[W-hr/kg]    

Diff 

[%] 

Li-Po, 30 min 1200 160 325 921 58 

Li-Ion, 30 min 6000 60 468 653 113 

Li-Po, 60 min 1200 160 470 989 2 

Li-Ion, 60 min 6000 60 358 785 78 

 

Both the shorter and longer missions provide an opportunity for a good EDS 

matched with a Li-Po to reduce the power system mass when compared to only a Li-Po 

battery power system.  Since the Li-Ion provides low energy compared to the Li-Po and 
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the EDS, a hybrid Li-Ion/EDS system can also reduce power system mass as compared to 

a Li-Po battery only.  The comparison is made to the Li-Po because it performs better and 

results in a reduced mass for these missions as compared to the Li-Ion.  A fuel cell 

comprised of only 2% of the average mission power would only need to provide 1 W.  

The added cost and complexity would likely limit its inclusion within a power system, 

but these results show that as these systems become more economical, performance can 

be enhanced by including them, even at low power.  Because the EDS changes between 

the short and long mission, the differential values are not directly comparable.   

In order to further determine fuel cell property values suitable for Li-Po 

hybridization for the subject MAV, the EDSSP and EDSSE values were simultaneously 

increased at 50% increments from the baseline DMFC.  For example, limits on EDSSP 

were set to 25 W/kg, 37.5 W/kg, 50 W/kg, etc.  EDSSE increased in the pattern of 550 W-

hr/kg, 825 W-hr/kg, 1100 W-hr/kg, etc.  Even up to 1500 W-hr/kg, which represented a 

very high value for a small fuel cell, no feasible solution was found.  The value of EDSSE 

was bounded at this point.  The EDSSP was incrementally increased to 13 times the 

subject DMFC value before a feasible design was found.  For comparison, the full-hour 

results shown in Table 13 are repeated with the half-hour results in Table 16.   

Table 16. EDS goal for hybridization. 

 PDSSP 

[W/kg] 

PDSSE  

[W-hr/kg]    

EDSSP 

[W/kg] 

EDSSE 

[W-hr/kg]    

Diff 

[%] 

30 min mission, Li-Po 1200 160 325 921 58 

60 min mission, Li-Po 1200 160 500 721 115 

The EDS values for the 30 min mission represent a feasible solution found by 

incrementing the EDS bounds, and using an optimization technique to solve for values 
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that would produce a power system mass less than that required of today’s battery-only 

system.  This may be far from optimal, but identifies values that could produce a reduced 

mass system through hybridization.  The full-hour results did not use an incremental 

technique, but instead minimized mass with generous EDS bounds.  Through not directly 

comparable, the longer mission had greater energy requirements, as expected.  Table 16 

illustrates that with an EDS capable of at least 325 W/kg and 921 W-hr/kg, weight 

savings through hybridization with a current Li-Po battery can be achieved for a half-

hour mission.  The higher differential for the hour-long mission indicates that 

hybridization would be even more beneficial for a longer mission. 

The conceptual design tool simulated various energy and power specific values of 

a future EDS scaled up from a DMFC.  In order to be viable for the conditions in these 

simulations, the fuel cell must increase its specific power by 1200%.  Feasible future 

EDS values were identified that when hybridized with a current Li-Po battery, could 

reduce the power system mass.  These results indicate the EDS must improve capability 

to provide at least 325 W/kg matched with at least 921 W-hr/kg to be part of a hybrid 

solution better than Li-Po batteries alone.  

 The final step in a power system design would then update the power system mass 

within the MAV, recalculate the mission power profile and iterate until some prescribed 

tolerance is met.  Complete and capable system-level fuel cells (with fuel) do not 

presently exist at these small masses, and if they did, they still may be volumetrically 

prohibitive.  However, results presented here help identify reasonable goals for fuel cell 

technology.  
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V. Conclusions of Research 

V.1. Conclusions 

 This effort was successful on several fronts.  Most importantly, it set the stage for 

future work.  All of the background research regarding low Reynolds number propeller 

and wing aerodynamics, small propellers, low aspect ratio planforms, electric power 

plants, fuel cell BOP integration, and scalable power systems must be integrated in order 

to further reduce the sizes of useful MAVs.  This conceptual design tool provides a 

framework for further multi-disciplinary collaboration. 

In response to the sponsor’s need for power system optimization, this tool 

analyzed a power system based on a set airframe, although iterations on MAV design 

could easily be performed with only minor changes.  It was felt that a greater benefit 

could be had through studying near-term integration opportunities, rather than farther off 

feasibility studies, so this tool was tailored to provide realistic information and answer 

questions about what can be done with technology as it becomes available today.      

Hybrid-power systems were analyzed within the Model Center framework for a 

simulated GenMAV mission.  A range of possible power sources were matched and 

compared with requirements derived from a single mission profile.  Due to the current 

technology of small fuel cells with low specific power, results show that a MAV-sized 

fuel cell-battery hybrid-power system would not perform better than a pure battery or 

battery-battery power system.  However, a feasible fuel cell capable of providing at least 

325 W/kg matched with at least 921 W-hr/kg was identified as a Li-Po – fuel cell solution 

that would reduce power system mass compared to using only Li-Po batteries.  Utilizing 
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enhanced fuel cell specific power and energy properties and current Li-Po battery 

properties, both a 30 min and 60 min mission were shown to have a reduced mass 

through hybridization.  Results indicate that if the EDS has sufficient specific power to 

compete with batteries, weight savings can be achieved via EDS/PDS hybridization.  

Specific power of the EDS is the technological bottleneck.  The feasibility and sizing 

strategy of hybrid-power components depends upon both mission requirements and 

power source component intrinsic properties.  Without a statistically driven analysis 

across various mission profiles, one cannot be certain these results apply to other types of 

mission profiles.  It must be assumed that the resulting numbers found in this effort are 

highly dependent on the mission-driven power and energy requirements.  It is clear, 

however, that once EDS specific power increases, hybridization will lead to overall 

reduced weight.  

 This effort had several outcomes and general conclusions.  The following list 

highlights some capability of the conceptual design framework and general conclusions.  

1. A tool has been built that will allow a user to quickly assess emerging power 

technologies for MAV and UAS applications.    

2. This tool can be used for PDS-EDS (such as battery verses a fuel cell) hybrid-

power combinations or more general PDS-PDS (PDS Li-Ion battery verses relative 

EDS Li-Po battery) hybrid-power combinations. 

3. Trade studies can be performed on the GenMAV-based model for improved 

selection of components such as motors and propellers.  Geometric scaling could 

be evaluated.  Capability and flight quality could be analyzed with a changing 

power system mass.  
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4. Aerodynamic stability and control effects are readily visible through the AVL 

model within Model Center.  They can be used to judge performance implications 

of any changes made to the flight vehicle.    

5. AVL and QPROP are good, easy to use, computationally cheap tools very 

applicable to conceptual design. 

6. Model Center provides an excellent framework for multi-disciplinary integration.  

This allows a single user or even a team of users to perform work that used to 

require multiple groups of personnel.  

7. No a priori sizing criterion exists for fuel cells.  Fuel cells, or any power source for 

that matter, should be sized for mission requirements and matched with power 

source intensive properties.  

8. Lengthening the mission increases energy requirements.  Analysis performed for 

this work resulted in a trend related to the degree of hybridization:  once a mission 

and configuration is found to benefit from hybridization, the degree of 

hybridization increases in proportion to the required endurance.  More simulation 

and validation will be required to confirm this preliminary conclusion for a variety 

of mission lengths over a wide flight envelope. 

9. Comparing the results of a hybrid configuration that used EDS values not yet 

technologically available with a current-technology battery-only configuration,  a 

specific example showed that a hybridization scheme could reduce power system 

mass by 18% and 56% for the respective 30 and 60 min missions.   

10. Small fuel cells must substantially improve specific power capability to compete 

with improving battery chemistries.  A fuel cell-battery hybrid-power configuration 
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cannot yet achieve a mass reduction compared to a battery-only option at the MAV 

scale  

V.2. Model Shortfalls 

Every endeavor is limited by time.  Some of the Shortfalls of this research have 

been postponed, and will be included in the Recommendations section.  Others, such as 

those listed below, might have improved the model’s robustness and increased validity 

of the results.     

1. The power management model has no way of utilizing less than maximum specific 

power and maximum specific energy, even though both do not occur 

simultaneously.  Perhaps the easiest way to fix this is to calculate everything based 

on polarization curves or Ragone plots from sample test data, which could be the 

baseline for an unknown power source component.  

2. At certain times during this effort’s model design, a feedback loop was 

incorporated to adjust the baseline GenMav model for both changing altitude and 

changing MAV mass due to hydrogen fuel burn.  This was determined to be a 

relatively insignificant mass change; therefore, it was omitted.  Reincorporating a 

fuel burn mass change component may be useful for airframe design, especially for 

some types of fuel cells that may actually gain mass during the mission.   

3. The ―Power Plot,‖ is based on multiple overlaid bar and scatter plots.  An example 

of this plot is Figure 67.  Despite much tenacity, the plot window of the bar plots 

and scatter plots do not share the same exact scale.  The calculations are all correct 



 

149 

and the analysis is correct, but the plot displayed will show the lines to be a few 

Watts higher than they should be as compared to the bars.  

4. The most important aspect of efficiency is matching both the motor and propeller 

with the electrical power.  The propeller used in this study is simply a smaller 

propeller with a different pitch.  It has been geometrically stretched, and may not 

represent a real propeller.  It certainly does not represent the propeller used on the 

GenMAV.  A better propeller model for QPROP is required.  

V.3. Recommendations for Future Research 

 Like any major endeavor, this research effort was subject to quite a bit of 

evolution.  It was not clear in the beginning if a MAV should be built or just simulated, 

and for what purpose.  Only after performing some literature review, becoming 

intrigued with fuel cells, and meeting with the sponsor did a clear need become 

apparent.  A multi-disciplinary design tool was built to answer practical questions for 

real systems.  However, it also laid the groundwork for future fuel cell-powered MAV 

application.  More focused and in-depth models should be added to the tool to improve 

the accuracy, ease of use, and speed.  The following items are some improvements that 

would extend the utility and validity of this effort.  

1. Obtain the actual propeller used in the GenMAV and model it according to QPROP 

instructions.  The length, pitch, and chord as a function of radius could be 

measured easily enough in order to build the geometry model.  For the 

aerodynamic model, the simplest path would be to assume the propeller airfoil does 

not change radially, and select a NACA airfoil that has available aerodynamic data.  
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Or, a better option would be to draft the airfoil geometry to a file that describes the 

shape and use XFOIL to determine the aerodynamic characteristics.  Only then 

could results actually represent the GenMAV.  

2. The conceptual design framework is currently set up to utilized endurance as a user 

input.  It may be useful to modify the program to make endurance an output, based 

on the type of power components used.  This would be a relatively simple change 

to the ―energy.m‖ file under the Post Processing component, and the variable types 

within Model Center.  Otherwise, endurance information can be found with the 

present model through iteration.   

3. Incorporate a feedback loop to recalculate the total electric power required based 

on an optimized hybrid source power system mass.  Iterate on the loop until the 

weight of the power system has been completely incorporated into the mission 

power-required determination.  

4. Follow up on the work of Beam, et al. in order to make this multidisciplinary 

design tool internet based using Model Center for quick plug and play model 

capability.
86

  This was discussed in II.7.  This may not be especially valuable given 

the difficulty of connecting through firewalled networks, but a cyber-minded 

individual could then enhance collaboration opportunities.   

5. Incorporate the fuel cell model described in section III.2.5.  A more detailed 

polarization model utilizing the same principles as above that accounts for reactant 

partial pressure, temperature, membrane water content, and current density can be 

found in reference 89. 
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6. Incorporate the battery model described in section III.2.6.  Include SOC 

methodology and in-flight charging capability.  Once time-dependent simulations 

are included within the model, capacitors can be incorporated with the use of SOC 

indicators and duty cycle electronics.  

7. Improve the power management scheme.  This would be a model to get the proper 

voltage and current from the source to the sink and integrate the various sources.  

This may include designing an electrical controller that accounts for the efficiency 

losses and dynamic nature of requirements and supply availability. 

8. Once electrical control is better understood, the power system for a flapping wing 

model could be integrated more easily. 

9. Collaborate better with electrical and computer science engineering specialists.  

This effort was lead by a student of aerodynamic engineering with a mechanical 

engineering background, and therefore suffered from a lack of in-depth software 

authoring and electrical system design experience.  If a group of students with 

different backgrounds collaborated on this effort, the potential exists for significant 

gain in utility.  

10. Many tangent paths are listed within Mustafa Turan’s thesis (Ref. 88) as known 

model shortfalls, but it is up to our imagination and interest to focus on the most 

valuable paths.  Topics include any specialty of aircraft design (i.e. stability and 

control, structures, aerodynamics, and propulsion).  

11. Employ optimal control tools such as dynamic programming to optimize mission 

segments, propulsion components, power system components, and other design 

variables.
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Appendix A: Known Software Issues and Tips 

The following is a short list of challenges experienced working with Model Center.  

Some of them are associated with how the models interact, and others are software bugs 

that should be fixed in the next release of Model Center.  

1. In performing AVL-Model Center verification, certain outputs were not changing 

with changed inputs.  Within Model Center, component background outputs can be 

viewed through Component-―Progress Stdout‖.  It was found that the order of 

flight condition input into AVL affected the results.  Whenever a flight condition 

variable is changed, a new lift coefficient is calculated for equilibrium flight.  The 

instructions for Model Center are contained in ―constraints_GenMAV.batch.‖  

When density was changed first, followed by velocity, and then mass, AVL 

assumes that the current CL is max CL, and then provides a new velocity different 

from the requested velocity.  To work around this, ―constraint_GenMAV.batch‖ 

was modified so that mass is changed first, followed by density, and velocity last.  

This solved the problem and Model Center inputs now reflect the actual value used 

in AVL.  This is no longer an issue, but familiarity may help with other issues.  

2. When the optimization GUI is closed by closing the dialog window, Model Center 

asks to be restarted, and often crashes.  If ―OK‖ is pressed, it runs the optimization 

again.  The only work-around is to depress ―OK‖ and let the optimization start.  

Then depress ―Halt,‖ and the dialog box will close.  Hopefully Model Center 

version 9.0 fixed this bug.    
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3. The ―Run‖ button can sometimes hang, and not provide an immediate response.  

Be patient; the model should start running.  If it hasn’t started in 10 seconds, it is 

generally safe to press it again.  If ―Run‖ is pressed twice, it will run twice in a 

row.  

4. Before running Script Scheduler, must always … Tools, Scheduler, Reset all as 

invalid.  When this is done, all components will be run, which prevents the passing 

of stale data.  This should not be a problem, because the model has been 

completely rewritten as to not use the script scheduler.  

5. Sometimes, especially after multiple changes are done, it is necessary to reset 

Model Center.  This model can cause multiple instances of Matlab to run in the 

background.  This utilizes many resources, and after some time, the computer 

RAM and page file will become completely utilized.  There is no clean way to 

close the Matlab instances other than restarting Model Center and Analysis Server.  

6. When running parametric studies, ensure that the box for ―Validate All‖ is left 

unchecked.  Also ensure that the ―Mission Driver‖ is not set on ―auto run.‖ 

7. Input variables passed to multiple components should be done in parallel.  If inputs 

are passed through components that don’t change the variable, Model Center 

sometimes doesn’t know the order in which to run the model.  

8. The 3-D toolbox in the Data Visualization application is very resource intensive.  

Save work often because it has been known to crash when hovering over a data 

point.  
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Appendix B:  Software Versions 

The conceptual design framework built for this research included many 

components and various software.  Below is a listing of the most important software used 

along with the version number used.   

 Model Center Version 8.07 

 Optimization\Design Explorer  Version:  2.2.5 

 Optimization\Gradient Optimizer  Version:  2.2.5 

 Converger  Version:  1.2.0 

 Design Explorer Version:  2.2.5 

 Excel Plug-In Version:  1.4.4 

 Gradient Optimizer Version:  2.2.5 

 Matlab Plug-In Version:  1.6.5 

 Analysis Server v.6.01 Build 29479 

 Mathworks MatLab R2009b 

 Microsoft Excel 2003, SP3 

 All programming and analysis was run on an IBM R51 Thinkpad laptop 

with an Intel Pentium M processor (1500MHz) with 2 GB RAM 

 Microsoft Windows XP Professional, Service Pack 3 

 Athena Vortex Lattice (AVL) Version 3.26 

 QPROP Version 1.21 
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Appendix C: Design of Experiments Results 

A DOE was presented in section IV.4.2.  The following table lists the result 

variables tracked while performing the 3-factorial DOE.  The input values were 

suggested by the research sponsor, and they are presented here by request.  For the 

simulated mission, the average power was 61.17 W, and the peak power was 86.03 W.  

EDS 
SP 
W/kg 

EDS 
SE 
W-
hr/kg 

PDS
SP 
W/kg 

PDS
SE 
W-
hr/kg 
 

diff 
% 
 

Pwr 
EDS 
W 

Engy 
EDS 
W-hr 

mass 
EDS  
kg 

Pwr 
PDS 
W 

Engy 
PDS 
W-hr 

mass 
PDS 
kg 

PDS 
time 
hr 

Tot. 
mass 
kg 

10 500 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 500 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 500 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 750 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 750 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 750 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 1000 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 1000 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 1000 1200 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 500 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 500 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 500 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 750 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 750 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 750 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 1000 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 1000 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 1000 3600 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 500 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 500 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 500 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 750 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 750 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 750 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 1000 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

255 1000 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

500 1000 6000 60 0% 0 0 0 86.03 30.64 0.511 0.501 0.562 

10 500 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 500 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 500 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 
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SP 
W/kg 

EDS 
SE 
W-
hr/kg 

PDS
SP 
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SE 
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diff 
% 
 

Pwr 
EDS 
W 
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W-hr 

mass 
EDS  
kg 

Pwr 
PDS 
W 
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PDS 
W-hr 

mass 
PDS 
kg 

PDS 
time 
hr 

Tot. 
mass 
kg 

10 750 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 750 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 750 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

10 1000 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 1000 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 1000 1200 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

10 500 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 500 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 500 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

10 750 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 750 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 750 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

10 1000 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 1000 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 1000 3600 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

10 500 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 500 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 500 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

10 750 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 750 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 750 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

10 1000 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

255 1000 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

500 1000 6000 130 0% 0 0 0 86.03 30.64 0.236 0.501 0.259 

10 500 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

255 500 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 500 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 750 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

255 750 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 750 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 1000 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

255 1000 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 1000 1200 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 500 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

255 500 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 500 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 750 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

255 750 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 750 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 1000 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

255 1000 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 1000 3600 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 500 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 
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SE 
W-
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hr 
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mass 
kg 

255 500 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 500 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 750 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

255 750 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 750 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 1000 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

255 1000 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

500 1000 6000 200 0% 0 0 0 86.03 30.64 0.153 0.501 0.169 

10 500 1200 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 500 1200 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 500 1200 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 750 1200 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 750 1200 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 750 1200 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 1000 1200 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 1000 1200 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 1000 1200 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 500 3600 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 500 3600 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 500 3600 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 750 3600 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 750 3600 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 750 3600 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 1000 3600 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 1000 3600 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 1000 3600 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 500 6000 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 500 6000 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 500 6000 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 750 6000 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 750 6000 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 750 6000 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 1000 6000 60 67% 40.68 20.378 4.0677 45.35 10.46 0.174 0.359 4.666 

255 1000 6000 60 67% 40.68 20.378 0.1595 45.35 10.46 0.174 0.359 0.367 

500 1000 6000 60 67% 40.68 20.378 0.0814 45.35 10.46 0.174 0.359 0.281 

10 500 1200 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 500 1200 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 

500 500 1200 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 750 1200 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 750 1200 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 

500 750 1200 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 1000 1200 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 1000 1200 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 
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500 1000 1200 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 500 3600 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 500 3600 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 

500 500 3600 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 750 3600 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 750 3600 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 

500 750 3600 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 1000 3600 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 1000 3600 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 

500 1000 3600 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 500 6000 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 500 6000 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 

500 500 6000 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 750 6000 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 750 6000 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 

500 750 6000 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 1000 6000 130 67% 40.68 20.378 4.0677 45.35 10.46 0.080 0.359 4.563 

255 1000 6000 130 67% 40.68 20.378 0.1595 45.35 10.46 0.080 0.359 0.264 

500 1000 6000 130 67% 40.68 20.378 0.0814 45.35 10.46 0.080 0.359 0.178 

10 500 1200 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 500 1200 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 500 1200 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 

10 750 1200 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 750 1200 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 750 1200 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 

10 1000 1200 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 1000 1200 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 1000 1200 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 

10 500 3600 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 500 3600 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 500 3600 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 

10 750 3600 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 750 3600 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 750 3600 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 

10 1000 3600 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 1000 3600 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 1000 3600 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 

10 500 6000 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 500 6000 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 500 6000 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 

10 750 6000 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 750 6000 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 750 6000 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 
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10 1000 6000 200 67% 40.68 20.378 4.0677 45.35 10.46 0.052 0.359 4.532 

255 1000 6000 200 67% 40.68 20.378 0.1595 45.35 10.46 0.052 0.359 0.233 

500 1000 6000 200 67% 40.68 20.378 0.0814 45.35 10.46 0.052 0.359 0.147 

10 500 1200 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 500 1200 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 500 1200 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 750 1200 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 750 1200 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 750 1200 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 1000 1200 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 1000 1200 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 1000 1200 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 500 3600 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 500 3600 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 500 3600 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 750 3600 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 750 3600 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 750 3600 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 1000 3600 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 1000 3600 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 1000 3600 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 500 6000 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 500 6000 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 500 6000 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 750 6000 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 750 6000 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 750 6000 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 1000 6000 60 133% 81.35 40.756 8.1353 4.68 0.37 0.006 0.093 8.956 

255 1000 6000 60 133% 81.35 40.756 0.319 4.68 0.37 0.006 0.093 0.358 

500 1000 6000 60 133% 81.35 40.756 0.1627 4.68 0.37 0.006 0.093 0.186 

10 500 1200 130 133% 81.35 40.756 8.1353 4.68 0.37 0.004 0.093 8.953 

255 500 1200 130 133% 81.35 40.756 0.319 4.68 0.37 0.004 0.093 0.355 

500 500 1200 130 133% 81.35 40.756 0.1627 4.68 0.37 0.004 0.093 0.183 

10 750 1200 130 133% 81.35 40.756 8.1353 4.68 0.37 0.004 0.093 8.953 

255 750 1200 130 133% 81.35 40.756 0.319 4.68 0.37 0.004 0.093 0.355 

500 750 1200 130 133% 81.35 40.756 0.1627 4.68 0.37 0.004 0.093 0.183 

10 1000 1200 130 133% 81.35 40.756 8.1353 4.68 0.37 0.004 0.093 8.953 

255 1000 1200 130 133% 81.35 40.756 0.319 4.68 0.37 0.004 0.093 0.355 

500 1000 1200 130 133% 81.35 40.756 0.1627 4.68 0.37 0.004 0.093 0.183 

10 500 3600 130 133% 81.35 40.756 8.1353 4.68 0.37 0.003 0.093 8.952 

255 500 3600 130 133% 81.35 40.756 0.319 4.68 0.37 0.003 0.093 0.354 

500 500 3600 130 133% 81.35 40.756 0.1627 4.68 0.37 0.003 0.093 0.182 

10 750 3600 130 133% 81.35 40.756 8.1353 4.68 0.37 0.003 0.093 8.952 
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EDS 
SP 
W/kg 

EDS 
SE 
W-
hr/kg 

PDS
SP 
W/kg 

PDS
SE 
W-
hr/kg 
 

diff 
% 
 

Pwr 
EDS 
W 

Engy 
EDS 
W-hr 

mass 
EDS  
kg 

Pwr 
PDS 
W 

Engy 
PDS 
W-hr 

mass 
PDS 
kg 

PDS 
time 
hr 

Tot. 
mass 
kg 

255 750 3600 130 133% 81.35 40.756 0.319 4.68 0.37 0.003 0.093 0.354 

500 750 3600 130 133% 81.35 40.756 0.1627 4.68 0.37 0.003 0.093 0.182 

10 1000 3600 130 133% 81.35 40.756 8.1353 4.68 0.37 0.003 0.093 8.952 

255 1000 3600 130 133% 81.35 40.756 0.319 4.68 0.37 0.003 0.093 0.354 

500 1000 3600 130 133% 81.35 40.756 0.1627 4.68 0.37 0.003 0.093 0.182 

10 500 6000 130 133% 81.35 40.756 8.1353 4.68 0.37 0.003 0.093 8.952 

255 500 6000 130 133% 81.35 40.756 0.319 4.68 0.37 0.003 0.093 0.354 

500 500 6000 130 133% 81.35 40.756 0.1627 4.68 0.37 0.003 0.093 0.182 

10 750 6000 130 133% 81.35 40.756 8.1353 4.68 0.37 0.003 0.093 8.952 

255 750 6000 130 133% 81.35 40.756 0.319 4.68 0.37 0.003 0.093 0.354 

500 750 6000 130 133% 81.35 40.756 0.1627 4.68 0.37 0.003 0.093 0.182 

10 1000 6000 130 133% 81.35 40.756 8.1353 4.68 0.37 0.003 0.093 8.952 

255 1000 6000 130 133% 81.35 40.756 0.319 4.68 0.37 0.003 0.093 0.354 

500 1000 6000 130 133% 81.35 40.756 0.1627 4.68 0.37 0.003 0.093 0.182 

10 500 1200 200 133% 81.35 40.756 8.1353 4.68 0.37 0.004 0.093 8.953 

255 500 1200 200 133% 81.35 40.756 0.319 4.68 0.37 0.004 0.093 0.355 

500 500 1200 200 133% 81.35 40.756 0.1627 4.68 0.37 0.004 0.093 0.183 

10 750 1200 200 133% 81.35 40.756 8.1353 4.68 0.37 0.004 0.093 8.953 

255 750 1200 200 133% 81.35 40.756 0.319 4.68 0.37 0.004 0.093 0.355 

500 750 1200 200 133% 81.35 40.756 0.1627 4.68 0.37 0.004 0.093 0.183 

10 1000 1200 200 133% 81.35 40.756 8.1353 4.68 0.37 0.004 0.093 8.953 

255 1000 1200 200 133% 81.35 40.756 0.319 4.68 0.37 0.004 0.093 0.355 

500 1000 1200 200 133% 81.35 40.756 0.1627 4.68 0.37 0.004 0.093 0.183 

10 500 3600 200 133% 81.35 40.756 8.1353 4.68 0.37 0.002 0.093 8.951 

255 500 3600 200 133% 81.35 40.756 0.319 4.68 0.37 0.002 0.093 0.353 

500 500 3600 200 133% 81.35 40.756 0.1627 4.68 0.37 0.002 0.093 0.181 

10 750 3600 200 133% 81.35 40.756 8.1353 4.68 0.37 0.002 0.093 8.951 

255 750 3600 200 133% 81.35 40.756 0.319 4.68 0.37 0.002 0.093 0.353 

500 750 3600 200 133% 81.35 40.756 0.1627 4.68 0.37 0.002 0.093 0.181 

10 1000 3600 200 133% 81.35 40.756 8.1353 4.68 0.37 0.002 0.093 8.951 

255 1000 3600 200 133% 81.35 40.756 0.319 4.68 0.37 0.002 0.093 0.353 

500 1000 3600 200 133% 81.35 40.756 0.1627 4.68 0.37 0.002 0.093 0.181 

10 500 6000 200 133% 81.35 40.756 8.1353 4.68 0.37 0.002 0.093 8.951 

255 500 6000 200 133% 81.35 40.756 0.319 4.68 0.37 0.002 0.093 0.353 

500 500 6000 200 133% 81.35 40.756 0.1627 4.68 0.37 0.002 0.093 0.181 

10 750 6000 200 133% 81.35 40.756 8.1353 4.68 0.37 0.002 0.093 8.951 

255 750 6000 200 133% 81.35 40.756 0.319 4.68 0.37 0.002 0.093 0.353 

500 750 6000 200 133% 81.35 40.756 0.1627 4.68 0.37 0.002 0.093 0.181 

10 1000 6000 200 133% 81.35 40.756 8.1353 4.68 0.37 0.002 0.093 8.951 

255 1000 6000 200 133% 81.35 40.756 0.319 4.68 0.37 0.002 0.093 0.353 

500 1000 6000 200 133% 81.35 40.756 0.1627 4.68 0.37 0.002 0.093 0.181 
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Appendix D:   Relevant Code 

D.1.   AVL Related Files 

a. avl_genmav_batch.bat 

File title: avl_genmav_batch.bat 

Parent program: AVL 

Description: This single-line ―.bat‖ file is the command line execution line. It tells the PC to run AVL with the ―.avl‖ 

file with the interface keystrokes listed in the ―.batch‖ file. Note that ―%‖ is not a comment designator.  

Code as follows: 

% avl genmav_2pt2.avl genmav_2pt2.run < constraints_genmav.batch 

 

b. AVL_MAV_genmav.fileWrapper 

File title: AVL_MAV_genmav.fileWrapper 

Parent program: Model Center 

Description: This is the file used to interface AVL with Model Center. It tells Model Center exactly which variables 

exist, defines the variables within Model center, points to what they are, and where to look for changed data.  This file 

identifies the input and output file(s).  A ―fileWrapper‖ is essentially a plug-in for an executable batch mode program. 

It requires the Analysis Server.  

Code as follows:  

 

# 

# Athena Vortex Lattice filewrapper 

# 

# @author: Paul Hrad  

# @version: 22 Oct 2009- 

# @description: GenMAV AVL (Normal Dihedral - v2.2) 

# 

 

RunCommands 

{ 

# Put ModelCenter values in the input file 

# Geometry file 

 generate inputFile1     

#Constraints file 

 generate inputFile2     

#Run file --trying to run w/o run file since no values in run are user defined. 

# generate inputFile3     

 

 # Run the code 

# This file transmits instruction to command line 

 run "avl_genmav_batch.bat" 

 

# Parse the standard output file 

 parse outputfile 

} 

 

RowFieldInputFile inputFile1 

{ 

# The template file is not changed. It is a template for the .avl file, which is changed by MS every iteration. 

templateFile:   genmav_2pt2.template 

initializationFile: genmav_2pt2.initial 

fileToGenerate:  genmav_2pt2.avl 

 

setDelimiters " ," 
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setGroup "UserInputs.Geometry_input_file" 

variable: Mach    double 6 1  description="keep it zero for M<0.2" 

variable: iYsym  double 7 1  description="Symm about y=0 and/or Z=0" 

variable: iZsym  double 7 2  description="Symm about y=0 and/or Z=0" 

variable: Zsym  double 7 3  description="Symm about y=0 and/or Z=0" 

variable: S_ref_sqin double 8 1  description="reference ares-> all coeffs" 

variable: C_ref_in  double 8 2  description="-> Cm" 

variable: b_ref_in  double 8 3  description="span-> Cl,Cn" 

variable: X_origin_in double 9 1  description="Global x Point of Origin" 

variable: Y_origin_in double 9 2  description="Global y Point of Origin" 

variable: Z_origin_in double 9 3  description="Global z Point of Origin" 

variable: Cdp  double 10 1 description="Optional default profile drag added to geometry" 

     

 

setGroup "UserInputs.Fuselage" 

variable: F_nodes  double 16 1 description="Source-Line node" 

variable: F_space  double 16 2 description="Spacing, -3<range<3: 1=cosine" 

variable: F_Trans_x double 19 1  description="Translates fuselage x coordinates" 

variable: F_Trans_y double 19 2  description="Translates fuselage y coordinates" 

variable: F_Trans_z double 19 3  description="Translates fuselage z coordinates" 

 

setGroup "UserInputs.Wing" 

variable: Nchord_w  double 29 1  description="# chordwise segments, wing" 

variable: Cspace_w  double 29 2  description="Spacing, -3<range<3: 1=cosine" 

variable: Nspan_w  double 29 3  description="# spanwise segments, wing" 

variable: Sspace_w  double 29 4  description="Spacing, -3<range<3: -2= -sine" 

variable: Angle_w  double 31 1  description="Offset added to incidence angles for all sections, in deg" 

variable: scale_x_w  double 33 1  description="Scale factor of x coordinates for wing" 

variable: scale_y_w  double 33 2  description="Scale factor of y coordinates for wing" 

variable: scale_z_w  double 33 3  description="Scale factor of z coordinates for wing" 

variable: W_Trans_x double 35 1  description="Translates wing x coordinates" 

variable: W_Trans_y double 35 2  description="Translates wing y coordinates" 

variable: W_Trans_z double 35 3  description="Translates wing z coordinates" 

variable: W_yduplicate double 37 1 description="y position of duplication" 

 

setGroup "UserInputs.Wing.Section_1" 

variable: Xle1  double 43 1  description="Leading Edge Location,x" 

variable: Yle1  double 43 2  description="Leading Edge Location,y" 

variable: Zle1  double 43 3  description="Leading Edge Location,z" 

variable: Chord1  double 43 4  description="Chord length" 

variable: Ainc1 double 43 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_2" 

variable: Xle12  double 49 1  description="Leading Edge Location,x" 

variable: Yle12  double 49 2  description="Leading Edge Location,y" 

variable: Zle12  double 49 3  description="Leading Edge Location,z" 

variable: Chord2  double 49 4  description="Chord length" 

variable: Ainc2 double 49 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_3" 

variable: Xle3  double 54 1  description="Leading Edge Location,x" 

variable: Yle3  double 54 2  description="Leading Edge Location,y" 

variable: Zle3  double 54 3  description="Leading Edge Location,z" 

variable: Chord3  double 54 4  description="Chord length" 

variable: Ainc3 double 54 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

 

setGroup "UserInputs.Wing.Section_4" 

variable: Xle4  double 59 1  description="Leading Edge Location,x" 

variable: Yle4  double 59 2  description="Leading Edge Location,y" 



 

163 

variable: Zle4  double 59 3  description="Leading Edge Location,z" 

variable: Chord4  double 59 4  description="Chord length" 

variable: Ainc4 double 59 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_5" 

variable: Xle5  double 64 1  description="Leading Edge Location,x" 

variable: Yle5  double 64 2  description="Leading Edge Location,y" 

variable: Zle5  double 64 3  description="Leading Edge Location,z" 

variable: Chord5  double 64 4  description="Chord length" 

variable: Ainc5 double 64 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_6" 

variable: Xle6  double 69 1  description="Leading Edge Location,x" 

variable: Yle6  double 69 2  description="Leading Edge Location,y" 

variable: Zle6  double 69 3  description="Leading Edge Location,z" 

variable: Chord6  double 69 4  description="Chord length" 

variable: Ainc6 double 69 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_7" 

variable: Xle7  double 74 1  description="Leading Edge Location,x" 

variable: Yle7  double 74 2 description="Leading Edge Location,y" 

variable: Zle7  double 74 3  description="Leading Edge Location,z" 

variable: Chord7  double 74 4  description="Chord length" 

variable: Ainc7 double 74 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_8" 

variable: Xle8  double 79 1  description="Leading Edge Location,x" 

variable: Yle8  double 79 2  description="Leading Edge Location,y" 

variable: Zle8  double 79 3  description="Leading Edge Location,z" 

variable: Chord8  double 79 4  description="Chord length" 

variable: Ainc8 double 79 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_9" 

variable: Xle9  double 84 1  description="Leading Edge Location,x" 

variable: Yle9  double 84 2  description="Leading Edge Location,y" 

variable: Zle9  double 84 3  description="Leading Edge Location,z" 

variable: Chord9  double 84 4  description="Chord length" 

variable: Ainc9 double 84 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_10" 

variable: Xle10  double 89 1  description="Leading Edge Location,x" 

variable: Yle10  double 89 2  description="Leading Edge Location,y" 

variable: Zle10  double 89 3  description="Leading Edge Location,z" 

variable: Chord10  double 89 4  description="Chord length" 

variable: Ainc10 double 89 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_11" 

variable: Xle11  double 94 1  description="Leading Edge Location,x" 

variable: Yle11  double 94 2  description="Leading Edge Location,y" 

variable: Zle11  double 94 3  description="Leading Edge Location,z" 

variable: Chord11  double 94 4  description="Chord length" 

variable: Ainc11 double 94 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_12" 

variable: Xle12  double 99 1  description="Leading Edge Location,x" 

variable: Yle12  double 99 2  description="Leading Edge Location,y" 

variable: Zle12  double 99 3  description="Leading Edge Location,z" 

variable: Chord12  double 99 4  description="Chord length" 

variable: Ainc12 double 99 5 description="Incidence angle about spanwise axis projected on y-z plane" 
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setGroup "UserInputs.Wing.Section_13" 

variable: Xle13  double 104 1  description="Leading Edge Location,x" 

variable: Yle13  double 104 2  description="Leading Edge Location,y" 

variable: Zle13  double 104 3  description="Leading Edge Location,z" 

variable: Chord13  double 104 4  description="Chord length" 

variable: Ainc13 double 104 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Wing.Section_14" 

variable: Xle14  double 109 1  description="Leading Edge Location,x" 

variable: Yle14  double 109 2  description="Leading Edge Location,y" 

variable: Zle14  double 109 3  description="Leading Edge Location,z" 

variable: Chord14  double 109 4  description="Chord length" 

variable: Ainc14 double 109 5 description="Incidence angle about spanwise axis projected on y-z plane" 

 

setGroup "UserInputs.Horizontal_Tail" 

variable: Nchord_HT double 119 1  description="# chordwise segments,HT" 

variable: Cspace_HT double 119 2  description="Spacing, -3<range<3: 1=cosine" 

variable: Nspan_HT double 119 3  description="# spanwise segments,HT" 

variable: Sspace_HT double 119 4  description="Spacing, -3<range<3: -2= -sine" 

variable: Angle_HT double 121 1  description="Offset added to incidence angles for all sections, in deg" 

variable: HT_Trans_x double 123 1  description="Translates HT x coordinates" 

variable: HT_Trans_y double 123 2  description="Translates HT y coordinates" 

variable: HT_Trans_z double 123 3  description="Translates HT z coordinates" 

#variable: Y_duplicate    double 125 1     description="Geometric surface reflection about x-z axis" 

 

setGroup "UserInputs.Horizontal_Tail.Left_tip" 

variable: Xle1  double 127 1  description="Leading Edge Location,x" 

variable: Yle1  double 127 2  description="Leading Edge Location,y" 

variable: Zle1  double 127 3  description="Leading Edge Location,z" 

variable: Chord1  double 127 4  description="Chord Length" 

variable: Ainc1 double 127 5 description="Incidence angle about spanwise axis projected on y-z plane" 

variable: L_Elevon_gain1 double 130 2  description="Control deflection gain, units" 

variable: L_Elevon_Xhinge1 double 130 3  description="Location of elevator as chord fraction" 

#variable: SgnDup             double 130 7    description="Control surface duplication (+1 for elevator)" 

 

setGroup "UserInputs.Horizontal_Tail.Center" 

variable: Xle2  double 133 1  description="Leading Edge Location,x" 

variable: Yle2  double 133 2 description="Leading Edge Location,y" 

variable: Zle2  double 133 3 description="Leading Edge Location,z" 

variable: Chord2  double 133 4 description="Chord Length" 

variable: Ainc2 double 133 5 description="Incidence angle about spanwise axis projected on y-z plane" 

variable: L_Elevon_gain2 double 136 2 description="Control deflection gain, units" 

variable: L_Elevon_Xhinge2 double 136 3  description="Location of elevator as chord fraction" 

variable: R_Elevon_gain2 double 139 2 description="Control deflection gain, units" 

variable: R_Elevon_Xhinge2 double 139 3  description="Location of elevator as chord fraction" 

 

setGroup "UserInputs.Horizontal_Tail.Right_tip" 

variable: Xle3  double 142 1  description="Leading Edge Location,x" 

variable: Yle3  double 142 2 description="Leading Edge Location,y" 

variable: Zle3  double 142 3 description="Leading Edge Location,z" 

variable: Chord3  double 142 4 description="Chord Length" 

variable: Ainc3 double 142 5 description="Incidence angle about spanwise axis projected on y-z plane" 

variable: R_Elevon_gain3 double 145 2 description="Control deflection gain, units" 

variable: R_Elevon_Xhinge3 double 145 3  description="Location of elevator as chord fraction" 

 

 

setGroup "UserInputs.Vertical_Tail" 

variable: Nchord_VT double 149 1  description="# chordwise segments,VT" 

variable: Cspace_VT double 149 2  description="Spacing, -3<range<3: 1=cosine" 

variable: Angle_VT double 151 1  description="Offset added to incidence angles for all sections, in deg" 
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variable: VT_Trans_x double 153 1  description="Translates VT x coordinates" 

variable: VT_Trans_y double 153 2  description="Translates VT y coordinates" 

variable: VT_Trans_z double 153 3  description="Translates VT z coordinates" 

 

setGroup "UserInputs.Vertical_Tail.VT_Root" 

variable: Xle1  double 157 1  description="Leading Edge Location,x" 

variable: Yle1  double 157 2  description="Leading Edge Location,y" 

variable: Zle1  double 157 3  description="Leading Edge Location,z" 

variable: Chord1  double 157 4  description="Chord Length" 

variable: Ainc1 double 157 5 description="Incidence angle about spanwise axis projected on y-z plane" 

variable: Nspan1  double 157 6   description="# spanwise segments,VT" 

variable: Sspace1  double 157 7   description="Spacing, -3<range<3: -2= -sine" 

 

setGroup "UserInputs.Vertical_Tail.VT_Tip" 

variable: Xle2  double 161 1  description="Leading Edge Location,x" 

variable: Yle2  double 161 2 description="Leading Edge Location,y" 

variable: Zle2  double 161 3 description="Leading Edge Location,z" 

variable: Chord2  double 161 4  description="Chord Length" 

variable: Ainc2 double 161 5 description="Incidence angle about spanwise axis projected on y-z plane" 

variable: Nspan2  double 161 6   description="# spanwise segments,VT" 

variable: Sspace2  double 161 7   description="Spacing, -3<range<3: -2= -sine" 

} 

 

RowFieldInputFile inputFile2 

{ 

# The template file is not changed. It is a template for the batch file, which is changed by MS every iteration. 

templateFile:   constraints_genmav.template 

fileToGenerate:   constraints_genmav.batch 

 

setDelimiters "= ," 

setGroup UserInputs.Run_Constraints 

variable: AirDensity  double 4 2 description="Air Density" units="kg/m^2)" 

variable: Velocity       double 5 2 description="Velocity" units="m/s" 

variable: Mass           double 3 2 description="Unit Mass" Units="Kg" 

variable: PitchMoment    double 7 3 description="Set Pitch Moment" 

variable: RollMoment     double 8 3 description="Set Roll Moment" 

# The output file is named within this input file. 

} 

 

RowFieldOutputFile outputFile 

{ 

# This routine parses the program output file. 

# Other variables can be extracted as desired. 

 fileToParse: results_genmav.txt 

 

 setDelimiters "= ," 

  

setGroup Results.Ref_values 

markAsBeginning "Sref" 

variable: Sref_sqin          double 1 2 

variable: Cref_in  double 1 4 

variable: bref_in  double 1 6 

variable: Xref_CG_in double 2 2 

variable: Yref_CG_in double 2 4 

variable: Zref_CG_in double 2 6 

 

setGroup Results.Flight_Conditions 

variable: Alpha   double 8 2 

variable: Beta   double 9 2 
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markAsBeginning "CLtot" 

 setGroup Results.Run_Case_AERO_coeff 

 

 variable: CL_tot  double 1 2 description="Total Lift Coef" 

 variable: CD_tot  double 2 2 description="Total Drag Coef" 

 variable: CD_ind  double 3 4 description="Induced Drag Coef" 

 #variable: CL_ff  double 4 2 description="Treftz Lift Ceof" 

 #variable: CD_ff  double 4 4 description="Treftz Drag Ceof" 

 variable: e  double 5 4 description="Span Efficiency Factor" 

 

setGroup Results.Conrol_surface_deflections 

 variable: L_Elevon  double 7 2 description="Left Elevon deflection" 

 variable: R_Elevon double 8 2 description="Right Elevon deflection" 

  

  setGroup Results.Stability_axis_derivatives 

 markAsBeginning "CLa =" 

 

 variable: CL_a  double 1 5   description="z' force CL" 

 variable: Cy_a  double 2 5  description="y force Cy" 

 variable: Cl_a  double 3 5  description="x' moment Cl" 

 variable: Cm_a  double 4 5  description="y moment Cm" 

 variable: cn_a  double 5 5  description="z' moment Cn" 

 variable: CL_b  double 1 7  description=" " 

 variable: Cy_b  double 2 7  description=" " 

 variable: Cl_b  double 3 7  description=" " 

 variable: Cm_b  double 4 7  description=" " 

 variable: cn_b  double 5 7  description=" " 

 variable: Xnp  double 27 4  description="neutral point" 

} 

# END AVL_MAV_genmav.fileWrapper 

 

c. constraints_genmav.batch 

Filename: constraints_genmav.batch 

Parent program: AVL 

Description: This file lists the keystroke entry to do the designated sequence of operations for a single iteration of AVL. 

It currently goes to the steady-level flight menu, inputs a mass, density, and velocity.  It tells AVL to deflect the 

elevons to provide zero pitch moment and roll moment. Then it executes the integration, calculates stability derivatives, 

saves the results, and exits AVL.  

Code as follows: 

OPER 

C1 

M 1.018 

D 1.225 

V 25.0 

 

D1 PM 0.0 

D2 RM 0.0 

X 

ST 

results_genmav.txt 

Y 

 

QUIT 

 

d. constraints_genmav.template 

Filename: constraints_genmav.template 
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Parent program: Model Center 

Description: Same as for ―constraints_genmav.batch‖, except this is the file that does not change. Model Center writes 

to the ―.batch‖ file for execution of Model Center variable inputs, but keeps a ―.template‖ file as the original  

Codes as follows:  See code for  ―constraints_genmav.batch‖ 

 

e. genmav_2pt2.avl 

Filename: genmav_2pt2.avl 

Parent program: AVL 

Description: This is the geometry file used to define the GenMAV for AVL.  

Code as follows: 

GenMAV ! (Normal Dihedral - v2.2) 

# Units in inches, sq-in, deg 

#============================================= 

# HEADER DATA 

#============================================= 

0.0                      Mach  !Default Mach for Prandtl-Glauert compressibility correction 

0.0        0.0        0.0       iYsym  iZsym  Zsym  !Symm about y=0 and/or z=Zsym 

111.68  4.7757  24.0  Sref   Cref   Bref  !Sref -> all coeffs | Cref -> Cm | Bref -> Cl,Cn 

0.0         0.0       0.0      Xref   Yref   Zref  !Point of Origin 

0.102                  CDp !Optional - default profile drag coeff added to geometry 

#============================================= 

# FUSELAGE DATA 

#============================================= 

BODY 

Fuselage  !body name string 

     37.0  1.0  !15 source-line nodes with cosine spacing (1.0) 

 

TRANSLATE 

     0.0  0.0  0.0  

 

BFILE 

     Fuselage_v2pt2.dat 

 

#============================================= 

# WING DATA 

#============================================= 

SURFACE 

Right Wing  !surface name string 

     7.0  1.0  25.0  -2.0  !Nchord Cspace Nspan Sspace 

ANGLE 

     9.0  !Offset added to incidence angles for all sections, in deg 

SCALE 

     1.0  1.0  1.0 

TRANSLATE 

     5.75  0.0  1.578 

YDUPLICATE 

     0.0 

 

#------------------------------------------------------- 

#    Xle         Yle         Zle        Chord       Ainc 

#------------------------------------------------------- 

SECTION 

     0.0         0.0         0.0            5.0         0.0 

AFILE    

     GenMAVA0.dat 

#--------------------------- 

SECTION 
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     0.0         1.5          0.02498    5.0         0.0 

AFILE 

     GenMAVA0.dat 

#--------------------------- 

SECTION 

     0.007623    7.11    0.25615    4.9619      0.0 

AFILE  

     GenMAVA1.dat 

#--------------------------- 

SECTION 

     0.024782    8.23    0.41519    4.8761      0.0 

AFILE 

     GenMAVA2.dat 

#--------------------------- 

SECTION 

     0.047308    8.91     0.54277    4.7635      0.0 

AFILE  

     GenMAVA3.dat 

#--------------------------- 

SECTION 

     0.087735    9.6         0.69949    4.5613      0.0 

AFILE 

     GenMAVA4.dat 

#--------------------------- 

SECTION 

     0.147058    10.2        0.86023    4.2647      0.0 

AFILE 

     GenMAVA5.dat 

#--------------------------- 

SECTION 

     0.249591    10.82       1.05224    3.752      0.0 

AFILE 

     GenMAVA6.dat 

#--------------------------- 

SECTION 

     0.408039    11.37       1.24622    2.9598      0.0 

AFILE 

     GenMAVA7.dat 

#--------------------------- 

SECTION 

     0.512614    11.6        1.33428    2.4369      0.0 

AFILE   

     GenMAVA8.dat 

#--------------------------- 

SECTION 

     0.671564    11.83       1.42659    1.6422      0.0 

AFILE    

     GenMAVA9.dat 

#--------------------------- 

SECTION 

     0.745531    11.9        1.45554    1.2723      0.0 

AFILE    

     GenMAVA10.dat 

#--------------------------- 

SECTION 

     0.818751    11.95       1.47646    0.9062      0.0 

AFILE    

     GenMAVA11.dat 

#--------------------------- 

SECTION 
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     1.0    12.0          1.4976    0.0      0.0 

AFILE    

     GenMAVA11.dat 

 

 

#============================================= 

# TAIL DATA 

#============================================= 

SURFACE 

Horizontal Tail 

     9.0  -2.0   20.0   1.0 !Nchord Cspace Nspan Sspace 

ANGLE 

     1.5  !Offset added to incidence angles for all sections, in deg 

TRANSLATE 

     14.75   0.0  0.0 

#--------------------------- 

SECTION  !Horizontal tail fin tip 

#    Xle     Yle     Zle     Chord   Ainc 

     1.5     -6.0      0.0   2.375   0.0 

CONTROL 

#    Cname     Cgain   Xhinge  HingeVec      

     L_Elevon  1.0     0.5     0.0  0.0  0.0 

#--------------------------- 

SECTION  !Horizontal tail fin root 

     0.0   0.0   0.0   3.875  0.0 

CONTROL 

#    Cname     Cgain   Xhinge   HingeVec 

     L_Elevon  1.0     0.5      0.0  0.0  0.0 

CONTROL 

#    Cname     Cgain   Xhinge   HingeVec 

     R_Elevon  1.0     0.5      0.0  0.0  0.0 

#--------------------------- 

SECTION  !Horizontal tail fin tip 

     1.5      6.0       0.0   2.375   0.0 

CONTROL 

#    Cname     Cgain   Xhinge  HingeVec 

     R_Elevon  1.0     0.5     0.0  0.0  0.0 

#============================================= 

SURFACE 

Vertical Tail Fin 

     9.0  -2.0  !Nchord Cspace Nspan Sspace 

ANGLE 

     0.0  !Offset added to incidence angles for all sections, in deg 

TRANSLATE 

     14.75   0.0  0.0 

#--------------------------- 

SECTION  !Vertical tail fin root 

#    Xle     Yle     Zle     Chord   Ainc    Nspan   Sspace 

     0.0   0.0   0.0   3.278   0.0     11.0     -2.0 

   

#--------------------------- 

SECTION  !Vertical tail fin tip 

     1.593   0.0   4.625   2.25   0.0     1.0     1.0 

#============================================= 

# END genmav_2pt2.avl 

f. Fuselage_v2pt2.dat 

 

Filename: Fuselage_v2pt2.dat 
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Parent program: AVL 

Description: This is the fuselage geometry. Note that a single column was split into two for page spacing reasons. It 

should be a single column.  

Code as follows:  

Fuselage_v2pt2.dat 

BATCAM-Like 

Fuselage 

16.5           0.797885     0          -1.055502   

    15          0.797885     1          -1.286937   

    14          0.797885     2          -1.44186   

    13          0.909318     3          -1.596548   

    12          1.064884     4          -1.686682   

    11          1.180087     5          -1.724589   

    10          1.371137     6          -1.691099   

    9           1.512565     7          -1.639581   

    8           1.586391     8          -1.586391   

    7           1.639581     9          -1.512565   

    6           1.691099     10         -1.371137    

    5           1.724589     11         -1.180087   

    4           1.686682     12         -1.064884    

    3           1.596548     13         -0.909318    

    2           1.44186     14         -0.797885   

    1           1.286937     15         -0.797885   

    0           1.055502     16.5       -0.797885   

 

g. GenMAVA0.dat through GenMAVA11.dat 

          . 

Filename: GenMAVA0.dat through GenMAVA11.dat 

Parent program: AVL 

Description: Airfoil data from root to tip. Each file is a separate airfoil. Each file is two columns.  Four files are 

presented across the page. 

Code as follows: 

GenMAVA0.dat GenMAVA1.dat GenMAVA2.dat GenMAVA3.dat 

MAV - v2.0 - Root Airfoil MAV - v2.0 - Airfoil Cross 

Section - Chord 4.96188 

MAV - v2.0 - Airfoil 

Cross Section - Chord 

4.96188 

MAV - v2.0 - Airfoil Cross 

Section - Chord 4.76346 

1 0.00363 1 -0.00236 1 -0.00236 1 -0.00745 

0.98248 0.00465 0.98849 -0.0017 0.98849 -0.0017 0.98432 -0.0068 

0.96489 0.00549 0.97076 -0.00085 0.97076 -0.00085 0.96569 -0.00606 

0.94721 0.00622 0.95295 -0.00012 0.95295 -0.00012 0.947 -0.0053 

0.92947 0.00692 0.93507 0.00059 0.93507 0.00059 0.92826 -0.00447 

0.91166 0.00765 0.91713 0.00132 0.91713 0.00132 0.90947 -0.00353 

0.89381 0.00844 0.89914 0.00212 0.89914 0.00212 0.89065 -0.00246 

0.87591 0.00933 0.8811 0.00302 0.8811 0.00302 0.8718 -0.00124 

0.85797 0.01035 0.86303 0.00405 0.86303 0.00405 0.85294 0.00012 

0.84002 0.01151 0.84493 0.00521 0.84493 0.00521 0.83409 0.00164 
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0.82205 0.01281 0.82683 0.00653 0.82683 0.00653 0.81527 0.00331 

0.80409 0.01426 0.80873 0.00799 0.80873 0.00799 0.79649 0.00511 

0.78616 0.01585 0.79066 0.00959 0.79066 0.00959 0.77777 0.00703 

0.76827 0.01756 0.77264 0.01131 0.77264 0.01131 0.75916 0.00904 

0.75044 0.01939 0.75466 0.01315 0.75466 0.01315 0.74056 0.01114 

0.73271 0.02131 0.7368 0.01509 0.7368 0.01509 0.72199 0.01331 

0.71498 0.02331 0.71894 0.0171 0.71894 0.0171 0.70352 0.01552 

0.69729 0.02537 0.70111 0.01918 0.70111 0.01918 0.68505 0.01777 

0.6797 0.02748 0.68338 0.02131 0.68338 0.02131 0.66659 0.02003 

0.6621 0.02962 0.66565 0.02346 0.66565 0.02346 0.64815 0.02229 

0.64452 0.03177 0.64794 0.02564 0.64794 0.02564 0.62971 0.02455 

0.62695 0.03393 0.63023 0.02781 0.63023 0.02781 0.61122 0.02678 

0.60938 0.03608 0.61252 0.02997 0.61252 0.02997 0.59273 0.02898 

0.59177 0.03821 0.59478 0.03212 0.59478 0.03212 0.57423 0.03114 

0.57415 0.0403 0.57703 0.03423 0.57703 0.03423 0.5557 0.03325 

0.55653 0.04236 0.55927 0.0363 0.55927 0.0363 0.53718 0.0353 

0.53888 0.04437 0.54148 0.03833 0.54148 0.03833 0.51863 0.0373 

0.52122 0.04633 0.52369 0.0403 0.52369 0.0403 0.50007 0.03923 

0.50356 0.04823 0.50589 0.04221 0.50589 0.04221 0.48151 0.0411 

0.48588 0.05007 0.48807 0.04407 0.48807 0.04407 0.46292 0.04291 

0.4682 0.05185 0.47026 0.04586 0.47026 0.04586 0.44432 0.04466 

0.45048 0.05358 0.45241 0.0476 0.45241 0.0476 0.42571 0.04635 

0.43276 0.05524 0.43455 0.04928 0.43455 0.04928 0.40705 0.04798 

0.41503 0.05685 0.41668 0.0509 0.41668 0.0509 0.38839 0.04955 

0.39725 0.0584 0.39877 0.05247 0.39877 0.05247 0.3697 0.05105 

0.37948 0.0599 0.38086 0.05397 0.38086 0.05397 0.35097 0.05248 

0.36167 0.06133 0.36291 0.05542 0.36291 0.05542 0.33225 0.05383 

0.34383 0.06269 0.34494 0.05679 0.34494 0.05679 0.31347 0.05508 

0.32599 0.06398 0.32696 0.05808 0.32696 0.05808 0.29467 0.05621 

0.3081 0.06517 0.30893 0.05929 0.30893 0.05929 0.27588 0.0572 

0.2902 0.06625 0.29089 0.06037 0.29089 0.06037 0.25703 0.05799 

0.27229 0.06718 0.27284 0.06132 0.27284 0.06132 0.23818 0.05856 

0.25433 0.06794 0.25475 0.06208 0.25475 0.06208 0.21933 0.05883 

0.23637 0.06848 0.23665 0.06262 0.23665 0.06262 0.20048 0.05873 

0.21842 0.06874 0.21856 0.06288 0.21856 0.06288 0.18163 0.05818 

0.20046 0.06865 0.20046 0.06279 0.20046 0.06279 0.16286 0.05709 

0.1825 0.06812 0.18236 0.06226 0.18236 0.06226 0.14412 0.05532 

0.16462 0.06708 0.16434 0.06121 0.16434 0.06121 0.1254 0.05275 

0.14677 0.0654 0.14636 0.05952 0.14636 0.05952 0.10703 0.0493 

0.12893 0.06295 0.12838 0.05705 0.12838 0.05705 0.08867 0.04475 

0.11143 0.05966 0.11075 0.05374 0.11075 0.05374 0.07065 0.03902 

0.09394 0.05532 0.09312 0.04937 0.09312 0.04937 0.05324 0.03211 

0.07677 0.04986 0.07582 0.04386 0.07582 0.04386 0.03584 0.02363 

0.06019 0.04328 0.05911 0.03723 0.05911 0.03723 0.02006 0.0144 

0.04361 0.0352 0.04241 0.02909 0.04241 0.02909 0.00506 0.00406 

0.02857 0.02641 0.02726 0.02023 0.02726 0.02023 0 0 
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0.01429 0.01656 0.01286 0.0103 0.01286 0.0103 0 -0.0042 

0 0.00511 0 0 0 0 0.00506 -0.00014 

0 0.00111 0 -0.00403 0 -0.00403 0.02006 0.0102 

0.01429 0.01256 0.01286 0.00627 0.01286 0.00627 0.03584 0.01943 

0.02857 0.02241 0.02726 0.0162 0.02726 0.0162 0.05324 0.02791 

0.04361 0.0312 0.04241 0.02506 0.04241 0.02506 0.07065 0.03482 

0.06019 0.03928 0.05911 0.0332 0.05911 0.0332 0.08867 0.04055 

0.07677 0.04586 0.07582 0.03983 0.07582 0.03983 0.10703 0.0451 

0.09394 0.05132 0.09312 0.04533 0.09312 0.04533 0.1254 0.04855 

0.11143 0.05566 0.11075 0.04971 0.11075 0.04971 0.14412 0.05112 

0.12893 0.05895 0.12838 0.05302 0.12838 0.05302 0.16286 0.05289 

0.14677 0.0614 0.14636 0.05549 0.14636 0.05549 0.18163 0.05398 

0.16462 0.06308 0.16434 0.05718 0.16434 0.05718 0.20048 0.05453 

0.1825 0.06412 0.18236 0.05823 0.18236 0.05823 0.21933 0.05463 

0.20046 0.06465 0.20046 0.05876 0.20046 0.05876 0.23818 0.05436 

0.21842 0.06474 0.21856 0.05885 0.21856 0.05885 0.25703 0.0538 

0.23637 0.06448 0.23665 0.05859 0.23665 0.05859 0.27588 0.053 

0.25433 0.06394 0.25475 0.05805 0.25475 0.05805 0.29467 0.05201 

0.27229 0.06318 0.27284 0.05729 0.27284 0.05729 0.31347 0.05088 

0.2902 0.06225 0.29089 0.05634 0.29089 0.05634 0.33225 0.04963 

0.3081 0.06117 0.30893 0.05526 0.30893 0.05526 0.35097 0.04828 

0.32599 0.05998 0.32696 0.05405 0.32696 0.05405 0.3697 0.04685 

0.34383 0.05869 0.34494 0.05276 0.34494 0.05276 0.38839 0.04535 

0.36167 0.05733 0.36291 0.05138 0.36291 0.05138 0.40705 0.04378 

0.37948 0.0559 0.38086 0.04994 0.38086 0.04994 0.42571 0.04215 

0.39725 0.0544 0.39877 0.04844 0.39877 0.04844 0.44432 0.04046 

0.41503 0.05285 0.41668 0.04687 0.41668 0.04687 0.46292 0.03871 

0.43276 0.05124 0.43455 0.04525 0.43455 0.04525 0.48151 0.0369 

0.45048 0.04958 0.45241 0.04357 0.45241 0.04357 0.50007 0.03503 

0.4682 0.04785 0.47026 0.04183 0.47026 0.04183 0.51863 0.0331 

0.48588 0.04607 0.48807 0.04004 0.48807 0.04004 0.53718 0.0311 

0.50356 0.04423 0.50589 0.03818 0.50589 0.03818 0.5557 0.02905 

0.52122 0.04233 0.52369 0.03627 0.52369 0.03627 0.57423 0.02694 

0.53888 0.04037 0.54148 0.0343 0.54148 0.0343 0.59273 0.02478 

0.55653 0.03836 0.55927 0.03227 0.55927 0.03227 0.61122 0.02258 

0.57415 0.0363 0.57703 0.0302 0.57703 0.0302 0.62971 0.02035 

0.59177 0.03421 0.59478 0.02809 0.59478 0.02809 0.64815 0.0181 

0.60938 0.03208 0.61252 0.02594 0.61252 0.02594 0.66659 0.01583 

0.62695 0.02993 0.63023 0.02378 0.63023 0.02378 0.68505 0.01357 

0.64452 0.02777 0.64794 0.0216 0.64794 0.0216 0.70352 0.01132 

0.6621 0.02562 0.66565 0.01943 0.66565 0.01943 0.72199 0.00911 

0.6797 0.02348 0.68338 0.01728 0.68338 0.01728 0.74056 0.00694 

0.69729 0.02137 0.70111 0.01515 0.70111 0.01515 0.75916 0.00484 

0.71498 0.01931 0.71894 0.01307 0.71894 0.01307 0.77777 0.00283 

0.73271 0.01731 0.7368 0.01106 0.7368 0.01106 0.79649 0.00091 

0.75044 0.01539 0.75466 0.00912 0.75466 0.00912 0.81527 -0.00089 
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0.76827 0.01356 0.77264 0.00728 0.77264 0.00728 0.83409 -0.00255 

0.78616 0.01185 0.79066 0.00556 0.79066 0.00556 0.85294 -0.00407 

0.80409 0.01026 0.80873 0.00396 0.80873 0.00396 0.8718 -0.00544 

0.82205 0.00881 0.82683 0.0025 0.82683 0.0025 0.89065 -0.00666 

0.84002 0.00751 0.84493 0.00118 0.84493 0.00118 0.90947 -0.00773 

0.85797 0.00635 0.86303 0.00002 0.86303 0.00002 0.92826 -0.00866 

0.87591 0.00533 0.8811 -0.00101 0.8811 -0.00101 0.947 -0.0095 

0.89381 0.00444 0.89914 -0.00191 0.89914 -0.00191 0.96569 -0.01026 

0.91166 0.00365 0.91713 -0.00271 0.91713 -0.00271 0.98432 -0.01099 

0.92947 0.00292 0.93507 -0.00344 0.93507 -0.00344   

0.94721 0.00222 0.95295 -0.00415 0.95295 -0.00415   

0.96489 0.00149 0.97076 -0.00489 0.97076 -0.00489   

0.98248 0.00065 0.98849 -0.00573 0.98849 -0.00573   

 

        

GenMAVA4.dat GenMAVA5.dat GenMAVA6.dat GenMAVA7.dat 

MAV - v2.0 - Airfoil 

Cross Section - Chord 

4.56133 

MAV - v2.0 - Airfoil Cross 

Section - Chord 4.26471 

MAV - v2.0 - Airfoil 

Cross Section - Chord 

3.75205 

MAV - v2.0 - Airfoil Cross 

Section - Chord 2.95981 

1 -0.01304 1 -0.02097 1 -0.03156 1 -0.03916 

0.99962 -0.01303 0.99244 -0.02059 0.98112 -0.02989 0.98063 -0.0368 

0.98011 -0.01223 0.97142 -0.0194 0.95728 -0.02761 0.95093 -0.03316 

0.96053 -0.01136 0.95036 -0.01804 0.93352 -0.02517 0.92125 -0.02951 

0.94091 -0.01038 0.9293 -0.01652 0.90989 -0.02262 0.89156 -0.02589 

0.92125 -0.00927 0.90825 -0.01482 0.88627 -0.01995 0.86181 -0.02229 

0.90157 -0.008 0.88722 -0.01296 0.8627 -0.0172 0.83205 -0.01875 

0.88187 -0.00657 0.86625 -0.01095 0.83925 -0.01439 0.80228 -0.01528 

0.86219 -0.00498 0.84534 -0.00881 0.8158 -0.01154 0.77246 -0.01188 

0.84253 -0.00324 0.82455 -0.00656 0.79237 -0.00867 0.74264 -0.00858 

0.82293 -0.00137 0.80377 -0.00421 0.76896 -0.00579 0.7128 -0.00537 

0.80337 0.00064 0.78303 -0.00179 0.74554 -0.00293 0.68293 -0.00226 

0.78394 0.00274 0.7624 0.00068 0.72207 -0.00009 0.65306 0.00075 

0.76451 0.00493 0.74177 0.00319 0.6986 0.0027 0.62314 0.00367 

0.74512 0.0072 0.72116 0.00572 0.67511 0.00544 0.5932 0.00648 

0.72583 0.0095 0.70056 0.00825 0.65159 0.00812 0.56325 0.0092 

0.70654 0.01185 0.67996 0.01076 0.62807 0.01073 0.53322 0.01182 

0.68727 0.01421 0.65931 0.01326 0.60452 0.01326 0.50319 0.01435 

0.66801 0.01658 0.63866 0.01572 0.58096 0.01571 0.47311 0.01676 

0.64875 0.01893 0.618 0.01813 0.5574 0.01809 0.44297 0.01907 

0.62944 0.02127 0.5973 0.02048 0.53379 0.02039 0.41284 0.02124 

0.61013 0.02356 0.57661 0.02278 0.51018 0.02261 0.38261 0.02325 

0.59082 0.02582 0.5559 0.025 0.48655 0.02475 0.35237 0.02508 

0.57147 0.02802 0.53517 0.02716 0.46286 0.02682 0.32211 0.02666 

0.55212 0.03017 0.51444 0.02925 0.43917 0.02881 0.29178 0.02794 

0.53275 0.03225 0.49367 0.03128 0.41544 0.03072 0.26145 0.02885 

0.51337 0.03427 0.47289 0.03323 0.39167 0.03253 0.23111 0.02928 
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0.49399 0.03622 0.4521 0.03512 0.3679 0.03425 0.20077 0.02913 

0.47457 0.03811 0.43126 0.03694 0.34406 0.03584 0.17043 0.02825 

0.45514 0.03994 0.41042 0.03869 0.3202 0.03727 0.14023 0.02648 

0.43571 0.0417 0.38955 0.04036 0.29633 0.03852 0.11007 0.02364 

0.41622 0.0434 0.36863 0.04196 0.2724 0.03954 0.07994 0.01951 

0.39674 0.04504 0.34771 0.04347 0.24847 0.04025 0.05038 0.01395 

0.37722 0.04661 0.32674 0.04487 0.22454 0.04059 0.02083 0.00662 

0.35766 0.0481 0.30575 0.04613 0.20061 0.04047 0 0 

0.33811 0.04951 0.28475 0.04723 0.17668 0.03977 0 -0.00676 

0.3185 0.05082 0.2637 0.04812 0.15285 0.03838 0.02083 -0.00013 

0.29887 0.052 0.24265 0.04875 0.12906 0.03614 0.05038 0.0072 

0.27924 0.05303 0.22159 0.04905 0.10529 0.03288 0.07994 0.01275 

0.25956 0.05386 0.20054 0.04895 0.08197 0.0285 0.11007 0.01688 

0.23987 0.05445 0.17948 0.04833 0.05866 0.02272 0.14023 0.01972 

0.22019 0.05473 0.15852 0.04711 0.03578 0.01544 0.17043 0.02149 

0.2005 0.05463 0.13759 0.04514 0.01368 0.00667 0.20077 0.02237 

0.18081 0.05406 0.11667 0.04227 0 0 0.23111 0.02253 

0.16121 0.05291 0.09616 0.03841 0 -0.00533 0.26145 0.02209 

0.14165 0.05107 0.07565 0.03333 0.01368 0.00134 0.29178 0.02119 

0.12209 0.04839 0.05552 0.02692 0.03578 0.01011 0.32211 0.0199 

0.10291 0.04478 0.03608 0.01921 0.05866 0.01739 0.35237 0.01832 

0.08374 0.04003 0.01664 0.00973 0.08197 0.02317 0.38261 0.0165 

0.06491 0.03404 0 0 0.10529 0.02755 0.41284 0.01448 

0.04674 0.02683 0 -0.00469 0.12906 0.03081 0.44297 0.01231 

0.02857 0.01797 0.01664 0.00505 0.15285 0.03305 0.47311 0.01001 

0.01209 0.00833 0.03608 0.01452 0.17668 0.03444 0.50319 0.00759 

0 0 0.05552 0.02223 0.20061 0.03514 0.53322 0.00507 

0 -0.00438 0.07565 0.02864 0.22454 0.03526 0.56325 0.00245 

0.01209 0.00395 0.09616 0.03372 0.24847 0.03492 0.5932 -0.00027 

0.02857 0.01359 0.11667 0.03758 0.2724 0.0342 0.62314 -0.00309 

0.04674 0.02244 0.13759 0.04045 0.29633 0.03319 0.65306 -0.006 

0.06491 0.02966 0.15852 0.04242 0.3202 0.03194 0.68293 -0.00901 

0.08374 0.03564 0.17948 0.04364 0.34406 0.03051 0.7128 -0.01213 

0.10291 0.0404 0.20054 0.04426 0.3679 0.02892 0.74264 -0.01533 

0.12209 0.044 0.22159 0.04436 0.39167 0.0272 0.77246 -0.01864 

0.14165 0.04669 0.24265 0.04406 0.41544 0.02539 0.80228 -0.02203 

0.16121 0.04853 0.2637 0.04343 0.43917 0.02348 0.83205 -0.02551 

0.18081 0.04967 0.28475 0.04254 0.46286 0.02149 0.86181 -0.02905 

0.2005 0.05025 0.30575 0.04144 0.48655 0.01942 0.89156 -0.03265 

0.22019 0.05035 0.32674 0.04018 0.51018 0.01728 0.92125 -0.03627 

0.23987 0.05007 0.34771 0.03878 0.53379 0.01506 0.95093 -0.03992 

0.25956 0.04948 0.36863 0.03727 0.5574 0.01276 0.98063 -0.04356 

0.27924 0.04865 0.38955 0.03567 0.58096 0.01038   

0.29887 0.04762 0.41042 0.034 0.60452 0.00793   

0.3185 0.04644 0.43126 0.03225 0.62807 0.0054   

0.33811 0.04513 0.4521 0.03043 0.65159 0.00279   



 

175 

0.35766 0.04372 0.47289 0.02854 0.67511 0.00011   

0.37722 0.04222 0.49367 0.02659 0.6986 -0.00263   

0.39674 0.04066 0.51444 0.02456 0.72207 -0.00542   

0.41622 0.03902 0.53517 0.02247 0.74554 -0.00826   

0.43571 0.03732 0.5559 0.02031 0.76896 -0.01112   

0.45514 0.03555 0.57661 0.01809 0.79237 -0.014   

0.47457 0.03373 0.5973 0.01579 0.8158 -0.01687   

0.49399 0.03184 0.618 0.01344 0.83925 -0.01972   

0.51337 0.02988 0.63866 0.01103 0.8627 -0.02253   

0.53275 0.02786 0.65931 0.00857 0.88627 -0.02528   

0.55212 0.02578 0.67996 0.00607 0.90989 -0.02795   

0.57147 0.02364 0.70056 0.00356 0.93352 -0.0305   

0.59082 0.02143 0.72116 0.00103 0.95728 -0.03294   

0.61013 0.01918 0.74177 -0.0015 0.98112 -0.03522   

0.62944 0.01688 0.7624 -0.00401     

0.64875 0.01455 0.78303 -0.00648     

0.66801 0.0122 0.80377 -0.0089     

0.68727 0.00983 0.82455 -0.01125     

0.70654 0.00747 0.84534 -0.0135     

0.72583 0.00512 0.86625 -0.01564     

0.74512 0.00281 0.88722 -0.01765     

0.76451 0.00055 0.90825 -0.01951     

0.78394 -0.00165 0.9293 -0.02121     

0.80337 -0.00375 0.95036 -0.02273     

0.82293 -0.00575 0.97142 -0.02409     

0.84253 -0.00763 0.99244 -0.02528     

0.86219 -0.00937       

0.88187 -0.01096       

0.90157 -0.01238       

0.92125 -0.01365       

0.94091 -0.01477       

0.96053 -0.01575       

0.98011 -0.01662       

0.99962 -0.01741       

 

 

GenMAVA8.dat GenMAVA9.dat GenMAVA10.dat GenMAVA11.dat 

MAV - v2.0 - Airfoil 

Cross Section - Chord 

2.43693 

MAV - v2.0 - Airfoil Cross 

Section - Chord 1.64218 

MAV - v2.0 - Airfoil 

Cross Section - Chord 

1.27234 

MAV - v2.0 - Airfoil 

Cross Section - Chord 

0.90625 

1 -0.03903 1 -0.03443 1 -0.03052 1 -0.02225 

0.96767 -0.03519 0.96265 -0.03079 0.97516 -0.02835 0.99356 -0.02376 

0.93151 -0.03097 0.90869 -0.02572 0.9053 -0.02248 0.89513 -0.01667 

0.89529 -0.02684 0.85471 -0.02082 0.83533 -0.01686 0.79642 -0.01009 

0.85908 -0.02283 0.80058 -0.01609 0.76522 -0.0115 0.69763 -0.00414 

0.82283 -0.01893 0.74646 -0.01155 0.69512 -0.00645 0.59882 0.00104 
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0.78655 -0.01515 0.69225 -0.00719 0.62481 -0.00176 0.49975 0.00523 

0.75027 -0.0115 0.63793 -0.00304 0.55445 0.00247 0.40069 0.00819 

0.71393 -0.00796 0.58361 0.00087 0.48407 0.00616 0.30161 0.00961 

0.67757 -0.00454 0.52914 0.00451 0.4135 0.00914 0.20252 0.0091 

0.64119 -0.00123 0.47462 0.00779 0.34294 0.01125 0.10343 0.00622 

0.60472 0.00195 0.42009 0.01064 0.27237 0.01226 0.00478 0.00045 

0.56824 0.00501 0.36542 0.01296 0.2018 0.0119 0 0 

0.53171 0.00795 0.31075 0.01459 0.13122 0.00985 0 -0.02207 

0.49511 0.01075 0.25607 0.01537 0.06095 0.00574 0.00478 -0.02162 

0.4585 0.01338 0.20139 0.01509 0 0 0.10343 -0.01585 

0.4218 0.01583 0.14671 0.0135 0 -0.01572 0.20252 -0.01297 

0.38506 0.01804 0.09227 0.01032 0.06095 -0.00998 0.30161 -0.01246 

0.34831 0.01997 0.03792 0.0052 0.13122 -0.00587 0.40069 -0.01388 

0.31147 0.02153 0 0 0.2018 -0.00382 0.49975 -0.01684 

0.27463 0.02263 0 -0.01055 0.27237 -0.00346 0.59882 -0.02103 

0.23779 0.02315 0.03792 -0.00698 0.34294 -0.00446 0.69763 -0.0262 

0.20094 0.02297 0.09227 -0.00186 0.4135 -0.00657 0.79642 -0.03216 

0.16409 0.02189 0.14671 0.00132 0.48407 -0.00956 0.89513 -0.03874 

0.1274 0.01975 0.20139 0.00292 0.55445 -0.01324 0.99356 -0.04583 

0.09078 0.0163 0.25607 0.0032 0.62481 -0.01748   

0.05418 0.01128 0.31075 0.00241 0.69512 -0.02217   

0.01828 0.00453 0.36542 0.00078 0.76522 -0.02722   

0 0 0.42009 -0.00154 0.83533 -0.03258   

0 -0.00821 0.47462 -0.00439 0.9053 -0.0382   

0.01828 -0.00367 0.52914 -0.00767 0.97516 -0.04407   

0.05418 0.00307 0.58361 -0.01131     

0.09078 0.00809 0.63793 -0.01522     

0.1274 0.01154 0.69225 -0.01937     

0.16409 0.01369 0.74646 -0.02373     

0.20094 0.01476 0.80058 -0.02827     

0.23779 0.01495 0.85471 -0.033     

0.27463 0.01442 0.90869 -0.0379     

0.31147 0.01332 0.96265 -0.04297     

0.34831 0.01176       

0.38506 0.00984       

0.4218 0.00762       

0.4585 0.00517       

0.49511 0.00254       

0.53171 -0.00026       

0.56824 -0.00319       

0.60472 -0.00626       

0.64119 -0.00944       

0.67757 -0.01274       

0.71393 -0.01616       

0.75027 -0.0197       

0.78655 -0.02336       
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0.82283 -0.02714       

0.85908 -0.03104       

0.89529 -0.03505       

0.93151 -0.03917       

0.96767 -0.04339       

 

h. genmav_2pt2.initial 

Filename: genmav_2pt2.initial 

Parent program: AVL 

Description: This is an optional file that has identical format as the ―.avl‖ file used to set initial values.  

Code as follows: See genmav_2pt2.avl 

 

i. genmav_2pt2.template 

Filename: genmav_2pt2.template 

Parent program: Model Center 

Description: This is a file used by Model Center that is not changed. The original is maintained in the ―.template.‖ The 

file that is actually changed is genmav_2pt2.avl 

Code as follows: See genmav_2pt2.avl 

 

j. genmav_2pt2.mass 

Filename: genmav_2pt2.mass 

Parent program: AVL 

Description: This file provides all information about the airframe mass, coordinates, units, and MOI, etc. A very 

detailed break down of each subcomponent is not necessary unless user desires Eigenmode analysis.  

Code as follows: 

# 

#  GenMAV - version 2.2 - cg 6.4 in 

#  0-deg Dihedral (Baseline) 

#  Mass & Inertia Breakdown 

# 

#   x back 

#   y right 

#   z up 

# 

#============================================ 

# UNIT DATA 

# - Scales the mass, xyz, and inertia table data 

# - LUNIT also scales all lengths / areas in AVL input file 

#============================================ 

Lunit = 0.0254 m 

Munit = 0.001 kg 

Tunit = 1.0 s 

#============================================ 

# CONSTANTS 

# - Gravity and density to be used in trim setup 

# - Must be in unit names given above 

#============================================ 

g   = 9.81 

rho = 1.225 

#============================================ 

# MASS, POSITION, INERTIA DATA 

# - x,y,z is location of item's own cg 

# - Ixx...Iyz are item's inertias about item's own cg 
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# - Must use same point of origin as AVL input file 

#============================================ 

#  Mass     x          y          z        Ixx         Iyy       Izz 

*  1         1          1          1         1            1           1 

+  0        0          0          0         0            0           0  

   452.00  7.3160  0.000  0.123  141.86   1453.55  1420.45    ! Fuselage 

   24.450  7.9870 -5.036  1.505  293.40   37.37    330.77     ! Left Wing 

   24.450  7.9870  5.036  1.505  293.40   37.37    330.77     ! Right Wing 

   8.3945  17.033 -2.760  0.000  25.180   6.830    32.010     ! Left Horizontal Tail    

   8.3945  17.033  2.760  0.000  25.180   6.830    32.010     ! Right Horizontal Tail  

   5.1766  16.816  0.000  2.235  9.2300   11.92    2.7000     ! Vertical Tail 

   15.200 -0.3750  0.000  0.000  57.480   28.74    28.740     ! Propeller 

   44.500  0.5000  0.000  0.000  5.5600   5.620    5.6200     ! Motor 

   142.50  3.0000  0.000  0.750  25.110   21.45    7.5700     ! Battery 

   91.000  5.2500 -0.563  0.000  81.050   81.05    25.590     ! Left Shock 

   91.000  5.1250  0.563  0.000  81.050   81.05    25.590     ! Right Shock 

   24.600  7.0000  0.000 -0.500  0.4600   0.980    1.4200     ! Spd Cntrl 

   44.600  7.5000  0.000  2.240  1.1600   1.160    1.8600     ! AP / Modem 

   16.000  9.8750  0.000  0.750  0.3000   1.030    1.1700     ! GPS 

   9.3000  14.625  0.000  0.250  0.1500   0.240    0.1600     ! Servo 1 

   9.3000  15.438  0.000  0.188  0.1500   0.240    0.1600     ! Servo 2      

   7.1000  17.000  0.000  1.500  0.0700   0.070    0.0700     ! Camera    

 

k. genmav_2pt2.run 

   

Filename: genmav_2pt2.run 

Parent program: AVL 

Description: This optional file is both an input and an output file.  Individual flight conditions can be set up and 

inputted at once through the ―.run‖ file to be called by AVL.  Or, the same information can be typed line by line 

through the AVL user interface. After a flight condition has been executed, the flight condition or setup can be saved 

for future runs as a ―.run‖ file. 

Code as follows:  

--------------------------------------------- 

 Run case  1:  Base Run                                 

 

 alpha        ->  alpha       =   0.00000     

 beta         ->  beta        =   0.00000     

 pb/2V        ->  pb/2V       =   0.00000     

 qc/2V        ->  qc/2V       =   0.00000     

 rb/2V        ->  rb/2V       =   0.00000     

 L_Elevon     ->  Cm pitchmom =   0.00000     

 R_Elevon     ->  Cl roll mom =   0.00000     

 

 alpha     =   0.00000     deg                              

 beta      =   0.00000     deg                              

 pb/2V     = -0.365837E-15                                  

 qc/2V     =   0.00000                                      

 rb/2V     =   0.00000                                      

 CL        =  0.553571                                      

 CDo       =  0.102 

 bank      =   0.00000     deg                              

 elevation =   0.00000     deg                              

 heading   =   0.00000     deg                              

 Mach      =  0.400000E-01                                  

 velocity  =   13.4100     m/s                              

 density   =   1.22500     kg/m^3                           

 grav.acc. =   9.81000     m/s^2                            

 turn_rad. =   0.00000     m                                
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 load_fac. =   1.00000                                      

 X_cg      =   6.40844     m                                

 Y_cg      =  0.409869E-09 m                                

 Z_cg      =  0.355575     m                                

 mass      =   1.01797     kg                               

 Ixx       =  0.181759E-02 kg-m^2                           

 Iyy       =  0.754403E-02 kg-m^2                           

 Izz       =  0.854157E-02 kg-m^2                           

 Ixy       =  0.413171E-05 kg-m^2                           

 Iyz       = -0.268490E-11 kg-m^2                           

 Izx       = -0.137953E-03 kg-m^2                           

 visc CL_a =   0.00000                                      

 visc CL_u =   0.00000                                      

 visc CM_a =   0.00000                                      

 visc CM_u =   0.00000                

 

l. genmav_2pt2run.template 

Filename: genmav_2pt2run.template 

Parent program: Model Center 

Description: This is a file used by Model Center that is not changed. The original is maintained in the ―.template.‖ The 

file that is actually changed is genmav_2pt2.run. Note that I did not use the ―.run‖ file to interface with Model Center, 

but some cases exist where it would be a useful method. 

Code as follows: See genmav_2pt2.avl 

 

m. results_genmav.txt 

Filename: results_genmav.txt 

Parent program: AVL 

Description: AVL can export results to a text based file. The file constraint_genmav.batch named this file. From the 

―.fileWrapper‖ file, Model Center knows to retrieve results from this ―.txt‖ file. 

Code as follows:  

--------------------------------------------------------------- 

 Vortex Lattice Output -- Total Forces 

 

 Configuration: GenMAV                                                       

     # Surfaces =   4 

     # Strips   =  81 

     # Vortices = 629 

 

  Sref =  111.68       Cref =  4.7757       Bref =  24.000     

  Xref =  6.4084       Yref = 0.40987E-09   Zref = 0.35557     

 

 Standard axis orientation,  X fwd, Z down          

 

 Run case: Base Run                                 

 

  Alpha =  -6.49872     pb/2V =   0.00000     p'b/2V =   0.00000 

  Beta  =   0.00000     qc/2V =   0.00000 

  Mach  =     0.040     rb/2V =   0.00000     r'b/2V =   0.00000 

 

  CXtot =  -0.15160     Cltot =   0.00000     Cl'tot =   0.00000 

  CYtot =   0.00000     Cmtot =   0.00000 

  CZtot =  -0.34714     Cntot =   0.00000     Cn'tot =   0.00000 

 

  CLtot =   0.36207 

  CDtot =   0.11133 

  CDvis =   0.10200     CDind =   0.00933 
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  CLff  =   0.35453     CDff  =   0.00965    | Trefftz 

  CYff  =   0.00000         e =    0.8039    | Plane   

  

   L_Elevon        =   6.40806 

   R_Elevon        =   6.40857 

  

 --------------------------------------------------------------- 

 

 Derivatives... 

                             alpha                beta 

                  ----------------    ---------------- 

 z force     |    CLa =   5.289935    CLb =  -0.000005 

 y force     |    CYa =  -0.000001    CYb =  -0.453573 

 roll  x mom.|    Cla =  -0.000002    Clb =  -0.139558 

 pitch y mom.|    Cma =  -1.588459    Cmb =   0.000009 

 yaw   z mom.|    Cna =   0.000000    Cnb =   0.039762 

 

                      roll rate  p       pitch rate  q         yaw rate  r 

                  ----------------    ----------------    ---------------- 

 z force     |    CLp =   0.000001    CLq =  10.134153    CLr =   0.000003 

 y force     |    CYp =  -0.138981    CYq =  -0.000007    CYr =   0.205479 

 roll  x mom.|    Clp =  -0.466106    Clq =  -0.000015    Clr =   0.146314 

 pitch y mom.|    Cmp =  -0.000003    Cmq = -12.193177    Cmr =  -0.000006 

 yaw   z mom.|    Cnp =  -0.002405    Cnq =  -0.000002    Cnr =  -0.116552 

 

                  L_Elevon     d1     R_Elevon     d2  

                  ----------------    ---------------- 

 z force     |   CLd1 =   0.009382   CLd2 =   0.009382 

 y force     |   CYd1 =  -0.000486   CYd2 =   0.000486 

 roll  x mom.|   Cld1 =   0.000641   Cld2 =  -0.000641 

 pitch y mom.|   Cmd1 =  -0.017995   Cmd2 =  -0.017996 

 yaw   z mom.|   Cnd1 =   0.000209   Cnd2 =  -0.000209 

 Trefftz drag| CDffd1 =   0.000097 CDffd2 =   0.000097 

 span eff.   |    ed1 =   0.034807    ed2 =   0.034806 

  

  

 

 Neutral point  Xnp =   7.842484 

 

 Clb Cnr / Clr Cnb  =   2.795906    (  > 1 if spirally stable ) 

 

D.2. Velocity, Thrust, Power 

a. VeloCalcEnd.m 

Filename: VeloCalcEnd.m 

Parent program: Model Center and Matlab Plug-in 

Description: This Matlab script calculates the endurance velocity, max L/D, and stall velocity. Note that the variable 

that are commented out on top tell Model Center about the variables.  

Code as follows:  

% variable: C_L_max     double   input description = "Max lift coefficient" 

% variable: mass       double    input description = "mass"          units="kg" 

% variable: S_in2      double    input description = "Planform area"   units="in^2" 

% variable: den         double    input description = "Density"         units="kg/m^3" 

% variable: b_in        double    input description = "reference span"   units="in" 

% variable: C_D_0      double    input description = "zero lift drag coef" 

% variable: e            double   input description = "AVL output: span efficiency" 

% variable: AspectRatio     double  output description =Wing aspect ratio"  matlabName="AR" 
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% variable: L_over_D_max     double output description ="Maximum Lift/Drag" 

% variable: v_stall          double  output description ="Stall velocity"    units="m/s" 

% variable: v_end            double  output description ="Endurance or loiter velocity" units="m/s" 

  

% Uncomment the following in order to test the code in Matlab 

% close all; clear all; clc; 

% S_in2   = 111 

% b_in   = 24 

% mass    = 1 

% den     =1.225 

% e   =0.92 

% %velo  =14 

% %climb_rate =0.01 

% C_D_0  =0.1 

% C_L_max  = 1.2 

% g               = 9.81 

% b_m             = b_in*0.0254 

% S_m2            = S_in2*0.0254^2 

% w              = mass*g 

% AR             = (b_m^2)/S_m2 

% K               = 1/(pi*e*AR) 

 

g                = 9.81 

b_m             = b_in*0.0254 

S_m2            = S_in2*0.0254^2 

w                = mass*g 

AR              = (b_m^2)/S_m2 

K                = 1/(pi*e*AR) 

  

v_stall         = sqrt(2*w/(den*S_m2*C_L_max)) 

L_over_D_max    = 1/(sqrt(4*C_D_0*K)) 

v_end     = sqrt(2*w*(sqrt(K/(3*C_D_0)))/(den*S_m2)) 

 

b. VeloCalcPassThrough.m 

Filename: VeloCalcPassThrough.m  

Parent Program: Model Center and Matlab Plug-in 

Description: This program passes the user requested velocity and uses AVL outputs to calculate stall speed. 

Code as follows: 

% variable: C_L_max       double    input  description = "Max lift coefficient" 

% variable: mass         double    input  description = "mass"                       units="kg" 

% variable: S_in2        double    input description = "Planform area"             units="in^2" 

% variable: den           double    input  description = "Density"                    units="kg/m^3" 

% variable: b_in          double    input  description = "reference span"            units="in" 

% variable: C_D_0         double    input  description = "zero lift drag coef" 

% variable: e              double    input  description = "AVL output: span efficiency" 

% variable: user_input_vel_in   double   input  description = "desired run velocity"    units="m/s" 

% variable: AspectRatio       double   output  description =  ―Wing aspect ratio"  matlabName="AR" 

% variable: L_over_D_max      double   output  description = "Maximum Lift/Drag" 

% variable: v_stall            double  output  description ="Stall velocity"                           units="m/s" 

% variable: user_input_vel_out double  output  description ="User velocity passed through"  units="m/s" 

  

% matlab initial values for test 

% close all; clear all; clc; 

% user_input_vel_in  = 13 

% S_in2    = 111 

% b_in    = 24 

% mass     = 1 

% den      =1.225 
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% e    =0.92 

% velo   =14 

% climb_rate  =0.01 

% C_D_0   =0.1 

% C_L_max   = 1.2 

 

g                 = 9.81 

b_m              = b_in*0.0254 

S_m2             = S_in2*0.0254^2 

w                 = mass*g 

AR               = (b_m^2)/S_m2 

K                 = 1/(pi*e*AR) 

  

L_over_D_max     = 1/(sqrt(4*C_D_0*K)) 

v_stall          = sqrt(2*w/(den*S_m2*C_L_max)) 

user_input_vel_out   = user_input_vel_in 

 

c. VeloCalcRange.m 

Filename: VeloCalcRange.m 

Parent program: Model Center and Matlab Plug-in 

Description: This file calculates the theoretical max range velocity, max L/D, and stall velocity. 

Code as follows:  

% variable: C_L_max    double   input description = "Max lift coefficient" 

% variable: mass       double   input description = "mass"   units="kg" 

% variable: S_in2      double   input description = "Planform area"           units="in^2" 

% variable: den        double   input description = "Density"                    units="kg/m^3" 

% variable: b_in       double   input description = "reference span"          units="in" 

% variable: C_D_0      double   input description = "zero lift drag coef" 

% variable: e           double   input description = "AVL output: span efficiency" 

% variable: AspectRatio     double output description = ―Wing aspect ratio"  matlabName="AR" 

% variable: L_over_D_max    double output description ="Maximum Lift/Drag" 

% variable: v_stall         double output description ="Stall velocity"            units="m/s" 

% variable: v_range         double output description ="Max range velocity"   units="m/s" 

 

% matlab initial values for test 

% close all; clear all; clc; 

% user_input_vel_in   = 13 

% S_in2     = 111 

% b_in     = 24 

% mass     = 1 

% den       =1.225 

% e     =0.92 

% velo    =14 

% climb_rate   =0.01 

% C_D_0    =0.1 

% C_L_max    = 1.2 

  

g                 = 9.81 

b_m               = b_in*0.0254 

S_m2             = S_in2*0.0254^2 

w                 = mass*g 

AR               = (b_m^2)/S_m2 

K                 = 1/(pi*e*AR) 

  

L_over_D_max      = 1/(sqrt(4*C_D_0*K)) 

v_stall           = sqrt(2*w/(den*S_m2*C_L_max)) 

v_range           = sqrt(2*w*(sqrt(K/(C_D_0)))/(den*S_m2)) 
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d. VelocitySelection.m 

Filename: VelocitySelection.m 

Parent Program: Model Center, Matlab Plugin 

Description: This script collects values for endurance, max range, user-requested, and stall velocity. It then outputs the 

use type of flight velocity requested, as well as the lowest possible value above stall for the type of flight requested.  

Note that the naming of variables at the top of the file can each not go into a second line. Formatting caused it here.  

Code as follows: 

% variable: velocity_setting    double   input  description ="user interface"          

 units="1=min_thrust_SC,2=min_pwr_SC,3=user_input_SC,4=user_input" 

% variable: C_L_max             double   input  description = "Max lift coefficient" 

% variable: mass                 double   input  description = "mass"                       units="kg" 

% variable: S_in2                double   input  description = "Planform area"              units="in^2" 

% variable: den                  double  input  description = "Density"                    units="kg/m^3" 

% variable: user_input_vel_in  double input  description = "desired run velocity"      units="m/s" 

% variable: stall_margin         double   input  description = "safety margin above stall" default="0.02" 

 matlabName="x" 

% variable: v_range              double   input  description = "passed value"               units="m/s" 

% variable: v_end                double   input  description = "passed value"               units="m/s" 

% variable: run_velocity        double   output  description ="Velocity ultimately selected" units="m/s" 

 matlabName="velo" 

% variable: v_stall              double   output  description ="Stall velocity"             units="m/s" 

% setGroup "StallCheckedValues" 

% variable: v_min_power_SC   double output  description ="min power vel, checked above stall"     units="m/s"  

% variable: v_min_thrust_SC   double output  description ="min thrust vel, checked above stall"       units="m/s" 

% variable: user_input_vel_SC double output  description ="user desired velocity, higher than stall" units="m/s" 

 

% %Uncomment to following inputs for Matlab testing 

% S_in2   = 111 

% mass    = 1 

% den     =1.225 

% C_L_max  = 1.16 

% x         = 0.02 

% v_range  = 13 

% v_end    = 12 

% user_input_vel_in=16 

% %velocity_setting = 4 

  

% This component allows the user to choose among four different velocities, and checks to see 

% if they are above stall. It provides the user a minimum safe velocity, or the use of a desired 

% velocity. 

  

% calculate stall velocity 

g               = 9.81 

S_m2            = S_in2*0.0254^2 

w               = mass*g 

v_stall         = sqrt(2*w/(den*S_m2*C_L_max)) 

  

% Ensure that all velocities are above stall. If not, use value of stall * saftey margin. 

% Produce Stall Checked (SC) velocities 

  

if (v_range) < v_stall 

   v_min_thrust_SC = (1+x) * v_stall 

   else 

   v_min_thrust_SC = v_range 

end 

  

if (v_end) < v_stall 

   v_min_power_SC =  (1+x) * v_stall 
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   else 

   v_min_power_SC = v_end 

end 

  

if (user_input_vel_in) < v_stall 

   user_input_vel_SC = (1+x) * v_stall 

   else 

   user_input_vel_SC =user_input_vel_in 

end 

  

% choose which velocity to use based on user's selection 

if velocity_setting == 2, 

     velo = v_min_power_SC 

   elseif velocity_setting == 3, 

     velo = user_input_vel_SC 

   elseif velocity_setting == 4, 

     velo = user_input_vel_in 

   else 

     velo = v_min_thrust_SC 

end 

  

% Now that a run velocity has been selected, it must pass through AVL again to get a new span 

% efficiency, which provides a new drag polar K value for further calculations. 

 

% Uncomment below for Matlab testing. 

% for velocity_setting=1:4 

% if velocity_setting == 2, 

%      velo = v_min_power_SC 

%    elseif velocity_setting == 3, 

%      velo = user_input_vel_SC 

%    elseif velocity_setting == 4, 

%      velo = user_input_vel_in 

%    else 

%      velo = v_min_thrust_SC 

% end 

% end 

 

e. AirframeThrustPowerRqd.m 

Filename: AirframeThrustPowerRqd.m 

Parent Program: Model Center  

Description: Calculates the airframe thrust and power required.  This was used in the main ―Track 1.‖  

Code as follows: 

% variable: climb_rate  double     input description ="User prescribed Rate of Climb"        units="m/s" 

% variable: den              double    input description ="Density"                               units="kg/m^3" 

% variable: C_D_0        double    input description ="AVL input: zero lift drag coef" 

% variable: S_in2           double   input description ="Planform area"                         units="in^2" 

% variable: b_in             double   input description = "reference span"               units="in" 

% variable: mass            double   input description = "mass"                        units="kg" 

% variable: e                  double   input description = "AVL output: span efficiency" 

% variable: run_velocity     double   input description ="Velocity ultimately selected" units="m/s" matlabName="velo" 

% variable: airframeThrustRqd      double     output description ="Thrust required, airframe only"      units="N" 

% variable: airframePwrRqd          double    output description ="Power required, airframe only"       units="W" 

  

% Uncomment the following inputs for MatLab testing 

% close all; clear all; clc; 

% % S_in2  = 111 

% b_in   = 24 

% mass    = 1 



 

185 

% den     =1.225 

% e   =0.92 

% velo  =14 

% climb_rate =0.01 

% C_D_0  =0.1 

 

g               = 9.81 

b_m             = b_in*0.0254 

S_m2            = S_in2*0.0254^2 

w               = mass*g 

AR              = (b_m^2)/S_m2 

K               = 1/(pi*e*AR) 

  

airframeThrustRqd = w*((climb_rate/velo) + 0.5*den*velo^2*(S_m2/w)*C_D_0 + (w*2*K/(S_m2*den*velo^2))) 

airframePwrRqd     = velo*airframeThrustRqd 

 

f. Thrust_rqd.scriptWrapper 

Filename: Thrust_rqd.scriptWrapper 

Parent program: Model Center 

Description:  This script was used in ―Track 2.‖  It calculates the thrust and power required. The only reason why I 

wrote it as a Model Center scriptWrapper is because I had not yet incorporated the Matlab plugin.   

Code as follows: 

# @author: Paul Hrad 

# @description: computes thrust required from aero model 

# @version: 20 Nov 2009 

# declare variables 

# Inputs 

variable: S_sqin                double input description="Ref planform area (in/sq_in)"  units="in^2" 

variable: rho_kgsqm             double input description="density"            units="kg/m^2" 

variable: velocity_ms           double input description="horizontal speed"   units="m/s" 

variable: CD_tot   double input 

variable: mass_kg    double input 

#variable: gamma_degrees     double input      default="1" 

variable: climb_rate            double input description="rate of climb(negative if decending)" units="m/s" 

variable: altitude_start        double input description="MSL at start"        units="m" 

variable: altitude_end          double input description="MSL at end"          units="m" 

# Outputs 

#variable: gamma_rads           double output      default="1" 

variable: gamma_degs            double output description="climb angle (deg)"   units="deg" 

variable: S_sqm                 double output description="Ref planform area"   units="m^2" 

variable: Thrust_N              double output description="Thrust"              units="N" 

variable: altitude_change       double output description="dela h"              units="m" 

variable: climb_time            double output description="time rqd to climb"   units="sec" 

variable: power_rqd_airframe   double output description="airframe power required"  units="W" 

 

#------------------------------------------------- 

script: 

sub run 

dim x 

altitude_change = altitude_end - altitude_start 

if climb_rate = 0 then 

   climb_time = 0 

   else 

   climb_time      = abs(altitude_change / climb_rate) 

end if 

gamma_rads  = atn(climb_rate / velocity_ms) 

gamma_degs  =gamma_rads * 180 / 3.14 

S_sqm       = S_sqin*0.00064516 
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'Gravity is constant 9.81 N/s^2 

x = 0.5*S_sqm*rho_kgsqm*velocity_ms^2*CD_tot + mass_kg*9.81*sin(gamma_rads) 

if x > 0 then 

   Thrust_N = x 

   else 

   Thrust_N = 0.001 

end if 

power_rqd_airframe = Thrust_N * velocity_ms 

end sub 

 

 

D.3. Fuel Cell 

a. BurnRate.scriptWrapper 

Filename: BurnRate.scriptWrapper 

Parent program: Model Center 

Description: This script file determines the energy usage rate based on a user input efficiency. Nearly any simple 

Matlab file could be written as a scriptWrapper for Model Center. This code is not used in the model.  

Code as follows: 

# 

# @author: Paul Hrad 

# @description: Calculates mass loss due to hydrogen expenditure 

# @version: 7 Dec 2009 

# declare variables 

variable: Pelec    double input  description="electrical power required"  units="W" 

variable: E        double input  description="fuel specific energy"  units="J/kg" 

variable: Rec_eff double input  description="recovery efficiency"  

variable: BurnRate  double output  description="Fuel Burn Rate"  units="Kg/s" 

#------------------------------------------------- 

script: 

Pelec =1 

E =1 

Rec_eff =1 

 

sub run 

BurnRate =Pelec/(Rec_eff*E) 

end sub 

 

b. FC.m 

Filename: FC.m 

Parent program: Model Center and Matlab Plug-in 

Description:  This program first calculates the output current. It creates a polarization plot, and then reads the plot to 

determine the output current.  Finally, it subtracts this amount from the required amount to determine battery power 

requirement.  This is the code related to the model described in this thesis, but was not actually incorporated into the 

model.  

Code as follows: 

% setGroup Links 

% variable: v_input         double          input      

% variable: i_input          double          input     

% setGroup FC_Voltage_Model 

% variable: Eoc               double          input 

% variable: A                  double          input 

% variable: r                   double          input 

% variable: m                 double          input 
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% variable: n                  double          input 

% variable: i_vec             double[]       output 

% variable: v_vec            double[]       output 

% setGroup FC_Current_Model 

% variable: celqty            int               input 

% variable: area               double        input 

% variable: FC_v              double        output 

% variable: act_cur_den    double        output  

% variable: act_cur           double        output 

% setGroup BatteryInfo 

% variable: bat_cur_req    double        output 

  

%This file gives the cell voltage vs. current density plot 

% and determines the current produced by PEMFC, 70 deg C.  

%close all; clear all; clc;  

% -close,clear,clc can cause problems for MC --remove prior to MC 

% MC calculated inputs 

  

 v_input =6; % This value should match the voltage reqd from MC 

 i_input =6;  % Match MC need 

  

format short g 

% This voltage model comes from eq 3.14, p. 60 of   

% FC Systems Explained, by Larminie 

Eoc    =     1.031; 

A       =     0.03;           % activation loss constant 

r        =     0.000245; 

m      =    2.11E-5; 

n       =    0.008; 

i_vec       =        linspace(1,1000,200); 

v_vec      =        Eoc-r*i_vec     - A*log(i_vec)  - m*exp(n*i_vec); 

  

plot(i_vec,v_vec); 

xlabel('current (mA / sq cm)') 

ylabel('terminal voltage (volts)') 

  

cellqty      =             8;                     % number of cells in stack 

area           =             8;                     % active area of FC [cm^2] 

FC_v  =  v_input/cellqty;               % per voltage required to match rqd voltage 

v_vec_flip= sort(v_vec,'ascend');  % need to have vector in ascending order 

i_vec_flip= sort(i_vec,'descend');  % to maintain index, flip i vector too. 

[volt_index,volt_value] = searchclosest(v_vec_flip,FC_v) 

    % Above function searches the voltage vector to find the amount of 

    % current density poduced. Search code written by Dr. Murtaza Khan 

act_cur_den=  i_vec_flip(volt_index);   % Actual current density needed [mA/cm^2] 

act_cur=   act_cur_den*area/1000;    % Actual current produced by FC [amps]                   

  

% cur_dens_des=   800; % desired current density [mA/cm^2] 

hold on; grid on; 

plot(act_cur_den,FC_v,'o') 

  

%The remaining current will need to be produced by the battery 

bat_cur_req=i_input-act_cur; %[amps] 

 

c. FuelUse.scriptWrapper 

Filename: FuelUse.scriptWrapper 

Parent Program: Model Center 

Description: Uses heating value to calculate loss of mass due to hydrogen burning. 
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Code as follows: 

# @author: Paul Hrad 

# @description: Calculates mass loss due to hydrogen expenditure 

# @version: 7 Dec 2009 

# declare variables 

variable: Pelec          double input  description="electrical power required"  units="W" 

variable: E               double input description="fuel specific enthalpy(HHV)"  units="J/kg" 

variable: mass           double input  description="mass at start"    units="kg" 

variable: Rec_eff        double input description="recovery efficiency"  

variable: step_duration double input  description="step size,time"    units="sec" 

variable: burn_rate      double output description="Fuel Burn Rate"   units="kg/s" 

variable: new_mass       double output  

#------------------------------------------------- 

script: 

' Rec_eff is mean cell voltage/1.48, assuming liquid water as ouput 

'            mean cell voltage/1.25, if water vapor is output product 

'    Until mean cell voltage is included in model, assume eff=47%                    

Rec_eff=0.47 

' at STP, HHV of hydrogen fuel is 1.43 x 10^8 J/kg 

E=143000000 

sub run 

'calculate the new mass 

burn_rate= Pelec/(Rec_eff*E) 

new_mass= mass-burn_rate*step_duration 

end sub 

 

D.4. Power and Energy Split Post Processing 

a. energy.m 

FileName: energy.m 

Parent program: Model Center and Matlab Plug-in 

Description: Post Processing Component. Calculates the power and energy requirements from a vector of power 

segment values. Calculates the mass of each power subsystem and calculates aggregate power system mass. Plots and 

stores mission power profile plot.  

Code as follows: 

% setGroup Profile 

% variable: power                                    double[]  input 

% variable: voltage                                   double[] input 

% variable: current                                   double[] input 

% setGroup CreateTimeVector 

% variable: climb_rate                             double   input      description ="rate of climb"                    units="m/s" 

% variable: descend_rate                         double   input      description ="rate of descent"                units="m/s" 

% variable: leg1_climb_altitude_initial   double   input 

% variable: leg1_climb_altitude_final     double   input 

% variable: leg1_altitude_change            double   output 

% variable: leg2_duration                        double   input                                                units="min" 

% variable: leg3_duration                        double   input                                                units="min" 

% variable: leg4_duration                        double   input                                                units="min" 

% variable: leg5_descend_altitude_initial        double   input 

% variable: leg5_descend_altitude_final          double   input 

% variable: leg5_altitude_change             double   output 

% variable: mission_segment_time          double[] output description="vector of mission segment times" units="sec" 

% variable: total_time                               double   output description="Total Mission Time"                     units="min" 

% setGroup Properties 

% variable: FC_specific_power                double   input  description ="fuel cell specific power"           units="W/kg" 

% variable: FC_specific_energy         double   input  description ="fuel cell specific energy"      units="W-hr/kg" 
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% variable: bat_specific_power          double   input  description ="battery specific power"         units="W/kg" 

% variable: bat_specific_energy         double   input  description ="battery specific energy"        units="W-hr/kg" 

% setGroup DecisionsResults 

% variable: overhead_mass                 double   input  description ="weight multiplier for extras"   units="kg" 

% variable: differential                         double   input  description ="percentage of average for FC size" default="1" 

% variable: p_avg                                 double   output description ="Average power required"        units="Watts" 

% variable: p_fc                                   double   output description ="fuel cell power" 

% variable: FC_energy                        double   output description ="fuel cell energy"               units="W-hr" 

% variable: FC_mass                           double   output description ="weight of fuel cell"            units="kg" 

% variable: p_bat                                 double   output description ="battery power" 

% variable: bat_energy                        double   output description ="battery energy"                 units="W-hr" 

% variable: bat_mass                           double   output description ="weight of battery"              units="kg" 

% variable: bat_use_time_total           double   output description ="Battery time"                   units="hr" 

% variable: total_power_mass            double   output description ="overhead*(FC + bat)"            units="kg" 

% variable: bat_constrained_by  string  output description ="Which requirement (power or energy) is heavier?‖  

% variable: fc_constrained_by   string   output description ="Which requirement (power or energy) is heavier?" 

  

% Uncomment the following for Matlab code testing.  

% close all; clear all; clc; 

% % mission_segment_time   =[60 400 60 120 60]; %secs 

% leg1_climb_altitude_initial   =0; 

% leg1_climb_altitude_final     =400; 

% leg5_descend_altitude_fina  l=0; 

% leg5_descend_altitude_initial=400; 

% climb_rate    =1.5; 

% leg2_duration    =3; 

% leg3_duration    =1; 

% leg4_duration    =8; 

% descend_rate    =-.7; 

% power     = [87 92 95 60 50 80 75 60 40]; 

% differential  =.50; 

% bat_specific_power =100; 

% bat_specific_energy =90; 

% FC_specific_power =80; 

% FC_specific_energy =100; 

% overhead_mass  =1.01; 

 

 leg1_altitude_change  = leg1_climb_altitude_final-leg1_climb_altitude_initial 

leg5_altitude_change = -leg5_descend_altitude_final+leg5_descend_altitude_initial 

mission_segment_time(1)   = abs(leg1_altitude_change / climb_rate) 

mission_segment_time(2)   = leg2_duration*60 %sec 

mission_segment_time(3)   = leg3_duration*60 

mission_segment_time(4)   = leg4_duration*60 

mission_segment_time(5)   = abs(leg5_altitude_change / descend_rate) 

total_time                = sum(mission_segment_time) /60 %min 

t_ms                       = mission_segment_time % mission segement time 

p_ms                      = power %mission segment power, length = 9 

             

%   Here, I semi-manually create a bar chart with scatter data. 

f = figure('Visible', 'off'); grid off; hold on; box on; 

set(gca,'XLim',[0 sum(t_ms)],'YLim',[0 max(p_ms)*1.1]) 

xaxisdatavalues=[      t_ms(1),           t_ms(1)+t_ms(2),            t_ms(1)+t_ms(2)+t_ms(3),       …     

t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4),          ( t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4)+t_ms(5))];%sec 

xaxisdatalabels=[round(t_ms(1)/60),round((t_ms(1)+t_ms(2))/60),round((t_ms(1)+t_ms(2)+t_ms(3))/60),… 

round((t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4))/60),round((t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4)+t_ms(5))/60)];%min 

set(gca,'XTick', xaxisdatavalues, 'Layer','top')%xlim([0,sum(t_ms)]) 

set(gca,'XTickLabel',xaxisdatalabels) 

set(gca,'YGrid','on') 

%set(gca,'FontSize',12,'TickDirMode','manual') 

set(gca,'FontSize',14) 
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ylabel('Power (W)','FontSize',18); 

%xlabel(['',sprintf('\n'),'Time (min)'],'FontSize',18,'VerticalAlignment','top'); 

xlabel('Time (min)','FontSize',18,'VerticalAlignment','top'); 

title('Mission Segment Power Profile','FontSize',18); 

colormap(pink(2)); 

  

%   Create the segment bars 

bar(t_ms(1)*.25,                                p_ms(1),'BarWidth',t_ms(1)/2,'EdgeColor','none') 

bar(t_ms(1)*.75,                                p_ms(3),'BarWidth',t_ms(1)/2,'EdgeColor','none') 

bar(t_ms(1)+.5*t_ms(2),                         p_ms(4),'BarWidth',t_ms(2),  'EdgeColor','none') 

bar(t_ms(1)+t_ms(2)+t_ms(3)/2,                  p_ms(5),'BarWidth',t_ms(3),  'EdgeColor','none') 

bar(t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4)/2,          p_ms(6),'BarWidth',t_ms(4),  'EdgeColor','none') 

bar(t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4)+t_ms(5)/4,  p_ms(7),'BarWidth',t_ms(5)/2,'EdgeColor','none') 

bar(t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4)+t_ms(5)*.75,p_ms(9),'BarWidth',t_ms(5)/2,'EdgeColor','none') 

  

%   Space the mission segment bars 

bar(                        t_ms(1),max([p_ms(3),p_ms(4)]),'BarWidth',0.007*sum(t_ms),'FaceColor', 'w', 'EdgeColor', 'w') 

bar(                t_ms(1)+t_ms(2),max([p_ms(4),p_ms(5)]),'BarWidth',0.007*sum(t_ms),'FaceColor', 'w', 'EdgeColor', 'w') 

bar(t_ms(1)+t_ms(2)+t_ms(3),max([p_ms(5),p_ms(6)]),'BarWidth',0.007*sum(t_ms),'FaceColor', 'w', 'EdgeColor', 'w') 

bar(t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4),max([p_ms(6),p_ms(7)]),'BarWidth',0.007*sum(t_ms),'FaceColor',… 

 'w', 'EdgeColor', 'w') 

  

%   Create the black lines indicating a second measurement in same segment 

bar(t_ms(1)/2,p_ms(2),                                'BarWidth',0.007*sum(t_ms),'FaceColor', 'k', 'EdgeColor', 'k') 

bar(t_ms(1)+t_ms(2)+t_ms(3)+t_ms(4)+t_ms(5)/2,p_ms(8),'BarWidth',0.007*sum(t_ms),'FaceColor', 'k', … 

'EdgeColor', 'k') 

 

%Reduce the power segment vector from 9 measurements to 7 discrete sections 

p_seg=[0.5*(p_ms(1)+p_ms(2)), 0.5*(p_ms(2)+p_ms(3)), 

p_ms(4),p_ms(5),p_ms(6),0.5*(p_ms(7)+p_ms(8)),0.5*(p_ms(8)+p_ms(9))] 

%Increase the time segemnt vector from 5 sections to 7 sections.  

t_seg_sec=[t_ms(1)/2, t_ms(1)/2,t_ms(2), t_ms(3),t_ms(4), t_ms(5)/2, t_ms(5)/2] 

t_sec=[t_seg_sec(1); 

        t_seg_sec(1)+ t_seg_sec(2); 

        t_seg_sec(1)+ t_seg_sec(2)+ t_seg_sec(3); 

        t_seg_sec(1)+ t_seg_sec(2)+ t_seg_sec(3)+ t_seg_sec(4); 

        t_seg_sec(1)+ t_seg_sec(2)+ t_seg_sec(3)+ t_seg_sec(4) + t_seg_sec(5); 

        t_seg_sec(1)+ t_seg_sec(2)+ t_seg_sec(3)+ t_seg_sec(4) + t_seg_sec(5)+ t_seg_sec(6); 

        t_seg_sec(1)+ t_seg_sec(2)+ t_seg_sec(3)+ t_seg_sec(4) + t_seg_sec(5)+ t_seg_sec(6)+ t_seg_sec(7)] 

p_avg=sum((t_seg_sec.*p_seg))/sum(t_seg_sec) 

p_fc=differential*p_avg 

p_bat=max(p_ms) - p_fc 

   if p_bat < 0 

      p_bat = 0 

   end 

p_avg_line =p_avg.*(ones(1,length(t_sec)+1)) 

p_fc_line  =p_fc .*(ones(1,length(t_sec)+1)) 

%p_bat_line =p_bat.*(ones(1,length(t_sec)+1)) 

h1 = gca; 

h2 = axes('Position',get(h1,'Position')); 

  

%Make the line the right length 

p_fc_line=p_fc_line(1:7) 

p_bat_diff= p_seg - p_fc_line        %7 length average value 

p_bat_diff_bar=[p_bat_diff(1);p_bat_diff(1);p_bat_diff(2);p_bat_diff(2);... 

                p_bat_diff(3);p_bat_diff(3);p_bat_diff(4);p_bat_diff(4);... 

                p_bat_diff(5);p_bat_diff(5);p_bat_diff(6);p_bat_diff(6);... 

                p_bat_diff(7);p_bat_diff(7)]; 

t_bar=[0; t_sec(1); t_sec(1); t_sec(2); t_sec(2); t_sec(3); t_sec(3);... 

     t_sec(4); t_sec(4); t_sec(5); t_sec(5); t_sec(6); t_sec(6); t_sec(7)]; 
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%set(h2,'FontSize',12,'YAxisLocation','right','Color','none','XTickLabel',[],'YTickLabel',[]) 

  

plot([0; t_sec],p_avg_line,'--',[0; t_sec],[p_fc p_fc_line],'-.',t_bar,p_bat_diff_bar,'LineWidth',3) 

  

set(h2,'YLim',get(h1,'YLim')) 

set(h2,'XLim',get(h1,'XLim')) 

  

legend(h2,'Mission Average','Fuel Cell','Battery Segment Avg') 

axis('off');set(h2,'FontSize',14) 

saveas(f,'powerplot.jpg'); 

saveas(f,'powerplot.fig'); 

  

FC_energy = p_fc * total_time  / 60  % Watt Hours 

%Make the line the right length 

%p_fc_line=p_fc_line(1:7) 

%p_bat_diff= p_seg - p_fc_line        %7 length average value 

active_bat=p_bat_diff > 0           %logical: if battery use is positive, 'active'=1 

bat_use_time_total=(sum((active_bat).*(t_seg_sec)))/3600 %hours 

p_bat_use = (active_bat).*(p_bat_diff) %vector of power values when used 

bat_energy=((p_bat_use)*((active_bat).*(t_seg_sec))')/3600 %Watt Hours 

%Determine the minimum mass based on power and energy for bat and FC 

min_p_bat_mass=p_bat/bat_specific_power           %kg 

min_e_bat_mass=bat_energy/bat_specific_energy     %kg 

min_p_fc_mass =p_fc/FC_specific_power             %kg 

min_e_fc_mass =FC_energy/FC_specific_energy       %kg 

%To meet both power and energy rqmts, select the heavier requirement 

bat_mass=max([min_p_bat_mass, min_e_bat_mass])    %kg 

if min_p_bat_mass > min_e_bat_mass 

    bat_constrained_by = 'power_rqmt' 

else 

    bat_constrained_by = 'energy_rqmt' 

end 

FC_mass=max([min_p_fc_mass, min_e_fc_mass])       %kg 

if min_p_fc_mass > min_e_fc_mass 

    fc_constrained_by = 'power_rqmt' 

else 

    fc_constrained_by = 'energy_rqmt' 

end 

total_power_mass=overhead_mass*(bat_mass+FC_mass) %kg 

%  

% %# @author: Paul Hrad 

% %# @description: computes climb and descend time, splits up battery and fuel cell use 

% %# @version: 27 Jan 2010 

 

D.5. QPROP Related Files 

a. motor 

Filename: motor 

Parent Program: QPROP 

Description: This is the input motor file with the GenMAV motor 

Code as follows: 

AXI 2808/20 Motor     ! name 

 

 

 1        ! motor type  (1 = permanent-magnet brushed or brushless DC motor) 

 

 0.105    ! Rmotor (Ohms) 
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 1.3     ! Io     (Amps) 

 1490.0     ! Kv     (rpm/Volt) 

 

b. motor.template 

Filename: motor.template 

Parent program: Model Center 

Description: Same as for ―motor‖, except this is the file that does not change. Model Center writes to the ―motor‖ file 

for execution of Model Center variable inputs, but keeps a ―.template‖ file as the original  

Codes as follows:  See code for ―motor‖. 

 

c. prop 

Filename: prop 

Parent Program: QPROP 

Description: This is the input propeller used for analysis.  

Code as follows:  

9.5x5 Aer CAM !Name  (Data is not correct. It is extrapolated Graupner6x3 data) 

 

 2.0           ! Nblades 

 

 0.50  5.8   ! CL0      CL_a 

 -0.3  1.2   ! CLmin   CLmax 

 

 0.028  0.050  0.050  0.5   !  CD0    CD2u  CD2l    CLCD0 

 70000   -0.7        !  REref  REexp 

 

 

 0.0254    0.0254   1.0  !  Rfac   Cfac   Bfac   

 0.0      0.0         4.0  !  Radd   Cadd   Badd   

 

#  r    chord    beta 

 0.75  0.66    27.5 

 1.0    0.69    22.0 

 1.5    0.63    15.2 

 2.5    0.55    10.2 

 3.1    0.44     6.5 

 4.2    0.3       4.6 

 4.75  0.19     4.2 

 

d. prop.template 

Filename: prop.template 

Parent program: Model Center 

Description: Same as for ―prop‖, except this is the file that does not change. Model Center writes to the ―prop‖ file for 

execution of Model Center variable inputs, but keeps a ―.template‖ file as the original  

Codes as follows:  See code for ―prop‖ 

 

e. qcon.def 

Filename: qcon.def 

Parent program: QPROP 

Description: Input conditions for air density, viscosity, and speed of sound 

Code as follows:  

1.225      ! rho  kg/m^3 

1.78E-5  ! mu   kg/m-s  
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340.0      ! a      m/s 

 

f. qcon.template 

Filename: qcon.template 

Parent program: Model Center 

Description: Same as for ―qcon.def‖, except this is the file that does not change. Model Center writes to the ―qcon.def‖ 

file for execution of Model Center variable inputs, but keeps a ―.template‖ file as the original  

Codes as follows:  See code for  ―qcon.def‖ 

 

g. Qprop.dat 

Filename: Qprop.dat 

Parent program: QPROP 

Description: This is the output results file from QPROP that Model Center then retrieves information from. Model 

Center knows about this program from the ―.fileWrapper.‖ 

Code as follows: 

 

# QPROP Version 1.22 

#  

# 9.5x5 Aer CAM                                                                    

#  

# AXI 2808/20 Motor                                                                

#   0.10500      Rmotor (Ohms)                   

#    1.3000      Io     (Amps)                   

#    1490.0      Kv     (rpm/Volt)               

#  

#   rho =  1.2250     kg/m^3 

#   mu  = 0.17800E-04 kg/m-s 

#   a   =  340.00     m/s    

#  

#  1         2        3          4          5         6            7         8       9        10        11        12           13        14        15      16          

17           18      19 

#  

#  V(m/s)    rpm      Dbeta      T(N)       Q(N-m)    Pshaft(W)    Volts     Amps    effmot   effprop   adv       CT          CP        

DV(m/s)   eff     Pelec       Pprop        cl_avg  cd_avg 

#  13.974   7495.      0.000  0.9318      0.3472E-01   27.25       5.735    6.7175   0.7073   0.4779   0.14758  0.3710E-02  

0.1146E-02   1.1436   0.3380   38.53       13.02       0.2230  0.4629E-01 

#  

#  radius   chord   beta      Cl       Cd       Re    Mach     effi     effp    Wa(m/s)     Aswirl      adv_wake 

   0.0211  0.0172  29.576  -0.2911  0.16959    25578  0.064   1.0565   5.4048   13.52      -1.545      0.1397     

   0.0251  0.0175  26.191  -0.2760  0.10729    29153  0.071   1.0557   2.9980   13.47      -1.451      0.1398     

   0.0292  0.0173  23.416  -0.2023  0.09110    31991  0.079   1.0411   5.4758   13.56      -1.017      0.1417     

   0.0333  0.0168  21.199  -0.1381  0.07991    34156  0.087   1.0281 -11.6295   13.67     -0.6545      0.1435     

   0.0373  0.0161  19.474  -0.0757  0.07099    35997  0.095   1.0153  -1.4442   13.80     -0.3374      0.1453     

   0.0414  0.0156  18.173  -0.0113  0.06298    38003  0.104   1.0023  -0.2826   13.95     -0.4775E-01  0.1472     

   0.0455  0.0153  17.202   0.0544  0.05583    40297  0.113   0.9887   0.1651   14.11      0.2215      0.1493     

   0.0495  0.0150  16.458   0.1181  0.04983    42765  0.121   0.9750   0.3939   14.29      0.4664      0.1514     

   0.0536  0.0148  15.838   0.1760  0.04513    45237  0.130   0.9619   0.5230   14.47      0.6758      0.1534     

   0.0577  0.0146  15.237   0.2231  0.04177    47489  0.139   0.9507   0.5957   14.63      0.8331      0.1552     

   0.0617  0.0142  14.552   0.2540  0.03969    49236  0.148   0.9429   0.6302   14.75      0.9191      0.1565     

   0.0658  0.0136  13.687   0.2631  0.03891    50152  0.157   0.9402   0.6325   14.80      0.9155      0.1570     

   0.0698  0.0129  12.665   0.2530  0.03919    50195  0.166   0.9421   0.6092   14.77      0.8397      0.1566     

   0.0739  0.0121  11.612   0.2335  0.04013    49642  0.175   0.9464   0.5709   14.72      0.7361      0.1559     

   0.0780  0.0113  10.658   0.2153  0.04122    48864  0.185   0.9506   0.5308   14.66      0.6447      0.1552     

   0.0820  0.0106   9.916   0.2079  0.04186    48258  0.194   0.9521   0.5065   14.64      0.5957      0.1550     

   0.0861  0.0101   9.392   0.2128  0.04190    47895  0.203   0.9506   0.5025   14.67      0.5893      0.1552     

   0.0902  0.0096   9.045   0.2279  0.04149    47660  0.212   0.9464   0.5137   14.73      0.6149      0.1559     
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   0.0942  0.0092   8.835   0.2502  0.04088    47409  0.221   0.9402   0.5335   14.83      0.6637      0.1570 

   0.0983  0.0087   8.718   0.2770  0.04031    46965  0.231   0.9323   0.5556   14.95      0.7281      0.1583     

   0.1024  0.0082   8.655   0.3050  0.04004    46118  0.240   0.9233   0.5747   15.10      0.8018      0.1598     

   0.1064  0.0077   8.604   0.3308  0.04033    44629  0.249   0.9135   0.5870   15.25      0.8803      0.1615     

   0.1105  0.0070   8.529   0.3508  0.04145    42256  0.258   0.9028   0.5890   15.43      0.9659      0.1635     

   0.1146  0.0062   8.421   0.3609  0.04372    38882  0.268   0.8883   0.5784   15.68       1.090      0.1661     

   0.1186  0.0053   8.282   0.3412  0.04809    34429  0.277   0.8528   0.5415   16.31       1.446      0.1730     

 

h. qprop.fileWrapper 

Filename: qprop.fileWrapper 

Parent program: Model Center 

Description: The ―fileWrapper‖ file is communicates to Model Center what input and output files and variables interact 

with the model, how they interact, and where they are.  

Code as follows: 

# 

# Basic QPROP filewrapper 

# 

# @author: Paul Hrad  

# @version: 15 May 2009 

# @description: Mav QPROP analysis 

# 

RunCommands 

{ 

# Put ModelCenter values in the input file 

 generate inputFile1 

 generate inputFile2 

 generate inputFile3 

 generate inputfile4 

# Run the code 

 run "qprop_batch.bat" 

# Parse the standard output file 

 parse outputfile 

} 

RowFieldInputFile inputFile1 

{ 

templateFile:   qcon.template 

fileToGenerate:   qcon.def 

setDelimiters "= ," 

setGroup Flight_conditions 

variable: rho  double 1 1  description="density" 

variable: mu  double 2 1   description="dynamic viscosity" 

variable: a          double 3 1  description="speed of sound" 

} 

RowFieldInputFile inputFile2 

{ 

templateFile:    qprop_batch.template 

fileToGenerate:          qprop_batch.bat 

setDelimiters "= ," 

variable: velocity    double 1 4  default=1.0  description="flight velocity (m/s)" 

variable: RPM         double 1 5 

variable: volts          double 1 6 

variable: dBeta         double 1 7 default=0  description="beta change (deg)" 

variable: Thrust_to_generate   double 1 8  default=1.0  description="thrust required (N)" 

variable: torque       double 1 9  default=0      description="(N-m)" 

variable: amps         double 1 10  default=0  description="current(Amps)" 

variable: Power_Elec      double 1 11 default=0  description="Electrical Power(W)=I*Volts" 

} 

RowFieldInputFile inputFile3 
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 { 

 templateFile:   motor.template 

 fileToGenerate:   motor 

 setDelimiters " ," 

 setGroup inputs_Motor 

 variable: Rmotor  double 6 1   description="Rmotor(ohms)" 

 variable: Io  double 7 1    description="Io (amps)" 

 variable: Kv  double 8 1        description="Kv (rpm/volts)" 

 } 

RowFieldInputFile inputFile4 

 { 

 templateFile:   prop.template 

 fileToGenerate:   prop 

 setDelimiters " ," 

 setGroup inputs_Prop 

 variable: Blade_Number double 4 1        description="Number of blades" 

 setGroup radius 

 variable: r1  double 17 1        description="radius 1 " 

 variable: r2  double 18 1         description="radius 2 " 

 variable: r3  double 19 1         description="radius 3 " 

 variable: r4  double 20 1         description="radius 4 " 

 variable: r5  double 21 1         description="radius 5 " 

 variable: r6  double 22 1         description="radius 6 " 

 variable: r7  double 23 1                  description="radius 7 " 

 setGroup chord 

 variable: c1  double 17 2        description="chord 1 " 

 variable: c2  double 18 2         description="chord 2 " 

 variable: c3  double 19 2         description="chord 3 " 

 variable: c4  double 20 2         description="chord 4 " 

 variable: c5  double 21 2         description="chord 5 " 

 variable: c6  double 22 2         description="chord 6 " 

 variable: c7  double 23 2         description="chord 7 " 

 setGroup beta 

 variable: b1  double 17 3        description="beta 1 " 

 variable: b2  double 18 3         description="beta 2 " 

 variable: b3  double 19 3         description="beta 3 " 

 variable: b4  double 20 3         description="beta 4 " 

 variable: b5  double 21 3         description="beta 5 " 

 variable: b6  double 22 3         description="beta 6 " 

 variable: b7  double 23 3         description="beta 7 " 

 } 

RowFieldOutputFile outputFile 

{ 

# This routine parses the program output file. 

# Other variables can be extracted as desired. 

 fileToParse: Qprop.dat 

 setDelimiters "= " 

 markAsBeginning "V(m/s)" 

 setGroup Results 

 variable: Velocity   double 2   2        description="Flight Velocity (reflected from input)" 

 variable: RPM  double 2  3        description="RPM" 

 variable: dbeta  double 2  4        description="Pitch Change Angle" 

 variable: Thrust_Propeller     double 2   5        description="Propeller Thrust (N)" 

 variable: Q     double 2   6         description="torque" 

 variable: Pshaft  double 2 7 

 variable: Voltage  double 2 8 

 variable: Current  double 2  9 

 variable: Efficiency_Motor double 2  10 

 variable: Efficiency_Propeller double 2  11 

 variable: Advance_Ratio  double 2  12 
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 variable: Thrust_Coefficient  double 2  13 

 variable: Power_Coefficient  double 2  14 

 variable: DV   double 2  15            description="slipstream velocity increment" 

 variable: Efficiency_Overall  double 2  16 

 variable: Power_Rqd_Electric double 2  17 

 variable: Power_Propeller  double 2  18 

 variable: cl_avg   double 2  19 

 variable: cd_avg   double 2  20 

} 

 

i. qprop_batch.bat 

Filename: qprop_batch.bat 

Parent program: QPROP 

Description: Single file is the interface of QPROP for batch mode application.  It also tells QPROP to run with a certain 

set of parameters and then save the results to the ―.dat‖ file. 

Code as follows:  

qprop prop motor 13.41  0 0  0 1 0 0 0  > Qprop.dat 2>&1 

REM notes http://web.mit.edu/drela/Public/web/qprop/qprop_doc.txt 

REM Below lists the required inputs. In brackets are optional] 

REM qprop propfile motorfile Vel Rpm [ Volt dBeta Thrust Torque Amps Pele ]   (single-point) 

REM "dBeta", which is the pitch-change angle in degrees, (assumed zero if omitted) 

 

j. qprop_batch.template 

Filename: qprop_batch.template 

Parent program: Model Center 

Description: Same as for ―qprop_batch.bat‖, except this is the file that does not change. Model Center writes to the 

―.bat‖ file for execution of Model Center variable inputs, but keeps a ―.template‖ file as the original  

Codes as follows:  See code for  ―qprop_batch.bat‖ 

 

D.6. Verification of AVL and QPROP 

a. adv_ratio.m 

Filename: adv_ratio.m 

Parent Program: Matlab 

Description: This file takes the values created from QPROP and independently calculates thrust, torque, and power 

coefficients for plotting. Advance ratio is also calculated.  

Code as follows: 

%calculate and plot prop eff vs. J 

   

close all; clear all; clc; 

% First save the data from MC's Data Exporer 

% Strip off the first column and blanks for failed runs 

 

data =load('adv_rat2.csv'); 

v =data(1,:); 

effp =data(2,:); 

rpm =data(5,:); 

cp =data(9,:); 

ct =data(10,:); 

adv =data(11,:); 

p_prop =data(12,:); 

t =data(14,:); 
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q =data(7,:); 

% Below are the names within the data vector.  

% 1 independent variable (Model.System_Variables_Inputs.velocity_user_defined) 

% 2 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Efficiency_Propeller) 

% 3 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Efficiency_Motor) 

% 4 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Efficiency_Overall) 

% 5 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.RPM) 

% 6 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.dbeta) 

% 7 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Q) 

% 8 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Pshaft) 

% 9 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Power_Coefficient) 

% 10 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Thrust_Coefficient) 

% 11 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Advance_Ratio) 

% 12 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Power_Propeller) 

% 13 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Power_Rqd_Electric) 

% 14 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Thrust_Propeller) 

% 15 dependent variable (Model.Track1_Primary_Aero.QProp_DragPolar.Results.Voltage) 

 

w =rpm.*pi./30; 

R =4.75*(0.0254); 

den =1.225; 

n =rpm./60; 

d =2*R; 

 

CT0 =t./(n.^2.*d^4); 

CQ0 =q./(n.^2.*d^5); 

CP0 =p_prop./(n.^3.*d^5); 

J0 =v./(n.*d); 

E0 =J0.*CT0./CP0 

 

figure(5) 

plot(J0,CT0); grid on; 

xlabel('Advance Ratio = V*60/(RPM*D)','FontSize',14) 

ylabel('Thrust Coefficient','FontSize',14) 

set(gca,'FontSize',14) 

 

figure(6) 

plot(J0,CQ0); grid on; 

xlabel('Advance Ratio = V*60/(RPM*D)','FontSize',14) 

ylabel('Torque Coefficient','FontSize',14) 

set(gca,'FontSize',14) 

 

CT =t./(0.5*den.*(w.*R).^2.*pi.*R^2); 

CP =q./(0.5*den.*(w.*R).^2.*pi.*R^3); 

ADV =v./(w.*R); 

 

figure(1) 

plot(ADV,CT,'+r',adv,ct,'b') 

hold on; 

plot(ADV,CP,'+r',adv,cp,'b') 

%title('Advance Ratio vs. Cp and Ct') 

grid on;  

xlabel('Advance Ratio, w=RPM*pi/30','FontSize',14) 

ylabel('QPROP Thrust and Power Coefficient','FontSize',14) 

annotation(figure(1),'textbox',... 

    [0.410285714285714 0.301428571428573 0.085 0.06],... 

    'String',{'Power'},... 

    'FitBoxToText','on','FontSize',12); 

annotation(figure(1),'textbox',... 

    [0.407975446428571 0.757142857142857 0.085 0.06],... 



 

198 

    'String',{'Thrust'},... 

    'FitBoxToText','on','FontSize',12); 

set(gca,'FontSize',14) 

legend('Recalculated', 'QPROP Direct') 

 

figure(2) 

ETA=ADV.*CT./CP; 

plot(ADV,ETA,'+r',adv,effp,'b') 

set(gca,'FontSize',14,'XLim',[0.1021 0.1406], 'YLim',[0.55 0.575]) 

legend('Recalculated','QPROP') 

xlabel('Advance Ratio, w=RPM*pi/30') 

ylabel('Propeller Efficiency') 

grid on 

 

b. DragPolarPlots.m 

Filename: DragPolarPlots.m 

Parent Program: Matlab 

Description: This file takes output from AVL, determines a drag polar by polynomial fit, and then plots the data 

Code as follows: 

close all; clear all; clc; 

  

% First save the data from MC's Data Exporer 

% Strip off the first column and blanks for failed runs 

% Strip off CL values higher than 1.16 

data=load('CD_CL.csv'); 

data_chopped=load('CD_CL_2.csv') 

v=data(1,:); 

CL=data(2,:); 

CD=data(3,:); 

  

vc=data_chopped(1,:); 

CLc=data_chopped(2,:); 

CDc=data_chopped(3,:); 

   

p1 = polyfit(CL.^2,CD,1)  

p2 = polyfit(CL,CD,2) %easier form for calculating drag 

p3 = polyfit(CD,CL,2) % for ploting traditional drag polar 

p1c = polyfit(CLc.^2,CDc,1)  

p2c = polyfit(CLc,CDc,2) %easier form for calculating drag 

p3c = polyfit(CDc,CLc,2) % for ploting traditional drag polar 

   

% f = figure('Visible', 'on') 

% This is a polynomial fit to the entire velocity run from prestall 9.5 to 

% 25 m/s. 

figure(1) 

subplot(1,2,1); 

xfit = -1:0.01:6; 

yfit = polyval(p1,xfit); 

plot(CL.^2,CD,xfit,yfit,'--') 

xlabel('CL^2');ylabel('CD');title('Drag Polar') 

grid on; legend('Data','Linear Fit','Location','NorthWest');ylim([0,.5]) 

subplot(1,2,2); 

%This is the traditional drag polar presentation 

xfit = 0:0.001:0.35; 

yfit = polyval(p3,xfit); 

plot(CD,CL,xfit,yfit,'--') 

%xlim([0 .35]);ylim([0 2]); 

xlabel('CD'); ylabel('CL');title('Drag Polar') 
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grid on; legend('Data','Quadratic Fit','Location','NorthWest');ylim([0,2]) 

 % Below is the plot that performs polynomial fit up to stall 

figure(2) 

subplot(1,2,1); 

xfit = -1:0.04:6; 

yfit = polyval(p1c,xfit); 

plot(xfit,yfit,'-k',CLc.^2,CDc,'.b')%,'LineWidth',2 

%set(gca,'xlim',([0.1411 1.393]),'ylim',([0.1121 0.1926]),'fontsize',14) 

set(gca,'xlim',([0 1.393]),'ylim',([0.1 0.1926]),'fontsize',14) 

% title('Drag Polar Truncated') 

xlabel('(Lift Coefficient)^2');ylabel('Drag Coefficient'); 

grid on; legend('Linear Fit','AVL Data','Location','SouthEast'); 

 subplot(1,2,2); 

%This is the traditional drag polar presentation 

xfit = -.5:0.005:0.35; 

yfit = polyval(p3c,xfit); 

plot(xfit,yfit,'-k',CDc,CLc,'.b')%,'LineWidth',2 

%set(gca,'xlim',([0.1117 0.1926]),'ylim',([0.3693 1.18]),'fontsize',14) 

set(gca,'xlim',([0.08 0.1926]),'ylim',([0 1.18]),'fontsize',14) 

  

%xlim([0 .35]);ylim([0 2]); 

%title('Drag Polar Truncated') 

xlabel('Drag Coefficient'); ylabel('Lift Coefficient'); 

grid on; legend('Quadratic Fit','AVL Data','Location','NorthWest') 

 

D.7. Mission Driver Files 

a. Send_data_script.txt 

Filename: Send_data_script.txt 

Parent program: Model Center 

Description: This handy little script can be used to save a series of data from iterations. It can be useful to save data 

outside of Model Center’s Data Explorer.   I owe credit to J. Simmons for his help in authoring this.  

Code as follows:  

 

power.length=9 

voltage.length=9 

current.length=9 

mission_segment_time.length=5 

sub run 

mission_segment_time(0)=t1 

mission_segment_time(1)=t2 

mission_segment_time(2)=t3 

mission_segment_time(3)=t4 

mission_segment_time(4)=t5 

'-------- 

  data = "" 

  for i = 0 to 3 

    data = data & mission_segment_time(i) & ", " 

  next 

   

  data = data & mission_segment_time(4)  ' last element does not need a ',' 

   

  f.fromString(data)   ' copy data from string to file 

  f.toFile("C:\Program Files\Phoenix Integration\Analysis Server 6.01\analyses\PostProcessing\timedatafile.csv") 

 ' write file to c:\data.csv 

  '---------- 

  data = "" 



 

200 

  for i = 0 to 7 

    data = data & power(i) & ", " 

  next 

   

  data = data & power(8)  ' last element does not need a ',' 

   

  f.fromString(data)   ' copy data from string to file 

  f.toFile("C:\Program Files\Phoenix Integration\Analysis Server 6.01\analyses\PostProcessing\powerdatafile.csv") 

 ' write file to c:\data.csv 

  '-------- 

  data = "" 

  for i = 0 to 7 

    data = data & voltage(i) & ", " 

  next 

   

  data = data & voltage(8)  ' last element does not need a ',' 

   

  f.fromString(data)   ' copy data from string to file 

  f.toFile("C:\Program Files\Phoenix Integration\Analysis Server 6.01\analyses\PostProcessing\voltagedatafile.csv") 

 ' write file to c:\data.csv 

  '---------- 

  data = "" 

  for i = 0 to 7 

    data = data & current(i) & ", " 

  next 

   

  data = data & current(8)  ' last element does not need a ',' 

   

  f.fromString(data)   ' copy data from string to file 

  f.toFile("C:\Program Files\Phoenix Integration\Analysis Server 6.01\analyses\PostProcessing\currentdatafile.csv") 

 ' write file to c:\data.csv 

end sub 

 

b. Mission_Driver 

Filename: Mission_Driver 

Parent Program: Model Center 

Description: This script written within Model Center is a driver that tells Model Center exactly how to run a mission. 

For each mission certain variables are changed, and other variable values are captured. The Mission_driver 

accumulates power, voltage, and current for the predesigned mission.  

Code as follows: 

power_record.length  = 9  

voltage_record.length= 9 

current_record.length= 9 

sub run 

initial_altitude  = leg1_climb_altitude_initial 

final_altitude    = leg1_climb_altitude_final 

climb_rate        = leg1_climb_rate 

velocity_setting  = leg1_velocity_setting 

'initial, midaltitude, and peak climb altitude segment 

run_altitude_MSL =leg1_climb_altitude_initial 

power_record(0)   = power 

voltage_record(0) = voltage 

current_record(0) = current 

run_altitude_MSL =((leg1_climb_altitude_final-leg1_climb_altitude_initial)/2) 

power_record(1)   = power 

voltage_record(1) = voltage 

current_record(1) = current 

run_altitude_MSL =leg1_climb_altitude_final 
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power_record(2)   = power 

voltage_record(2) = voltage 

current_record(2) = current 

'"Dash" flight segment 

initial_altitude  = leg2_altitude 

final_altitude    = leg2_altitude 

run_altitude_MSL  = leg2_altitude 

climb_rate = 0 

velocity_setting  = leg2_velocity_setting 

power_record(3)   = power 

voltage_record(3) = voltage 

current_record(3) = current 

'loitering segment 

initial_altitude  = leg3_altitude 

final_altitude    = leg3_altitude 

run_altitude_MSL  = leg3_altitude 

velocity_setting  = leg3_velocity_setting 

power_record(4)   = power 

voltage_record(4) = voltage 

current_record(4) = current 

'"Cruise" flight segment 

initial_altitude  = leg4_altitude 

final_altitude    = leg4_altitude 

run_altitude_MSL  = leg4_altitude 

velocity_setting  = leg4_velocity_setting 

power_record(5)   = power 

voltage_record(5) = voltage 

current_record(5) = current 

'descent from peak to midpoint to ground 

run_altitude_MSL =leg5_descend_altitude_initial 

climb_rate =leg5_climb_rate 

velocity_setting  = leg5_velocity_setting 

power_record(6)   = power 

voltage_record(6) = voltage 

current_record(6) = current 

run_altitude_MSL =((leg5_descend_altitude_initial-leg5_descend_altitude_final)/2) 

power_record(7)   = power 

voltage_record(7) = voltage 

current_record(7) = current 

run_altitude_MSL =leg5_descend_altitude_final 

power_record(8)   = power 

voltage_record(8) = voltage 

current_record(8) = current 

end sub 
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