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WidebandWideband
Large separation between multiple transmitters and/orLarge separation between multiple transmitters and/orLarge separation between multiple transmitters and/or Large separation between multiple transmitters and/or 

receivers results in significant antenna dispersion receivers results in significant antenna dispersion 
even for modest bandwidths!even for modest bandwidths!
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Frequency Sensitive Array Gain PatternFrequency Sensitive Array Gain Pattern
Array Gain PatternArray Gain PatternArray Amplitude PatternArray Amplitude Pattern
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SpaceSpace--Time Data VectorTime Data Vector
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SpaceSpace--Time Data VectorTime Data Vector
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Wideband SpaceWideband Space--Time Data VectorTime Data Vector
Wideband transmit waveform:Wideband transmit waveform:Wideband transmit waveform:Wideband transmit waveform:
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Wideband SpaceWideband Space--Time Data VectorTime Data Vector
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Wideband SpaceWideband Space--Time Data VectorTime Data Vector

Output vector for theOutput vector for the nth pulse:pulse: (1) (2) ( )( ) ( ) ( ) ( )
TNz t z t z t z t   Output vector for the Output vector for the nth pulse:pulse:

1( )
( )

z t 
 

( ) ( ) ( )( ) ( ), ( ), ( )n n n nz t z t z t z t   

2 ( )
( ) ( ) ( , )

( )

kk k d

z t
t t

z t

 
 
  
 
 
  

z f s


SpaceSpace--time vector:time vector:

( )Mz t   SchurSchur--Hadamard productHadamard product

( ) :k tf transmit signal dependent vector whose transmit signal dependent vector whose 
(iN+ )th element is given byelement is given by

1MN 
(iN+n)th element is given byelement is given by

 2 1 , 0, 1, 2, 1,f t n i i N    

2007 ASILOMAR Conference, Monterey, CA. 9

0, 1, 2, , 1 .n M 

Pacific Grove, CA.



Wideband Clutter Covariance MatrixWideband Clutter Covariance Matrix

Covariance matrix for the wideband returnCovariance matrix for the wideband return ( )tfCovariance matrix for the wideband returnCovariance matrix for the wideband return

 ( ) 0( ) ( )k k kE t t  T f f

( )k tf

Wideband array output covariance matrix:Wideband array output covariance matrix:

  2( ) ( )E Pt t  R T s s I

Low pass transmit signal givesLow pass transmit signal gives

 ( ) ( )z k k k k
k

E Pt t   R T s s Iz z 

Low pass transmit signal givesLow pass transmit signal gives
 1 2 2 1 2 1( , ) sinc ( ) ( ) ( ) ( )k om n B n n k i i k    T

m i N n n i N n   1 1 2 2, .m i N n n i N n   

If            , thenIf            , then z xR T Rk T T

2007 ASILOMAR Conference, Monterey, CA. 10

,, z xk

Pacific Grove, CA.



•• XX band exampleband example

Impact of Wideband on STAPImpact of Wideband on STAP

60
Impact of Wideband Operation on Clutter Eigenspectra

•• XX--band exampleband example
– ( X-band case, f0 = 10 GHz, L = 3 m,  B = 10%, N = 10 subarrays, CNR 

= 40 dB )
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Impact of Wideband on STAPImpact of Wideband on STAP

•• Transmitter plays a big role in shaping clutter Transmitter plays a big role in shaping clutter 
characteristicscharacteristics
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Impact of Wideband on STAPImpact of Wideband on STAP
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Impact of Wideband on STAPImpact of Wideband on STAP

Let    represents the ordinary DFT vector associated with Let    represents the ordinary DFT vector associated with 
the eigenvector    .  The entries in     corresponds to a the eigenvector    .  The entries in     corresponds to a 
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Impact of Wideband on STAPImpact of Wideband on STAP
Wideband introduces jittering effect both on angle andWideband introduces jittering effect both on angle andWideband introduces jittering effect both on angle and Wideband introduces jittering effect both on angle and 
Doppler by generating a bunch of uncorrelated returns.  Doppler by generating a bunch of uncorrelated returns.  

Each such uncorrelated return contains a set of coherentEach such uncorrelated return contains a set of coherentEach such uncorrelated return contains a set of coherent Each such uncorrelated return contains a set of coherent 
returns with different directional and Doppler returns with different directional and Doppler 
components. components. Uncorrelated  

bunches of

d C
oh

er
en

t

bunches of 
coherent returns

od
12

o

n
d MN

 

C

OO OO

Modified steering vector     contains several coherent Modified steering vector     contains several coherent 
tt

ks

(a) Narrowband case (b) Wideband case
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returns.returns.
Adaptive processor will not be able to null out the clutter.Adaptive processor will not be able to null out the clutter.
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SINR Loss With and Without Bandwidth DispersionSINR Loss With and Without Bandwidth Dispersion

Wideband

Narrowband
••BandwidthBandwidth
••Center frequency Center frequency 
N b fN b f

80BW MHz
435cf MHz

14••Number of sensorsNumber of sensors
••Interelement spacing Interelement spacing 
••Look angle Look angle 

14N 
0.33d m

0o
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••PRF = 625 HzPRF = 625 Hz
••Number of pulse Number of pulse 

o
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ConclusionsConclusions

••Large aperture size contributes to Large aperture size contributes to 
wideband conditionswideband conditionswideband conditionswideband conditions

••Single scatter generates severalSingle scatter generates severalSingle scatter generates several Single scatter generates several 
uncorrelated return bunches. uncorrelated return bunches. 

••Each return bunch contains multiple Each return bunch contains multiple 
coherent returnscoherent returns

••Adaptive processor generates wider nullAdaptive processor generates wider null
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