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Abstract 
 

Inertial navigation systems (INS) offer passive, all-weather, and undeniable 

navigation information, which military customers often view as especially appealing 

strengths.  Unfortunately, Airmen and engineers still struggle with INS’s drifting position 

errors, and navigation aids generally detract from INS’s strengths.  At this year’s Air, 

Space, and Cyberspace in the 21st Century Conference, the Chief of Staff of the Air Force 

identified the Global Positioning System (GPS) as a widely-known and exploitable 

vulnerability, saying that it’s critical the Joint force reduce GPS dependence.  Recent 

advances provide an opportunity for gravity gradient instruments (GGI), which measure 

spatial derivatives of the gravity vector, to aid an INS and preserve its strengths. 

This thesis shows that a GGI and map matching enhanced (GAME) INS improves 

navigation accuracy, presents the conditions that make GAME feasible for aircraft, and 

identifies opportunities for improvement.  The methodology includes computer models 

and algorithms, where a GGI and map matching aid an INS through a Kalman filter.  

Simulations cover different terrains, altitudes, velocities, flight durations, INS drifts, 

update rates, components of the gravity gradient tensor, GGI and map noise levels, map 

resolutions, and levels of interpolation.  Although GAME with today’s technology only 

appears worthwhile for long range and long endurance flights, the technologies expected 

in 10 years promise a broad spectrum of scenarios where GAME potentially provides 

great returns on investments and dominates the market for secure and covert navigation.   
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GRAVITY GRADIOMETRY AND MAP MATCHING: 
AN AID TO AIRCRAFT INERTIAL NAVIGATION SYSTEMS 

 
 

I. Introduction 

Since the first integration of an inertial navigation system (INS) on an aircraft, 

aviators and engineers pursued improvements in navigation accuracy.  The demand for 

navigation accuracy outpaced advances in INS technologies and quickly motivated the 

search for new ways to aid the INS.  Some of the ideas included integrating information 

provided by the aircrew’s visual observation of landmarks, Global Navigation Satellite 

Systems (GNSS) such as the Global Positioning System (GPS), and terrain referenced 

navigation (TRN).  Most external aids focused on providing accurate position 

information, since this was a critical weakness of the INS.  Unfortunately, the use of 

external aids generally detracted from some of the INS’s most appealing strengths, 

especially from the perspective of military customers:  the INS’s autonomy, all-weather 

capability, and low vulnerability. 

For example, the visual observation of landmarks requires adequate visibility and 

time-consuming work by the aircrew.  By definition, TRN matches terrain maps to radar 

altimeter measurements, thus requiring the emission of signals that enemy personnel or 

radar guided missiles might detect.  Currently, GPS stands as the preferred complement 

to INS, but relies on an external constellation of satellites, which are vulnerable to 

destruction and whose signals are vulnerable to interference and jamming.  Even today, 

after over 60 years on the market, aviators and engineers aggressively pursue 

improvements to the accuracy of the INS, especially including the development and 

integration of external aids that preserve the aforementioned strengths of the INS. 
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The turn of another century, however, brings significant advances in 

accelerometer technologies, including Gravity Gradient Instruments (GGIs).  New ideas 

for employing accelerometers, improving sensitivity, and reducing noise now make GGIs 

a capable navigation aid.  Although the integration of GGIs into navigation systems is 

still in its infancy, engineers in several places have already taken the first steps.  The 

mining industry flies GGIs onboard aircraft to rapidly survey the geology, the Navy 

pursues covert submarine navigation, and academics publish papers and patents; all with 

gravity gradiometry as an aid for navigation.  Now it’s time to investigate the feasibility 

of using gravity gradiometry and map matching as an aid to aircraft inertial navigation 

systems. 

 

Problem Statement 

America’s Air and Space Forces need a navigation aid that provides accurate 

position information and preserves the strengths of the INS; namely the autonomy, all-

weather capability, and low vulnerability that military customers desire.  The popularity 

of the INS in aircraft testifies to its value as a navigation aid.  However, the pursuit of 

improving INS position accuracy is almost as popular.  Current systems that aid the INS 

and improve position accuracy generally detract from INS’s previously mentioned 

strengths.  Some might argue that one of the most popular complements to the INS, GPS, 

meets these needs, but the Chief of Staff of the Air Force clearly identifies a concern that 

enemies may possess the potential to deny GPS information, and it’s critical the Joint 

force reduce GPS dependence.1  Furthermore, no backup external aid appears to exist, 

which can provide GPS-level navigation accuracy. 
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The Literature Review suggests that GGI technologies might be capable of 

meeting these needs in the foreseeable future, but relatively little research exists about 

using gravity gradiometry as a navigation aid.  Some pioneers in this field show that 

GGIs can improve position accuracy by providing information that reduces the INS’s 

errors due to estimates of the gravity vector.  Although this approach yields significant 

improvement, it does not eliminate the tendency of the INS to drift over time.  Others 

show that information from GGIs can be matched to a gravity gradient map to determine 

a position.  However, nothing in open literature provides a comprehensive assessment of 

the capabilities of a navigation system that uses gravity gradiometry and map matching to 

aid an aircraft INS.  Comprehensive, in this case, refers to an assessment that shows the 

potential for this concept to provide certain levels of navigational performance, while 

considering variations in key parameters.  These key parameters might include terrain, 

altitude, velocity, flight duration, INS drift rate, position update rate, GGI performance, 

and map resolutions and accuracies.  A valuable assessment of capabilities would define 

the conditions for which gravity gradiometry and map matching become a feasible aid to 

an aircraft INS. 

This paper will focus on gravity gradiometry and map matching as an aid to the 

aircraft INS.  Can this concept improve navigation performance?  What conditions or 

values of key parameters make this concept feasible?  What research and advances in 

technology might improve the performance of this concept?  Answering these questions 

might uncover a navigation aid that provides accurate position information while 

preserving the strengths of the aircraft INS. 
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Research Objectives 

As a student of the Air Force Institute of Technology, my research supports the 

organization’s vision to “sustain the technological supremacy of America's Air and Space 

Forces”.  In the spirit of this vision, these three overarching objectives guide my research: 

 

1. Show that a gravity gradiometry and map matching enhanced (GAME) aircraft 

inertial navigation system can improve navigation accuracy. 

2. Determine what conditions make the GAME feasible for aircraft navigation. 

3. Identify what research and advances in technology improve the GAME. 

 

In order to show that GAME can improve navigation accuracy, this research gives 

a clear description of the work previously done to aid aircraft inertial navigations systems 

with GGIs.  Next, this research develops an algorithm that matches real-time GGI signals 

to a location on a gravity gradient map.  Simulations demonstrate that the algorithm can 

process GGI signals, match the signals to a gravity gradient map, determine a position, 

and provide useful information to an aircraft INS in real time.  To fulfill the first 

objective, this research reports GAME’s accuracy by comparing position solutions to the 

aircraft’s true positions. 

The effort to determine what conditions make GAME feasible for aircraft 

navigation starts with a sensitivity analysis, which shows the effects of key parameters on 

GAME performance.  Additional simulations ensure that results address practical 

scenarios, which allow an easier assessment of GAME’s potential impact on the           

Air Force mission.  Depending on the lessons learned from the literature review and the 
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constraints of this research effort, key parameters might include variations in terrain, 

altitude, velocity, flight duration, INS drift rate, position update rate, GGI performance, 

and map resolutions and accuracies.  Standardized navigation performance metrics ensure 

the effects of variations in key parameters can be quantified and easily compared.  A 

summary of results shows how key parameters affect GAME’s accuracy, thereby 

providing a tool for determining what conditions make GAME feasible for aircraft 

navigation. 

Finally, with knowledge gained from completion of the previous two objectives, 

this research identifies what further research and advances in technology will drive the 

greatest improvements in GAME accuracy.  Ideally, this list will be prioritized and 

potentially guide future efforts along a better, faster, and cheaper path, making GAME a 

valuable aid to aircraft inertial navigation systems. 
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II. Literature Review 

Inertial Navigation Systems 

 Traditionally, an inertial navigation system (INS) produces navigation 

information by processing signals from accelerometers and gyros with a computer.  In its 

most basic terms, an INS performs inertial navigation, or the determination of the 

position and velocity of a moving object, by using instruments that sense motion.  People 

commonly refer to these instruments as inertial measurement units (IMUs), which 

includes accelerometers to sense linear acceleration and gyroscopes to sense angular 

rates.  A simple INS, as shown in Figure 1, orients three accelerometers and three 

gyroscopes orthogonally and straps them down to a stable platform with a computer.  The 

placement and orientation of the IMUs and their platform provide the basis of a reference 

frame.  Thus, the INS computer can use a transformation matrix to turn integrated 

accelerometer measurements and orientation information from the gyroscopes into useful 

information in the navigational reference frame.  Of course, this description represents 

only a simple portrayal of an INS, and many variations to these concepts exist.2   

 
Figure 1.  A Simple Inertial Navigation System 

Z‐A
cce

l

Z‐G
yro



 

7 

The unique strengths of an INS include its measurements, autonomy, and low-

vulnerability, making it one of the most popular aircraft navigation systems today.   The 

IMUs measure the derivatives of position, velocity, and attitude at high sampling rates, 

which ideally suits INS for integrated navigation, guidance, and control.  Additionally, 

since INS independently measures inertia, it provides useful navigation over random 

routes without the use of any external aids or visual cues.  The history of INS proves its 

reliability and shows that it functions worldwide, including underwater, on land, in 

tunnels, buildings, or containers, in the skies all around the Earth, and in space.  By its 

nature, enemies cannot detect or jam INS, because it does not transmit detectable signals 

and requires no external windows or antennas.  Furthermore, the independence of INS 

means that enemies cannot deny a user of information from an INS, because there are no 

third party transmitters, receivers, ground facilities, or satellites to attack.  Some might 

describe INS as the ultimate in military stealth navigation.3,4 

 

Inertial Navigation System Errors 

 Navigational errors have been a problem since the first nomad got separated from 

the  masses.  Similarly, people have been pursuing reductions in INS errors since they 

first used accelerometers and gyroscopes for navigation.  The gyroscope became a 

suitable substitute for the magnetic compass to dead reckon ships around 1911, 

eventually leading to the automatic steering of ships in the 1920’s.  However, assembling 

the modern-day INS for use on an aircraft took a little more time and started off with 

significant errors, as detailed in the following account from Ernst Steinhoff: 
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“In 1930 an attempt was made to navigate an aircraft equipped with a 
gyrostabilized platform and mechanically integrating accelerometers 
mounted on it.  The flight, which departed from Berline-Aldersdorf, was 
discontinued and the attempt terminated after three hours of flying time 
when the aircraft equipment indicated a position somewhere in Australia, 
while visual observations confirmed the aircraft position to be at the 
western border of Germany near Holland.”5 (p.47) 
 

 Thanks to rocket scientists like Robert H. Goddard in the 1930’s and those who 

worked in the World War II and Cold War eras, INS errors quickly decreased.  German 

rockets in World War II eventually found their way to England and the Cold War drove a 

steady reduction in errors.  In 1959, the Atlas D intercontinental ballistic missile 

possessed a circular error probable (CEP) of about 1.8 nautical miles (NMI), while the 

Minuteman 3 achieved a 0.21 NMI CEP in 1970, and the MX a 0.06 NMI CEP in 1986.4  

IMU and INS errors continued to decrease and, today, are generally considered to possess 

the accuracies shown in the following table: 

 

Table 1:  INS, Gyro, and Accelerometer Performance Ranges (Data from Ref 2) 
 

Units 
High 

Performance 
Medium 

Performance 
Low 

Performance 

INS nmi/hr ≤ 10-1 º 1 ≥ 10 

Gyro deg/hr ≤ 10-3 º 10-2 ≥ 10-1 

Accelerometer m/s2 ≤ 10-6 º 10-5 ≥ 10-4 

 

 An understanding of the source of INS errors begins with an understanding of the 

navigation equations for position.  The foundation of inertial navigation rests on knowing 

the magnitude and direction of an object’s accelerations, denoted by the vector x
 , which 
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then leads to the position of the object, x


, after integrating with respect to time twice.  

The acceleration of the object, x
 , equals the gravitational field, ( )g x

 
, plus the measured 

acceleration, a


. 

 

( )x g x a 
     

Equation 1:  Navigation Equation for Position 

 

Perturbation of Equation 1 produces a first order approximation of the total error in the 

acceleration of the object, x  , where g   represents the error in the assumed 

gravitational field, x   represents the position error of the object, and a   represents the 

error in the measured acceleration. 

 

g
x x g a

x

   


  
      

Equation 2:  First Order Navigation Equation for Position Error 

 

The term 
g

x





  represents the gravity gradients, a second order tensor of the gravitational 

field’s partial derivatives with respect to the coordinate system that defines the position.2  

The Gravity Gradients section discusses more about this second-order tensor. 

For analytical purposes, INS errors break down into three general categories:  

initial alignment errors, inertial sensor errors, and computational errors.   Since inertial 
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navigation systems integrate information from the past to identify the current position, all 

errors introduced to the system remain in the system and accumulate over time. 7  

Although some errors remain constant or oscillate over time, gyroscope bias and initial 

heading errors generally cause the overall position error of the INS to increase over time.  

The term drift refers to the sum of all position errors, since the INS’s calculated position 

appears to drift relative to the true position as time passes.  According to the 2006 

Aviator’s Guide to Navigation, a drift rate of 2 nautical miles per hour is the traditional 

aircraft industry standard, although the advent of ring laser gyroscopes reduced INS drift 

rates to about 0.2 nautical miles per hour.4  Figure 2 illustrates the typical magnitude and 

behavior of the sources of position error for an aircraft INS over time. 

 

Figure 2:  Breakdown of Position Error Sources for a Typical Aircraft INS6 
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Figure 2 assumes an INS initial alignment or position update occurred at a time of 

zero hours, which initializes the position errors related to each error source at nearly zero 

with the exception of the initial longitude error.  For short durations of flight (e.g. less 

than 0.25 hours), no source of error appears to dominate.  For medium duration flights 

(e.g. 0.5-3 hours), a combination of the accelerometer bias, initial heading error, and gyro 

drift rate (previously referred to as gyroscope bias) appears to dominate.  For long 

duration flights (e.g. greater than 3 hours), the gyro drift rate grows dominant.  For this 

reason, some might identify the performance of the gyroscope as the critical factor in 

achieving long-term system accuracy.  In fact, Titterton uses the performance of the 

gyroscope as a rule of thumb to estimate INS drift rates (i.e. gyros with 0.01 degrees per 

hour of error should result in an INS with approximately 1 kilometer per hour of drift). 

Since INS’s drift over time, it’s important to track how the sources of error affect 

each other and how their magnitudes and directions change as they propagate forward in 

time.  To accomplish this, Titterton derives first order equations to estimate the sources of 

error at a given time, given the initial sources of error.  These initial sources of error 

include the tilt error, heading error, velocity error, position error, gyroscope bias, and 

accelerometer bias.  At any given time, the current error may be found by multiplying a 

transition matrix by the assumed initial error source:  [δx(t)] = [Φ(t - to)] [δx(to)].  The 

matrix [δx(t)] possesses the same elements as [δx(to)].
7 

 Two other important variables that affect INS position solutions include the 

Schuler Frequency, ωS,  and the rate of rotation,  .  The Schuler Frequency represents 

the oscillation of horizontal errors attributed to the tuning of an INS such that it maintains 

proper orientation despite accelerations in the horizontal direction.  On Earth, the Schuler 
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Frequency is given by  ωs
o

g

R
    , where g is the magnitude of the gravitational vector 

and Ro represents the Earth’s radius of curvature.  The period of these oscillations equal 

about 84.4 minutes.  Titterton desrcibes Schuler tuning as part of “the first steps towards 

all-weather, autonomous navigation” (p.12).  The rate of rotation affects the propagation 

of initial attitude error and gyroscope bias and is given by  
cos

E

o

V

R L
    , where Ω 

represents the Earth’s rate of rotation, VE represents the east velocity, and L represents 

the latitude. 7 

In summary, INS position errors arise from initial alignment errors, inertial sensor 

errors, and computational errors.  Complex sets of coupled equations, however, can 

estimate INS drift over time.  Sometimes the equations simplify, especially considering 

short duration flights and/or benign flight environments.  But for precision aircraft 

navigation, many sources of error must be considered, including many that were not 

mentioned.  The sources of error must be estimated and propagated through time, in order 

to predict the uncertainty in the INS’s calculated position.7 

 

Aiding Inertial Navigation Systems 

 The previous section showed that the accuracy of the position calculated by the 

INS drifts over time, due to initial alignment errors, inertial sensor errors, and 

computational errors.  More accurate sensors and faster computer processors directly 

reduce these errors and improve INS accuracy, but, at some point, further improvements 

in these technologies become too expensive or unfeasible.  This is when other navigation 
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methods might be called upon to aid the INS, because of their feasibility, reasonable 

costs, or other benefits such as system redundancy or even improvements in some 

performance characteristics beyond those achievable by the INS.  In general, the 

navigation methods that aid the INS can be categorized as those that use external and 

onboard measurements.  Navigation aids that use external measurements include 

information obtained from radio transmitters, satellites, stars, ground-based vehicles and 

stations, and visually observed landmarks.  Navigation aids that use onboard 

measurements include altimeters, radars, airspeed indicators, magnetic sensors, and 

electro-optical imaging systems.  Note that Titterton’s 2004 comprehensive textbook 

doesn’t mention gravity gradient instruments and map matching as a possible navigation 

aid.7  This section discusses the traditional INS navigation aids, while the rest of this 

paper focuses on gravity gradiometry. 

 To improve INS accuracy, the information gained from one or more navigation 

aids must be integrated with the INS.  This integration of information may be loosely 

coupled, tightly coupled, or remain uncoupled.  Loosely coupled refers to a system where 

information from the aid feeds into and improves the INS’s performance, but both 

navigation systems retain their own data processing algorithms.  Tightly coupled refers to 

a system where information feeds from the INS and aids into a single processor, which 

then optimizes usage of the information to maximize navigation accuracy and improves 

the performance of the individual navigation systems.  Uncoupled refers to a system 

where no information from the aid feeds back to the INS to improve its performance.  In 

all of these cases, because information from two or more different navigation systems 

feeds into a navigation solution (e.g. the INS and its aid), the overarching system is 
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referred to as an integrated navigation system.  Figure 3 provides a conceptual illustration 

of an integrated navigation system that tightly couples an INS with a navigation aid. 

 

 

Figure 3:  Tightly Coupled Integrated Navigation System 

 

 A closer look at one of today’s most popular INS aids, the Global Positioning 

System (GPS), provides an excellent example of the potential benefits of an integrated 

navigation system.  After processing, INS provides stable position, velocity, and attitude 

information at high data rates.  Unfortunately, INS errors accumulate over time, resulting 

in good short-term performance, but long-wavelength errors and boundless drift.  On the 

other hand, GPS provides position, velocity, and time information at slower data rates.  

GPS produces discrete information, so errors do not accumulate over time.  However, 

data rates tend to be slower and depend on a network of satellites and a ground segment.8  

While INS and GPS methods appear to possess opposite strengths and weaknesses, this is 
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precisely why they form one of the most popular foundations for integrated navigation.  

As an integrated system, INS and GPS possess the strengths to make up for the other’s 

weaknesses.  For example, GPS provides added value to INS in terms of periodic position 

and velocity updates.  Simultaneously, INS provides attitude information to help GPS 

locate satellites and short-term information at high frequencies to help GPS overcome 

signal losses and cycle slips in the phase ambiguity resolution process, which is 

especially helpful to GPS receivers in high-dynamic flight environments.  Table 2 

summarizes some of the difference between navigation with GPS and INS observed by 

Jekeli. 

 

Table 2:  Differences between Navigation with GPS and INS2 
 

GPS INS 

Principle Time Delay of Signals Inertia 

Outputs Position & Time Position & Orientation 

Error Wavelengths Short Long 

Data Rate Low High 

Dependence Ground & Space Segments Autonomous 

 

 

 When one or more aids work with an INS, a computer algorithm must integrate 

the information and ideally maximize the accuracy of the navigation solution.  Many 

algorithms have been developed to reduce or bound INS errors, sometimes by simply 

updating the INS to a new position based on information from an aid.  Today, however, 
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the Kalman filter stands as the algorithm of choice for integrating information from an 

INS and other aids.  Titterron describes the Kalman filter as “the combination of two 

estimates of a variable to form a weighted mean, the weighting factors chosen to yield the 

most probable estimate” (p.385).  In the case of an aided INS, one estimate derives from 

INS information and the equations of motion, while the second comes from an aid.  The 

Kalman filter entered aerospace when Rudolf E. Kalman presented his linear, state-space 

dynamics modeling filter theory at the National Aeronautics and Space Administration in 

1960.  The first famous application of the Kalman filter occurred on the Apollo moon 

flight, where it provided midcourse navigation corrections, which least squares fitting 

techniques previously accomplished at the expense of the largest and best computers of 

the time.  Quickly, engineers modified Kalman’s filter to iteratively linearize about the 

current state.  This allowed the Kalman filter to handle nonlinear dynamics and became 

known as the extended Kalman filter. The power of the Kalman filter in aided INS 

applications rests on the fact that it solves several inertial navigation problems efficiently.  

According to Biezad, these include 

 

“how to correct the navigation error equations while flying so that they 
remain useful even though the initial navigation errors were not known 
accurately; how to deal with noisy measurements from a variety of other 
systems that are arriving at different times; how to estimate the covariance 
of the INS output whenever an update occurs to see how much of the 
measurement should be believed in the presence of noisy system 
dynamics; and finally, how to obtain estimates for all navigation outputs 
even though only one or two is being measured by other means, providing 
as a result the most probable position (MPP).” (p. 97) 8 
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Equation 3 includes the fundamental matrix equations of a discrete, linear Kalman 

filter.  The first equation defines a system model, where x represents the true or actual 

state variables, Φ represents the model that propagates the state variables to the next time 

step, w represents the difference between the model and truth, and k represents a given 

time step.  The second equation defines a measurement model, where z represents the 

measurement data, H represents the model that relates state to measurement variables, 

and v represents the residual error.  The remaining equations define the state variable 

estimates, x̂ , the error covariance extrapolation, P, and the Kalman gain, K.  These 

equations use (-) to indicate variables that do not consider the kth data point and (+) to 

indicate variables that include the kth data point.  Q represents a matrix of covariances 

that define the system’s noise, while R represents the measurement noise.  These 

equations assumed no correlation between the system and measurement noise and that 

both possess a zero mean and Gaussian distribution.9 

 

 System Model:   1 1 1k k k kx x w     

 Measurement Model:   k k k kz H x v   

 State Estimate Extrapolation:  1 1ˆ ˆ( ) ( )k k kx x     

 Error Covariance Extrapolation: 1 1 1 1( ) ( ) T
k k k k kP P Q         

 State Estimate Update:  ˆ ˆ ˆ( ) ( ) [ ( )]k k k k k kx x K z H x       

 Error Covariance Update:  ( ) [ ] ( )k k k kP I K H P     

 Kalman Gain Matrix:   1( ) [ ( ) ]T T
k k k k k k kK P H H P H R      

Equation 3:  Discrete Linear Kalman Estimator 
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Although a presentation of other Kalman filter equations, derivations, and 

modifications are beyond the scope of this paper, Chatfield provides a detailed 

development of the linear and extended Kalman filter navigation and error equations.10  

Biezad, Jekeli, and Titterton present similar information.  Users must remain aware of 

Kalman filter pitfalls.  Kalman filters use linearized eauations based on small 

perturbation theory, so large errors or corrections to the system could result in divergence 

from real world behavior.  Also, system integrity could be lost if the covariance matrix 

becomes too small.  Biezad describes this as “Kalman filter incest,” where the filter 

essentially rejects new measurements in favor of estimates propagated from the past.  

This danger can be summarized as the filter rejecting new/good measurements in favor of 

old data that becomes less accurate with time.  On the other hand, if the filter is too 

liberal, then it will give greater weight to less accurate measurements (i.e. accept bad 

measurements).  Both of these situations lead to a loss of system integrity.  Although 

engineers continue to deal with these pitfalls, solutions exist that provide high reliability 

for the Kalman filter in aided INS applications.   

Historically, many different technologies have come to the aid of INS, each with 

its strength and weaknesses.  While visual identification of landmarks and stars represent 

some of the oldest navigation aids, radio aids might be described as the oldest, modern-

day navigation aid.  The transmission and reception of radio waves, often involving 

ground stations, allows airborne receivers to determine range and/or distance relative to 

the known location of transmitters.  Some of these include very high frequency omni-

directional radio range (VOR) and tactical air navigation (TACAN).  Hyperbolic systems, 

like Decca, Omega, and long range navigation (LORAN), generally rely on signals 
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transmitted from two or more ground stations at the same time, which allows the receiver 

to estimate a position relative to the known ground stations based on the difference in the 

time of arrival of the signals at the receiver.  Global Navigation Satellite Systems 

(GNSS), such as the Global Positioning System (GPS), rely on a network of satellites, 

which transmit radio signals that allow the receiver to triangulate its position.  Depending 

on the system’s sophistication and involvement of ground stations, radars have the 

capability of providing range, elevation, and bearing information between the aircraft and 

a known location. 

Altimeters, including barometric, radar, and radio, provide height measurements, 

which help the INS bound errors in the vertical direction.  Radar altimeter applications 

were broadened to include a primary role in terrain referenced navigation (TRN), where 

the altimeter provides a ground profile beneath the aircraft’s flight path, which is then 

compared to terrain contour maps to determine a position.  The roughness of the terrain 

and ground cover (e.g. snow and trees) affect the accuracy of this method.  Another TRN 

method compares terrain height estimates to the contour map.  The difference between 

INS and altimeter heights provides the estimate for comparison.7  An extension of this 

idea might compare changes in terrain height over an estimated distance traveled along 

the map (∆hmap) to an estimated difference in the terrain height (∆hest), which comes from 

differencing altimeter (∆halt) and INS (∆hins) measurements.  The section on Map 

Matching Algorithms includes examples of more TRN concepts. 

 

est alt insΔh  = Δh  - Δh  

Equation 4:  Terrain Height Differencing 
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Some navigation aids do not require the transmission of manmade signals external 

to the aircraft.  While magnetic measurements, such as the compass, have provided 

bearing information for hundreds of years, possibilities now exist to determine attitude 

and position.  These possibilities use instruments that measure multiple directional 

components of the Earth’s magnetic field and stored maps of the Earth’s magnetic 

variations.  Scene matching area correlation (SMAC) determines a position, including 

altitude, by using a correlation algorithm to compare an image of the ground to a stored 

database of ground features. 

 This review of INS, including errors and aids, provides a foundation for 

understanding how gravity gradiometer instruments might play a role in navigation.  

Richeson illustrates the concept of a coupled gravity gradient instrument (GGI) and INS 

in Figure 4.  The following sections focus on the fundamentals of gravity gradiometry. 

 

 

 

 

Figure 4:  A Coupled INS and GGI Using Map Matching and a Kalman Filter12 
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Gravity Gradients 

Newton’s law of gravitation states that the attracting force between two masses 

occurs along a connecting  line and has a magnitude, F , given by Equation 5, where G  

is the gravitational constant (6.6742±0.0010)·10-11 m3kg-1s-2, 1
m  and 2

m  represent the 

mass of the two objects, and l  represents the distance between the two masses. 

1 2

2

m m
F G

l
  

Equation 5:  Newton's Law of Gravitation 

 

Wellenhof and Moritz define a rectangular coordinate system similar to Figure 5.  Then, 

using Newton’s law of gravitation and setting the attracted mass, m2, equal to a mass of 

unity, they produce the three components of the gravitational force vector, X, Y, and Z, 

shown in Equation 6.  The direction of the force may also be defined by angles α, β, and 

γ, which measure rotation from the x, y, and z axes, respectively.11 
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Figure 5:  Components of the Gravitational Force11

Equation 6:  Gravitational Force Vector 
between Two Point Masses11 



 

22 

 It’s interesting to note that if the Earth was assumed to be a point mass or perfect 

sphere with constant density, then, for a given altitude above the Earth’s surface, the 

magnitude of F  would be constant at all latitudes and longitudes and the direction F  

would always be in the down direction of the north, east, down reference frame.  Since 

the Earth is not a perfect sphere with constant density, the terrain of the Earth is uneven, 

and the presence of other masses induces gravitational attractions, the gravitational vector 

varies between locations.  Consequently, the spatial derivatives of the gravitational vector 

are not constant either.  A more realistic model of the Earth would use an infinite number 

of infinitely small point masses to represent the Earth, where the total gravitational 

attraction would be the sum of the gravitational attractions induced by the presence of 

each infinitely small point mass.  Thus, the total gravitational force would be found by 

summing the gravitational attraction force for all of the infinitely small point masses over 

the entire volume of the Earth.  In Equation 7,   represents the density of the infinitely 

small point masses and d v  represents the volume of the infinitely small point masses. 
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Equation 7:  Gravitational Force Vector 
with an Infinite Number of Point Masses11 
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 Due to the randomness of the Earth’s terrain and density distributions throughout 

its volume, the gravitational force vector will also be spatially random.  Consequently, 

the gravitational potential, φ, and gravitational gradients, Γ, will also be spatially random.  

Richeson provides a concise representation of gravitational potential, which is a scalar 

function, whose first and second spatial derivatives give the gravitational vector and 

gradients.  The gradients are conveniently presented as a second order tensor with nine 

components.  The following three equations use the north (N), east (E), down (D) 

reference frame, g to represent the gravitational vector, Γ to represent the gradients, and  r 

and r’ to represent the locations of the attracted and attracting masses, respectfully.12 

( ')

'g v

r
dV

r r

 
  

Equation 8:  Gravitational Potential 

 

N
n

g E

D

g

g g

g


 
     
 
 

 

Equation 9:  Gravitational Force Vector in 
the North, East, Down Reference Frame 
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Equation 10:  Gravitational Gradients 
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 In the matrix of nine gravitational gradients, the first subscript denotes the 

direction of the gravitational vector, which changes with a given movement in the 

direction of the second subscript.  For example, the term NE  represents the change in 

gravitational force in the north direction for a given movement in the east direction.  

Since n
gg  , the algebraic properties of the del operator infer that 

 

( ) 0n
gg         

Equation 11:  Gravitation as a Conservative Field 

 

Expanding the terms results in a symmetric gravitational gradient matrix. 

 

N E

E D

ND

g g

E N
g g

D E
gg

N D

 


 
 


 




 

 

Equation 12:  Symmetric Terms in the Gravitational Gradient Matrix13 

 

Equation 12 represents the same symmetrical terms as seen in Equation 10.  Furthermore, 

when the density of the Earth is assumed much greater than the atmosphere, the trace of 

the gravitational gradient matrix equals zero, in accordance with Laplace’s equation 

applied to the gravitational potential. 

0NN EE DD     

Equation 13:  Free Air Assumption Applied to Gravitational Gradients12 
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Considering the previous four equations, the nine component gravitational gradient 

matrix only includes five independent terms.  In other words, measuring five components 

captures the full second order tensor, with the assumptions previously discussed.14 

 To prevent confusion, it’s important to define the difference between gravity 

gradients and gravitational gradients.  This paper uses the terms interchangeably, but 

traditional definitions make a clear distinction between the two terms.  Gravitational 

refers to forces defined by Newton’s law of gravitation, while gravity refers to the sum of 

gravitational and centrifugal forces.  Centrifugal generally refer to the force experienced 

by an object due to the Earth’s rotation.  Finally, it’s also important to note the units of 

gravitational gradients.  Since gravitational gradients represent the spatial derivatives of 

gravitation, which has the familiar units of 
2

m

s
 or 

2

ft

s
, then dividing by a change of length 

( m  or ft ) in a given direction would mean gravitational gradients carry units of 
2s .  

Due to the small magnitudes experienced in geodesy and the contributions of Baron 

Roland von Eötvös to this field of study, gravitational gradients are often communicated 

in units of Eötvös (Eö), where 9 21 ö 10E s  .  One Eö is equivalent to the gravitational 

gradient induced by 10 grains (i.e. ≈10 milligrams) of sand 1 centimeter away. 12 

 

9 21 ö 10E s   

Equation 14:  The Eötvös Unit of Measurement for Gravitational Gradients 
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Gravity Gradient Instruments 

Baron Roland von Eötvös, a Hungarian 

physicist, made the concept of a gravity gradient 

instrument a success in 1890, when he developed and 

employed a torsion balance to measure small gravity 

gradients induced by a nearby concentrated mass.  

The torsion balance represented the gravity gradient 

by the amount of twist in a thin wire, which 

suspended a metal beam with a weight at each end.  

When different gravity forces acted on the weights, 

separated by a known distance, a rotational force 

acted on the beam and twisted the thin wire.  At the 

time, Eötvös’s torsion balance provided the first 

successful measurement of gravity gradients and did so at precise locations with great 

sensitivity.15  In his own words, Eötvös described the torsion balance as follows:   

 
“The means I use is a simple, straight stick with masses attached to each 
end and encased in metal, so that it will not be disturbed by the movement 
of air or differences in temperature. All mass near or far has an attracting 
influence on the stick, but the fibre, from which it is hung, resists this 
effect and twists in the opposite direction, producing by its twisting the 
exact measurements of the forces imposed upon it. This is nothing but an 
adapted version of the Coulomb instrument. It is as simple as Hamlet's 
flute, if you know how to play it. Just as the musician can coax entrancing 
melodies from his instrument, so the physicist, with equal delight, can 
measure the finest variation in gravity. In this way we can examine the 
Earth's crust at depths that the eye cannot penetrate and the rig cannot 
reach."16 

 

Figure 6:  Eötvös's Torsion Balance 
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 Eötvös’s direct measurement of gravity gradients at precise locations with the 

torsion balance remained unrivaled for many years.  While Eötvös achieved a precision 

of ±1 to 3 Eö, the differencing of gravity measurements from different locations could 

still only achieve a gravity gradient precision of ±10 Eö in 1979.  The concept of 

differencing gravity measurements, measured with gravimeters at different locations, 

provides a fundamental illustration of how modern gravity gradient instruments work.  

As shown in Figure 7, when two accelerometers are aligned in the same direction and 

separated by a known distance, their measurements may be differenced and then divided 

by the separation distance to obtain a gravity gradient.  Consistent with popular notation, 

the first subscript denotes the accelerometers alignment direction, while the second 

subscript denotes the direction the accelerometers are separated by a known distance.17 

 

Figure 7:  Gravity Gradients Measured with Accelerometers 

 

 Bell Aerospace took advantage of accelerometer differencing techniques that 

cancel out common forces and developed a GGI for use on moving vehicles.  In general, 

translational vehicle dynamics cancel when two accelerometers attach to a rigid frame 
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and are differenced.  Also, rotational dynamics might cancel or be considered small, if 

establishing a sufficiently small distance of separation between the accelerometers, while 

considering the magnitude of the rotational dynamics.  Bell Aerospace’s GGI employed a 

rotating accelerometer concept, with three gradiometers mounted on a gyro-stabilized 

platform.  Each gradiometer included two accelerometers separated by a known distance.  

Precision reached 5 Eö and reinvigorated the application of GGIs, primarily because 

gravity gradient measurements from moving platforms presented the opportunity for 

rapid and convenient data collection over all kinds of terrain and even under water (e.g. 

onboard automobiles, aircraft, boats, and submarines). 

 While other types of GGIs exist today, the rotating accelerometer GGI stands as 

the only type of GGI successfully used in airborne surveys.  Rogers provides an overview 

of the different types of GGIs currently in use and under development, including rotating 

accelerometer, superconducting, and atom interferometer GGIs.  Based on his assessment 

of the current market, applications to airborne surveying, and GGIs under development, 

Rogers defines performance specifications for two generic GGIs in Table 3.  The current 

GGI represents performance levels already demonstrated in tests, while the future 

represents an optimistic expectation of performance available within a decade. 

 

Table 3:  Approximate Performance Specifications of Current and Future GGIs 

GGI NSD fS RMS Noise fC RMS Noise 
after Filtering

Current 2.23 Eö√Hz 1 Hz 1.58 Eö 0.2 Hz 1.0 Eö 

Future 0.223 Eö/√Hz 1 Hz 0.158 Eö 0.2 Hz 0.1 Eö 
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The noise spectral density (NSD) typically defines the noise level of GGIs with the 

assumption of zero mean and Gaussian distribution.  NSD represents the power of GGI 

noise over a range of frequencies, measured in Eö

Hz
.  Equation 15 shows the calculation 

for RMS noise of a GGI in units of Eö, given the NSD and sampling frequency, fs., in Hz. 

 

2ö 1
( ö) [ ( )] ( )

2 s

E
RMSNoise E NSD f Hz

Hz
   

Equation 15:  RMS Noise Calculation for a GGI 

 

Rogers also notes that GGI users commonly apply a low pass Butterworth filter to reduce 

noise.  In Table 3,  fc represents the cutoff frequency of the low pass Butterworth filter 

and the final column gives the RMS Noise after filtering.  Given a constant cutoff 

frequency, the spatial resolution of data from a GGI will increase as the vehicle’s speed 

decreases.  Alternatively, spatial resolution will decrease as speed increases.  Increasing 

the cutoff frequency increases spatial resolution at higher speeds, but generally increases 

the noise passing through the filter.  Additionally, if the cutoff frequency increases, 

higher signal frequencies pass through the filter, which might include frequencies higher 

than the Nyquist frequency, fNyquist.  In this case, aliasing would occur, where the 

sampling rate is not sufficiently high and the ability to capture the signal’s frequency 

spectrum is lost.19 

1

2Nyquist sf f
 

Equation 16:  Nyquist Frequency 
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Gravity Gradient Maps and Surveys 

In 1901, the head of the Hungarian geological survey, Hugo de Boeckh, 

persuaded Eötvös to bring his torsion balance onto a frozen lake.  After taking 

measurements at 40 different locations on frozen Lake Balaton near Budapest, the team 

composed the world’s first gravity gradient map.  Pleasingly, the map matched the 

contours of the lake floor, which line and sinker measurements confirmed.  Eötvös and 

the torsion balance gained instant fame in the geology community, including prospectors 

of valuable underground natural resources.  Unfortunately, the contemporary difficulties 

of employing the torsion balance led to a lull in its application.  These difficulties 

included the hardships of World War I, variations in temperature and wind that interfered 

with torsion balance measurements, sensitivity to nearby objects, and the skill required to 

interpret gravity gradient measurements.15  

Even though geologists and prospectors preferred gravity maps over gravity 

gradient maps during this era of difficulty with application of the torsion balance, gravity 

gradient maps offer distinct advantages over gravity maps.  While gravity maps illustrate 

up to three components (e.g. the force of gravity in the north, east, and up directions), 

gravity gradient maps include five independent components.  Consequently and by their 

nature, gravity gradient maps provide clearer and more detailed information.  Variations 

in gravity maps are relatively more subtle.  Additionally, gravity gradient maps do not 

include noise from the erratic motion of the instruments, since the differencing technique 

between sensors eliminates these errors.  This is great news for airborne surveys, which 

offer distinct advantages in data collection, but are subject to in-flight turbulence.15 
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The hypothetical consideration of the gravity gradients experienced when passing 

over a defined mass provides a more thorough understanding of the nature of gravity 

gradient maps.  Rogers employed the closed form solutions for the five gravitational 

disturbance gradients, developed by Nagy, Papp, and Benedek18, to illustrate the gravity 

gradient map that would result from passing over a rectangular prism with constant 

density.  In this case, the gravity gradients were calculated and plotted on a plane 50 m 

above the rectangular prism, which Rogers defined with a density of 1.5 g/cm3, length of 

50 m, width of 10 m, height of 6 m, and centered on a 250 m by 250 m grid. 

 

 

Figure 8:  Hypothetical Prism19 

  

Figure 9 shows the gravity gradient maps that Rogers produced in MATLAB, using the 

closed form gravitational disturbance gradient solutions for the hypothetical prism.  Since 

the tensor is symmetric, only the upper right triangular portion of the matrix is presented.  

If portrayed in the NED reference frame, x, y, and z might be considered north, east, and 

down, respectively.  These maps illustrate theoretical gravity gradients, T, and provide an 
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excellent illustration of the uniqueness that makes gravity gradients an excellent 

foundation for map matching navigation.19 

 

 

Figure 9:  Gravity Gradient Map on a Plane 50 meters Above Hypothetical Prism19 

 

 Equation 5 shows that gravitational forces change inversely to the square of the 

distance between masses.  Gravity gradients represent spatial derivatives of gravitational 

forces and thus change inversely to the cube of the distance.  This applies to gravity 

gradient maps over hypothetical prisms as well as the Earth.  Richeson uses the Earth 

Gravitational Model 1996 (EGM96) to show how gravity gradients change with altitude.  

Since the Earth and its terrain features dominate the gravitational forces and gradients in 

this scenario, variations in gravity gradients occur over mountainous regions like the 

Rocky and Andes Mountains and attenuate cubically as altitude increases.  Richeson also 
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presents estimates of when terrain effects on gravity gradients can be ignored (i.e. when 

terrain contribution to gravity gradients is less than GGI noise levels). 

 

 

Figure 10:  East-Down Gravitational Gradient at Three Altitudes12 

 

 The following page shows maps over Earth’s surface for six of the nine gravity 

gradient components, excluding symmetric terms, with color scales in Eö units.  Note that 

unlike TRN and visual observations, gravity gradients provide contrasts over bodies of 

water.  Additionally, while INS vertical errors might increase due to significant changes 

in gravitational forces (e.g. over mountains), these changes provide more contrast on 

gravity gradient maps, thus improving the potential for more accurate navigation. 
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 While the gravity gradient matrix includes five independent terms or sources for 

information, the third column appears to provide the most contrast (ГND, ГED, and ГDD), 

suggesting the most potential for accurate navigation solutions.  These three terms 

represent the gravity gradients in the three reference frame directions, given a movement 

in the down (i.e. vertical) direction.  Richeson notes the finite resolution of the EGM96 

model means that realistic gravity gradients at low altitudes are most likely larger than 

they appear on his maps, since sharp terrain effects might be masked.  If the resolution of 

the map increased, then more information would be available for navigation applications.  

However, the range, sensitivity, and noise of the GGI employed would also affect 

navigation performance. 

ΓNN ΓNE ΓND

ΓEE ΓED

ΓDD

Figure 11:  Map of Gravity Gradients on Earth's Surface12 
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 Since contrasts on gravity gradient maps form the foundation for building 

navigation information, the standard deviation of gravity gradients over a given area on 

the map provide a quantifiable measure of its value.  The standard deviation also reflects 

a measure of how much weight a Kalman filter might give to navigation information 

derived from gravity gradients and map matching.  For example, an aircraft flying in a 

region with very small standard deviations in the gravity gradients, would have a lower 

probability of gaining valuable information from gravity gradiometry and map matching.  

On the other hand, flying in a region with large standard deviations would result in a 

higher probability of gaining valuable information.  As expected, the largest standard 

deviations in Richeson’s ГDD map occur in the mountainous regions of the world, in 

addition to some locations over water.12 

 

 

Figure 12:  ГDD Standard Deviation on Earth's Surface [log10(Eö)]12 
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 Even though many applications focus on the Tzz component of the gravity 

gradient tensor, probably due to its interpretive ease and contrasts, the Txz and Tyz 

components arguably provide just as much, if not more information, than the Tzz 

component alone.  Veryaskin and McRae showed that Txz and Tyz produced the same 

information as Tzzz, which represents the partial of the Tzz component of the gravity 

gradient tensor with respect to the z coordinate.  Knowing that the trace of the gravity 

gradient tensor equals zero (i.e. Txx + Tyy + Tzz = 0), the partial of the entire expression 

with respect to z yields Equation 17 after reordering the derivatives.  The authors caution 

that noise increases when using this technique. 

 

xz xz
zzz

T T
T

x x

 
  

   

Equation 17:  The Third Vertical Derivative of Gravitational Potential 

 

Additionally, Veryaskin and McRae proposed that Txz and Tyz could be treated as two 

orthogonal components of a vector, whose magnitude is single valued and independent of 

orientation in the horizontal plane.  This single vector modeling technique, however, still 

receives contributions from angular rates and accelerations, but demands less accuracy in 

the magnitude of the individual gravity gradient components, assuming the single vector 

magnitude remains the same. 

 
2 2

xz yzT T T   

Equation 18:  Single Vector Magnitude of Txz and Tyz 
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In practice, Veryaskin and McRae propose that the single vector modeling technique 

could be used for high-altitude, large-scale surveys, and then the third vertical derivative 

technique for more refined surveys at lower altitudes.20 

 Mickus and Hinojosa also showed that Fast Fourier Transforms (FFT) enable 

calculation of the complete gravity gradient tensor from data only on the vertical 

component of gravity.  The basic expressions used in their analysis were derived from the 

assumption that the gravitational potential, φ, is a scalar function of the x, y, and z 

coordinates and satisfies Laplace’s equation, “2φ = 0.  As such, the Fourier Transform of 

the gravitational potential, Ф, is a function of the wave number vector, [kx, ky, kz]. 

 

(kx
2 + ky

2 + kz
2) Ф(k) = 0 

Equation 19:  Fourier Transform of Gravitational Potential 

 

With further knowledge that the curl of the gravitational field is zero, Mickus and 

Hinojosa derive the wave number matrix, K(k), and the final expression for the gravity 

gradient tensor, Гij, where i and j represent the x, y, or z coordinates and Gz(k) represents 

the Fourier Transform of the vertical component of the gravitational vector. 
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Equation 20:  Wave Number Matrix for Gravitational Potential Fourier Transform 
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  -1  ( ) ( )ij zK k G k  F  

Equation 21: Gravity Gradients using Gravitational Potential Fourier Transform 

 

The application of FFT to calculate the gravity gradients from data on the vertical 

component of gravity induced error.  The RMS errors ranged from a minimum of 0.3 Eö 

for the gxx component to 3.3 Eö for the gzy component.  When applying this technique to 

data on the vertical component of gravity from a region in southwestern Oklahoma and 

comparing it to gravity gradient data measured in an airborne survey by the United States 

Air Force’s Gravity Gradient Survey System (GGSS),  trends generally matched, but 

errors were difficult to analyze due to lack of quality in the measured data. 

 

Map Matching Algorithms 

 In the context of this research, map matching algorithms use gravity gradient 

measurements to locate an aircraft’s position on a gravity gradient map.  Many 

techniques exist for accomplishing this function, and each technique possesses strengths 

and weaknesses.  The nature and robustness of the map matching algorithm, as well as 

characteristics of the GGI signal and the gravity gradient map, affect the ability to make a 

match, the precision, and the accuracy of the match.  Figure 4 and Figure 13 present two 

perspectives of the architecture surrounding a map matching algorithm.  In Figure 4, the 

summation symbol, Σ, represents the map matching algorithm.  Figure 13 includes an 

illustration of the assumption that information from the INS will be available to assist the 

map matching algorithm.  This should make map matching easier, but might require a 

more robust algorithm when information from the INS is not available, especially 
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considering the scenario where the INS is initialized and cannot provide an initial 

position estimate to the map matching algorithm. 

 

 

Figure 13:  Map Matching Algorithm as Part of an INS/GGI Navigation System 
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 Many concepts exist for building map matching algorithms, and this paper 

presents some of the concepts that could be applied to this research.  First, a map 

matching algorithm may use one or more measurements to attempt a match to the map.  

Single beam measuring describes the measurement of single points along a path, while 

multibeam measuring describes the capture of many measurements simultaneously while 

traveling along a path.  Nygren shows that multibeam measuring improves the accuracy 

and robustness of TRN. 33  Greenfeld distinguishes between map matching algorithms 

that only utilize geometric information and those that are topological.  Topological refers 

to matches “done in context and in relationship to the previously established matches” 

(p.4).  In the context of matching GPS observations to a digital map, Greenfeld argues 

that topological solutions are more likely to be correct than solutions based only on 

geometry.21 

 Gallagher provides a window into the diverse art of graph-based pattern matching.  

If GGI measurements along a path are visualized graphically, then a gravity gradient map 

may be perceived as a database of graphs.  In this case, Gallagher’s research presents 

several methods for building map matching algorithms, including structural matching, 

such as vertex and geometry matching, structural mining, semantic matching, and 

similarity based matching. 22 

 While some might think of landmarks as visual references, Dedeoglu and 

Sukhatme apply the concept to the topological maps collected by autonomous robots.  In 

the case of robots, collaborative mapping occurs when two different robots identify the 

same landmarks on their maps, thus enabling a map match.  In the case of gravity 

gradiometry, one might think of the gravity gradients induced by unique shapes and 
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densities of masses as landmarks.  Thus, the measurement of unique gravity gradients 

might act as a landmark on a map.23  Some might interpret this concept as feature 

matching, where a unique feature of a map is found in the measured data.  Easily 

recognizable map features, or gravity gradients due to unique shapes and densities of 

masses, might be preloaded in a database to provide adequate coverage of an area and 

minimize data processing burdens.24 

 The coverage measure focuses on the similarity between line segments that 

overlap.  Although the authors primarily apply this method to orthogonal line segments 

encountered as robots map the interior of buildings, the idea of a coverage measure could 

apply to the comparison of segments of gravity gradient data to a map.  After all, the 

realities of gravity gradient data processing include discrete sampling, possible temporal 

lapses in usable data, and maybe even discontinuities in the gravity gradient map.  

Application of the coverage measure to gravity gradient map matching might include an 

algorithm that compares measured data segments to map data segments, thus arriving at 

the position and/or bias that maximizes coverage (i.e. position location).25  

 Map matching algorithms that focus on Terrain Referenced Navigation (TRN) 

present a myriad of methods, including those previously discussed.  One of the most 

popular methods, Terrain Contour Matching (TERCOM), determines position by 

calculating the mean absolute distance (MAD) between the expected and measured 

values along the navigated path.  TERCOM determines the position by finding the path 

on the map whose values best correlate with the measured values (i.e. minimum MAD).  

Although this method makes the accuracy of the position solution difficult to determine, 

TERCOM’s use in cruise missile navigation testifies to its reliability.  Terrain Profile 



 

42 

Matching (TERPROM) exploited TERCOM for initialization of navigation solutions, but 

used Sandia Inertial Terrain Aided Navigation (SITAN) for tracking, which employed 

extended Kalman filters and matched local terrain gradients.  Hagen identifies SITAN as 

more suitable for topographies with clearly defined gradients and TERCOM more 

suitable for rough topography.26  In a paper about TerrLab, Hagen further describes the 

Point Mass Filter (PMF) and Particle Filter map matching algorithms.  The Norwegian 

Defence Research Establishment developed TerrLab to assess the performance and 

robustness of TRN algorithms.   TerrLab supports TRN aids loosely integrated with an 

INS, where loosely integrated refers to a navigation system that feeds the TRN position 

solution directly into the INS.  According to Hagen, PMF uses a non-linear, Bayesian 

estimate of the state vector’s probability density function (PDF).  Particle filters also use 

a non-linear Bayesian estimator, but select particles to represent the PDF and propagate 

them forward in time according to the system’s dynamic model.27 

 Archibald, Di Massa, and  Dumrongchai devised map matching algorithms for the 

specific purpose of matching gravity gradients to a map.  Archibald provided position 

updates to an INS by using digital terrain elevation data and a nearest neighbor neural 

network pattern match to determine a location on a map.28  Di Massa briefly discussed 

similarity and dissimilarity parameters for matching, such as the cosine coefficient, 

correlation cooefficient, Canberra Metric, and Bray-Curtis Coefficient, but ultimately 

chose the MAD for her work.  Di Massa also presented details on coarse-to-fine search 

methods, which attempt to reduce the computational burden of matching gravity 

gradients to large maps by starting with coarse, down-sampled data and identifying 

progressively finer areas until achieving a map match at the target resolution.  With this 
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method, Di Massa emphasizes that a coarse-to-fine map match might not be the same 

solution as the solution obtained using an exhaustive search (i.e. there’s a risk in missing 

a better match).29  Dumrongchai provided a robust analysis of how matched filters can 

handle noise and detect small mass anomalies near the surface of earth.  Although 

Dumrongchai identified the vertical gravity gradient as capable for detection, a matched 

filter that utilizes six components of the gravity gradient tensor provided improved 

results.30 

 A recent AFIT master’s thesis, pertaining to the matching of magnetic field 

measurements to a map31, Storms employed terrain navigation concepts published by 

Nygren.32  In this method, a system model is defined where xt represent the position at 

time t, ut represents the distance traveled during that time step according to the INS, and 

vt represents the error in the distance provided by the INS.  The measurement, yt, relates 

to the expected measurement according to the map, h(xt), and the combined error 

presented by the measurement and map, et, which is assumed independent, white, and 

Gaussian. 
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Equation 22:  System Model for Correlator Method of TRN 

 

After application of Bayes’ rule (Equation 23) and the establishment of a function that 

gives the likelihood of a measurement given a position (Equation 24), the posterior PDF 

(i.e. the PDF after inclusion of the position measurement) may be found (Equation 25).  



 

44 

The PDF is represented by p, while N represents the number of measurements considered 

in the PDF, Ce represents the measurement error covariance matrix, and 1[ ]tp y   is 

treated as a normalizing constant.  In essence, the posterior PDF represents a combination 

of the old PDF propagated forward in time and the PDF associated with the likelihood of 

obtaining the measurement.  Nygren presents an illustration of this method in Figure 14 

on page 45 and recommends the finite difference filter as a robust, accurate, and easy to 

implement method for calculating the posterior PDF when there are three or less 

states.32,33 
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Equation 23:  Bayes' Rule 
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Equation 24:  Likelihood Function 
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Equation 25:  Posterior Probability Density Function 
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Figure 14:  Propagation of Probability Density Function for Vehicle Position33 

 

 Bergman presented the fundamentals of applying Bayes Rule to TRN in a 1997 

paper, including the use of point mass filters, but also discussed the gradient approach.  In 

the case of a gravity gradient map, the gradient approach refers to the gradient of gravity 

gradients, which would be a third order tensor with 81 components.  Bergman points out 

that the gradient approach removes bias from the estimation problem, but introduces 

higher noise levels.34 
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III. Methodology 

Modeling and simulation provide the foundation of information for reaching the 

research objectives.  A computer program takes user inputs and applies models of an 

aircraft, INS, GGI, and Earth’s gravity gradients to calculate GAME performance.  

GAME performance calculations use standard performance measures, such as the root 

mean square (RMS) and 50th percentile circular error probable (CEP) of the position 

errors, plus two metrics unique to this research.  A map matching algorithm applies GGI 

sensor data and a map of Earth’s gravity gradients to calculate position solutions.  A 

Kalman filter uses inputs from the INS and map matching algorithm to arrive at the best 

position solutions, which this paper refers to as GAME solutions.  This paper also refers 

to the position solutions based only on INS information as INS solutions and solutions 

based only on gravity gradiometry and map matching as GGI solutions. 

 

Computer Program 

The computer program in Appendix A performs the simulations for this paper.  

All simulations run in MATLAB R2008b on a personal computer system running 

Microsoft Windows XP Professional with a Xeon X5482 processor, Intel 5400 chipset, 

and four gigabytes of random access memory.  The operating system’s 3GB switch gives 

MATLAB enough virtual memory to create the gravity gradient maps with a modified 

version of the computer program written by Rogers for his master’s thesis in 2009. 

 The computer program begins by requesting the following inputs from the user:  

terrain, altitude, velocity, INS drift rate, GGI data rate, GAME position update rate, GGI 

sensor noise level, gravity gradient map noise level, simulated map resolution, amount of 
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map interpolation to be used in the map matching algorithm, duration of flight, and a 

filename for the results to be recorded.  The aircraft flightpath and starting position, the 

gravity gradient maps used as the truth data, and the time step of the computer algorithm 

are hard coded in the computer program, but can be easily changed. 

 Next, the computer program loads gravity gradient maps based on the user’s 

inputs and initializes variables.  Afterwards, the computer enters a loop for the requested 

duration of flight, unless certain circumstances cause the program to terminate (e.g. the 

aircraft or INS drifts off the map).  Each loop represents a time step in the simulation, 

which was hard coded at 1 hertz, but can be easily changed.  Inside each loop, the 

computer algorithm calculates the true position of the aircraft and records the GGI signal 

at the true location with the user-specified noise added.  Then, the computer program 

calculates the INS and GGI position solutions and uncertainties, which feed into a 

Kalman filter.  The Kalman filter calculates a best position solution and uncertainty, 

which it feeds back to the INS and map matching algorithm.  The loop also calculates the 

position error of the GAME and GGI solutions. 

 Finally, the computer program calculates the performance metrics, writes the 

inputs and results to a file, and provides five key plots:  GAME position error versus 

time, GGI position error versus time, GGI signals along the true and INS flightpath 

versus time, latitude and longitude of the true and INS positions versus time, and a bird’s 

eye view of the aircraft’s flightpath. 

 The following figure provides a conceptual representation of the computer 

program, and the following sections discuss the specifics of the computer program’s core 

models and algorithms. 
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Figure 15:  The Concept of the GAME 

 
 

Aircraft Model 

The aircraft flies at a constant velocity and altitude for the duration of flight, all 

given by the user.  The model does not include angles of attack and sideslip, translational 

and rotational accelerations, and roll, pitch, and yaw positions, rates, and accelerations.  

This effectively means the model only calculates the aircraft’s true position.  The 

computer program also treats the flightpath and starting point as constants, although the 

user may change them.  Simulations in this paper use the same flightpath and starting 

point, so comparisons of results include the same set of data points from the maps.  

Comparisons include the exact same data points from the set when the simulations fly the 

same distance, which ensures the effects of terrain can be isolated from other variables. 

Kalman Filter
0 1000 2000 3000 4000 5000 6000 7000 8000

0

100

200

300

400

500

600

Time (seconds)

G
G

I 
P

o
s

it
io

n
 E

rr
o

r 
(m

e
te

rs
)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

900

Time (seconds)

K
a

lm
an

 P
o

si
ti

o
n

 E
rr

o
r 

(m
et

er
s)

0 10 20 30 40 50 60
-40

-20

0

20

40

60

Time (minutes)

T
xx

 (
E

o
tv

o
s)

GGI Signals along True and INS Flightpaths
(flying at 150 m/s and 5000 meters above rough terrain with a 1800 m/hr INS drift)

 

 
Signal along INS flightpath
Signal along true flightpath

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

3000

3500

4000

Time (seconds)

IN
S

 P
o

si
ti

o
n

 E
rr

o
r 

(m
et

er
s)

Aircraft 
Dynamics

INS Solution

GAME Solution

GGI Solution

Gravity Gradient 
Instrument

Gravity Gradient 
Maps



 

49 

The simulations in this paper fly an 8-segmented star pattern to ensure the aircraft 

stays on the modeled maps, flies in a variety of directions, flies over a variety of terrains 

from different approach angles, and remains on the map for flights of great distances.  

Since each repetition of the star pattern moves slightly west of the previous star to 

maximize flight over a variety of terrains, the computer program terminates and provides 

notice if the aircraft flies too close to the edge of the map.  This ensures the program does 

not crash and edge effects of the map do not significantly influence the results. 

 

 

Figure 16:  Simulated Aircraft Flightpath - An 8-Segmented Star 
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Inertial Navigation System Model 

 The computer program uses a simple INS model that only includes the INS 

position solution and uncertainty.  The INS position solution drifts away from the 

aircraft’s true position at a rate equal to the INS drift rate specified by the user.  To 

ensure the effects of INS drift on GAME performance can be isolated from other 

variables, the drift always occurs in the southeast direction.  The user can easily change 

the direction and magnitude of the drift in the computer program.  INS drift does not 

occur in the vertical direction. 

 The uncertainty of the INS position solution starts at zero and increases at a rate 

equal to the INS drift rate specified by the user, but converted from a 50th percentile CEP 

to a variance for the uncertainty matrix.  While the INS uncertainty increases at a 

constant rate in the north and east directions, position and uncertainty updates from the 

Kalman filter result in corrections to the INS position solution and uncertainty, which 

means the uncertainty of the INS will generally not be the same in the north and east 

directions. 

 The computer program records the INS position solutions, position errors, and 

gravity gradients along its flightpath for use in the analysis.  The computer program 

terminates and provides notice if the INS position solution drifts off the map, in order to 

prevent the code from crashing.  This simple INS model adequately covers the scope of 

this research effort, provides an opportunity to understand the effects of INS drift rates on 

GAME performance, and ensures that the INS behaves in a consistent manner, so the 

effects of other variables can be isolated during comparisons of results. 
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Gravity Gradient Instrument Model 

The GGI model records five independent components of the gravity gradient 

tensor (Txx, Txy, Txz, Tyz, and Tzz) at a rate specified by the user.  This paper also refers to 

these components as ΓEE, ΓNE, ΓED, ΓND, and ΓDD, respectively, in the north, east, and 

down reference frame.  The model takes the gravity gradients from the modeled maps, 

which the computer program treats as truth data, and interpolates to arrive at a value 

based on the aircraft’s true position.  The model then takes the values and adds random 

noise based on the user’s inputs.  The computer program assumes information from the 

GGI is accurately time stamped and in the exact reference frame, or errors are 

compensated and within the simulated noise levels. 

 

Gravity Gradient Maps 

 A computer program written by Captain Marshall Rogers, in support of his 2009 

master’s degree thesis at the Air Force Institute of Technology, provided the genesis of 

the modeled gravity gradient maps.  After some minor modifications, Roger’s computer 

program generated gravity gradient maps specifically for this research effort.  These 

maps possess a resolution of 3 arcseconds and are derived from Earth Gravitational 

Model 1996 (EGM96) and Level 1 Digital Terrain Elevation Data (DTED).  Roger’s 

paper provides the details of the derivation.19  Although this paper treats the maps as truth 

data, imperfect models and computations produced the maps.  Thus, the modeled maps 

do not perfectly represent gravity gradients in the real world, but provide realistic trends 

and magnitudes. 
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 The database includes map sets for two different areas in the United States, which 

provides an opportunity to learn how terrain affects GAME performance.  Both areas 

measure 2 degrees latitude by 2 degrees longitude, about 222 by 180 kilometers.  The 

first map set covers an area along the Pacific Coast of California between Sacramento 

and Los Angeles.  This area provides significant variations in terrain mass, including 

ocean, flatlands, and mountains, between 1,800 meters above sea level and slightly 

below.  The second map covers an area near the Mississippi River in Western Tennessee.  

This area provides small variations in terrain height between 0 and 250 meters.  This 

paper refers to the first map set as rough terrain and the second as smooth terrain. 

 
Figure 17:  Rough Terrain 

 
Figure 18:  Smooth Terrain 
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 The map sets for each area also include maps for 5 independent components of 

the gravity gradient tensor and at six different altitudes (5, 10, 15, 20, 25, and 30 

kilometers above the average terrain height).  The following figure of ΓDD over rough 

terrain illustrates how the modeled gravity gradient maps attenuate as altitude increases. 

 

 

Figure 19:  ΓDD Attenuating as Altitude Increases over Rough Terrain 
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 Figure 20 shows an example of the maps for the five independent components of 

the gravity gradient tensor used in this research.  The component is labeled in the bottom 

left corner of each map, and all the maps are for an altitude of 5 kilometers. 

 

 

Figure 20:  Five Components of the Gravity Gradient Tensor over Rough Terrain 
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 All the maps were stored in a database prior to the flight simulations to ensure 

instant availability of gravity gradient information to the map matching algorithm.  

Processing times would be unacceptably long if the computer program used the EGM96 

models and DTED information in real time to calculate the expected gravity gradients.  

At high altitudes, the maps could neglect the effects of terrain12, thus reducing processing 

times and making real-time calculations of expected gravity gradients significantly faster.  

However, the maps in this research effort always include terrain effects. 

 

Map Matching Algorithm 

 The map matching algorithm uses information from the GGI sensor and database 

of maps to determine GGI position solutions at a frequency specified by the user.  The 

likelihood function discussed on page 44 provides the heart of the specific method chosen 

for this algorithm.  This method inherently relies on the assumption that measured gravity 

gradients best match the expected gravity gradients at a unique location.  While patterns 

of gravity gradients might be considered unique, like fingerprints, multiple locations with 

the same gravity gradient magnitudes should be expected.  However, when five discrete 

measurements at a single location are compared within a smaller region of the world, the 

probability of finding multiple locations with the same gravity gradient magnitudes 

significantly decreases and makes the maximum likelihood function a powerful tool. 

 The ability of the maximum likelihood function to identify the best location on a 

map directly relates to the performance of the GGI, the quality of the maps, and how 

much the gravity gradients vary among locations.  The following figures offer one way to 

illustrate the phenomenon that makes this method possible.  As the aircraft flies along its 
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true flightpath, the GGI measures and records the gravity gradients at discrete moments 

in time.  Plotted out over time, the five independent components of the gravity gradient 

tensor might look like the signal shown in the top right corner of Figure 21.  This 

particular signal comes from the computer program created to support this research 

effort, where the aircraft is flying at 150 meters per second and 5 kilometers over rough 

terrain with 1,800 meters per hour of INS drift and no GGI noise.  This signal is unique to 

the aircraft’s true flightpath and sensor, thus providing an opportunity to identify the 

aircraft’s position on a map with an associated uncertainty. 

 

 

Figure 21:  Matching a GGI Signal to a Map 
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A closer look at the GGI signal shows that the gravity gradients that would be 

encountered along the true flightpath differ from those encountered along a flightpath 

based on the position solutions of a drifting INS.  In other words, if your navigation 

computer drifts far enough off course, relative to the noise levels of your GGI and maps, 

the map matching algorithm should be able to find a position solution where the 

measured and expected gravity gradients make a better match.  Figure 22 shows the 

difference in GGI signals along an aircraft’s true flightpath and INS flightpath as the INS 

approaches 1,800 meters of position error. 

 

Figure 22:  GGI Signals along True and INS Flightpaths 
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of using maps with resolutions equal to or less than the truth maps.  Then, the algorithm 

adds noise to simulate inaccuracies in the map based on the user’s inputs.  These map 

inaccuracies might result from imperfect models or actual measurements.  Additionally, 

this approach assumes the position error of the data points on the gravity gradient maps 

are significantly less than the resolution of the map and within the simulated noise levels.  

Next, the algorithm interpolates the map to a resolution specified by the user.  While an 

ideal interpolation would use an infinite resolution, constraints imposed by the likelihood 

function and computer processing power demand interpolation to finite resolutions.  This 

interpolation allows the map matching algorithm to consider position solutions at higher 

resolutions than the maps provide.  In other words, this allows the algorithm to arrive at 

position solutions between the posts available in the database of maps.  The computer 

program uses a unique variable to communicate different map resolutions with the user.  

The Resolution Level corresponds to a specific map resolution as shown in Table 4.   

Table 4:  Measurements of Map Resolution 

Resolution 
(Level) 

Resolution 
(arcseconds) 

North/South 
Post Spacing 

(~meters) 

East/West 
Post Spacing 

(~meters) 

7 0.046875 1 1 
6 0.09375 3 2 
5 0.1875 6 5 
4 0.375 12 9 
3 0.75 23 19 

2 1.5 46 38 
1 3 93 75 
0 6 185 150 
-1 12 370 300 
-2 24 740 600 

-3 48 1,480 1,200 
-4 96 2,960 2,400 
-5 192 5,920 4,800 
-6 384 11,840 9,600 
-7 768 23,680 19,200 
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The algorithm always selects an area of the truth maps such that at least 9 by 9 pixels are 

included in the likelihood function calculations.  This prevents MATLAB from crashing 

on the interpolation commands.  The minimum area ensures a statistically significant 

number of data points.  The likelihood function calculates the likelihood for each pixel, 

and the algorithm selects the location with the maximum likelihood as the GGI solution. 

 Finally, the map matching algorithm calculates the uncertainty associated with the 

GGI position solution.  The algorithm uses the posterior probability density function on 

page 44 and computer code modified from Storms’ work31.  The algorithm looks at the 

likelihoods for a line of pixels in the north and east directions, intersecting at the GGI 

position solution.  This approach recognizes different uncertainties in different directions, 

which arise due to the aircraft’s flightpath relative to map features.  For example, if an 

aircraft flew over a ridgeline, the algorithm would have good information for determining 

position in a direction perpendicular to the ridgeline, but bad information for positioning 

parallel to the ridgeline.  Consequently, uncertainty would be low in the perpendicular 

direction and high in the parallel direction.  The algorithm forces a minimum uncertainty 

value equal to the resolution of the interpolated gravity gradient maps. 

  

Kalman Filter 

 The computer program uses a discrete linear Kalman filter to determine the 

GAME position solution and uncertainty from the INS and GGI position solutions and 

uncertainties.  The equations come from Grewal’s text and are found on page 17.  If the 

map matching algorithm fails to provide a unique position solution, the INS position 

solution and uncertainty become the GAME position solution. 
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Performance Measures 

  This research uses several measures to quantify GAME’s performance.  Some 

performance measures are also used with the GGI position errors to give an awareness of 

how gravity gradiometry and map matching perform alone.  The computer program 

records position errors for the duration of flight and then reports the mean and standard 

deviation of the RMS position errors for the GGI and GAME solutions, as well as the 

50th percentile CEPs (i.e. the median of the RMS position errors). 

 The computer program also introduces two new performance measures.  The 

Performance Gain divides the INS CEP, as if it had drifted for the duration of flight, by 

GAME CEP.  This effectively communicates how many times more accurate GAME’s 

position solution is on average than an INS that worked for a length of time equal to the 

duration of flight.  The calculation includes data from the entire duration of flight, 

because the performance gain aims to capture all effects, including effects before GAME 

reaches a steady state accuracy. 

 
 

 

INS CEP
Performance Gain

GAME CEP
  

Equation 26:  Performance Gain 

 

 The Break Even Point divides GAME’s CEP by the INS drift rate.  This 

effectively communicates how much time would pass before GAME’s performance 

would start to be better than the INS working alone.   

 

  

GAME CEP
BEP

INS Drift Rate
  

Equation 27:  Break Even Point 
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Variables 

 To minimize confusion, this section provides more information about the 

variables discussed in this paper.  The terrain variable selects whether the aircraft flies 

over the rough or smooth terrain discussed on page 52.  The simulation flies the aircraft 

at a constant velocity and altitude measured above the average terrain height.  Flight 

duration refers to how much time the aircraft flies in the simulation.  INS drift rate sets 

how fast the INS position solution drifts away from the true position, as well as 

propagation of the INS uncertainty.  The position update rate refers to how frequently the 

map matching algorithm runs, which also determines how frequently GGI solutions feed 

to the Kalman filter. 

 The GGI components variable lists or counts the number of components of the 

gravity gradient tensor that the map matching algorithm uses to calculate GGI solutions.  

GGI noise simulates the noise measured by the GGI onboard the aircraft.  Map noise 

simulates the noise inherent in the maps carried in the aircraft’s database.  The values of 

the GGI and map noise variables reflect 1 standard deviation of white, Gaussian noise 

with zero mean.  Map resolution refers to the simulated resolution of the gravity gradient 

maps stored in the aircraft’s database.  If the maps provided to the computer program 

have higher resolutions, the map matching algorithm will only use the resolution of 

information specified by this variable.  The map resolution cannot be greater than the 

stored maps.  The map matching algorithm then interpolates the gravity gradient maps 

until it achieves the resolution indicated by the map interpolation variable. 

 



 

62 

Sensitivity Analysis 

 A sensitivity analysis shows how each variable influences the outcome.  In this 

research effort, the variables include terrain, altitude, velocity, flight duration, INS drift 

rate, position update rate, GGI components, GGI noise, map noise, map resolution, and 

map interpolation.  The outcome refers to the GGI and GAME performance measures, in 

addition to other significant observations. 

  To perform this sensitivity analysis, all the variables will stay the same while one 

variable changes.  In some situations, more than one variable will change at the same 

time to accommodate special circumstances and further understanding.  In general, the 

variables that stay the same will be set to their default values.  The left column of Table 5 

lists the default values.  The right column lists the values that will be included in each 

variable’s sensitivity analysis. 

Table 5:  Sensitivity Analysis Variables 

Default Value Variable Sensitivity Analysis Values 

Rough Terrain Rough, Smooth 

5 Altitude (km) 1, 5, 10, 15, 20, 25, 30 

150 Velocity (m/s) 25, 50, 100, 150, 200…1250 

2.2222 Flight Duration (hr) 0.25, 0.5, 1, 2, 4, 8, 16, 24, 32 

2000 INS Drift Rate (m/hr) 0.2, 2, 20, 200, 2000, 20000 

1 Position Update Rate 1, 15, 30 s, 1, 15, 30 min, 1 hr 

5 GGI Components ΓEE, ΓNE, ΓED, ΓND, ΓDD, 2, 3, 4, 5 

0.1 GGI Noise (Eö) 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5 

0.01 Map Noise (Eö) 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.5 

3 
Map Resolution 

(arcseconds) 
3, 6, 12, 24, 48, 96, 192 

3 
Map Interpolation 

(arcseconds) 
3, 1.5, 0.75, 0.375, 0.1875 
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 The defaults reflect typical values.  Rogers’ optimistic prediction of the GGI 

performance expected to be available within the next decade provides the default value 

for GGI noise.19  Map noise is one order of magnitude lower, under the assumption that 

surveys use more accurate sensors, collection methods, and post processing, compared to 

sensors onboard an aircraft that process data in real time.  Regardless of the defaults, the 

sensitivity analysis provides insight into how the variables affect GAME performance. 

  

Practical Simulations 

 In addition to the sensitivity analysis, practical simulations help in understanding 

GAME’s performance in scenarios relevant to the Air Force.  The first three include a 

fighter, cargo, and intelligence, surveillance, and reconnaissance (ISR) scenario.  All 

three scenarios use typical values for the variables, as listed in Table 6.  The fighter 

scenario varies INS drift rate and noise, cargo varies flight duration and noise, and ISR 

varies altitude and noise.  Map noise remains one order of magnitude below the GGI. 

Table 6:  Practical Simulation Variables 

Variable Fighter Cargo ISR 

Terrain Smooth Rough Rough 

Altitude (km) 5 10 5, 15, 25 

Velocity (m/s) 400 250 150 

Flight Duration (hr) 1.5 2, 4, 8, 16 24 

INS Drift Rate (m/hr) 20, 200, 2000 2000 200 

Position Update Rate 1 1 1 

GGI Components 3 5 5 

GGI Noise (Eö) 0.01, 0.1, 1 0.01, 0.1, 1 0.01, 0.1, 1 

Map Noise (Eö) 0.001, 0.01, 0.1 0.001, 0.01, 0.1 0.001, 0.01, 0.1

Map Resolution (arcseconds) 3 3 3 

Map Interpolation (arcseconds) 0.75 3 3 
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 The practical simulations also include an optimistic and pessimistic look at the 

future.  The values used in these scenarios will be based on the results of the sensitivity 

analysis, the technologies available today, and the technologies expected in the future.  

 

Summary of Assumptions 

 The information in this section summarizes the assumptions discussed in previous 

sections and applicable to the modeling and simulation conducted in this research effort.  

The modeled gravity gradient maps represent realistic truth data, which was derived 

under the assumptions that DTED Level 1 adequately represents terrain effects, Earth’s 

terrain is a constant density, gravity is a conservative field, and air’s density is much 

smaller than Earth’s.  The map noise simulates inaccuracies in the map database, which 

might arise from imperfect modeling or surveying.  Position errors in the map data points 

are small compared to the map’s resolution and within the noise levels. 

 The GGI sensor provides information in the exact reference frame and accurately 

time stamped, or the errors are compensated and within the simulated noise levels.  

Changes in the simulation’s true gravity gradients between the time the maps were 

created and the simulated flight are within the simulated noise levels. 

 The aircraft flies at constant velocity and altitude, and no INS drift occurs in the 

vertical direction.  The INS position solution always drifts southeast at the rate specified 

by the user.  Finally, aircraft dynamics do not affect the GGI measurements, or the effects 

are compensated and within the simulated noise levels. 
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IV. Results and Analysis 

Appendix B presents a full table of the results.  Since the methodology includes 

10 variables with millions of permutations, this section limits discussion to information 

from the sensitivity analysis and practical scenarios.  Despite this limitation, the scope 

provides a fundamental understanding of GAME’s potential as an aircraft navigation aid. 

This analysis scrutinizes all performance measures, but generally discusses results 

in terms of performance gain, since it provides a good basis for comparisons of overall 

performance.   Since performance gains normalize GAME accuracy by the accuracy of an 

INS flying unaided for the duration of flight, values greater than 1 represent performance 

improvements.  However, a theoretical minimum of 2 occurs in this analysis, because the 

computer program calculates GAME CEP using position errors from the entire duration 

of flight, while the INS CEP reflects position errors at the end of the flight.  For example, 

if an INS drifted a constant 2 km/hr for 1 hour and the GGI solutions carried no weight, 

the INS and GAME CEPs would be 2 and 1, respectively.  This results in a performance 

gain of 2, even though the GGI solutions did not improve upon the INS’s performance. 

 By its definition, the performance gain makes a useful tool for deciding if GAME 

has good potential as an investment.  If a scenario predicts a performance gain of 5-50, 

the investor must decide whether the investment in GAME for a 5 to 50-times accuracy 

improvement is worthwhile.  If the same investment improves INS accuracy 3 times, then 

a performance gain of 5-50 might be a good investment.  Performance gains less than 5 

suggest that a comparable investment in other technologies might provide better returns.  

Although this paper does not estimate costs associated with improvements, Table 7 uses 

this logic to define three investment categories based on performance gain. 
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Table 7:  Investing in Performance Gains 
Potential Returns 

on Investments 
Performance 

Gain 
Excellent > 50 

Good 5 - 50 
Poor < 5 

 

Terrain Effects 

 At default conditions, rough terrain provides a performance gain of 34.7, breaking 

even with the INS after 3.8 minutes.  Smooth terrain provides a performance gain of 10.5, 

breaking even with the INS after 12.7 minutes.  Both results suggest potential for good 

returns on investments, but the smooth terrain borders on poor.  The GGI solutions offer 

accuracies with a CEP of 141 meters over rough terrain and 378 meters over smooth.  

From these perspectives, GAME appears to perform about 3 times better with rough 

terrain than smooth.  This is great news for aircraft flying over rough terrain or long 

distances, because dynamic map features provide excellent information for accurate GGI 

solutions with low uncertainties.  Unfortunately, the smooth terrain results provoke 

questions about worse case scenarios, such as high noise levels, high altitudes, less than 

all 5 components of the gravity gradient tensor, and terrain or water with even smoother 

map features. 

The sensitivity analysis also provides a basis for terrain comparisons at different 

altitudes and different components of the tensor.  When considering the best components, 

GAME performs 2 to 3 times better with rough terrain than smooth, whether using 1, 2, 

3, 4, or 5 components.  Figure 23 shows rough terrain’s advantage decreasing as altitude 

increases, but GAME still performs 2 to 5 times better with rough terrain. 
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Altitude Effects 

 Figure 23 illustrates the decreases in GAME and GGI performance experienced 

with increases in altitude.  The rate of performance loss appears to decrease at higher 

altitudes, which supports findings by Richeson that an altitude exists, relative to the GGI 

sensors noise levels, where terrain effects might be neglected.  The high frequency 

information provided by terrain features at low altitude significantly improves GAME 

performance, but rapidly attenuates with increases in altitude. 

 
Figure 23:  Effect of Altitude on Performance Gain 

 

 At 1000 meters, the map matching algorithm failed to find unique solutions at 

locations where terrain height exceeded altitude.  This highlights a shortcoming in the 

simulation, since aviators generally do not fly through terrain.  The successful GGI 

solutions at 1000 meters continue the trend of outperforming solutions at higher altitudes.   
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Velocity Effects 

 Velocity does not appear to affect GAME or GGI solutions, although noise drove 

small differences.  The performance gain increases as velocity decreases, but not due to 

velocity.  Instead, changes in flight duration, which ensure simulations cover the same 

terrain, mean an unaided INS would drift farther during the simulation.  Thus, increases 

in performance gain reflect better returns on investments for longer flights. 

 
Figure 24:  Effect of Velocity on GAME CEP 

 

 Although the results do not show that velocity affects accuracy, the simulation did 

not model the inner workings of a GGI.  The methodology assumes accurate processing, 

recording, and time stamping of measurements.  Noise might cover some of these errors, 

but the simulation maintained constant noise for all velocities.  In reality, velocity might 

affect noise levels and introduce biases, which in turn affect GAME performance. 

0 200 400 600 800 1000 1200
80

100

120

140

160

180

Velocity (meters per second)

G
A

M
E

 C
E

P
 (

m
et

er
s)

GAME CEP versus Velocity
(Terrain: Rough, Altitude: 5 km, Flight Duration: 2.22 hr, INS Drift: 2 km/hr, Update Rate: 1 sec,

GGI Components: 5, GGI Noise: 0.1 Eo, Map Noise: 0.01 Eo, Map Resolution: 3 arcseconds)



 

69 

Flight Duration Effects 

 Flight duration only affected the performance gain.  Even though the position 

solutions and uncertainties were not affected, longer flights with an unaided INS result in 

larger position inaccuracies.  Thus, by definition of the metric, the performance gain 

increases with flight duration, because its accuracy grows relative to an unaided INS over 

longer periods of time.   This increase in performance gain simply communicates that 

GAME provides greater potential returns on investments for longer flight durations 

compared to an unaided INS.  At the default flight conditions, Figure 25 shows poor 

potential for returns on investments for flight durations less than about 30 minutes, good 

potential between 30 minutes and 4 hours, and excellent potential greater than 4 hours. 

 

 
Figure 25:  Effect of Flight Duration on Performance Gain 

 

0 5 10 15 20 25 30 35
-100

0

100

200

300

400

500

600

Flight Duration (hours)

P
er

fo
rm

an
ce

 G
ai

n

Performance Gain versus Flight Duration
(Terrain: Rough, Altitude: 5 km, INS Drift: 2 km/hr, Update Rate: 1 sec

GGI Components: 5, GGI Noise: 0.1 Eo, Map Noise: 0.01 Eo, Map Resolution: 3 arcseconds)

 

 

GAME CEP ≈ 130 meters 



 

70 

INS Drift Rate Effects 

 Similar to flight duration, larger INS drift rates increase performance gain, even 

though GGI solutions do not significantly change.  This indicates that GAME provides 

greater returns on investments when working with a less accurate INS.  Ironically, a more 

accurate INS improves GGI and GAME accuracy.  At the default flight conditions, INS 

drift rates less than about 300 meters per hour result in poor returns on investments.  At 

200 meters per hour, it takes 37 minutes just for the GGI solutions to break even with an 

unaided INS.  At 20 meters per hour and below, the performance gain bottoms out at the 

improvement threshold.  The simulation at 20 meters per hour dips slightly below, 

indicating that GAME decreased accuracy.  Hope is not lost for scenarios with a highly 

accurate INS, because changes to other variables promise higher performance gains, 

especially longer flight durations and higher map resolutions. 

 
Figure 26:  Effect of INS Drift Rate on Performance Gain 
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Position Update Rate Effects 

 More frequent updates improve all of the performance measures, except GGI 

solution performance, which remains statistically neutral.  At the default flight 

conditions, only position updates every second offer potentially excellent returns on 

investments.  Poor potential exists for position update rates less frequent than once every 

minute.  This, of course, suggests that efficient algorithms and fast computer processors 

directly affect GAME performance.  Although producing GGI solutions once every 

second took double the processing time of the other simulations, the update rate did not 

appear to affect computer processing times for updates rates less frequently than every 15 

seconds.  Updating the position less frequently decreases the number of times the 

algorithm runs, but increases the size of the map searched for a match. 

 

 
Figure 27:  Effect of Position Update Rate on Performance Gain 
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GGI Component Effects 

 Looking at the best performing components, GGI and GAME performance 

generally increases with the number of components of the gravity gradient tensor 

included in the simulations.  However, each increase in the number of components results 

in less increase.  Even though using all five components produces the best results, using 

three components appears to offer the best value, under the assumption that each increase 

in the number of components comes at a proportional price. 

 

 
Figure 28:  Effect of GGI Components on Performance Gain  
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Table 8:  Best GGI Components over Rough Terrain 
 ΓDD ΓND ΓNE ΓEE ΓED 
Performance Gain (ND) 15.0 11.5 7.7 4.9 4.7 
RMS Mean (meters) 683 818 1029 1063 994 
RMS Std Dev (meters) 509 644 830 841 786 
CEP50 (meters) 564 638 804 832 785 

 

Table 9:  Best GGI Components over Smooth Terrain 
 ΓND ΓDD ΓNE ΓED ΓEE 
Performance Gain (ND) 3.52 3.46 2.99 2.98 2.65 
RMS Mean (meters) 2003 1969 2636 2436 2688 
RMS Std Dev (meters) 2061 1999 2469 2317 2452 
CEP50 (meters) 1265 1274 1849 1694 1963 

 

 

ΓDD and ΓND take first and second place over rough and smooth terrain, 

respectively, while ΓEE and ΓED take fourth and fifth.  The relative importance of the 

components diminishes as the terrain smoothens, and the ranking order changes when 

ranking by RMS mean and CEP.  This indicates that even though one component might 

result in more accurate position solutions, the associated uncertainties might be higher.  

From this perspective, standard deviations also play a role in how the rankings appear 

different when considering different performance metrics. 

The individual ranks of the components do not necessarily correspond with which 

combinations of components work together the best, since different components might 

perform better in different locations.  For example, if ΓDD and ΓED performed well in 

different locations, they might make a stronger pair than ΓDD and ΓND performing well 

only in the same locations.  Thus, Appendix B includes combinations of 2, 3, and 4 

components at the default conditions.  The appendix includes all combinations for 3 and 

4 components, but only combinations with ΓDD for 2 components, since there are so many 
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combinations.  Table 10 presents the best performing combinations, which do not always 

follow the logic of the individual rankings.  For example, one might assume that ΓDD and 

ΓND make the best duo over rough terrain, but ΓEE takes the place of ΓND.  In fact, second-

ranked ΓND doesn’t even make it into the best trio or quartet! 

 

Table 10:  Best Combinations of GGI Components 
 Rough Terrain Smooth Terrain 

1 Component ΓDD ΓND 

2 Components ΓDD , ΓEE ΓDD , ΓED 

3 Components ΓDD , ΓEE ,  ΓNE ΓDD , ΓED ,  ΓND 

4 Components ΓDD , ΓEE ,  ΓNE,  ΓED ΓDD , ΓED ,  ΓND ,  ΓEE 

 

 

 The rankings in these simulations do not necessarily hold for other scenarios.  The 

5 independent components of the gravity gradient tensor perform differently in different 

situations.  The hypothetical prism on page 31 gives a good indication that map feature 

dynamics vary for components in different situations.  While map features are a function 

of location, map quality and resolution also play a role in determining which components 

and combinations perform best in given situations.  However, in all the simulations, ΓDD 

makes it into the best performing trio and quartet.  Richeson agrees that ΓDD varies more 

than the other components, suggesting that it also performs better.  However, he points 

out that the components appear to vary the most in the same locations, suggesting that the 

other components perform the best in the same locations as ΓDD.12 
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GGI Noise Effects 

 At the default conditions, decreases in GGI noise improved all performance 

measures down to about 0.01 Eö.  Beyond that point, decreases in GGI noise did not 

significantly improve results.  From the perspective of the sensitivity analysis, this 

observation communicates that, beyond a certain point, decreases in GGI noise levels do 

not significantly improve results, unless other variables also improve (e.g. map noise 

levels, map resolutions, and map interpolation).  In other words, despite improvements in 

GGI noise levels, weaker links in other areas might limit GAME performance. 

 

 
Figure 29:  Effect of GGI Noise on Performance Gain 
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identify a unique position solution, which was caused by the likelihood function 

essentially rejecting all position solution candidates as a possible match.  This occurred 

because the likelihood function only included the GGI noise levels in its calculations.  

Thus, when the differences between the measured and expected (i.e. the sensor and map) 

values were much higher than GGI noise levels, all position solution candidates were 

rejected.  To better tune the map matching algorithm, the likelihood function was 

modified to include the sum of the GGI and map noise levels.  This is a practical 

modification, assuming the approximate noise levels of the GGI and map are known. 
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The modification significantly decreases the number of failed map matches and enables 

successful simulations at lower noise levels.  After the modification to the map matching 

algorithm, all simulations were rerun, so the results presented in this paper all use the 

same algorithm.  The new GGI position solution and uncertainty results did not appear to 

significantly change compared to the results before the algorithm’s modification, except 

that more successful map matches occurred, resulting in more position updates to the 

Kalman filter and better GAME performance at low noise levels. 

 Overall, the GGI noise sensitivity analysis shows how sensor performance affects 

GAME solutions.  Under the assumptions of this research, this includes uncompensated 
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effects of aircraft dynamics, but not mass movements onboard the aircraft.  Since masses 

onboard the aircraft would be relatively close to the GGI, even small movements could 

significantly affect sensor measurements.  While small distances between differenced 

accelerometers and other techniques minimize the effects of aircraft dynamics, Figure 30 

illustrates what attention to detail is required to compensate for mass movements.  The 

figure applies the derivative of Newton’s Law of Gravitation in the same manner as 

Richeson and plots selected masses over a range of distances. 
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Equation 29:  Gravity Gradient Approximation 

 

   
Figure 30:  Mass Movements Onboard an Aircraft 
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 Assuming a 0.1 Eö noise level already exists in the GGI, the effects of 0.1 and 1-

kilogram masses 2 meters or more away from the sensor would be at or below the GGI’s 

noise levels.  Depending on how much they move, 100-kilogram masses significantly 

affect gravity gradients within about 5 meters.  Phenomena in this category might include 

landing gear retraction, movement of personnel, or employment of small munitions.  

Assuming an aircraft uses 10,000 pounds of fuel (i.e. 4,536 kilograms) or more during a 

mission, the effects on gravity gradients almost always soar above the noise levels.  Other 

mass movements to consider include shifting cargo, flight controls, propulsion systems, 

and flying in close formation.   Options to compensate for mass movements onboard or in 

close proximity to an aircraft might include feeding mass movement information to the 

computer, placing the GGI in a location far away from moving masses, and improving 

the map matching algorithm to deal with static and transient biases.  In general, the 

aircraft could act as a bias and calibration of the sensor onboard the aircraft might be 

required.  Other methods of calibration include computing expected gravity gradients at a 

known location or comparing sensor outputs to a surveyed location before flight. 

   

Map Noise Effects 

 Similar to the effects of GGI noise, decreases in map noise improve performance 

measures down to about 0.01 Eö.  Beyond that point, decreases do not significantly 

improve results.  This observation communicates that, beyond a certain point, decreases 

in map noise levels do not significantly improve results, unless other variables also 

improve (e.g. GGI noise levels, map resolutions, and map interpolation).  In other words, 

weaker links in other areas might drive inaccuracies, despite improvements in map noise. 
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Figure 31:  Effect of Map Noise on Performance Gain 

 

Under this paper’s assumptions, map noise represents the cumulative effects of 

inaccurately modeled maps or measured gravity gradients  (e.g. a noisy GGI used in map-

making surveys), inaccurately positioned data points, and gravity gradient changes from 

the time of the map’s creation to GAME employment.  The latter error source raises the 

question, “How much mass movement does it take to affect gravity gradients?”  In 

general, mass movements might be manmade, geological, or astrological.  Examples 

include new construction projects, especially sky scrapers and dams, quarries and 

landfills, and the movement of massive ships, aircrafts, and satellites; continental drifts, 

volcanic eruptions, melting glaciers, and ocean tides; the sun and moon.  The following 

figure, based on Equation 29, provides some insight into what masses at what distances 

might significantly change gravity gradients, depending on how much they move. 
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Figure 32:   Mass Movements affecting Gravity Gradient Maps 

 

C-5 Maximum Weight, Empire State Building, and Horseshoe Falls represent 420 

tons (381 thousand kilograms), 365 thousand tons (331 million kilograms), and 9 million 

tons (8.2 billion kilograms), respectively.  If a 0.01 Eö of noise already exists in the 

maps, the movement of a large cargo aircraft, like the C-5, would be at or below noise 

levels at a distance of 200 meters or more.  If GAME flies within 2 kilometers of a new 

structure the mass of the Empire State Building, additional map inaccuracies should be 

expected above the noise levels.  A major geological event that moves 9 million tons of 

mass, such as the mass of water that flows over Horseshoe Falls in 1 hour, causes map 

changes above noise levels for aircraft flying below 6 kilometers, depending on how far 

the 9 million tons moves.  Robust map matching algorithms and map corrections for large 

mass movements could minimize the effects of mass movements on GAME performance. 
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Map Resolution Effects 

 While holding the interpolated map resolution constant, the simulated map 

resolution does not appear to affect performance measures until the simulated resolution 

decreases to Resolution Level 3.  This represents a resolution with post spacing greater 

than approximately 1,200 meters.  Since the interpolations are linear, this suggests that an 

insignificant amount of information is lost when using gravity gradient maps with 

resolutions as low as 48 arcseconds, compared to 3-arcsecond maps.  While this attests to 

the effectiveness of map interpolation, it cannot demonstrate how much information 

would be gained with map resolutions higher than Resolution Level 1.  Assuming 

information occurs at different frequencies, higher resolutions might provide more 

information and improve GAME performance beyond the results presented in this paper. 

 

 
Figure 33:  Effect of Map Resolution on Performance Gain 
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Map Interpolation Effects 

 Intuitively, allowing the map matching algorithm to interpolate the available maps 

to identify more accurate position solutions should improve performance.  However, at 

the default flight conditions, no significant improvements occur.  A closer look at the 

simulation’s outputs reveals that noise levels approach and frequently exceed the 

differences in gravity gradients from point to point on the maps.  Despite interpolation, 

this keeps the accuracy of GGI position solutions at the mercy of the system’s random 

noise.  Similar to the results seen in the GGI and map noise sections, improvements in 

map interpolation do not significantly improve results beyond a certain point, unless 

other variables also improve (i.e. GGI and map noise levels, map resolution, and the 

capabilities of the map matching algorithm). 

 

 
Figure 34:  Effect of Map Interpolation on Performance Gain 
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Fighter Mission Performance 

 In the fighter scenario, simulations indicate that GAME provides poor potential 

for returns on investments for most combinations of GGI noise levels and INS drift rates.  

The scenario assumes that a typical fighter mission flies a 1.5-hour mission over smooth 

terrain at an altitude of 5 kilometers and velocity of 400 meters per second.  The map 

matching algorithm interpolates 3-arcsecond maps to 0.75 arcseconds and only uses three 

components of the gravity gradient tensor (ΓDD, ΓED, and  ΓND). 

 
Figure 35:  Performance Gains on a Fighter Mission 

 

 Figure 35 presents the performance gains at various GGI noise levels and INS 

drift rates.  Results for a scenario involving 0.1 Eö and less of GGI noise and a 2,000  

meter per hour INS drift rate suggest good potential returns on investments.  However, 

this describes an unlikely scenario where the performance of airborne GGIs improves an 

order of magnitude over today’s GGIs, while INS performance remains static at today’s 

levels.  The scenario involving 0.1 Eö of GGI noise and a 2,000 meter per hour INS drift 
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rate shows that GAME provides a 6-times improvement over the unaided INS.  Figure 36 

shows the GAME position errors versus time under these particular conditions, where an 

INS of today’s caliber works with a GGI noise level expected to be available in the near 

future. 

 

 
Figure 36:  GAME Position Accuracy on a Fighter Mission 
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fighter missions under other conditions, such as rougher terrain and longer flight 

durations, could still achieve high performance gains. 

 
Figure 37:  GGI Position Accuracies on a Fighter Mission 
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relatively short cargo mission with a GGI near the caliber of technologies available today.  

Flight durations 4 hours and longer with this caliber of GGI already promise good returns 

on investments.  Considering GGI noise levels expected to be available in the near future, 

the simulations suggest excellent potential for returns on investments. 

 
Figure 38:  Performance Gains on a Cargo Mission 
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Figure 39:  GAME Position Accuracy on a Cargo Mission 

 

 Of course, many long distance flights cross oceans, which raises questions 

regarding performance.  The cargo simulations use rough terrain, because cargo aircraft 

probably encounter rough map features from time to time that result in large position 

updates, reminiscent of a saw-tooth curve.  Richeson points out that gravity gradients 

offer map features over water,12 while other map-based aids do not.   In addition to the 

geoid’s long wavelength gradients, the ocean floor contributes to map features.  The 

National Oceanic and Atmospheric Administration estimates the average ocean depth at 
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ISR Mission Performance 

 In the ISR scenario, simulations show that GAME generally provides good 

potential for returns on investments.  The scenario assumes that a long endurance 

unmanned aerial vehicle conducts intelligence, surveillance, and reconnaissance over a 

24-hour flight duration.  Similar to the reasoning for the cargo scenarios, the simulations 

use rough terrain under the assumption that long missions periodically encounter rough 

map features.  The ISR simulations also fly at 15 km altitude, 150 meters per second, use 

all five components of the gravity gradient tensor and 3-arcsecond maps with no 

interpolation, and carry a cutting edge INS with only 200 meters per hour of drift. 

 Figure 40 presents the performance gains at various GGI noise levels and 

altitudes.  All scenarios estimate good potential for returns on investments, except for 

when aircraft employ a GGI with a 1 Eö noise level at or above about 15 kilometers 

altitude.  Tomorrow’s GGIs appear to be a good investment for long endurance missions. 

 
Figure 40:  Performance Gains on a ISR Mission 
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 The ISR simulations provide an opportunity to illustrate the effects of altitude on 

GAME solutions, as well as other variables that specifically decrease the accuracy of 

GGI solutions.  With GGI noise levels of 0.1 Eö, Figure 41 shows how lower altitudes 

lead to more accurate GAME solutions at 5 kilometers altitude (CEP = 126 meters), 

compared to the results at 25 kilometers (CEP = 416 meters).  GAME reaches steady 

state accuracy quicker at 5 kilometers altitude, versus 25 kilometers.  In Figure 42, GGI 

solutions possess significantly more accuracy at 5 kilometers (CEP = 141 meters) than 25 

kilometers (CEP = 698 meters).  The GGI solutions also experience an initial ramping up, 

which relates to the INS’s initially superior accuracy preventing  the map matching 

algorithm from searching larger areas for less accurate potential solutions. 

 
Figure 41:  Altitude's Effect on GAME Solutions on an ISR Mission 

 
Figure 42:  Altitude's Effect on GGI Solutions on an ISR Mission 
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Optimistic and Pessimistic Performance Perspectives 

 The optimistic and pessimistic scenarios intend to offer a best-case/worst-case 

perspective on GAME performance for a general aircraft.  Both scenarios employ GGIs 

and maps with 0.1 and 0.01 Eö of noise, respectively, implying these simulations offer a 

look at GAME performance a decade or more from today.  The optimistic scenario flies 

at 5 kilometers over rough terrain and uses all five components of the gravity gradient 

tensor, while the pessimistic scenario flies at 15 kilometers over smooth terrain and uses 

only three components.  Table 11summarizes the conditions. 

 

Table 11:  Variables for Optimistic and Pessimistic Simulations 

Variable The Optimist The Pessimist 

Terrain Rough Smooth 

Altitude (km) 5 15 

Velocity (m/s) 150 150 

Flight Duration (hr) 2, 4, 8, 16 2, 4, 8, 16 

INS Drift Rate (m/hr) 20, 200, 2000 20, 200, 2000 

Position Update Rate 1 1 

GGI Components 5 3 

GGI Noise (Eö) 0.1 0.1 

Map Noise (Eö) 0.01 0.01 

Map Resolution (arcseconds) 3 3 

Map Interpolation (arcseconds) 3 3 

 

 

 The figures on the following page present the performance gains for the optimistic 

and pessimistic scenarios, while allowing the INS drift rate and flight duration to vary.  

This approach provides the potential for returns on investments in a GGI with 0.1 Eö of 

noise, given the aircraft’s INS drift rate and flight duration.  From the optimist’s 
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perspective, a GGI noise capability of 0.1 Eö generally offers excellent potential for 

returns on investment when coupled with an INS that drifts 2 kilometers per hour.  Good 

returns are expected with an INS that drifts 200 meters per hour, given flight durations 

longer than about 4 hours.  Unfortunately, the pessimist’s perspective indicates that a 

good potential for returns only exists for flights longer than 4 hours with an INS that 

drifts 2 kilometer per hour.  The potential for returns grows significantly with INS drift 

rates more than 200 meters per hour and for longer flight durations.  Taken together, the 

optimistic and pessimistic scenarios suggest that a 0.1 Eö GGI has an excellent to good 

potential for returns on investments with an INS that drifts 2 kilometers per hour.  Good 

to poor potential exists with an INS that drifts 200 meters per hour, although long 

endurance missions would still benefit from GAME even under the pessimist’s worst-

case conditions.  Most of these performance gains would receive a mild boost with 

interpolation applied in the map matching algorithm. 

 

 
Figure 43:  The Optimist (left) and Pessimist (right) 
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V. Conclusions 

GAME and Aircraft Navigation 

 At default conditions, GAME performs 35 times better than an unaided INS, with 

a break even point of 4 minutes.  Given information from the INS, gravity gradiometry 

and map matching achieves a CEP of 141 meters.  Thanks to the Kalman filter and good 

estimates of uncertainties, GAME outperforms both the GGI and unaided INS, achieving 

a CEP of 128 meters.  Granted, the default conditions are optimistic in some respects, but 

all the simulations, covering wide ranges of conditions, generally show that GAME 

positively affects navigation performance.  Quality methods for bringing together 

navigation information from multiple sources and calculating uncertainties ensure that 

GAME improves navigation performance, even when GGI position solutions are less 

accurate than the INS.  The amount of improvement depends on many variables, and this 

paper only investigated 10 of them.  Other variables, this paper’s assumptions, and the 

limitations of this research effort leave caveats to be explored, some of which the final 

section discusses, including an understanding of GAME’s maximum performance limits. 

The results of the sensitivity analysis provide a fundamental understanding of 

how important variables affect GAME’s performance.  Combined effects of variables, 

other than those presented in this paper, can be estimated with information presented in 

this paper or additional simulations.  Considering the terrains selected for this research, 

rough terrain provides 2 to 5 times more accurate position solutions than smooth terrain.  

GAME performance improves with lower altitudes and more frequent position updates.  

The algorithm’s unsuccessful map matches at low altitudes suggest that this research does 

not provide enough information for conclusions about GAME’s performance at altitudes 
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near the local terrain height.  While the average terrain height might represent the optimal 

altitude for GAME performance, navigating in close proximity to large terrain features 

requires maps based on more accurate terrain data and robust algorithms.  Velocity did 

not significantly affect performance, but the simulations did not model velocity’s effects 

on GGI sensors.  Based on Roger’s research, a more realistic GGI model would show that 

velocity affects accuracy.  Decreases in GGI and map noise improve performance, but 

must work in concert with map resolution, interpolation, and the capabilities of the map 

matching algorithm to attain full potential.  An insignificant amount of information is lost 

when decreasing map resolution from 3 arcseconds to 48, but this cannot demonstrate 

how much information would be gained with map resolutions higher than 3 arcseconds.  

GAME performance improves as the number of components of the gravity gradient 

tensor increases up to five.  However, the best value appears to use three components, 

assuming each additional component comes at a proportional increase in costs.  Although 

performance gains increase with flight duration, the actual GGI solutions do not 

significantly change.  This simply communicates that missions with longer flight 

durations have more time to enjoy the improved GAME solutions, relative to an unaided 

INS that drifts boundlessly.  Similarly, performance gains increase when GAME couples 

with an INS with higher drift rates.  However, the accuracy of the GGI solutions 

decreases with higher INS drift rates.  This phenomenon relates to the coupling of the 

INS and the map matching algorithm, where lower INS uncertainties allow the algorithm 

to search smaller map areas.  If the INS communicates a higher uncertainty, the algorithm 

searches a larger map area and possibly finds other probable locations, thus reducing the 

GGI solution’s certainty or even resulting in a less accurate position solution.  
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The Conditions that Make GAME Feasible for Aircraft Navigation 

Given a quality navigation computer and map matching algorithm, GAME 

generally delivers positive effects on navigation solutions, making it a feasible aircraft 

navigation aid in most scenarios.  Benefits include the provision of discrete position 

information that typically hovers around a steady state accuracy, which is primarily 

dependent on the 10 variables discussed in this paper (i.e. terrain, altitude, velocity, flight 

duration, INS drift, position update rate, GGI components, GGI and map noise, map 

resolution, and interpolation).  Furthermore, GAME offers its position information 

worldwide while preserving the unique strengths of an INS; namely, its passive, all-

weather, and undeniable capabilities.  Under some conditions, such as short flights, 

orbiting over flat terrain, flying at high altitudes, and working with a very accurate INS, 

GAME has a neutral effect on position accuracies.  Taken to the extreme and rolled 

together with poor algorithms, GAME could harm navigation solutions, especially in the 

short term.  In general, however, GAME positively affects navigation performance under 

most conditions, given a quality navigation computer and map matching algorithm. 

From the perspective of worthwhile investments, the practical simulations and 

performance gains, supported by knowledge from the sensitivity analysis, point to the 

conditions that make GAME feasible for aircraft navigation.  Results under conditions 

other than those presented in this paper can be estimated with information presented in 

this paper or additional simulations.  With 1 Eö of GGI noise and 2,000 meters per hour 

of INS drift, a good to poor potential for returns should be expected for the cargo and ISR 

missions.  As defined in this paper, these missions apply to many other scenarios, 

including long distance and long endurance.  Examples include loitering, ISR, and long 
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range attack and transportation.  Even better performance gains occur for these scenarios 

at low altitudes.  This represents a level of performance within reach of today’s 

technologies.  Investment in GAME with only fighter missions in mind would provide a 

solidly poor potential for returns in the short term, although the capability might be a nice 

addition in today’s fighter-like scenarios at no cost. 

Looking at the near future and considering a GGI capable of 0.1 Eö noise levels, 

aircraft with INS drift rates greater than 200 meters per hour possess a solid potential for 

good returns under most conditions.  For long distance or long endurance aircraft, GAME 

provides good potential even with a 200 meter per hour INS.  Optimistic and pessimistic 

outlooks support these conclusions and provide a useful tool for estimating performance 

gains, given an investment that produces 0.1 Eö GGIs for aircraft navigation. 

The sensitivity analysis shows that performance measures in this paper improve 

with a coordinated effort to reduce noise levels, increase map resolution, and improve 

interpolation and map matching algorithms.  These four factors are intertwined, and the 

weakest link limits GAME performance despite improvements in the other areas. When 

these four factors improve simultaneously, GGI solution accuracy significantly improves 

across all conditions and, in turn, produces more accurate GAME solutions, increases 

performance gains, and lowers break even points.  GAME might never achieve GPS-level 

accuracy, but it provides position updates with respectable accuracy, especially compared 

to other navigation aids.  Given the Chief of Staff of the Air Force’s insistence that Joint 

forces reduce GPS dependence, a GAME INS could lead the market for a next-generation 

navigation package.  The GAME INS provides what no other aircraft navigation package 

can offer…passive, all-weather, and undeniable navigation information. 
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Future Research and Technologies that Will Improve GAME Performance 

The Art of Map Making - Validating gravity gradient models stands as the most 

immediate action needed to support GAME.  Gravity gradient maps represent the 

foundation for using gravity gradiometry and map matching as a navigation aid.  If 

modeled maps do not accurately portray reality, then further research can only build on 

an uncertain foundation.  Whether measured or modeled information builds the maps, 

conducting actual surveys characterizes the nature of true gravity gradients.  Surveys 

might quantify model inaccuracies, show how much gravity gradients change with time, 

identify poorly modeled locations, and verify the important frequencies of gravity 

gradient information.  These types of validations provide answers to many questions, 

including, what methods result in the best maps?  Should the maps be modeled, surveyed, 

or some combination?  What’s the optimal map resolution?  How does GAME perform in 

other parts of the world, especially considering mountains, desserts, oceans, and extreme 

latitudes?  What does it take for GAME to work well at low altitudes; near or within 

cities?  Surveys provide the validations needed to answer these questions, which 

ultimately ensure that future research and investments build on a strong foundation. 

The question regarding whether maps should be modeled or surveyed bears 

further discussion.  A refined survey that addresses the frequencies of information 

available in gravity gradients, as well as general sampling techniques around the world, 

helps determine whether models or surveys make the optimal maps.  Optimal in this case 

refers to maps that meet the user’s needs at the least cost or provide the best value for the 

investment.  Furthermore, general and refined surveys help determine whether full 

surveys of the Earth are required, or maybe just in some locations.  If surveys match the 
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models within acceptable accuracies, modeled maps might be good enough, or maybe 

limited surveys can adequately improve models.  For example, surveys might identify 

biases and lead to convenient correction factors.  Further efforts might also identify the 

most efficient methods for including terrain effects in map models (e.g. how much terrain 

to include, what data resolution to use, and what data can be neglected at high altitude).  

Surveys over time also determine how often new surveys should be performed and 

whether updates to maps due to large mass movements can be made with calculations or 

require new surveys.  Once again, without such validations, predictions of GAME’s 

performance rest on a foundation that’s only as solid as the models used in the 

predictions. 

Strengthening the GGI – The next critical step in achieving GAME’s potential is 

to support improvements in GGI technology.  Although the demand for lower noise 

levels will probably never be satiated, most of this paper’s simulations focused on GGIs 

with noise levels of 1, 0.1, and 0.01 Eö.  While today’s technologies are within reach of 1 

Eö, further advancements would be necessary to ensure that noise levels could be held 

down onboard an aircraft, in a smaller and lighter package, and achieving all the 

necessary integrations with the aircraft.  Needless to say, 0.1 Eö noise levels are even 

further into the future and will require all of the previously mentioned efforts and more.  

Additionally, GGIs should efficiently measure at least three components of the gravity 

gradient tensor, including the ΓDD component, which could also assist the INS with 

estimating the gravity vector.  Navigation computers require all of these features at high 

data rates, with accurate filtering and time stamping of data. 
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Smarter Algorithms – Finally, investment efforts must develop the brains of the 

GAME.  While many algorithms already provide quality map matching services, GAME 

demands special attention in some areas.  First, the nature of gravity gradients make 

many map matching methods applicable to GAME.  Selecting the optimal method 

requires careful consideration, including the possibility that different algorithms provide 

the best performance at different times.  For example, the uniqueness of gravity gradients 

throughout the world offers the potential for GAME to provide position solutions with no 

prior information.  This process differs significantly from a map matching algorithm that 

receives assistance from and tracks along with an INS.  While the likelihood function 

works well for tracking, a particle mass filter might work better for initializing a position, 

with little to no prior information, and take advantage of map features and worldwide 

patterns such as found with ΓND in Figure 11 on page 34.  A third algorithm might even 

be better suited for taking advantage of high speed flight by sensing and identifying large 

features or landmarks on the maps, and avoiding intense algorithms that attempt to 

process every byte of data.  Finally, certain algorithms might offer capabilities to adapt to 

static and transient biases in gravity gradients, such as those caused by changes in aircraft 

configuration, flying near other aircraft, variations in atmospheric conditions, large mass 

movements on earth, and other changes in gravity gradients.  Thus, multiple algorithms 

for GAME is a powerful option. 

From the perspective of the simple map matching algorithm used in this paper, 

many things could be done to improve GAME.  First, and most importantly, altitude must 

be added to the map matching algorithm as an unknown.  The addition of another 

unknown could demand changes to the algorithm’s logic and significantly affect 
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GAME’s performance measures.  The efficiency and accuracy of the algorithm could be 

improved so that it initially searches a small area for position solutions (e.g. 1-standard 

deviation of the estimated INS error), and then incrementally widens the search if a 

position solution is not found with an acceptable uncertainty. 

Simulations in this research effort also encountered situations where the 

likelihood function assigns insignificant likelihoods to all position solution candidates, 

despite low noise levels.  This essentially results in a rejection of all position solution 

candidates, because the differences between measured and expected (i.e. senor and map) 

values are too large, or similar at multiple locations.  Computer processing capacity and 

limitations on interpolation also contributed to the inability of the map matching 

algorithm to identify unique position solutions.  In some scenarios, interpolation 

decreased the accuracy of position solutions.  These phenomena prevent this analysis 

from driving the critical variables, such as noise levels, interpolation, and map 

resolutions, to the maximum GAME performance limits.   Thus, the simulations in this 

analysis did not explore the full potential of GAME position accuracies, although the 

physical attainment of such accuracies is probably far into the future.  The simulations, 

however, show that GAME improves navigation accuracy under almost all conditions.  

However, achieving a feasible return on investment with today’s technologies may be 

limited to long distance and long endurance missions. Depending on the relative 

advancement of INS and GGI sensors, tomorrow’s technologies promise even greater 

returns on GAME investments, paving the way for GAME to potentially dominate the 

market for secure and covert navigation aids that preserve the strengths of aircraft inertial 

navigation systems. 
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Appendix A.  MATLAB Computer Program 
 

 The following computer program, written in MATLAB 2008b, ran all of the 

simulations presented in this paper.  The program simulates an aircraft inertial navigation 

system enhanced with gravity gradiometry and map matching (GAME).  Section III of 

this paper, Methodology, describes the program in more detail.  Appendix B presents the 

full table of results.  Due to their size, the figures presented in previous sections are the 

only plots presented in this paper.  Before running this program, gravity gradient maps 

must be stored in accordance with the instructions in the program.  For this paper, a 

modified version of the program developed by Rogers19 created the maps. 

 Minor modifications can be made to this program to accommodate different maps 

and resolutions, aircraft starting points and flightpaths, and INS drifts.  Although the 

program was written with other options in mind, the addition of aircraft dynamics, the 

inclusion of altitude as an unknown, the detailed modeling of INS and GGI sensors, and 

the choice of different map matching algorithms require more significant modifications.  

In these circumstances, computer programmers could work with this program, but might 

consider developing a new program and using this program as a guide. 

 

%*************************************************************************% 
%  Anthony DeGregoria, Air Force Institute of Technology, March 2010 
% 
%  This program simulates an aircraft inertial navigation system enhanced 
%     with gravity gradiometry and map matching (GAME). 
% 
%  NOTES: 
%  - Before running this program, gravity gradient maps must be stored 
%       in accordance with the instructions starting on line 58 and updates 
%       made to the section starting on line 31 
%  - This program treats the stored gravity gradient maps as truth data 
%  - User inputted noise is added to the truth maps 
%  - The aircraft flies a hard coded flightpath, which can be modified in 
%       the section starting on line 125 
%  - The aircraft flies at a constant velocity and altitude 
%  - The INS always drifts southeast. 
%       Changes can be made in the section starting on line 185 
%  - The Likelihood Function sums the inputted GGI & map noise 
%*************************************************************************% 
  
close all 
clear all 
clc 
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%Define some constants 
    G=6.67E-11; %Universal Gravity Constant 
    a=6378137; %semi-major axis of the Earth in meters 
    e2=0.0818191908426^2; %Earth's eccentricity squared 
    Eotvos=1E-9; %used to convert units to Eotvos 
  
%The aircraft's true starting position and the resolution & reference vector for the truth maps are hard coded here 
  
    M=input('Rough or Smooth Terrain [R/S]? ','s'); 
    if ((M=='R')|(M=='r')) %this section provides information to the algorithm about the rough maps 
        position_start=[35.86 -121.32];  %[lat long] of starting point for rough terrain true trajectory; 
                                         %Geodetic coordinates (WGS84 reference ellipsoid) 
        Res_source=1; %put the Resolution Level of the truth maps here 
        GGIsourcemap_resolution=3*2^(1-Res_source); %resolution of source map (arcseconds) 
        refvec=[1200, 37.0004, -122.0004]; %information pertaining to (row 1, column 1) of rough terrain gradient maps 
                                           %refvec=[relates to grid size, lattitude, longitude] 
        if (M=='r') 
            M='R'; 
        end 
    elseif ((M=='S')|(M=='s')) %this section provides information to the algorithm about the smooth maps 
        position_start=[35.86 -89.32];  %[lat long] of starting point for smooth terrain true trajectory; 
                                        %Geodetic coordinates (WGS84 reference ellipsoid) 
        Res_source=1; %put the Resolution Level of the source/truth maps here 
        GGIsourcemap_resolution=3*2^(1-Res_source); %resolution of source map (arcseconds) 
        refvec=[1200, 37.0004, -90.0004]; %information pertaining to (row 1, column 1) of smooth terrain gradient maps; 
                                          %refvec=[relates to grid size, lattitude, longitude] 
        if (M=='s') 
            M='S'; 
        end 
    else 
        fprintf('Wrong Answer!'); break; 
    end 
     
%User inputs altitude and computer loads the corresponding gravity gradient maps for the selected terrain and alitude; 
    %the maps must be stored in a sub-directory named "GradientMaps"; files must follow the naming convention xTxxFL##, 
    %where the first x designates the terrain ('R' for rough or 'S' for smooth), the second and third x designate the 
    %component of the gravity gradient tensor (e.g. 'xz'), and the two # signs designate the flight level in kilometers 
    %(e.g. '05' designates 5,000 meters altitude and '30' designates 30,000 meters altitude) 
    altitude=input('Enter Altitude (height above the average terrain height in meters) = '); 
    altitude_km=round(altitude/1000); 
    if altitude_km<10 
        altitude_km=['0' int2str(altitude_km)]; 
    else 
        altitude_km=int2str(altitude_km); 
    end 
    map_file_Txx=[M 'TxxFL' altitude_km]; %loads the Txx components of the gravity gradient map 
    map_Txx=load (['GradientMaps\' map_file_Txx]); 
    map_file_Txy=[M 'TxyFL' altitude_km]; %loads the Txy components of the gravity gradient map 
    map_Txy=load (['GradientMaps\' map_file_Txy]); 
    map_file_Txz=[M 'TxzFL' altitude_km]; %loads the Txz components of the gravity gradient map 
    map_Txz=load (['GradientMaps\' map_file_Txz]); 
    map_file_Tyz=[M 'TyzFL' altitude_km]; %loads the Tyz components of the gravity gradient map 
    map_Tyz=load (['GradientMaps\' map_file_Tyz]); 
    map_file_Tzz=[M 'TzzFL' altitude_km]; %loads the Tzz components of the gravity gradient map 
    map_Tzz=load (['GradientMaps\' map_file_Tzz]); 
  
%User inputs velocity, INS/GGI performance factors, map information, and filename for outputs 
    velocity=input('Enter Aircraft Velocity (meters per second) = '); 
    INS_drift=input('Enter INS Drift Rate (CEP50 in meters per hour) = '); 
    update_rate_GGI=input('Enter GGI Data Rate (seconds) = '); 
    update_rate_GAME=input('Enter how often you would like the navigation computer to run GAME (seconds) = '); 
    GGIsignal_noise=input('Enter GGI Noise Level\n   (1 standard deviation measured in Eotvos) = '); 
    GGImap_noise=input('Enter Gravity Gradient Map Noise Level\n   (1 standard deviation measured in Eotvos) = '); 
    Res_sim=input('Enter the simulated Gravity Gradient Map Resolution\n   (Resolution Level must be equal or less than 
the database maps) enter...\n   "1" for 3 arcseconds,\n   "0" for 6 arcseconds,\n   "-1" for 12 arcseconds...? '); 
        spacing=2^( Res_source- Res_sim); 
    Res_interp=input('Enter how much you would like the algorithm to Interpolate the simulated maps\n   (Resolution 
Level must be equal or greater than the database map) enter...\n   "1" for 3 arcseconds,\n   "2" for 1.5 arcseconds,\n   
"3" for 0.75 arcseconds...? '); 
        num_interps= Res_interp- Res_sim; 
        GGImap_resolution=3*2^(1- Res_interp); %Gravity Gradient Maps will be interpolated from the 
                                               %Res_sim resolution to this resolution (arcseconds) 
    time_sim=input('Enter how long you would like the simulation to run (hours) = '); %75000*8*2/velocity/3600; 
    filename=input('Enter a Filename for the results to be published = ','s'); 
  
%Set initial conditions for variables 
    time=0; %the simulation starts at this time 
    time_step=1; %defines the time step for the simulation in seconds 
    %initial true position [lat, long, altitude, time] 
        position_true(1,:)=[position_start(1,1), position_start(1,2), altitude, time]; 
    %row location of initial true position on map matrix  
        position_true_row=floor((refvec(1,1)*2+1)-(refvec(1,2)-position_true(1,1))*3600/GGIsourcemap_resolution); 
    %column location of initial true position on map matrix 
        position_true_column=floor(-(refvec(1,3)-position_true(1,2))*3600/GGIsourcemap_resolution)+1; 
    GGIsignal_true(1,1)=map_Txx.(map_file_Txx)(position_true_row,position_true_column); %Txx at initial location 
    GGIsignal_true(1,2)=map_Txy.(map_file_Txy)(position_true_row,position_true_column); %Txy at initial location 
    GGIsignal_true(1,3)=map_Txz.(map_file_Txz)(position_true_row,position_true_column); %Txx at initial location 
    GGIsignal_true(1,4)=map_Tyz.(map_file_Tyz)(position_true_row,position_true_column); %Tyz at initial location 
    GGIsignal_true(1,5)=map_Tzz.(map_file_Tzz)(position_true_row,position_true_column); %Tzz at initial location 
    GGIsignal_INS(1,1:5)=GGIsignal_true(1,1:5); %gravity gradients at initial INS position 
    P=zeros(3,3); %matrix whose diagonals represent the uncertainty of the INS position 
    H=eye(3,3); 
    position_Kalman(1,:)=position_true(1,:); %initial integrated navigation solution set to match true position 
    position_INS(1,:)=position_true(1,:); %initial INS solution set to match true position 
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    position_GGI(1,:)=position_true(1,:); %initial GGI solution set to match true position 
    num_matches_failed=0; %initial number of bad map matches set to zero 
    num_matches_successful=0; %intial number of times that a map match is attempted 
    BAILOUT=0; %a flag that breaks the map matching algorithm (GAME) loop 
    track_angle=0; %initial direction the aircraft flies, measured in degrees with zero degrees pointing East 
  
tic %start a clock to record how long it takes to accomplish the simulation 
time_stamp=clock; %record the date & time of this simulation 
h = waitbar(0,'The GAME is this percent complete...'); %tells user what percent of the simulation is complete 
     
while BAILOUT<1 %stops the simulation once the bailout flag is set to one or graeter 
     
    time=time+time_step; %propagates time 
    fraction_complete=time/floor(time_sim)/3600; %calculates how much of the simulation is complete 
    waitbar(fraction_complete,h) %updates the waitbar 
     
%Model True Trajectory (position_true=[lattitude, longitude, altitude, time])      
    %if you want to fly a circle pattern over the terrain, use this if statement 
  
     
    %if you want to fly a square pattern over the terrain, use this if statement 
    %if rem(time,floor(750000/velocity))==0 
    %    track_angle=track_angle+90; 
    %end 
     
    %if you want to fly a star pattern over the terrain, use this if statement 
     if rem(time,floor(75000/velocity))==0 %each segment of the start is 75 km long 
         track_angle=track_angle+135; %repetitive 135-degree left turns make a start pattern 
     end 
     
    %Calculate Earth's radius parameters in meters (Dr. Raquet's EENG 533 class notes, AFIT) 
    Rm=a*(1-e2)/(1-e2*sind(position_true(time,1))*sind(position_true(time,1)))^(3/2); 
    Rp=a/(1-e2*sind(position_true(time,1))*sind(position_true(time,1)))^(1/2); 
     
    %Calculate the change in latt, long, and altitude based on user input 
    delta_latt_true=180/pi()*velocity*sind(track_angle)*time_step/(Rm+position_true(time,3)); 
    
delta_long_true=180/pi()*velocity*cosd(track_angle)*time_step/(Rp+position_true(time,3))/cosd(position_true(time,1)); 
    delta_alti_true=0*time_step; %zero may be replaced by an ascent/descent rate specificed by the user 
     
    %Propagate the aircraft's true position 
    position_true(time+1,1)=position_true(time,1)+delta_latt_true; 
    position_true(time+1,2)=position_true(time,2)+delta_long_true; 
    position_true(time+1,3)=position_true(time,3)+delta_alti_true; 
    position_true(time+1,4)=time;    
     
%Record GGI Signal at True Location, using linear interpolation and including the random noise specified by the user 
  
    position_true_row=floor( (refvec(1,1)*2+1) - (refvec(1,2)-position_true(time+1,1))*3600/GGIsourcemap_resolution  ); 
    position_true_column=floor( -(refvec(1,3)-position_true(time+1,2)) *3600/GGIsourcemap_resolution)+1; 
     
    GGIsignal_true_mapTxx=map_Txx.(map_file_Txx)... 
        (position_true_row:position_true_row+1, position_true_column:position_true_column+1); 
    GGIsignal_true_mapTxy=map_Txy.(map_file_Txy)... 
        (position_true_row:position_true_row+1, position_true_column:position_true_column+1); 
    GGIsignal_true_mapTxz=map_Txz.(map_file_Txz)... 
        (position_true_row:position_true_row+1, position_true_column:position_true_column+1); 
    GGIsignal_true_mapTyz=map_Tyz.(map_file_Tyz)... 
        (position_true_row:position_true_row+1, position_true_column:position_true_column+1); 
    GGIsignal_true_mapTzz=map_Tzz.(map_file_Tzz)... 
        (position_true_row:position_true_row+1, position_true_column:position_true_column+1); 
     
    lat=refvec(1,2)+GGIsourcemap_resolution/3600*(position_true_row-refvec(1,1)*2-1); 
    lon=refvec(1,3)+(position_true_column-1)*GGIsourcemap_resolution/3600; 
     
    latt=[lat+GGIsourcemap_resolution/3600, lat]; 
    long=[lon, lon+GGIsourcemap_resolution/3600]; 
     
    GGIsignal_true(time+1,1)=normrnd(interp2(latt, long, GGIsignal_true_mapTxx,... 
        position_true(time+1,1), position_true(time+1,2)), GGIsignal_noise); 
    GGIsignal_true(time+1,2)=normrnd(interp2(latt, long, GGIsignal_true_mapTxy,... 
        position_true(time+1,1), position_true(time+1,2)), GGIsignal_noise); 
    GGIsignal_true(time+1,3)=normrnd(interp2(latt, long, GGIsignal_true_mapTxz,... 
        position_true(time+1,1), position_true(time+1,2)), GGIsignal_noise); 
    GGIsignal_true(time+1,4)=normrnd(interp2(latt, long, GGIsignal_true_mapTyz,... 
        position_true(time+1,1), position_true(time+1,2)), GGIsignal_noise); 
    GGIsignal_true(time+1,5)=normrnd(interp2(latt, long, GGIsignal_true_mapTzz,... 
        position_true(time+1,1), position_true(time+1,2)), GGIsignal_noise); 
     
%Model INS trajectory and uncertainty 
  
    %The user inputted INS drift is split into two equal components in the lattitudinal and longitudinal directions 
    delta_latt_INS=180/pi()*(INS_drift/sqrt(2)/3600*time_step)/(Rm+mean(position_true(time:time+1,3))); 
    delta_long_INS=180/pi()*(INS_drift/sqrt(2)/3600*time_step)/(Rp+mean(position_true(time:time+1,3)))/... 
        cosd(mean(position_true(time:time+1,1))); 
    delta_alti_INS=0; 
     
    %The new INS position is equal to the old position, plus the sensed aircraft 
    %movement since the last position, and the INS drift, which is applied 
    %in the south and east directions 
    position_INS(time+1,1)=position_INS(time,1)+delta_latt_true-delta_latt_INS; 
    position_INS(time+1,2)=position_INS(time,2)+delta_long_true+delta_long_INS; 
    position_INS(time+1,3)=position_INS(time,3)+delta_alti_true+delta_alti_INS; 
    position_INS(time+1,4)=time; 
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    %Record the gravity gradients along the INS flightpath 
    position_INS_row=floor((refvec(1,1)*2+1)-(refvec(1,2)-position_INS(time+1,1))*3600/GGIsourcemap_resolution); 
    position_INS_column=floor(-(refvec(1,3)-position_INS(time+1,2))*3600/GGIsourcemap_resolution)+1; 
     
    GGIsignal_INS_mapTxx=map_Txx.(map_file_Txx)... 
        (position_true_row:position_true_row+1,position_true_column:position_true_column+1); 
    GGIsignal_INS_mapTxy=map_Txy.(map_file_Txy)... 
        (position_true_row:position_true_row+1,position_true_column:position_true_column+1); 
    GGIsignal_INS_mapTxz=map_Txz.(map_file_Txz)... 
        (position_true_row:position_true_row+1,position_true_column:position_true_column+1); 
    GGIsignal_INS_mapTyz=map_Tyz.(map_file_Tyz)... 
        (position_true_row:position_true_row+1,position_true_column:position_true_column+1); 
    GGIsignal_INS_mapTzz=map_Tzz.(map_file_Tzz)... 
        (position_true_row:position_true_row+1,position_true_column:position_true_column+1); 
     
    lat=refvec(1,2)+GGIsourcemap_resolution/3600*(position_true_row-refvec(1,1)*2-1); 
    lon=refvec(1,3)+(position_true_column-1)*GGIsourcemap_resolution/3600; 
     
    latt=[lat+GGIsourcemap_resolution/3600, lat]; 
    long=[lon, lon+GGIsourcemap_resolution/3600]; 
     
    GGIsignal_INS(time+1,1)=interp2(latt, long, GGIsignal_true_mapTxx,... 
        position_true(time+1,1), position_true(time+1,2)); 
    GGIsignal_INS(time+1,2)=interp2(latt, long, GGIsignal_true_mapTxy,... 
        position_true(time+1,1), position_true(time+1,2)); 
    GGIsignal_INS(time+1,3)=interp2(latt, long, GGIsignal_true_mapTxz,... 
        position_true(time+1,1), position_true(time+1,2)); 
    GGIsignal_INS(time+1,4)=interp2(latt, long, GGIsignal_true_mapTyz,... 
        position_true(time+1,1), position_true(time+1,2)); 
    GGIsignal_INS(time+1,5)=interp2(latt, long, GGIsignal_true_mapTzz,... 
        position_true(time+1,1), position_true(time+1,2)); 
         
    %Calculate and propagate the uncertainty of the INS 
    variance=(INS_drift/3600*time_step*1.2)^2; %convert INS drift into a variance (meters)^2 
    variance_latt_INS=(180/pi()*sqrt(variance)/(Rm+mean(position_true(time:time+1,3))))^2; %(degrees^2) 
    variance_long_INS=(180/pi()*sqrt(variance)/(Rp+mean(position_true(time:time+1,3)))/... 
        cosd(mean(position_true(time:time+1,1))))^2; %(degrees^2) 
    variance_alti_INS=.1; %arbitrary value...currently does not affect navigation solutions (meters^2) 
    P=P+[variance_latt_INS,0,0;0,variance_long_INS,0;0,0,variance_alti_INS]; %propagate uncertainties forward in time 
  
%Find best location on GGI map that matches GGI signal and calculate its uncertainty 
  
    if rem(time,update_rate_GAME)==0 %only attempts GAME as frequently as the user specified 
     
    %Capture the portion of the map representing the 3-sigma uncertainty of the INS position 
  
        sigma3=[3*sqrt(P(1,1)*time), 3*sqrt(P(2,2)*time), 3*sqrt(P(3,3)*time)].*3600./GGIsourcemap_resolution; 
        sigma3=round(sigma3); 
        if sigma3(1,1)<spacing %signal_candidates_sim must be minimum of 2-by-2 grid or code crashes on interp2 command 
            sigma3(1,1)=spacing; 
        end 
        if sigma3(1,2)<spacing 
            sigma3(1,2)=spacing; 
        end 
        if sigma3(1,1)/spacing*2^num_interps<4 %signal_candidates must be minimum 9-by-9 grid or code crashes on interp 
            sigma3(1,1)=4*spacing/2^num_interps; 
        end 
        if sigma3(1,2)/spacing*2^num_interps<4 
            sigma3(1,2)=4*spacing/2^num_interps; 
        end 
        n=(sigma3(1,1)*2+1)*(sigma3(1,2)*2+1); 
         
        %Grab a portion of the truth map, but at the user's requested resolution (i.e. Res_sim) 
        clear signal_candidates; clear signal_candidates_sim; 
        signal_candidates_sim(:,:,1)=map_Txx.(map_file_Txx)... 
            (position_INS_row-sigma3(1,1):spacing:position_INS_row+sigma3(1,1),... 
            position_INS_column-sigma3(1,2):spacing:position_INS_column+sigma3(1,2)); 
        signal_candidates_sim(:,:,2)=map_Txy.(map_file_Txy)... 
            (position_INS_row-sigma3(1,1):spacing:position_INS_row+sigma3(1,1),... 
            position_INS_column-sigma3(1,2):spacing:position_INS_column+sigma3(1,2)); 
        signal_candidates_sim(:,:,3)=map_Txz.(map_file_Txz)... 
            (position_INS_row-sigma3(1,1):spacing:position_INS_row+sigma3(1,1),... 
            position_INS_column-sigma3(1,2):spacing:position_INS_column+sigma3(1,2)); 
        signal_candidates_sim(:,:,4)=map_Tyz.(map_file_Tyz)... 
            (position_INS_row-sigma3(1,1):spacing:position_INS_row+sigma3(1,1),... 
            position_INS_column-sigma3(1,2):spacing:position_INS_column+sigma3(1,2)); 
        signal_candidates_sim(:,:,5)=map_Tzz.(map_file_Tzz)... 
            (position_INS_row-sigma3(1,1):spacing:position_INS_row+sigma3(1,1),... 
            position_INS_column-sigma3(1,2):spacing:position_INS_column+sigma3(1,2)); 
         
        for ii=1:1:5 
            %Noise is added to the gravity gradient maps to simulate inaccuracies in the stored data; 
            signal_candidates_sim(:,:,ii)=normrnd(signal_candidates_sim(:,:,ii), GGImap_noise); 
             
            %The gravity gradient maps are interpolated to the user's requested resolution (i.e. Res_interp) 
            signal_candidates(:,:,ii)=interp2(signal_candidates_sim(:,:,ii), num_interps, 'linear'); 
             
    %Calculate the point on the map with the maximum likelihood of matching the GGI sensor data 
            signal_candidates(:,:,ii)=(signal_candidates(:,:,ii)-GGIsignal_true(time+1,ii)).^2; 
        end 
         
        signal_candidates(:,:,6)=sum(signal_candidates(:,:,1:5),3); 
        signal_candidates(:,:,6)=exp(-signal_candidates(:,:,6)./2./((GGIsignal_noise+GGImap_noise)^2))./... 



 

104 

            sqrt((2*pi())^5*(GGIsignal_noise+GGImap_noise)^2); 
         
        likelihood=max(max(signal_candidates(:,:,6))); 
        [signal_candidates_row, signal_candidates_column]=find(signal_candidates(:,:,6)==likelihood); 
         
        position_GGI_row=floor((signal_candidates_row-1)/2^( Res_interp-1))+position_INS_row-sigma3(1,1)-1; 
        position_GGI_column=floor((signal_candidates_column-1)/2^( Res_interp-1))+position_INS_column-sigma3(1,2)-1; 
         
    if length(signal_candidates_row)==1 %when there is not exactly one location with the maximum likelihood(e.g. zero), 
            %the algorithm will set the map matching solution equal to the current INS position 
        %The formula for converting matrix indices to positions needs to be updated, 
            %if flying over locations with negative lattitude and/or positive longitude 
        position_GGI(time+1,1)=refvec(1,2)+3/3600*(position_GGI_row-refvec(1,1)*2-1)+... 
            rem(signal_candidates_row-1,2^( Res_interp-1))*GGImap_resolution/3600; 
        position_GGI(time+1,2)=refvec(1,3)+(position_GGI_column-1)*3/3600+... 
            rem(signal_candidates_column-1,2^( Res_interp-1))*GGImap_resolution/3600; 
        position_GGI(time+1,3)=position_INS(time+1,3); 
        position_GGI(time+1,4)=time;             
  
        %Calculate magnitude of GGI error in meters 
            %position_error_GGI=[north error, east error, up error, time, total error magnitude] (measured in meters) 
            num_matches_successful=num_matches_successful+1; 
            position_error_GGI(num_matches_successful,1:3)=position_true(time+1,1:3)-position_GGI(time+1,1:3); 
            %convert INS lattitude and longitude error from degrees to meters 
            position_error_GGI(num_matches_successful,1)=pi()/180*position_error_GGI(num_matches_successful,1)*Rm; 
            position_error_GGI(num_matches_successful,2)=pi()/180*position_error_GGI(num_matches_successful,2)*... 
                (Rp+position_true(time+1,3))*cosd(position_true(time+1,2)); 
            position_error_GGI(num_matches_successful,4)=time; 
            position_error_GGI(num_matches_successful,5)=sqrt(position_error_GGI(num_matches_successful,1).^2+... 
                position_error_GGI(num_matches_successful,2).^2); %magnitude of INS RMS position error in meters 
             
        %Calculate uncertainty associated with point on map with maximum likelihood (modified from Capt William Storms) 
        pdf_x=signal_candidates(signal_candidates_row,:,6); 
        pdf_y=signal_candidates(:,signal_candidates_column,6); 
        r=round(1000/size(signal_candidates,1)); 
        s=round(1000/size(signal_candidates,2)); 
        pdf_x=interp(pdf_x,s); 
        pdf_y=interp(pdf_y,r); 
        pdf_x=pdf_x./sum(pdf_x); 
        pdf_y=pdf_y./sum(pdf_y);         
        ii=1; jj=size(pdf_x,2); kk=1; ll=size(pdf_y,1); 
        pdf_x_sum_left=0; pdf_x_sum_right=0;pdf_y_sum_left=0; pdf_y_sum_right=0; 
        while pdf_x_sum_left<0.16 
            pdf_x_sum_left=pdf_x_sum_left+pdf_x(ii); 
            ii=ii+1; 
        end 
        while pdf_x_sum_right<0.16 
            pdf_x_sum_right=pdf_x_sum_right+pdf_x(jj); 
            jj=jj-1; 
        end 
        while pdf_y_sum_left<0.16 
            pdf_y_sum_left=pdf_y_sum_left+pdf_y(kk); 
            kk=kk+1; 
        end 
        while pdf_y_sum_right<0.16 
            pdf_y_sum_right=pdf_y_sum_right+pdf_y(ll); 
            ll=ll-1; 
        end 
        sigma_x=ceil((jj-ii)/2)/s*GGImap_resolution/3600; 
        sigma_y=ceil((ll-kk)/2)/r*GGImap_resolution/3600; 
        %3sigma_x and 3sigma_y must be equal or greater than the resolution of the gravity gradient maps 
        sigma_min=GGImap_resolution/3600/3; 
        if sigma_x<sigma_min 
            sigma_x=sigma_min; 
        end 
        if sigma_y<sigma_min 
            sigma_y=sigma_min; 
        end 
        R=[sigma_x^2,0,0;0,sigma_y^2,0;0,0,20]; 
         
    else 
            clear signal_candidates_row; clear signal_candidates_column; clear position_GGI_row; clear 
position_GGI_column; 
            position_GGI(time+1,:)=position_INS(time+1,:); %GGI accepts INS positin solution when map matching fails 
            R=[1.78e14,0,0;0,1.78e14,0;0,0,20]; %high uncertainties minimize weight of bad solution in Kalman filter 
            num_matches_failed=num_matches_failed+1; %counts the number of failed map matches 
    end 
                 
    %Update Kalman and INS position...using a discrete linear Kalman Filter! 
        K=P*H'/(H*P*H'+R); 
        position_Kalman(time+1,1:3)= (position_INS(time+1,1:3)' + K*(position_GGI(time+1,1:3)'-... 
            H*position_INS(time+1,1:3)'))'; 
        position_Kalman(time+1,4)=time; 
        position_INS(time+1,:)=position_Kalman(time+1,:); 
        P=(eye(3,3)-K*H)*P; 
     
    else 
         
        position_Kalman(time+1,:)=position_INS(time+1,:); %when no map match is attempted, Kalman equals INS solution 
         
    end 
         
%Calculate magnitude of INS error in meters 
    %position_error_INS=[north error, east error, up error, time, total error magnitude] (measured in meters) 
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    position_error_INS(time+1,1:3)=position_true(time+1,1:3)-position_INS(time+1,1:3); 
    %convert INS lattitude and longitude error from degrees to meters 
    position_error_INS(time+1,1)=pi()/180*position_error_INS(time+1,1)*Rm; 
    position_error_INS(time+1,2)=pi()/180*position_error_INS(time+1,2)*... 
        (Rp+position_true(time+1,3))*cosd(position_true(time+1,2)); 
    position_error_INS(time+1,4)=time; 
    %magnitude of INS RMS position error in meters 
    position_error_INS(time+1,5)=sqrt(position_error_INS(time+1,1).^2+position_error_INS(time+1,2).^2); 
  
%If you get too close to the edge of the map, then stop the simulation 
    if time==round(time_sim*3600) 
        BAILOUT=100; 
    end 
    if (position_true(time+1,1)>(refvec(1,2)-.4) | position_true(time+1,1)<(refvec(1,2)-1.6) |... 
            position_true(time+1,2)<(refvec(1,3)+0.4) | position_true(time+1,2)>(refvec(1,3)+1.7)) 
        BAILOUT=100; 
        fprintf('You flew too close to the edge of the map!'); 
    end 
    if (position_INS(time+1,1)>(refvec(1,2)-.1) | position_INS(time+1,1)<(refvec(1,2)-1.9) |... 
            position_INS(time+1,2)<(refvec(1,3)+0.1) | position_INS(time+1,2)>(refvec(1,3)+1.9)) 
        BAILOUT=100; 
        fprintf('Your INS drifted too close to the edge of the map!'); 
    end 
     
end 
  
processor_time=toc; 
waitbar(1,h,'Calculating Performance and Saving Results...')  
  
%Document the results of the simulation 
  
    %Calculate accuracy of GAME position solutions 
        position_error_GAME_RMSmean=mean(position_error_INS(:,5)); 
        position_error_GAME_RMSstd=std(position_error_INS(:,5)); 
        position_error_GAME_CEP50=position_error_GAME_RMSmean/1.2; 
        position_error_GAME_CEP50true=median(position_error_INS(:,5)); 
         
        fprintf('%g meters:  GAME mean RMS horizontal position error during the flight.\n',position_error_GAME_RMSmean) 
        fprintf('%g meters:       standard deviation.\n', position_error_GAME_RMSstd) 
        fprintf('%g meters:       equivalent CEP50.\n', position_error_GAME_CEP50) 
        fprintf('%g meters:       actual CEP50.\n\n', position_error_GAME_CEP50true) 
  
    %Calculate accuracy of GGI position solutions 
        position_error_GGI_RMSmean=mean(position_error_GGI(:,5)); 
        position_error_GGI_RMSstd=std(position_error_GGI(:,5)); 
        position_error_GGI_CEP50=position_error_GGI_RMSmean/1.2; 
        position_error_GGI_CEP50true=median(position_error_GGI(:,5)); 
         
        fprintf('%g meters:  GGI mean RMS horizontal position error during the flight.\n', position_error_GGI_RMSmean) 
        fprintf('%g meters:      standard deviation.\n', position_error_GGI_RMSstd) 
        fprintf('%g meters:      equivalent CEP50.\n', position_error_GGI_CEP50) 
        fprintf('%g meters:      actual CEP50.\n\n', position_error_GGI_CEP50true) 
     
    %Calculate the Performance Gain 
        if (INS_drift*time_sim)>position_error_GAME_CEP50 
            performance_gain=INS_drift*time_sim/position_error_GAME_CEP50true; 
        else 
            performance_gain=-(position_error_GAME_CEP50true/INS_drift*time_sim); 
        end 
        fprintf('%g :  Your performance gain for playing the GAME was a factor of...\n', performance_gain) 
  
    %Calculate the Break Even Point 
        BEP=position_error_GAME_CEP50true/INS_drift*60; %break even point measured in minutes 
        fprintf('%g :  The GAME will break even with the INS in this many minutes...\n\n', BEP) 
         
    fprintf('%g of ', num_matches_failed) 
    fprintf('%g attempts resulted in an unsuccessful map match.\n', num_matches_successful+num_matches_failed) 
  
    %Write the results to a file 
        FID=fopen(filename, 'a'); 
        fprintf(FID,'%s \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g 
\t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \n',... 
            M, altitude, velocity, time_sim, INS_drift, update_rate_GGI, update_rate_GAME, GGIsignal_noise, 
GGImap_noise,... 
            Res_source, Res_sim, Res_interp,... 
            time_stamp(1), time_stamp(2), time_stamp(3), time_stamp(4), time_stamp(5), time_stamp(6),processor_time,... 
            position_error_GAME_RMSmean, position_error_GAME_RMSstd, position_error_GAME_CEP50, 
position_error_GAME_CEP50true,... 
            position_error_GGI_RMSmean, position_error_GGI_RMSstd, position_error_GGI_CEP50, 
position_error_GGI_CEP50true,... 
            performance_gain, BEP, num_matches_failed, num_matches_successful+num_matches_failed); 
        fclose('all'); 
  
%% PLOTS 
  
    waitbar(1,h,'Generating Plots...') 
    if M=='R' 
        terrain='rough'; 
    elseif M=='S' 
        terrain='smooth'; 
    else 
        terrain=='unknown'; 
    end 
    titl=['(flying at ' int2str(velocity) ' m/s and ' int2str(altitude) ' meters above ' terrain... 
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        ' terrain with a ' int2str(INS_drift) ' m/hr INS drift)']; 
  
%Plot magnitude of INS error versus time 
    figure 
    plot(position_error_INS(:,4), position_error_INS(:,5)) 
    xlabel('Time (seconds)'); ylabel('GAME Position Error (meters)') 
    title({'GAME Position Error versus Time'; titl}, 'FontSize', 16) 
     
%Plot magnitude of GGI error versus time 
    figure 
    plot(position_error_GGI(:,4), position_error_GGI(:,5),'o') 
    xlabel('Time (seconds)'); ylabel('GGI Position Error (meters)') 
    title({'GGI Position Error versus Time'; titl}, 'FontSize', 16) 
     
%Plot GGI signals along the true and INS flightpath versus time 
    figure 
    a=length(GGIsignal_INS)-1; 
    plot((0:a)/60, GGIsignal_INS(:,5),'-k','LineWidth',2); hold on; plot((0:a)/60, GGIsignal_true(:,5),... 
        ':k','LineWidth',2); 
    xlabel('Time (minutes)', 'FontSize', 14); ylabel('Tzz (Eotvos)', 'FontSize', 14); 
    legend('INS Flightpath','True Flightpath'); 
    title({'GGI Signals along True and INS Flightpaths'; titl}, 'FontSize', 16); 
     
%Plot GGI signals along true and INS flightpaths versus time 
    figure 
    plot((0:a)/60, GGIsignal_INS(:,1),'-r'); hold on; plot((0:a)/60, GGIsignal_true(:,1),':r'); hold on; 
    plot((0:a)/60, GGIsignal_INS(:,2),'-m'); hold on; plot((0:a)/60, GGIsignal_true(:,2),':m'); hold on; 
    plot((0:a)/60, GGIsignal_INS(:,3),'-g'); hold on; plot((0:a)/60, GGIsignal_true(:,3),':g'); hold on; 
    plot((0:a)/60, GGIsignal_INS(:,4),'-b'); hold on; plot((0:a)/60, GGIsignal_true(:,4),':b'); hold on; 
    plot((0:a)/60, GGIsignal_INS(:,5),'-k'); hold on; plot((0:a)/60, GGIsignal_true(:,5),':k') 
    xlabel('Time (minutes)', 'FontSize', 14); ylabel('Txx (Eotvos)', 'FontSize', 14); 
    legend('INS Flightpath','True Flightpath'); 
    title({'GGI Signals along True and INS Flightpaths'; titl}, 'FontSize', 16); 
     
%Plot the true and INS lattitudes and longitudes versus time 
    figure 
    [AX,H1,H2] = plotyy(position_true(:,4),position_true(:,1), position_true(:,4),position_true(:,2), 'plot'); 
    set(get(AX(1),'Ylabel'),'String','Lattitude')  
    set(get(AX(2),'Ylabel'),'String','Longitude')  
    set(H1,'Color','b') 
    set(H2,'Color','g') 
    axis(AX(1),[0 time 35 37]) 
    set(AX(1), 'YTick', [35 37]); 
    if M=='R' 
        axis(AX(2),[0 time -122 -120]) 
        set(AX(2),'YTick',[-122 -120]); 
    else 
        axis(AX(2),[0 time -90 -88]) 
        set(AX(2),'YTick',[-90 -88]); 
    end 
    hold on; 
    [AX,H3,H4] = plotyy(position_INS(:,4),position_INS(:,1), position_INS(:,4),position_INS(:,2), 'plot'); 
    set(H3,'Color','b') 
    set(H3,'LineStyle',':') 
    set(H4,'Color','g') 
    set(H4,'LineStyle',':') 
    xlabel('Time (seconds)'); 
    legend('True Flightpath', 'INS Flightpath'); 
    title({'Aircraft Lattitude and Longitude versus Time'; titl}, 'FontSize', 16) 
    axis(AX(1),[0 time 35 37]) 
    set(AX(1), 'YTick', [35 35.5 36 36.5 37]); 
    if M=='R' 
        axis(AX(2),[0 time -122 -120]) 
        set(AX(2),'YTick',[-122 -121.5 -121 -120.5 -120]); 
    else 
        axis(AX(2),[0 time -90 -88]) 
        set(AX(2),'YTick',[-90 -89.5 -89 -88.5 -88]); 
    end 
     
%Plot the true flightpath from a bird's eye view 
    figure 
    plot(position_true(:,2),position_true(:,1)) 
    xlabel('Longitude (degrees)'); ylabel('Lattitude (degrees)') 
    if ((M=='R')|(M=='r')) 
        xlim([-121.5,-120.5]) 
    else 
        xlim([-89.5,-88.5]) 
    end 
    ylim([35.5,36.5]) 
    title({'Flightpath'; titl}, 'FontSize', 16) 
     
close(h) 
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Appendix B.  Table of Results 
 

 The following tables present the results for all simulations discussed in this paper.  

The varying inputs for each section are highlighted in blue.  Table 12 includes sensitivity 

analysis results for terrain, altitude, velocity, flight duration, INS drift, and position 

update rate.  Table 13 includes results for GGI components and Table 14 for GGI and 

map noise, map resolution, and interpolation.  Table 15 includes the practical scenario 

results (i.e. fighter, cargo, ISR, optimist, pessimist).  Each table includes labels at the top. 

 The first 12 columns describe inputs.  Column 1 indicates the terrain, where ‘R’ 

refers to the rough terrain in California, and ‘S’ refers to the smooth terrain in Tennessee, 

both detailed on page 52.  Columns 2, 3, and 4 indicate the aircraft’s altitude in meters, 

velocity in meters per second, and INS drift rate in meters per hour.  Columns 6 and 7 

indicate the rate in seconds that the GGI provides gravity gradient information and map 

matching solutions are attempted, respectively.  Columns 8 and 9 indicate the noise in 

Eötvös introduced to the GGI and map.  Columns 10, 11, and 12 indicate the Resolution 

Level (defined on page 58) of the source, simulated, and interpolated maps. 

 The remaining columns describe outputs (i.e. results).  Column 13 presents the 

time in seconds for the computer to run the simulation.  Columns 14, 15, and 16 present 

the mean of the RMS position errors, their standard deviation, and the CEP of the GAME 

solutions, all in meters.  Columns 17, 18, and 19 present the same information for the 

GGI solutions.  Columns 20 and 21 present the performance gains and break even points.  

Columns 22 and 23 present the number of failed and attempted matches.  Only Table 13 

includes column 24, which lists the components of the gravity gradient tensor included in 

the simulation.  The simulations in the other tables include all five components. 
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Terrain Altitude Velocity Flight Duration INS Drift GGI GAME GGI Map Source Sim Interp Processor GAME GAME GAME GGI GGI GGI Performance BEP Failed Attempted
(m) (m/s) (hr) (m/hr) Update Update Noise Noise (AGED) (AGED) (AGED) Time RMS std dev CEP RMS std dev CEP Gain (min) Matches Matches

(s) (s) (Eo) (Eo) (s) (m) (m) (m) (m) (m) (m)

TERRAIN
R 5000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 80.1 128.9 25.4 128.3 174.3 126.2 141.4 34.7 3.8 0 8000
S 5000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 132.7 407.3 98.8 424.5 543.4 597.8 378.3 10.5 12.7 0 8000

ALTITUDE
R 1000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 102.7 127.5 22.5 122.4 121.8 54.7 122.0 36.3 3.7 528 8000
R 5000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 88.3 128.3 23.6 129.4 174.1 125.8 140.9 34.3 3.9 0 8000
R 10000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 90.0 192.9 37.0 193.0 355.3 277.9 275.0 23.0 5.8 0 8000
R 15000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 107.9 246.5 58.0 243.0 547.0 459.4 412.0 18.3 7.3 0 8000
R 20000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 132.6 304.8 70.1 313.0 716.2 571.6 558.9 14.2 9.4 0 8000
R 25000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 167.5 403.1 96.3 421.6 892.7 670.6 719.8 10.5 12.6 0 8000
R 30000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 200.6 499.8 131.0 525.5 1124.7 804.0 921.8 8.5 15.8 0 8000

S 5000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 150.4 417.7 108.6 439.6 537.3 578.9 378.9 10.1 13.2 0 8000
S 10000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 307.0 809.1 277.4 905.3 1270.0 1155.6 972.8 4.9 27.2 0 8000
S 15000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 394.2 922.9 344.7 1029.8 1673.0 1414.7 1315.3 4.3 30.9 0 8000
S 20000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 460.5 1096.8 465.3 1222.0 1997.5 1650.8 1613.3 3.6 36.7 0 8000
S 25000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 519.3 1194.7 523.2 1337.5 2306.4 1851.6 1862.9 3.3 40.1 0 8000
S 30000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 583.1 1315.9 617.1 1448.9 2598.7 2108.2 2097.2 3.1 43.5 0 8000

VELOCITY
R 5000 25 13.3333 2000 1 1 0.1 0.01 1 1 1 1093.8 138.4 33.4 135.2 183.0 161.7 143.1 197.3 4.1 0 48000
R 5000 50 6.66667 2000 1 1 0.1 0.01 1 1 1 381.1 135.1 30.0 133.0 179.0 143.1 141.8 100.3 4.0 0 24000
R 5000 100 3.33333 2000 1 1 0.1 0.01 1 1 1 136.9 133.7 26.7 131.9 179.1 142.8 142.6 50.5 4.0 0 12000
R 5000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 92.8 130.9 25.5 129.1 177.9 142.3 141.3 34.4 3.9 0 8000
R 5000 200 1.66667 2000 1 1 0.1 0.01 1 1 1 74.7 131.5 26.8 129.3 177.8 142.6 140.9 25.8 3.9 0 6000
R 5000 250 1.33333 2000 1 1 0.1 0.01 1 1 1 63.2 131.0 25.6 129.4 177.2 141.2 140.8 20.6 3.9 0 4800
R 5000 300 1.11111 2000 1 1 0.1 0.01 1 1 1 56.1 129.9 26.0 128.4 176.7 140.9 140.6 17.3 3.9 0 4000
R 5000 350 0.952381 2000 1 1 0.1 0.01 1 1 1 51.9 132.1 25.7 130.9 177.9 141.5 141.6 14.6 3.9 0 3429
R 5000 400 0.833333 2000 1 1 0.1 0.01 1 1 1 34.6 124.5 25.7 124.4 170.7 116.4 140.6 13.4 3.7 0 3000
R 5000 450 0.740741 2000 1 1 0.1 0.01 1 1 1 32.4 130.3 28.8 131.6 172.7 113.0 144.9 11.3 3.9 0 2667
R 5000 500 0.666667 2000 1 1 0.1 0.01 1 1 1 31.4 124.1 25.9 125.3 169.6 114.9 140.3 10.6 3.8 0 2400
R 5000 550 0.606061 2000 1 1 0.1 0.01 1 1 1 30.9 123.9 23.6 126.1 171.0 116.6 140.8 9.6 3.8 0 2182
R 5000 600 0.555556 2000 1 1 0.1 0.01 1 1 1 29.9 125.5 23.0 128.5 171.3 117.0 140.7 8.6 3.9 0 2000
R 5000 650 0.512821 2000 1 1 0.1 0.01 1 1 1 29.7 122.6 25.8 124.9 168.5 118.3 138.1 8.2 3.7 0 1846
R 5000 700 0.47619 2000 1 1 0.1 0.01 1 1 1 29.0 131.4 26.7 134.5 175.3 121.4 142.6 7.1 4.0 0 1714
R 5000 750 0.444444 2000 1 1 0.1 0.01 1 1 1 20.9 130.2 31.0 136.7 164.4 103.9 140.6 6.5 4.1 0 1600
R 5000 800 0.416667 2000 1 1 0.1 0.01 1 1 1 20.6 131.7 31.0 137.4 170.8 107.3 144.4 6.1 4.1 0 1500
R 5000 850 0.392157 2000 1 1 0.1 0.01 1 1 1 20.8 117.3 24.9 121.4 163.0 99.1 139.3 6.5 3.6 0 1412
R 5000 900 0.37037 2000 1 1 0.1 0.01 1 1 1 20.3 128.1 30.2 130.8 173.0 103.4 147.0 5.7 3.9 0 1333
R 5000 950 0.350877 2000 1 1 0.1 0.01 1 1 1 20.4 118.0 31.2 121.9 169.4 108.3 142.4 5.8 3.7 0 1263
R 5000 1000 0.333333 2000 1 1 0.1 0.01 1 1 1 20.5 115.3 30.5 122.5 169.6 104.8 142.4 5.4 3.7 0 1200
R 5000 1050 0.31746 2000 1 1 0.1 0.01 1 1 1 16.4 121.4 33.4 132.6 166.8 99.5 141.4 4.8 4.0 0 1143
R 5000 1100 0.30303 2000 1 1 0.1 0.01 1 1 1 16.1 122.8 33.1 128.3 169.1 101.4 143.4 4.7 3.8 0 1091
R 5000 1150 0.289855 2000 1 1 0.1 0.01 1 1 1 16.2 115.0 31.0 121.7 168.9 101.4 144.4 4.8 3.7 0 1043
R 5000 1200 0.277778 2000 1 1 0.1 0.01 1 1 1 16.4 131.6 35.0 141.8 169.8 100.7 144.2 3.9 4.3 0 1000
R 5000 1250 0.266667 2000 1 1 0.1 0.01 1 1 1 16.6 119.0 34.3 126.7 164.8 97.7 142.4 4.2 3.8 0 960

FLIGHT DURATION
R 5000 150 0.5 2000 1 1 0.1 0.01 1 1 1 22.5 131.2 35.5 133.2 175.9 115.2 146.3 7.5 4.0 0 1800
R 5000 150 1 2000 1 1 0.1 0.01 1 1 1 42.5 131.6 34.0 130.4 164.4 109.1 136.4 15.3 3.9 0 3600
R 5000 150 2 2000 1 1 0.1 0.01 1 1 1 89.7 126.0 24.6 126.7 171.9 122.1 140.8 31.6 3.8 0 7200
R 5000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 78.5 128.9 25.4 128.3 174.3 126.2 141.4 34.7 3.8 0 8000
R 5000 150 4 2000 1 1 0.1 0.01 1 1 1 212.6 128.1 23.4 127.0 175.2 128.0 141.2 63.0 3.8 0 14400
R 5000 150 8 2000 1 1 0.1 0.01 1 1 1 546.1 130.1 23.0 130.4 175.5 134.1 141.2 122.7 3.9 0 28800
R 5000 150 16 2000 1 1 0.1 0.01 1 1 1 1545.2 130.7 23.7 130.3 174.4 138.5 141.1 245.5 3.9 0 57600
R 5000 150 24 2000 1 1 0.1 0.01 1 1 1 2935.2 130.0 26.0 130.0 174.8 157.4 140.9 369.1 3.9 0 86400
R 5000 150 32 2000 1 1 0.1 0.01 1 1 1 4949.7 129.5 25.9 129.2 175.7 179.4 139.6 495.4 3.9 0 115200

INS DRIFT
R 5000 150 2.22222 0.02 1 1 0.1 0.01 1 1 1 143.0 0.0 0.0 0.0 162.4 91.6 140.9 2.4 56.0 0 8000
R 5000 150 2.22222 0.2 1 1 0.1 0.01 1 1 1 141.7 0.2 0.1 0.2 163.4 93.0 141.1 2.4 56.1 0 8000
R 5000 150 2.22222 2 1 1 0.1 0.01 1 1 1 148.7 1.9 1.1 1.9 161.7 92.2 140.8 2.3 57.0 0 8000
R 5000 150 2.22222 20 1 1 0.1 0.01 1 1 1 153.7 24.4 15.9 23.5 160.5 91.0 140.6 1.9 70.4 0 8000
R 5000 150 2.22222 200 1 1 0.1 0.01 1 1 1 142.4 111.0 33.9 123.5 159.0 94.5 138.3 3.6 37.1 0 8000
R 5000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 111.1 130.1 26.2 128.8 175.0 123.2 141.2 34.5 3.9 0 8000
R 5000 150 2.22222 20000 1 1 0.1 0.01 1 1 1 219.2 141.0 63.6 131.2 185.4 192.8 141.3 338.7 0.4 0 8000
R 5000 150 2.22222 200000 1 1 0.1 0.01 1 1 1 2549.8 170.6 159.7 138.8 184.8 198.4 141.2 3201.7 0.0 0 8000

POSITION UPDATE RATE
R 5000 150 2.22222 2000 1 1 0.1 0.01 1 1 1 88.8 128.0 24.0 127.2 174.5 132.1 140.7 34.9 3.8 0 8000
R 5000 150 2.22222 2000 1 15 0.1 0.01 1 1 1 37.1 192.1 45.8 201.5 168.4 120.6 139.0 22.1 6.0 0 533
R 5000 150 2.22222 2000 1 30 0.1 0.01 1 1 1 35.9 244.3 55.3 245.4 174.9 123.1 140.8 18.1 7.4 0 266
R 5000 150 2.22222 2000 1 45 0.1 0.01 1 1 1 41.0 263.5 68.9 265.7 171.1 124.3 137.9 16.7 8.0 0 177
R 5000 150 2.22222 2000 1 60 0.1 0.01 1 1 1 32.9 316.4 96.1 337.3 211.7 273.3 135.5 13.2 10.1 0 133
R 5000 150 2.22222 2000 1 900 0.1 0.01 1 1 1 31.7 963.6 353.8 1064.8 245.3 200.5 211.4 4.2 31.9 0 8
R 5000 150 2.22222 2000 1 1800 0.1 0.01 1 1 1 33.6 1074.9 432.4 1165.2 191.2 103.4 177.2 3.8 35.0 0 4
R 5000 150 2.22222 2000 1 2700 0.1 0.01 1 1 1 39.1 1323.9 614.7 1364.1 199.1 99.5 190.2 3.3 40.9 0 2
R 5000 150 2.22222 2000 1 3600 0.1 0.01 1 1 1 44.6 1210.1 569.7 1267.1 222.9 113.7 205.0 3.5 38.0 0 2
R 5000 150 2.22222 2000 1 7999 0.1 0.01 1 1 1 31.8 1859.7 1074.3 1865.9 83.0 0.0 83.0 2.4 56.0 0 1

 
 

Table 12:  Sensitivity Analysis Results 
(Terrain, Altitude, Velocity, Duration, INS Drift, Update Rate) 
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Terrain Altitude Velocity Flight Duration INS Drift GGI GAME GGI Map Source Sim Interp Processor GAME GAME GAME GGI GGI GGI Performance BEP Failed Attempted
(m) (m/s) (hr) (m/hr) Update Update Noise Noise (AGED) (AGED) (AGED) Time RMS std dev CEP RMS std dev CEP Gain (min) Matches Matches

(s) (s) (Eo) (Eo) (s) (m) (m) (m) (m) (m) (m)

FIGHTER MISSION
S 5000 400 1.5 20 1 1 0.01 0.001 1 1 3 105.4 19.2 13.5 17.6 105.9 52.8 100.6 1.7 52.9 0 5400
S 5000 400 1.5 20 1 1 0.1 0.01 1 1 3 108.2 15.9 10.7 14.7 142.1 84.3 129.6 2.0 44.1 0 5400
S 5000 400 1.5 20 1 1 1 0.1 1 1 3 112.5 16.3 11.1 14.9 151.8 81.1 140.9 2.0 44.6 0 5400
S 5000 400 1.5 200 1 1 0.01 0.001 1 1 3 94.8 137.2 47.7 149.6 127.9 76.0 123.4 2.0 44.9 0 5400
S 5000 400 1.5 200 1 1 0.1 0.01 1 1 3 105.3 142.7 70.9 148.8 294.8 259.2 229.2 2.0 44.6 0 5400
S 5000 400 1.5 200 1 1 1 0.1 1 1 3 112.1 154.5 79.1 160.6 388.7 328.9 286.4 1.9 48.2 0 5400
S 5000 400 1.5 2000 1 1 0.01 0.001 1 1 3 155.1 130.2 25.5 133.3 123.0 116.4 100.3 22.5 4.0 0 5400
S 5000 400 1.5 2000 1 1 0.1 0.01 1 1 3 765.8 461.8 130.7 510.0 674.6 728.4 442.1 5.9 15.3 0 5400
S 5000 400 1.5 2000 1 1 1 0.1 1 1 3 227.4 1066.6 595.2 1058.3 2712.3 2444.5 1980.1 2.8 31.7 0 5400

CARGO MISSION
R 10000 250 2 2000 1 1 0.01 0.001 1 1 1 139.9 122.5 19.1 118.9 123.7 48.3 118.8 33.6 3.6 0 7200
R 10000 250 2 2000 1 1 0.1 0.01 1 1 1 151.0 175.8 37.0 179.2 347.6 268.9 271.4 22.3 5.4 0 7200
R 10000 250 2 2000 1 1 1 0.1 1 1 1 410.7 727.8 231.2 789.5 2262.9 1742.7 1777.1 5.1 23.7 0 7200
R 10000 250 4 2000 1 1 0.01 0.001 1 1 1 396.6 124.3 17.9 120.5 124.5 48.7 119.4 66.4 3.6 0 14400
R 10000 250 4 2000 1 1 0.1 0.01 1 1 1 340.4 181.0 32.3 183.4 360.9 299.1 274.7 43.6 5.5 0 14400
R 10000 250 4 2000 1 1 1 0.1 1 1 1 1588.5 721.3 169.8 744.6 2772.7 2285.9 2086.5 10.7 22.3 0 14400
R 10000 250 8 2000 1 1 0.01 0.001 1 1 1 889.2 126.5 17.4 121.8 126.4 49.5 120.4 131.4 3.7 0 28800
R 10000 250 8 2000 1 1 0.1 0.01 1 1 1 978.0 185.7 32.5 185.7 371.8 331.0 277.1 86.1 5.6 0 28800
R 10000 250 8 2000 1 1 1 0.1 1 1 1 6476.5 733.6 127.2 753.6 3259.1 2952.0 2293.1 21.2 22.6 0 28800
R 10000 250 16 2000 1 1 0.01 0.001 1 1 1 1347.1 125.1 18.3 120.7 126.4 50.3 120.1 265.2 3.6 0 57600
R 10000 250 16 2000 1 1 0.1 0.01 1 1 1 1608.7 177.7 33.0 176.8 375.7 365.2 274.3 181.0 5.3 0 57600
R 10000 250 16 2000 1 1 1 0.1 1 1 1 14526.8 693.4 133.2 714.4 3633.7 3605.0 2391.9 44.8 21.4 0 57600

ISR MISSION
R 5000 150 24 200 1 1 0.01 0.001 1 1 1 2122.8 115.4 12.4 115.8 113.3 41.0 114.0 41.4 34.8 332 86400
R 5000 150 24 200 1 1 0.1 0.01 1 1 1 930.3 124.8 14.2 126.2 170.4 120.8 140.8 38.0 37.9 0 86400
R 5000 150 24 200 1 1 1 0.1 1 1 1 1284.3 338.6 62.9 353.5 1000.7 856.6 736.9 13.6 106.1 0 86400
R 15000 150 24 200 1 1 0.01 0.001 1 1 1 3289.8 124.8 10.8 125.4 132.9 60.9 120.5 38.3 37.6 0 86400
R 15000 150 24 200 1 1 0.1 0.01 1 1 1 2171.3 218.1 33.6 221.2 531.8 442.3 398.8 21.7 66.4 0 86400
R 15000 150 24 200 1 1 1 0.1 1 1 1 10486.6 1023.1 345.5 1214.8 3321.2 2483.1 2681.2 4.0 364.5 0 86400
R 25000 150 24 200 1 1 0.01 0.001 1 1 1 3078.6 130.9 15.4 131.5 146.6 78.3 132.0 36.5 39.4 0 86400
R 25000 150 24 200 1 1 0.1 0.01 1 1 1 3416.2 390.9 77.1 415.7 873.9 661.9 698.3 11.5 124.7 0 86400
R 25000 150 24 200 1 1 1 0.1 1 1 1 13697.5 1556.3 720.4 1747.7 4759.0 3402.9 4079.2 2.7 524.3 0 86400

OPTIMIST
R 5000 150 2 20 1 1 0.1 0.01 1 1 1 126.4 21.5 13.9 21.1 161.6 91.6 141.2 1.9 63.4 0 7200
R 5000 150 2 200 1 1 0.1 0.01 1 1 1 118.9 107.7 36.1 122.0 156.9 90.9 139.0 3.3 36.6 0 7200
R 5000 150 2 2000 1 1 0.1 0.01 1 1 1 86.6 126.8 26.6 127.3 174.1 122.0 141.3 31.4 3.8 0 7200
R 5000 150 4 20 1 1 0.1 0.01 1 1 1 357.0 48.0 29.4 48.1 160.1 89.7 140.7 1.7 144.2 0 14400
R 5000 150 4 200 1 1 0.1 0.01 1 1 1 351.9 118.4 28.0 125.7 165.9 103.0 140.9 6.4 37.7 0 14400
R 5000 150 4 2000 1 1 0.1 0.01 1 1 1 360.7 128.6 24.5 127.2 175.6 130.8 141.2 62.9 3.8 0 14400
R 5000 150 8 20 1 1 0.1 0.01 1 1 1 508.3 79.7 39.0 91.9 156.7 88.1 138.9 1.7 275.8 0 28800
R 5000 150 8 200 1 1 0.1 0.01 1 1 1 363.1 120.4 20.1 125.1 168.3 109.1 141.0 12.8 37.5 0 28800
R 5000 150 8 2000 1 1 0.1 0.01 1 1 1 446.2 128.6 23.1 127.6 174.3 129.6 141.0 125.4 3.8 0 28800
R 5000 150 16 20 1 1 0.1 0.01 1 1 1 983.5 105.7 37.8 124.7 155.7 88.8 137.4 2.6 374.0 0 57600
R 5000 150 16 200 1 1 0.1 0.01 1 1 1 675.8 124.5 16.0 127.2 168.9 115.2 140.7 25.2 38.2 0 57600
R 5000 150 16 2000 1 1 0.1 0.01 1 1 1 1115.0 131.8 24.0 131.6 174.6 135.9 141.7 243.2 3.9 0 57600

PESSIMIST
S 15000 150 2 20 1 1 0.1 0.01 1 1 1 142.8 14.8 8.7 14.6 262.8 165.9 229.3 2.7 43.8 0 7200
S 15000 150 2 200 1 1 0.1 0.01 1 1 1 109.8 161.8 92.5 164.9 517.8 402.4 430.3 2.4 49.5 0 7200
S 15000 150 2 2000 1 1 0.1 0.01 1 1 1 391.4 1048.3 457.0 1135.4 2217.0 1876.7 1714.1 3.5 34.1 0 7200
S 15000 150 4 20 1 1 0.1 0.01 1 1 1 252.3 30.8 18.5 30.2 265.0 173.6 223.9 2.7 90.5 0 14400
S 15000 150 4 200 1 1 0.1 0.01 1 1 1 181.2 311.8 173.0 319.2 899.9 723.1 712.3 2.5 95.8 0 14400
S 15000 150 4 2000 1 1 0.1 0.01 1 1 1 1630.2 1363.7 446.2 1542.6 2688.4 2341.9 2060.5 5.2 46.3 0 14400
S 15000 150 8 20 1 1 0.1 0.01 1 1 1 711.5 65.0 39.3 63.9 293.4 204.7 233.0 2.5 191.8 0 28800
S 15000 150 8 200 1 1 0.1 0.01 1 1 1 964.3 569.7 300.8 595.0 1444.8 1196.9 1137.9 2.7 178.5 0 28800
S 15000 150 8 2000 1 1 0.1 0.01 1 1 1 1620.3 420.1 1350.3 3001.1 2687.3 12111.4 2255.1 9.3 51.4 0 28800
S 15000 150 16 20 1 1 0.1 0.01 1 1 1 867.0 130.8 75.9 132.9 436.8 336.5 365.9 2.4 398.7 0 57600
S 15000 150 16 200 1 1 0.1 0.01 1 1 1 2362.0 930.2 428.5 1033.9 2002.6 1695.3 1545.1 3.1 310.2 0 57600
S 15000 150 16 2000 1 1 0.1 0.01 1 1 1 31191.3 1961.4 505.5 1955.5 3385.4 3430.3 2382.2 16.4 58.7 0 57600

   

Table 15:  Practical Scenario Results 
(Fighter, Cargo, ISR, Optimist, Pessimist) 
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