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Chapter 1

Introduction

1.1 Background

Multichannel signal detection is encountered in a wide variety of applications. In radar systems,
sensor arrays are often used to facilitate the so-called space-time adaptive processing (STAP),
which offers enhanced target discrimination capability compared with space- or time-only pro-
cessing [1, 2]. In remote sensing systems, multispectral and hyperspectral sensors are used to
collect spectral information across multiple spectral bands, which can be exploited for classifica-
tion of different materials or detection of man-made objects on the ground [3,4]. Other examples
of applications include wireless communications, geolocation, sonars, audio and speech process-
ing, and seismology [5–7].

STAP based multichannel signal detectors have been successfully utilized to mitigate the ef-
fects of clutter and/or interference in radar, remote sensing, and communication systems [1–5].
The first work on STAP for radar was by Brennan and Reed [8] where optimum space-time filter-
ing was presented. In [9], the Reed, Mallett, and Brennan (RMB) detector was proposed. They
substitute the sample covariance matrix for the true covariance matrix in the optimal solution.
This RMB detector is implemented as follows: 1) estimate a covariance matrix from target-free
training data, 2) determine a weight vector from the obtained covariance matrix estimate, 3) form
a test statistic and compare it with a threshold for signal detection. This RMB detector is not
a constant false alarm rate (CFAR) detector, since the probability of false alarm depends on the
true covariance matrix. Simple modification to this RMB detector leads to the CFAR adpative
matched filter (AMF) detector [10–12]. In addition, there are several well-known STAP detectors
such as Kelly’s generalized likelihood ratio test (GLRT) [13], the adaptive coherence estimator
(ACE) detector [14–16], and so forth.

However, the aforementioned conventional STAP detectors involve estimating and inverting
a large-size space-time covariance matrix of the disturbance signal (viz., clutter, jamming, and
noise) for each test cell using target-free training data. This may impose excessive training and
computational burdens when the joint space-time dimension is large. At a minimum, we need

6
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K ≥ JN training data1 to ensure a full-rank estimate of the JN × JN space-time covariance
matrix, where J denotes the number of spatial channels and N the number of temporal observa-
tions. Moreover, the RMB rule [9] suggests that, in average, K ≥ (2JN − 3) training data are
needed to obtain performance within 3 dB from the optimum bound. Such conditions may not be
satisfied, especially in heterogeneous (due to varying terrain, high platform altitude, bistatic ge-
ometry, conformal array, among others) or dense-target environments that offer limited training,
thus rendering covariance matrix based techniques inapplicable.

The problem of target detection with limited training data support has gained great attention
in recent decades [17–21]. Typical cases in airborne radar systems include dense-target and/or
heterogeneous environments. In either case, the detection performance of the conventional STAP
detectors degrades significantly because of the mismatch of the space-time covariance matrix
estimate relative to that of the target test cell.

Parametric model based STAP detectors have also gained significant interest in recent years.
[22–25]. In many applications, however, the disturbance usually exhibits certain spatial, tempo-
ral, and/or spectral structures that can be exploited to reduce the number of unknowns and ease
the training/computational burden. Among other alternatives, one general structured approach is
to model the disturbance as a multichannel autoregressive (AR) process, which has been found
to be very useful in representing the spatial and temporal correlation of radar signals [22–25]. A
parametric detector based on such a multichannel AR model was developed in [22, 23], which
is referred to as the parametric adaptive matched filter (PAMF) detector. The PAMF detector
has been shown to significantly outperform the aforementioned covariance matrix-based detec-
tors for small training size at reduced complexity. Specifically, the PAMF detector models the
disturbance as a multichannel AR process driven by a temporally white but spatially colored
multichannel noise. While traditional STAP detectors perform joint space-time whitening (using
an estimate of the space-time covariance matrix), the PAMF detector adopts a two-step approach
that involves temporal whitening via an inverse moving-average (MA) filter followed by spatial
whitening. The parameters that need to be estimated are the AR coefficient matrices and the
spatial covariance matrix of the driving multichannel noise, which are significantly fewer than
what are involved in estimating the space-time covariance matrix. This is the essence behind the
training and computational efficiency of the PAMF detector.

Although intuitively sound, the PAMF detector was obtained in a heuristic approach by mod-
ifying the AMF test statistic. Specifically, it replaces the joint space-time whitening incurred
by the AMF detector with two separate whitening procedures in time and space as discussed
above. The test threshold, false alarm, and detection probabilities were determined primarily by
computer simulation, due to the limited analysis of the PAMF detector. Moreover, the afore-
mentioned detectors use only the target-free training data for the estimation of the space-time
covariance matrix. Then, a test statistic is formed and compared with a test threshold. Thus, it
renders the detectors inapplicable in the case where the target-free training data are unavailable.

1K ≥ JN − 1 training data are needed if both the test and training data are used to estimate the space-time
covariance matrix.

2
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1.2 Summary of Work

This report examines the problem of detecting a multichannel signal in the presence of spatially
and temporally colored disturbance. The main research objective is to develop multichannel
parametric detectors by modeling the disturbance as a multichannel AR process and exploiting
this parametric model in a GLRT approach. The joint probability density functions (PDFs) of the
test and training data under the null and alternative hypotheses are used to develop the parametric
detectors, just like what Kelly did in his seminal paper [13].2

A first contribution of this report is the development of a parametric Rao test for the multi-
channel signal detection problem. A generic Rao test is known to offer a standard solution to a
class of parameter testing problems. It is easier to derive and implement than the GLRT, and is
also asymptotically (large-sample in the number of temporal observations and/or training data)
equivalent to the latter. The Rao test was recently used to develop detectors for several other
problems [26, 27]. A detailed discussion on the attributes of a generic Rao test can be found
in [7].

Our parametric Rao test differs from the generic one for multichannel signal detection in
that we make explicit use of a multichannel AR model for the disturbance signal. We show
that, interestingly, the parametric Rao test takes a form identical to that of the PAMF detector.
The only difference is that we use a maximum likelihood (ML) based estimator that involves
using both test and training signals for parameter estimation, whereas the estimators in [23] use
only training signals for that purpose. If the ML estimator is utilized, the parametric Rao/PAMF
detector is asymptotically a parametric GLRT. The asymptotic distribution of the test statistic
under both hypotheses is obtained in closed form, which can be used to set the test threshold
and compute the corresponding detection and false alarm probabilities. Since the asymptotic
distribution under the null hypothesis is independent of the unknown parameters, the parametric
Rao/PAMF detector asymptotically achieves constant false alarm rate (CFAR). Numerical results
are presented, which show that our asymptotic results are accurate in predicting the performance
of the Rao/PAMF detector even when the data size is modest.

A second contribution of this report is the development of a parametric GLRT. It is natural
to extend the results of the parametric Rao test and consider the parametric GLRT for several
reasons. First, the problem of interest is a two-sided parameter testing problem that admits no
uniformly most powerful (UMP) solution [7]. A GLRT approach is widely used in such cases
due to its good asymptotic properties including asymptotic CFAR and consistency. Second, the
parametric GLRT may yield improved performance than the parametric Rao detector, especially
when the data is limited. This is because the latter is an asymptotic (large-sample) parametric
GLRT [7, Appendix 6B]. Third, all Rao tests, including the parametric Rao detector, are obtained
based on a further approximation that is valid only for weak signals [7, p. 238]. As such, the
parametric Rao detector is expected to degrade when the weak signal assumption is violated.
The above observations motivate us to consider the parametric GLRT, in hope of finding a better
solution to the problem.

By developing the parametric Rao and GLRT detectors, we also investigate the underlying

2It is noted that Kelly’s GLRT does not utilize the parametric model for the disturbance.

3
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ML parameter estimation. The parametric GLRT relies on ML parameter estimation for both
the null and alternative hypotheses while the parametric Rao test depends only on ML parame-
ter estimation under the null hypothesis. We show that the ML estimator under the alternative
hypothesis is non-linear and requires searches on a two-dimensional parameter space. To ad-
dress this issue, we introduce an asymptotic ML (AML) estimator that is considerably simpler,
yielding estimates in a non-iterative fashion, and asymptotically coincides with the optimum ML
estimator. The Cramér-Rao Bound (CRB) for the estimation problem is also derived, offering a
baseline for comparing various (unbiased) estimators.

A third contribution of this report is a simplified parametric GLRT. The parametric GLRT de-
tector involves a highly nonlinear maximum likelihood estimation procedure, which was solved
via a two-dimensional iterative search method initialized by a suboptimal estimator [28]. To facil-
itate the detection, a simplified GLRT along with a new estimator is proposed. Both the estimator
and the GLRT are derived in closed-form at considerably lower complexity. With adequate train-
ing data, the new GLRT achieves a similar detection performance as the original one. However,
for the more interesting case of limited training, the original GLRT may become inferior due to
poor initialization. Because of its simpler form, the new GLRT also offers additional insight into
the parametric multichannel signal detection problem. The performance of the proposed detector
is assessed using both a simulated dataset, which was generated using multichannel AR models,
and the KASSPER dataset, a widely used dataset with challenging heterogeneous effects found
in real-world environments.

A fourth contribution of this report is the recursive implementation of parametric Rao and
parametric GLRT detectors. The parametric Rao and parametric GLRT detectors assume that
the model order of the multichannel AR process is known a priori to the detector. In practice,
the model order has to be estimated by some model order selection technique, Meanwhile, a
standard non-recursive implementation of the parametric detectors is computationally intensive
since the unknown parameters have to be estimated for all possible model orders before the best
one is identified. To address these issues, we consider joint model order selection, parameter
estimation, and target detection problem. We present recursive versions of the aforementioned
parametric detectors by integrating the multichannel Levinson algorithm, which is employed for
recursive and computationally efficient parameter estimation [29, 30], with a generalized Akaike
Information Criterion (GAIC) for model order selection [30,31]. Numerical results show that the
proposed recursive parametric detectors yield a detection performance nearly identical to that of
their non-recursive counterparts at significantly reduced complexity.

A fifth contribution of this report is performance evaluation of parametric space-time adap-
tive detectors with more challenging datasets. The parametric detectors was studied under the
assumption that the disturbance follows a multichannel AR process. However, the disturbance
signals in an airborne radar environment do not necessarily follow an exact multichannel AR
model. In this chapter, the parametric Rao and GLRT detectors are studied using a number of
datasets: 1) simulated data - Knowledge-Aided Sensor Signal Processing and Expert Reason-
ing (KASSPER) dataset that was generated by a high-fidelity clutter model; 2) measured data
- Multi-Channel Airborne Radar Measurement (MCARM) dataset that was collected from an
L-band airborne phased array radar testbed; and 3) bistatic data that was generated based on a

4
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bistatic geometry. These datasets contain many real-world effects such as heterogeneous terrains,
antenna errors and leakage, dense ground targets/discretes, and range-dependent clutter (bistatic
geometry). Experimental results show that the parametric detectors can provide good detection
performance with limited or no range training even in more realistic radar environments.

The last chapter of this report talks about application of parametric adaptive signal detection
to hyperspectral imaging. Traditional approaches to the so-called subpixel target signal detec-
tion problem are training-inefficient due to the need for an estimate of a large-size covariance
matrix of the background from target-free training pixels. This imposes a training requirement
that is often difficult to meet in a heterogeneous environment. A class of training-efficient adap-
tive signal detectors is presented by exploiting a parametric model that takes into account the
non-stationarity of HSI data in the spectral dimension. A maximum likelihood (ML) estimator is
developed to estimate the parameters associated with the proposed parametric model. Several im-
portant issues are discussed, including model order selection, training screening, and time-series
based whitening and detection, which are intrinsic parts of the proposed parametric adaptive de-
tectors. Experimental results using real HSI data reveal that the proposed parametric detectors
are more training-efficient and outperform conventional covariance-matrix based detectors when
the training size is limited.

The remainder of this report is organized as follows. Chapter 2 briefly reviews the STAP
for airborne radar detection. Chapters 3, 4 and 5 present the parametric Rao test, parametric
GLRT and the simplified parametric GLRT, respectively. Details of the technical developments
of the results reported in Chapters 3, 4 and 5 are found in Appendices A, B and C, respectively.
Chapter 6 presents the recursive versions of the parametric detectors. Performance evaluation of
parametric space-time adaptive detection with more challenging datasets is introduced in Chapter
7. And Chapter 8 discusses application of parametric adaptive signal detection to hyperspectral
imaging.

Notation: Vectors (matrices) are denoted by boldface lower (upper) case letters, all vectors
are column vectors, superscripts (·)T , (·)∗, and (·)H denote transpose, complex conjugate, and
complex conjugate transpose, respectively, IM denotes the M×M identity matrix (with subscript
suppressed sometimes), CN (μ,R) denotes the multivariate complex Gaussian distribution with
mean vector μ and covariance matrix R, ‖ · ‖ takes the Frobenius norm of a matrix/vector,
⊗ denotes the Kronecker product, vec(·) denotes the operation of stacking the columns of a
matrix on top of each other, C denotes the complex number field, �{·} takes the real part of
the argument, and �{·} takes the imaginary part, and finally, (·)† denotes the Moore-Penrose
pseudo-inverse.

5



Chapter 2

Review of Space-time Adaptive Processing

Adaptive temporal processing has been used for cancellation of weather clutter [32]. Adaptive
spatial processing or array processing has been used for interference nulling in radar. Adaptive
array processing techniques can provide nulling far below the sidelobe level limitation, but special
measures must be taken to avoid the inclusion of mainlobe clutter in an adaptive beamforming
radar [1].

STAP simultaneously combines and processes signals received on multiple channels (the spa-
tial domain) and from multiple pulse repetition periods (the temporal domain). Therefore, it is
useful whenever the received signals (target and interference) are functions of both space and
time [32]. STAP is an efficient tool for slow target detection in strong clutter environments, and
provides robustness to system errors and capability to handle non-stationary interference [1].

In this chapter, we focus on STAP for airborne radar detection. However, it should be noted
that STAP has broad applications in radar, sonar, remote sensing, and communication systems
[1–5]. In addition, the research results obtained in this dissertation can also be applicable to other
areas, e.g., sonar, biomedical imaging, remote sensing, wireless communications, and so on.

2.1 Phased Array Radar

A linear phased array airborne radar with J antennas is considered herein [1]. The radar transmits
a coherent burst of N pulses at a constant pulse repetition frequency (PRF) fr = 1/Tr, where
Tr is the pulse repetition interval (PRI). The transmitter frequency is fo = c/λo, where c is
the propagation velocity and λo is the radar operating wavelength. The waveform returns are
collected over the time interval, referred to as the coherent processing interval (CPI). For each
PRI, KT time (range) samples are collected to cover the range interval. The received data is
organized in a J × N × KT CPI data cube.

The test data, or primary data consist of J × N samples from a single range gate. These
samples are arranged in a column vector x0. The training data, or secondary data consist of K
range gates, forming a subset of the KT − 1 remaining ones. These are denoted by xk, k =
1, 2, . . . , K.

11
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Given the test and training data, the detection problem can be expressed as a binary hypothesis
testing:

H0 : x0 = d0,

H1 : x0 = αs + d0,
(2.1)

where s is the target steering vector, α is an unknown amplitude, and d0 is the disturbance data
that may be correlated in space and time. In addition to the test data x0, there may be a set of
training data xk, k = 1, . . . , K, that are target-free: xk = dk. The disturbance data {dk}K

k=0 are
assumed to be independent and identically distributed (i.i.d.) with distribution CN (0,R), where
R is the unknown space-time covariance matrix.

For a uniform equi-distant linear array, the steering vector takes the form [23]:

s = ss(ωs) ⊗ st(ωd), (2.2)

where ss(ωs) denotes the J × 1 spatial steering vector:

ss(ωs) =
1√
J

[
1, ejωs , . . . , ejωs(J−1)

]T
, (2.3)

and st(ωd) denotes the N × 1 temporal steering vector:

st(ωd) =
1√
N

[
1, ejωd , . . . , ejωd(N−1)

]T
, (2.4)

where ωs and ωd denote the normalized target spatial and Doppler frequencies, respectively.

2.2 Non-parametric STAP Approaches

The space-time processor linearly combines all the samples from the range gate of interest and
produces a scalar output [1]:

T =
∣∣wHx0

∣∣2 H1

≷
H0

γ, (2.5)

where γ is the test threshold.
The space-time processor consists of three major steps. The first step is the training strategy

which selects the training data from the given data cube. The second step is the weight vector
computation. Based on the training data, the adaptive weight vector is computed. The final step
is the weight vector application, which computes a scalar output, or test statistic. The output of
the processor is compared with a test threshold to determine whether a target is present or not.

2.2.1 Matched Filter Detector

If the space-time covariance matrix, denoted by R is known exactly, the optimum detector that
maximizes the output SINR is the matched filter (MF) [12]:

TMF =
∣∣wH

MFx0

∣∣2 =

∣∣sHR−1x0

∣∣2
sHR−1s

H1

≷
H0

γMF, (2.6)

7
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where

wMF =
R−1s√
sHR−1s

, (2.7)

γMF denotes the MF threshold. The MF detector is obtained by a GLRT approach (e.g., [7]), by
which the ML estimate of the unknown amplitude α is first estimated and then substituted back
into the likelihood ratio to form a test statistic. It should be noted that the MF detector cannot
be implemented in real applications since R is unknown. However, it provides a baseline for
performance comparison when considering any realizable detection scheme.

2.2.2 Sample Matrix Inversion Approach

In practice, the unknown R should be replaced by some estimate, such as the sample covariance
matrix obtained from the secondary data [9]:

R̂ =
1

K

K∑
k=1

xkx
H
k . (2.8)

Using R̂ and the adaptive weight vector obtained by

wRMB = R̂−1s, (2.9)

gives the RMB detector [9]. It is also known as the sample matrix inversion (SMI) approach. The
RMB detector, however, lacks CFAR.

2.2.3 Adaptive Matched Filter Detector

A modification to the RMB detector leads to the so-called AMF detector [10–12]:

TAMF =

∣∣∣sHR̂−1x0

∣∣∣2
sHR̂−1s

H1

≷
H0

γAMF, (2.10)

where γAMF denotes the AMF threshold. It is noted that the AMF test statistic exhibits a CFAR
property.

2.2.4 Kelly’s GLRT

Alternatively, one can treat both α and R as unknowns and estimate them successively by ML.
Such a GLRT approach was pursued by Kelly [13], which gives the following Kelly test:

TKelly =

∣∣∣sHR̂−1x0

∣∣∣2(
sHR̂−1s

)(
K + xH

0 R̂−1x0

) H1

≷
H0

γKelly, (2.11)

where γKelly denotes the corresponding threshold.

8
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2.2.5 Adaptive Coherence Estimator Detector

Conte et al. [33, 34] and Scharf et al. [14] have proposed another GLRT based detection scheme
which is the so-called Adaptive Coherence Estimator (ACE) detector:

TACE =

∣∣∣sHR̂−1x0

∣∣∣2(
sHR̂−1s

)(
xH

0 R̂−1x0

) H1

≷
H0

γACE, (2.12)

where γACE denotes the ACE threshold. Clearly, the ACE detector is a normalized version of the
AMF detector. It is noted that the ACE test statistic lies between 0 and 1.

2.2.6 Drawbacks of Non-parametric STAP Detectors

The AMF, ACE, and Kelly’ GLRT detectors have a CFAR property, which is a highly desirable
feature of STAP detectors. However, they also entail a large training requirement. In particular,
the sample covariance matrix R̂ has to be inverted, which imposes a constraint on the training
size

K ≥ JN (2.13)

to ensure a full-rank R̂. The RMB rule [9] suggests that at least

K ≥ (2JN − 3) (2.14)

target-free secondary data vectors are needed to obtain an expected performance within 3 dB from
the optimum MF detector. Such a training requirement may be difficult to meet, especially in
non-homogeneous or dense-target environments. Besides excessive training, the computational
complexity of these detectors is also high, since R̂ has to be computed and inverted for each CPI.

2.3 Parametric STAP Approaches

The aforementioned difficulties are primarily because for large JN and in the absence of any
specific structure, R involves an enormous number of unknowns. In many applications, however,
the disturbance usually exhibits certain spatial, temporal, and/or spectral structures that can be
exploited to reduce the number of unknowns and ease the training/computational burden. Among
other alternatives, one general structured approach is to model the disturbance as a multichannel
AR process, which has been found to be very useful in representing the spatial and temporal
correlation of radar signals [22–25].

2.3.1 Parametric Adaptive Matched Filter Detector

Using both simulated and real data, the PAMF detector [22, 23] has been shown to significantly
outperform the aforementioned covariance matrix-based detectors for small training data size at

9
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a reduced complexity. While covariance matrix-based detectors perform joint space-time whiten-
ing for interference mitigation, the PAMF detector adopts a two-step approach, involving tempo-
ral whitening via an inverse moving-average (MA) filter followed by spatial whitening.

The PAMF detector is given by [23]

TPAMF =

∣∣∣∑N−1
n=P

ˆ̃sH
P (n)Q̂−1

P
ˆ̃x0,P(n)

∣∣∣2∑N−1
n=P

ˆ̃sH
P (n)Q̂−1

P
ˆ̃sP(n)

H1

≷
H0

γPAMF,
(2.15)

where Q̂P denotes an estimate of the spatial covariance matrix Q, ˆ̃x0,P(n) and ˆ̃sP(n) are the
temporally whitened test signal and steering vector, respectively; which are whitened using an
inverse AR filter of order P (i.e., a multichannel MA filter) whose parameters, along with Q̂P,
are estimated from the secondary data. The parametric approach offers savings in both training
and computation, since the parameters to be estimated are significantly fewer, compared with
covariance matrix-based approaches.

However, when the training data are subject to outlier contamination, the performance of
the PAMF detector degrades severely. Moreover, the PAMF detector was obtained in a heuris-
tic approach by modifying the AMF test statistic. Specifically, it replaces the joint space-time
whitening incurred by the AMF detector with two separate whitening procedures in time and
space as discussed earlier. The test threshold, false alarm, and detection probabilities were deter-
mined primarily by computer simulation, due to the limited theoretical analysis available for the
PAMF detector.

2.3.2 Swindlehurst and Stoica’s GLRT

Swindlehurst et al. have presented the GLRT in [24]. They considered a different detection prob-
lem that involves unknown non-linear signal parameters associated with the signal to be detected.
In their problem, the steering vector is parameterzied by unknown Doppler and direction of ar-
rival (DOA). They have also utilized the vector AR model for the disturbance, which is spatially
and temporally correlated. Their vector AR (VAR) approach uses only training data for parameter
estimation. In other words, they treat estimation and detection as separate processes, as opposed
to the joint processing used in Kelly’s GLRT.

10



Chapter 3

Parametric Rao Test for Multichannel
Adaptive Signal Detection

3.1 Introduction

In this chapter, we develop a parametric Rao test for the multichannel signal detection. A generic
Rao test is known to offer a standard solution to a class of parameter testing problems. It is
easier to derive and implement than the GLRT, and is also asymptotically (large-sample in the
number of temporal observations and/or training data) equivalent to the latter. The Rao test was
recently used to develop detectors for several other problems [26, 27]. A detailed discussion on
the attributes of a generic Rao test can be found in [7].

Our parametric Rao test differs from the generic one for multichannel signal detection in
that we make explicit use of a multichannel AR model for the disturbance signal. We show
that, interestingly, the parametric Rao test takes a form identical to that of the PAMF detector.
The only difference is that we use a maximum likelihood (ML) based estimator that involves
using both test and training signals for parameter estimation, whereas the estimators in [23] use
only training signals for that purpose. If the ML estimator is utilized, the parametric Rao/PAMF
detector is asymptotically a parametric GLRT. Under the conditions stated in Section 7.2, the
asymptotic distribution of the test statistic under both hypotheses is obtained in closed form,
which can be used to set the test threshold and compute the corresponding detection and false
alarm probabilities. Since the asymptotic distribution under H0 is independent of the unknown
parameters, the parametric Rao/PAMF detector asymptotically achieves constant false alarm rate
(CFAR). Numerical results are presented, which show that our asymptotic results are accurate in
predicting the performance of the Rao/PAMF detector even when the data size is modest.

The remainder of this chapter is organized as follows. Section 7.2 contains the data model and
problem statement. Our main results are summarized in Section 3.3. In particular, Section 3.3.1
contains a summary of the parametric test statistic, while Section 3.3.2 includes our asymptotic
analysis. Details of the technical developments of the results reported in Section 3.3 are found in
Appendices A.1 to A.3. Numerical results are presented in Section 3.4 followed by concluding

16
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remarks in Section 3.5.

3.2 Data Model and Problem Statement

The problem under consideration involves detecting a known multichannel signal with unknown
amplitude in the presence of spatially and temporally correlated disturbance (e.g., [1]):

H0 : x0(n) = d(n), n = 0, 1, . . . , N − 1,

H1 : x0(n) = αs(n) + d(n), n = 0, 1, . . . , N − 1,
(3.1)

where all vectors are J × 1 with J denoting the number of spatial channels, and N is the number
of temporal observations. Henceforth, x0(n) is called the test signal, s(n) is the signal to be
detected with amplitude α, and d(n) is the disturbance signal that may be correlated in space
and time. In addition to the test signal, it is assumed that a set of target-free training or secondary
data vectors xk(n), k = 1, 2, . . . , K and n = 0, 1, . . . , N − 1, are available to assist in the signal
detection process.

Define the following JN × 1 space-time vectors:

s =
[
sT (0), sT (1), . . . , sT (N − 1)

]T
,

d =
[
dT (0), dT (1), . . . , dT (N − 1)

]T
,

xk =
[
xT

k (0), xT
k (1), · · · , xT

k (N − 1)
]T

,

k = 0, 1, . . . , K.

(3.2)

Equation (7.1) can be more compactly written as

H0 : x0 = d,

H1 : x0 = αs + d.
(3.3)

Clearly, the composite hypothesis testing problem (7.1) or (3.3) is also a two-sided parameter
testing problem that tests α = 0 against α �= 0. The general assumptions in the literature are
(e.g., [1, 9–13,15, 16, 22, 23]),

• AS1: The signal vector s is deterministic and known to the detector;

• AS2: The signal amplitude α is complex-valued, deterministic, and unknown;

• AS3: The secondary data {xk}K
k=1 and the disturbance signal d (equivalently, x0 under H0)

are independent and identically distributed (i.i.d.) with distribution CN (0,R), where R is
the unknown space-time covariance matrix.

In particular, the above signal detection problem occurs in an airborne STAP radar system
with J array channels and a coherent processing interval (CPI) of N pulse repetition intervals
(PRIs). The disturbance d(n) consists of ground clutter, jamming, and thermal noise, while

12
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s(n) is called the target space-time steering vector. For a uniform equi-spaced linear array,1 the
steering vector is given by [23]:

s(ωs, ωd) = ss(ωs) ⊗ st(ωd), (3.4)

where ss(ωs) denotes the J × 1 spatial steering vector:

ss(ωs) =
1√
J

[
1, ejωs , · · · , ejωs(J−1)

]T
(3.5)

and st(ωd) denotes the N × 1 temporal steering vector:

st(ωd) =
1√
N

[
1, ejωd , · · · , ejωd(N−1)

]T
, (3.6)

where ωs and ωd denote the normalized target spatial and Doppler frequencies, respectively.
While Assumptions AS1 to AS3 are standard (e.g., [1, 9–13, 15, 16]), we further assume the

following:

• AS4: The disturbance signal d(n) can be modeled as a multichannel AR(P ) process with
known model order P but unknown AR coefficient matrices and spatial covariance (see
Remark 1 below for additional comments on this assumption).

Based on Assumption AS4, the secondary data {xk}K
k=1 are represented as

xk(n) = −
P∑

p=1

AH(p)xk(n − p) + εk(n),

k = 1, 2, · · · , K,

(3.7)

where {AH(p)}P
p=1 denote the J × J AR coefficient matrices, and εk(n) denote the driving

multi-channel spatial noise vectors that are temporally white but spatially colored Gaussian noise:
εk(n) ∼ CN (0,Q), where Q denotes the J × J spatial covariance matrix. Meanwhile, the test
signal x0 is given by

x0(n) − αs(n)

= −
P∑

p=1

AH(p) {x0(n − p) − αs(n − p)} + ε0(n),
(3.8)

where α = 0 under H0, α �= 0 under H1, and ε0(n) ∼ CN (0,Q). Let s̃(n) denote a regression
on s(n) and x̃0(n) a regression on x0(n) under H1:

s̃(n) = s(n) +
P∑

p=1

AH(p)s(n − p), (3.9)

x̃0(n) = x0(n) +
P∑

p=1

AH(p)x0(n − p). (3.10)

1Note that the results presented in this section apply to any array configurations, as long as the steering vector is
known (cf. Assumption AS1).

13
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Then, the driving noise in (3.8) can be alternatively expressed as

ε0(n) = x̃0(n) − αs̃(n). (3.11)

The problem of interest is to develop a decision rule for the above composite hypothesis test-
ing problem using the test and training signals as well as exploiting the multichannel parametric
AR model.

Remark 1: We shall clarify that our goal here is not to justify whether AR models are appro-
priate or not for STAP applications. An answer to the question can be found in [23], where it is
shown that low-order multichannel AR models are very powerful and efficient in capturing the
temporal and spatial correlation of the disturbance and, hence, can greatly help signal detection
in airborne STAP systems. As stated above, our problem is how to exploit such a parametric
model to solve the composite testing problem. The assumption that the model order P is known
is only used to simplify our presentation. In practice, the model order has to be estimated, and a
variety of model order selection techniques, such as the Akaike Information Criterion (AIC) and
the Minimum Description Length (MDL) based techniques (e.g., [35] and references therein), are
available for this task. Since such techniques may over- or under-estimate the true model order,
a relevant problem is how the proposed detector performs when over- or under-estimation occurs
(also see [36]). This will be investigated in Section 3.4. Finally, it is also possible to formulate the
problem to include P as another parameter to be estimated. We do not follow such an approach
in order to focus on the relations between the parametric Rao test and the PAMF detector, which
also assumes that a prior estimate of P is available.

3.3 The Parametric Rao Test

3.3.1 Test Statistic

The derivation of the parametric Rao test that takes into account Assumptions AS1 to AS4 in
Section 7.2 is presented in Appendix A.2, which in turns relies on the ML estimates of the
nuisance parameters (i.e., parameters associated with the disturbance signal) that are obtained
in Appendix A.1. The test is given by2

TRao =
2
∣∣∣∑N−1

n=P
ˆ̃sH(n)Q̂−1 ˆ̃x0(n)

∣∣∣2∑N−1
n=P

ˆ̃sH(n)Q̂−1ˆ̃s(n)

H1

≷
H0

γRao,
(3.12)

where γRao denotes the test threshold, which can be set by using the results in Section 3.3.2,
ˆ̃s(n) and ˆ̃x0(n) denote, respectively, the steering vector and test signal that have been whitened
temporally, and additional spatial whitening is provided by Q̂−1, which is the inverse of the ML
estimate of the spatial covariance matrix to be specified next.

2Although the factor of 2 on the test statistic can be absorbed by the test threshold, it is retained to keep the
asymptotic distribution of the test statistic more compact. See Section 3.3.2.
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Specifically, the temporally whitened steering vector and test signal in (7.14) are obtained as
follows:

ˆ̃s(n) = s(n) +
P∑

p=1

ÂH(p)s(n − p), (3.13)

ˆ̃x0(n) = x0(n) +
P∑

p=1

ÂH(p)x0(n − p), (3.14)

where ÂH(p) denotes the ML estimate of the AR coefficient matrix AH(p).
To present the ML estimates more compactly, let

AH =
[
AH(1), AH(2), · · · , AH(P )

] ∈ C
J×JP , (3.15)

which contains all the coefficient matrices involved in the P -th order AR model, and

yk(n) =
[
xT

k (n − 1), xT
k (n − 2), · · · , xT

k (n − P )
]T

,

k = 0, 1, · · · , K,
(3.16)

which contains the regression subvectors formed from the test signal x0 or the k-th training signal
xk. We first compute the following correlation matrices:

R̂xx =
N−1∑
n=P

K∑
k=0

xk(n)xH
k (n), (3.17)

R̂yy =
N−1∑
n=P

K∑
k=0

yk(n)yH
k (n), (3.18)

R̂yx =
N−1∑
n=P

K∑
k=0

yk(n)xH
k (n). (3.19)

Then, the ML estimates of the AR coefficients AH and the spatial covariance matrix Q are given
by (see Appendix A.1)

ÂH = −R̂H
yxR̂

−1
yy , (3.20)

Q̂ =
1

(K + 1)(N − P )

(
R̂xx − R̂H

yxR̂
−1
yy R̂yx

)
. (3.21)

Remark 2: The PAMF detector also involves estimating the AR coefficients AH and the spa-
tial covariance matrix Q [23]. Several estimators were suggested, including the Strand-Nuttall
algorithm and the least-squares (LS) estimators. The LS estimator was observed to yield better
performance. Our ML estimator is similar to the LS estimator except that we use both the test
and training signals to obtain parameter estimates, whereas the latter utilizes only the training
signals for parameter estimation. A subscript “P” is therefore used for the parameter estimates in
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(2.15) to indicate the difference. Note that with the ML estimator, it is possible to derive param-
eter estimates exclusively from the test signal, thus obviating the need for training. This could
be advantageous especially in highly heterogeneous environments where it is difficult to obtain
training signals that are i.i.d. with respect to the disturbance in the test signal. The detection per-
formance of the parametric Rao detector in the absence of training will be explored elsewhere.
We would like to point out that our approach is similar to Kelly’s GLRT [13], which also employs
both the test and training signals for parameter estimation. However, we shall stress that Kelly’s
GLRT does not exploit the multichannel parametric model as shown in (7.3) and (3.8).

Remark 3: By comparing the parametric Rao test statistic (7.14) and the PAMF test statistic
(2.15), we can quickly see that if both detectors use the ML estimator for parameter estimation,
they are identical except for a scaling factor of 2. Hence, under the conditions stated in Section
7.2, the PAMF detector is a parametric Rao detector. Since the parametric Rao test is asymptoti-
cally equivalent to the parametric GLRT3, the PAMF detector, with the ML parameter estimates,
is also an asymptotic parametric GLRT. As we shall see in Section 3.3.2, the equivalence offers
additional insights into the performance and implementation of the PAMF detector.

Remark 4: It should be noted that similar to other STAP detectors, the parametric Rao test is
adaptive in that the detector is data-dependent, as evident in (7.14)-(3.21), which is in contrast to
data-independent detector (e.g., a correlator). This shall not be confused with recursive adaptive
implementation. Although recursive adaptive implementation of the parametric Rao test would
be of interest in a real-time system, it is beyond the scope of the current section.

3.3.2 Asymptotic Analysis

As shown in Appendix A.3, the asymptotic distribution of the Rao/PAMF test statistic is given
by

TRao
a∼
{

χ2
2, under H0,

χ
′2
2 (λ), under H1,

(3.22)

where χ2
2 denotes the central Chi-squared distribution with 2 degrees of freedom and χ

′2
2 (λ) the

non-central Chi-squared distribution with 2 degrees of freedom and non-centrality parameter λ:

λ = 2|α|2
N−1∑
n=P

s̃H(n)Q−1s̃(n), (3.23)

where s̃(n) is the temporally whitened steering vector given by (3.9). Note that λ is related to the
SINR at the output of the temporal whitening filter. Recall that a χ2

2 random variable is equivalent
to an exponential random variable with probability density function (PDF) given by

fχ2
2
(x) =

1

2
exp

(
−1

2
x

)
, x ≥ 0. (3.24)

3The parametric GLRT is different from Kelly’s GLRT in that the former takes into account the parametric model
in Section 7.2, while the latter does not.
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The PDF of χ
′2
2 (λ) is given by [7]

fχ
′2
2 (λ)(x) =

1

2
exp

[
−1

2
(x + λ)

]
I0

(√
λx
)

, x ≥ 0, (3.25)

where I0(u) is the modified Bessel function of the first kind and zero-th order defined by

I0(u) =
1

π

∫ π

0

exp (u cos θ) dθ =
∞∑

k=0

(
1
4
u2
)k

(k!)2
. (3.26)

The above distributions can be employed to set the Rao test threshold for a given probability
of false alarm, as well as to compute the detection and false alarm probabilities, and so on. For a
given threshold, the probability of false alarm is given by

Pf =

∫ ∞

γRao

fχ2
2
(x)dx = exp

(
−1

2
γRao

)
, (3.27)

which can easily be inverted to find the test threshold γRao for a given Pf. In addition, the proba-
bility of detection is given by

Pd =

∫ ∞

γRao

1

2
exp

[
−1

2
(x + λ)

]
I0

(√
λx
)

dx (3.28)

for a given test threshold γRao.
Remark 5: The asymptotic distribution under H0 is independent of the unknown parameters.

The probability of false alarm in (3.27) depends only on the test threshold, which is a design
parameter. It is evident that the Rao/PAMF test asymptotically achieves CFAR.

Remark 6: The above analysis holds under Assumptions AS1 to AS4 of Section 7.2 with
one exception. In particular, since the ML parameter estimates are asymptotically Gaussian ir-
respective of the distribution of the observed data, the above analysis still holds if the Gaussian
assumption in AS3 is dropped. This also explains why it has been observed in several studies
that the PAMF detector obtains good performance even with non-Gaussian observations (see,
e.g., [22]).

3.4 Numerical Results

In the following, we present our numerical results of the parametric Rao/PAMF detector obtained
by computer simulation and by the above asymptotic analysis. In addition, the performance
of the MF (8.3) and AMF (8.5) detectors, which can be computed analytically, is included for
comparison. For easy reference, Appendix A.4 contains a brief summary of relevant results,
which have been used to compute the performance of the two detectors. We reiterate that the MF
detector serves as a baseline only. We do not consider Kelly’s GLRT since a detailed comparison
between the GLRT and AMF detectors can be found in [12]. In the following, the disturbance
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signal is generated as a multichannel AR(2) process with randomly generated AR coefficients A
and a spatial covariance matrix Q. In particular, A and Q are selected to ensure that Q is a valid
covariance matrix and, furthermore, A is chosen to ensure that the resulting AR process is stable.
Once A and Q are selected, they are fixed in all trials. The signal vector s is generated as in (3.4)
with randomly chosen normalized spatial and Doppler frequencies. The SINR is defined as

SINR = |α|2sHR−1s, (3.29)

where R is the JN × JN joint space-time covariance matrix of the disturbance d, which can
be determined once A and Q are selected (the details are not shown for simplicity). To numer-
ically set the threshold for the parametric Rao/PAMF detector, a total of 5 × 104 trials are run.
Meanwhile, to determine Pd for a given threshold, a total of 104 trials are run for each SINR.

First, we consider the asymptotic distribution of the parametric Rao/PAMF test statistic ob-
tained in Section 3.3.2. Figure 8.1 depicts the quantile-quantile plot of the Rao/PAMF test statistic
under both hypotheses against the corresponding asymptotic distribution when J = 4, N = 32,
and K = 8, a case with limited training. It is seen that even with a relatively small data size, the
asymptotic distribution matches well the sample test statistics, with only some minor deviation
at the tail portion.

Next, we examine the receiver operating characteristic (ROC) [7] of the parametric Rao/PAMF
detector. The parameters used in the simulation are J = 4, N = 32, and K = 256. Figure 8.2
depicts the ROC curves for the parametric Rao/PAMF test obtained by simulation and asymptotic
analysis, for SINR values of 0, 5, and 10 dB. It is seen that the simulation results match those
obtained by asymptotic analysis.

Figures 8.3 to 8.6 depict the probability of detection Pd versus SINR for the MF, AMF, and
the parametric Rao/PAMF detectors under various conditions that are specified below the figures.
In particular, Figures 8.3 and 8.5 correspond to the case with adequate training, for which the
RMB rule is satisfied (see discussions in Section 2), whereas Figures 8.4 and 8.6 correspond to
the case with limited training, for which the AMF detector does not even exist, since the training
size K = 8 is too small to meet the minimum training condition (2.13). An examination of these
figures reveals the following:

• When the assumptions of Section 7.2 are met, the asymptotic analysis provides a quite
accurate prediction of the performance of the parametric Rao/PAMF detectors. The gap
between the asymptotic and simulated results is seen to widen as K and/or N decreases.
But even for the most challenging case with K = 8 and N = 16, the gap is about 0.5 dB,
as shown in Figure 8.6.

• The parametric Rao/PAMF detector is very close to the optimum MF detector. The gap
between the two detectors closes with increasing K and/or N .

• The parametric Rao/PAMF detector outperforms the AMF detector by 2 to 3 dB when the
RMB rule is marginally satisfied. This agrees with earlier observations made in [23].

So far we have assumed that the model order P of the multichannel AR process is known
(cf. Assumption AS4). As mentioned in Remark 1 of Section 7.2, various model selection tech-
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niques can be used to estimate P , and it is not unusual for these techniques to under- or over-
estimate the model order by a small number (relative to the true model order P ) [35,36]. Hence,
it would be of interest to find out how the parametric Rao/PAMF detector performs when an
inaccurate model order estimate is used. This is shown in Figure 8.7, where the performance
of the Rao/PAMF detector using the true, an under-estimated, and an over-estimated model or-
der is depicted. As we can see, using an inaccurate model order estimate degrades the detec-
tion performance, but the degradation is not significant, especially in the case of model order
over-estimation. Over-estimation is a more robust error since the high-order coefficients can be
estimated close to zero (providing that the size of the signals that can be used for estimation is
large enough). The above behavior of the parametric Rao/PAMF detector is typical and has been
consistently observed in other experiments with a similar setup. Here, we only considered the
case where the model order is incorrectly estimated by one unit. A larger performance variation
is expected if there is a larger estimation error for P .

Finally, Figure 8.8 depicts Pd versus SINR for the parametric Rao/PAMF detector when J =
4, Pf = 0.01 and N varies from N = 4 to N = 128. It is seen that the detection performance
increases with N .

3.5 Conclusions

We have developed a parametric Rao test for the multichannel adaptive signal detection problem
by exploiting a multichannel AR model. We have derived the ML estimates of the parameters
involved in the test. The parametric Rao test is an asymptotic parametric GLRT, and the asymp-
totic distributions of its test statistic under both hypotheses have been obtained in closed form.
We have shown that the PAMF test statistic has a form identical to that of the parametric Rao
test statistic; therefore, the PAMF test is also an asymptotic parametric GLRT. Computer sim-
ulations show that: 1) our asymptotic analysis provides fairly accurate prediction of the perfor-
mance of the parametric Rao/PAMF test; 2) even with relatively limited training, the parametric
Rao/PAMF detector is quite close to the ideal MF detector; 3) the parametric Rao/PAMF detector
outperforms the AMF detector, which does not exploit a parametric model; and finally 4) the per-
formance of the parametric Rao/PAMF detector is affected by inaccurate model order estimation,
but the resulting performance degradation is tolerable when the model order estimation error is
small.

Our asymptotic analysis of the parametric Rao detector is based on several assumptions stated
in Section 7.2, including that the disturbance can be modeled as an AR(P ) process with known
model order P and that the training signals are i.i.d. When these assumptions are violated, we
expect that the analysis will be less accurate, but may be still informative if the assumptions are
not significantly violated. For example, we have noticed in simulation that when the disturbance
is an MA process, the test threshold obtained by analysis assuming an AR model is still quite
accurate. One possible reason is that AR models are fairly general parametric models, and under
mild conditions, can be used to model or approximate a large class of stationary random processes
(e.g., an MA process can be approximated as an AR process with a high enough model order)
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Figure 3.1: The quantile-quantile plot of the parametric Rao/PAMF test statistic and its asymp-
totic distribution under H0 (upper plot) and H1 (lower plot), respectively, with J = 4, N = 32,
and K = 8. Specifically, the x-axis shows the ordered samples of the parametric Rao/PAMF test
statistic, while the y-axis shows the ordered samples of the asymptotic distribution.

[30]. Nevertheless, there is a need to find out how accurate our analysis is in real systems with
real data when the assumptions of Section 7.2 may not all be met. This will be an interesting
future effort.
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Figure 3.2: The receiver operating characterisitcs (ROC) curves of the parametric Rao/PAMF
detector at various input SINR when J = 4, N = 32, and K = 256.
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Figure 3.3: The probability of detection Pd versus the input SINR when Pf = 0.01, J = 4,
N = 32, and K = 256.
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Figure 3.4: The probability of detection Pd versus the input SINR when Pf = 0.01, J = 4,
N = 32, and K = 8. Note that the AMF detector is not included since it cannot be implemented
for such a small K.
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Figure 3.5: The probability of detection Pd versus the input SINR when Pf = 0.01, J = 4,
N = 16, and K = 128.
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Figure 3.6: The probability of detection Pd versus the input SINR when Pf = 0.01, J = 4,
N = 16, and K = 8. Note that the AMF detector is not included since it cannot be implemented
for such a small K.
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Figure 3.7: The probability of detection Pd versus the input SINR of the parametric Rao/PAMF
detector when the model order of the multichannel AR process used for computing the test statis-
tic is true (P = 2), under-estimated (assuming P = 1), and over-estimated (assuming P = 3),
along with Pf = 0.01, J = 4, N = 32, and K = 256.
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Figure 3.8: (a) The impact of the pulse number N on the parametric Rao/PAMF detector when
Pf = 0.01 and J = 4. (b) “Zoomed-in” version of (a).
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Chapter 4

Parametric GLRT for Multichannel
Adaptive Signal Detection

4.1 Introduction

In this chapter, we develop a parametric GLRT. It is natural to extend the results of [37, 38] and
consider the parametric GLRT for several reasons. First, as shown in Section 4.2, the problem of
interest is a two-sided parameter testing problem that admits no uniformly most powerful (UMP)
solution [7]. A GLRT approach is widely used in such cases due to its good asymptotic properties
including asymptotic CFAR and consistency. Second, the parametric GLRT may yield improved
performance than the parametric Rao detector, especially when the data is limited. This is because
the latter is an asymptotic (large-sample) parametric GLRT [7, Appendix 6B]. Third, all Rao
tests, including the parametric Rao detector, are obtained based on a further approximation that
is valid only for weak signals [7, p. 238]. As such, the parametric Rao detector is expected to
degrade when the weak signal assumption is violated. The above observations motivate us to
consider the parametric GLRT, in hope of finding a better solution to the problem.

The parametric GLRT to be discussed is different from Kelly’s GLRT [13]. The latter does
not utilize a parametric model to model the disturbance. For this reason, our solution is referred
to as the parametric GLRT. Our parametric GLRT is also different from the GLRT developed
in [24], where a different detection problem is addressed that involves unknown non-linear signal
parameters associated with the signal to be detected. We follow the direction of [9–13,16,22,23]
and consider a detection problem whereby the signal to be detected is known up to an unknown
amplitude. The data model and assumptions for this problem are further discussed in Section 4.2.

The parametric GLRT relies on maximum likelihood (ML) parameter estimation for both the
null and alternative hypotheses. The null hypothesis estimation problem is addressed in [37],
where the ML estimator is obtained in closed-form. We show in Section 4.3.1 that the ML esti-
mator under the alternative hypothesis is non-linear and requires searches on a two-dimensional
parameter space. To address this issue, we introduce an asymptotic ML (AML) estimator that
is considerably simpler, yielding estimates in a non-iterative fashion, and asymptotically coin-
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cides with the optimum ML estimator. The AML estimator is related to an iterative alternating
least-squares (ALS) estimator developed in [39], but with several notable distinctions (see Sec-
tion 4.3.3). The Cramér-Rao bound (CRB) for the estimation problem is also derived, offering a
baseline for comparing various (unbiased) estimators.

To examine the performance of the parametric GLRT, we consider scenarios with very limited
or even no training signals. The less challenging case with more training is extensively consid-
ered in, e.g., [23,37,38], for the PAMF and parametric Rao detectors, which are equivalent to the
parametric GLRT with a large amount of training. It should be noted that the parametric GLRT
and Rao detectors utilize both test and training signals for parameter estimation; as such, they are
functional even without training. The capability to handle the training-free case is a unique and
desirable attribute of the parametric GLRT and Rao detectors. Although the performance of the
parametric GLRT and Rao detector degrades in the absence of training, such degradation can be
remedied by using a larger N , i.e., increasing temporal observations of the test signal. We show
that the parametric GLRT outperforms the parametric Rao detector when N is small and, overall,
the former yields a better detection performance.

The rest of the chapter is organized as follows. Section 4.2 contains the problem statement.
Parameter estimation is addressed in Section 4.3, including the ML estimators for both hypothe-
ses, the AML estimator for the alternative hypothesis, and the CRB. The test statistic, implemen-
tation, and asymptotic analysis for the parametric GLRT are discussed in Section 4.4. Numerical
results are presented in Section 4.5, followed by our conclusions in Section 4.6.

4.2 Data Model and Problem Statement

In this section, we re-iterate the data model and problem statement for the completeness and
easy reference. The problem of interest is to detect a known multichannel signal with unknown
amplitude in the presence of spatially and temporally correlated disturbance (e.g., [1]):

H0 : x0(n) = d0(n), n = 0, 1, . . . , N − 1,

H1 : x0(n) = αs(n) + d0(n), n = 0, 1, . . . , N − 1,
(4.1)

where all vectors are J × 1 with J denoting the number of spatial channels, and N is the number
of temporal observations. In the sequel, x0(n) is referred to as the test signal, s(n) is the signal
to be detected with amplitude α, and d0(n) is the disturbance signal that may be correlated in
space and time. In addition to the test signal x0(n), there may be a set of target-free training or
secondary signals xk(n), k = 1, 2, . . . , K, to assist in the signal detection process:

xk(n) = dk(n), n = 0, 1, . . . , N − 1. (4.2)

In radar systems, training data may be obtained from range cells adjacent to the test cell. How-
ever, training data is generally limited or may even be unavailable. In the training-free case, we
have K = 0.
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Define the following JN × 1 space-time vectors:

s =
[
sT (0), sT (1), . . . , sT (N − 1)

]T
,

dk =
[
dT

k (0), dT
k (1), . . . , dT

k (N − 1)
]T

,

xk =
[
xT

k (0), xT
k (1), . . . , xT

k (N − 1)
]T

,

k = 0, 1, . . . , K.

(4.3)

It follows that (4.1) can be more compactly written as

H0 : x0 = d0,

H1 : x0 = αs + d0.
(4.4)

Clearly, the composite hypothesis testing problem (4.1) or (4.4) is a two-sided parameter testing
problem that tests α = 0 against α �= 0. The above signal detection problem occurs in an airborne
STAP radar system with J array channels and a coherent processing interval (CPI) of N pulse
repetition intervals (PRIs). The disturbance dk consists of ground clutter, jamming, and thermal
noise, while s is the target space-time steering vector [23].

The general assumptions in the literature are [1, 9–13,15, 16, 22, 23]:

• AS1: The signal vector s is deterministic and known to the detector;

• AS2: The signal amplitude α is complex-valued, deterministic, and unknown;

• AS3: The disturbance signals {dk}K
k=0 are independent and identically distributed (i.i.d.)

with distribution CN (0,R), where R is the unknown space-time covariance matrix.

While AS1 to AS3 are standard [1, 9–13, 15, 22, 23]: we follow a parametric approach as in
[22, 23, 38, 40]:

• AS4: The disturbance signal dk(n), k = 0, 1, . . . , K, can be modeled as a J-channel
AR(P ) process with known1 model order P :

dk(n) = −
P∑

p=1

AH(p)dk(n − p) + εk(n), (4.5)

where {AH(p)}P
p=1 denote the unknown J × J AR coefficient matrices, εk(n) denote

the driving J-channel spatial noise vectors that are temporally white but spatially col-
ored Gaussian noise: εk(n) ∼ CN (0,Q), where Q denotes the unknown J × J spatial
covariance matrix.

1If P is unknown, it can be estimated using a variety of model order selection techniques (e.g., [35, Appendix
C]).
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The problem of interest is to develop a GLRT based on Assumptions AS1 to AS4 for the above
composite hypothesis testing problem, using the test signal x0 and training signals {xk}K

k=1 if any.
The likelihood functions under both hypotheses are parameterized by the signal parameter α as
well as nuisance parameters Q and A, where

AH =
[
AH(1), AH(2), . . . , AH(P )

] ∈ C
J×JP . (4.6)

For simplicity, we write the likelihood functions as

fi(α,A,Q), i = 0 or 1, (4.7)

where α = 0 under H0 (i.e., i = 0) and α �= 0 under H1 (i = 1), and the dependence on the
test/training signals {xk}K

k=0 is omitted. While the test statistic of the GLRT is well known, which
is given by the generalized likelihood ratio (GLR) [7]:

GLR =
maxα,A,Q f1(α,A,Q)

maxA,Q f0(0,A,Q)
, (4.8)

finding the ML estimates of the unknown parameters is non-trivial. We first address the estima-
tion problem before examining the GLR test statistic in more details.

4.3 Parameter Estimation

Parameter estimators required by the parametric GLRT as well as the CRB are developed in
Appendices B.1-B.4. The main results are summarized below.

4.3.1 ML Estimation under H1

The ML estimate of α under H1 is given by (see Appendix B.1)

α̂ML = arg min
α

∣∣∣R̂xx(α) − R̂H
yx(α)R̂−1

yy (α)R̂yx(α)
∣∣∣ , (4.9)

where the correlation matrices conditioned on α are given by

R̂xx(α) =
N−1∑
n=P

[x0(n) − αs(n)] [x0(n) − αs(n)]H

+
N−1∑
n=P

K∑
k=1

xk(n)xH
k (n),

(4.10)

R̂yy(α) =
N−1∑
n=P

[y0(n) − αt(n)] [y0(n) − αt(n)]H

+
N−1∑
n=P

K∑
k=1

yk(n)yH
k (n),

(4.11)
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R̂yx(α) =
N−1∑
n=P

[y0(n) − αt(n)] [x0(n) − αs(n)]H

+
N−1∑
n=P

K∑
k=1

yk(n)xH
k (n),

(4.12)

with

yk(n) =
[
xT

k (n − 1), . . . , xT
k (n − P )

]T
(4.13)

t(n) =
[
sT (n − 1), . . . , sT (n − P )

]T
. (4.14)

Once α̂ML is available, the ML estimates of A and Q under H1 are obtained as

ÂH
ML,1 = ÂH(α)|α=α̂ML (4.15)

Q̂ML,1 = Q̂(α)|α=α̂ML , (4.16)

where the conditional estimates are given by

ÂH(α) = −R̂H
yx(α)R̂−1

yy (α), (4.17)

Q̂(α) =
1

L

[
R̂xx(α) − R̂H

yx(α)R̂−1
yy (α)R̂yx(α)

]
, (4.18)

with
L = (K + 1)(N − P ). (4.19)

Remark 1: Although statistically optimum, α̂ML has no closed-form expression. The cost
function (4.9) is highly non-linear. A brute-force exhaustive search over the two-dimensional
parameter space (i.e., the real and imaginary part of α) is generally impractical. Alternatively, we
can resort to Newton-like iterative non-linear searches, provided an initial estimate of α is avail-
able. Hence, there is a need for suboptimum estimators with reduced computational complexity.
One such suboptimum estimator is discussed in Section 4.3.3.

4.3.2 ML Estimation under H0

This is a special case of the one addressed in Section 4.3.1 (see Appendix B.1). The ML estimates
of A and Q under H0 are given by

ÂH
ML,0 = −R̂H

yx,0R̂
−1
yy,0, (4.20)

Q̂ML,0 =
1

L

(
R̂xx,0 − R̂H

yx,0R̂
−1
yy,0R̂yx,0

)
, (4.21)

where the correlation matrices R̂xx,0, R̂yy,0, R̂yx,0 are obtained from (4.10)-(4.12), respectively,
by setting α = 0.
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4.3.3 Asymptotic ML Estimation under H1

We now introduce a computationally more efficient estimator that is asymptotically equivalent
to the ML estimator. The estimator is henceforth referred to as the AML estimator. The idea is
to replace R̂H

yx(α)R̂−1
yy (α) in the cost function of (4.9) by a statistically consistent estimate Âcon

(how to obtain such a consistent estimate is discussed next). The resulting cost function C1(α),
which can be shown to be asymptotically equivalent to the cost function of (4.9) (e.g., [31, 41]),
can be written as

C1(α) =

∣∣∣∣∣
N−1∑
n=P

{
x̃0(n; Âcon) − αs̃(n; Âcon)

}

·
{
x̃0(n; Âcon) − αs̃(n; Âcon)

}H

+
N−1∑
n=P

K∑
k=1

x̃k(n; Âcon)x̃
H
k (n; Âcon)

∣∣∣∣∣,
(4.22)

where ˆ̃xk(n) and ˆ̃s(n) are the temporally whitened versions of xk(n) and s(n), respectively, using
the consistent AR coefficient estimate Âcon:

x̃k(n; Âcon) = xk(n) + ÂH
conyk(n), (4.23)

s̃(n; Âcon) = s(n) + ÂH
cont(n). (4.24)

Note that the matrix inside the determinant of (4.22) is a quadratic form of α. An asymptotic
solution is obtained in Appendix B.2, which is given by

α̂AML =
tr
(

ˆ̃SHΨ−1 ˆ̃X0

)
tr
(

ˆ̃SHΨ−1 ˆ̃S
) , (4.25)

where

ˆ̃S =
[
s̃(P ; Âcon), . . . , s̃(N − 1; Âcon)

]
, (4.26)

ˆ̃Xk =
[
x̃k(P ; Âcon), . . . , x̃k(N − 1; Âcon)

]
, (4.27)

Ψ = ˆ̃X0P
⊥ ˆ̃XH

0 +
K∑

k=1

ˆ̃Xk
ˆ̃XH

k , (4.28)

with P⊥ denoting the projection matrix projecting to the orthogonal complement of the range of
ˆ̃SH :

P⊥ = I − P = I − ˆ̃SH
(

ˆ̃SH
)†

(4.29)

The above AML estimator requires a consistent estimate Âcon, which can be obtained by
using a consistent estimate of α in (4.17). One such estimate is obtained by the least-squares
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(LS) amplitude estimator:

α̂LS =
sHx0

sHs
, (4.30)

which ignores the fact that the disturbance signal is colored. We show in Appendix B.3 that α̂LS

is statistically unbiased and consistent.
To summarize, the AML estimator can be implemented as follows:

• Step 1: Determine a consistent estimate Âcon. This can be obtained by first computing the
LS amplitude estimate α̂LS as in (4.30), and using α̂LS in (4.17):

ÂH
con = −R̂H

yx(α̂LS)R̂
−1
yy (α̂LS). (4.31)

• Step 2: Compute the AML amplitude estimate α̂AML using (4.25).

• Step 3: Find the AML estimates of the AR coefficients and spatial covariance matrix by
substituting α̂AML for α in (4.17) and (4.18), respectively.

Remark 2: The AML estimator is obtained based on multiple approximations. The first
involves approximating the likelihood function by dropping out the initial samples of the AR
process, as shown in Appendix B.1. The second approximates the cost function in (4.9) by
C1(α) as in (4.22), which replaces A with a consistent estimate Âcon. C1(α) is further shown
to be equivalent to C2(α) in Appendix B.2. The third approximation is to replace the nonlinear
C2(α) by a quadratic C3(α) in Appendix B.2, which admits a closed form solution. All three
approximations are valid in the large-sample case.

Remark 3: The above AML estimator is related to an alternating LS (ALS) estimator dis-
cussed in [39], but there are several notable differences. First, AML covers both training (K �= 0)
and training-free (K = 0) cases, whereas ALS, which was introduced to solve an explosive de-
tection problem, considers only the case without training. Second, ALS is an iterative approach,
whereas iteration is not required by AML. Finally, by using an asymptotic approximation of the
ML cost function, AML is directly related to the ML estimator and asymptotically coincides with
the latter. Such an asymptotic relation was not established for ALS. Numerical results in Section
4.5 indicate that AML and ML yield nearly identical estimation performance.

4.3.4 CRB

From Section 4.3.1, an amplitude estimate is obtained first and then used to produce the nuisance
parameter estimates. As such, amplitude estimation is the most critical step in the estimation
process. Next, we provide the CRB for amplitude estimation. The CRB specifies a lower bound
on the variance of any unbiased amplitude estimator, thus offering a baseline for comparison.
The CRB for α is derived in Appendix B.4, which is given by

CRB(α) =

[
N−1∑
n=P

s̃H(n;A)Q−1s̃(n;A)

]−1

. (4.32)
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Like ˆ̃s(n) in (4.24), s̃(n;A) is the temporally whitened version of s(n), but by using the true AR
coefficient matrix A (the dependence on A is explicitly shown):

s̃(n;A) = s(n) +
P∑

p=1

AH(p)s(n − p). (4.33)

The CRB for the nuisance parameters can be obtained in a similar fashion, but skipped for brevity.

4.4 Parametric GLRT

4.4.1 Test Statistic

With the ML parameter estimates obtained in Sections 4.3.1 and 4.3.2, the GLR reduces to

GLR =
maxα,A,Q f1(α,A,Q)

maxA,Q f0(0,A,Q)
=

∣∣∣Q̂ML,0

∣∣∣L∣∣∣Q̂ML,1

∣∣∣L , (4.34)

where Q̂ML,0 and Q̂ML,1 are given by (4.21) and (4.16), respectively. Equivalently, taking a loga-
rithm (with a scaling constant 2) yields2

TGLRT = 2L ln

∣∣∣Q̂ML,0

∣∣∣∣∣∣Q̂ML,1

∣∣∣
H1

≷
H0

γGLRT, (4.35)

where γGLRT denotes the test threshold (see Section 4.4.2 for discussion on the setting of γGLRT).
Remark 4: The final test statistic is a ratio of two matrix determinants. Note that the two

covariance matrix estimates Q̂ML,0 and Q̂ML,1 have an identical form given by (4.17), except that
α = 0 for the former and α = α̂ML for the latter. Hence, once α̂ML is obtained, the remaining
steps invovled in calculating Q̂ML,1 are very similar to those needed for Q̂ML,0, which can be
performed by the same computing algorithm or hardware, thus simplifying implementation.

Remark 5: Instead of using the non-linear ML amplitude estimate α̂ML, we can employ the
computationally more efficient AML amplitude estimate α̂AML in calculating the GLRT test statis-
tic. As shown in Section 4.5, the two different versions of GLRT offer nearly identical detection
performance.

2Although the factor of 2L and logarithm in the test statistic can be absorbed by the test threshold, it is retained
to keep the asymptotic distribution more compact. See Section 4.4.2.
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4.4.2 Asymptotic Analysis

As shown in Appedix B.5, the asymptotic distribution of the parametric GLRT statistic in (7.6)
is given by

TGLRT
a∼
{

χ2
2, under H0,

χ
′2
2 (λ), under H1,

(4.36)

where χ2
2 denotes the central Chi-squared distribution with 2 degrees of freedom (i.e., exponential

distribution) and χ
′2
2 (λ) the non-central Chi-squared distribution with 2 degrees of freedom and

non-centrality parameter λ:

λ = 2|α|2
N−1∑
n=P

s̃H(n;A)Q−1s̃(n;A). (4.37)

Note that λ is related to the signal-to-interference-plus-noise ratio (SINR) at the output of the
temporal whitening filter. Using the above result, we can write the the asymptotic detection and
false alarm probabilities as

Pd =

∫ ∞

γGLRT

1

2
exp

[
−1

2
(x + λ)

]
I0

(√
λx
)

dx, (4.38)

Pf = exp

(
−1

2
γGLRT

)
, (4.39)

where I0(u) is the modified Bessel function of the first kind and zero-th order [7].
Remark 6: The asymptotic distribution under H0 is independent of the unknown parameters.

The probability of false alarm in (4.39) depends only on the test threshold, which is a design
parameter. It is evident that the parametric GLRT asymptotically achieves CFAR.

Remark 7: The above analysis holds under Assumptions AS1 to AS4 of Section 4.2 with
one exception. In particular, since the ML parameter estimates are asymptotically Gaussian ir-
respective of the distribution of the observed data, the above analysis still holds if the Gaussian
assumption in AS3 is dropped.

4.5 Numerical Results

In this section, we present simulation results to illustrate the performance of the proposed de-
tection and estimation techniques. The disturbance signal is generated as a multichannel AR(2)
process with AR coefficients A and a spatial covariance matrix Q. These parameters are set to
ensure that the AR process is stable and Q is a valid covariance matrix, but otherwise randomly
selected. The signal vector s corresponds to a uniform equi-spaced linear array with J = 4
antenna elements and randomly selected normalized spatial and Doppler frequencies (see [23]).
The SINR is defined as

SINR = |α|2sHR−1s, (4.40)
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where the JN×JN space-time covariance matrix can be uniquely determined once A and Q are
selected. Note that the above SINR can be considered as an overall SINR that takes into account
all spatial and temporal signals observed within one CPI. A different SINR that is also frequently
used is defined based on one snapshot of the array output; see, e.g., [39].

4.5.1 Estimation

The estimation results are presented for the estimators discussed in Section 4.3, namely, the LS
(4.30), AML (4.25), and ML (4.9) estimators. The ML estimator is implemented via local non-
linear iterative searching, initialized by the AML estimate. We first consider the training-free
case with K = 0. This is also the case considered by the ALS estimator [39] and, thus, we
include it for comparison. Figure 4.1 shows the mean-squared error (MSE) of the amplitude
estimate α̂ obtained by each estimator, along with the CRB (4.32), versus the SINR. It is seen
that even for a moderate value of N = 32, the AML amplitude estimate is nearly identical to
the ML estimate, and both are very close to the CRB and considerably better than the simple LS
estimate. It is also observed that the ALS estimate is nearly identical to the AML estimate in this
case.

Figure 4.2 depicts the results for a limited-training case with K = 1. The LS and ALS
estimators are not included since they do not utilize any training signal for estimation. It is seen
that both the AML and ML estimates are nearly identical and close to the CRB for all values of
SINR. It is observed that use of training data slightly improves the estimation performance.

4.5.2 Detection

For the parametric GLRT (7.6), the test statistic can be computed using either the ML or AML
parameter estimates, as indicated in Remark 5 of Section 4.4.1. The resulting tests, which are
denoted as parametric GLRT/ML and parametric GLRT/AML, respectively, are compared with
the parametric Rao detector [37, 38], which is a large-sample approximation of the parametric
GLRT. Also included in the comparison are the asymptotic analysis for the parametric GLRT
given in Section 4.4.2, the ideal matched filter (MF) [12] which assumes exact knowledge of
R and, therefore, cannot be used in practice but offers a baseline for comparison, and Kelly’s
GLRT [13] which is included to show the gain offered by parametric detection.3 In all examples,
we set J = 4 and the probability of false alarm Pf = 0.01.

The training-free (K = 0) case is considered in Figures 4.3 to 4.5, which show the proba-
bility of detection versus SINR for various detectors when the number of temporal observations
varies from N = 32, 64, to 128. Meanwhile, the limited-training (K = 1) case is considered in
Figures 4.6 and 4.7 for N = 32 and 64, respectively. An examination of these figures reveals the
following:

3Recall that Kelly’s GLRT is a covariance matrix based detector that cannot handle the limited-training or
training-free case. In the following examples, we use either K = 0 or K = 1 for the parametric detectors; but
for Kelly’s GLRT, K is chosen significantly larger so that K ≥ JN − 1 to ensure a non-singular estimate of R (see
discussions in Section 4.1).
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• The parametric GLRT/AML yields nearly identical detection performance to that of the
parametric GLRT/ML, and may be preferred to the latter due to its reduced complexity.

• For the training-free case, the parametric GLRT is about 3 to 4 dB from the optimum
MF bound at N = 32; the gap reduces to about 1 dB at N = 64 and a fractional dB at
N = 128. Training, even modest, helps improving the detection, which can be seen by
comparing Figure 4.3 with Figure 4.6, or Figure 4.4 with Figure 4.7. However, the degra-
dation incurred by lack of training can be remedied by increasing temporal observations
of the test signal, as seen in Figures 4.3 to 4.5.

• For small N (e.g., N = 32), the parametric GLRT outperforms the parametric Rao detec-
tor. At larger values of N , the two detectors exhibit similar performance, especially at the
low SINR region.

• The parametric Rao detector is seen to degrade dramatically as the SINR increases. This
is not surprising since all Rao tests, including the parametric Rao detector, are based on a
weak signal approximation of the GLRT [7, Appendix 6B]. This has also been observed
in [42, Fig. 3] for a single-channel detection problem. Such degradation may not be critical
in applications where weak signal detection is of primary interest.

• Compared to Kelly’s GLRT, both parametric detectors can produce better detection perfor-
mance with significantly less training or even no training, when N is not too small.

4.6 Conclusions

We have developed a new parametric GLRT for multichannel adaptive signal detection. The
parametric GLRT is obtained by exploiting multichannel AR modeling for the disturbance sig-
nal. We have investigated the underlying parameter estimation problem. The ML estimator has
been derived, but not in a closed form. An AML estimator has been introduced as an asymptot-
ically optimum but computationally more efficient alternative. We have examined the detection
performance of the parametric GLRT as well as a recently proposed parametric Rao detector. We
have shown that while both parametric detectors are significantly less dependent on training than
conventional covariance matrix based detectors, the parametric GLRT is the better solution of the
two, especially when temporal observations of the test signal are limited.

One most interesting feature of the parametric GLRT and Rao detectors is that both use the
test and training signals for parameter estimation and can handle the training-free case. We
have shown that the performance degradation caused by the lack of training can be remedied by
increasing the temporal observations of the test signal. Such a tradeoff may be of interest and ex-
ploited in some applications, such as radars, when the environment is highly heterogeneous such
that using neighboring range cells for training becomes impossible. In particular, the i.i.d. as-
sumption AS3 concerning the test cell and the neighboring range cells will be seriously violated
in that case.
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Figure 4.1: MSE of amplitude estimate α̂ versus SINR when J = 4, N = 32, and K = 0 (no
training data).

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

10
2

K=1, J=4, N=32

SINR (dB)

M
S

E

AML
ML
CRB

Figure 4.2: MSE of amplitude estimate α̂ versus SINR when J = 4, N = 32, and K = 1 (limited
training data).
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Figure 4.3: Probability of detection Pd versus SINR when Pf = 0.01, J = 4, N = 32, and K = 0
(no training data).
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Figure 4.4: Probability of detection Pd versus SINR when Pf = 0.01, J = 4, N = 64, and K = 0
(no training data).
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Figure 4.5: Probability of detection Pd versus SINR when Pf = 0.01, J = 4, N = 128, and
K = 0 (no training data).
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Figure 4.6: Probability of detection Pd versus SINR when Pf = 0.01, J = 4, N = 32, and K = 1
(limited training data).
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Figure 4.7: Probability of detection Pd versus SINR when Pf = 0.01, J = 4, N = 64, and K = 1
(limited training data).
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Chapter 5

A Simplified Parametric GLRT for
Multichannel Adaptive Signal Detection

5.1 Introduction

Parametric STAP detectors have recently gained considerable interest due to their remarkable
ability of offering significant performance improvement over classical detectors in training lim-
ited cases. Specifically, the parametric adaptive matched filter (PAMF) [22], one of the first in
this class, models the disturbance signal as a parametric multichannel autoregressive (AR) pro-
cess. The parametric model allows signal whitening through an inverse moving-average filter,
which replaces the standard whitening process using a full-dimensional space-time covariance
matrix estimate found in classical STAP detectors. The immediate benefit brought by the para-
metric model is reduced unknown parameters to be estimated and, in turn, reduced training and
computational requirements. The multichannel AR process has been found to be an effective
tool to model real-world airborne radar clutter for STAP detection [23, 43, 44]. It is also ver-
satile in capturing the temporal and spatial correlation of disturbance signals in other radar and
array processing applications (e.g., [24, 25, 39]). The PAMF detector is shown to be equivalent
to a parametric Rao detector in [28]. The equivalence leads to analytical expressions for the
asymptotic performance of the PAMF detector. Efficient implementations of the PAMF detector
capitalizing on the inherent computational structure of the multichannel AR model are reported
in [45, 46]. Meanwhile, extensions of the multichannel AR modeling to non-stationary cases for
STAP detection are investigated in [47–50].

The parametric generalized likelihood ratio test (GLRT) [28] is a recent addition into the
parametric STAP family. An interesting observation made in [28] is that it is possible to trade
range training with the number of pulses within a coherent processing interval (CPI). Specifically,
the traditional way of learning the clutter statistic is to use the signals received over adjacent
range cells near the test range as the training signals, assuming that the target is a rare event
and that the clutter statistic does not change much over the neighborhood of the cell under test.
This assumption is clearly violated in heterogeneous dense-target environments, which is why
the sample covariance matrix based detectors do not perform well in such cases. In contrast, [28]
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shows that the clutter statistic can be extracted from the temporal pulses over a CPI; in the extreme
case, this can be achieved exclusively from the test signal, without using any range training,
provided that the number of pulses is large enough. The performance of the parametric GLRT
has been examined using simulated and real data in various training limited cases [43, 44].

There are still critical unresolved issues with the parametric GLRT. Specifically, it involves
highly nonlinear parameter estimation that has no closed-form solution. An iterative search based
procedure is employed in [28], which is seen to be computationally intensive. Moreover, the
iterative searching requires an initial guess of the unknown parameter. A two-step estimator is
presented for that purpose, which starts with a least-squares (LS) estimation step by ignoring the
temporal/spatial correlation, followed by a refining step. While this estimator is an asymptotic
maximum likelihood (AML) estimator, its performance is limited by the coarse LS estimator
and, as we show in Section 5.5, may not perform well when the number of pulses is small.
Finally, the parametric GLRT, due to its complicated nonlinear form, offers little insight into how
it functions. This is different from other parametric STAP detectors (e.g., [23, 40]) which have a
clear interpretation of sequential temporal and spatial whitening (see discussions in Section 5.4
for details).

To address the above issues, we present herein a new estimator for the estimation problem
underlying the parametric GLRT. The new estimator is in closed-form and computationally sim-
ple. Unlike the earlier AML estimator, it does not need an initial guess and, thus, is not hindered
by poor initialization. The new estimator also leads to a simplified parametric GLRT, offering
additional insight unavailable with the original GLRT. In general, the new GLRT achieves similar
detection performance as the original one. But in the more challenging case when the number of
pulses is limited, the new GLRT may outperform the original GLRT (which employs an iterative
search based estimation procedure initialized by the AML estimator). The performance loss of
the latter is primarily due to the poor initial parameter estimate provided by the AML estimator.

The remainder of this chapter is organized as follows. Section 5.2 contains the data model and
a summary of the original GLRT of [28], where an underlying nonlinear amplitude estimation
problem is also highlighted. A new amplitude estimator is introduced in Section 5.3, which leads
to a simplified parametric GLRT presented in Section 5.4. Numerical results and conclusions are
provided in Section 5.5 and 5.6, respectively.

5.2 Data Model and Parametric GLRT

5.2.1 Data Model

The problem of interest is to detect a JN × 1 multichannel signal s with unknown amplitude α
in the presence of spatially and temporally correlated disturbance: (e.g., [1]):

H0 : x0 = d0,

H1 : x0 = αs + d0,
(5.1)
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where J denotes the number of spatial channels and N the number of temporal observations (i.e.,
snapshots). It will be convenient to express the JN × 1 vectors in terms of their spatial J × 1
components, i.e.,

s =
[
sT (0), . . . , sT (N − 1)

]T
, (5.2)

and similarly d0 and x0 are decomposed into d0(n) and x0(n), respectively. In the sequel, x0(n)
is referred to as the test signal, s(n) as the steering vector (assumed known to the detector), and
d0(n) as the disturbance signal (i.e., clutter and noise) that may be correlated in space and time.
In addition to the test signal x0(n), there may be a set of training or secondary signals xk(n),
k = 1, . . . , K, that are target-free: xk(n) = dk(n).

The binary composite hypothesis testing problem is to select between H0 : α = 0 and H1 :
α �= 0. A standard assumption in STAP detection (e.g., [1, 9–13, 15, 16]) is that the disturbance
signals {dk}K

k=0 are independent and identically distributed (i.i.d.) with distribution CN (0,R),
where R is the unknown space-time covariance matrix. The parametric STAP detectors [22, 23,
28, 40] further assume that the disturbance signal dk(n), k = 0, . . . , K, can be modeled as a
J-channel AR(P ) process:

dk(n) = −∑P
i=1 AH(i)dk(n − i) + εk(n), (5.3)

where {AH(i)}P
i=1 denote the unknown J × J AR coefficient matrices, εk(n) denote the J × 1

spatial noise vectors that are assumed to be temporally white but spatially colored Gaussian noise:
εk(n) ∼ CN (0,Q), where Q denotes the unknown J × J spatial covariance matrix.

5.2.2 Parametric GLRT

To introduce the necessary notation and also to facilitate comparison, we briefly summarize the
parametric GLRT [28] as follows. The parametric GLRT first finds the ML estimates (MLEs) of
the unknown parameters under both hypotheses, which are next used to compute the test statistics.
Amplitude estimation under H1 turns out to be the key problem, as the other parameters can be
readily obtained once an estimate of α is available. Specifically, the MLE of α is given by

α̂ML = arg min
α

∣∣∣R̂xx(α) − R̂H
yx(α)R̂−1

yy (α)R̂yx(α)
∣∣∣ , (5.4)
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where R̂xx(α), R̂yy(α) and R̂yx(α) are J × J , JP × JP and JP × J matrices defined as

R̂xx(α) =
K∑

k=1

N−1∑
n=P

xk(n)xH
k (n)

+
N−1∑
n=P

[x0(n) − αs(n)] [x0(n) − αs(n)]H , (5.5)

R̂yy(α) =
K∑

k=1

N−1∑
n=P

yk(n)yH
k (n)

+
N−1∑
n=P

[y0(n) − αt(n)] [y0(n) − αt(n)]H , (5.6)

R̂yx(α) =
K∑

k=1

N−1∑
n=P

yk(n)xH
k (n)

+
N−1∑
n=P

[y0(n) − αt(n)] [x0(n) − αs(n)]H , (5.7)

and the regression vectors are defined as t(n) =
[
sT (n − 1), . . . , sT (n − P )

]T ∈ C
JP×1 and

yk(n) =
[
xT

k (n − 1), . . . , xT
k (n − P )

]T ∈ C
JP×1, k = 0, . . . , K. Once α̂ML is obtained, the

parametric GLRT is given by

TGLRT = 2L ln
|Q̂ML,0|
|Q̂ML,1|

H1

≷
H0

γGLRT, (5.8)

where1 L = (K + 1)(N − P ), γGLRT denotes the corresponding test threshold, and Q̂ML,0 and
Q̂ML,1 denote the ML estimates of the spatial covariance matrix under the null and alternative
hypotheses

Q̂ML,0 = Q̂(α)|α=0, (5.9)

Q̂ML,1 = Q̂(α)|α=α̂ML , (5.10)

with

Q̂(α) =
1

L

(
R̂xx(α) − R̂H

yx(α)R̂−1
yy (α)R̂yx(α)

)
. (5.11)

The MLE (7.13) is highly nonlinear and cannot be solved in closed-formed. Iterative search
over a two-dimensional (2D) parameter space (note that α is complex-valued) is typically em-
ployed, which is computationally intensive (as the matrix determinant has to be evaluated for

1While the scaling factor L can be dropped from the test statistic, it was retained in [28] to simplify the asymptotic
analysis.
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every update of α) and, in general, converges only to a local minimum. To address this prob-
lem, an asymptotic ML (AML) estimator was introduced in [28]. The AML estimator involves a
two-step process. In particular, it first computes the least-squares (LS) of the amplitude

α̂LS =
sHx0

sHs
, (5.12)

which effectively ignores the spatio-temporal correlation of the disturbance signal. Then, the
initial estimate is refined through a weighed LS process (see [28] for details). Although the AML
estimate can be shown to be asymptotically efficient, it is affected by the limited performance of
the initializing LS estimator, in particular when the data size is small.

In closing this section, we briefly comment on the stability issue. In general, the multichannel
AR process used to model the disturbance signal has to be stable to ensure that the resulting AR
signal is wide-sense stationary [30]. A constrained ML estimator that maximizes the likelihood
function under the constraint that the AR coefficient matrices form a stable multichannel filter is
highly involved and generally not suitable for practical applications. In contrast, the estimators
considered in this work, including the ML and AML estimators as well as the one introduced
in the next section, do not impose this constraint in seek of computational simplicity. Although
the estimated AR model obtained by any of these estimators is not guaranteed to be stable, ex-
tensive numerical studies using simulated and experimental data show that these unconstrained
estimators yield good estimation and detection performance at acceptable complexity.

5.3 Amplitude Estimation

The exact MLE (7.13) minimizes the determinant of the α-dependent matrix

R̂xx(α) − R̂H
yx(α)R̂−1

yy (α)R̂yx(α),

which is the Schur complement (see, e.g., [51]) of the block matrix R̂(α)

R̂(α) =

[
R̂yy (α) R̂yx (α)

R̂H
yx (α) R̂xx (α)

]
. (5.13)

It is well-known that the determinant of a block matrix like (5.13) can be expressed in terms of
its Schur complement [51]:∣∣∣R̂ (α)

∣∣∣ =
∣∣∣R̂xx (α) − R̂H

yx (α) R̂−1
yy (α) R̂yx (α)

∣∣∣ ∣∣∣R̂yy (α)
∣∣∣.

Using the above result, the cost function in (7.13) is equivalent to

ln
∣∣∣R̂(α)

∣∣∣− ln
∣∣∣R̂yy (α)

∣∣∣. (5.14)
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By using (7.10)-(7.12), along with new definitions of regression vectors

sP+1 (n) =
[
tT (n) , sT (n)

]T
, (5.15)

xk,P+1 (n) =
[
yT

k (n) ,xT
k (n)

]T
, (5.16)

R̂(α) can be decomposed into an α-dependent component and an α-independent one:

R̂ (α) = (X0 − αS) (X0 − αS)H +
K∑

k=1

XkX
H
k , (5.17)

where the new steering matrix S and data matrix Xk are given as

S = [sP+1 (P ) , · · · , sP+1 (N − 1)] ∈ C
J(P+1)×(N−P ), (5.18)

Xk = [xk,P+1 (P ) , · · · ,xk,P+1 (N − 1)] , k = 0, 1, · · · , K. (5.19)

Similarly, R̂yy (α) can be decomposed as

R̂yy (α) = (Y0 − αT) (Y0 − αT)H +
K∑

k=1

YkY
H
k , (5.20)

where

T = [t (P ) , · · · , t (N − 1)] ∈ C
JP×(N−P ), (5.21)

Yk = [yk (P ) , · · · ,yk (N − 1)] , k = 0, 1, · · · , K. (5.22)

Using (5.17) and (5.20), an asymptotically equivalent expression for (5.14) is derived in Ap-
pendix C.1:

ln
[
1 + tr

{
(X0PS − αS)H R̂−1

X (X0PS − αS)
}]

− ln
[
1 + tr

{
(Y0PT − αT)H R̂−1

Y (Y0PT − αT)
}]

, (5.23)

where

R̂X =X0P
⊥
S XH

0 +
K∑

k=1

XkX
H
k , (5.24)

R̂Y =Y0P
⊥
T YH

0 +
K∑

k=1

YkY
H
k , (5.25)

with P⊥
S denoting the projection matrix to the orthogonal complement of the range of SH

P⊥
S = I − PS = I − SH

(
SH
)†

, (5.26)
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where
(
SH
)†

denotes the Moore-Penrose pseudo-inverse of SH , while the other projection matrix
P⊥

T is similarly defined using the matrix T.
Based on the asymptotic expression (5.23), a closed-form estimate of the amplitude is given

by (see Appendix C.2).

α̂ =
tr
{
SHR̂−1

X X0 − THR̂−1
Y Y0

}
tr
{
SHR̂−1

X S − THR̂−1
Y T

} . (5.27)

Note that (5.27) is also an asymptotic maximum likelihood (AML) estimate, since the underly-
ing approximations (see Appendices C.1 and C.2) of the likelihood function were made in the
asymptotic sense. For convenience, the AML estimator of [7] is henceforth referred to as the
AML1, whereas the new amplitude estimate (5.27) as the AML2. While both estimators are
AML, it should be noted that, unlike AML1 that involves a two-step estimation process initial-
ized by the LS estimator, AML2 is in closed-form, requiring only a one-step calculation. As we
show in Section 5.5, the two estimators perform similarly when the data size is large; however,
in the more challenging case with limited data, AML1 yields a notably worse performance due
to the coarse initial estimate provided by the LS estimator.

5.4 New Parametric GLRT

Given the AML2 amplitude estimate (5.27), the spatial covariance matrix estimates (7.7) and
(7.8) can be obtained in closed-form, which also lead to a closed-form expression of the para-
metric GLRT test statistic. In particular, we show in Appendix C.3 that the test statistic (7.6) can
be expressed as ∣∣∣∣N−1∑

n=P

[
sH
P+1 (n) R̂−1

X x0,P+1 (n) − tH (n) R̂−1
Y y0 (n)

]∣∣∣∣
2

N−1∑
n=P

[
sH
P+1 (n) R̂−1

X sP+1 (n) − tH (n) R̂−1
Y t (n)

]
=GLR.

(5.28)

To gain additional insight into the test statistic and the behavior of the general parametric GLRT,
it is shown in Appendix C.4 that the test statistic can be equivalently expressed as

GLR =

∣∣∣∣N−1∑
n=P

sH
P+1 (n)Wx0,P+1 (n)

∣∣∣∣
2

N−1∑
n=P

sH
P+1 (n)WsP+1 (n)

, (5.29)

where sP+1(n) and x0,P+1(n) are J(P + 1) × 1 vectors defined in (5.15) and (5.16), and W is a
block whitening matrix

W =

[
W1 W2

WH
2 W3

]
, (5.30)
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with individual component matrix given by (C.21)-(C.23) of Appendix C.4.
From (5.29), it is seen that the parametric GLRT performs a partial spatio-temporal whitening

across J(P + 1) dimensions (i.e., the size of the regression vectors x0,P+1 formed from the test
signal) using the whitening matrix W. Recall that a fully adaptive STAP detector such as Kelly’s
GLRT [13] performs a joint spatio-temporal whitening across all JN dimensions, whereas the
parametric Rao or PAMF detector performs successive (as opposed to joint) whitening, i.e., tem-
poral whitening followed by spatial whitening [23,40]. Hence, the parametric GLRT is positioned
between the two cases. This allows the parametric GLRT to utilize a parametric model and pro-
vide data efficiency just like the Rao, meanwhile exploiting more degrees of freedom for more
effective interference rejection and detection. This corroborates earlier numerical results [28],
which shows that the parametric GLRT in general outperforms the parametric Rao when the data
available for estimation becomes very limited.

5.5 Numerical Examples

In this section, several simulation results are provided to illustrate the performance of the pro-
posed estimation and detection techniques. We consider simulated data generated using an AR
model and the KASSPER data [52] which was obtained from more realistic clutter model. For
the first case, the disturbance signal is generated as a multichannel AR(2) process with AR coef-
ficient A and spatial covariance matrix Q; these parameters are set to ensure that the AR process
is stable and Q is a valid covariance matrix, but otherwise randomly selected. The signal vector s
corresponds to a uniform equispaced linear array with randomly selected normalized spatial and
Doppler frequencies. The signal-to-interference plus noise ratio (SINR) is defined as

SINR = |α|2sHR−1s. (5.31)

5.5.1 Estimation

We focus here on the challenging case with zero range training, i.e., K = 0, which is of great
interest for applications in heterogeneous environments. Under this setup, we consider two sub-
cases with: (1) N = 32, i.e., a moderate value for the number of pulses within a CPI; and (2)
N = 16 a more limited scenario. For both cases, we compare the LS estimator (5.12), the
AML1 of [28], the AML2 (5.27), and the ML estimator (7.13) initialized by the AML1 (this
consideration is motivated by the fact that AML1 provides the best known initial estimate prior
to the current work).

Fig. 5.1 presents the mean-squared error (MSE) of the amplitude estimate α̂ obtained by each
estimator, along with the Cramér-Rao bound (CRB), a lower bound for any unbiased estimator,
versus the SINR when N = 32 and J = 4. It is seen that, in this case, the AML1 and AML2
amplitude estimates are nearly identical to the ML estimate, while the LS amplitude estimate
shows the worse performance among all estimators.

The results for the case of N = 16 is shown in Fig. 5.2. We see that the AML1 estimate is
worse than the AML2 estimate in the current case, whereas the ML estimate is the worst due to
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inaccurate initialization and local convergence. This clearly shows the limitation of the iterative
search based ML estimator.

5.5.2 Detection

Here, we report the detection performance under the same setup as in Figs. 5.1 and 5.2. We
compare the various parametric GLRT, including GLRT/AML1 (i.e., the GLRT (7.6) with the
AML1 estimator), GLRT/ML (the GLRT (7.6) with the ML estimator), and GLRT/AML2 (the
GLRT (5.28) with the new AML2 estimator). Also included in the comparison are the asymp-
totic result provided by the parametric GLRT (see [28]) and the ideal matched filter (MF) which
assumes exact knowledge of R and, therefore, cannot be used in practice but offers a baseline for
comparison. Here, we set the probability of false alarm Pf = 0.01.

Fig. 5.3 shows the probability of detection Pd versus SINR for various detectors when the
number of temporal samples N = 32 and no range training data is available. It is seen that
the GLRT/AML2 slightly outperforms the GLRT/ML and GLRT/AML1, but overall they are
quite similar, and all are within 3 dB from the ideal MF detector. The limited sample case of
N = 16 is depicted in Fig. 5.4, where the GLRT/AML2 achieves significantly better results than
the GLRT/ML and GLRT/AML1. The poor performance of the GLRT/ML is due to the poor
amplitude estimate which, as shown earlier in Fig. 5.2, is caused by inaccurate initialization and
local convergence.

5.5.3 KASSPER Dataset

In the above simulation, the disturbance is generated by an AR process which matches the as-
sumed model of the parametric detectors. To show the detection performance in a more realistic
environment, we use the KASSPER dataset which, first, is not generated from an AR model and,
in addition, contains many challenging real-world effects including heterogeneous terrain, array
errors, and dense ground targets (see [52] for a detailed description of the KASSPER dataset).

Fig. 5.5 shows the probability of detection versus SINR in the training-free K = 0 case
where the number of spatial channels is J = 11 and the number of temporal samples is N = 32.
All parametric detectors use an AR(1) process to model and estimate the disturbance. Results
show that the new GLRT/AML2 generally outperforms the GLRT/AML1 and is slightly better
than the GLRT/ML at high SINR.

The parametric GLRT effectively trades range training for temporal pulses within a CPI and if
the number N of the latter is large relative to the number of unknowns to be estimated, determined
by J (number of spatial channels) and P (AR model order). In general, for low order AR models,
the parametric GLRT can provide good detection performance (e.g., within 3dB from the MF
bound) if N/J > 5 [28]. This is not the case for Fig. 5.5, where N/J ≈ 3 and we see a
performance gap of about 7 dB. To close the gap, we consider the case when the parametric
detectors utilizes K = 1 range training signal while the other parameters are kept the same.
There are two guard cells between the test cell and the training cell. In practical radar systems, K
is usually an even number as training data are often taken from both sides of the test cell. Here,
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Figure 5.1: MSEs of amplitude estimate α̂ versus SINR when J = 4, N = 32, and K = 0

we choose K = 1 corresponding to a more restrictive case. The results are depicted in Fig. 5.6.
It should be noted that in the KASSPER data, clutter across range cells is not i.i.d. [52]. Still,
a small amount of training is useful to the parametric detector in the current case, all yielding
improved detection performance less than 3 dB from the MF bound. This is due to the fact that
the effect of clutter variation across a small area (i.e., for small K) is negligible. On the other
hand, for a data-demanding non-parametric covariance matrix based STAP detector, K has to be
very large, in which case the effect of range-dependent clutter on such detectors can no longer be
neglected [52].

5.6 Conclusion

A new parametric GLRT for multichannel adaptive signal detection has been proposed. The
detector builds on a new closed-form solution for the underlying nonlinear estimation problem.
The new parametric GLRT obviates the need for initial parameter estimation as required by an
earlier scheme, is computationally simpler, and provides generally improved detection perfor-
mance when training data is limited. Due to its data efficiency, our new parametric GLRT and
the underlying estimator are particularly useful for detection and estimation in training limited
environments
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Figure 5.2: MSEs of amplitude estimate α̂ versus SINR when J = 4, N = 16, and K = 0.
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Figure 5.3: Probability of detection Pd versus SINR when Pf = 0.01, J = 4, N = 32, and
K = 0.
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Figure 5.4: Probability of detection Pd versus SINR when Pf = 0.01, J = 4, N = 16, and
K = 0.
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Figure 5.5: Probability of detection Pd versus SINR for the KASSPER dataset when Pf = 0.01,
J = 11, N = 32, and K = 0.
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Figure 5.6: Probability of detection Pd versus SINR for the KASSPER dataset when Pf = 0.01,
J = 11, N = 32, and K = 1.
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Chapter 6

Recursive Parametric Tests for
Multichannel Adaptive Signal Detection

6.1 Introduction

The parametric Rao and parametric GLRT detectors were developed by assuming that the model
order of the multichannel AR process is known a priori to the detector. In practice, the model or-
der has to be estimated by some model order selection technique, such as the generalized Akaike
Information Criterion (GAIC), Minimum Description Length (MDL), and others [31]. Since
most of these model order selection techniques require estimates of the unknown parameters for
each possible model order before the best one is identified, a standard non-recursive implemen-
tation of the parametric detectors is computationally intensive.

In this chapter, we consider joint model order selection, parameter estimation, and target
detection for STAP applications. We note that the parameter estimates of a multichannel AR pro-
cess for all model orders can be efficiently obtained by recursively solving a set of multichannel
Yule-Walker equations using the multichannel Levinson algorithm [29, 30]. The multichannel
Levinson algorithm yields the parameter estimates for a particular model order at every recur-
sion, following which information criteria such as the GAIC can be conveniently computed. As
such, the estimation of the model order is naturally integrated. We follow the above approach and
develop recursive versions of the parametric Rao and parametric GLRT detectors. The recursive
parametric detectors utilize the Yule-Walker parameter estimates obtained by using the multi-
channel Levinson algorithm with the biased autocorrelation function (ACF) estimate [29, 30].
Our development of the recursive versions of the parametric detectors integrated with the GAIC
for model order selection is well-motivated since the multichannel Levinson algorithm is compu-
tationally efficient and the model order is not required to be known to the detectors. Numerical
results show that the Yule-Walker parameter estimates are asymptotically equivalent to the ML
estimates originally used in the non-recursive parametric Rao [37] and parametric GLRT [53]
detectors. It is also observed that the recursive parametric detectors perform nearly identically
to the corresponding non-recursive parametric detectors, even though the formers assume no
knowledge of the model order while the latters assume the exact model order.

58
53



Approved for public release; distribution is unlimited 59

The rest of the chapter is organized as follows. Section 6.2 contains the data model and prob-
lem statement. The non-recursive parametric Rao and parametric GLRT detectors with known
model order are summarized in Section 6.3. Section 6.4 contains our recursive parametric Rao
and parametric GLRT detectors with unknown model order. Numerical results are presented in
Section 6.5, followed by our conclusions in Section 6.6.

6.2 Data Model and Problem Statement

Consider the problem of detecting a known multichannel signal with unknown amplitude in the
presence of spatially and temporally colored disturbance (e.g., [1]):

H0 : x0 = d0,

H1 : x0 = αs + d0,
(6.1)

where all vectors are JN × 1 vectors with J denoting the number of spatial channels and N
the number of temporal observations. The test signal x0 contains a disturbance signal d0, and
possibly a target signal αs, where s denotes the target steering vector which is assumed known
and α the unknown complex amplitude. In addition to the test signal x0, there may be a set of
target-free range training or secondary signals xk = dk ∈ C

JN×1, k = 1, . . . , K, that can be
exploited to assist in the target detection process. In this chapter, we consider both cases with
or without training data; in the latter case, we set K = 0. The disturbance signals {dk}K

k=0 are
assumed to be independent and identically distributed (i.i.d.) with distribution CN (0,R), where
R ∈ C

JN×JN is the unknown space-time covariance matrix.
Let us decompose the JN × 1 space-time vector xk into a series of J × 1 spatial vectors

xk(n) as follows:
xk =

[
xT

k (0), . . . , xT
k (N − 1)

]T
. (6.2)

Let dk and s be similarly decomposed into dk(n) ∈ C
J×1 and s(n) ∈ C

J×1, respectively. Then,
we can rewrite the hypothesis testing using the above spatial vectors indexed by n (time):

H0 : x0(n) = d0(n), n = 0, . . . , N − 1,

H1 : x0(n) = αs(n) + d0(n), n = 0, . . . , N − 1.
(6.3)

Furthermore, we follow a parametric approach as in [22,23,37,53], which models the disturbance
signal dk(n), as a J-channel AR(P ) process with unknown model order P :

dk(n) = −
P∑

i=1

AH(i)dk(n − i) + εk(n), k = 0, 1, . . . , K, (6.4)

where {AH(i)}P
i=1 denote the unknown J × J AR coefficient matrices and εk(n) the J × 1

spatial noise vectors that are temporally white but spatially colored: εk(n) ∼ CN (0,Q), where
Q ∈ C

J×J denotes the unknown spatial covariance matrix.
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The problem of interest is to develop parametric detectors for the above composite hypothesis
testing problem (6.1) or (6.3), using the test signal x0 and training signals {xk}K

k=1 (if any). We
reiterate that the model order P is assumed unknown to the detector in this chapter whereas the
original developments of the PAMF, parametric Rao and parametric GLRT detectors all assume
that P is known [22, 23, 37, 53]. A distinctive feature of this work is that we consider computa-
tionally efficient solutions to this joint order selection problem, parameter estimation, and target
detection problem.

6.3 Non-recursive Parametric Rao and Parametric GLRT De-
tectors with Known P

For easy reference and to facilitate our later development of the recursive parametric detectors,
we provide a brief summary of the parametric Rao and GLRT detectors in this section. These
detectors are two different solutions to the problem stated in Section 6.2 when the model order
P is known [37, 53]. The parametric Rao detector is computationally simpler, but the parametric
GLRT offers improved performance. Both detectors first find the ML estimates of the unknown
parameters, which are next used to compute the test statistics. The likelihood functions under the
null and alternative hypotheses are parameterized by the signal amplitude α, the AR coefficients
AH =

[
AH(1), . . . , AH(P )

] ∈ C
J×JP , and spatial covariance matrix Q. Note that under the

null hypothesis we have α = 0. Given A, the steering vector and test signal can be temporally
whitened through the following inverse (i.e., moving average) filtering:

s̃(n) = s(n) +
P∑

i=1

AH(i)s(n − i), (6.5)

x̃0(n) = x0(n) +
P∑

i=1

AH(i)x0(n − i). (6.6)

This is an important observation exploited by the parametric Rao and parametric GLRT detectors
that are summarized next.

The parametric GLRT is given by [53]

TGLRT = 2L ln
|Q̂ML,0|
|Q̂ML,1|

H1

≷
H0

γGLRT, (6.7)

where L = (K + 1)(N − P ) and γGLRT denotes the corresponding test threshold. The ML
estimates of the spatial covariance matrix under the null and alternative hypotheses, Q̂ML,0 and
Q̂ML,1 are given by

Q̂ML,0 = Q̂(α)|α=0, (6.8)

Q̂ML,1 = Q̂(α)|α=α̂ML . (6.9)
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The α-dependent Q̂(α) is given by

Q̂(α) =
1

L

(
R̂xx(α) − R̂H

yx(α)R̂−1
yy (α)R̂yx(α)

)
, (6.10)

where the α-dependent correlation matrices are

R̂xx(α) =
K∑

k=1

N−1∑
n=P

xk(n)xH
k (n)

+
N−1∑
n=P

[x0(n) − αs(n)] [x0(n) − αs(n)]H , (6.11)

R̂yy(α) =
K∑

k=1

N−1∑
n=P

yk(n)yH
k (n)

+
N−1∑
n=P

[y0(n) − αt(n)] [y0(n) − αt(n)]H , (6.12)

R̂yx(α) =
K∑

k=1

N−1∑
n=P

yk(n)xH
k (n)

+
N−1∑
n=P

[y0(n) − αt(n)] [x0(n) − αs(n)]H , (6.13)

with t(n) and y(n) denoting the regression subvectors formed from the steering vector s(n) and
test signal x0(n), respectively: t(n) =

[
sT (n − 1), . . . , sT (n − P )

]T ∈ C
JP×1 and y(n) =[

xT
0 (n−1), . . . , xT

0 (n−P )
]T ∈ C

JP×1. The ML estimate of α under the alternative hypothesis,
which is used in (6.9), is given by

α̂ML = arg min
α

∣∣∣R̂xx(α) − R̂H
yx(α)R̂−1

yy (α)R̂yx(α)
∣∣∣ . (6.14)

The parametric Rao test is given by [37]

TRao =
2
∣∣∣∑N−1

n=P
ˆ̃sH(n)Q̂−1

ML,0
ˆ̃xH

0 (n)
∣∣∣2∑N−1

n=P
ˆ̃sH(n)Q̂−1

ML,0
ˆ̃sH(n)

H1

≷
H0

γRao, (6.15)

where γRao denotes the test threshold. The temporally whitened steering vector ˆ̃sH(n) and test
signal ˆ̃xH

0 (n) are obtained by replacing AH with the ML estimates under H0

ÂH
ML,0 = −R̂H

yx(α)R̂−1
yy (α)|α=0, (6.16)

in (6.5) and (6.6), respectively.
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The Rao test is asymptotically equivalent to the GLRT but may be inferior to the latter when
the data size is small. In addition, the Rao test is obtained based on a low order Taylor expansion
of the GLRT, an approximation which is only valid for weak signals [7]. As such, the performance
of the parametric Rao detector degrades when the weak signal assumption is violated. The para-
metric GLRT was developed as an improved detector to deal with the above issues. However, the
cost function of the ML amplitude estimator in (6.14) is highly nonlinear. Newton-like iterative
nonlinear searches are generally used to find the ML amplitude estimate. Another suboptimum
but computationally more efficient estimator, referred to as the asymptotic ML (AML) estimator,
was developed in [53]. The AML estimator, which was found to yield similar performance to the
ML estimator, can be implemented as follows:

• Step 1 First, compute a least-squares (LS) amplitude estimate α̂LS = sHx0

sHs
. Then, determine

an estimate ÂH
LS of AH as follows:

ÂH
LS = R̂H

yx(α̂LS)R̂
−1
yy (α̂LS), (6.17)

which can be shown to be statistically consistent [53].

• Step 2 Compute the temporally whitened signals ˆ̃xk(n) and ˆ̃s(n) by replacing AH with
the LS AR coefficient estimate ÂH

LS in (6.5) and (6.6), respectively. Then, obtain the AML
amplitude estimate α̂AML by using

α̂AML =
tr
(

ˆ̃SHΨ−1 ˆ̃X0

)
tr
(

ˆ̃SHΨ−1 ˆ̃S
) , (6.18)

where ˆ̃S =
[
ˆ̃s(P ), . . . , ˆ̃s(N − 1)

] ∈ C
J×(N−P ), ˆ̃Xk =

[
ˆ̃xk(P ), . . . , ˆ̃xk(N − 1)

] ∈
C

J×(N−P ), and

Ψ = ˆ̃X0P
⊥ ˆ̃XH

0 +
K∑

k=1

ˆ̃Xk
ˆ̃XH

k , (6.19)

with P⊥ denoting the projection matrix projecting to the orthogonal complement of the

range of ˆ̃SH : P⊥ = I − P = I − ˆ̃SH
(

ˆ̃SH
)†

∈ C
(N−P )×(N−P ).

• Step 3 Find the AML estimate of the spatial covariance matrix by substituting α̂AML for α
in (6.10).

Recall that the parametric Rao and parametric GLRT detectors utilize both the test and train-
ing signals for the parameter estimation. As a result, they are functional even without training
data [53]. The capability to handle the training-free detection is a unique and desirable attribute
of the parametric detectors which is not shared by other existing detectors including the PAMF
detector. Nevertheless, we need a way to efficiently find an accurate estimate of the model order
P .
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6.4 Recursive Parametric Tests with Unknown P

A standard non-recursive implementation of the parametric detectors is computationally intensive
since the parameter estimation for the underlying parametric model has to be repeated for all
possible model orders before the best one is identified. Therefore, there is a need to develop
more efficient solutions for joint model order selection, parameter estimation, and detection.

We present herein recursive versions of the parametric Rao and parametric GLRT detectors.
The multichannel Levinson algorithm is used to recursively solve a set of multichannel Yule-
Walker equations for model order p = 1, 2, . . . , Pmax, where Pmax is an upper bound on the
model order P . Interestingly, the complexity involved in the above procedure, which provides
parameter estimates for all Pmax model orders, has lower complexity than that involved in solving
a single model order p = Pmax by the ML approach (see Section 6.4.5 for details). Given
these parameter estimates for all possible p, an information criterion such as the GAIC can be
conveniently utilized to identify the best model order as well as the associated estimates of A,
Q, and α. These parameter estimates are then used to compute the final test statistics for the
parametric Rao and GLRT detectors. In the following, we discuss the details of the proposed
joint approach.

6.4.1 Parameter Estimation by the Multichannel Levinson Algorithm

Assume that signal x(n) is a J-channel AR(P ) process as described in (6.4). Estimates of the
unknown parameters can be obtained by solving the multichannel Yule-Walker equations given
by [29, 30]

R(m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−

P∑
i=1

AH(i)R(m − i), m ≥ 1,

−
P∑

i=1

AH(i)R(−i) + Q, m = 0,

(6.20)

where the autocorrelation matrix is defined as

R(m) = E[x(n)xH(n − m)]. (6.21)

In matrix form, the multichannel Yule-Walker equations become

AP R =
[
Q 0 . . . 0

]
, (6.22)

where the block matrix AP contain the multichannel AR coefficients and R is a block Toeplitz
matrix:

AP =
[
I AH

P (1) . . . AH
P (P )

]
, (6.23)

R =

⎡
⎢⎢⎢⎣

R(0) · · · R(P )
R(−1) · · · R(P − 1)

...
. . .

...
R(−P ) · · · R(0)

⎤
⎥⎥⎥⎦ . (6.24)
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The multichannel Levinson algorithm can be used to recursively solve the above multichannel
Yule-Walker equations for different model orders as follows [29, 30].

The multichannel Levinson algorithm begins with the following initial conditions:

Qf
0 = Qb

0 = R(0), (6.25)

A0 = B0 = I. (6.26)

Henceforth, superscripts f and b denote the forward and backward directions of a linear predic-
tion process used by the Levinson algorithm, subscript denotes the order of the linear predictor,
and A and B denote the block row matrices formed by the forward and backward AR coefficient
matrices, respectively.

Given the p-th order forward and backward AR coefficient matrices Ap and Bp, the forward
and backward reflection coefficient matrices for the (p+1)-st order linear predictors are computed
by

KfH
p+1(p + 1) = −Δp+1(Q

b
p)

−1, (6.27)

KbH
p+1(p + 1) = −∇p+1(Q

f
p)

−1, (6.28)

where Δp+1 and ∇p+1 are defined as

Δp+1 =

p∑
i=0

KfH
p (i)R(p + 1 − i), (6.29)

∇p+1 =

p∑
i=0

KbH
p (i)R(i − p − 1). (6.30)

Next, we update the forward and backward AR coefficient matrices for the (p + 1)-st order
predictors as follows:

Ap+1 =
[Ap, 0

]
+ KfH

p+1(p + 1)
[
0, Bp

]
, (6.31)

Bp+1 =
[
0, Bp

]
+ KbH

p+1(p + 1)
[Ap, 0

]
. (6.32)

Finally, we update the forward and backward prediction error covariance matrices for the (p+1)-
st order predictors:

Qf
p+1 = Qf

p + KfH
p+1(p + 1)∇p+1, (6.33)

Qb
p+1 = Qb

p + KbH
p+1(p + 1)Δp+1, (6.34)

which completes the p-th recursion of the multichannel Levinson algorithm. Note that the solu-
tions to the p-th order multichannel Yule-Walker equations are Ap, and Qf

p .
In practice, the space-time covariance matrix R(m) in the multichannel Yule-Walker equa-

tions should be replaced by some estimate. The biased ACF estimate given by

R̂(m) =
1

N

N−1−m∑
n=0

x(n + m)xH(n), (6.35)

is usually recommended since it guarantees that the R is nonnegative definite [29, 30].
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6.4.2 AR Model Order Selection

Model order selection for parametric models is a classical research topic and has been investi-
gated for various models (e.g., [30, 31], and references therein). Herein, we consider the GAIC,
which has been observed to yield good performance for model order selection (e.g., [54]). The
GAIC chooses the model order p that minimizes

W (p) = V (p) + η(p), (6.36)

where V (p) is the minimum negative log likelihood function and η(p) is a penalty term that
penalizes increasing model order [31]. The minimum negative log likelihood function can be
shown to be

V (p) = J(K + 1)(N − p) ln(eπ) + (K + 1)(N − p) ln |Q̂|, (6.37)

where the dependence on p is made explicit. The penalty term typically takes the form as [31]

η(p) = 2cJ2p ln(ln(K + 1)(N − p)), (6.38)

where c ≥ 1 is a parameter of user choice. It has been found that (6.36) along with (6.38) usually
provides a consistent model order estimation [31].

6.4.3 Recursive Parametric Rao Test

Based on the above recursive parameter estimation and model order selection techniques, the
parametric Rao test can be implemented in a recursive manner as follows:

• Step 1 Obtain the biased ACF estimate according to (6.35):

R̂(m) =
1

N(K + 1)

K∑
k=0

N−1−m∑
n=0

xk(n + m)xH
k (n),

m = 0, 1, . . . , Pmax.

(6.39)

Note that both the training and test signals are used to obtain the ACF estimate.

• Step 2 Initialization: Set p = 0 and initialize the forward and backward prediction error
covariance matrices, Qf

0 and Qb
0, and the forward and backward AR coefficient matrices,

A0 and B0, as in (6.25) and (6.26). Compute the GAIC W (0) for the 0-th model order by
using (6.36).

• Step 3a Compute the forward and backward reflection coefficient matrices for the (p+1)-st
order linear predictors, KfH

p+1(p + 1) and KbH
p+1(p + 1), by using (6.27) and (6.28).

• Step 3b Update the forward and backward AR coefficient matrices for the (p + 1)-st order
predictors, Ap+1 and Bp+1, by using (6.31) and (6.32). Update the forward and backward
prediction error covariance matrices for the (p + 1)-st order predictors, Qf

p+1 and Qb
p+1, by

using (6.33) and (6.34).
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• Step 3c Compute the GAIC W (p + 1) for the (p + 1)-st model order, by using (6.36).

– If p = 0, increase p by 1 and go back to Step 3a;

– else if W (p + 1) ≥ W (p), go to Step 4;

– otherwise, increase p by 1 and go back to Step 3a.

The following upper bound can be imposed for model order selection [23]

p ≤
⌊

3
√

N

J

⌋
. (6.40)

• Step 4 The order estimate P̂ is p (i.e., the final value of the above recursion index). For the
selected model order P̂ = p, obtain the parameter estimates:

ÂH(i) = AH
P̂

(i), i = 1, 2, . . . , P̂ , (6.41)

Q̂ = Qf

P̂
. (6.42)

Compute the parametric Rao test statistic (6.15) by replacing the ML parameter estimates
(6.16) and (6.8) with the obtained Yule-Walker solutions (6.41) and (6.42), respectively.
Finally, the test statistic is compared with a test threshold to decide if the target is present.
The test threshold can be determined by using the asymptotic analysis in [37].

6.4.4 Recursive Parametric GLRT

Recursive implementation of the parametric GLRT is more involved than the recursive parametric
Rao test. The reason is that finding the ML estimate of signal amplitude α, which is required by
the parametric GLRT, is nonlinear even with a known model order [53, 55]. To circumvent the
problem, we consider a recursive parametric GLRT by using the model order estimate obtained
by the recursive parametric Rao test.

The recursive implementation of the parametric GLRT can be summarized as follows:

• Step 1 Find the spatial covariance matrix estimate Q̂0 under H0 and the model order esti-
mate P̂ by using the multichannel Levinson algorithm in the same manner as in the recur-
sive parametric Rao test.

• Step 2 Using the model order estimate P̂ obtained in Step 1, find the amplitude estimate
α̂ by either (6.14) or (6.18). Next, obtain the spatial covariance matrix estimate Q̂1 by
using α̂ and P̂ . Specifically, the spatial covariance matrix estimate Q̂1 can be obtained by
running the multichannel Levinson algorithm a second time (with P̂ recursions) along with
the following modified ACF estimate:

R̂(m) =
1

N(K + 1)

{
N−1−m∑

n=0

x̆0(n + m)x̆H
0 (n)

+
K∑

k=1

N−1−m∑
n=0

xk(n + m)xH
k (n)

}
,

(6.43)
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where x̆0(n) = x0(n) − α̂s(n).

• Step 3 Compute the test statistic (6.7) by replacing the ML parameter estimates (6.8) and
(6.9) with the Yule-Walker solutions Q̂0 and Q̂1, respectively. Finally, the test statistic is
compared with a test threshold to decide if the target is present.

6.4.5 Complexity

We provide a brief discussion on the complexity involved in the recursive parametric Rao test
versus its non-recursive counterpart. Since the recursive and non-recursive implementations dif-
fer only in parameter estimation (they share identical steps in signal whitening and calculating
the test statistic), we only compare the complexity involved in finding estimates of the AR coeffi-
cients A and the spatial covariance matrix Q. Tables 6.1 and 6.2 contain a summary of the num-
ber of flops involved in the major steps of the recursive and, respectively, non-recursive parameter
estimation. In general, we have (K + 1)N > JPmax for practical applications. Then, it can be
concluded from Tables 6.1 and 6.2 that the recursive parameter estimation, which yields parame-
ter estimates for all model orders, has a overall complexity of O(J2Pmax(K + 1)N), whereas the
overall complexity of the non-recursive estimation for is O(J2P 3

max(K + 1)N), which is P 2
max

times higher.
Similar conclusions can be made for the parametric GLRT since, just like the parametric Rao

test, the recursive and non-recursive implementations differ only in how parameter estimates are
obtained.

6.5 Numerical Results

In this section, we present simulation results to illustrate the performance of the proposed tech-
niques. The disturbance signal is generated as a multichannel AR(2) process (i.e., P = 2) with
randomly selected AR coefficients A and a spatial covariance matrix Q. These parameters are
set to ensure that the AR process is stable and Q is a valid covariance matrix, but otherwise
randomly selected. The steering vector s corresponds to a uniform equi-spaced linear array with
J = 4 and randomly selected normalized spatial and Doppler frequencies (see [23]). The signal-
to-interference-plus-noise ration (SINR) is defined as

SINR = |α|2sHR−1s, (6.44)

where the JN × JN space-time covariance matrix can be uniquely determined once AH and Q
are selected.
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6.5.1 Estimation

We first examine the estimation performance of the solutions to the multichannel Yule-Walker
equations. Since Q is a matrix, we define the following metric:

ξ(Q) =
1

J2
tr

{
E

[(
Q̂ − Q

)H (
Q̂ − Q

)]}
, (6.45)

which is the average of the mean squared errors (MSEs) of all elements of the matrix. For brevity,
the above metric is referred to as the MSEs henceforth.

Figures 6.1 and 6.2 depict the MSE of the spatial covariance matrix estimate Q versus the
number of temporal observations N . We consider Yule-Walker estimate obtained by using the
multichannel Levinson algorithm with the corresponding ML estimate (6.8). Figure 6.1 shows the
case without training data (K = 0), while figure 6.2 corresponds to the case with limited training
data (K = 2). It is observed that the Yule-Walker estimate is asymptotically (for large N and/or
large K) equivalent to the ML estimate, while the performance of the Yule-Walker estimate may
be different when the data size is small. Figure 6.1 shows that the Yule-Walker estimate performs
slightly better than the ML estimate, when the number of the temporal observations N is small
and no training data are available (K = 0). Although it is generally believed that the ML estimate
is more accurate than the Yule-Walker estimate (e.g., [56]), with an extremely small data size as
considered in this example (e.g., N = 10, K = 0), either one of the two estimators can slightly
outperform the other depending on the choice of the AR parameters. It should also be noted
that the bias of the Yule-Walker estimate (because of the use of the biased ACF estimate) can be
significant [56]. Figure 6.2 shows that the Yule-Walker estimate performs nearly identically to
the ML estimate when training data are used (K = 2). It is also observed that the Yule-Walker
and ML estimates improve as the training data (K) and/or temporal observations (N ) increases,
i.e., the data size increases.

6.5.2 Detection

We next examine the detection performance of the recursive parametric Rao and GLRT detec-
tors. For the recursive parametric GLRT detector, the AML, instead of the ML, estimate of α
is used since the detection difference between the two is negligible (see [53]) while the AML is
computationally simpler. Also included in comparison is the ideal matched filter (MF), which
assumes the exact knowledge of R and, therefore, cannot be used in practice but offers a baseline
for comparison. In all examples, we set the probability of false alarm Pf = 0.01. Recursive
and Non-Recursive are denoted by ‘R’ and ‘NR’, respectively, in the figures. For example, re-
cursive and non-recursive parametric GLRT detectors are denoted by R-GLRT and NR-GLRT,
respectively.

Figures 6.3 to 6.6 depict the probability of detection of various detectors versus the SINR
for the recursive parametric detector with unknown model order P and their non-recursive coun-
terparts with known P . Figures 6.3 and 6.4 show the case without training data (K = 0), and
Figures 6.5 and 6.6 correspond to the case with limited training data (K = 2 and 8). We see
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Equation Flops Remark
(6.39) O(J2Pmax(K + 1)N) one time calculation

(6.27), (6.28) O(J3(p + 2)) at pth recursion
(6.31), (6.32) O(J3p) at pth recursion
(6.33), (6.34) O(J3) at pth recursion

Subtotal O(J3p) at pth recursion

Total
O(J2Pmax(K + 1)N) + O(J3P 2

max) for p = 1, . . . , Pmax≈ O(J2Pmax(K + 1)N)

Table 6.1: Complexity of the Yule-Walker estimator with the multichannel Levinson algorithm
for model orders p = 1, . . . , Pmax (recursive implementation)

Equation Flops Remark
(6.11) O(J2(K + 1)(N − p)) for model order p
(6.12) O(J2p2(K + 1)(N − p)) for model order p
(6.13) O(J2p(K + 1)(N − p)) for model order p
(6.10) O(J3(p3 + p2 + p)) for model order p

Subtotal
O(J2p2(K + 1)N) + O(J3p3)

for model order p≈ O(J2p2(K + 1)N)
Total O(J2P 3

max(K + 1)N) for p = 1, . . . , Pmax

Table 6.2: Complexity of the ML estimator for model orders p = 1, . . . , Pmax (non-recursive
implementation)

that in general, the performance of the recursive parametric detectors with unknown P is nearly
identical to that of their non-recursive counterpart with known P . This is particular true for the
cases shown in Figures 6.4 to 6.6, where the data size is relatively large (large N with K = 0, or
a moderate N with non-zero K). This is probably because the Yule-Walker parameter estimate
is slightly more accurate than the ML estimate in this case (see Figure 6.1).

6.6 Conclusions

We have presented recursive versions of the parametric Rao and parametric GLRT detectors,
utilizing the multichannel Levinson algorithm to solve the multichannel Yule-Walker equations
recursively and find the estimates of the unknown parameters, along with a GAIC for model order
selection. Numerical results show that the Yule-Walker estimate obtained by using the multichan-
nel Levinson algorithm along with the biased ACF estimate is asymptotically equivalent to the
ML estimate originally used in the non-recursive parametric Rao and parametric GLRT detectors.
It is also shown that the proposed recursive parametric detectors that assume no knowledge about
the model order perform nearly identically to the corresponding non-recursive parametric detec-
tors with perfect knowledge of the model order, while the formers have reduced computational
complexity.
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Figure 6.1: MSE of spatial covariance matrix estimate versus the number of temporal observa-
tions N when K = 0 and J = 4.
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Figure 6.2: MSE of spatial covariance matrix estimate versus the number of temporal observa-
tions N when K = 2 and J = 4.
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Figure 6.3: Probability of detection Pd versus SINR when K = 0, J = 4, N = 64, P = 2, and
Pf = 0.01.
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Figure 6.4: Probability of detection Pd versus SINR when K = 0, J = 4, N = 128, P = 2, and
Pf = 0.01.
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Figure 6.5: Probability of detection Pd versus SINR when K = 2, J = 4, N = 64, P = 2, and
Pf = 0.01.
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Figure 6.6: Probability of detection Pd versus SINR when K = 8, J = 4, N = 32, P = 2, and
Pf = 0.01.
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Chapter 7

Performance Evaluation of Parametric
Space-Time Adaptive Detectors

7.1 Introduction

Parametric model based STAP detectors have attracted significant interest in addressing the prob-
lem of limited training [22–24, 28, 40]. Specifically, the parametric adaptive matched filter
(PAMF) [23], which was developed by exploiting a multichannel AR model for the disturbance,
significantly outperforms the aforementioned conventional STAP detectors at a reduced complex-
ity when the training size is small. Recently, the PAMF detector has been shown to be equivalent
to a parametric Rao detector with one exception: while the original PAMF uses only training
signals for parameter estimation, the parametric Rao detector uses both training and test signals
for estimation [40]. Moreover, another parametric detector, referred to as the parametric GLRT,
offers improved detection performance over the parametric Rao test when data is limited [28].
Computer simulations show that the parametric Rao and GLRT detectors work well with limited
or even no range training data. The parametric Rao and GLRT detectors utilize both test and
training data for parameter estimation; in the absence of training, the parameters are estimated
solely from the test signal [28]. The capability to handle the training-free detection problem is a
unique and desirable attribute of these parametric STAP detectors, making them good candidates
for detection in heterogeneous environments.

To facilitate the development of the parametric Rao and GLRT detectors, two assumptions
were made, which may not hold exactly in real airborne radar systems [19,21]. The first assump-
tion is that the disturbance follows a multichannel AR process. The second assumption is that the
training signals, if available, are assumed to be independent and identically distributed (i.i.d.).
In practice, the training data is subject to contamination by clutter discretes and/or interfering
targets, in which case the training data becomes heterogeneous. It is noted that the performance
of the parametric Rao and GLRT detectors was evaluated through computer simulations [28, 40]
where the disturbance signals were generated to meet the aforementioned assumptions. There-
fore, it would be interesting to find out how these parametric detectors perform in real radar
environments and provide insight to its ability to real application in airborne radars.
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In this chapter, we examine the detection performance of the parametric Rao and GLRT
detectors using three more realistic datasets: 1) the Knowledge-Aided Sensor Signal Processing
and Expert Reasoning (KASSPER) dataset that contains heterogeneous data, array errors, and
dense ground targets; 2) the Multi-Channel Airborne Radar Measurement (MCARM) dataset
that was acquired from realistic airborne radar experiments; 3) the dataset for a bistatic radar
geometry containing range-dependent clutter. Experimental results show that the parametric Rao
and GLRT tests can provide good detection performance with limited or even no range training
in more challenging environments. Therefore, these detectors offer useful solutions to detection
problems in dense-target or heterogeneous environments.

7.2 Data Model and Problem Statement

Consider the problem of detecting a known multichannel signal with unknown amplitude in the
presence of spatially and temporally correlated disturbance: (e.g., [1]):

H0 : x0(n) = d0(n), n = 0, . . . , N − 1,

H1 : x0(n) = αs(n) + d0(n), n = 0, . . . , N − 1,
(7.1)

where all vectors are J×1 vectors, J denotes the number of spatial channels, and N is the number
of temporal observations. In the sequel, x0(n) is referred to as the test signal, s(n) is the signal
to be detected with amplitude α, and d0(n) is the disturbance signal that may be correlated in
space and time. In addition to the test signal x0(n), there may be a set of training or secondary
signals xk(n), k = 1, . . . , K, that are target-free: xk(n) = dk(n).

In particular, we consider herein the signal detection problem in an airborne STAP radar
system with J array channels and a coherent processing interval (CPI) of N pulses repetition
intervals (PRIs). The disturbance dk(n), k = 0, . . . , K consists of ground clutter, jamming,
and thermal noise. Let s =

[
sT (0), . . . , sT (N − 1)

]T
. Similarly, dk and xk are formed from

dk(n) and xk(n), respectively. The target space-time steering vector s is given by (assuming a
uniform equi-distant linear array):

s(ωs, ωd) = ss(ωs) ⊗ st(ωd), (7.2)

where ss(ωs) and st(ωd) denote the J × 1 spatial steering vector and the N × 1 temporal steering
vector, respectively, and ωs and ωd denote the normalized target spatial and Doppler frequencies,
respectively.

The binary composite hypothesis testing problem is to select between H0 : α = 0 and H1 :
α �= 0. Classical STAP detectors (e.g., the RMB, Kelly’s GLRT, and AMF detectors) were
developed based on the assumption that [1, 9–13,15, 16, 22, 23]:

• AS1: The disturbance signals {dk}K
k=0 are i.i.d. with distribution CN (0,R), where R is

the unknown space-time covariance matrix.

In addition to the above general assumption, a parametric model can be applied to characterize
the disturbance [22, 23]:

69



Approved for public release; distribution is unlimited 75

• AS2: The disturbance signal dk(n), k = 0, . . . , K, can be modeled as a J-channel AR(P )
process with known model order P :

dk(n) = −∑P
i=1 AH(i)dk(n − i) + εk(n), (7.3)

where {AH(i)}P
i=1 denote the unknown J × J AR coefficient matrices, εk(n) denote the

J × 1 spatial noise vectors that are temporally white but spatially colored Gaussian noise:
εk(n) ∼ CN (0,Q), where Q denotes the unknown J × J spatial covariance matrix.

It is noted that assumption AS1 is often violated in real airborne radar systems including
dense-target and heterogeneous environments, which offer limited or even no range training
data [19,21]. It is also shown that the performance of STAP detectors often degrades significantly
in a heterogeneous environment where assumption AS1 is violated because of the mismatch of the
space-time covariance matrix relative to that of the target test cell. Moreover, the disturbances in
real radar systems do not follow the multichannel AR model in AS2, whereas the parametric Rao
and GLRT detectors assume that the disturbance follows the multichannel AR process. Therefore,
the problem of interest is to evaluate the performance of the parametric Rao and GLRT detectors
using more realistic data, i.e., the KASSPER, MCARM and Bistatic datasets.

7.3 Parametric Rao and GLRT Detectors

For easy reference and to facilitate our evaluation of the parametric detectors, we provide a brief
summary of the parametric Rao and GLRT detectors in this section. These detectors are two dif-
ferent solutions to the problem stated in Section 7.2 [28,37,40,53]. The parametric Rao detector
is computationally simpler, but the parametric GLRT offers improved performance. Both detec-
tors first find the ML estimates of the unknown parameters, which are next used to compute the
test statistics. The likelihood functions under the null and alternative hypotheses are parameter-
ized by the signal amplitude α, the AR coefficients AH =

[
AH(1), . . . , AH(P )

] ∈ C
J×JP ,

and spatial covariance matrix Q. Note that under the null hypothesis we have α = 0. Given A,
the steering vector and test signal can be temporally whitened through the following inverse (i.e.,
moving average) filtering:

s̃(n) = s(n) +
P∑

i=1

AH(i)s(n − i), (7.4)

x̃0(n) = x0(n) +
P∑

i=1

AH(i)x0(n − i). (7.5)

This is an important observation exploited by the parametric Rao and parametric GLRT detectors
that are summarized next.

The parametric GLRT is given by [28, 53]

TGLRT = 2L ln
|Q̂ML,0|
|Q̂ML,1|

H1

≷
H0

γGLRT, (7.6)
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where L = (K + 1)(N − P ) and γGLRT denotes the corresponding test threshold. The ML
estimates of the spatial covariance matrix under the null and alternative hypotheses, Q̂ML,0 and
Q̂ML,1 are given by

Q̂ML,0 = Q̂(α)|α=0, (7.7)

Q̂ML,1 = Q̂(α)|α=α̂ML . (7.8)

The α-dependent Q̂(α) is given by

Q̂(α) =
1

L

(
R̂xx(α) − R̂H

yx(α)R̂−1
yy (α)R̂yx(α)

)
, (7.9)

where the α-dependent correlation matrices are

R̂xx(α) =
K∑

k=1

N−1∑
n=P

xk(n)xH
k (n)

+
N−1∑
n=P

[x0(n) − αs(n)] [x0(n) − αs(n)]H , (7.10)

R̂yy(α) =
K∑

k=1

N−1∑
n=P

yk(n)yH
k (n)

+
N−1∑
n=P

[y0(n) − αt(n)] [y0(n) − αt(n)]H , (7.11)

R̂yx(α) =
K∑

k=1

N−1∑
n=P

yk(n)xH
k (n)

+
N−1∑
n=P

[y0(n) − αt(n)] [x0(n) − αs(n)]H , (7.12)

with t(n) and yk(n) denoting the regression subvectors formed from the steering vector s(n) and
test signal xk(n), respectively: t(n) =

[
sT (n − 1), . . . , sT (n − P )

]T ∈ C
JP×1 and yk(n) =[

xT
k (n − 1), . . . , xT

k (n − P )
]T ∈ C

JP×1, k = 0, . . . , K. The ML estimate of α under the
alternative hypothesis, which is used in (7.8), is given by

α̂ML = arg min
α

∣∣∣R̂xx(α) − R̂H
yx(α)R̂−1

yy (α)R̂yx(α)
∣∣∣ . (7.13)

The parametric Rao test is given by [37, 40]

TRao =
2
∣∣∣∑N−1

n=P
ˆ̃sH(n)Q̂−1

ML,0
ˆ̃xH

0 (n)
∣∣∣2∑N−1

n=P
ˆ̃sH(n)Q̂−1

ML,0
ˆ̃sH(n)

H1

≷
H0

γRao, (7.14)
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where γRao denotes the test threshold. The temporally whitened steering vector ˆ̃sH(n) and test
signal ˆ̃xH

0 (n) are obtained by replacing AH with its ML estimate under H0

ÂH
ML,0 = −R̂H

yx(α)R̂−1
yy (α)|α=0, (7.15)

in (7.4) and (7.5), respectively.
The flowcharts for parametric GLRT and Rao detectors are shown in Figs. (7.1) and (7.2).

The Rao test is shown to be asymptotically equivalent to the GLRT but may be inferior to the
latter when the data size is small. In addition, the Rao test is obtained based upon a low-order
Taylor expansion of the GLRT, an approximation which is only valid for weak signals [7]. As
such, the performance of the parametric Rao detector degrades when the weak signal assumption
is violated. The parametric GLRT was developed as an improved detector to deal with the above
issues. However, the cost function of the ML amplitude estimator in (7.13) is highly non-linear.
Newton-like iterative non-linear searches are generally used to find the ML amplitude estimate.
Another sub-optimum but computationally more efficient estimator, referred to as the asymptotic
ML (AML) estimator, was developed in [28, 53]. The AML estimator, which was found to yield
similar performance to the ML estimator, can be implemented as follows:

• Step 1 First, compute a least-squares (LS) amplitude estimate α̂LS =
sHx0

sHs
. Then, deter-

mine an estimate ÂH
LS of AH as follows:

ÂH
LS = R̂H

yx(α̂LS)R̂
−1
yy (α̂LS), (7.16)

which can be shown to be statistically consistent [28, 53].

• Step 2 Compute the temporally whitened signals ˆ̃xk(n) and ˆ̃s(n) by replacing AH with
the LS AR coefficient estimate ÂH

LS in (7.4) and (7.5), respectively. Then, obtain the AML
amplitude estimate α̂AML by using

α̂AML =
tr
(

ˆ̃SHΨ−1 ˆ̃X0

)
tr
(

ˆ̃SHΨ−1 ˆ̃S
) , (7.17)

where ˆ̃S =
[
ˆ̃s(P ), . . . , ˆ̃s(N − 1)

] ∈ CJ×(N−P ), ˆ̃Xk =
[
ˆ̃xk(P ), . . . , ˆ̃xk(N − 1)

] ∈
C

J×(N−P ), and

Ψ = ˆ̃X0P
⊥ ˆ̃XH

0 +
K∑

k=1

ˆ̃Xk
ˆ̃XH

k , (7.18)

with P⊥ denoting the projection matrix projecting to the orthogonal complement of the

range of ˆ̃SH : P⊥ = I − P = I − ˆ̃SH
(

ˆ̃SH
)†

∈ C
(N−P )×(N−P ).

• Step 3 Find the AML estimate of the spatial covariance matrix by substituting α̂AML for α
in (7.9).
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Recall that the parametric Rao and parametric GLRT detectors utilize both the test and train-
ing signals for the parameter estimation. As a result, they are functional even without range
training data [28, 53]. The capability to handle the training-free detection is a unique and desir-
able attribute of the parametric detectors which is not shared by other existing detectors including
the PAMF detector.

7.4 Performance Evaluation

This section is to test the parametric detectors using the KASSPER [52], MCARM and bistatic
datasets. The performance evaluation of the parametric detectors with both datasets allows us to
assess the influence from the mismatch between AS2 and real disturbances.

7.4.1 Simulated KASSPER Dataset

The KASSPER 2002 dataset contains many real-world effects including heterogeneous terrain,
subspace leakage, array errors, and many ground targets. The simulated airborne radar was flying
at 3000 m altitude at 100 m/s traveling due east with a 3◦ crab angle. The radar was operating
at 1240 MHz with a peak power of 15 kW. The 11 (virtual) antenna array elements were spaced
slightly less than a half-wavelength apart at 0.1092 m (0.9028 half-wavelength spacing), and
the transmit array is uniformly weighted in the horizontal dimension and phased to steer the
mainbeam to 195◦. The pulse repetition frequency (PRF) was 1984 Hz and the CPI contains 32
pulses.

Dense Targets Environment

The KASSPER dataset simulates dense targets environment. Of particular interest are the targets
in the mainbeam of the radar within the range swath of interest. In total, there are 268 targets
from 35 to 50 km.

We apply the parametric detectors to the KASSPER data of interest and compute the test
statistics with respect to Doppler frequency and range cells. To compare with other techniques,
we count the number of detection while setting the threshold with constraint on the number
of false alarm. Due to range/Doppler sidelobes resulting from pulse compression and Doppler
filtering, it is common for a target to spread into nearby range-Doppler cells. For this reason, it is
standard procedure for a radar to cluster target detections such that a detection in a given range-
Doppler cell is associated with a target that lies in a contiguous range cell or Doppler band. For
the results reported here, we cluster ±1 cells in range and ±1 bands in Doppler for all processing
schemes. Once we declare a detection in its region, corresponding test value is removed from
original test statistics to avoid over-counting detection.

For comparison purpose, the Joint Domain Localized (JDL) technique with 3 × 3 local pro-
cessing region (LPR) is applied to the KASSPER dataset. There are 64 Doppler frequency bands
and two guard cells are used at each side of the test range cell. The number of false alarm Nfa
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Table 7.1: Number of Detected Targets when the number of false alarm Nfa = 10 for J = 11
without training limiting and with IPS training limiting (shown in the parenthesis).

Parametric GLRT Parametric Rao JDL

K = 11, P = 1 37 (72) 33 (59) 19 (35)
K = 11, P = 2 44 (67) 31 (46) 19 (35)
K = 22, P = 1 42 (73) 43 (67) 20 (38)
K = 22, P = 2 49 (101) 41 (76) 20 (38)

is constrained to 10. For the parametric detectors and JDL, two cases are considered: without
training limiting and with IPS training limiting.

No training limiting: Table 7.1 lists the number of detection when the number of false alarm
Nfa = 10 for J = 11, where true targets are represented by cross signs and detections by
bars. From this table, having more training data does not improve detection performance without
training selection. The clairvoyant detector with known covariance matrices can detect 176 out
of the 268 targets and the SMI with K = 999 training data can detect 32 targets. The JDL can
detect up to 20 targets, while the parametric detectors can detect at most 49 targets.

IPS training limiting: To improve the detection performance, we limit the training data by
applying the Innovation Power Sorting (IPS). In this case, the performance for each technique is
listed in Table 7.1, as shown in the parenthesis. The results show that, with IPS training selection,
the performance of the parametric detectors improves considerately. When J = 11, K = 22 and
P = 2, the parameter GLRT detectors can detect over 100 targets, while the JDL can detect 38
targets.

Heterogeneous Environment

Since the KASSPER 2002 dataset contains the true interference covariance matrix for every range
bin, we can realize the disturbances by following Gaussian processes with the true covariance
matrices, and obtain the detection performance of the parametric detectors with respect to SINR
(Pd versus SINR for a fixed Pf). Meanwhile, we have shown that having large ratio of the number
of pulses to the number of channels can improve the performance in case of limited training [28].
Since the number of channel in KASSPER dataset is fixed as N = 32, we alternatively generate
the CPI data for J = 4. Since the disturbance signals generated as above do not follow an AR
model in general and are more realistic than our earlier simulated data using an AR model, it
would be of interest to determine the detection performance of the parametric detectors using
this simulated data set and compare with our earlier simulation results based on an AR model
in [28, 40]. Besides the violation of AS2, we investigate the performance of the parametric
detectors in a simulated heterogenous environment, which does not assume i.i.d. in AS1. To this
end, we generate training signals using different covariance matrices from that of the range bin
under test.

In this simulation, we select the range bin 200 as the testing cell. The SINR is defined as

SINR = |α|2sHR−1s (7.19)
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where the space-time covariance matrix R is chosen by loading the Rcc r200.mat in the KASSPER
2002 dataset.

Figure 7.3 presents the estimated angle-Doppler power spectral density (PSD) of the distur-
bance in range bin 200 when J = 11 and N = 32. It shows that there exists a high clutter
centered in the normalized Doppler frequency of 0.1 and azimuth angle of 195◦. Figures 7.4(a)
and 7.4(b) depict the probability of detection versus SINR with K = 0 (no training) or K = 1
(limited training), and P = 1. For the no training case, the performance of both parametric de-
tectors degrades, while the performance is improved with one range training data. It is worthy
noting that, for the limited training case K = 1, the training data was generated by using dif-
ferent covariance matrix from the covariance matrix for the test data, which may be true in the
heterogeneous environments.

In [28,40], we have shown that the performance degradation caused by the absence of training
can be mitigated by using a larger N , i.e., increasing temporal observations of the test signal.
Since N = 32 is fixed in the KASSPER 2002 dataset, we alternatively down-sample the CPI
datacube to increase the ratio of N to J , i.e., extracting data corresponding to J = 4 channels
from the original dataset.

Figure 7.4(c) shows the case with J = 4 and N = 32 with no training data, and Figure 7.4(d)
shows the cases with limited training. It is seen that having larger ratio of N to J improves the
detection performance. Specifically, with K = 1, the performance of the parametric detectors is
only about 3 dB inferior to the ideal MF detector with known covariance matrix.

7.4.2 Measured MCARM Dataset

In this part, the MCARM dataset, the real world multi-channel airborne data containing clutter
in various terrains including mountains, rural, urban, and land/sea interface, is considered. The
MCARM data is collected from the BAC 1-11 airborne platform in the L-Band frequency. The
MCARM array has 16 columns, each consisting of two four-element subarrays. Each subarray
has its own output or is combined into a single output per column with up to 24 outputs for the
array.

Since the true joint space-time covariance matrix of MCARM dataset is unavailable, another
power measure is adopted since it can be estimated from the data. It is the input SINR (per-pulse,
per-channel) defined as

SINRIN =
|α|2
σ2

d

, (7.20)

where α is the target amplitude and σ2
d denotes the variance (power) of each element of the

disturbance vector at each time instant. We carried out the performance analysis of the parametric
Rao and GLRT detectors using two acquisitions from the MCARM database. More specifically,
rd050575 and rel050152 have been used to assess the performance of the parametric detectors.

Case I - Inserted Artificial Target

In this case, we choose the dataset according to the following parameters:
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• One elevation angle (0◦)

• One azimuth angle (0◦)

• Four channels (J = 4)

• Various K (training), N (pulses), and normalized Doppler frequencies

An artificial target with an SINRIN of −30dB is injected in the range bin 295. The disturbance
power σ2

d is estimated as a five-bin average centered on the range bin in which the target is placed.
Model order values P = 1, 2, 3, 4 were evaluated for each parametric tests and the model order
with the best performance was selected. The selection criterion is the difference between the
target peak value and the highest non-target peak value. Diagonal loading of 40 dB for the AMF
detector is applied.

Figure 7.5 depicts the estimated angle-Doppler power spectral density of the disturbance in
RB 295 when J = 4 and N = 128. It shows that there exists a high clutter centered in the
normalized Doppler frequency of −0.05 and azimuth angle of 0◦.

Figure 7.6(a) shows the case where the target is located outside the clutter (the normalized
Doppler frequency is 0.2). However, if the target is located inside the clutter (the normalized
Doppler frequency is 0.1) the AMF detector does not work at all, but the parametric Rao and
GLRT detectors work well (See Figures 7.6(c) and 7.6(d)).

Fig. 7.6(c) shows the test statistics for the parametric Rao and GLRT detectors without train-
ing support, the AMF with K = 8 and the JDL with K = 8, when the target is located inside the
clutter. Specifically, the AMF and JDL cannot work without training data. Clearly, the parametric
Rao and GLRT detectors can detect the inserted target with over 20 dB stronger peak. Fig. 7.6(d)
shows the test statistics for the case of K = 4.

Case II - Five Targets

In this case, no artificial target was injected. File re050152 employs a moving target simulator
in the radar field of view to simulate a moving point source. The dataset consists of N = 128
pulses, J = 22 channels and 630 range cells. There are five targets in total. The angle-Doppler
power spectral density for range bin 450 is shown in Fig. 7.7, when J = 22 and N = 128.
It shows that there exist five targets equi-spaced in normalized Doppler frequency, and centered
azimuth angle of −15◦.

It shows that there exist five targets equi-spaced in normalized Doppler frequency, and cen-
tered azimuth angle of −15◦. Figs. 7.8(a) and 7.8(b) depict the test statistics for the parametric
Rao and AMF detectors when J = 22, N = 128, P = 1 and K = 11 or K = 22. It is seen that
the parametric Rao detector detects all five targets, while the JDL can detect up to four targets
and the AMF detects two targets.
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Table 7.2: The Operating Parameters for the Bistatic Dataset
Parameter Value

carrier frequency 1240 MHz
receiver bandwidth 1 MHz
number of pulses 64

number of channels 16
number of range bins 601

pulse repetition frequency 400 Hz
peak transmit power 19.2 kW

transmitting platform altitude 3.1 km
transmitting platform speed 0 m/s (stationary)

100 m/s (moving)

receiving platform altitude 4 km
transmitting platform speed 100 m/s

tilt angle (Tx/Rx) 5◦

7.4.3 Bistatic Dataset

The Bistatic dataset is simulated bistatic airborne radar data contains non i.i.d. and range-
dependent clutter due to bistatic geometry. The bistatic data used in the performance evalua-
tion of the proposed algorithms was generated using Stiefvater Consultants Signal Modeling and
Simulation (SMS) tool [57] and follows closely results discussed in [58]. Two cases have been
considered. In both cases, the receiver is assumed to be moving at a velocity of 100 m/sec while
the transmitter’s velocity is assumed to be 0 m/sec (case I) and 100 m/sec (case II), with an
offset angle of 45◦. The transmitter center frequency is fc = 1.24GHz, the receiver height is
hR = 3.1km, the transmitter height is hT = 4km, and the baseline separation is L = 100km. The
pulse repetition frequency (PRF) was assumed to be 400 Hz. In both cases, the test cell is located
at 35 km from the receiver and the azimuth of the test cell with respect to the receiver is 135◦,
producing a bistatic angle of 33.9◦. The test cell is located at 1m above the ground. In each case,
a linear array composed of J = 32 sensors and N = 64 pulses have been used. Data for 601
range cells was generated using the same radar system parameters as those used in the MCARM
experiment [59]. The bistatic geometry is shown in Fig. 7.9.

In both cases there is only one target in the test cell 301. The operating parameters for the
simulated Bistatic dataset are shown in Table 7.2.

Case I - Non i.i.d Case

In the case of a stationary transmitter, note from Fig. 7.10(a) that unlike the monostatic side-
looking airborne radar, where all traces are overlapping and the clutter spectral centers co-located,
the clutter spectral centers are spread both in angle and Doppler. This generates spectral disper-
sion, thus making the secondary data vary with range. This in turn makes the training data non
independent and identically distributed (i.i.d), hence violating a fundamental assumption made
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Table 7.3: Case I: Difference between the target peak and the highest non-target peak
P-GLRT/ML P-Rao P-GLRT/AML2 JDL

K = 0 2.96 dB 0.66 dB 2.51 dB -
K = 2 9.50 dB 8.17 dB 10.27 dB -
K = 4 11.58 dB 9.76 dB 13.63 dB -
K = 8 14.31 dB 12.57 dB 16.27 dB 15.24 dB
K = 16 17.25 dB 15.64 dB 19.08 dB 17.29 dB

in several STAP algorithms.
For case I, Figure 7.11 shows the test statistic of the parametric Rao detector, the parametric

GLRT detector, and the joint domain localized (JDL) with 3 × 3 local processing region (LPR)
with respect to normalized Doppler frequency and range bins. The detection of the target is
marked by the rectangle. The number of training for the parametric detectors is K = 8. For the
JDL, when the number of training is limited to K = 8 which does not satisfy the full-rank esti-
mate of the covariance matrix in the angle-Doppler domain, the matrix pseudo-inversion is used.
To facilitate performance comparison, the differences between the target peak and the highest
non-target peak for various detectors are shown in the Tables 7.3. Clearly, the parametric Rao
and GLRT detectors can detect a target with limited or even no training data support. Specifi-
cally, the parametric GLRT detector can detect a target without training data support with a target
detection 2.96 dB higher than other test statistics. When the number of training is increased, the
performance of all detectors improves. For K = 18, all three detectors exhibit similar detection
performance.

Case II - Range-dependent Case

In the case of a moving transmitter, it is clear from Fig. 7.10(b) that the angle-Doppler traces are
non-overlapping and the spectral centers are highly distributed in angle and Doppler, due to the
relative motion of the receive and transmit platforms. Significant spectrum dispersion over range
then arises, which leads to significant performance degradation [58].

For case II, Figure 7.12 shows the test statistic of the parametric detectors and the JDL with
respect to normalized Doppler frequency and range bins. The number of training is specified in
the figures. In extremely case, i.e., K = 0, the parametric Rao and GLRT detectors have 1.84 dB
and 4.47 dB stronger output, by comparing the test statistics at range bin 301 with ones at other
range bins. When K = 8, the JDL cannot find any target, while the parametric Rao and GLRT
detectors can detect the true target at range bin 301 with 12.94 dB and 14 dB stronger amplitude,
respectively. By increasing the number of training to K = 16, the parametric Rao and GLRT
detectors exhibit a 13.92 dB and 14.59 dB higher peak at range bin 301, while the JDL finds two
distinct peaks which are located at range bin 100 and 301, respectively. The differences between
the target peak and the highest non-target peak for various detectors in this case are shown in the
Table 7.4, where the symbol − represents the detector fails to find the target, and negative value
means the wrong detection has higher peak than the correct detection.
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Table 7.4: Case II: Difference between the target peak and the higest non-target peak
Parametric GLRT Parametric Rao JDL

K = 0 4.47 dB 1.84 dB -
K = 2 7.90 dB 8.74 dB -
K = 4 6.70 dB 10.91 dB -
K = 8 14.00 dB 12.94 dB -
K = 16 14.59 dB 13.92 dB -2.39 dB
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Figure 7.1: The flowchart for the parametric GLRT detector

7.5 Conclusions

We have examined the performance of the parametric Rao and GLRT detectors using the KASSPER
2002, MCARM and Bistatic datasets include many real-world effects. Our results show that these
parametric detectors work quite well with limited or no range training data support in more re-
alistic environments. Therefore, they are good candidates for solving detection problems in the
presence of range dependent clutter and/or in heterogeneous environments.
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Figure 7.3: The angle-Doppler power spectral density of the range bin 200 when J = 11 and
N = 32
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Figure 7.4: The probability of detection versus input SINR for the KASSPER 2002 dataset.

81



Approved for public release; distribution is unlimited 87

Figure 7.5: Estimated angle-Doppler power spectral density for range bin 295 when J = 4 and
N = 128.
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Figure 7.6: The probability of detection versus input SINR for the KASSPER 2002 dataset.
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Figure 7.7: Estimated angle-Doppler power spectral density for range bin 450 when J = 22 and
N = 128.
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Figure 7.8: Test statistics of the parametric Rao, JDL and AMF detectors when J = 22, N =
128,P = 1 and K = 11 (a) K = 22 (b).
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Figure 7.9: Bistatic airborne radar geometry.
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Figure 7.10: Bistatic Angle-Doppler traces, Case I (a) and Case II (b).
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Figure 7.11: Case I: Test statistics of parametric GLRT, parametric Rao and JDL with respect
to normalized Doppler frequency and range bins when J = 16 and N = 64. The detection is
marked by the rectangle.
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Figure 7.12: Case II: Test statistics of parametric GLRT, parametric Rao and JDL with respect to
normalized Doppler frequency and range bins when J = 16, N = 64.The detection is marked by
the rectangle. The JDL with K = 8 fails to detect any target, while the JDL with K = 16 has a
strong detection around range bin 100 and a weak detection at range bin 301.
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Chapter 8

Parametric Adaptive Signal Detection for
Hyperspectral Imaging

8.1 Introduction

Hyperspectral sensors are a new class of imaging spectroscopy sensors that divide the wave-
band of interest into hundreds of contiguous narrow bands. Their fine spectral resolution enables
remote identification of ground objects based on their spectral signatures. Hyperspectral imag-
ing (HSI) has a wide range of applications including terrain classification, environmental and
agricultural monitoring, geological exploration, ordinance remediation, tactical surveillance, and
others [60].

A challenging problem in HSI applications is the so-called subpixel target detection, which
involves detecting objects occupying only a portion of a full pixel in an HSI image [4]. In such a
case, the signal produced by the HSI sensors consists of both the object and background, the latter
behaving effectively as interference that has to be suppressed for effective detection. The problem
is reminiscent of that of detecting a known signal with unknown amplitude in colored noise with
unknown correlation1 (e.g., [7]). A multitude of solutions have been developed, including the
Kelly’s generalized likelihood ratio (GLR) test [13], adaptive matched filter (AMF) [12], adaptive
coherence estimator (ACE) test [14,15], among others. While these detectors can be used to solve
the HSI subpixel target detection problem, there is a major difficulty with them in training-limited
scenarios. In particular, the above detectors are covariance-matrix based techniques in that they
all rely on an estimate of the background covariance matrix, which is obtained from target-
free training pixels. The size of the background covariance matrix is identical to the number of
spectral bands that is typically in the order of hundreds. A good estimate of the covariance matrix
would require several hundred or more target-free training pixels, which may not be available in
heterogeneous or dense-target environments. Another problem with the above covariance-matrix
based detectors is complexity, since the large-size covariance matrix has to be estimated and

1We take a stochastic approach herein by modeling the background as a correlated random vector with an un-
known covariance matrix. There are other detectors based on modeling the background as a deterministic quantity.
See [4, 61, 62] and references therein for details.
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inverted frequently.
There is a significant interest in developing training-efficient detection techniques for training-

limited applications, such as the above HSI target detection approaches applied in heterogeneous
environments. Another example is target detection based on space-time adaptive processing
(STAP) for airborne radars [1], where range-dependent clutter characteristics, along with other
issues, prevent inclusion of a large number of range cells far away from the test cell in the training
set. One effective way to reduce training requirement in STAP detection is to utilize a suitable
parametric model for the radar clutter and exploit the model for target detection. In particular,
multichannel autoregressive (AR) models have been found to be very effective in representing
the temporal correlation among pulse returns [22]- [25]. A parametric detector based on such a
multichannel AR clutter model is developed in [22]- [23], which is referred to as the parametric
adaptive matched filter (PAMF). The PAMF detector has been shown to significantly outperform
the covariance-matrix based detectors for small training size.

For HSI applications, however, the data is non-stationary in the spectral domain (see Sec-
tion 8.4.1 for details of such non-stationarity),2 wheras AR models are by definition stationary.
To account for such non-stationarity, we introduce in this chapter a sliding-window based non-
stationary AR (NS-AR) model to capture the spectral correlation of HSI data. We propose a class
of parametric adaptive signal detectors for HSI subpixel target detection, and develop a maxi-
mum likelihood (ML) estimation algorithm to estimate the parameters associated with the NS-AR
model. In addition, we develop model order selection, training screening, and time-series based
whitening and detection techniques, which are intrinsic parts of the proposed parametric adaptive
detectors. We show via experimental results with real HSI data that our proposed parametric
detectors are more efficient in training usage and outperform the conventional covariance-matrix
based detectors when the training size is limited.

The rest of the chapter is organized as follows. Section 8.2 contains the data model and
problem statement. The covariance-matrix based detectors are briefly reviewed and discussed in
Section 8.3. The proposed techniques, including an NS-AR model, a class of parametric adaptive
detectors, an ML parameter estimation algorithm, a model order selection method, and a training
screening approach, are detailed in Section 8.4. Experimental results illustrating the performance
of the proposed detectors under homogeneous, heterogeneous, and dense-target environments are
presented in Section 8.5. Finally, Section 8.6 contains our concluding remarks.

8.2 Data Model and Problem Statement

Obtained through both spatial and spectral sampling, HSI data is usually described as a dat-
acube, whose face is a function of the spatial coordinates and depth is a function of spec-
tral bands or wavelengths. Each pixel can be represented as an L × 1 real-valued vector:
x = [x(0), x(1), . . . , x(L − 1)]T , where L denotes the total number of spectral bands, x(l) de-
notes the spectral response at the lth spectral band, and (·)T denotes transpose. Since HSI data

2Such spectral non-stationarity shall not be confused with the spatial stationarity which is often assumed for HSI
data [4].
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has non-zero mean [4, 65], a preprocessing stage is usually invoked to remove the sample mean
estimated using the neighbor pixels.

In vector notation, the subpixel signal detection problem is described by the following com-
posite hypothesis test [4]:

H0 : x = b, target absent

H1 : x = as + b, target present
(8.1)

where x ∈ R
L×1 is the demeaned test pixel, s ∈ R

L×1 is the signature vector of the target
object with amplitude a, and b ∈ R

L×1 denotes the background plus system noise. We adopt
the standard assumption that the signature vector s is deterministic and known to the detector;3

the amplitude a, however, is assumed unknown. For the background, we follow a statistical
approach that models the background interference b as a multivariate Gaussian random vector
with zero mean and an unknown covariance matrix Rb = E{bbT}. The Gaussian assumption
has been widely used for multispectral (e.g., [65]) and HSI data [4]. It leads to mathematical
tractability and reasonably good performance. Nevertheless, it should be noted that a Gaussian
model is not fully appropriate to characterize the statistical behavior of HSI data in many realistic
cases, and alternative modeling approaches have been considered in [66]- [68].

Equation (8.1) implies that the background interference covariance matrix is the same under
both hypotheses. Since for a subpixel target the area covered by background is different under
the two hypotheses, it is more appropriate to consider the following modified hypothesis [4, 69]:

H0 : x = b, target absent

H1 : x = as + σb, target present,
(8.2)

where σ is unknown and, along with the signature amplitude a, determined by the target fill
factor, i.e., the percentage of the pixel area occupied by the target [4].

Similar to [4], we assume that in addition to the test pixel x, we have N training pixels
x1, . . . ,xN . In surveillance applications when the target class is rare or sparsely populated,
the training pixels are usually taken as those surrounding the test pixel and assumed target-free
[4]. Again similar to [4], we assume that x1, . . . ,xN are independent and identically distributed
(i.i.d.) Gaussian random vectors with zero mean and covariance matrix Rb, and independent of
the text pixel x.

The problem in question is to find an efficient decision rule for the composite hypothesis
testing problem (8.1) or (8.2), given knowledge of the test pixel x, target signal signature s, and
training pixels x1, . . . ,xN . Our goal is to achieve good detection performance for small N .

Before closing this section, we remark that our parametric detection schemes, as well as many
others (e.g., in [4]), rely on the perfect knowledge of the target spectral signature. Generally, the
target signature is available in its reflectance spectrum, whereas the HSI sensors measure the
radiance spectrum of the observed materials. In order to apply these detection techniques, the

3The spectral signature may vary due to variations in atmospheric conditions and other factors, and the uncer-
tainty can be captured by a linear mixing model [4]. We do not consider such spectral variations since our focus is
effective cancellation of the background.

90



Approved for public release; distribution is unlimited 96

HSI data must be pre-processed to obtain reflectance data from the radiance ones (e.g., through
atmospheric correction) or, alternatively, target spectral reflectance must be processed to obtain
the radiance spectrum. See [70, 71] for details.

8.3 Covariance-Matrix Based Solutions

A number of solutions to the above problem have been developed. If the covariance matrix Rb

is known exactly, the optimum detector for (8.1) with unknown signal amplitude is the matched
filter (MF) [12]: ∣∣sT R−1

b x
∣∣2

sT R−1
b s

H1

≷
H0

tMF, (8.3)

where tMF denotes the MF threshold. The MF detector is obtained by a GLR approach (e.g., [7]),
by which the ML estimate of the unknown amplitude a is first estimated and then substituted
back into the likelihood ratio to form a test statistic. In practice, the MF detector cannot be
implemented since Rb is typically unknown. However, it provides a baseline for performance
comparison when considering any realizable detection scheme.

In practice, the unknown Rb can be replaced by some estimate, such as the sample covariance
matrix obtained from the training pixels:

R̂b =
1

N

N∑
n=1

xnx
T
n . (8.4)

Using R̂b in (8.3) leads to the so-called AMF detector [12]:∣∣∣sT R̂
−1

b x
∣∣∣2

sT R̂
−1

b s

H1

≷
H0

tAMF, (8.5)

where tAMF denotes the AMF threshold.
Alternatively, one can treat both a and Rb as unknowns and estimate them successively by

ML. Such a GLR approach was pursued by Kelly [13], which gives the following Kelly test:∣∣∣sT R̂
−1

b x
∣∣∣2(

sT R̂
−1

b s
)(

N + xT R̂
−1

b x
) H1

≷
H0

tKelly, (8.6)

where tKelly denotes the corresponding threshold.
Another popular detector is the ACE test [14, 15]:∣∣∣sT R̂

−1

b x
∣∣∣2(

sT R̂
−1

b s
)(

xT R̂
−1

b x
) H1

≷
H0

tACE, (8.7)
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which is obtained by a GLR procedure that takes into account not only the unknown amplitude a
and background covariance matrix Rb, but also the variability of the variance of the background
under H0 and H1. Interestingly, the ACE test is the AMF test (8.5) normalized by the signal

energy weighted by the covariance matrix inverse R̂
−1

b . By the Schwartz inequality, one can see
that the ACE test statistic is bounded between zero and one.

The AMF, Kelly and ACE tests have constant false alarm rate (CFAR). However, they entail
a large training requirement. The covariance matrix Rb has a dimension of L×L. Typical values
for L in real HSI systems are in the range of hundreds. An accurate estimate of the covariance
matrix would require a large number of target-free training pixels, which may not be available,
especially in non-homogeneous environments. In addition, the computational complexity of these
detectors is high, since Rb has to be estimated and inverted frequently.

8.4 Proposed Approach

In this section, we present a class of parametric adaptive signal detectors with reduced training
requirement. The proposed detectors, which are detailed in Section 8.4.2, relies on an NS-AR
model introduced in Section 8.4.1, an ML parameter estimation algorithm derived in Section
8.4.3, a model order selection method discussed in Section 8.4.4, and a training screening tech-
nique presented in Section 8.4.5.

8.4.1 Parametric Modeling of HSI Data

It is well-known that the interference suppression ability of the detectors discussed in Section
8.3 comes from a whitening procedure. Consider, for example, the AMF detector (8.5). The
whitening operation takes as inputs the signature vector s and test pixel x, and outputs whitened
versions:

s̃ = R̂
−1/2

b s, x̃ = R̂
−1/2

b x, (8.8)

where R̂
−1/2

b denotes the matrix square-root of R̂
−1

b . Following the whitening, the AMF detector
reduces to simple correlation of the whitened outputs:∣∣s̃T x̃

∣∣2
s̃T s̃

H1

≷
H0

tMF. (8.9)

If the whitening operation can be designed or approximated via a parametric model without
explicitly estimating Rb, then it is conceivable that fewer training pixels are needed, provided that
the parametric model is parsimonious enough (without an extraordinary number of parameters).
This is the essence of our parametric model based methods. Next, we consider two different
parametric modeling approaches.
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AR Modeling

AR models have been popular choices for parametric modeling in spectral analysis, speech cod-
ing, wireless channel modeling, seismic signal processing, among others (e.g., [30]). Parametric
adaptive detection based on multichannel AR models has been considered in [22]- [23,72,73] for
airborne radar systems equipped with multiple antennas. It was shown that significant saving in
training and complexity can be achieved by fitting the interference and radar clutter into suitable
multichannel AR models.

For the problem under study, the L × 1 background vector b, or equivalently the observed
signal x under H0, may be assumed to be a scalar AR process which produces the L samples
of b. If an AR model is appropriate for HSI data, then the detection problem amounts to first
estimating the AR coefficients from training data, whitening the signals by a whitening filter
constructed from the AR coefficient estimates, and computing the decision statistic from the
whitened signals followed by thresholding. For brevity, the above approach is referred to as the
parametric adaptive matched filter (PAMF)4, or normalized PAMF (NPAMF) [72] if the decision
variable is normalized, similar to the normalization imposed by the ACE detector of (8.7).

We have tested the above AR-based PAMF/NPAMF detectors with real HIS data using fixed
AR parameters across the spectral domain and found they suffer a performance loss compared to
the methods proposed here. The reason is that AR models are not a suitable parametric model
for HSI data. In particular, we find that HSI data are non-stationary in the spectral dimension,
whereas fixed parameter AR models characterize stationary random processes. To see this, we
have computed the sample covariance matrix R̂b, from a total of K = 24 × 46 = 1104 training
pixels drawn from a homogeneous region of the HSI data described in Section 8.5. Figure 8.1
depicts the main and 3 sub- diagonals of R̂b, which correspond to the autocorrelation function
(ACF) at spectral lag 0 (i.e., variance), lag 1, lag 2 and lag 3, respectively, versus the spectral
bands. Clearly, the signal is not stationary since the variance and ACF at other lags vary signifi-
cantly across the spectral bands.

NS-AR Modeling

Although HSI data is non-stationary (NS) across the entire spectral dimension, it may be consid-
ered approximately stationary over a sufficiently small number of adjacent spectral bands. This
can seen from Figure 8.1 where the variation of the sample statistics over a few adjacent spectral
bands is considerably smaller compared with that over the entire spectral bands. In the follow-
ing, we consider a NS-AR modeling approach by taking into account such local stationarity of
HSI data. Specifically, let xn(l) denote the spectral response at the lth spectral band of the nth
training pixel xn, that is, xn = [xn(0), . . . , xn(L − 1)]T . Then, we slice xn into into L − Ls + 1
overlapping subvectors:

xn,l =
[
xn(l), . . . , xn(l + Ls − 1)

]T
,

l = 0, . . . , L − Ls,
(8.10)

4Details of the PAMF and NPAMF detectors can be inferred from the proposed NS-PAMF and NS-NPAMF
detectors discussed in Section 8.4.2, as the former are special cases of the latter.
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where Ls ≤ L denotes the length of the subvectors. Equivalently, these subvectors can be thought
of as being obtained by windowing xn using a sliding window of size Ls. For sufficiently small
Ls, each subvector xn,l can be modeled as an M th-order AR process:

xn(k) = −
M∑

m=1

al(m)xn(k − m) + wn,l(k),

k = l, l + 1, . . . , l + Ls − 1; n = 1, . . . , N,

(8.11)

where wn,l(k) denotes the modeling residual for the lth subvector xn,l. The residual is Gaus-
sian (since xn(k) is so) with zero-mean and variance σ2

l , and spectrally white so that {wn,l(k)}
are independent with respect to k and n [30]. Note that the lth set of the AR coefficients,
al(1), . . . , al(M), is associated with the lth subvector xn,l, and that different subvectors are asso-
ciated with different sets of AR coefficients. For simplicity, we consider fixed AR model order
M (also see discussions in Section 8.4.4).

From the estimation perspective, the choice of M and window size Ls should be made with
tradeoffs among the bias, variance and stationarity of the modeling approach. A large M might
be desirable since it can provide better fitting (lower bias) to the HSI data. Increasing M , how-
ever, would require the window size Ls to increase accordingly since more parameters are to
be estimated and, therefore, more data should be provided within each subvector to reduce the
variance of parameter estimates. If Ls is too large, the assumption of stationarity within the sub-
vector may be violated, which can cause significant degradation. From the application aspect,
however, these parameters are related to the HSI sensor characteristics, such as the operating
spectral range, spectral resolution, etc. For the HSI data used in this chapter, we found a window
size 8 ≤ Ls ≤ 15 is generally appropriate for modeling. Once Ls is selected, we can use infor-
mation criterion based model order selection techniques to determine M . We leave the details to
Section 8.4.4.

Instead of the above sliding-window based NS-AR modeling approach, one can consider an
alternative NS-AR model that models the HSI data across all the spectral bands:

xn(l) = −
M∑

m=1

bl(m)xn(l − m) + vn(l),

l = 0, . . . , L − 1,

(8.12)

where bl(m) denotes the shift-varying AR coefficient and vn(l) the fitting error of the lth sample.
Note that the above model differs from (8.11) in that the AR coefficients are varying from sample
to sample, whereas in (8.11), they are assumed to remain fixed within a sliding subvector of
Ls samples. An additional parametric model for the shift-varying AR coefficients {bl(m)} is
necessary to ensure they can be estimated. This doubly parametric approach is more sensitive
to the choice of the parameters, whose estimation is also considerably more involved. In the
following, we consider only the sliding-window based NS-AR modeling approach.
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8.4.2 NS-AR Model Based Parametric Adaptive Detectors

If the above NS-AR model (8.11) is appropriate for modeling target-free HSI data (i.e., the back-
ground), then a time-series based (as opposed to the previous covariance-matrix based) whiting
process can be developed without explicitly estimating Rb. This leads to a class of parametric
adaptive detectors that are summarized below:

• Step 1 – Parameter Estimation: Estimate the NS-AR coefficients {al(m)} in (8.11)
and the variance {σ2

l } of the residual from the training pixels {xn}N
n=1 by using an ML

based estimation algorithm detailed in Section 8.4.3. Let {âl(m), σ̂2
l } denote the coefficient

estimates.

• Step 2 – Whitening: Form a shift-varying moving-average (MA) whitening filter from
the parameter estimates {âl(m), σ̂2

l }, and whiten the test pixel x and target signature s as
follows:

x̆(l) =
1

σ̂l

[
x(l) +

M∑
m=1

âl−Ls(m)x(l − m)

]
,

s̆(l) =
1

σ̂l

[
s(l) +

M∑
m=1

âl−Ls(m)s(l − m)

]
,

l = Ls − 1, . . . , L − 1,

(8.13)

where x̆(l) and s̆(l) denote the lth output sample of the whitening filter when the input is
the test pixel x and target signature s, respectively. It should be noted from (8.13) that each
set of the NS-AR parameter estimates, i.e., {âl(m)}M

m=1 and σ̂l, is used to compute one pair
of output samples x̆(l) and s̆(l); as the sliding window shifts to the next position, we use the
next set of parameter estimates for whitening. In effect, (8.13) implements the whitening
operation (8.8) in a time-series fashion by taking into account the NS nature of the signal.
For an input of L spectral samples, the time-series based whitening filter outputs L − Ls

whitened samples due to initialization of the whitening filter. Although such dimensionality
reduction may affect the detection performance, the impact is negligible for small Ls and
large L, which is typical in HSI systems.

• Step 3 – Detection: The outputs of the shift-varying whitening filter corresponding to the
test pixel x and target signature s, respectively, are used to form the decision statistic. De-
pending upon how the decision statistic is formed, we have a class of parametric detectors.
For example, the parametric counterparts of the covariance-matrix based AMF (8.5) and
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ACE (8.7) detectors are given by∣∣∣∣∣
L−1∑

l=Ls−1

s̆(l)x̆(l)

∣∣∣∣∣
2

L−1∑
l=Ls−1

s̆2(l)

H1

≷
H0

tNS-PAMF, (8.14)

∣∣∣∣∣
L−1∑

l=Ls−1

s̆(l)x̆(l)

∣∣∣∣∣
2

(
L−1∑

l=Ls−1

s̆2(l)

)(
L−1∑

l=Ls−1

x̆2(l)

) H1

≷
H0

tNS-NPAMF, (8.15)

which are referred to as the NS-PAMF and NS-NPAMF detectors, respectively. A time-
series based, Kelly like test can also be obtained in a similar fashion.

Finally, it is noted that the above NS-PAMF and NS-NPAMF detectors reduce to the PAMF and
NPAMF detectors, respectively, that are briefly discussed in Section 8.4.1, when Ls = L, that is,
the sliding window reaches the maximum value and includes the entire spectral bands. In that
case, the NS-AR model in (8.11) reduces to the standard stationary AR model.

8.4.3 ML Estimation of NS-AR Coefficients

Parameter estimation plays a critical role for the proposed parametric detectors. In this section,
we present an ML estimator to estimate the NS-AR coefficients in (8.11) using training pixels
x1, . . . ,xN . Our ML estimator is an extension of that in [30] for fixed AR models to NS-AR
processes.

Consider the vector of AR coefficients of model order M : al =
[
al(1), . . . , al(M)

]T
. Ac-

cording to the statistical assumptions made in Section 8.2 and the NS-AR model (8.11), the lth
set of subvectors x1,l, . . . ,xN,l formed from the N training pixels are i.i.d. multivariate Gaussian
whose joint probability density function (PDF) is parameterized by the NS-AR coefficients al

and variance σ2
l . Then, the ML estimates of al and σ2

l are obtained by maximizing the joint
PDF p(x1,l, . . . ,xN,l; al, σ

2
l ). Exact maximization of the joint PDF with respect to the unknown

parameters turns out to be highly involved computationally [74]. Instead, we seek to optimize
a conditional PDF, which produces an asymptotic ML estimate of the parameters for large date
size [30]. Specifically, let

x
(1)
n,l =

[
xn(l), . . . , xn(l + M − 1)

]T
, (8.16)

x
(2)
n,l =

[
xn(l + M), . . . , xn(l + Ls − 1)

]T
(8.17)

which collect the first M and, respectively, the last Ls−M samples of xn,l. Thus, we have xn,l =[
x

(1)T
n,l , x

(2)T
n,l

]T

. Our asymptotic ML estimator seeks to maximize the joint conditional PDF
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p
(
x

(2)
1,l , . . . ,x

(2)
N,l

∣∣∣x(1)
1,l , . . . ,x

(1)
N,l; al, σ

2
l

)
with respect to al and σ2

l . We will write the conditional

PDF as p
(
x

(2)
l

∣∣∣x(1)
l ; al, σ

2
l

)
for brevity.

To find an explicit form of the above conditional PDF, we observe from (8.11) that

wn,l(k) =xn(k) +
M∑

m=1

al(m)xn(k − m),

k = l, l + 1, . . . , l + Ls − 1; n = 1, . . . , N.

(8.18)

Since {wn,l} are i.i.d. Gaussian with zero mean and variance σ2
l , we have (e.g., [30])

p
(
x

(2)
l

∣∣∣x(1)
l ; al, σ

2
l

)

= (2πσ2
l )

−N(Ls−M)/2 exp

{
− 1

2σ2
l

N∑
n=1

·
l+Ls−1∑
k=l+M

[
xn(k) +

M∑
m=1

am,lxn(k − m)

]2} (8.19)

Maximizing the above conditional PDF is equivalent to minimizing the negative log likelihood
function

V (al, σ
2
l ) = − ln p

(
x

(2)
l

∣∣∣x(1)
l ; al, σ

2
l

)
. (8.20)

Define an (Ls − M) × M matrix

Xn,l =

⎡
⎢⎣

xn(l + M − 1) . . . xn(l)
...

...
...

xn(l + Ls − 2) . . . xn(l + Ls − M − 1)

⎤
⎥⎦ . (8.21)

Then, V (al, σ
2
l ) can be more compactly expressed as

V (al, σ
2
l ) = C1 +

1

2
N(Ls − M) ln σ2

l

+
1

2σ2
l

N∑
n=1

∥∥∥x(2)
n,l + Xn,lal

∥∥∥2

,
(8.22)

where5

C1 =
1

2
N(Ls − M) ln(2π), (8.23)

Taking the derivative of V (al, σ
2
l ) with respect to σ2

l and setting it to zero yield

σ̂2
l (al) =

1

N(Ls − M)

N∑
n=1

∥∥∥x(2)
n,l + Xn,lal

∥∥∥2

. (8.24)

5We keep the constant term C1 which depends on M for model order selection in Section 8.4.4.
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Substituting σ̂2
l (al) back into (8.22) reduces the cost function to

V (al, σ̂
2
l ) = C1 + C2 +

1

2
N(Ls − M) ln σ̂2

l (al), (8.25)

where

C2 =
1

2
N(Ls − M). (8.26)

Therefore, the ML estimate of al is obtained by minimizing σ̂2
l (al), the variance of the NS-AR

modeling residual. The solution is obtained by least-squares fitting:

âl = −
(

N∑
n=1

XT
n,lXn,l

)−1( N∑
n=1

XT
n,lx

(2)
n,l

)
,

l = 0, 1, . . . , L − Ls.

(8.27)

The matrix within the first pair of brackets is assumed non-singular. A necessary condition for
non-singularity is that the number of training pixels N is such that

N ≥ M

Ls − M
. (8.28)

This is because the above matrix inverse can be expressed as (XT
l X l)

−1, where

X l =
[
XT

1,l, . . . , XT
N,l

]T
(8.29)

is a tall matrix when the above condition is satisfied. On the other hand, when N ≥ M
Ls−M

,
XT

l X l is full rank almost surely due to the random nature of the HSI data.
Finally, substituting the ML estimate (8.27) back into (8.24) yields the minimum variance of

the residual:

σ̂2
l =

1

N(Ls − M)
x

(2)T
l P⊥

Xl
x

(2)
l . (8.30)

where x
(2)
l =

[
x

(2)T
1,l , . . . , x

(2)T
N,l

]
and P⊥

Xl
is the projection matrix onto the null space of X l:

P⊥
Xl

= I − X l

(
XT

l X l

)−1
XT

l , (8.31)

where I is an identity matrix.

8.4.4 NS-AR Model Order Selection

In this section, we develop information criterion based model order selection techniques to deter-
mine the NS-AR model order M in (8.11). Although in principle it is possible to select a different
M for each subvector xn,l, l = 0, . . . , L − Ls, by a separate fitting of M to the information cri-
terion, this is a tedious process. In the following, we use a fixed M for all l.
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Model order selection for parametric models is a classical topic and has been investigated by
various researchers for various models (e.g., [30,31] and references therein). We examine herein
the model order selection problem for the NS-AR model in (8.11) for the HSI application, which
appears not to have been addressed elsewhere. Specifically, we consider a generalized Akaike
information criterion (GAIC), which chooses the model order M that minimizes

W (M) =
L−Ls∑
l=0

[Vl(M) + γ(M)] , (8.32)

where Vl(M) is the minimum cost associated with the lth set of subvectors x1,l, . . . ,xN,l, and
γ(M) is a penalty term that penalizes increasing model order [31]. Specifically, the minimum
cost is derived in Section 8.4.3 (cf. (8.25))

Vl(M) = C1(M) + C2(M) +
1

2
N(Ls − M) ln σ̂2

l (M), (8.33)

where C1(M), C2(M) and σ̂2
l (M) are given by (8.23), (8.26) and (8.30), respectively, and the

dependence on M is made explicit. On the other hand, the penalty term typically takes the
form [31]

γ(M) = α(M + 1) ln(NLs), (8.34)

or
γ(M) = α(M + 1) ln [ln(NLs)] , (8.35)

where M + 1 is the total number of unknowns for each set of subvectors {xn,l}N
n=1, NLs is the

number of data samples contained in {xn,l}N
n=1, and α ≥ 2 is a parameter of user choice. Note

that the above GAIC reduces to the standard AIC [75] when the (L − Ls + 1)-term summation
in (8.32) vanishes and γ(M) = 2(M + 1). It is known that AIC is not a consistent model order
estimator [30]. Choosing a penalty term proportional to ln(NLs) or ln [ln(NLs)] is an effective
way of obtaining consistent order estimates [31].

8.4.5 Training Screening

One assumption made in Section 8.2 is that the N training pixels x1, . . . ,xN are target-free. This
assumption is reasonable in homogeneous environments where targets are rare or sparsely popu-
lated, but usually violated in heterogeneous or dense-target environments. In the latter case, the
performance of all training-based detectors, including those covariance-matrix based detectors
discussed in Section 8.3, degrade considerably. Training screening to eliminate “bad” training
data in such cases has been examined in a number of recent studies for radar target detection
(e.g., [76]- [78] and references therein). In this section, we discuss screening of heterogeneous
HSI training data. Rather than treating it as an independent process, we cast training screening
within the proposed NS-AR framework.

For covariance-matrix based detectors in Section 8.3, one screening approach according to
statistical ranking and selection theory is to compute the following metric from the training set
[76]:

Tn = xT
nR̂

−1

b xn, n = 1, . . . , N. (8.36)
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Then, the metric is used to partition the training set S = {x1, . . . ,xN} into two disjoint sets S1

and S2 (see [76] for details), of which the former contains the refined training data while the latter
contains outliers that are discarded.

The above training screening approach relies on an estimate of a full-rank sample covariance

matrix R̂b. To circumvent this, we note that xT
nR̂

−1

b xn = ‖x̃n‖2, where x̃ = R̂
−1/2

b xn, i.e.,
the “whitened” version of xn. The whitening operation can be equivalently implemented in a
time-series fashion by an MA whitening filter without the need to estimate R̂b. This alternative
screening approach is proposed in [78] and referred to as the innovation power sorting (IPS)
method, since the output of the MA whitening filter is often called the innovation of the input
(e.g., [79]).

The IPS can be extended and cast within the NS-AR framework. Specifically, we first use the
ML estimator in Section 8.4.3 to estimate the NS-AR parameters {âl(m), σ̂2

l } from the original
training set S. Next, we form a shift-varying MA whitening filter from these parameter estimates
and, similarly to (8.13), whiten the training set as follows:

x̆n(l) =
1

σ̂l

[
xn(l) +

M∑
m=1

âl−Ls(m)xn(l − m)

]
,

l = Ls − 1, . . . , L − 1; n = 1, . . . , N.

(8.37)

Finally, we compute the following metric

Tn =
L−1∑

l=Ls−1

x̆2
n(l), n = 1, . . . , N, (8.38)

which is used to replace (8.36) for the partition of S into S1 and S2.

8.5 Experimental Results

In this section, we present experimental results to illustrate the performance of our proposed
techniques. For comparison, we consider the covariance matrix based ACE test (8.7), the AR
model based NPAMF detector (see Section 8.4.1), our NS-AR model based NS-NPAMF detector
(8.15), and a modified version called NS-LP-NPAMF that is briefly explained below. We do not
compare with the AMF (8.5) or Kelly (8.6) tests which were found to perform similarly to the
ACE test in our experiments. Meanwhile, the ACE, NPAMF, NS-NPAMF and LS-NS-NPAMF
are all normalized tests whose test statistics range between 0 and 1, which makes comparison
more convenient.

The modification made in the NS-LP-NPAMF detector is due to an observation that HSI spec-
tral data exhibit small oscillations. As an example, Figure 8.2 depicts the original HSI data of a
randomly chosen pixel from the HSI data set described below. Such oscillations along the spec-
tral dimension do not contribute much to detection, meanwhile making parameter estimates more
noisy. It was found that passing the HSI data through a lowpass (LP) filter to first remove those
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oscillations before applying the proposed NS-AR modeling, estimation, and detection techniques
is helpful. Our NS-NPAMF detector (8.15) with such a modification is called NS-LP-NPAMF.
For lowpass filtering, we use a simple moving-average filter with impulse response given by a
Kaiser window, whose length is equal to the sliding window size Ls and the shape parameter is
3. It should be noted that LP filtering is applied to all signals involved in detection, including the
training pixels, test pixel, and target signature.

The HSI data employed in our studies is provided on the CD that accompanies [60]. Figure
8.3 is a color infrared (IR) image from a portion of the data set, which shows a view of an airborne
hyperspectral data flightline over the Washington DC area. The sensor system used in this case
measured the spectral response in 210 spectral bands in the 0.4 to 2.4 μm region of the visible
and IR spectrum. Bands in the 0.9 and 1.4 μm region where the atmosphere is opaque have been
omitted from the data, leaving L = 191 spectral bands. Additional information on the data set
can be found in [60]. The image shown in Figure 8.3 was made using bands 60, 27 and 17 for
the red, green and blue colors, respectively. Three test regions are highlighted in Figure 8.3. Test
region #1 is relatively homogeneous and formed by grass, test region #2 is less homogeneous
with tree and road, and test region #3 corresponds to a heterogeneous environment. To simulate
the H1 condition, we superimpose a target signal to the test pixel. The target signal corresponds
to the spectral signature of a man-made object (taken from a pixel in Figure 8.3), and is scaled
according to particular target fill factors [4]. Each test data set is first demeaned using a 3 × 3
spatial moving average filter (see [80] for details on the demeaning process).

8.5.1 Model Order Selection

We first use the GAIC developed in Section 8.4.4 to determine the model order M of the NS-AR
model. Figure 8.4 depicts W (M) in (8.32) as a function of M for Ls = 10 and N = 8, and the
result is obtained by averaging over the pixels in test region #1. Results obtained with the other
two test regions are similar. It is seen that W (M) decreases quickly as M increases from 1 to
3, reaches its minimum and remains relatively flat between 3 and 5, then increases slightly from
5 to 8, and finally drops drastically for M = 9. The pattern of decrease followed by increase of
W (M) is standard for most model selection techniques [30]. To understand why W (M) drops
again at M = 9, we note that (8.28) is violated with M = 9. As a result, X l in (8.29) does not
have full column rank, and there are numerous solutions for the NS-AR coefficients {al(m)} that
lead to zero residual in the NS-AR model. In the following, we choose M = 5.

8.5.2 Detection in Homogeneous Environments

To illustrate detection performance in homogeneous environments, the figure of merit employed
here is the separation of test statistics under H0 and H1, which is also used in [4]. For all
methods, we use N = 8 training pixels, which corresponds to a 3 × 3 region without counting
the center pixel (i.e., test pixel), for sample covariance matrix or parameter estimation. The
sample covariance matrix R̂b is rank deficient in this case. As suggested in [4], we use the

approximation R̂
−1

b ≈ I − U 1U
T
1 , where U 1 is formed by the principle eigenvectors of R̂b, for
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the ACE detector. The subvector length (i.e., sliding window length) is Ls = 10 for NS-NPAMF
and NS-LP-NPAMF.

First consider test region #1. Figures 8.5(a) to 8.5(d) depict the test statistic separation of the
four detectors, respectively, as a function of the target fill factor. We note that NPAMF is the
worst of all detectors, which corroborates our earlier observation that stationary AR modeling
is not suitable for HSI data. However, both NS-NPAMF and NS-LP-NPAMF outperform the
ACE test, with NS-LP-NPAMF being slightly better than NS-NPAMF. Specifically, we see that
the former achieves full target-background separation when the fill factor is 0.25, while the latter
does not.

Figures 8.6(a) to 8.6(d) depict the counterpart results when the detectors are applied to test
region #2, which is less homogeneous than test region #1. It is seen that all four detectors expe-
rience some degradation relative to the previous results. However, the proposed NS-NPAMF and
NS-LP-NPAMF detectors, especially the latter, still significantly outperform the others.

8.5.3 Detection in Heterogeneous Environments

We now consider detection in heterogeneous environments. To this end, we embed 5 targets
at randomly chosen locations in test region #3. We run the ACE and NS-LP-NPAMF detec-
tors throughout the test region pixel by pixel, with and without training screening. If training
screening is not applied, we use the N = 8 pixels surrounding the test pixel for training. Oth-
erwise, we first compute metric (8.36) for the ACE detector and, respectively, metric (8.38) for
the NS-LP-NPAMF detector using all pixels within the test region, and then the metrics are used
to select N = 8 new training pixels to refine the parameter/covariance matrix estimate. Figures
8.7(a) to 8.7(d) depict the test statistics of the two detectors, with and without training screen-
ing, versus the index of the pixels within the test region. The dotted lines in these plots indicate
the indices/locations of the embedded targets. By comparing the results, it is seen that train-
ing screening helps both detectors. It is also seen that the proposed NS-LP-NPAMF detector
outperforms the ACE detector with or without training screening.

Finally, we consider a dense-target scenario by embedding not only 5 targets but also outliers
in test region #1. In particular, about 20% of the pixels at random locations in the region are em-
bedded with outliers that have a different spectral signature from that of the target. Figures 8.8(a)
to 8.8(d) show the test statistics of the ACE and NS-LP-NPAMF detectors with and without train-
ing screening. It is seen that the NS-LP-NPAMF detector overall achieves a better performance
than the other.

8.6 Conclusions

In this chapter, we have exploited parametric modeling of HSI data and investigated its applica-
tion for subpixel target detection in HSI systems. We have shown that HSI data are non-stationary
in the spectral dimension, which makes parametric adaptive modeling and detection more chal-
lenging than earlier studies for stationary data. To deal with non-stationarity, we have proposed a
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Figure 8.1: Sample estimates of the autocorrelation function (ACF) at spectral lag 0 (variance),
lag 1, lag 2 and lag 3 across the spectral bands.

sliding-window based NS-AR model tailored for HSI data. We have developed parametric adap-
tive detectors by exploiting the NS-AR model, and addressed a range of issues including model
order selection, training screening, parameter estimation, time-series based signal whitening, and
detection. We have examined the performance of the proposed detectors and compared with
covariance-matrix based techniques using real HSI data. It has been shown that the proposed
parametric detectors are more efficient in training data usage and outperform the covariance-
matrix based methods when training is limited.

Our approach implicitly assumes that HSI data is spectrally correlated. In most cases, HSI
sensors oversample the spectral signal [3], which brings in spectral correlation in HSI data. The
covariance-matrix based detectors, however, can be applied in the absence of spectral correlation
(as in earlier multispectral systems with a few spectral bands [65]). While the covariance-matrix
based AMF, ACE and GLRT detectors have a CFAR behavior, it is unclear whether the proposed
detectors retain the same property. This remains an issue to be examined in the future. Other
research along the proposed direction includes analytical study of the proposed detectors and
exploration of alternative non-stationary parametric models for HSI target detection.
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Figure 8.5: Test region #1: target-background separation versus target fill factor, where the red
(dark) bars correspond to the range of test statistics under H1, while the green (light) bars show
the counterpart under H0. (a) ACE. (b) NPAMF. (c) NS-NPAMF. (d) NS-LP-NPAMF.
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Figure 8.6: Test region #2: target-background separation versus target fill factor, where the red
(dark) bars correspond to the range of test statistics under H1, while the green (light) bars show
the counterpart under H0. (a) ACE. (b) NPAMF. (c) NS-NPAMF. (d) NS-LP-NPAMF.
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Figure 8.7: Test statistics of ACE and NS-LP-NPAMF of test pixels in the test region #3 with
5 embedded targets. (a) ACE without training screening. (b) NS-LP-NPAMF without training
screening. (c) ACE with training screening. (d) NS-LP-NPAMF with training screening.
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Figure 8.8: Test statistics of ACE and NS-LP-NPAMF of test pixels in the test region #1 with
5 embedded targets and more than 20% of the pixels are embedded with outliers. (a) ACE
without training screening. (b) NS-LP-NPAMF without training screening. (c) ACE with training
screening. (d) NS-LP-NPAMF with training screening.
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Appendix A

Parametric Rao Test

A.1 ML Parameter Estimation

In the following, we derive the ML estimates of the nuisance parameters Q and {A(p)}P
p=1 or A

defined in (3.15) under H0, which will be needed in the derivation of the Rao test in Appendix
A.2. The joint PDF or likelihood function

∏
k fi(xk(0),xk(1), · · · ,xk(N − 1); α,A,Q) under

Hi, i = 0 or 1, can be written as∏
k

fi(xk(P ),xk(P + 1), · · · ,xk(N − 1)|xk(0),

x(1), · · · ,xk(P − 1);A,Q)

×f(xk(0),xk(1), · · · ,xk(P − 1); α,A,Q).

(A.1)

The exact maximization of the PDF with respect to the unknown parameters produces a set of
highly nonlinear equations that are difficult to solve. For large data records, the likelihood func-
tion can be approximated well by the conditional PDF in the above equation [35] and, therefore,
the latter can be used for parameter estimation. After some manipulations using the standard
procedure for obtaining the PDF of a set of transformed random variables, we have

fi(xk(P ),xk(P + 1), · · · ,xk(N − 1)|xk(0),xk(1),

· · · ,xk(P − 1); α,A,Q)

=
N−1∏
n=P

1

πJ |Q| exp
{−εH

k (n)Q−1εk(n)
}

.

(A.2)

where for k ≥ 1, εk(n) is a function of the observed signals given by (7.3), whereas ε0(n) is
given by (3.8) or (3.11) with α = 0 when i = 0 and α �= 0 when i = 1.

Recall that the training signals {xk}K
k=1 and the test signal x0 are independent. Let X(n) =
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[
xT

0 (n), xT
1 (n), xT

2 (n), · · · , xT
K(n)

]T
. The joint conditional PDF is given by

fi(X(P ),X(P + 1), · · · ,X(N − 1)|X(0),X(1),

· · · ,X(P − 1); α,A,Q)

=fi(α,A,Q)

=

[
1

πJ |Q| exp
{− tr

(
Q−1Qi(A)

)}](K+1)(N−P )

,

(A.3)

where in the first equality we dropped the dependence on the observed signals for notational
brevity,

Qi(α,A) =
1

(K + 1)(N − P )

N−1∑
n=P

K∑
k=0

εk(n)εH
k (n), (A.4)

and we reiterate that α = 0 for i = 0, α �= 0 for i = 1, and ε0(n) depends on α as shown in (3.8)
or (3.11).

The Rao test requires the ML estimates of the nuisance parameters under H0. Henceforth, we
only consider the case i = 0. Taking the derivative of ln f0(A,Q) with respect to Q and equating
the result to zero produces the ML estimates of Q(A) given A:1

Q̂ML(A) = Q0(A). (A.5)

Substituting Q̂ML(A) into f0(A,Q), we have

max
Q

f0(A,Q) =

[
1

(eπ)J |Q0(A)|
](K+1)(N−P )

. (A.6)

Next, we determine the ML estimates of A. Since maximizing f0(A) is equivalent to min-
imizing |Q̂ML(A)|, or |Q0(A)|, the ML estimate of A can be obtained by minimizing |Q0(A)|
with respect to A. We next expand the matrix as follows:

(K + 1)(N − P )Q0(A)

= R̂xx + AHR̂yx + R̂H
yxA + AHR̂yyA

=
(
AH + R̂H

yxR̂
−1
yy

)
R̂yy

(
AH + R̂H

yxR̂
−1
yy

)H

+ R̂xx − R̂H
yxR̂

−1
yy R̂yx,

(A.7)

where the correlation matrices are defined in (3.17)-(3.19). Since R̂yy is non-negative definite
and the remaining terms in (A.7) do not depend on A, it follows that2

Q0(A) ≥ Q0(A)|A=Â, (A.8)

1Since α = 0 for i = 0, the dependence on α is dropped.
2For two non-negative definite matrices A and B, we have A ≥ B if A − B is non-negative definite.
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where
ÂH = −R̂H

yxR̂
−1
yy . (A.9)

When Q0(A) is minimized, the estimate ÂH of AH will minimize any non-decreasing function
including the determinant of Q0(A) [41]. Hence, the ML estimate ÂH

ML of AH is given by (A.9)
or (3.20), and Q̂ML is given by (3.21), which is obtained by replacing AH in (A.7) with ÂH

ML.
The subscript “ML” is dropped in other parts of the paper for notational brevity.

A.2 Derivation of the Parametric Rao Test

The composite hypothesis testing problem (3.3) involves a signal parameter vector θr =
[
αR, αI

]T
=[�{α}, �{α}]T and a nuisance parameter vector θs that includes all unknown parameters in

{AH(p)}P
p=1 and Q. The nuisance parameter vector θs may be written as θs =

[
qT

R, qT
I , aT

R, aT
I

]T
with aR = vec

(�{AH}), aI = vec
(�{AH}), qR contains the diagonal elements in Q and the

real part of the elements below the diagonal, while qI contains the imaginary part of the elements
below the diagonal (note that the spatial covariance matrix Q is a Hermitian matrix). Let

θ =
[
θT

r , θT
s

]T
. (A.10)

Observing that the nuisance parameters are the same under both hypotheses, we can write the
parameter test as follows:

H0 : θr = θr0 ,θs,

H1 : θr = θr1 ,θs,
(A.11)

where θr0 =
[
0, 0

]T
and θr1 = θr =

[
αR, αI

]T
. The PDF under H0 and the PDF under H1

differ only in the value of θ, and they are given by (see Appendix A.1):

fi(θ) =

[
1

πJ |Q| exp
{− tr

(
Q−1Qi(α,A)

)}](K+1)(N−P )

,

where Qi(α,A) is defined in (A.4). The Rao test is given by [7]

∂ ln f(θ)

∂θr

∣∣∣∣
T

θ=θ̃

[
J−1(θ̃)

]
θr,θr

∂ ln f(θ)

∂θr

∣∣∣∣
θ=θ̃

H1

≷
H0

γRao, (A.12)

where γRao denotes a corresponding threshold,

θ̃ =
[
θT

r0
, θ̂

T

s0

]T

(A.13)

denotes the ML estimate of θ under H0, and[
J−1(θ)

]
θr,θr

=
[
Jθr,θr(θ) − Jθr,θs(θ)J−1

θs,θs
(θ)Jθs,θr(θ)

]−1
,

(A.14)
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which is related to the Fisher information matrix (FIM), given by [7]

J(θ) =

[
Jθr,θr(θ) Jθr,θs(θ)
Jθs,θr(θ) Jθs,θs(θ)

]
. (A.15)

Hence, the problem boils down to finding the ML estimates of the nuisance parameters under H0,
which have been obtained in Appendix A.1, and evaluating the first order derivatives of the log
likelihood and the FIM at the ML estimates of the nuisance parameters. The latter task is worked
out next.

The FIM is block diagonal. To see this, let qRi
, qIi

, aRi
, and aIi

denote the i-th element of
qR, qI , aR and aI , respectively. The first partial derivative of the log likelihood ln f with respect
to (w.r.t.) αR is

∂ ln f

∂αR

=
N−1∑
n=P

s̃H(n)Q−1ε0(n) +
N−1∑
n=P

εH
0 (n)Q−1s̃(n). (A.16)

The second partial derivative of ln f w.r.t. αR and qRi
becomes

∂2 ln f

∂αR∂qRi

= −2�
{

N−1∑
n=P

εH
0 (n)Q−1 ∂Q

∂qRi

Q−1s̃(n)

}
. (A.17)

Likewise, we have

∂2 ln f

∂αR∂qIi

= −2�
{

N−1∑
n=P

s̃H(n)Q−1 ∂Q

∂qIi

Q−1ε0(n)

}
(A.18)

and

∂2 ln f

∂αR∂aRi

= 2
N−1∑
n=P

P∑
p=1

�
{

αεH
0 (n)Q−1∂AH(p)

∂aRi

s(n − p)

+s̃H(n)Q−1∂AH(p)

∂aRi

[
x0(n − p) − αs(n − p)

]}
.

(A.19)

Since E[x0(n)−αs(n)] = E[x0(n−p)−αs(n−p)] = 0 and E[ε0(n)] = 0, taking the expectation
in (A.17)–(A.19) yields

E

[
∂2 ln f

∂αR∂qRi

]
= E

[
∂2 ln f

∂αR∂qIi

]
= E

[
∂2 ln f

∂αR∂aRi

]
= 0. (A.20)

In a similar way, we can show

E

[
∂2 ln f

∂αI∂qRi

]
= E

[
∂2 ln f

∂αI∂qIi

]
= E

[
∂2 ln f

∂αR∂aIi

]

= E

[
∂2 ln f

∂αI∂aRi

]
= E

[
∂2 ln f

∂αI∂aIi

]
= 0.

(A.21)
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Summarizing the above calculations, we have

Jθr,θs(θ) = 0, Jθs,θr(θ) = 0, (A.22)

which implies that the FIM is block diagonal. It follows that[
J−1(θ̃)

]
θr,θr

= J−1
θr,θr

(θ̃). (A.23)

Hence, we only need to compute J−1
θr,θr

(θ̃), which is obtained next.
The second partial derivative of ln f w.r.t. αR is

∂2 ln f

∂α2
R

= −2
N−1∑
n=P

s̃H(n)Q−1s̃(n). (A.24)

Likewise, we have
∂2 ln f

∂α2
I

= −2
N−1∑
n=P

s̃H(n)Q−1s̃(n) (A.25)

and
∂2 ln f

∂αR∂αI

=
∂2 ln f

∂αI∂αR

= 0. (A.26)

As a result, we have the FIM associated with the signal parameter vector:

Jθr,θr(θ) = 2
N−1∑
n=P

s̃H(n)Q−1s̃(n)

[
1 0
0 1

]
. (A.27)

Finally, by inverting the matrix (A.27) and replacing θ with θ̃ which is the ML estimate of θ
under H0, we have

J−1
θr,θr

(θ̃) =
1

2
∑N−1

n=P
ˆ̃sH(n)Q̂−1ˆ̃s(n)

[
1 0
0 1

]
, (A.28)

where Q̂ is the ML estimate of the spatial covariance matrix in (3.21), and ˆ̃s(n) is the temporally
whitened steering vector in (3.13). Moreover, since ε0(n)|θ=θ̃ = ˆ̃x0(n), we have

∂ ln f

∂αR

∣∣∣∣
θ=θ̃

=
N−1∑
n=P

{
ˆ̃xH

0 (n)Q̂−1ˆ̃s(n) + ˆ̃sH(n)Q̂−1 ˆ̃x0(n)
}

(A.29)

∂ ln f

∂αI

∣∣∣∣
θ=θ̃

= j

N−1∑
n=P

{
ˆ̃xH

0 (n)Q̂−1ˆ̃s(n) + ˆ̃sH(n)Q̂−1 ˆ̃x0(n)
}

. (A.30)

Using (A.28)-(A.30) in (A.12) yields the parametric Rao test, which is shown in (7.14).

113



Approved for public release; distribution is unlimited 119

A.3 Asymptotic Distribution of the Parametric Rao Test Statis-
tic

The Rao test is known to have the same asymptotic performance as the GLRT. Using the asymp-
totic results for the GLRT [7], the asymptotic distribution of our parametric Rao test statistic is
given by

TRao
a∼
{

χ2
2, under H0,

χ
′2
2 (λ), under H1,

(A.31)

where χ2
2 denotes the central Chi-squared distribution with 2 degrees of freedom and χ

′2
2 (λ) the

non-central Chi-squared distribution with 2 degrees of freedom and non-centrality parameter λ:

λ = (θr1 − θr0)
T
([

J−1 ([θr0 ,θs])
]
θr,θr

)−1

(θr1 − θr0) . (A.32)

Using the observations θr1 − θr0 =
[
αR, αI

]
and (cf. (A.27))

[
J−1 ([θr0 ,θs])

]
θr,θr

=
1

2
∑N−1

n=P s̃H(n)Q−1s̃(n)

(
1 0
0 1

)
, (A.33)

we have the asymptotic distribution of the parametric Rao test statistic as shown in (3.22).

A.4 Performance of the MF and AMF Detectors

The performance of the MF and AMF detectors can be computed analytically. In this appendix,
we include a brief summary of their performance for easy reference.

Consider the MF detector (8.3) first. Let R−1/2 be the square-root of the space-time covari-
ance matrix R. Define s̃ = R−1/2s and x̃0 = R−1/2x0, which are the spatially and temporally
whitened steering vector and test signal, respectively. Since the rank of s̃s̃H is one, we have the
following eigen decomposition:

s̃s̃H = UΛUH , (A.34)

where Λ = diag
(
s̃H s̃, 0, · · · , 0

)
and UHU = I. Let x̄0 = UH x̃0 and s̄ = UH s̃, which are

rotated versions of x̃0 and s̃, respectively. Then, the test statistic can be written as

TMF =

∣∣s̃H x̃0

∣∣2
s̃H s̃

=
x̃H

0 UΛUH x̃0

s̃H s̃
= x̄∗

0,1x̄0,1 = |x̄0,1|2, (A.35)

where x̄0,1 and s̄1 denotes the first element of x̄0 and s̄, respectively. It is clear from Assumptions
AS1 to AS3 in Section 7.2 that x̄0,1 is a complex Gaussian variable: x̄0,1 ∼ CN (αs̄1, 1) with
α = 0 under H0 and α �= 0 under H1. Hence, 2TMF = 2|x̄0,1|2 has a central Chi-squared
distribution with 2 degrees of freedom under H0 and, respectively, a non-central Chi-squared
distribution with 2 degrees of freedom and a non-centrality parameter λMF = 2|αs̄1|2 under H1.
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It is noted that the distribution of the MF test statistic is similar to that of the parametric Rao
test statistic with the only difference of the non-centrality parameter under H1. Hence, the false
alarm and detection probabilities can be similarly computed as in (3.27) and (3.28).

The performance of the AMF detector (8.5) was analyzed in [12], which is summarized below.
The density of a loss factor ρ, which was defined in (25) of [12], is given by

f(ρ) = fβ(ρ; L − 1, JN − 1), (A.36)

where L = K − JN + 1 and the central Beta density function is

fβ(x; n,m) =
(n + m − 1)!

(n − 1)!(m − 1)!
xn−1(1 − x)m−1. (A.37)

The probability of false alarm is given by

Pf, AMF =

∫ 1

0

fβ(ρ; L − 1, JN − 1)

(1 + ηρ)L
dρ, (A.38)

where η = γKelly/(1 − γKelly) and γKelly is the test threshold of Kelly’s GLRT (8.6). Meanwhile,
the probability of detection is given by

Pd, AMF = 1 −
∫ 1

0

1

(1 + ηρ)L

L∑
m=1

(
L

m

)

× (ηρ)m Gm

(
ξρ

1 + ηρ

)
f(ρ)dρ,

(A.39)

where ξ = sHR−1s and Gm(·) is the incomplete Gamma function given by

Gm(y) = e−y

m−1∑
k=0

yk

k!
. (A.40)

The integrals can be computed by numerical integration.
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Appendix B

Parametric GLRT

B.1 ML Parameter Estimation

In this appendix, we develop the ML parameter estimators under both hypotheses. Recall that the
likelihood functions under both hypotheses differ only in the value of α, that is, α = 0 under H0

and α �= 0 under H1. We will show that the ML estimates under H0 can be obtained by setting
α = 0 in the ML estimates under H1.

Let x̃k(n;A) denote the temporally whitened version of xk(n):

x̃k(n;A) = xk(n) +
P∑

p=1

AH(p)xk(n − p). (B.1)

Conditioned on the first P values {xk(n)}P−1
n=0 , k = 0, 1, . . . , K, the log-likelihood function is

proportional to (within an additive constant) [37]

−L ln |Q| −
K∑

k=1

N−1∑
n=P

x̃H
k (n;A)Q−1x̃k(n;A)

−
N−1∑
n=P

{x̃0(n;A) − αs̃(n;A)}H Q−1

× {x̃0(n;A) − αs̃(n;A)} .

(B.2)

It is noted that for the large-sample case, the likelihood function can be well approximated by
the above conditional distribution [30]. We therefore use (B.2) for ML estimation. Taking the
derivative of (B.2) with respect to Q and equating it to zero produce the ML estimates of Q
conditioned on α and A:

Q̂(α,A) =
1

L

N−1∑
n=P

K∑
k=1

[
x̃k(n;A)x̃H

k (n;A)+

{x̃0(n;A) − αs̃(n;A)} {x̃0(n;A) − αs̃(n;A)}H
]
.

(B.3)
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Substituting the above Q̂(α,A) back in (B.2), we find that maximizing (B.2) reduces to min-
imizing |Q̂(α,A)|. Therefore, the ML estimates of α and A can be obtained by minimizing
|Q̂(α,A)| with respect to α and A. In turn, we can get the ML estimate of Q by replacing α and
A with their ML estimates in (B.3). Next, observe that

LQ̂(α,A)

= R̂xx(α) + AHR̂yx(α) + R̂H
yx(α)A + AHR̂yy(α)A

=
(
AH + R̂H

yx(α)R̂−1
yy (α)

)
R̂yy(α)

×
(
AH + R̂H

yx(α)R̂−1
yy (α)

)H

+ R̂xx(α) − R̂H
yx(α)R̂−1

yy (α)R̂yx(α),

(B.4)

where the α-dependent correlation matrices are defined in (4.10)-(4.12). Since R̂yy(α) is non-
negative definite and the remaining terms in (B.4) do not depend on A, it follows that1

Q̂(α,A) ≥ Q̂(α,A)|A=Â(α), (B.5)

where
ÂH(α) = −R̂H

yx(α)R̂−1
yy (α). (B.6)

When Q̂(α,A) is minimized, the estimate Â(α) of A will minimize any non-decreasing function
including the determinant of Q̂(α,A) [41]. It should be noted that in finding the estimate of A,
we did not impose the constraint that the underlying AR process is stable for the sake of obtaining
a simple solution. Hence, the unconstrained ML estimate of A and Q conditioned on α are given
by (4.17) and (4.18), respectively.

Replacing A in (B.4) by Â(α) followed by minimizing |Q̂(α, Â(α))| yields the ML am-
plitude estimator of α given by (4.9). Once the ML estimate α̂ML of the signal amplitude α is
obtained, substituting α̂ML in (4.17) and (4.18) yields the ML estimates of A and Q under H1,
which are given by (4.15) and (4.16), respectively.

Since α = 0 under H0, substituting α = 0 in (B.5) and (B.6) leads to the ML estimates of A
and Q under H0, which are given by (4.20) and (4.21), respectively.

1For two non-negative definite matrices A and B, we have A ≥ B if A − B is non-negative definite [41].
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B.2 Derivation of the AML Estimator

Using definitions in (4.26)-(4.29), (4.22) can be written as∣∣∣∣∣
(

ˆ̃X0 − αˆ̃S
)(

ˆ̃X0 − αˆ̃S
)H

+
K∑

k=1

ˆ̃Xk
ˆ̃XH

k

∣∣∣∣∣
=

∣∣∣∣∣
(

ˆ̃X0 − αˆ̃S
) (

P + P⊥) ( ˆ̃X0 − αˆ̃S
)H

+
K∑

k=1

ˆ̃Xk
ˆ̃XH

k

∣∣∣∣∣
=

∣∣∣∣( ˆ̃X0P − αˆ̃S
)(

ˆ̃X0P − αˆ̃S
)H

+ Ψ

∣∣∣∣
=

∣∣∣∣( ˆ̃X0P − αˆ̃S
)(

ˆ̃X0P − αˆ̃S
)H

Ψ−1 + I

∣∣∣∣ |Ψ| .

(B.7)

Next, observe that minimizing

C2(α) =

∣∣∣∣( ˆ̃X0P − αˆ̃S
)(

ˆ̃X0P − αˆ̃S
)H

Ψ−1 + I

∣∣∣∣ , (B.8)

is asymptotically equivalent to minimizing [39, 41]:

C3(α) = tr

{(
ˆ̃X0P − αˆ̃S

)H

Ψ−1
(

ˆ̃X0P − αˆ̃S
)}

. (B.9)

which is a quadratic function in α. Minimizing (B.9) with respect to α leads to the AML estimate
α̂AML given by (4.25) (also see [39]).

B.3 Unbiasedness and Consistency of the LS Estimator

First, note that

E[α̂LS] = E

[
sHx0

sHs

]
= E

[
α +

sHd0

sHs

]
= α, (B.10)

which indicates that the LS estimator is unbiased. Moreover, the variance is given by

var[α̂LS] = E

[(
sHd0

sHs

)(
sHd0

sHs

)H
]

=
sHRs

(sHs)2 . (B.11)

Next, we show that the variance vanishes as the number of observations N increases. Note that
the numerator can be written as

sHRs = sHR1/2R1/2s, (B.12)

where R1/2 denotes the Hermitian square-root of R. It is known that multiplying by R1/2 is a
coloring linear transform. Under Assumption AS4, such a coloring transform using the square-
root of the joint space-time covariance matrix R is asymptotically equivalent to a cascade of an
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AR filer, which performs temporal coloring, followed by a spatial coloring filter [30]. As such,
(B.12) can be approximated (for large N ) as

sHRs ≈
N−1∑
n=0

s̆H(n)Qs̆(n), (B.13)

where s̆(n) ∈ C
J×1 denotes the output of the multichannel AR filter as specified in AS4, given

the input signal {s(n)}N−1
n=0 .

Let the eigenvalue decomposition of Q be expressed as: Q = UΛUH , where Λ is a diagonal
matrix containing all eigenvalues and U is composed of the corresponding eigenvectors. Let λmax

denote the largest eigenvalue of Q. We have

N−1∑
n=0

s̆H(n)Qs̆(n) ≤ λmax

N−1∑
n=0

s̆H(n)UUH s̆(n)

= λmax

N−1∑
n=0

‖s̆H(n)‖2.

(B.14)

It follows that

var[α̂LS] ≤ λmax
∑N−1

n=0 ‖s̆(n)‖2(∑N−1
n=0 ‖s(n)‖2

)2 . (B.15)

since (sHs)2 =
(∑N−1

n=0 ‖s(n)‖2
)2

. Assuming that the AR filter is stable, we have (e.g., [81]):

N−1∑
n=0

‖s̆(n)‖2 ≤ C
N−1∑
n=0

‖s(n)‖2 (B.16)

for some bounded constant C. Hence, for a given AR filter and spatial covariance Q, the right-
hand side of (B.15) vanishes as N goes to infinity. This proves that the LS amplitude estimate is
statistically consistent.

B.4 Derivation of CRB

Let θ = [θT
r ,θT

s ]T , where θr = [�{α},�{α}]T , and θs contains all nuisance parameters in
{AH(p)}P

p=1 and Q. It is shown in [37] that the Fisher information matrix (FIM) for θ is block
diagonal with respect to θr and θs. Therefore, the CRB for the signal amplitude estimate is given
by the FIM associated with θr, which is given by [37]

J(θ)θr,θr =

[
2

N−1∑
n=p

s̃H(n;A)Q−1s̃(n;A)

]
I2. (B.17)

By inverting (B.17) and using CRB(α) = CRB(�{α}) + CRB(�{α}), we have the CRB given
by (4.32).
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B.5 Asymptotic Distribution of the Parametric GLRT Statis-
tic

Using the asymptotic results for the GLRT [7], the asymptotic distribution of our parametric
GLRT statistic is given by

TGLRT
a∼
{

χ2
2, under H0,

χ
′2
2 (λ), under H1,

(B.18)

where the non-centrality parameter λ is given by

λ = (θr1 − θr0)
T
([

J−1 ([θr0 ,θs])
]
θr,θr

)−1

(θr1 − θr0) , (B.19)

where θr0 and θr1 are θr under H0 and H1, respectively; [J−1 ([θr0 ,θs])]θr,θr
is the 2 × 2 upper-

left partition of J−1 ([θr0 ,θs]). Using the observations θr1 − θr0 =
[
αR, αI

]
and (cf. (B.17))[

J−1 ([θr0 ,θs])
]
θr,θr

=

[
2

N−1∑
n=P

s̃H(n;A)Q−1s̃(n;A)

]−1

I2,
(B.20)

we have the asymptotic distribution of the parametric GLRT statistic as shown in (4.36).
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Appendix C

A Simplified Parametric GLRT

C.1 Derivation of (5.23)

Starting from (5.14), the determinant of R̂ (α) can be written as∣∣∣∣∣(X0 − αS) (X0 − αS)H +
K∑

k=1

XkX
H
k

∣∣∣∣∣
=

∣∣∣∣∣ (X0PS − αS) (X0PS − αS)H

+ X0P
⊥
S XH

0 +
K∑

k=1

XkX
H
k

∣∣∣∣∣
=
∣∣∣(X0PS − αS) (X0PS − αS)H R̂−1

X + I
∣∣∣ · ∣∣∣R̂X

∣∣∣ . (C.1)

Consider the idempotent matrices PS and P⊥
S and assuming the number of sample data is large

enough, i.e., N 
 1, we have

rank (PS) ≤ J(P + 1), and rank
(
P⊥

S

) ≥ N − P (C.2)

where rank(·) denotes the rank of a matrix. Then, we have [39]

(X0PS − αS) (X0PS − αS)H R̂−1
X

=O

(
1

N − P

)
� 1. (C.3)
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Let {λm}M
m=1 denote the eigenvalues of the matrix (C.3), which satisfies 0 ≤ λm � 1 according

to (C.3). Then ∣∣∣(X0PS − αS) (X0PS − αS)H R̂−1
X + I

∣∣∣
=

M∏
m=1

(1 + λm)

a≈1 +
M∑

m=1

λm

=1 + tr
[
(X0PS − αS)H R̂−1

X (X0PS − αS)
]
, (C.4)

where the approximation (a) holds in a first-order sense. Similarly, the determinant of R̂yy (α)
can be expressed as ∣∣∣R̂yy (α)

∣∣∣
=
∣∣∣(Y0PT − αT) (Y0PT − αT)H R̂−1

Y + I
∣∣∣ · ∣∣∣R̂Y

∣∣∣ , (C.5)

and ∣∣∣(Y0PT − αT) (Y0PT − αT)H R̂−1
Y + I

∣∣∣
≈1 + tr

{
(Y0PT − αT)H R̂−1

Y (Y0PT − αT)
}

. (C.6)

Then, combining (C.1), (C.4)-(C.6) and ignoring the items independent of α result in the asymp-
totically equivalent expression in (5.23).

C.2 Derivation of the Amplitude Estimator

Following Appendix I and noting that

tr
{

(X0PS − αS)H R̂−1
X (X0PS − αS)

}
� 1, (C.7)

and

tr
{

(Y0PT − αT)H R̂−1
Y (Y0PT − αT)

}
� 1, (C.8)

we can approximate (5.23) as

F1 (α)

= tr
{

(X0PS − αS)H R̂−1
X (X0PS − αS)

}
− tr

{
(Y0PT − αT)H R̂−1

Y (Y0PY − αT)
}

, (C.9)
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where the approximation ln(1 + x) ≈ x, for x � 1, was invoked. The cost function F1 (α) is a
quadratic function with respect to α. It is easy to show that minimizing (C.9) with respect to α
leads to the AML2 amplitude estimate α̂ given by (5.27).

C.3 Derivation of The New Parametric GLRT

Using the Schur complements, we can write (7.6) as

ln

∣∣∣Q̂ML,0

∣∣∣∣∣∣Q̂ML,1

∣∣∣

= ln

∣∣∣∣X0X
H
0 +

K∑
k=1

XkX
H
k

∣∣∣∣∣∣∣∣Y0YH
0 +

K∑
k=1

YkYH
k

∣∣∣∣

− ln

∣∣∣∣(X0 − α̂MLS) (X0 − α̂MLS)H +
K∑

k=1

XkX
H
k

∣∣∣∣∣∣∣∣(Y0 − α̂MLT) (Y0 − α̂MLT)H +
K∑

k=1

YkYH
k

∣∣∣∣
∝ ln

∣∣∣X0PSX
H
0 R̂−1

X + I
∣∣∣∣∣∣Y0PtYH

0 R̂−1
Y + I

∣∣∣
− ln

∣∣∣(X0PS − α̂MLS) (X0PS − α̂MLS)H R̂−1
X + I

∣∣∣∣∣∣(Y0PT − α̂MLT) (Y0PT − α̂MLT)H R̂−1
Y + I

∣∣∣ .
The RHS of the above equation can be further simplified using asymptotic approximations [see
(C.4) and (C.5)]

ln

∣∣∣Q̂ML,0

∣∣∣∣∣∣Q̂ML,1

∣∣∣
∝ tr

{
PH

S XH
0 R̂−1

X X0PS

}
− tr

{
PH

T YH
0 R̂−1

Y Y0PT

}
− tr

{
(X0PS − α̂MLS)H R̂−1

X (X0PS − α̂MLS)
}

+ tr
{

(Y0PT − α̂MLT)H R̂−1
Y (Y0PT − α̂MLT)

}
.
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Replacing the exact ML estimate with the AML2 amplitude estimation results in the approximate
parametric GLRT.

GLR ≈

∣∣∣tr(SHR̂−1
X X0

)
− tr

(
THR̂−1

Y Y0

)∣∣∣2
tr
(
SHR̂−1

X S
)
− tr

(
THR̂−1

Y T
) , (C.10)

which is the matrix form of (5.28).

C.4 Alternative Form of The Parametric GLRT

Let
S1 = [s (P ) , s (P + 1) , · · · , s (N − 1)] ∈ C

J×(N−P ) (C.11)

and Xk,1 ∈ C
J×(N−P ) is similarly defined. The matrix S can be rewritten as SH =

[
TH ,SH

1

]
,

where T ∈ C
JP×(N−P ) is given by (5.21). By invoking the formula of the block matrix pseudo-

inverse [82], we have

P⊥
S =I − [

THSH
1

]
×
[ (

TH
)† − (

TH
)†

SH
1

(
C† + D

)(
C† + D

) ]
, (C.12)

where

C =
(
IN−P − TH

(
TH

)†)
SH

1 ∈ C
(N−P )×J , (C.13)

and

D =
(
IJ − C†C

) [
IJ +

(
IJ − C†C

)
S1T

†SH
1

× (
IJ − C†C

) ]−1

× S1T
† (IN−P − SH

1 C†) ∈ C
J×(N−P ). (C.14)

Expanding (C.12) yields

P⊥
S = P⊥

T

(
I − SH

1

(
C† + D

))
= P⊥

T (I − E) . (C.15)

From (5.24) and (5.25), the R̂X can be rewritten as

R̂X =

[
R̂X,1 R̂X,2

R̂H
X,1 R̂X,3

]
, (C.16)
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where

R̂X,1 =R̂Y − Y0P
⊥
T EYH

0 , (C.17)

R̂X,2 =Y0P
⊥
T (I − E)XH

0,1 +
K∑

k=1

YkX
H
k,1, (C.18)

R̂X,3 =X0,1P
⊥
T (I − E)XH

0,1 +
K∑

k=1

Xk,1X
H
k,1. (C.19)

Applying the block matrix inversion lemma twice, first on R̂X and then on R̂X,1, we have

R̂−1
X =

[
R̂−1

Y + W1 W2

WH
2 W3

]
(C.20)

where

W1 =R̂−1
X,1R̂X,2W3R̂

H
X,2R̂

−1
X,1 (C.21)

− R̂−1
Y Y0

(
I + P⊥

T EYH
0 R̂−1

Y Y0

)−1

× P⊥
T EYH

0 R̂−1
Y ,

W2 = − R̂−1
X,1R̂X,2W3, (C.22)

W3 =
(
R̂X,3 − R̂H

X,2R̂
−1
X,1R̂X,2

)−1

. (C.23)

Inserting the above results in (5.28) followed by simple manipulations, we can see that the para-
metric GLRT test statistic (5.28) is equivalent to (5.29).

125



Bibliography

[1] J. Ward, “Space-time adaptive processing for airborne radar,” Technical Report 1015,
Lincoln Laboratory, MIT, December 1994.

[2] R. Klemm, Principles of Space-Time Adaptive Processing, The Institute of Electrical
Engineers, London, UK, 2002.

[3] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image exploitation,” IEEE
Signal Processing Magazine, vol. 19, no. 1, pp. 12–16, January 2002.

[4] D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,”
IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 29–43, January 2002.

[5] A. Paulraj and C. B. Papadias, “Space-time processing for wireless communications,” IEEE
Signal Processing Magazine, vol. 14, pp. 49–83, November 1997.

[6] J. H. Justice, “Array processing in exploration seismology,” in Array Signal Processing,
S. Haykin, Ed. Prentice Hall, Englewood Cliffs, NJ, 1985.

[7] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice Hall,
Upper Saddle River, NJ, 1998.

[8] L. E. Brennan and I. S. Reed, “Theory of adaptive radar,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 9, no. 2, pp. 237–252, 1973.

[9] I. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid convergence rate in adaptive arrays,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 10, no. 6, pp. 853–863, 1974.

[10] L. Cai and H. Wang, “On adaptive filtering with the CFAR feature and its performance
sensitivity to non-Gaussian interference,” in Proceedings of the 24th Annul Conference on
Information Sciences and Systems, Princeton, NJ, March 1990, pp. 558–563.

[11] W. Chen and I. S. Reed, “A new CFAR detection test for radar,” Digital Signal Processing,
vol. 1, no. 4, pp. 198–214, 1991.

[12] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, “A CFAR adaptive matched
filter detector,” IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 1, pp.
208–216, January 1992.

131
126



Approved for public release; distribution is unlimited 132

[13] E. J. Kelly, “An adaptive detection algorithm,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 22, pp. 115–127, March 1986.

[14] L. T. McWhorter and L. L. Scharf, “Adaptive matched subspace detectors and adaptive
coherence estimators,” in Proceedings of 30th Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, November 1996, pp. 1114–1117.

[15] S. Kraut and L. L. Scharf, “The CFAR adaptive subspace detector is a scale-invariant
GLRT,” IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2538–2541, September
1999.

[16] S. Kraut, L. L. Scharf, and L. T. McWhorter, “Adaptive subspace detectors,” IEEE Trans-
actions on Signal Processing, vol. 49, no. 1, pp. 1–16, January 2001.

[17] P. Li, H. Schuman, J. H. Michels, and B. Himed, “Space-time adaptive processing (STAP)
with limited sample support,” in Proceedings of the 2004 IEEE Radar Conference, April
2004, pp. 366–371.

[18] M. Rangaswamy, B. Himed, and J. H. Michels, “Statistical analysis of the nonhomogeneity
detector,” in Proceedings of the 2000 IEEE Radar Conference, November 2000, vol. 2, pp.
1117–1121.

[19] M. Rangaswamy, B. Himed, and J. H. Michels, “Performance analysis of the nonhomogene-
ity detector for STAP applications,” in Proceedings of the 2001 IEEE Radar Conference,
2001, pp. 193–197.

[20] M. Rangaswamy, J. H. Michels, and B. Himed, “Statistical analysis of the nonhomogeneity
detector for non-gaussian interference backgrounds,” in Proceedings of the 2002 IEEE
Radar Conference, April 2002, pp. 304–310.

[21] A. G. Jaffer, B. Himed, and P. T. Ho, “Estimation of range-dependent clutter covariance
by configuration system parameter estimation,” in Proceedings of the 2005 IEEE Radar
Conference, May 2005, pp. 596–601.

[22] M. Rangaswamy and J. H. Michels, “A parametric multichannel detection algorithm for
correlated non-Gaussian random processes,” in Proceedings of the 1997 IEEE National
Radar Conference, Syracuse, NY, May 1997, pp. 349–354.

[23] J. R. Román, M. Rangaswamy, D. W. Davis, Q. Zhang, B. Himed, and J. H. Michels,
“Parametric adaptive matched filter for airborne radar applications,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 36, no. 2, pp. 677–692, April 2000.

[24] A. L. Swindlehurst and P. Stoica, “Maximum likelihood methods in radar array signal
processing,” Proceedings of the IEEE, vol. 86, pp. 421–441, February 1998.

127



Approved for public release; distribution is unlimited 133

[25] J. Li, G. Liu, N. Jiang, and P. Stoica, “Moving target feature extraction for airborne high-
range resolution phased-array radar,” IEEE Transactions on Signal Processing, vol. 49, no.
2, pp. 277–289, February 2001.

[26] E. Conte and A. De Maio, “Distributed target detection in compound-Gaussian noise with
Rao and Wald tests,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no.
2, pp. 568–582, April 2003.

[27] A. De Maio, G. Alfano, and E. Conte, “Polarization diversity detection in compound-
Gaussian clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 1,
pp. 114–131, January 2004.

[28] K. J. Sohn, H. Li, and B. Himed, “Parametric GLRT for multichannel adaptive signal detec-
tion,” IEEE Transactions on Signal Processing, vol. 55, no. 11, pp. 5351–5360, November
2007.

[29] S. L. Marple, Jr., Digital Spectral Analysis with Applications, Prentice Hall, Englewood
Cliffs, NJ, 1987.

[30] S. M. Kay, Modern Spectral Estimation: Theory and Application, Prentice Hall, Englewood
Cliffs, NJ, 1988.

[31] T. Söderström and P. Stoica, System Identification, Prentice Hall International, London,
UK, 1989.

[32] R. Klemm, “Introduction to space-time adaptive processing,” Electronics and Communica-
tion engineering journal, pp. 5–12, February 1999.

[33] E. Conte, M. Lops, and G. Ricci, “Adaptive matched filter detection in spherically invariant
noise,” IEEE Signal Processing Letter, vol. 3, pp. 248–250, 1996.

[34] E. Conte, M. Lops, and G. Ricci, “Asymptotically optimum radar detection in compound
Gaussian clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 2,
pp. 617–625, April 1995.

[35] P. Stoica and R. L. Moses, Spectral Analysis of Signals, Pearson Prentice Hall, Upper
Saddle River, NJ, 2005.

[36] T. Tsao, B. Himed, and J. H. Michels, “Effects of interference rank estimation on the
detection performance of rank reduced stap algorithms,” in Proceedings of the 1998 IEEE
Radar Conference, May 1998, pp. 147–152.

[37] H. Li, K. J. Sohn, and B. Himed, “The PAMF detector is a parametric Rao test,” in Pro-
ceedings of 39th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, November 2005.

128



Approved for public release; distribution is unlimited 134

[38] K. J. Sohn, H. Li, and B. Himed, “Multichannel parametric Rao detector,” in Proceedings
of the 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’2006), Toulouse, France, May 2006.

[39] Y. Jiang, P. Stoica, and J. Li, “Array signal processing in the known waveform and steering
vector case,” IEEE Transactions on Signal Processing, vol. 52, no. 1, pp. 23–35, January
2004.

[40] K. J. Sohn, H. Li, and B. Himed, “Parametric Rao test for multichannel adaptive signal
detection,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, pp.
920–933, July 2007.

[41] J. Li, B. Halder, P. Stoica, and M. Viberg, “Computationally efficient angle estimation for
signals with known waveforms,” IEEE Transactions on Signal Processing, vol. 43, no. 9,
pp. 2154–2163, September 1995.

[42] D. Snegupta and S. M. Kay, “Parameter estimation and GLRT detection in colored non-
Gaussian autoregressive processes,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 38, no. 10, pp. 1661–1676, October 1990.

[43] K. J. Sohn, H. Li, B. Himed, and J. S. Markow, “Performance of multichannel parametric
detectors with MCARM data,” in Proceedings of the 2007 IET International Conference on
Radar Systems, Edinburgh, UK, October 2007.

[44] P. Wang, K. J. Sohn, H. Li, and B. Himed, “Performance evaluation of parametric Rao and
GLRT detectors with KASSPER and bistatic data,” in Proceedings of the 2008 IEEE Radar
Conference, Rome, Italy, May 2008.

[45] S. Lawrence Marple, Jr., P. M. Corbell, and M. Rangaswamy, “Multi-channel parametric
estimator fast block matrix inverses,” in Proceedings of the 2007 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP’2007), Honolulu, HI, April
2007, vol. 2, pp. 1137–1140.

[46] K. J. Sohn, H. Li, and B. Himed, “Recursive parametric tests for multichannel adaptive
signal detection,” IET Radar, Sonar and Navigation, vol. 2, no. 1, pp. 63–70, February
2008.

[47] S. Lawrence Marple, Jr., P. M. Corbell, and M. Rangaswamy, “Multi-channel fast para-
metric algorithms and performance for adaptive radar,” in Proceedings of 41th Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, November 2007, pp.
1835–1838.

[48] S. Lawrence Marple, Jr., P. M. Corbell, and M. Rangaswamy, “Performance tradeoffs for
multi-channel parametric adaptive radar algorithms,” in Proceedings of the 2008 Interna-
tional Conference on Radar, September 2008, pp. 154–159.

129



Approved for public release; distribution is unlimited 135

[49] Y. I. Abramovich, N. K. Spencer, and M.D.E. Turley, “Order estimation and discrimination
between stationary and time-varying (TVAR) autoregressive models,” IEEE Transactions
on Signal Processing, vol. 55, no. 6, pp. 2861–2876, June 2007.

[50] Y. I. Abramovich, N. K. Spencer, and M.D.E. Turley, “Time-varying autoregressive (TVAR)
models for multiple radar observations,” IEEE Transactions on Signal Processing, vol. 55,
no. 4, pp. 1298–1311, April 2007.

[51] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.

[52] J. S. Bergin and P. M. Techau, “High-fidelity site-specific radar simulation: KASSPER’02
workshop datacube,” Technical Report ISL-SCRD-TR-02-105, Information Systems Lab-
oratories, Inc., Vienna, VA, May 2002.

[53] K. J. Sohn, H. Li, and B. Himed, “Parametric GLRT for multichannel adaptive signal
detection,” in Proceedings of the 4th IEEE Workshop on Sensor Array and Multi-channel
Processing (SAM06), Waltham, MA, July 12-14 2006.

[54] J. Li and P. Stoica, “Efficient mixed-spectrum estimation with applications to target feature
extraction,” IEEE Transactions on Signal Processing, vol. 44, no. 2, pp. 281–295, February
1996.

[55] K. J. Sohn, H. Li, and B. Himed, “Amplitude estimation of multichannel signal in spatially
and temporally correlated noise,” in Proceedings of Progress In Electromagnetics Research
Symposium 2006 (PIERS 2006), Cambridge, MA, March 2006.

[56] P. Stoica and R. L. Moses, Introduction to Spectral Analysis, Prentice Hall, Upper Saddle
River, NJ, 1997.

[57] Y. Zhang et al., “Bistatic space-time adaptive processing (STAP) for airborne/spaceborne
applications - Signal modeling and simulation tool for multichannel bistatic systems (SMS-
MBS),” Technical Report AFRL-SN-RS-TR-2002-201, Part II (of II), Air Force Research
Lab, Rome, NY, August 2002.

[58] B. Himed, Y. Zhang, and A. Hajjari, “STAP with angle-doppler compensation for bistatic
airborne radars,” in Proceedings of 2002 IEEE Radar Conference, Long Beach, CA, April
2002, pp. 311–317.

[59] B. Himed, “MCARM/STAP data analysis,” Air Force Research Laboratory Final Technical
Report, AFRL-SN-RS-TR-1999-48, Vol. II (of two), May 1999.

[60] D. A. Landgrebe, Signal Theory Methods in Multispectral Imaging, Wiley, Hoboken, NJ,
2003.

[61] D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral subpixel target detection using the
linear mixing model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no.
7, pp. 1392–1409, July 2001.

130



Approved for public release; distribution is unlimited 136

[62] T. K. Sarkar, S. Park, J. Koh, and R. A. Schneible, “A deterministic least squares approach
to adaptive antennas,” Digital Signal Processing, , no. 6, pp. 185–194, 1996.

[63] J. H. Michels, et al., “Multichannel parametric adaptive matched filter receiver,” U.S. Patent
No. 6,226,321, issued 1 May 2001.

[64] J. H. Michels, et al., “Normalized parametric adaptive matched filter receiver,” U.S. Patent
No. 6,771,723, issued 3 August 2004.

[65] I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with
unknown spectral distribution,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 38, no. 19, pp. 1760–1770, October 1990.

[66] D. Manolakis and D. Marden, “Non gaussian models for hyperspectral algorithm design and
assessment,” in Proceedings of 2002 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS’02), June 24-28 2002, vol. 3, pp. 1664–1666.

[67] D. Marden and D. Manolakis, “Modeling hyperspectral imaging data,” in Proceedings
of SPIE – Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral
Imagery, 2003, vol. 5093, pp. 253–262.

[68] D. Marden and D. Manolakis, “Using elliptically contoured distributions to model hyper-
spectral imaging data and generate satistically similar synthetic data,” in Proceedings of
SPIE – Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral
Imagery X, August 2003, vol. 5425, pp. 558–572.

[69] A. D. Stocker and A. P. Schaum, “Application of stochastic mixing models to hyperspectral
detection problems,” in Proceedings of SPIE – Algorithms for Multispectral and Hyper-
spectral Imagery III, August 1997, vol. 3071, pp. 47–60.

[70] G. Healey and D. Slater, “Models and methods for automated material identification in
hyperspectral imagery acquired under unknown illumination and atmospheric conditions,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 6, pp. 2706–2717,
November 1999.

[71] B. Thai and G. Healey, “Invariant subpixel material detection in hyperspectral imagery,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 3, pp. 599–608, March
2002.

[72] J. H. Michels, B. Himed, and M. Rangaswamy, “Performance of STAP tests in Gaussian
and compound-Gaussian clutter,” Digital Signal Processing, vol. 10, no. 4, pp. 309–324,
October 2000.

[73] J. H. Michels, M. Rangaswamy, and B. Himed, “Performance of parametric and covariance
based STAP tests in compound-Gaussian clutter,” Digital Signal Processing, vol. 12, no.
2,3, pp. 307–328, April and July 2002.

131



Approved for public release; distribution is unlimited 137

[74] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-
Day, San Francisco, CA, 1970.

[75] H. Akaike, “A new look at statistical model identification,” IEEE Transactions on Automatic
Control, vol. AC-19, pp. 716–723, 1974.

[76] P. Chen, W. Melvin, and M. Wicks, “Screening among multivariate normal data,” Journal
of Multivariate Analysis, vol. 69, pp. 10–29, 1999.

[77] W. Melvin, “Space-time adaptive radar performance in heterogeneous clutter,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 36, pp. 621–633, April 2000.

[78] J. H. Michels, B. Himed, and M. Rangaswamy, “Robust STAP detection in a dense signal
airborne radar environment,” Signal Processing, special issue on New Trends and Findings
in Antenna Array Processing for Radar, vol. 84, pp. 1625–1636, 2004.

[79] S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle River, NJ, 3 edition, 1996.

[80] J. Y. Chen and I. S. Reed, “A detection algorithm for optical targets in clutter,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 23, no. 1, pp. 46–59, January 1987.

[81] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1989.

[82] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 3 edition, 1996.

132


	AFRL-RY-WP-TR-2010-1075
	STINFO COPY
	2010-1075SF298.pdf
	REPORT DOCUMENTATION PAGE




