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1.0 SUMMARY 
 
In the first part of this project, we investigated the performance and power optimization 
techniques of the floating point unit design as a part of the Air Force Research Laboratory, 
AFRL cognitive processor project. Our main focus was on exploring different design and 
synthesis methodologies that lead to optimized area and power consumption, while fulfilling 
performance requirements. Meanwhile we were also able to obtain accurate estimations of power 
and area of the final design, from the synthesis and simulation flow. Other tasks in this part 
included tight integration and interaction of logic/physical synthesis, custom circuit design, etc. 
Simulation and timing analysis results show that our post-layout designs met the area, timing and 
power requirements of the project. 
 
In the second part, we developed a multi-layer cognitive model and algorithm for intelligent text 
recognition. The algorithm integrates three layers of different cognitive computing models in 
order to achieve the best accuracy in optical text recognition, as well as the best computation 
performance on a massively parallel computing cluster. In the first layer, we developed a novel 
neural network model that performs character recognition from images. Different from other 
neural network models, the new model is able to provide more than one answer to the input 
image. This feature is essential for the second layer, which is word-level recognition based on 
cogent confabulation. Similarly the word confabulation layer is able to provide multiple 
candidates that will be cross-checked by the third layer, the sentence confabulation algorithm. In 
our approach, these three different cognitive models are made to work together to provide the 
best possible text recognition result. We believe that the multi-layer cognitive model concept 
invented by this project has significant innovation potential in the area of optical text 
recognition, machine learning and natural language processing. 
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2.0 INTRODUCTION 
 
This project was comprised of two major research activities aimed at cognitive computing 
theories, algorithms and hardware platform development.  
 
First, we investigated and developed deep-submicron Very Large Scale Integration, VLSI circuit 
design techniques and design optimization methodologies to achieve high performance and low 
power for a floating point unit, an essential part of the cognitive processor that is being 
developed at AFRL/RITA.  
 
Secondly we developed a large-scale multi-level cognitive model and correspondent algorithms 
on a massively parallel computing cluster. This program will be used as a performance 
benchmark for the future many-core cognitive system based on the processor mentioned in the 
previous paragraph. 
 
2.1 IEEE Standards in Floating Point Numbers and Computations 
 
The floating point unit (FPU) in the cognitive processor consists of a total of six major 
components: two single precision (32-bit) floating point adders (SP_ADD), two single precision 
(32-bit) floating point multipliers (SP_MULT), one double precision (64-bit) floating point adder 
(DP_ADD) and one double precision (64-bit) floating point multiplier. The FPU is one of the 
busiest components in the cognitive processor and usually the performance and power 
bottleneck.  
 
The cognitive processor will be manufactured using the IBM 10LPe 65nm technology. The 
requirements for the FPU is that the adders and the multipliers must function correctly at a 
500MHz clock frequency and the entire FPU must consume less than 20mW of power. 
 
The following figure shows the I/O pins of a single precision adder/multiplier and the table of 
their brief descriptions. For double precision units, the widths of “A”, “B” and "Z” will become 
64 and the rest remains the same. 
 

 
 

Figure 1: I/O pins and descriptions for single precision floating point adder/multiplier 
 
 
The adder/multiplier designs are fully compliant with the IEEE 754 standard, including the use 
of denormals and NaNs. Tables 1 and 2 show the rounding modes and status flags according to 
the IEEE 754 standard, [1]. 
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Table 1. IEEE 754 Rounding Modes 
 
RND Rounding Mode Rounding 

Mode 
Alias 

Description 

000 IEEE round to nearest (even) Even Round to the nearest representable 
significand. If the two significands are 
equally near, choose the even 
significand (the one with LSB=0). 

001 IEEE round to zero Zero Use F1 if the value is positive or F2 if 
the value is negative. 

010 IEEE round to positive infinity +∞ Output is always F2. 
011 IEEE round to negative infinity -∞ Output is always F1. 
100 round to nearest up up Round to the nearest representable 

significand. If F1 and F2 are equally 
near, then use F2. 

101 round away from zero away Use F1 when F < 0, otherwise F2. 
110 Reserved   
111 Reserved   
 
 

Table 2. IEEE 754 Status Flags 
 
Bit Flag Description 

0 Zero Integer or floating point output is zero. 
1 Infinity Floating point output is infinity. 
2 Invalid Floating point operation is not valid (0x∞ , ∞ - ∞ ) . It is also set to 1 

when one of the inputs is NaN (IEEE_compliance = 1) 
3 Tiny Non zero floating point output after rounding has a magnitude less than the 

minimum normalized number. When IEEE_compliance = 1 this flag 
represents a denormalized output. 

4 Huge Finite floating point result after rounding has a magnitude greater than the 
maximum normalized number. 

5 Inexact Integer or floating point output is not equal to the infinitely precise result. 
6 HugeInt Integer result after rounding has a magnitude greater than the largest 

representable two’s complement integer with the same sign. 
7 PassA/Divide 

by Zero 
In a DW_fp_cmp operation, this flag indicates that it is operand A at the 
output. In a DW_fp_div function this flag indicates Divide-by-Zero 
operation. 

Detailed descriptions of these tables can be found in References [1].  



4 
 

2.2 Cognitive Models and Algorithms for Intelligent Text Recognition 
 

2.2.1 Brain-State-in-a-Box Neural Network Model. 
 
James A. Anderson, a pioneer in the area of artificial neural networks, writes in [5], “most 
memory in humans is associative. That is, an event is linked to another event, so that 
presentation of the first event gives rise to the linked event”. So the human brain has an 
enormous capability to recall the events, but only if a clue which is sufficient is presented to it. In 
general, a memory that can be accessed by the storage address is called an address addressable 
memory (AAM) and a memory that can be accessed by content is called a content addressable 
memory (CAM) or an associative memory. There are two types of associative memory: 
Autoassociative memory and Heteroassociative memory, [6]. 
 
In an Autoassociative memory, after prototype patterns are stored by a neural network, where 
patterns are usually represented as vectors, a distorted (noisy) version of a stored pattern is 
subsequently presented to the network. The task of the neural associative memory is to retrieve 
(recall) the original stored pattern from its noisy version. 
 
In Heteroassociative memory, a set of input patterns is paired with a different set of output 
patterns. Operation of a neural associative memory is characterized by two stages: storage phase, 
where patterns are being stored by the neural network, and recall phase, where memorized 
patterns are being retrieved in response to a noisy pattern being presented to the network. 
 
The property that is of primary significance for a neural network is the ability of the network to 
learn from its environment, and to improve its performance through learning. The improvement 
in performance takes place over time in accordance with some prescribed measure. A neural 
network learns about its environment through an interactive process of adjustments applied to its 
synaptic weights and bias levels. Ideally, the network becomes more knowledgeable about its 
environment after each iteration of the learning process. 
 
Learning in the context of neural networks can be defined as: 
Learning is a process by which the free parameters of a neural network are adapted through a 
process of stimulation by the environment in which the network is embedded. The type of 
learning is determined by the manner in which the parameter changes take place. 
 
This definition of the learning process implies the following sequence of events: 

1. The neural network is stimulated by an environment. 
2. The neural network undergoes changes in its free parameters as a result of this 

stimulation.  
3. The neural network responds in a new way to the environment because of the changes 

that have occurred in its internal structure. 
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The Brain-State-in-a-Box (BSB) model was proposed by Anderson et al. in 1977, [7]. It can 
recognize an original stored pattern from its noisy version. It is a neural network that is 
considered to be an associative memory. This is because it can have asymptotically stable states 
that attract the neighboring states to develop in time. This behavior can be interpreted as an 
evolution of imperfect, noisy patterns toward the correct, stored pattern, hence the term 
associative memory. The BSB model gets its name from the fact that the network trajectory is 
constrained to reside in the hypercube Hn = [-1, 1]n. Each vertex of a hypercube has its basin of 
attraction. When the BSB model is used as an associative memory, asymptotically equilibrium 
states of the model represent the stored patterns. In other words, realization of associative 
memories with neural networks requires storage of a set of given patterns as asymptotically 
stable equilibrium states of the network. The states in basins of attraction about each stable 
equilibrium state correspond to noisy versions of the stored patterns. When a noisy version of a 
stored pattern is sufficiently close to a stable state, the network trajectory will converge to one of 
the basins of attraction state or stable equilibrium state and produces the corresponding correct 
pattern as output. 
 
The mathematical model of a BSB attractor can be represented in the following form. 
 
                                   ))0()()(()1( xkxAkxSkx ×+××+×=+ γαλ                                            (1) 
 
where: 
 
x is a N-dimensional real vector input 
A is a N-by-N weight matrix determined during the training procedure as shown in equation (3) 
α > 0 is the scalar constant feedback factor 
λ is an inhibition decay constant  
γ = 0 in our case. It is a nonzero constant, if there is a need to maintain the input stimulation. 
x(k) is the state of BSB network at time k 
S() is the “squash” function defined as follows: 
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There are two main BSB operations: Training and Recall. Equation (1) is used in the recall 
operation. The training operation will use the following equations (3) & (4) to determine the 
weight coefficients in A. 
 
                                              xxAxratelearnA ⊗×−×=Δ − )(                                                    (3) 
                                                      AAA Δ+=                                                                       (4) 
where: 
 
x is the normalized N-dimensional real vector which signifies input training pattern 
learn_rate is the learning rate of the training pattern 

 is the operator for the outer product of two vectors. 
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The BSB attractor model discussed above is an autoassociative neural memory model. There are 
other autoassociative and heteroassociative models that have been studied extensively along with 
different learning algorithms. These models and learning algorithms have many similarities with 
the BSB model and training algorithm. 
 

2.2.2 Confabulation Theory 
 
Confabulation theory is a model of cognition proposed by Dr. Robert Hecht-Nielsen which states 
that all information processing in the brain is carried out by the same operation: confabulation 
[9]. The theory postulates that all aspects of cognition are carried out between patches of cerebral 
cortex and a uniquely paired zone of thalamus. These unique pairs are called thalamocortical 
modules, or lexicons, and it is proposed that there are around 4,000 of these modules within the 
human brain. Within each lexicon there are neuron collections, called symbols, which represent a 
single object in the class of objects encompassed by that particular lexicon - for example, a 
symbol might represent the color red within a lexicon of colors. Connections between the 
symbols within different modules are called knowledge links (KLs), and the groups of these 
knowledge links are called knowledge bases (KBs). It is estimated that there are roughly 40,000 
knowledge bases within the human brain. 
 
Confabulation is broken up into two phases: training and recall. During training the knowledge 
links that form the knowledge bases are created and strengthened. As information is continually 
fed to the system (the brain in the case of humans), the knowledge bases are fortified and become 
more potent. 
 
A confabulation occurs when one of these symbols within a lexicon is excited. This initial 
excited symbol is called the source symbol, and the excitation ignites all of the knowledge links 
attached to that symbol. A winner-take-all strategy, based upon the total excitation level of the 
symbol, is employed to select the strongest symbol within the lexicon. An example of 
connections between lexicons is show in Figure 2. In the Figure, Lexicon 1 represents shapes, 
lexicon 2 represents objects, and lexicon 3 represents colors. 
 
During a confabulation, the mind might trigger on a shape, like the cylinder from Lexicon 1. 
Following this trigger, all KL connections to this symbol fire and the links that connect to the fire 
extinguisher object will have a higher excitation level than those connected to others. Finally, the 
KL that leads the previous two symbols to the color red symbol will have the highest excitation 
level, thus winning the confabulation. 
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Figure 2: A confabulation example 
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3.0 FLOATING POINT UNIT DESIGN AND SYNTHESIS 
 
When VLSI technology entered the 65-nanometer and 32-nanometer eras, many previously 
ignored (or low-impact) technology parameters became major design concerns. Among them, the 
important ones were: wire delay, interconnect power consumption, leakage current and process 
variation. Although the goal of VLSI design is still to achieve highest clock frequency, smallest 
area and lowest power consumption, we need to address these new design concerns by adopting 
new design constraints and techniques, as well as new methodology and flow in design, synthesis 
and verification.  
 
In this section we first introduce the ASIC-style synthesis flow and results, followed by some 
initial results for full-custom designs. The ASIC-style design and synthesis flow we used is 
shown in Figure 3. 
 

 
Figure 3: The ASIC-style design and synthesis flow for FPU 

 
 
In the above flow, we divide the floating-point unit into basic components: single precision adder 
(SP_ADD), double precision adder (DP_ADD), single-precision multiplier (SP_MULT), double-
precision multiplier (DP_MULT) and the controller (FPU_CTRL). Each basic component is 
designed and synthesized individually with its own area and timing constraints. After obtaining 
the area information of the components, the final floorplan of the FPU can be generated and the 
aspect ratios of the components could be adjusted. The new area constraints and aspect ratios are 
then used to run the logic synthesis and physical synthesis flow one more time for the 
components, to form the final layout of the FPU. Top-level routing is done as the final step to 
connect the individual components. 
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In the latest runs of logic and physical synthesis, we used the Virage Standard Vt High Density 
Standard Cell Library, using the IBM 10LPe 65nm CMOS technology. In the logic synthesis 
step, we ran Design Compiler in “topographical mode”, in which the wire delays are estimated 
based on layout information. This method helps to obtain relatively accurate wire delay 
information so that the logic synthesis outcome is better fitted for the physical synthesis step. 
After obtaining the gate-level netlist from logic synthesis, we used ModelSim to simulate each 
component with randomly generated inputs. By doing so we can first verify the functionality of 
the netlist, then use the profiled switching activity for power consumption analysis. The area and 
power results are shown in Table 3. The post-layout area and timing results are shown in Table 
4. The screenshots of the final layouts of the four major components are shown in Figure 4. 
 
 

Table 3. Area and power consumption numbers after logic synthesis 

 
 
 

Table 4. Area and timing numbers after physical synthesis 

 
 
From logic synthesis to physical synthesis, we can see that the total area has increased due to the 
extra space needed for routing and the power ring. The core utilization ratio generally reflects the 
increase in area. The “worst negative slack” is the worst-case timing violation in the final layout. 
We can see that there is a 0.232ns violation for the DP_MULT. We believe that it can be fixed in 
the final design because firstly we were using the 1-2-1ns timing constraint that could be relaxed, 
and secondly we were using the 10SF R/C file (due to the lack of 10LPe file) for timing analysis 
that causes over-estimation of the wire delays. 
 
Figure 5 shows the performance and power estimation/prediction of the FPU in current/future 
technologies. We believe that from 90nm to 65nm, to 45nm, to 32nm, each generation will 
provide 2X increase in clock rate and energy efficiency. 



10 
 

 
Figure 4: Screen shots of the final layouts 

 

SP_ADD SP_MULT 

DP_ADD DP_MULT 
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Figure 5: Projected performance and power roadmap for FPU 

 
 
To further improve the performance, power and area of the FPU, we started work in designing 
the critical components in full-custom style. For example, for multipliers in the FPU, Figure 6 
shows the division of components to be designed in ASIC style (orange-colored) and the one in 
full-custom style (blue-colored). 
 

 
Figure 6: Mixed ASIC and custom design style for multipliers 

 
 
The MUX_ADD array is a regular array of a special function unit, which consists of a 1-bit 
multiplexer and a 1-bit full adder. The circuit schematics and transistor sizes of the multiplexer 
and adder are shown in Figure 7. The array size is 9x30 in the single-precision multiplier, and 
18x60 in the double precision multiplier. HSPICE simulation results show that the propagation 
delay of the 9x30 array (9 MUX_ADD in critical path) is 0.972ns, and the power consumption is 
3.9mW in total. For the 18x60 array, the propagation delay (18 MUX_ADD in critical path) is 
1.944ns and the power consumption is 15.6mW. The simulation results show significant 
performance and energy improvements over results from the pure ASIC design flow. 
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Figure 7: Schematics of custom multiplier design 
 
 
 
  

Partial product multiplexer Adder summation logic 

Adder carry logic 
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4.0 MULTI-LAYER COGNITIVE MODEL IN INTELLIGENT TEXT RECOGNITION 
 
4.1 Overview of the algorithms, software and hardware platforms 
 
Modern image processing software can perform image detection and pattern recognition with 
fairly high accuracy given the condition that the input image is clean and fully observable. 
Pattern recognition becomes extremely difficult, if not impossible, when the image is partially 
shaded or partially missing. For example, given the image in Figure 8(a), it would be impossible 
to recognize the middle character using only image processing techniques. However, such a task 
is not difficult for humans as we fill in the missing information based on its context. 
 

 
 

Figure 8: (a) A tainted text image (b) Layers of intelligent text recognition 
 
In this project, we developed an intelligent text recognition (ITR) system that learns from what 
has been read and, based on the obtained knowledge; it anticipates and predicts the next input 
image (or the missing part of the current image). Such anticipation helps the system to overcome 
many kinds of noises that may occur during recognition. 
 
This application is mainly built on two cognitive computing models. They are the Brain-State-in-
a-Box (BSB) Attractor Model and the Cogent Confabulation Model. Cogent confabulation is an 
emerging theory proposed by Hecht-Nielsen, [8]. Based on the theory, the information 
processing of human cognition is carried out by thousands of separate thalamocortical modules 
that are collectively referred to as a lexicon or a feature attractor module. Different collections of 
neurons in the thalamocortical module represent different symbols. Knowledge is stored as the 
links between neurons and the strength of the links. The cognitive information process consists 
of two steps: learning and recall. During the learning step, the knowledge links are established 
and strengthened as symbols are co-activated. During recall, a neuron receives excitations from 
other activated neurons. A “winner-take-all” strategy takes place within each lexicon. Only the 
neurons (in a lexicon) that represent the winning symbol will be activated, and the winning 
neurons activate other neurons through knowledge links 
 
The ITR system can be divided into 4 layers as shown in Figure 8 (b). The bottom layer is the 
input of the scanned text image. The second layer consists of character recognition software 
based on BSB models. It tries to match the input image with stored images of the English 
alphabet. The third and fourth layers are word and sentence recognition software based on cogent 
confabulation models.  
 
  

(a) (b) 
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During the course of this project, we have implemented the second, third and fourth layers and 
their interfaces in the overall ITR framework. The overall information processing flow of the 
hybrid cognitive model is given in Figure 9. As shown in the figure, the input of the system is 
noisy or damaged images of scanned text. It is assumed that we are able to separate characters 
from the scanned image using frontend processing. Our modified BSB model performs pattern 
matching to compare the input image against the stored image. The damaged image of a 
character provides partial information of this character. We refer to this partial information as 
ambiguity as it leads to ambiguous pattern recognition. The major difference between the 
modified BSB model and the traditional BSB model lies in their capability of handling the 
ambiguities. The traditional BSB model does not allow any ambiguity. It gives binary answers, 
i.e. “matching” or “not matching”. We adopted the concept of fuzzy logic and applied it in BSB 
based pattern recognition. Our modified BSB model calculates the degree of matching of each 
pattern based on the convergence speed and reports the patterns with the highest degree of 
matching. Therefore, given a noisy image of a character, it is possible that more than one 
matching pattern will be reported by the BSB. Each matching pattern is a character level 
candidate that can be used to represent the unknown character and all of the character level 
candidates form the character level candidate set.  For each character, the size of its candidate set 
is referred to as candidate size and it ranges from 1 to 26. In Figure 9, those characters whose 
candidate size is greater than 1 are represented by a red question mark while the detailed 
candidate information is omitted due to space limitations. The BSB sends the candidate 
information to the Word Level Confabulation (WLC) program. 
 

 
 

Figure 9: Multi-layer hybrid cognitive model for ITR 
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The WLC program fills in the missing information at word level using the knowledge base that is 
trained by reading a dictionary. The WLC is applied for each word in the scanned text. The input 
of the WLC is a candidate set for each letter in the word. It chooses all combinations of the 
candidates that give meaningful words. For example, given a 4-letter word, the candidate sets of 
those four letters are: (s), (e, a), (i, n) and (d), the WLC will generate the words “send”, “said”, 
and “sand”. Each possible word is a word level candidate that can be used to replace the input 
word that has partial information. Again the word level candidates are sent to the Sentence Level 
Confabulation (SLC) program. 
 
The SLC program fills in the missing information at sentence level using the knowledge base 
that was learned by reading more than 70 books. Based on the sentence level context, the SLC 
selects the most suitable word level candidate that is provided by the WLC and complete the 
sentence recognition. 
 
The prototype software of the intelligent text recognition system is implemented on a HPC 
cluster.  Figure 10 shows the configuration of the cluster. There are 24 PlayStation 3s in the 
cluster, each of which contains an IBM Cell Broadband Engine (CBE) processor. Each CBE 
consists of 6 Synergistic Processing Elements, SPEs and 1 Power PC Processing Element, PPE. 
The CBEs are controlled by a Head-Node (HN) running Red Hat Enterprise Linux, which 
contains dual quad Intel Xeon processor. Communication between the CBEs and the HN is 
handled through a Cisco Catalyst 3560E switch with 24 Gigabit Ether-net ports and two 10 GB 
optical uplink ports.  

 
Figure 10: Implementation platform for ITR at Binghamton University 
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The ITR system consists of 26 processes that were distributed across the cluster. There were 24 
BSB processes, 1 confabulation process and 1 display process. The BSB processes ran on the 
CBEs. Each BSB process generated 6 BSB threads running on 6 SPEs on the same CBE. The 
confabulation and display processes ran on the head node due to their large memory requirement. 
The software communication between nodes in the cluster was through the OpenMPI 
implementation of the Message Passing Interface (MPI) standard. The overall software flow and 
partition is shown in Figure 11.  
. 

 
 

Figure 11: Overall software flow and partition 
 
 
4.2 Modified BSB algorithm with racing mechanism 
 
In this project, we used 256-dimensional BSB models for character recognition. The original 
character image was defined as a 15x15-pixel black-and-white image. For the state vector of the 
BSB model, X[0..255], we used X[0..30] as the tag entries and X[31..255] for the character 
image. For example, Figure 12 shows the training vector of letter “a” in “Times” font. Please 
note that the value “0” in the entries will be converted to “-1” for BSB computations. We used 
“0” just for visual purposes. 
 
During the training process, each BSB model was trained for one specific character in four 
different fonts. Therefore for 26 letters in upper/lower cases, we obtained a total of 52 BSB 
models. During the recall process, given an un-recognized character image, we first formulated it 
into an input vector, with all tag entries set to “0”. Then the input vector was recalled by all 52 
BSB models. The recall process of each BSB model consisted of multiple iterations of the same 
computation. We set the “convergence condition” to be when all entries in the stage vector are 
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either “1” or “-1”. We have verified that, if the input image is one of the original training images 
(perfect character image), the correspondent BSB model always converges with least number of 
iterations. For example, if we sent the image “a” to all 52 BSB models, the BSB model trained 
with letter “a” will converge fastest. Therefore we can make our recognition decisions by 
comparing the convergence speed among the models. However, this may not be true if the input 
image is not perfect. In this case we will send more than one candidate (based on their 
convergence speeds) to the word confabulation program. Figure 13 illustrates the overall 
training/recall processes for character recognition with raw input images. 

 
Figure 12: Training vector for letter “a” in “Times” font 

 

 
 

Figure 13: Illustration of the training and recall processes of character recognition 
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We have done extensive experiments to evaluate the performance of this modified BSB 
algorithm with racing. As we have mentioned, when the input is the original training pattern with 
all tag bits set to “0.0”, the correspondent BSB model always converge the fastest. It means that 
the algorithm works well with perfect input images and we only need to select the fastest-
converged character as the candidate. However in reality, the input character images should have 
some noise. To evaluate the performance with noisy images, we designed images of “scratched” 
characters to be used as the inputs. Figure 14 shows the 1/2/3/5-scratch images of the letter “a” in 
“Times” font. 
 

 
Figure 14: 1/2/3/5-scratch input images of “a” 

 
Table 5 shows the convergence numbers when inputs were 1-scratch images. The rows represent 
the input letter and columns represent the 52 BSB models. We can see that with a small number 
of noises, most images still converged fastest to their correspondent letters. In the case of “t” in 
the table, model “k” converged fastest (in 24 iterations) while model “t” converged second (in 26 
iterations). In this case we selected both “k” and “t” as the candidates for that image. 
 
Table 6 shows the convergence numbers when inputs were 5-scratch images. We can see that 
when noise level increased, the convergence number increased and the correspondent BSB 
model became less likely to converge first. Note that we set the iteration limit to 50.  All entries 
of “50” were regarded as “not converged”. 
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Table 5. Convergence numbers for 1-scratch images 
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Table 6. Convergence numbers for 5-scratch images 
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4.3 Performance evaluation of the intelligent text recognition program 
 

 
Figure 15: Screen shot of the ITR program at work 

 
Figure 15 shows a screenshot of the ITR program running on the cluster. The left pane of the 
window shows the input images and the right pane shows the text recognition results. The high-
lighted words are the ones with recognition error(s). 
 
The ITR system performance profile was built to capture the behavior of the system across a 
range of varying inputs. Four different document types, each with different content, lengths, 
word and sentence-complexities were utilized to obtain a complete understanding of the system 
performance. Each document was tested with increasing degrees of scratch severity and 
probability of scratches. 
 
The scratch severities included were 1, 2, 3, 5, and 9 pixel-wide scratches. The probability of 
scratches within a document was measured at 20%, 40%, and 60%. By this scale, a document 
with 20% of 1 pixel scratches was considered "light" in terms of the level of damage in the test 
inputs and a document with 60% of 9 pixel scratches was considered heavily damaged. 
 
Each test document with different scratch severity and different level of scratch probability was 
measured for its processing time and accuracy. Time, unless otherwise noted, is the average 
confabulation time per word or sentence. Accuracy is defined as the percentage of correct 
character or word identification which results in a correct confabulation. If one character within a 
letter, or one word within a sentence, was confabulated wrong, the entire word or sentence was 
considered to be inaccurate. 
 
Four different types of documents were used as test inputs in constructing the system 
performance profile. The statistics of these documents are shown in Table 7, which highlights the 
number of words, number of sentences, average word size, and average sentence length of each 
document. There are two values worth noting early which turn out to be very important 
parameters throughout the entire profile. The average length of words and sentences within the 
Business and Tech document types were higher than the Novel and Children documents. This 
observation justifies some trends that we observed throughout the entire performance profile and 
show up in every aspect of system performance. 
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Table 7. Statistics of testing documents 

 
 
The first set of measurements plot average word confabulation (WC) time versus scratch pixel 
width for each document with increasing probability of scratch damage (probability). The results 
were captured in Figure 16. 
 
A quick glance at the results will yield two initial observations. The first is that the Tech or 
Business documents consistently have the longest average WC times across the entire range of 
different scratch probabilities for each plot. The second observation is that for each plot the 
distance between markers on the time scale increases super-linearly (in other words, with each 
increase in scratch width). Indeed, the system's performance in terms of time for different levels 
of damage is quite dependent upon the extent of the damage to the document. For the worst case 
scenario, the average WC times appear to be exponential with respect to scratch severity. 
 
The above observation may be quite obvious, but it does introduce a set of more focused 
questions. Which damage parameter is more costly to system performance - severity of scratch 
or probability of scratches? What is the correlation between document makeup and the various 
damage parameters? 
 
The next plot in Figure 17 examines the increase in average word confabulation time for the 
Novel document against all scratch probabilities and damage severities. It is important to note 
that the time scale on the y-axis is logarithmic, and at that 3 to 5 pixel barrier point there is 
almost two orders of magnitude difference. Before that barrier, the average WC times were 
steadily increasing, but after 3 pixels there is a tremendous decrease in performance. 
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Figure 16: Average word confabulation time versus scratch numbers 
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Figure 17: Average word confabulation time versus scratch numbers – Novel 

 
One of the most important performance parameters is the accuracy of the system. Before 
examining the amount of incorrectly confabulated words, it is useful to investigate the amount of 
words that require confabulation as a percentage of the total amount of words in a document. 
Figure 18 shows this information for the Novel document type against all scratch probabilities 
for all scratch severities. For each probability, each severity increases in the same fashion. For 
20% document damage, the amount of words that need to be confabulated as a percentage of 
total words hovers from 57% to 63%. For 40% the probability numbers shift to 74% to 76%, and 
for 60% damage, 81% to 84%. 
 

 
Figure 18: Percentage of word confabulations vs. scratch probability 
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Figure 19 shows the amount of incorrect word confabulations as a percentage of total word 
confabulations done by the system. This parameter was measured for each document type with 
20% probability of scratches against all scratch severities. 
 

 
Figure 19: Percentage of incorrect word Confabulations vs. scratch severity - 20% 

 
For scratches sized 1, 2, or 3 pixels wide, the system performed relatively well in terms of 
accuracy and there was not drastic performance decline until 5 pixel scratches were introduced. 
At that point, the accuracy of the word confabulations produced by the system began to degrade 
rapidly. This trend was present throughout the entire profile in all levels of the system. 
 
Figure 20 presents the same results as the previous plot, though this time with 40% probability of 
damage. The amount of inaccurate confabulations produced by WC was still under 10% for 
scratches under 5 pixels. At that 5 pixel mark, the system degradation followed the same trend as 
with 20% damage. 
 

 
Figure 20: Percentage of incorrect word Confabulations vs. scratch severity - 40% 
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Once again, it was apparent that the Business and Tech document types caused the system to 
perform worse than the Novel and Children documents. However, the Tech document performed 
the worst, with inaccuracies as high as 65% and 70% for 20% and 40% damage, respectively. 
Though the Tech and Business documents had similar average sentence lengths, their average 
word lengths differed by the same amount that Business differed from Novel and Children. 
However, Business, Children, and Novel all behaved rather similarly and so we can say that the 
average word size "breaking point" was around 5 words. 
 
Table 8 shows the sentence recognition accuracy versus pixel scratch severity for Business 
document type for 20%, 40%, and 60% damage. It is apparent that at 5 pixels, there was an 
extreme decrease in system accuracy from 1, 2 and 3 pixel scratches. This trend was seen in WC 
and was certainly present in SC.  

Table 8. Sentence confabulation accuracy results 

                                 
 
In Table 8, the tremendous effect that scratch severity had on the system is quite apparent from 
the numbers displayed on the table. At 20% probability, the performance with scratches of 1,2 
and 3 pixels are almost constant at 81%, 84%, and 83%, respectively. However, at 5 pixels the 
accuracy drops to 35%, and at 9 pixels the accuracy is at 13%. That is almost a 50% drop in 
performance, and for increasing scratch probabilities the gap is even wider. At 40% probability, 
the difference between 3 and 5 pixel wide scratches is 59%, and at 60% probability the drop is 
54% - where the accuracy of 5 pixel wide scratches is 0%! 
 
Table 8 highlights an important performance point: the width of the scratch was more damaging 
to performance than the probability of scratches on a document. That is, the amount of damage to 
a document was as destructive as the severity of the scratches. As evidenced by the table, a 1 
pixel wide scratch only sees a 9% drop in accuracy when increasing the probability of scratches 
from 20% to 60%. The same sentiment with a 5 pixel wide scratch shows a much more 
destructive story regarding performance. A 5 pixel wide scratch is roughly 35% distortion to a 
character used by this system (a 15x15 pixel image). Accuracy for a document with just 20% of 
those scratches droped 68% from the lightest scratch width to the heaviest. 
 
The performance profiling produced many important insights and statistics. The first observation 
made was the makeup of the test documents. Though the Novel and Children documents had 
more words and sentences, the Tech and Business documents had longer average words and 
sentences. These factors rippled into average processing times across the entire hierarchy. 
Secondly, the effect of scratch severity and scratch probability on a document was examined. It 
was determined that the severity of the scratch has a more degrading performance on the system 
than the probability. This sentiment follows for the accuracy of the system as well. Average WC 
and SC time increased in the face of larger scratches and accuracy dropped for that same metric. 
Though the probability of scratching on a document does affect the performance of the system, it 
is clear that the severity of the scratches is a more dominant factor. 
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5.0 CONCLUSIONS 
 
We would like to thank Richard Linderman, Thomas Renz, Daniel Burns and John Rooks of 
AFRL, for working closely with us on this project and providing timely and helpful advice.  
 
We have investigated the performance and power optimization techniques of the floating point 
unit design as a part of the AFRL cognitive processor project. Our main focus was on exploring 
different design and synthesis methodologies that lead to optimized area and power 
consumption, while fulfilling performance requirements. Meanwhile we were able to obtain 
accurate estimations of power and area of the final design, from the synthesis and simulation 
flow. Other efforts in this project included tight integration and interaction of logic/physical 
synthesis, custom circuit design, etc. Simulation and timing analysis results show that our post-
layout designs have met the area, timing and power requirements of the project. 
 
We developed a multi-layer cognitive model and algorithm for intelligent text recognition. The 
algorithm integrates three layers of different cognitive computing models in order to achieve the 
best accuracy in optical text recognition, as well as the best computation performance on a 
massively parallel computing cluster. In the first layer, we developed a novel neural network 
model that performs character recognition from images. Different from other neural network 
models, the new model is able to provide more than one answer to the input image. This feature 
is essential for the second layer, which is word-level recognition based on cogent confabulation. 
Similarly the word confabulation layer is able to provide multiple candidates that will be cross-
checked by the third layer: the sentence confabulation algorithm. In our approach, these three 
different cognitive models are made to work together to provide the best possible text 
recognition result. We believe that the multi-layer cognitive model concept invented by this 
project has significant innovation potential in the area of optical text recognition, machine 
learning and natural language processing. 
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7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
AFRL   Air Force Research Laboratory 
ASIC   Application Specific Integrated Circuit 
BSB   Brain-State-in-a-Box 
CAM   Content Addressable Memory 
CBE   Cell Broadband Engine 
CMOS   Complementary Metal Oxide Semiconductor 
DP_ADD  Double Precision Adder 
DP_MULT  Double Precision Multiplier 
FPU   Floating Point Unit 
HN   Head Node 
HPC   High Performance Computing 
IEEE   Institute of Electrical and Electronics Engineers 
ITR   Intelligent Text Recognition 
I/O   Input/Output 
KB   Knowledge Base 
KL   Knowledge Link 
MPI   Message Pass Interface 
NaN   Not a Number 
PPE   PowerPC Processing Element 
SC   Sentence Confabulation 
SLC   Sentence Level Confabulation 
SPE   Synergistic Processing Element 
SP_ADD  Single Precision Adder 
SP_MULT  Single Precision Multiplier 
VLSI   Very Large Scale Integration 
WC   Word Confabulation 
WLC   Word Level Confabulation 
 
 




