

AFRL-RI-RS-TR-2010-078
Final Technical Report
March 2010

ADVANCED CYBER ATTACK MODELING,
ANALYSIS, AND VISUALIZATION

George Mason University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report is the result of contracted fundamental research deemed exempt from public
affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is
available to the general public, including foreign nationals. Copies may be obtained from
the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2010-078 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
 THOMAS J. PARISI WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2010
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

September 2006 – September 2009
4. TITLE AND SUBTITLE

ADVANCED CYBER ATTACK MODELING, ANALYSIS, AND
VISUALIZATION

5a. CONTRACT NUMBER
FA8750-06-C-0246

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
33140F

6. AUTHOR(S)

Sushil Jajodia and Steven Noel

5d. PROJECT NUMBER
7820

5e. TASK NUMBER
MW

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

George Mason University
4400 University Drive
Fairfax, VA 22030-4422

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2010-078

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project delivers an approach for visualization, correlation, and prediction of potentially large and complex network attack
graphs. These attack graphs facilitate defense against multi-step cyber network attacks, based on system vulnerabilities, network
connectivity, and potential attacker exploits. A new paradigm is introduced for attack graph analysis that augments the traditional
graph-centric view, based on graph adjacency matrices.

15. SUBJECT TERMS
Cyber attack graphing, Information assurance, IA, Information security, User interaction, Cyber defense, Vulnerability prioritization

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

113

19a. NAME OF RESPONSIBLE PERSON
Thomas J. Parisi

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

1. SUMMARY 1

2. INTRODUCTION 3

3. METHODS, ASSUMPTIONS, AND PROCEDURES 8

3.1 Topological Vulnerability Analysis ..8
3.1.1 Building Cyber Attack Graphs ...8
3.1.2 Network Security via TVA ..12
3.2 Attack Graph Matrices..18
3.2.1 Attack Graph Adjacency Matrices ...19
3.2.2 Adjacency Matrix Clustering ...20
3.2.3 Matrix Operations for Multi-Step Attacks ...21
3.2.4 Attack Prediction ...22
3.3 Optimal Intrusion Sensor Placement ...24
3.3.1 Statement of Problem ...24
3.3.2 Overview of Approach ...26
3.3.3 Predictive Attack Graphs ...28
3.4 Security Metrics from Attack Graphs ...34
3.4.1 Overview of Approach ...34
3.4.2 Attack Graph Model ..35
3.4.3 Propagating Vulnerability Scores ..38

4. RESULTS AND DISCUSSION 41

4.1 Attack Modeling and Simulation ..41
4.2 Matrix Analysis and Visualization ...57
4.3 Sensor Placement and Alert Prioritization ..68
4.4 Security Metrics for Risk Analysis ...73
4.5 Formal Evaluations ..80
4.6 Model Population Extensions..93
4.7 Project Events...99

5. CONCLUSIONS 102

6. REFERENCES 103

7. LIST OF ACRONYMS 107

ii

LIST OF FIGURES

Figure 1. Overview of TVA ... 9
Figure 2. Small network to illustrate TVA ... 10
Figure 3. Attack graph for small network .. 11
Figure 4. First-layer network hardening ... 14
Figure 5. Last-layer network hardening .. 14
Figure 6. Minimum-cost network hardening ... 15
Figure 7. Propagating risk scores through TVA attack graph 17
Figure 8. TVA attack graphs for protection, detection, and correlation 18
Figure 9. Intrusion detection sensor placement via attack graphs 26
Figure 10. Small testbed network for demonstrating attack graph analysis 28
Figure 11. Attack graph for testbed network in Figure 10 29
Figure 12. Recommended solutions for hardening testbed network 30
Figure 13. More complex attack graph for 17-machine operational network 31
Figure 14. Aggregation of complex attack graph over multiple levels of detail ... 32
Figure 15. TVA tool attack graph visualization for 8-machine testbed network .. 33
Figure 16. Example network, attack graph, and network hardening choices 36
Figure 17. Removing attack graph cycles for fully-connected subnets 37
Figure 18. DeepSight vulnerability scoring ... 40
Figure 19. Example schema for TVA network models 42
Figure 20. Software item reported by asset management tool 43
Figure 21. Example TVA modeled exploit .. 43
Figure 22. Software to vulnerability mapping ... 44
Figure 23. Network connection to vulnerable software 44
Figure 24. Protection domains reported by asset management tool 45
Figure 25. Exploit instantiated for particular network ... 46
Figure 26. Protection domains in attack graph data ... 47
Figure 27. Unconstrained attack graph .. 47
Figure 28. Attack graph with constrained starting point 48
Figure 29. Attack graph with constrained starting and ending points 48
Figure 30. Attack graph constrained to direct attacks .. 49
Figure 31. Attack graph visualization interface .. 50
Figure 32. Geo-spatial attack graph user interface .. 51
Figure 33. Residual attack graph ... 52
Figure 34. Intrusion detection sensor deployment ... 53
Figure 35. IDMEF alert structure .. 54
Figure 36. Attack prediction and response ... 56
Figure 37. Example attack graph in its full complexity 58
Figure 38. Attack graph aggregated to individual machines 59
Figure 39. Unclustered adjacency matrix for attack graph in Figure 38 60
Figure 40. Clustered adjacency matrix for attack graph in Figure 38 61
Figure 41. Clustered matrix for attack graph in Figure 38 (2-step attacks) 62
Figure 42. Reachability for 2, 3, and 4 steps for attack graph in Figure 38 63

iii

Figure 43. Multi-step reachability for attack graph in Figure 38 64
Figure 44. Attack graph adjacency matrix for baseline and changed network. .. 64
Figure 45. Transitive closure for baseline and changed network 65
Figure 46. Correlating intrusion alarms via attack graph reachability 66
Figure 47. Predicting attack origin and impact ... 67
Figure 48. Testbed network and its high-level attack graph 68
Figure 49. Optimal sensor placement for testbed network 70
Figure 50. Priority of alerts for testbed network ... 72
Figure 51. Residual attack graphs for network configuration choices 74
Figure 52. Attack-graph metrics for each network configuration choice 75
Figure 53. Security return-on-investment model .. 76
Figure 54. Cost of each network change based on attack-graph metrics 77
Figure 55. Comparative savings (versus no change) ... 78
Figure 56. Relative importance of model inputs ... 78
Figure 57. Cost dependency on individual inputs .. 79
Figure 58. Testbed network for preliminary testing .. 81
Figure 59. Attack graph for preliminary testing .. 82
Figure 60. Attack graph for preliminary testing (expanded) 83
Figure 61. Attacks between a pair of protection domains 84
Figure 62. Testbed network for TVA tool evaluation .. 85
Figure 63. Baseline attack graph for Nessus scan data 86
Figure 64. Repositioned baseline attack graph .. 87
Figure 65. Attack graph with Sidewinder firewall rules data added 88
Figure 66. Repositioned attack graph for added firewall data 89
Figure 67. Direct path showing single-step attack from start to goal 89
Figure 68. Direct paths to a different attack goal ... 90
Figure 69. All attack paths, with minimum-cost hardening recommendation 91
Figure 70. Application of minimum-cost hardening .. 92
Figure 71. Repositioned attack graph after minimum-cost hardening 93
Figure 72. TVA tool architecture .. 94
Figure 73. Structure of TVA network model ... 94
Figure 74. Preprocessing of Retina scan data ... 95
Figure 75. Structure of Retina native scan data ... 95
Figure 76. Structure so TVA scan data .. 96
Figure 77. Mapping from CVE to Nessus identifier .. 96
Figure 78. Vulnerability scans for two subnets ... 97
Figure 79. Vulnerability scans for three subnets .. 97
Figure 80. Structure of TVA firewall rule data .. 98

 1

1. SUMMARY

This project delivers an approach for visualization, correlation, and prediction of
potentially large and complex attack graphs. These attack graphs show multi-step cyber
attacks against networks, based on system vulnerabilities, network connectivity, and
potential attacker exploits. We introduce a new paradigm for attack graph analysis that
augments the traditional graph-centric view, based on graph adjacency matrices.

In our approach, the analysis includes all known network attack paths, while still
keeping complexity manageable. It supports pre-attack network hardening, correlation of
detected attack events, and attack origin/impact prediction for post-attack responses. The
goal of this system is to transform large quantities of network security data into
actionable intelligence.

The utility of organizing combinations of network attacks as graphs is well
established. Traditionally, such attack graphs have been formed manually by security red
teams (penetration testers). We have demonstrated the capability for computational
generation of attack graphs, rather than relying on manual creation. This approach is
based on models of network security conditions and potential attacker exploits.

Because of vulnerability interdependencies across networks, a topological attack
graph approach is needed, especially for proactive defense against insidious multi-step
attacks. The traditional approach that treats network data and events in isolation, without
the context provided by attack graphs, is clearly insufficient.

Our innovative approach to proactive cyber security via attack graphs is called
Topological Vulnerability Analysis (TVA). TVA combines vulnerabilities in ways that
real attackers might do, discovering all attack paths through a network, given the
completeness of scan data used for our analysis. Mapping all paths through the network
provides defense in depth, with multiple options for mitigating potential attacks, rather
than relying on mere perimeter defenses.

From its attack graphs, TVA computes recommendations for optimal network
hardening. It also provides sophisticated visualization capabilities for interactive attack
graph exploration and what-if analysis. TVA attack graphs support a number of metrics
that quantify overall network security, e.g., for trending or comparative analyses.

Further, by mapping TVA attack paths to the network topology, we can deploy
intrusion detection sensors to cover all paths using the minimum number of sensors.
TVA attack graphs then provide the necessary context for correlating and prioritizing
intrusion alerts, based on known paths of vulnerability through the network.
Standardization of alert data formats and models facilitates integration between TVA and
intrusion detection systems.

By mapping intrusion alarms to the TVA attack graph, we can correlate alarms into
multi-step attacks and prioritize alarms based on distance from critical network assets.
Further, through knowledge of network vulnerability paths, we can formulate best
options responding to attacks. Overall, TVA offers powerful capabilities for proactive
network defense, transforming raw security data into actionable intelligence.

 2

In our approach to network defense, we focus on critical paths through the network
that lead to compromise of critical assets. This analysis supports optimal placement of
intrusion detection sensors, prioritization of alerts, and effective attack response. By
analyzing the network configuration, assumed threat sources, and potential attacker
exploits, we predict all possible ways of reaching critical assets. We then place sensors
to cover all attack graph paths, using the fewest number of sensors necessary.

The sensor-placement problem we pose is an instance of the NP-hard minimal set
cover problem. We solve this problem through an efficient greedy algorithm, which
generally gives near optimal results very quickly. Once sensors are deployed and alerts
are raised, our predictive attack graph allows us to prioritize alerts based on attack graph
distance to critical assets.

We model composition of vulnerabilities through attack graphs, which show all paths
of vulnerability allowing incremental network penetration. We propagate attack
likelihoods through the attack graph, yielding a novel metric that measures the overall
security of a networked system.

From this, we score risk mitigation options in terms of maximizing security and
minimizing cost. For practical implementation, we can rely on our TVA attack graph
tool. TVA populates attack graph models from live network scans and databases of
reported vulnerabilities. As additional input to our model, we use comprehensive sources
of security risk scores for individual vulnerabilities. Our flexible new attack graph metric
model can be used to quantify overall security of networked systems, and to study
cost/benefit tradeoffs for analyzing return on security investment.

 3

2. INTRODUCTION

Cyber security is inherently difficult. Protocols are often insecure, software is
frequently vulnerable, and educating end-users is time-consuming. Security is labor-
intensive, requires specialized knowledge, and is error prone because of the complexity
and frequent changes in network configurations and security-related data. Network
administrators and security analysts can easily become overwhelmed and reduced to
simply reacting to security events. A much more proactive stance is needed.

Furthermore, the correct priorities need to be set for concentrating efforts to secure
the network. Administrators and analysts often have a vertical view of the particular
component they are managing; horizontal views across/through the infrastructure are
missing. This in turn shifts emphasis to vulnerabilities at the interfaces. Security
concerns in a network are also highly interdependent, i.e., susceptibility to attack can
depend on multiple vulnerabilities across the network. Attackers can combine such
vulnerabilities to incrementally penetrate a network and compromise critical systems.

However, traditional security tools are generally point solutions that provide only a
small part of the picture. They give few clues as to how attackers might exploit
combinations of vulnerabilities to advance an attack on a network. It remains a painful
exercise to combine results from multiple tools and data sources to understand one’s true
vulnerability against sophisticated multi-step attacks. It can be difficult even for
experienced analysts to recognize such risks, and it is especially challenging for large
dynamically evolving networks.

Our network models are created automatically from network scans and firewall rule
logs. Potential attacker exploits are modeled from existing databases of reported cyber
vulnerabilities. In our attack graph representation, dependencies among attacker exploits
are mapped. We avoid explicit enumeration of attack states; our attack graphs thus scale
quadratically rather than exponentially.

With our approach, we can efficiently compute attack graphs for realistic networks.
But the attack graphs that result can often pose challenges for human comprehension.
This is compounded by the fact that attack graphs are usually communicated by literal
drawings of graph vertices and edges.

The general problem of graph drawing is ill-posed in the sense that many possibilities
exist for what constitutes a good graph drawing. Also, finding optimal placement of
graph vertices according to many of the desired criteria is NP-complete. For the
relatively dense attack graphs often found in practice (e.g., within a trusted internal
network), graph drawing techniques are often ineffective, producing overly cluttered
drawings for graphs of larger than moderate size.

 4

In this project, we develop techniques to help make complex attack graphs more
understandable, and apply these techniques to the correlation, prediction, and hypothesis
of attacks. Our approach reveals graph regularities, making important features such as
bottlenecks and densely-connected subgraphs apparent. We extend an existing graph-
clustering technique to show multi-step reachability across the network, the impact of
network configuration changes, and the analysis of intrusion alarms within the context of
network vulnerabilities.

Rather than relying solely on literal drawings of attack graphs, we augment that with
visualization of the corresponding attack graph adjacency matrix [1]. The adjacency
matrix represents each graph edge with a single matrix element, as opposed to a drawn
line. Graph vertices, rather than being drawn explicitly, are implicitly represented as
matrix rows and columns. The adjacency matrix avoids the edge clutter of drawn graphs,
not only for very large graphs, but also for smaller ones.

The adjacency matrix is a concise graph representation, but alone it can be
insufficient. That is, without the proper ordering of matrix rows and columns, the
underlying attack graph structure is not necessarily apparent. We therefore apply an
information-theoretic clustering technique that reorders the adjacency matrix so that
blocks of similarly-connected attack graph elements emerge. The clustering technique is
fully automatic, parameter-free, and scales linearly with graph size.

Elements of the attack graph adjacency matrix represent all one-step attacks. We
extend this by computing higher powers of the adjacency matrix, to represent multiple-
step attacks. That is, the adjacency matrix of power k shows all attacker reachability
within k steps of the attack. Further, we combine multiple adjacency matrix powers into
a single matrix that shows the minimum number of attack steps between each pair of
attack graph elements.

Alternatively, we summarize reachability for all numbers of steps, i.e., the transitive
closure of the attack graph. For these multi-step adjacency matrices, we retain the
reordering induced by clustering, so that patterns in the attack graph structure are still
apparent.

The general approach of clustering attack graph adjacency matrices (and raising them
to higher powers) provides a framework for correlating, predicting, and hypothesizing
about network attacks. The approach applies to general attack graphs, regardless of what
the particular graph vertices and edges represent.

For example, such attack graphs could have been formed from models of network
vulnerability, or from causal relationships among intrusion detection events. Attack
graph vertices could also represent aggregated sub-graphs, such as aggregation by
machines and exploits between them. Overall, the techniques we develop have quadratic
complexity in the size of the attack graph, for scalability to larger networks.

 5

We apply our general approach to a vulnerability-based attack graph, in which the
graph vertices (network security conditions and attacker exploits) have been aggregated
to machines and exploits between them. This makes the patterns of attack clear,
especially in comparison to the corresponding literally drawn graph. We show how this
representation can provide a concise summary of changes in the attack graph resulting
from changes in the network configuration, e.g., for what-if analysis of planned network
changes or impact of real network changes.

We also place intrusion alarms in the context of a vulnerability-based multi-step
attack graph reachability matrix. In this way, false alarms become apparent when they
occur for pairs of machines not reachable by the attacker, based on the network
configuration. Also, one can infer missed detections from alarms between machines that
require multiple attack steps before compromise can occur.

We develop a graphical technique for predicting attack steps (forward and backward)
on the adjacency matrix. Here, we project to the main diagonal of the matrix to match
rows and columns between each attack step. This technique allows one to step forward
from an attack, so that the impact of an attack can be determined and candidate attack
responses can be identified. Using this technique with the multi-step reachability matrix
allows candidate attack responses to be prioritized according to the number of steps
required to reach victim machines. Alternatively, one can step backward from an attack
to predict its origin.

Advances in automatic generation of cyber attack graphs [2][3][4][5][6][7][8][9][10]
[11][12][13][14][15][16][17][18] have made it possible to efficiently compute attack
graphs for realistic networks. These approaches avoid the state explosion problem by
representing dependencies among state transitions (i.e., attacker exploits), rather than
explicitly enumerating states. The resulting exploit dependency graphs have quadratic
rather than exponential complexity, and still contain the same information (implicitly) as
explicitly enumerated state graphs.

Still, when attack graphs are generated for realistic networks, using comprehensive
sets of modeled attacker exploits, the resulting attack graphs can be very large. Previous
approaches generally use graph drawing algorithms [19], in which vertices and edges
between them are drawn according to particular aesthetic criteria.

While graphs containing many vertices have been successfully drawn, these have
generally been relatively sparsely connected. In fact, much of the research in graph
visualization has focused on trees, e.g., as summarized in [20]. One such approach to tree
visualization is treemaps [21], a technique for showing hierarchical data in a space-
constrained layout. In [22], treemaps are applied to visualization of attack reachability.
But network attack graphs can exhibit dense connectivity, so that tree visualizations are
not a good match.

An approach has been proposed for managing attack graph complexity through
hierarchical aggregation [13], based on the formalism of clustered graphs [23]. The idea
is to collapse subsets of the attack graph into single aggregate vertices, and allow
interactive de-aggregation. In this approach, aggregated edges of the attack graph are
hidden until they are de-aggregated or otherwise highlighted. In our approach, all graph
edges are visible in a single view.

 6

Also, a critical abstraction for the hierarchical aggregation approach is the protection
domain, i.e., a fully-connected subgraph (clique) of the attack graph. To avoid the
expensive clique detection operation, this approach requires prior knowledge of which
sets of machines form protection domains, and in practice this knowledge may not be
available. In our approach, protection domains are formed automatically, without prior
knowledge.

Our approach applies information-theoretic clustering to the attack graph adjacency
matrix [24]. This clustering rearranges rows and columns of the adjacency matrix to
form homogeneous groups. In this way, patterns of common connectivity within the
attack graph are clear, and groups (attack graph subsets) can be considered as single
units. This clustering technique is fully automatic, is free of parameters, and scales
linearly with graph size.

There have been approaches that view network traffic in the form of a matrix
[25][26], where rows and columns might be subnets, IP addresses, ports, etc. But these
approaches do not employ clustering to find homogeneous groups within the visualized
matrices as we do. Also, they generally consider attack events independently of one
another, as opposed to looking at sequences of events. In particular, they include none of
the multi-step analyses in our approach, e.g., raising matrices to higher powers for multi-
step reachability, tracing multiple attack steps by projecting to the main matrix diagonal,
or predicting attack origin and impact.

The multi-step reachability matrix in our approach corresponds to the attack graph
exploit distances in [12], although those distances are computed through graph traversal
as opposed to our matrix multiplication. However, in the previous approach, exploit
distances are not clustered or visualized; rather, they are used to correlate intrusion
detection alarms. While the previous approach considers multiple steps to handle
missing alerts and build attack scenarios, it does not predict attack origin and intent as in
our approach.

Beyond generation of attack graphs for vulnerability analysis, there lacks a strategy
for placement of intrusion detection sensors within the network infrastructure to cover
known vulnerability paths. When intrusion detection sensor placement is addressed in
the literature, it is usually in the context of general architectures for distributed intrusion
detection, such as [27]. One paper has applied network attack modeling (based on logic
programming) for placing intrusion detection sensors, for the limited case of Internet
Protocol (IP) spoofing attacks. [28].

In [29], a model checker is used to find a minimal coverage of attack paths, using
intrusion detection systems or other protection measures. This approach provides a weak
kind of optimality, giving the minimum set of measures that block the attacker from the
end goal (the unsafe state of the model checker), assuming that each such measure is
successful. However, this is not a safe assumption, given the high likelihood of missed
intrusion detections.

 7

In other words, with such minimum coverage, if only one attack is missed, the
remaining uncovered paths may readily allow network penetration to critical network
assets. While such minimal coverage may be appropriate for assured hardening measures
such as software patches and firewall rules, it is clearly insufficient for intrusion detection
system deployment. In contrast, we cover all possible attack paths (not just a minimum
subset), using a minimum number of sensors while maintaining polynomial complexity.

Further, the approach in [29] does not identify how a minimum set of attack paths
actually map to intrusion detection sensor deployment in the network infrastructure. For
example, an attack from host A to host B may pass through multiple network devices,
and the deployment of sensors in appropriate locations is left unanswered.

We assign intrusion detection sensors to network devices so that they cover all known
paths of vulnerability through the network. If desired, we can focus these paths based on
known threat sources and critical network assets. Our sensor placement is optimal, in
that only a minimum number of sensors are needed. Once sensors are placed, we use our
predictive attack graph to prioritize the resulting intrusion alerts according to attack
distance from critical assets.

 8

3. METHODS, ASSUMPTIONS, AND PROCEDURES

In this section, we describe the methods, assumptions, and procedures carried out
under this project. The remainder of this section is organized as follows:

• Section 3.1: Describes the generation of attack graphs via TVA, and how
that supports optimal network security.

• Section 3.2: Describes our novel approach for applying adjacency
matrices and other specialized matrix analyses to cyber attack graphs.

• Section 3.3: Describes optimal placement of intrusion detection system
sensors and prioritization of intrusion alerts using attack graphs.

• Section 3.4: Describes our new approach for network security metrics
based on attack graphs.

3.1 Topological Vulnerability Analysis
In this section, we describe the TVA approach, and show how it can be applied to

provide optimal network security. The remainder of this section is organized as follows:

• Section 3.1.1: Describes how we build cyber attack graphs showing all
possible paths of attack through a network.

• Section 3.1.2: Describes various applications and post-analyses of attack
graphs in support of optimal network defense.

3.1.1 Building Cyber Attack Graphs
We analyze vulnerability interdependencies and build a complete map showing all

possible paths of multi-step penetration into a network, organized as an attack graph.
This approach is called Topological Vulnerability Analysis (TVA) [2][5][11].

TVA models the network configuration, including software, their vulnerabilities, and
connectivity to vulnerable services. It then matches the network configuration against a
database of modeled attacker exploits for simulating multi-step attack penetration.
During simulation, the attack graph can be constrained according to user-defined attack
scenarios.

TVA attack graphs map all the potential paths of vulnerability, showing how
attackers can penetrate through a network. TVA identifies critical vulnerabilities and
provides strategies for protection of critical network assets. This enables us to take a
much more proactive stance, hardening the network before attacks occur, handling
intrusion detection more effectively, and responding appropriately to attacks.

 9

Attack
Model

Attack
Simulation

Vulnerability
Mitigation

Attack
Response

Intrusion
Detection

Security
Metrics

Vulnerabilities

Configuration

What‐If

Attack
Visualization

Figure 1. Overview of TVA

Figure 1 shows the overall flow of TVA. It begins by building an input attack model,
based on the network configuration and potential attacker exploits. Network
configuration data may include vulnerability scan reports, hosts inventory results, and
firewall rules. To model incremental network penetration, we represent the fact that a
given vulnerability can potentially be exploited.

From this input attack model, TVA matches modeled exploits against vulnerabilities,
to predict multi-step attacks through the network. From the resulting attack graph, it then
generates recommendations for optimal priority of hardening vulnerabilities. The attack
graph can also be explored through interactive visualization, for more in-depth risk
analysis, including “what-if” scenarios. The TVA attack graph can also support
computation of various metrics for measuring overall network security.

The attack graph guides optimal strategies for preventing attacks, e.g., patching
critical vulnerabilities and hardening of systems and services. But because of realistic
operational constraints, such as availability of patches or the need to offer mission-critical
services, there usually remain some residual attack paths through a network.

At this point, the residual attack graph provides the necessary context for dealing with
intrusion attempts. This includes guidance for the deployment and configuration of
intrusion detection systems, correlation of intrusion alarms, and prediction of next
possible attack steps for appropriate attack response.

For example, the attack graph can guide the placement of intrusion detection sensors
to cover all attack paths, while minimizing sensors redundancy. As in all cases for TVA
analysis, the attack graph must be kept current with respect to changes in network
vulnerabilities.

 10

The attack graph then can filter false intrusion alarms, based on known paths of
residual vulnerability. The graph also provides the context for correlating isolated alarms
as part of a larger multi-step attack penetration. It also shows the next possible
vulnerabilities that could be exploited by an attacker, and whether they lie on attack paths
to critical network resources. This in turn supports optimal planning and response against
attacks, while minimizing effects of false alarms and purposeful misdirection by an
attacker.

As a simple illustration of our TVA attack graph approach, consider the small
network in Figure 2. In this network, assume that the mail server and file server are for
internal use only. However, outside access to the web server is needed. Thus the
firewall allows incoming web connections to the web server, and blocks all other traffic
from the outside. In this attack scenario, we wish to know if an attacker on the outside
can compromise the mail server, through one or more attack steps.

To model this scenario, we need to capture elements of the network configuration
relevant to attack penetration. This includes the existence of vulnerable software
(services) on hosts, as well as connectivity allowed to vulnerable services. We also need
a set of potential attacker exploits that may work against the vulnerable services. In
general, we rely on existing security tools to scan the network and build the input model.

For example, we could run a vulnerability scanning tool (e.g., Nessus [30]) against
the hosts in the internal network to map their vulnerabilities and feed this into the TVA
model. We then rely on our database of modeled exploits, pre-built to cover exploitable
vulnerabilities detected by Nessus. We assume worst case, i.e., that a vulnerability is
exploitable (leads to an exploit) as long as it is reported as giving sufficient control over
the victim machine. This is independent of any particular code or procedure that may
actually carry out such exploitation.

Attacker

Mail Server Web Server

File Server

Firewall

Figure 2. Small network to illustrate TVA

 11

To incorporate the connectivity-limiting effects of the firewall, we scan through the
firewall. We also scan behind the firewall, to capture vulnerabilities that are available
once the attacker has reached the internal network. Alternatively, we could process the
firewall rules directly for building the network model.

Figure 3 shows the resulting attack graph for this scenario. There is indeed a path
from the outside to the inside mail server, via a critical vulnerability exposed through the
firewall. Figure 3(a) is a high-level view of the attack graph. This shows one
vulnerability being exploited (implicitly, through the firewall) from the outside to the
inside. In other words, the attack graph indicates that there is one vulnerability exposed
from the outside, with the potential to be exploited, allowing the attacker to progress
inside. This exploit, along with all others in our model, gives the attacker the ability to
execute arbitrary code at an elevated privilege.

Figure 3(b) is a more detailed view, showing that the attacker can exploit a
vulnerability on the web server from the outside. Then from the web server, the attacker
can attack the mail server. The box labeled “inside” represents the inside network, and
implicitly all machines on the inside can exploit one another’s vulnerabilities.

In the figure, the label “1” in the attack graph edge indicates that there is one exploit
(implicitly, one exploitable vulnerability) from the attacker to the web server. Inside the
network, there are “3 exploits,” i.e., three exploitable vulnerabilities on the web server.

Thus, of the three exploitable vulnerabilities on the web server, only one of those
vulnerabilities is exploitable from the outside. TVA identifies this critical vulnerability.
In other words, if the single vulnerable service from attacker to web server is mitigated,
the attacker has no other path to the mail server. Of course, other vulnerabilities could be
mitigated as well, but the vulnerability from attacker to web server is clearly high
priority.

(a)

(b)

Figure 3. Attack graph for small network

 12

This simple example shows how hosts on a network can be exploited through
multiple steps, even when the attacker cannot access them directly. It is not directly
possible to compromise the internal mail server from the outside because of the policy
enforced by the firewall. But TVA shows that the attack goal can be reached indirectly,
in this case through a sequence of two exploits. Further, it shows that addressing a single
critical vulnerability from among four in the internal network would prevent this attack
scenario.

By constraining the attack graph to particular start and goal points, we focus the
analysis on protecting a critical asset against an assumed threat source. For example, the
file server does not appear in the attack graph. This is because it does not play a part in
this scenario. In other words, there are no attack paths from attacker to mail server that
involve the file server.

Also, Nessus and other vulnerability scanners generate many alerts that are merely
informational, and not relevant to network penetration. Our TVA approach excludes
such extraneous alerts from its database of modeled exploits.

In general, many different combinations of critical vulnerabilities may prevent an
attack scenario. For enterprise networks, analyzing all attack paths and drawing
appropriate conclusions requires the kind of automated tool support we provide.

TVA is fundamentally a modeling and simulation approach. It relies on existing tools
for gathering network configuration and vulnerability information. It also needs to be
pre-populated with a database of modeled exploits that could potentially be applied to a
network. So in this sense, the attack graph results are only as complete as the input
model.

The benefits of a modeling/simulation approach include the ability to easily change
the model for what-if analyses. But the modeling taxonomy needs to be carefully defined
to reflect the realities of the network attack environment, while keeping model
complexity manageable. That is, there is a tradeoff between model fidelity and model
complexity that we must balance.

Also, different analysis tasks may call for variations in model details. For example,
the level of detail needed for information operations support may differ from that needed
for patch management. Our TVA approach can accept general models in terms of exploit
preconditions/postconditions. The only requirement is to create a database of the
modeled exploits, and to create network models that match exploit conditions.

3.1.2 Network Security via TVA
Security is not a one-time single-point fix, but rather a continuous process, as

exemplified in the protect-detect-react life cycle. To protect from attacks, we take steps
to prevent them from succeeding. Still we must understand that not all attacks can be
averted in advance, and there must usually remain some residual vulnerability even after
reasonable protective measures have been applied.

 13

Indeed, the more important question is not the vulnerability itself but the magnitude
of damage in case of an incident. We rely on the detect phase to identify actual attack
instances. But the detection process needs to be tied to residual vulnerabilities, especially
ones that lie on paths to critical network resources.

Once attacks are detected, comprehensive capabilities are needed to react to them
based on vulnerability paths. We can thus reduce the impact of attacks through advance
planning, by knowing the paths of vulnerability through our networks, based on pre-
emptive analysis of network vulnerability scan results. To create such a proactive stance,
we need to transform raw data about network vulnerabilities into attack roadmaps that
help us prioritize and manage risks, maintain situational awareness, and plan for optimal
countermeasures.

TVA attack graphs support proactive network defenses across the entire protect-
detect-react life cycle. This includes identifying critical vulnerabilities, computing key
security metrics, guiding the configuration of intrusion detection systems, correlating and
prioritizing intrusion alarms, reducing false alarms, and planning optimal attack
responses.

Attack graphs provide a powerful framework for proactive network defenses. A
variety of analytical techniques are available for attack graphs, providing context for
informed risk assessment. Attack graphs pinpoint critical vulnerabilities and form the
basis for optimal network hardening.

Through sophisticated visualization techniques, purely graph-based as well as geo-
spatial, we can interactively explore attack graphs. Our visualizations are designed to
effectively manage graph complexity without getting overwhelmed with details. Our
attack graphs also support a number of key metrics that concisely quantify the overall
state of network security.

TVA automates the defense of networks against multi-step attacks. TVA attack
graphs reveal the true scope of threats by mapping sequences of attacker exploits that can
penetrate a network. We can then use these attack graphs to recommend ways to address
the threat. This kind of automated support is critical; finding such solutions manually is
tedious and error prone, especially for larger networks.

One kind of recommendation is to harden the network at the attack source, i.e., the
first layer of defense. This option prevents all further attack penetration beyond the
source. This is shown in Figure 4.

 14

Harden

Figure 4. First-layer network hardening

Here, we use the same attack scenario, i.e., starting and ending points, as in Figure 29.
However, the network configuration model is changed slightly, with a resulting change in
the attack graph. In particular, the numbers of exploits between protection domains has
changed.

For first-layer defense for this network configuration, the recommendation is to block
the 20 exploits from Internet to Demilitarized Zone (DMZ). The idea here is not to
simply rely on preventing these 20 exploits for complete protection of the network.
Rather, we point out these critical first steps that give an attacker the attacker a foothold
in the network. Understanding all known attack paths, not just the first layer, provides
defense in depth. But we would certainly like to highlight the critical first layer.

Figure 5 shows a different kind of recommendation for network hardening, i.e.,
hardening the network at the attack goal at the last layer of defense. This option protects
the attack goal (critical network resource) from all sources of attack, regardless of their
origin. Here, as always, the assumption is that compromise of the victim (DMZ) does not
imply granting of legitimate access to a subsequent victim (database server). If that is the
case, such access is included as a potential attacker exploit.

Harden

Harden

Figure 5. Last-layer network hardening

 15

The attack graph for Figure 5 is the same as for Figure 4 (first-layer defense). For
last-layer defense in Figure 5, the recommendation is to block the 3 exploits from DMZ
to Databases plus the 28 exploits from Servers_1 to Databases, for a total of 31 exploits.
As for the first-layer defense, we are not to simply rely on preventing these last-layer
exploits for complete defense in depth. Rather, the idea is to highlight these direct
attacks against critical assets, which are reachable from anywhere the attacker may be.

Another kind of recommendation is to find the minimum number of blocked exploits
that break the paths from attack start to attack goal. In other words, we seek to break the
graph into two components that separate start from goal, minimizing the total number of
blocked exploits [10].

This is shown in Figure 6. For the minimum-cost defense, the recommendation is to
block the 3 exploits from DMZ to Databases plus the 7 exploits from DMZ to Servers_1,
for a total of 10 exploits. This is a savings of 10 blocked exploits in comparison to first-
layer hardening, and a savings of 21 blocked exploits in comparison to last-layer
hardening. As for first-layer and last-layer defenses, the idea is to highlight critical
vulnerabilities that break the attacker’s reach to the critical asset. After these are
addressed, the residual attack graph can be analyzed for further defense in depth.

Harden

Harden

Figure 6. Minimum-cost network hardening

One of the challenges in TVA is managing attack graph complexity. In early
formalisms, attack graph complexity is exponential [31][32][33][34] because paths are
explicitly enumerated, leading to combinatorial explosion. Under reasonable
assumptions attack graph analysis can be formulated as monotonic logic, making it
unnecessary to explicitly enumerate states, leading to polynomial rather than exponential
complexity [1][17][35]. Our protection domain abstraction reduces complexity further,
to linear within each domain [13], and complexity can be further reduced based on host
configuration regularities [36].

 16

Thus, while it is computationally feasible to generate attack graphs for reasonably
large networks, complex graphs can overwhelm an analyst. Rather than presenting attack
graph data in their raw form, we present views that aid in rapid understanding of overall
attack patterns. Employing a clustered graph framework, a clustered portion of the attack
graph provides a summarized view, while showing interactions with other clusters.
Arbitrarily large and complex attack graphs can be handled in this way, through multiple
levels of clustering.

Attack graphs show how network vulnerabilities can be combined to stage an attack,
providing a framework for much more precise and meaningful security metrics. Attack
graph metrics can help quantify risk associated with potential security breaches, guide
decisions about responding to attacks, and accurately measure overall network security.
Informed risk assessment requires such a quantitative approach.

Desirable properties of metrics include being consistently measurable, inexpensive to
collect, unambiguous, and having specific context. Metrics based on attack graphs have
all these properties. National Institute of Standards and Technology (NIST) outlines
processes for implementing security metrics [37]. The Common Vulnerability Scoring
System (CVSS) [38] provides a way of scoring vulnerabilities based on standard
measures. But in these cases, vulnerabilities are treated in isolation without considering
their interdependencies on a target network.

In contrast, attack graph metrics are holistic measures, taking into account patterns of
vulnerability paths across the network. These can also be tailored for specific attack
scenarios, including assumed threat origins and/or critical resources to protect. They
provide consistent measures over time, so that an organization can continually monitor
security posture through the course of network operation. They can also be used for
evaluating the relative security of planned network changes, so that risks can be assessed
and alternatives compared well in advance of actual deployment.

One basic metric might be the overall size (vertices and edges) of the attack graph.
For example, for a given attack scenario, the attack paths may constitute only a small
subset of the total network vulnerabilities. This could be for a given attack starting point
with the attack goal unconstrained, thus measuring the total “forward reach” of the
attacker. Or it could be for a given attack goal with attack start unconstrained, measuring
the “backward susceptibility” of a critical asset. Alternatively, it could be computed for
constrained start and constrained goal, measuring joint attack reachability/susceptibility.

While attack graph size provides a basic indicator, it does not fully quantify levels of
effort for defending against attacks. For example, the number of exploits in the first-layer
hardening recommendation quantifies the effort for blocking initial network penetration.
Similarly, the number of exploits in the last-layer recommendation quantifies the effort
for blocking final-step critical asset compromise. The minimum-effort recommendation
quantifies the overall least effort required for blocking the attacker from a critical asset.

Another idea is to normalize metrics by the size of the network, yielding a measure
that could be compared across networks of different sizes. We could also extend our
attack graph models to deal with uncertainties. For example, given that exploits each
have individual measures of likelihood, difficulty, etc., we could propagate these through
the attack graph, according to the logical implications of exploit interdependencies.

 17

This approach could derive an overall measure for the network, e.g., likelihood of
catastrophic compromise. Such a measure might then be included in more general
assessments of overall business risk. We could then rank risk-mitigation options in terms
of maximizing security and minimizing business cost.

This is illustrated in Figure 7. The network is scanned, providing input to the
computation of a TVA attack graph. The individual risk scores for each vulnerability in
the attack graph are assess, e.g., via CVSS. The structure of the attack graph implies a
particular logical form for the overall attack goal. We then propagate the risk scores
through the graph according to this logical structure. The result is a measure of overall
risk (e.g., likelihood of compromise) that we can rank for different network
configurations (attack graphs).

Mitigation
Options

Mitigation
Costs

Mitigation
Profits

Added
Cost

Added
Profit

Loss
Expectancy

Net
Benefit

()60.08.0 ≈

8.0

()72.09.0

1.0

()54.09.0 ≈

()72.09.0

()087.01.0 ≈

8.0

Network

Metrics

Risk Model

Scored Risks

Figure 7. Propagating risk scores through TVA attack graph

The kind of precise measurement provided by attack graphs can also help clarify
security requirements and guard against potentially misleading “rule of thumb”
assumptions. For example, suppose there is a network with many vulnerable services,
but those services are not exposed through firewalls. Then another network has fewer
vulnerable services, but they are all exposed through firewalls. Comparing attack graphs,
from outside the firewalls, the first network is more secure.

Or, making network host configurations more diverse, presumably to make the
attacker’s job more difficult, may not necessarily improve security. For example, this
may provide more paths leading to critical assets. By taking into account the diversity of
configurations in our model, our attack graph metrics give precise measures for analyzing
these kinds of situations.

 18

Attack graph analysis identifies critical vulnerability paths and provides strategies for
optimal protection of critical network assets. This enables us to make optimal decisions
about hardening the network in advance of attack. But we must also recognize that
because of operational constraints such as availability of patches and the need for
offering mission-critical services, residual vulnerability paths usually remain.

The knowledge provided by TVA enables us to plan in advance and maintain a
proactive security posture even in the face of attacks. For example, TVA attack graphs
provide the necessary context for deployment and fine tuning of intrusion detection
systems, for correlation and prioritization of intrusion alarms, and for attack response.

Knowing the paths of vulnerability through our network helps us prepare our defenses
and plan our responses. This is illustrated in Figure 8.

Intrusion Detection
Vulnerability ScansVulnerability Scans

Asset DiscoveryAsset Discovery

Known Threats

Attack Graph
Analysis

Network

Web LogsWeb Logs

Netflow DataNetflow Data

TCP Dump DataTCP Dump Data

System LogsSystem Logs

Detect

Protect

Security ManagementSecurity Management

What-If

Figure 8. TVA attack graphs for protection, detection, and correlation

3.2 Attack Graph Matrices
In this section, we give an overview of our general approach for applying adjacency

matrices and other specialized matrix analysis to cyber attack graphs. The remainder of
this section is organized as follows:

• Section 3.2.1: Describes how adjacency matrices can be created for
various types of cyber attack graphs.

• Section 3.2.2: Describes a matrix clustering algorithm that finds
homogenous groups of edges (rows/columns) in the attack graph
adjacency matrix.

 19

• Section 3.2.3: Describes how the attack graph adjacency matrix can be
transformed to represent multi-step attacks.

• Section 3.2.4: Describes how detected intrusions can be placed in the
context of attack graph reachability matrices for predicting attack origin
and impact.

3.2.1 Attack Graph Adjacency Matrices
Our approach begins with the creation of a network attack graph, through some

means, based on some representation of network attacks. Our approach is very general,
in that there are really no particular restrictions on the exact form of the attack graph for
our approach to apply.

For example, the graph could be based on hypothetical attacker exploits generated
from knowledge of vulnerabilities, network connectivity, etc., as in [2][3][4][5]
[15][16][17]. Or, the attack graph could be constructed from causal relationships among
intrusion detection system alarms, as in [14][18]. We can also handle intrusion alarms
placed within the context of vulnerability-based attack graphs, e.g., as in [12].

Attack graphs can be created with specified starting and goal points (to constrain the
graph to regions of interest), or with starting and goal points unspecified (e.g., for
intrusion alarm correlation). There are dual attack graph representations [13] in which
either network security conditions or attacker exploits could be the graph vertices, with
the other being the graph edges. Also, subgraphs of the attack graph can be aggregated to
single vertices. Our approach handles all of these situations.

Consider a simple example in where there is a set of network machines having no
connectivity limitations among them, so that the attack graph is fully connected. For
such a set of 200 machines, with just one vulnerable network service on each machine
(vertex), there are 2002 = 40,000 exploits (edges) that must be displayed.

If such a graph were drawn with lines for edges, it would not be apparent from the
resulting mass of lines that this indeed represents a fully connected attack graph. We
therefore employ an adjacency matrix visualization, in which each attack graph edge is
represented by a matrix element rather than by a drawn line. In our example of 200 fully
connected machines each having one vulnerable service, the attack graph adjacency
matrix would simply be a 200-square matrix of all ones.

Formally, for n vertices in the attack graph, the adjacency matrix A is an n × n matrix
where element ai,j of A indicates the presence of an edge from vertex i to vertex j. In
attack graphs, it is possible that there are multiple edges between a pair of vertices
(mathematically, a multigraph), such as multiple conditions between a pair of exploits or
multiple exploits between a pair of machines.

In such cases, we can either record the actual number of edges, or simply record the
presence (0, 1) of at least one edge. The adjacency matrix records only the presence of
an edge, and not its semantics, which can be considered in follow-on analysis.

 20

As a data structure, an alternative to adjacency matrices are adjacency lists. For each
vertex in the graph, the adjacency list keeps all other vertices to which it has an edge.
Thus, adjacency lists use no space to record edges that are not present. There are
tradeoffs (in both space and time) between adjacency matrices and lists, depending on
graph sparseness and the particular operations required. Our implementation uses Matlab
[39] sparse matrices (adjacency lists) for internal computations, reserving the adjacency
matrix representation for visual displays.

3.2.2 Adjacency Matrix Clustering
The rows and columns of an adjacency matrix could be placed in any order, without

affecting the structure of the attack graph the matrix represents. But orderings that
capture regularities in graph structure are clearly desirable. In particular, we seek
orderings that tend to cluster graph vertices (adjacency matrix rows and columns) by
common edges (non-zero matrix elements).

This allows us to treat such clusters of common edges as a single unit as we analyze
the attack graph (adjacency matrix). In some cases, there might be network attributes that
allow us to order adjacency matrix rows and columns into clusters of common attack
graph edges. For example, we might sort machine vertices according to IP address, so
that machines in the same subnet appear in consecutive rows and columns of the
adjacency matrix. Unrestricted connectivity within each subnet might then cause fully-
connected (all ones) blocks of elements on the main diagonal.

In general, we cannot rely on a priori ordering of rows and columns to place the
adjacency matrix into meaningful clusters. We therefore apply a particular matrix
clustering algorithm [23] that is designed to form homogeneous rectangular blocks of
matrix elements (row and column intersections). Here, homogeneity means that within a
block, there is a similar pattern of attack graph edges (adjacency matrix elements). This
clustering algorithm requires no user intervention, has no parameters that need tuning,
and scales linearly with problem size.

This algorithm finds the number of row and column clusters, along with the
assignment of rows and columns to those clusters, such that the clusters form regions of
high and low densities. Numbers of clusters and cluster assignments provide an
information-theoretic measure of cluster optimality.

The matrix clustering algorithm is based on ideas from data compression, including
the Minimum Description Length principle [40], in which regularity in the data can be
used to compress it (describe it in fewer symbols). Intuitively, one can say that the more
we compress the data, the better we understand it, in the sense that we have better
captured its regularities.

 21

3.2.3 Matrix Operations for Multi-Step Attacks
The adjacency matrix shows the presence of each edge in a network attack graph.

Taken directly, the adjacency matrix shows every possible single-step attack. In other
words, the adjacency matrix shows attacker reachability within one attack step. As we
describe later, we can navigate the adjacency matrix by iteratively matching rows and
columns to follow multiple attack steps. We can also raise the adjacency matrix to higher
powers, which shows multi-step attacker reachability at a glance.

For a square (n × n) adjacency matrix A and a positive integer p, then Ap is A raised to
the power p: In other words,

 (1)

Here, matrix multiplication is in the usual sense. For example, an element of A2 is

 ∑ ⋅=⎟
⎠
⎞⎜

⎝
⎛

k kjaika
ij

A2 . (2)

In Equation (2), the matching of rows and columns in matrix multiplication (index k)
corresponds to matching steps of an attack graph. The summation over k counts the
numbers of matching steps. Thus, each element of A2 gives the number of 2-step attacks
between the corresponding pair (row and column) of attack graph vertices. Similarly, A3
gives all 3-step attacks, A4 gives all 4-step attacks, etc.

For raising a (square) matrix to an arbitrary power, we can improve upon naïve
iterative multiplication. This involves a spectral decomposition [41] of A. An n × n
matrix always has n eigenvalues. These form an n × n diagonal matrix D and a
corresponding matrix of nonzero columns V that satisfies the eigenvalue equation AV =
VD. If the n eigenvalues are distinct, then V is invertible, so that we can decompose the
original matrix A as

 1−=VDVA . (3)

Here D is a diagonal matrix formed from the eigenvalues of A, and the columns of V are
the corresponding eigenvectors of V.

It is then straightforward to prove that Ap = VDpV-1, via V-1V = I. This product VDpV-1
is easy to compute since Dp is just the diagonal matrix with entries equal to the pth power
of those of D, i.e.,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

p
n

p

p

p

d

d
d

D

00
0

0
00

2

1

L

OM

M

L

. (4)

AAAA p L=
p times

.

 22

In our matrix multiplication, if we calculate the Boolean product rather than the
numeric product, the resulting Ap simply tells us whether there is at least one p-step attack
from one vertex to another, rather than the actual number of such paths. Thus, the
Boolean sum

 132 −∨∨∨∨ nAAAA K (5)

tells us, for each pair of vertices (matrix elements), whether the attacker can reach one
attack graph vertex to another over all possible numbers of steps.

The Boolean sum in Equation (5) is known as the transitive closure of A. The
classical Floyd-Warshall algorithm computes transitive closure in O(n3), although there
are improved algorithms, e.g., [42], that come closer to O(n2).

Frequently in practice, elements of Ap monotonically increase as p increases. In such
cases, we can distinguish the minimum number of steps required to reach each pair of
attack graph vertices by computing the multi-step reachability matrix

 132 −++++ nAAAA K . (6)

Here the matrix multiplication is Boolean and the summation is simply arithmetic. Since
elements of Ap increase monotonically from zero to one (under Boolean matrix
multiplication), the elements of the reachability matrix in Equation (6) give the minimum
number of steps required to reach one attack graph vertex to another.

A fundamental property of attack graphs is how well connected the various graph
vertices (exploits, machines, etc.) are. For example, attack graphs that have few or weak
(large multi-step only) connections are easier to defend against, and those with more and
stronger connections are more difficult to defend against.

Knowing the numbers and depths of attacks (e.g., through higher powers of the
adjacency matrix) helps us understand large-scale tendencies across the network.
Individual vertices’ roles within the attack graph are also described by their numbers and
depths of attacks to other vertices. For example, vertices (e.g., machines) with many
attack paths through them might bear closer scrutiny. Or, we can identify critical
“bottleneck” vertices in the attack graph.

3.2.4 Attack Prediction
In our approach, we place detected intrusions within the context of predictive attack

graphs based on known vulnerability paths. We first compute a vulnerability-based
attack graph from knowledge of the network configuration, attacker exploits, etc. We
then form the adjacency matrix A for the attack graph, perform clustering on A. We then
compute either the transitive closure of A, or the multi-step reachability matrix in
Equation (6).

 23

Then, when an intrusion alarm is generated, if we can associate it with an edge (e.g.,
exploit) in the attack graph, we can thus associate it with the corresponding element of
any of the following:

• The adjacency matrix A (for single-step reachability).
• The multi-step reachability matrix in Equation (6) (for multi-step

reachability).
• The transitive closure of A (for all-step reachability).

From this, we can immediately categorize alerts based on the numbers of associated
attack steps. For example, if an alarm occurs within a zero-valued region of the transitive
closure, we might conclude it is a false alarm, i.e., we know it is not possible according to
the attack graph.

Or, if an alarm occurs within a single-step region of the reachability matrix, we know
that it is indeed one of the single-step attacks in the attack graph. Somewhere in between,
if an alarm occurs in a p-step region, we know the attack graph predicts that it takes a
minimum of p steps to achieve such an attack.

By associating intrusion alarms with a reachability graph, we can also predict the
origin and impact of attacks. That is, once we place intrusion alarm on one of the
vulnerability-based reachability graphs, we can navigate the graph to do attack
prediction.

The idea is to project to the main diagonal of the graph, in which row and column
indices are equal. Vertical projection (along a column) leads to attack step(s) in the
forward direction. That is, when one projects along a column to the main diagonal, the
resulting row gives the possible steps forward in the attack.

We can predict attack origin and impact either (1) one step away, (2) multiple steps
away with the number of steps distinguished, or (3) over all steps combined. Here are
those 3 possibilities:

• When using the adjacency matrix A, non-zero elements along the
projected row show all possible single steps forward. Projection also
can be done iteratively, to follow step-by-step (one at a time) in the
attack.

• When using the multi-step reachability matrix in Equation (6), the
projected row shows the minimum number of subsequent steps needed
to reach another vertex. We can also iteratively project, either
choosing single-step elements only, or “skipping” steps by choosing
multi-step elements.

• When using the transitive closure, the projected row shows whether a
particular vertex can be subsequently reached in any number of steps.
Here, iterative projection is not necessary, since transitive closure
shows reachability over all steps.

We see that projection along a column of a reachability matrix predicts the impact
(forward steps) of an attack. Correspondingly, we can project along a row (as opposed to
a column) of such a matrix to predict attack origin (backward steps).

 24

In this case, when one projects along a row to the main diagonal, the resulting column
gives the possible steps backward in the attack. As before, we can predict attack origin
using either the adjacency matrix, the multi-step reachability matrix, or the transitive
closure matrix. Just as for forward projection, this gives either single-step reachability,
multi-step reachability, or all-step reachability, but this time in a backward direction for
predicting attack origin.

3.3 Optimal Intrusion Sensor Placement
This section describes the optimal placement of intrusion detection system sensors

and the prioritization of intrusion alerts using attack graphs. In this approach, we begin
by predicting all possible ways of penetrating a network to reach critical assets. The set
of all such paths through the network constitutes an attack graph, which we aggregate
according to underlying network regularities, reducing the complexity of analysis.

We then place intrusion detection sensors to cover the attack graph, using the fewest
number of sensors. This minimizes the cost of sensors, including effort of deploying,
configuring, and maintaining them, while maintaining complete coverage of potential
attack paths.

The remainder of this section is organized as follows:

• Section 3.3.1: Provides motivation and states the optimal sensor-
placement problem.

• Section 3.3.2: Gives an overview of our novel approach to optimal sensor
placement via attack graphs.

• Section 3.3.3: Describes how our attack graphs provide the constraints
sufficient sensor coverage.

3.3.1 Statement of Problem
A variety of challenges make it inherently difficult to secure computer networks

against attack. Vulnerabilities in software design, implementation, and configuration are
commonplace, and even the Internet itself lacks security as an original design goal. Once
a machine is connected to a network, its security concerns become highly dependent on
vulnerabilities across the network. Attackers can use vulnerable machines as stepping
stones to penetrate through a network and compromise critical systems.

In traditional network defense, intrusion detection sensors are placed at network
perimeters, and configured to detect every attempt at intrusion. But if an attacker
manages to avoid detection at the perimeter, and gain a toehold into the network, attack
traffic on the internal network is unseen at the perimeter. Also, in today’s highly
distributed grid computing, network boundaries are no longer clear.

 25

Organizations have a desire to detect malicious traffic throughout their network, but
may have limited resources for intrusion detection sensor deployment. Moreover,
intrusion detection systems usually report all potentially malicious traffic, without regard
to the actual network configuration, vulnerabilities, and mission impact. Given large
volumes of network traffic, intrusion detection systems with even small error rates can
overwhelm operators with false alarms. Even when true intrusions are detected, the
actual mission threat is often unclear, and operators are unsure as to what actions they
should take.

By knowing the paths of vulnerability through our networks, we can reduce the
impact of attacks. Traditional tools for network vulnerability assessment simply scan
individual machines on a network and report their known vulnerabilities. They give no
clues as to how attackers might exploit combinations of vulnerabilities among multiple
hosts to advance an attack on a network. It remains a labor-intensive and error-prone
exercise for “connecting the dots” to predict vulnerability paths, and the number of
possible vulnerability combinations to consider can be overwhelming.

To address these weaknesses, we focus on protecting the network assets that are
mission-critical. We model the network configuration, including topology, connectivity
limiting devices such as firewalls, vulnerable services, etc. We then match the network
configuration to known attacker exploits, simulating attack penetration through the
network and predicting attack paths leading to compromise of mission-critical assets.

The resulting set of all possible attack paths (organized as an attack graph) is a
predictive attack roadmap. The TVA attack graph assesses the true vulnerability of
critical network resources, and automates the traditionally labor-intensive analysis
process. TVA also encourages easy “what-if” analyses of candidate network
configuration changes, and provides optimal network-hardening recommendations that
require minimal changes to the network.

Even after protective measures have been applied across the network, some residual
vulnerability usually remains. In such cases, TVA attack graphs can reduce the impact of
attacks. The attack graph guides the placement of intrusion detection sensors across the
network to cover known paths of vulnerability. In this way, all potentially malicious
activity on critical paths is monitored.

Conversely, no sensors are needed for monitoring traffic that does not lie on critical
paths, helping to reduce costs and operator overload. In particular, our approach places
sensors to cover all attack paths to critical assets, using the fewest number of deployed
sensors.

Further, through the predictive power of TVA attack graphs, we prioritize intrusion
alerts based on the level of threat they represent to critical assets. For example, we can
give lower priority to alerts that lie outside critical attack paths. Particularly severe
threats are those seen as coordinated steps as an attacker incrementally advances through
the network, especially if only a short distance from mission-critical assets.

 26

The attack graph also provides the context needed for responding to an attack. When
an operator has strong evidence (e.g., multiple coordinated steps) of an intrusion, and
knows the next network vulnerabilities the attacker could exploit next, he has confidence
in taking the appropriate (and highly focused) actions for preventing further penetration.

3.3.2 Overview of Approach
Because attackers can exploit vulnerabilities as stepping stones to new vantage points,

considering network components and vulnerabilities in isolation is clearly insufficient.
Our approach discovers multi-step attacks, modeling network penetration as real
attackers might do. We compute an attack graph showing all possible paths through a
network. We use attack graphs to place intrusion detection sensors that cover these
predicted paths, and use this context for prioritizing intrusion alerts. This is illustrated in
Figure 9.

Exploits
Attack

Prediction

Attack
Graph

Assets Threat

Sensor
Placement

Sensors
Attack

Response

Alarm
Prioritization

Network

Scans

Figure 9. Intrusion detection sensor placement via attack graphs

In the TVA approach, a network is scanned to catalog hosts, their operating systems,
application programs, and vulnerable network services. We also capture network
connectivity, including the effects of connectivity-limiting devices such as firewalls and
router access control lists. With the resulting network configuration, a database of
modeled attacker exploits, and a specification of threat origin and critical network assets,
we compute the attack graph comprising all known attacks through the network.

 27

In particular, from network scans TVA builds a model of the network configuration.
This configuration is then subjected to simulated attacks from our TVA exploit database.
Exploits are modeled in terms of preconditions and postconditions. When all
preconditions for an exploit are met (e.g., from the initial network state), the exploit is
successful, and its postconditions are induced. These postconditions in turn provide
potential preconditions for other exploits.

The resulting set of exploits, joined by their precondition/postcondition dependencies,
forms the attack graph predicting all possible attacks through the network. We integrate
with popular network scanning tools (e.g., Nessus, Retina, and FoundScan) to automate
the network model building process. We also continually monitor sources of reported
vulnerabilities, keeping the TVA exploit database current with respect to emerging
threats.

TVA attack graphs can follow pre-defined attack scenarios, e.g., based on assumed
threat sources (attack starting points) or critical assets to be protected (attack ending
points). We can then constrain the attack graph with respect to these starting and/or
ending points. This allows an organization to focus on realistic threat sources, while
insuring the safety of critical assets.

Algorithmically, these constraints are applied in two passes. The forward pass
traverses the graph in a forward direction from the starting point(s), and the backward
pass traverses the graph in a backward direction from the ending point(s). These passes
can be applied independently, to constrain the graph in one direction or the other, or
combined as a joint constraint.

In their low-level form, TVA attack graphs for realistic sized networks can be large
and complex. Our approach aggregates attack graphs at various levels of detail, e.g.,
host, subnet, etc. We then apply analysis to the appropriate level of graph abstraction, to
help keep complexity manageable.

In fact, we aggregate elements of the network model in advance, so that attack graph
computations are more efficient. Our aggregated structures retain all underlying low-
level information, so that no information is lost compared to the full low-level attack
graph. This information is also available for interactive drilldown in attack graph
visualization.

Once we create the TVA attack graph predicting all possible paths through the
network, we can formulate optimal network defenses. Of course, the first step is to
reduce risk by hardening the network in advance of attack. Still, given requirements for
mission-critical services, availability of patches, etc., some residual vulnerability paths
often remain on a network. The next step is to deploy intrusion detection sensors to
monitor traffic and detect potentially malicious activity along these paths.

Our placement of intrusion detection sensors is optimal, in the sense that a network’s
attack graph is entirely covered, using the fewest required number of sensors. This
sensor placement problem is an instance of the classical set cover problem [43], which is
NP-hard. To solve this problem, we apply a polynomial-time greedy heuristic that is
known to give good solutions in practice.

 28

Once sensors are deployed and the intrusion detection system starts generating alerts,
our attack graphs provide the necessary context for correlating and prioritizing those
alerts. For example, if two alerts lie in a sequence along the attack graph, there is strong
potential that these are multiple steps along a single attack, and should be taken very
seriously.

Further, we can predict the minimum number of future steps before the attacker
reaches a given critical network asset, and can prioritize the alert accordingly. Based on
our knowledge of possible attack paths, we can formulate optimal responses for stopping
any further progress by the attacker.

3.3.3 Predictive Attack Graphs
Figure 10 shows a small network, which we have implemented in a laboratory testbed

for demonstrating the automated generation of attack graphs via our TVA tool. In this
network, the purpose of the firewall is to protect the internal network from outside attack.
It is configured to allow only HyperText Transfer Protocol (HTTP) traffic to the internal
web server, and all other traffic initiated from the outside is blocked.

Only http traffic
to Web Server
allowed

Figure 10. Small testbed network for demonstrating attack graph analysis

The web server is running a vulnerable version of Microsoft Internet Information
Server (IIS), which is reachable from the outside through the firewall. The mail server
has vulnerable software deployed as well, although the firewall protects it from direct
attack from the outside. The question we pose is whether there are paths that allow the
outside attacker to compromise the mail server.

To capture the network configuration for Figure 10, we use the output of the open-
source Nessus vulnerability scanner. First, we scan from the outside through the firewall,
targeting the internal network. We then scan the internal network behind the firewall, to
see the attacker’s options once he gains entry to the internal network.

When then merge the resulting scan results into an overall TVA network model. This
model then serves as the initial conditions for a TVA attack simulation, in which we
apply a database of simulated exploits derived from Nessus vulnerabilities.

 29

The TVA attack simulation begins on the outside machine, and ends with the
compromise of the mail server. Figure 11 shows the resulting attack graph. Yellow
boxes are initial network conditions, and blue ovals are attacker exploits. Here, a
condition of the form nessus.xxxxx(from, to) represents the fact that the “from” machine
can connect to a service on the “to” machine, and that this service has a particular xxxxx
vulnerability detected by Nessus.

Figure 11. Attack graph for testbed network in Figure 10

So for example, initial condition nessus.10671(attack, web) means that the web server
has Nessus vulnerability number 10671 (IIS Remote Command Execution) (also
identified as CVE-2001-0333 and CVE-2001-0507 under MITRE’s Common
Vulnerabilities and Exposures), and that the attack machine can connect to that
vulnerable service on the web server.

In Figure 11, network conditions of the form execute(machine) represent the
attacker’s ability to execute arbitrary code on a particular machine. The attacker can
initially execute code on his own machine, as indicated by the execute(attack) in a yellow
box. A condition such as execute(web) is induced as a postcondition of one or more
exploits (in this case, by 3 different exploits), so it does not appear in a yellow box (i.e.,
not an initial condition). Conditions defined as overall attack goals (in this case,
executing code with superuser privilege level on the mail server) are shown in red
octagons.

 30

So in Figure 11, the iis_decode_bug(attack, web) exploit requires 2 preconditions to
be met, i.e., execute(attack) and nessus.10671(attack, web). Since these are part of the
initial network conditions, this exploit is successful, and yields the postcondition
execute(web). i.e., the attacker can now execute code on the web server. Two other
exploits (iis_dir_traversal and msadcs_dll) are also possible from the attack machine
against the web server.

Once the attacker can execute code on the web server, four subsequent exploits are
possible, each from the web server to the mail server. Two of those (ntalk_detect and
wu_ftpd_site_exec) give the ability to execute code as superuser on the mail server, i.e.,
the goal has been reached. The other two (telnet and rlogin) give the ability to execute
code, but without superuser privilege level. Then two subsequent exploits
(wu_ftpd_site_exec and ntalk_detect) elevate attacker privilege to superuser on the mail
server.

The attack graph allows us to reason about network defense strategies. For example,
in Figure 11, removing Nessus vulnerabilities 10671, 10537, and 10357 on the web
server would stop the attack. This is shown as Solution 1 in Figure 12. Or, we can
conclude that fixing mail server vulnerabilities 10280 and 10205 are essentially irrelevant
hardening options, i.e., 10452 and 10168 would need to be fixed anyway, and together
will successfully prevent the attack (assuming it is sufficient to block the attacker from
gaining superuser privilege). This is shown as Solution 2 in Figure 12.

Solution 2 Solution 2

Solution 2 Solution 2

Solution 1 Solution 1Solution 1

Figure 12. Recommended solutions for hardening testbed network

 31

Of course in practice, network attack graphs are usually much more complex than
Figure 2. For example, Figure 13 is an attack graph generated by our TVA tool for an
operational network of only 17 machines, across 4 subnets, with between 2 and 6
exploitable vulnerabilities per machine.

Figure 13. More complex attack graph for 17-machine operational network

Despite the complex relationships in this graph, you can still see dependency patterns
among exploits. There are densely connected parts of the graph, connected by relatively
sparse sets of edges. These patterns are in fact a consequence of regularities in the
network configuration, of which we can take advantage for summarizing attack patterns.

These regularities are a direct reflection of how the network is organized, and are a
natural choice for aggregating the attack graph into multiple levels of abstraction. This is
illustrated in Figure 14.

 32

8/29/2007

(a)
(b)

(c)
(d)

Figure 14. Aggregation of complex attack graph over multiple levels of detail

Figure 14(a) is the original attack graph, showing all details. In Figure 14(b), the
graph has been aggregated to the level of machines and sets of exploits between them.
For example, the circled region contains 4 machines, with exploit sets between each pair
of them.

In other words, all the network conditions for a particular machine in Figure 14(a) are
collapsed to a single “machine” vertex in Figure 14(b), and all the exploits between a
particular pair of machines (in each direction if applicable) are collapsed to a single
machine-to-machine exploit set in Figure 14(b). Figure 14(b) thus represents a summary
of Figure 14(a), providing more of an overview of the attack.

In Figure 14(b), the circled portion of the attack graph is fully connected, i.e., this
sub-graph forms a clique. This is because these machines are in the same subnet
(broadcast domain), so that they have unrestricted access to one another’s vulnerable
services. We can incorporate this knowledge of the network structure when building the
input network model.

Within such a fully connected sub-graph, it is sufficient to represent only those
exploits to which a machine is vulnerable, since all machines in that sub-graph can
exploit those vulnerabilities. We call such a set of machines a protection domain [8],
which forms a natural level of aggregation, as shown in Figure 14(c). Using this
representation, graph size scales linearly within a protection domain (and remains
quadratic across domains).

 33

To reduce analysis complexity even further, we can aggregate machines in a
protection domain to a single graph vertex, as shown in Figure 14(d). Here, we also
aggregate the machine exploit sets to a single set between each pair of domains.
Complexity still scales quadratically, but now as a function of the number of protection
domains rather than the number of machines, thus greatly reducing complexity.

With this high-level view of the attack graph, we can very efficiently reason about
network defense strategies. For example, from Figure 14(d), we immediately conclude
that preventing the 2 exploits into Subnet 1 will prevent the attack. Or, if that is not
possible, a second choice is to prevent the 2 exploits from Subnet 1 to Subnet 2, and the 2
exploits from Subnet 1 to Subnet 3. Other options are possible, though they involve
fixing a greater number of vulnerabilities, and allow deeper penetration by the attacker.

No information is lost in our aggregation of the network model and attack graph.
Indeed, it is entirely reversible, so that all the details of the low-level attack graph are
available. This is illustrated in Figure 15, which demonstrates more advanced
visualization capabilities of our TVA tool, for an 8-machine testbed network. Here, a
variety of levels of detail are shown in a single view of the attack graph. With the
interactive visualization capabilities provided by our TVA tool, the analyst can start with
a high-level overview of the attack, and drill down as needed for particular attack details.

Figure 15. TVA tool attack graph visualization for 8-machine testbed network

 34

In Figure 15, there are exploits from the outside, to the DMZ web server (one exploit)
and to the DMZ mail server (2 exploits). Once inside the DMZ, the attacker can exploit
the web server in 41 different ways, and exploit the mail server in 15 different ways.
Once the DMZ mail server is compromised, the attack can proceed from there to the mail
server in the Server Local Area Network (LAN), via 2 different exploits.

Inside the Server LAN, the mail server can be compromised 160 different ways, and
the web server can be compromised 158 ways. Once the Server LAN web server is
compromised, the attacker can launch a single exploit against the database server (in the
Database LAN), which is the defined goal of the attack. The visualization drilldown
shows the full details (preconditions and postconditions) for this exploit.

3.4 Security Metrics from Attack Graphs
Today’s information systems face sophisticated attackers who combine multiple

vulnerabilities to penetrate networks with devastating impact. The overall security across
a network cannot be determined by simply counting the number of vulnerabilities. To
accurately assess the security of networked systems, we must understand how
vulnerabilities can be combined to stage an attack.

The remainder of this section is organized as follows:

• Section 3.4.1: Gives an overview of our novel approach to network
security metrics based on attack graphs.

• Section 3.4.2: Describes our particular attack graph model for computing
security metrics.

• Section 3.4.3: Explains how we propagate individual vulnerability scores
through the attack graph.

3.4.1 Overview of Approach
Practitioners have traditionally taken a binary view of information security, leading to

endless reassessments, disagreement, and gridlock. In this view, the system is either
secure or it is not secure. The reality is that in any complex system, there will be
elements with differing degrees of integrity, value, or exposure to threats. Decision
makers in diverse areas of business and engineering use metrics for determining whether
a projected return on investment justifies its costs. Providing security for networks is
such an investment.

We describe a powerful new metrics-based approach for managing security risks in
networked environments. Through cost-benefit analysis of security options, we answer
such questions as “How much security is enough?” or “How should we best invest our
limited security resources?” Our approach explicitly incorporates uncertainty, supports
varying levels of modeling detail, and provides measures of confidence. Based on results
of simulated incremental network penetration, we measure overall probability and cost of
cyber attacks. In this way we score candidate mitigation choices in terms of maximized
security and minimized costs, and make recommendations for optimal choices.

 35

We populate our models automatically from network scans and threat-management
services. The data in our model also include prior expert judgments of ease, availability,
and other measured dimensions of known vulnerabilities. We compute probabilistic
network attack models that account for potential threats, specific network vulnerabilities
and their interactions, and protection of mission-critical resources. In this way, we break
free from rigid binary modeling, to handle uncertainties such as relative likelihood of an
attack.

By increasing security spending, an organization can decrease the risk associated with
security breaches. Such tradeoff analysis requires quantitative rather than qualitative
models. Previous approaches to security metrics have focused on individual
vulnerabilities. Traditional metrics such as percentage of patched systems ignore
interactions among network vulnerabilities. Such metrics are limited, because
vulnerabilities in isolation lack context. Attackers can combine related vulnerabilities to
incrementally penetrate information systems, potentially leading to devastating
consequences.

We meet this challenge by capturing vulnerability interdependencies, measuring
security in the exact way that real attackers could penetrate information systems. We
analyze all attack paths through a system, providing a metric of overall system risk.
Through this metric, we analyze tradeoffs between security costs and security benefits.
Decision makers can therefore avoid investing too much in security measures that do not
pay off. Similarly, they can understand when investing too little for security leads to
unacceptable risk of disaster. Our metric is consistent, unambiguous, makes underlying
assumptions explicit, and provides context for understanding security risk alternatives.

3.4.2 Attack Graph Model
Attack graphs model how multiple vulnerabilities may be combined for an attack.

They represent system states using a collection of security-related conditions, such as the
existence of vulnerability on a particular host or the connectivity between different hosts.
Vulnerability exploitation is modeled as a transition between system states.

As an example, consider Figure 16. The left side shows a network configuration, and
the right side shows the attack graph for compromise of the database server by a
malicious workstation user. In the network configuration, the firewall is intended to help
protect the internal network. The internal file server offers File Transfer Protocol (FTP),
Secure SHell (SSH), and Remote SHell (RSH) services. The internal database server
offers ftp and rsh services. The firewall allows ftp, ssh, and rsh traffic from a user
workstation to both servers, and blocks all other traffic.

 36

Block
rsh

Block
ssh

Figure 16. Example network, attack graph, and network hardening choices

In the attack graph, attacker exploits are blue ovals, with edges for their preconditions
and postconditions. The numbers inside parentheses denote source and destination hosts.
Yellow boxes are initial network conditions, and the green triangle is the attacker’s initial
capability. Conditions induced by attacker exploits are plain text. The overall attack goal
is a red octagon. The figure also shows the impact of blocking ssh or rsh traffic (to the
fileserver) through the firewall, i.e., preventing certain exploits in the attack graph.

The graph includes these attack paths:

1. sshd_bof(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2)

2. ftp_rhosts(0,1) → rsh(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2)

3. ftp_rhosts(0,2) → rsh(0,2) → local_bof(2)

The first attack path starts with sshd_bof(0,1). This indicates a buffer overflow
exploit executed from Machine 0 (the workstation) against Machine 1 (the file server),
i.e., against its secure shell service. In a buffer overflow attack, a program is made to
erroneously store data beyond a fixed-length buffer, overwriting adjacent memory so that
it gets executed as code. The result of the sshd_bof(0,1) exploit is that the attacker can
execute arbitrary code on the file server.

 37

The ftp_rhosts(1,2) exploit is now possible, meaning that the attacker exploits a
particular ftp vulnerability to anonymously upload a list of trusted hosts from Machine 1
(the file server) to Machine 2 (the database server). The attacker can leverage this new
trust to remotely execute shell commands on the database server, without providing a
password, i.e., rsh(1,2). This exploit establishes attacker control over the database server,
as a user with regular privileges.

A local buffer overflow exploit is then possible on the database server, which runs in
the context of a privileged process. The result is that the attacker can execute code on the
database server with full privileges.

In practice, attack graphs are usually much more complex than Figure 16. We can
take advantage of certain regularities in graph structure to reduce complexity. An
important attack graph abstraction is the protection domain, representing parts of the
system with unrestricted access within the domain. An example is a managed subnet that
has no device such as firewall that restricts connectivity within the subnet.

Using a monotonicity argument [17], we can reduce attack graph complexity as
shown in Figure 17. We begin with a specified starting condition for the attack, and an
attack goal condition. Exploits that are possible in one step (distance d = 1) from the start
are then induced. From each of these first-layer exploits, a new layer (d = 2) is induced.

Attack
Graph

Cycle
Elimination

Acyclic
Attack
Graph

Figure 17. Removing attack graph cycles for fully-connected subnets

From a monotonicity standpoint, no backtracking is needed, so any possible edges
from d = 2 to d = 1 are omitted. This is iterated through each layer of possible exploits,
until the attack goal is reached. Then any exploits not backward reachable from the goal
are removed. The result is an acyclic attack graph, from start to goal, in which we can
propagate attack graph metrics.

 38

In our approach, causal relationships among exploits are based on a well-accepted
attack graph model. Attack graphs can be generated using our TVA attack graph tool.
For practical applications in building attack graph models, the TVA tool integrates with
vulnerability scanners including Nessus, Retina, and FoundScan. It also integrates with
the Sidewinder firewall to capture network connectivity to vulnerable host services, and
with Centennial Discovery asset inventory for gathering host configuration data.

The existence of our attack graph tool and knowledge base justifies the practicality of
our attack graph metrics. We adopt a straightforward approach towards the logical
relationships among exploits and their likelihoods. The information our system needs
already exists in various standards and commercial products (integrated through our TVA
tool), further supporting the practicality of our approach.

3.4.3 Propagating Vulnerability Scores
In practice, vulnerabilities often remain in a network, even after the vulnerabilities are

discovered. Vendors may be slow to release software patches, or deployment may be
delayed because of excessive cost. Attackers often leverage even correctly functioning
services to gain new capabilities. An organization will often trade security risk for
availability of services.

Our attack graph metric propagation quantifies this risk, based on strength that such
residual paths may eventually be realized by attackers. When a network is more secure,
attack strength is reduced and our attack graph metric is lower. Preventing exploits
removes certain paths, in turn reducing attack strength. When the attacker cannot reach
the goal, our metric is zero. When the attacker is completely assured of reaching the
goal, the metric is unity.

Our approach to computing an overall attack graph security metric relies on metrics
for individual system vulnerabilities as input. Given such a measure of risk of each
vulnerability as input, we then combine individual measures according to the logical
structure of the attack graph. In particular, conjunctive relationships (Boolean ANDs)
decrease attack strength, since multiple conditions are required. Disjunctive relationships
(ORs) reduce attack strength, since only one condition among multiple options is
required.

When metric values are combined conjunctively, the combined metric is lower than
either input. Intuitively, when both conditions must be met for an attack to succeed, more
is required from the attacker, and the overall system is more secure. Alternatively, when
values are combined disjunctively, the combined metric is higher than either input. In
this case, when only one condition must be met (from among multiple options) for an
attack to succeed, less is required from the attacker, and the overall system is less secure.

Our attack graphs encode both conjunctive and disjunctive attack relationships. For
example, in Figure 16, the attacker cannot upload the list of trusted hosts if the ftp
connection does not exist; neither can this happen if the attacker cannot use Machine 1 as
a normal user. Such a relationship is conjunctive. On the other hand, if a condition can
be satisfied in more than one way, it does not matter which path the attacker follows to
satisfy it, making the relationship disjunctive.

 39

To compute our attack graph metric, we propagate measures of exploited
vulnerabilities through the attack graph, from start to goal, according to conjunctive and
disjunctive dependencies. When one exploit must follow another in a path, this means
both are needed to eventually reach the goal (conjunction), so their measures are
multiplied. That is, given exploits E1 and E2, with corresponding normalized likelihoods
p(E1) and p(E2), the combined conjunctive likelihood is

 (7)

Such a conjunctive relationship also exists when postconditions of one or more exploits
are all required as preconditions for a given exploit.

When a choice of paths is possible, either is sufficient for reaching the goal
(disjunction). In this case, we have

 (8)

Such a disjunctive relationship exists when any one of a set of exploit postconditions
will satisfy an exploit precondition.

In general, paths coming into an exploit may form arbitrary logical expressions. In
such cases, we propagate exploit measures through corresponding conjunctive/disjunctive
combinations. Our model is agnostic with respect to input metrics, as long as units are
consistent. For input metrics representing attack likelihood, suitably normalized from
zero to one, the resulting attack graph metric is the overall likelihood that the attacker can
reach a given attack goal.

In our model, vulnerability scores in general could be Boolean, real-numbers, or
distributions of values. In the case of Boolean scores, a vulnerability is either certain to
exist (value of unity), or certain to not exist (value of zero), with a corresponding impact
on conjunctive/disjunctive combinations.

Real numbers measure attack strength (likelihood, exploitability, impact, etc.) against
an attack goal, in the given input metric units. Distributions are combined according to
the same conjunctive/disjunctive formulas, point-wise for each possible value of input
distributions. For example, when an input vulnerability has multiple possible metric
values, a range of high and low values could be used for defining a distribution as input
to our model.

One potential source of input vulnerability metrics for our model is CVSS [38].
CVSS is a widely adopted open framework for scoring the risk associated with
information system vulnerabilities, part of the U.S. government’s Security Content
Automation Protocol (SCAP) [44]. CVSS provides a consistent quantitative score for
each vulnerability, as well as underlying the qualitative vulnerability characteristics used
to generate each score. A comprehensive set of CVSS scores is provided in the National
Vulnerability Database (NVD) [45].

2ሻܧ or 1ܧሺ ൌ 1ሻܧሺ 2ሻܧሺ െ 2ሻܧሺ1ሻܧሺ

1ܧሺ and 2ሻܧ ൌ 2ሻܧሺ1ሻܧሺ

 40

The CVSS Score is a composite of three groups of metrics: Base, Temporal, and
Environmental. The Base Score represents the innate characteristics of each
vulnerability, in terms of exploitability and impact. The Temporal Score covers any
time-dependent vulnerability factors, including availability of exploit techniques/code,
existence of patches, and degree of confidence in the report. The Environmental Score
considers factors within a particular information system environment, such as collateral
damage and proportion of vulnerable systems.

On the commercial front, one potential source of individual vulnerability risk scores
as input to our model is the DeepSight Threat Management System [49]. DeepSight
covers 18,000 distinct versions of 4,200 products from 2,200 vendors, based on 150
authoritative sources, at an average rate of 50 new vulnerabilities per week. It includes
risk scores in the areas of urgency, severity, impact, and ease of exploitation, as shown in
Figure 18.

Figure 18. DeepSight vulnerability scoring

DeepSight reports scope of access (remote/local) required for exploiting a
vulnerability, as well as authentication needed by the attacker. It also reports on
availability of software needed by the attacker. An Impact sub-score indicates the degree
of compromise against the system. A Severity score combines Impact, Availability,
Authentication, and Remote. Severity is then combined with indicators of ease of
exploitation and report credibility, for an overall Urgency rating for each vulnerability.

Such reported vulnerability risk indicators can be useful as inputs to our attack graph
metrics model. Our ongoing research includes understand the best ways that component
values of such vulnerability scoring systems are best applied within the model.

However, it is important to stress again that the existing repositories of vulnerability
data give scores for individual vulnerabilities alone. This says nothing about
relationships among vulnerabilities that could be leveraged by an attacker. Our attack
graph metrics propagate these individual vulnerability scores, combining them according
to the logical relationships in the attack graph. The result is a measure of risk to the
information system as a whole, rather than large numbers of disjointed measures for
individual vulnerabilities.

 41

4. RESULTS AND DISCUSSION

In this section, we describe the results of the methods, assumptions, and procedures
carried out under this project, and discuss implications for network security. The
remainder of this section is organized as follows:

• Section 4.1: Describes the building of network attack models, and
generation of all possible network attack paths.

• Section 4.2: Describes correlation, prediction, and hypothesizing about
network attacks via attack graph adjacency matrices.

• Section 4.3: Describes using predicted vulnerability paths for placing
intrusion detection sensors, and prioritizing resulting intrusion alerts.

• Section 4.4: Describes the extraction of metrics from attack graphs that
measure overall network security.

• Section 4.5: Describes results of independent testing and evaluation of
our TVA tool.

• Section 4.6: Describes extensions to our TVA tool in the area of network
model population, based on feedback from evaluations.

• Section 4.7: Summarizes key events through the course of this project.

4.1 Attack Modeling and Simulation
TVA decomposes attack graph generation into two phases: capturing an input

network attack model, and using the model to simulate multi-step network penetration.
The attack model represents the network configuration and potential attacker exploits. In
attack simulation, the input model is analyzed to form an attack graph of causally
interdependent exploits, according to user-specified constraints.

In TVA, the network attack model includes aspects of the network configuration
relevant to attack penetration, as well as a set of potential attacker exploits that match
attributes of the configuration. The TVA approach can apply to many different types of
attack models, even non-cyber models, as long as a common schema is employed across
the model.

Figure 19 is an example of one such schema for TVA network models. This schema
simply shows the hierarchical relationships among model elements, i.e., a parent element
“contains” its children. For clarity, the various attributes of the model elements are not
shown, such as “name” attributes for machines and domains.

 42

Figure 19. Example schema for TVA network models

In this model schema, a network is comprised of machines, and/or machines
organized into protection domains. Protection domains capture the idea that the set of
machines in a domain implicitly have unrestricted access to one another’s vulnerable
services. This abstraction is a scalable alternative to having a completely connected sub-
graph within the attack graph. The domain reference allows for domains within domains,
i.e., sub-domains.

A machine includes sub-elements and attributes relevant for modeling network attack
penetration (exploits). This includes operating system (an attribute of machine, not
shown), connections to vulnerable services on other machines, sets of machines that are
trusted, application programs on a machine, groups to which the machine belongs such as
Windows New Technology (NT) domains, and user-defined generic attributes. A harden
element defines the hardening of a vulnerability, i.e., exploitation of a given vulnerability
on a given machine is omitted from the attack graph.

A connection describes how a machine connects to potentially vulnerable services
across the network, to ports on other machines, or to its own ports. This mirrors the
Transmission Control Protocol/Internet Protocol (TCP/IP) reference model, in which a
layered connectivity structure represents the various network architectures and
protocols [16]. A service connection indicates a running service on a destination
machine, to which a source machine can connect.

 43

Each connection is composed of a service or application type at the appropriate
TCP/IP layer. For example, an HTTP connection specifies the web server name/version
at the transport layer. Link-layer connectivity models exploits against the Address
Resolution Protocol (ARP). This scopes attacks based on traffic sniffing, such as man-in-
the-middle attacks based on ARP poisoning. Application-layer connectivity models
exploits that rely on particular application configurations, trust relationships, or other
high-level details.

To keep pace with emerging threats, we must continually monitor sources of reported
vulnerabilities and add those to our database of modeled TVA exploits. We model an
attacker exploit in terms of preconditions and postconditions, for generic attacker and
victim machines, which are subsequently mapped to the target network. For
convenience, we map vulnerable network connections to known standard vulnerability
identifiers, such as Common Vulnerabilities and Exposures (CVE) [46] and Bugtraq [47].

For populating models automatically, we map outputs of network scanning tools to
our network schema, which in turn provide preconditions for attack graph exploits.
Figure 20 shows example output data for Centennial Discovery [48], a network asset
management tool. A Discovery agent deployed on a network host machine reports
detailed host configuration data, i.e., product/manufacturer/version for each detected
software component.

Figure 20. Software item reported by asset management tool

The discovered host software information is then mapped to preconditions for
modeled exploits. Figure 21 shows preconditions and postconditions for exploitation of a
Bugtraq vulnerability, in terms of generic attacker/victim machines. The preconditions
are that the attacker can execute code on the attacking machine, and that there is a
vulnerable connection from attacker to victim, identified as Bugtraq 13232.

Figure 21. Example TVA modeled exploit

 44

Symantec DeepSight [49], a web service direct feed of the Bugtraq database, gives
the vulnerable software components for each reported vulnerability. Host configuration
data gathered from an asset management tool such as Discovery generally differs from
software descriptions in DeepSight.

We map discovered host software components to corresponding vulnerability records,
as in Figure 22. This shows a Discovery software description for Red Hat Fedora 4
mapped to Bugtraq vulnerability 13232. Symantec DeepSight has fields corresponding to
product/manufacturer/service that help with this mapping, by matching against Discovery
through regular expressions.

Figure 22. Software to vulnerability mapping

Figure 23 illustrates a resulting connection to vulnerable software (Bugtraq 13232) on
the host machine. This connection is built into the attack model by mapping the
discovered host software to a known vulnerability. Then, since a connection with
Bugtraq 13232 is a precondition for a particular exploit, this exploit may be included in
an attack graph for this network.

Figure 23. Network connection to vulnerable software

The Discovery asset management tool also defines protection domains, i.e., sets of
machines with full connectivity to one another’s vulnerable services. This is shown in
Figure 24. Each protection domain is identified, along with its member machines.

 45

Figure 24. Protection domains reported by asset management tool

The purpose of modeling the network configuration in TVA is to support
preconditions of modeled attacker exploits. As we have shown, we can map software
components to their reported vulnerabilities. An alternative is to run remote vulnerability
scans with tools such as Nessus, Retina [50], or FoundScan [51].

With this approach, the tool actively tests for the existence of host vulnerabilities.
The scanner reports a detected vulnerability explicitly, using a standard vulnerability
identifier, rather than reporting a particular software component. The corresponding
exploit precondition is written in terms of this vulnerability identifier.

An advantage of this approach is that we can capture the effects of connectivity-
limiting devices such as routers and firewalls. That is, we scan from different network
vantage points, targeting hosts through firewalls. The idea is that the scanner takes the
role of an attacker who has reached a certain point in the network. Thus we avoid
creating any special firewall exceptions for the scanning machine, as is typically done for
network vulnerability scans.

We then combine multiple scans from various network locations, building a complete
map of connectivity to vulnerable services throughout the network. Alternatively, we can
analyze firewall rules directly, adding the resulting vulnerable connections to the model.
In this case, only local subnet scans are needed.

In TVA attack simulation, modeled exploits are matched against the network
configuration model, forming an attack graph of causally interdependent exploits,
according to user-specified simulation constraints. Because the model is pre-populated
through network scans and vulnerability databases, all that remains is to define the attack
scenario: e.g., the starting point, the attack goal, and any what-if changes to the network
configuration.

 46

In other words, given an input model of network configuration and attacker exploits,
the exploits are instantiated for specific attacker/victim machine pairs in the network.
Preconditions for instantiated exploits are tested, and resulting postconditions are
matched with preconditions of other exploits. Figure 25 shows an exploit that has been
instantiated for particular machines in the network model. The attacker and victim
machines are no longer generic, i.e., they are defined for actual machines in the network.

Figure 25. Exploit instantiated for particular network

An attack graph also needs to follow the structure of protection domains defined for
the network. Within a protection domain, it is assumed that each machine has
unrestricted connectivity to vulnerabilities on all other machines in the domain. This
implies that the attack graph is completely connected with a domain.

Figure 26 shows example protection domains in attack graph data. Within each
domain, the set of all member machines is specified, as well as exploits relevant to each
domain. There are two possible types of exploits: within-domain and across-domain.
Within-domain exploits are accessible to machines within the protection domain only.
Thus it is sufficient to specify the victim machine only, since the attacking machines are
implicit. Across-domain exploits are those that attack machines in other domains. Those
exploits have both attacker and victim machines specified.

 47

Figure 26. Protection domains in attack graph data

In TVA, an attack graph can be completely unconstrained; i.e., all possible attack
paths regardless of assumed starting and ending points in the network. In such a
scenario, the source of the threat is assumed unknown and no particular critical network
assets are identified as specific attack goals. Figure 27 is an example of such an
unconstrained attack graph.

Figure 27. Unconstrained attack graph

 48

Another option is to constrain the attack graph to a given starting point (or points) for
the attack. The idea here is that the origin of the attack is assumed, and that only paths
that can be reached from the origin are to be included. Figure 28 is an example attack
graph in which the attack starting point (Internet) is specified.

Figure 28. Attack graph with constrained starting point

Yet another option is to constrain the attack graph so that it ends at a given ending
point (or points) serving as the attack goal. Here the idea is that certain critical network
assets are to be protected, and only attack paths that reach the critical assets are to be
included.

This option could be exercised alone, with an unconstrained starting point, or
combined with a constrained starting point. Figure 29 is an example of the latter, in
which the both the attack starting point (Internet) and attack ending point (Databases) are
specified.

Figure 29. Attack graph with constrained starting and ending points

 49

The motivation for constraining the attack graph is to reduce the scope of the graph to
expected attack scenarios, eliminating unnecessary clutter. For example, in Figure 29,
the outgoing edges from the Database protection domain are omitted. If the primary goal
is to protect the databases, then attacks away from there are less important, i.e., the
databases have already been compromised. Similarly, any attacks into the starting point
could be omitted, since the attacker already has control of it.

Attack paths particularly important to consider are the most direct ones, i.e., shortest
paths from attack start and/or attack goal. This is shown in Figure 30. Two scenarios are
considered. In Figure 30(a), the graph shows direct (shortest) paths from a given starting
point. In Figure 30(b), both the attack starting point and goal points are given. The graph
shows all direct paths from the starting point to the goal point.

(a) (b)

Figure 30. Attack graph constrained to direct attacks

Again, the idea is to identify the most critical paths and vulnerabilities, for pre-attack
network hardening as well as real-time alarm correlation, prediction, and response. Thus,
given the assumed threat sources, attacker behavior, and critical network resources, we
can tailor our analysis and defensive measures accordingly.

 50

Through sophisticated visualization, graphs can be rolled up or drilled down as the
graph is explored. Figure 31 shows a visualization interface for attack graph exploration
and analysis. The main view of the graph shows all possible paths through the network,
based on the user-defined attack scenario. In this view, the analyst can expand or
collapse graph clusters (protection domains) as desired, rearrange graph elements, and
select elements for further details. In the figure, two domains are expanded to show their
specific hosts and exploits between them.

Figure 31. Attack graph visualization interface

When an edge (set of exploits) is selected in the main view, details for the
corresponding exploits are provided. Each exploit record contains a number of relevant
fields describing the underlying vulnerability. A hierarchical (tree) directory of all attack
graph elements is provided, linked to other views. A view of the entire graph is
constantly maintained, providing overall context as the main view is rescaled or panned.
Automated recommendations for network hardening are provided, and specific hardening
actions taken are logged.

The visualization interface in Figure 31 provides an abstract, purely cyber-centric
view of network attacks. But in some situations, understanding the physical location of
possible attacks may be important, as for assessing mission impact. Given the locality of
network elements, we can embed the attack graph into a geo-spatial visualization.

This is illustrated in Figure 32. Here, elements of the attack graph are clustered
around major centers of the network, and graph edges show exploits between centers.
Interactive visualization capabilities can support drilldown for further details at a desired
level of resolution.

 51

We face sophisticated attackers who may combine multiple vulnerabilities to
penetrate networks with devastating impact. Assessment of attack risk must go well
beyond simply counting the number of vulnerabilities or vulnerable hosts. Metrics like
percentage of patched systems ignore interactions among network vulnerabilities; such
metrics are limited, because vulnerabilities in isolation lack context.

Figure 32. Geo-spatial attack graph user interface

The TVA attack graph is generated in advance of attack, based on proactive network
scans. After the network is hardened to the extent possible, any residual vulnerability
paths are used to correlate and prioritize alerts and log events (currently not
implemented). The attack graph provides the context needed for planning optimal
responses to attack.

TVA attacks graphs can also guide the optimal deployment and operation of intrusion
detection systems, tailored to our network and its critical assets. During deployment, we
must decide where to place detection sensors within the network.

Traditionally, intrusion detection sensors are placed at network perimeters, with the
idea of detecting attacks from the outside. But with this deployment, traffic in the
internal network is not monitored. If an attacker avoids detection at the perimeter,
subsequent attack traffic in the internal network is missed.

On the other hand, deploying sensors everywhere may be cost prohibitive and can
overwhelm analysts with floods of alerts. We should strike a balance, in which we cover
known residual vulnerability paths, using the fewest sensors necessary. TVA attack
graphs provide this balance.

 52

Consider the attack graph in Figure 33. Assume that this is the residual attack graph
after network hardening measures have been applied. So now the goal is to map this
attack graph to the network topology, and embed intrusion detection sensors in the
network to cover all the vulnerability paths (with the fewest sensors).

Figure 33. Residual attack graph

Figure 34 shows the topology for this network, overlaid by the attack paths from
Figure 33. This is a simplified network diagram, for illustrating the problem of sensor
placement for attack graph coverage. The diagram omits firewalls, which limit
connectivity as reflected by the attack graph. Also, the elements labeled Router A,
Router B, and Subnet n are abstract network devices that are capable of monitoring traffic
through them, e.g., via SPAN ports.

 53

DMZ

Servers_1

Databases

Servers_2

Figure 34. Intrusion detection sensor deployment

Analysis of the joint topology/attack representation in Figure 34 shows that detection
sensors placed at Router A and Router B cover all vulnerability paths, with the fewest
sensors. An alternative is to place sensors at Subnet 1, Subnet 4, and Subnet 8, which
also covers all paths but requires three (versus two) sensors.

In this network, deploying a sensor at the perimeter alone (Router B) will miss attack
traffic from Servers_1 to Databases. In the opposite extreme, we might decide to deploy
sensors at each of the four Subnet n devices, to catch all potential attack traffic. But TVA
shows that in fact there are no critical vulnerability paths involving Subnet 6, so
deploying a sensor there is wasteful, including continually monitor alerts generated from
there. Again, sensors deployed at Router A and Router B are sufficient to cover all
vulnerable paths.

For enterprise networks, performing this kind of analysis requires the kind of
automated support provided by TVA. Our attack graphs bring together information from
a variety of sources over multiple network layers into a concise map. While the sensor
placement problem itself is NP-hard, there is a heuristic algorithm that scales well and
provides near-optimal solutions [6].

Once sensors are deployed and are generating intrusion alarms, we can further
leverage TVA for alarm correlation and prioritization. This requires mapping alarms to
their corresponding elements (exploits) in the residual attack graph. This in turn requires
representing alarms in a common format, using alarm identifiers that match the identifiers
used in the attack graph model.

 54

In this regard, specifications such as Intrusion Detection Message Exchange Format
(IDMEF) [52] or the ArcSight [53] event log format define data formats for information
sharing between intrusion detection systems and TVA. For example, one implementation
option is the IDMEF plug-in [54] for the popular intrusion detection system Snort [55].
This plug-in allows Snort to output alerts in the IDMEF message format. Data exchanges
in IDMEF are in eXtensible Markup Language (XML), with the format being enforced
through a formal schema.

Figure 35 shows the structure of an IDMEF alert. The IDMEF model is intended to
represent alerts in an unambiguous fashion, while explicitly assuming that alert
information is heterogeneous. Alerts from different tools may have varying amounts and
types of information about an event, which the IDMEF data model is designed to
accommodate.

For TVA, the critical data are source and target (attacker and victim) network
addresses and an alarm identifier that can be mapped to a vulnerability in the TVA
model. In IDMEF, these are supported by the Source, Target, and Classification
elements (respectively).

Figure 35. IDMEF alert structure

 55

When intrusion alarms are generated, TVA attack graphs provide the necessary
context for correlating and prioritizing them. First, we can place a high priority on
alarms that lie on vulnerability paths through our network. We can prioritize them even
further based on their graph distance to given critical assets. In other words, events that
are very close to critical assets in terms of next attack steps should be given higher
priority.

This kind of attack graph analysis is highly precise, taking all relevant facts into
account. We determine not only whether a host is vulnerable to a given attack but also
whether the attacker can traverse through firewalls to reach the host’s vulnerable port and
whether that attack could lead to subsequent network compromise. Our prioritization
thus also serves as an advanced form of false-alarm reduction, e.g., restriction to alarms
along critical paths.

It is important to model network vulnerability as we do. Multi-step alarm correlation
that does not take real network vulnerabilities into account is limited [14]. Pre-
computing vulnerability-based attack graphs in advance of attack has the additional
advantage of rapid correlation, i.e., faster than an intrusion detection system can generate
them [10][12].

Further, the predictive capabilities of TVA attack graphs enable us to correlate
intrusion alarms based on attack causality. A set of seemingly isolated events may in fact
be shown as multiple steps of incremental network penetration. Also, the context
provided by these attack graphs enables us to predict missed events (false negatives),
helping to mitigate inaccuracies in our intrusion detection systems.

To illustrate some of these ideas, consider Figure 36. This is the same residual attack
graph as in Figure 33, with relevant protection domains expanded to show additional
details. This attack graph provides considerable insight for correlating and prioritizing
any alarms generated for this network and for responding to these potential attacks.

For example, suppose an alarm is raised for an attack between two machines in the
DMZ, say, from DMZ_1 to DMZ_2. From just a single alarm in the DMZ, we might
wait before responding. On the other hand, if an alarm is raised from Internet into DMZ,
followed by an alarm within the DMZ, it is a much stronger indicator that the attack may
be a real security breach. Remember that false alarms are common with intrusion
detection, and erroneously blocking traffic in response to false alarms is a denial of
service.

From an alarm within the DMZ, another approach might be to block traffic from
DMZ_3 to DB_1 and DB_2. Because of the possibility of denial of service, such an
action is not usually taken. But we can we limit the blocking to the vulnerable ports on
DB_1 and DB_2 only, specifically from DMZ_3, so that any non-vulnerable services on
those machines could remain unblocked.

We might then keep traffic from DMZ_3 into Servers_1 machines unblocked, since
those machines are one less attack step (i.e., three steps) from critical machine DB_4. In
other words, we could still wait to see if an alarm is raised from the DMZ into Servers_1,
at which point we block the vulnerable baths from Servers_1 to Databases.

 56

Figure 36. Attack prediction and response

An even more aggressive response to an alarm within the DMZ is to block outgoing
traffic from the DMZ to vulnerable services in Servers_1 and Databases. Again, there is
the potential for denial of service, but we still limit our response to vulnerable
connectivity. Without attack graph analysis, the only response to a serious attack is to
block all traffic from the DMZ, rather than just vulnerable connectivity.

Further, one could surmise that an alarm in the DMZ is follow-on from a missed
intrusion from the Internet into the DMZ. This could guide further investigation into
traffic logs into the DMZ, looking for missed attacks, especially against the four
vulnerable paths into the DMZ.

If an attack was detected within Servers_1 (e.g., from Server_1 to Server_2), a similar
set of responses is indicated. As a precaution, one could block traffic from Server_3 to
vulnerable ports on DB_1 and DB_2. But blocking traffic from Server_3 into the DMZ
is less indicated because it is leading away from the critical Databases domain. Similarly,
any alerts from Server_3 into the DMZ are lower priority, especially if they are not
against vulnerable DMZ services.

Thus TVA provides a range of reasonable responses, ranked by severity or actual
likelihood of attack. Here, severity is in terms of lying on critical vulnerability paths,
especially close to critical assets, and likelihood is increased by causal correlation of
alerts. Multiple options are available that enable us to fine tune responses as potential
attacks unfold, based on proactive response plans.

 57

4.2 Matrix Analysis and Visualization
Our clustered adjacency matrices reveal the underlying regularities in network attack

graphs. This approach is particularly attractive because it avoids the edge clutter usually
associated with literal drawings of attack graphs. The adjacency matrix is concise,
representing each graph edge with a single matrix element.

Our approach places no particular restrictions on the form of the attack graph. It
therefore applies to attack graphs based on network vulnerabilities, detected intrusions, or
combinations thereof, and well as attack graphs with aggregated vertices, e.g., aggregated
by network machine. Our approach has low-order polynomial complexity overall, for
scalability to larger networks.

The information-theoretic clustering algorithm we apply reorders rows and columns
of the adjacency matrix so that rectangular blocks of similarly-connected attack graph
elements emerge. This clustering algorithm is fully automatic, parameter-free, and scales
linearly with problem size.

We further transform the attack graph adjacency matrix by raising it to higher powers,
to represent multiple attack steps. We can thus show attacker reachability across the
network within any number of attack steps. We combine these per-step reachability
matrices into a single matrix that shows the minimum number of steps between any pair
of vertices in the attack graph. We also summarize reachability for all number of steps
via transitive closure.

Through our general approach, we are able to correlate, predict, and hypothesize
about network attacks. For example, we can provide a concise summary of changes in an
attack graph resulting from changes in the network configuration.

We can place intrusion alarms in the context of the vulnerability-based attack graph
for categorizing alarms. We can step forward from an attack, to predict its impact and
prioritize defensive responses according to the number of steps required to reach victim
machines. We can also step backward from an attack, to predict its origin.

When attack graphs for realistic networks are drawn in their full detail, the resulting
display can be overwhelming. This is demonstrated in Figure 37. This is an attack graph
for about 50 machines, in a network of 3 subnets. This picture includes every detail of
every part of every attack path through the network.

In particular, it shows each exploitable vulnerability, with all of their preconditions
and postconditions, between each applicable machine. Clearly the attack graph is
overwhelming when shown in this level of detail. The challenge is to convey all attack
paths in a way that is comprehensive but easily understandable.

 58

Figure 37. Example attack graph in its full complexity

Figure 38 shows the same attack graph as in Figure 37. Now the low-level security
conditions have been aggregated to machine vertices, and exploits have been aggregated
for pairs of machines.

 59

Figure 38. Attack graph aggregated to individual machines

Despite the fact that this attack graph has been aggregated to the level of machines,
the drawn graph is still cluttered with edges and is hard to follow. Some clustering is
apparent in this drawing, but the exact nature of the clusters, such as their boundaries and
cross-cluster relationships, is not readily apparent.

Figure 39 shows the same attack graph as Figure 37 and Figure 38, this time
represented as an adjacency matrix. In the matrix, rows represent exploits from a
particular machine, and columns represent exploits to a particular machine. The presence
at least one exploit between a pair of machines is indicated by black matrix element, and
the absence is indicated by white.

 60

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Ex
pl

oi
ts

 fr
om

 M
ac

hi
ne

 i

Exploits to Machine j
Figure 39. Unclustered adjacency matrix for attack graph in Figure 38

In Figure 39, the rows and columns of the adjacency matrix are in arbitrary order. In
general, there is no a priori way of ordering the matrix rows and columns to form
meaningful clusters. That is, from the ordering in Figure 39, the underlying structure of
the attack graph is obscured by this matrix visualization.

Mathematically, the rows and columns of an adjacency matrix could be placed in any
order, without affecting the structure of the attack graph the matrix represents. But
orderings that capture regularities in graph structure are clearly desirable. In particular,
we seek orderings that tend to cluster graph vertices (adjacency matrix rows and
columns) by common edges (non-zero matrix elements). This allows us to treat such
clusters of common edges as a single unit as we analyze the attack graph (adjacency
matrix).

To extract the underlying graph structure, we apply of matrix clustering. This
clustering is designed to form homogeneous blocks of matrix elements, so that within
each block, there is a similar pattern of attack graph edges (adjacency matrix elements).
For example, protection domains and interactions between them are formed
automatically, without prior knowledge.

 61

More generally, our approach detects densely-connected attack graph clusters, even if
they are not fully-connected subgraphs (protection domains). This particular clustering
algorithm requires no user intervention, has no parameters that need tuning, and scales
linearly with graph size.

The clustering algorithm optimally reorders rows and columns to form regions of
high and low densities in the attack graph adjacency matrix. The algorithm also provides
an information-theoretic measure of cluster optimality, based on ideas from data
compression.

It employs the Minimum Description Length principle, in which regularity in the data
is used to describe it in fewer symbols. Intuitively, one can say that by compressing the
data (describing it in fewer symbols) we better understand it, in the sense that we have
captured the regularities in its structure.

In Figure 40, we have clustered the attack graph adjacency matrix A in Figure 39.
The underlying structure of the attack graph is now clear. The clustering has identified 9
clusters (rectangular blocks) of homogeneous graph edges.

3
7
10
11
12
14
15
17
18
28
34
39
43
44
1
6
13
19
20
21
22
23
24
25
26
27
29
30
31
32
33
35
38
41
2
4
5
8
9
16
36
37
40
42

3 7 10 11 12 14 15 17 18 28 34 39 43 44 1 6 13 19 20 21 22 23 24 25 26 27 29 30 31 32 33 35 38 41 2 4 5 8 9 16 36 37 40 42

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

Ex
pl

oi
ts

 fr
om

 M
ac

hi
ne

 i

Exploits to Machine j

P
rotection

D
om

ain 3
P

rotection
D

om
ain 2

Protection
D

om
ain 1

Protection
Domain 3

Protection
Domain 2

Protection
Domain 1

Figure 40. Clustered adjacency matrix for attack graph in Figure 38

 62

The 3 blocks on the main diagonal (blocks A1,1, A2,2, and A3,3) are solid black,
indicating full attack graph connectivity within each block. That is, within one of these
main-diagonal blocks, every machine can attack every other machine (through at least
one exploit).

These blocks constitute TVA protection domains, which have been detected
automatically by the clustering algorithm. Block A2,3 of the clustered adjacency matrix A
shows exploits launched from the 2nd to 3rd protection domains (from block A2,2 to A3,3).
Similarly, block A3,1 shows exploits from the 3rd to first protection domains (from block
A3,3 to A1,1).

In Figure 40, matrix rows and columns are labeled with their original indices. This
shows exactly how they were reordered by the clustering algorithm. In practice, we
might use more meaningful labels such as IP addresses.

Figure 41 shows the square of the clustered attack graph adjacency matrix in Figure
40. Here we have used the arithmetic product, as opposed to the Boolean product. This
shows not only whether there exists at least one 2-step attack from one machine to
another, but also the actual count of all possible 2-step attacks.

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

N
um

be
r o

f 2
-s

te
p

at
ta

ck
s

Protection
Domain 3

Protection
Domain 2

Protection
Domain 1

P
ro

te
ct

io
n

D
om

ai
n

3
P

ro
te

ct
io

n
D

om
ai

n
2

P
ro

te
ct

io
n

D
om

ai
n

1

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

Figure 41. Clustered matrix for attack graph in Figure 38 (2-step attacks)

 63

For example, we see that within the 2nd protection domain (block A2,2), there are 20
possible 2-step attacks between each pair of machines, corresponding to the 20 machines
in that protection domain. We see corresponding numbers of 2-step attacks within the
other 2 protection domains (blocks A1,1 and A3,3). There are relatively fewer 2-step
attacks across protection domains (blocks A2,3 and A3,1).

Figure 42 shows successive powers (A2, A3, and A4) of the clustered adjacency matrix,
this time employing Boolean matrix multiplication. This shows attacker reachability
between each pair of machines, within 2, 3, and 4 steps, respectively. We see that within
4 steps, machines in the 2nd block can successfully attack all machines (i.e., all columns)
in the network. Also within 4 steps, machines in the 1st block can be successfully
attacked from all machines (i.e., from all rows) in the network.

A2 A3 A4

2-Step Attacks 3-Step Attacks 4-Step Attacks

Figure 42. Reachability for 2, 3, and 4 steps for attack graph in Figure 38

In Figure 43, we combine the reachability matrices in Figure 42 (and the adjacency
matrix in Figure 40) into a single matrix, as defined by Equation (6). All the information
in the separate per-step reachability matrices can now be seen together. We apply this
multi-step reachability matrix for prediction of attack origin and impact.

 64

∞

1

2

3

4

M
in

im
um

 n
um

be
r

of
 a

tta
ck

 st
ep

s

Protection
Domain 3

Protection
Domain 2

Protection
Domain 1

Pr
ot
ec
ti
on

D
om

ai
n
3

Pr
ot
ec
ti
on

D
om

ai
n
2

Pr
ot
ec
ti
on

D
om

ai
n
1

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

Figure 43. Multi-step reachability for attack graph in Figure 38

Figure 44 shows an attack graph adjacency matrix for a network of 730 machines.
The corresponding drawn attack graph would be cluttered and difficult to understand.
Again, we have aggregated low-level security conditions to machines and sets of exploits
between them, so that rows and columns are machines, and non-zero entries mean at least
one exploit between a pair of machines. Here, a priori ordering of machines (rows and
columns) is sufficient, so that we do not apply matrix clustering.

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Figure 44. Attack graph adjacency matrix for baseline and changed network.

 65

In Figure 44, black indicates the attack graph for a baseline network configuration,
before any network configuration changes. Orange then indicates new attack graph
edges, resulting from changes to the network configuration. In this case, the vertical
orange lines (columns) indicate vulnerable web servers that have been added to the
network, with a policy that all machines in the network can connect to these vulnerable
servers.

Figure 45 shows the resulting transitive closure (all-step reachability) for the baseline
(black) and changed (black+orange) network. Here we see that before deployment of the
web servers (black), attacks are only possible within the main diagonal blocks, from
block A2,2 to blocks A3,3 and A4,4, and from block A3,3 to block A4,4.

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Figure 45. Transitive closure for baseline and changed network

But after deployment of the web server (black+orange), machines in block A1,1 can
reach all machines in the network, and all machines in the network can reach the
machines in blocks A2,2, A3,3, A4,4, and A5,5. That is, only machines in block A1,1 are safe
from attacks outside their block.

Figure 46 shows same the multi-step vulnerability-based reachability matrix from
Figure 43, but this time with intrusion alarms associated with elements of the matrix.
Thus, knowing attack reachability across the network, we can categorize and correlate
detected intrusions in terms of it.

 66

∞

1

2

3

4

N
um

be
r o

f a
tta

ck
 st

ep
s

No known paths
(likely false alarm)

4 missing
steps

Alarm 1

Alarm 2

Figure 46. Correlating intrusion alarms via attack graph reachability

In Figure 46, an intrusion alarm (in yellow) occurs between a pair of machines that
are known to be unreachable from one to the other. In this case, we might consider it to
be a false alarm. Similarly, an intrusion alarm (in purple) occurs between a pair of
machines, which, according to the attack graph, should require at least 4 attack steps to
reach from one to the other. If we were to rely on traditional attack graph drawings, we
would need to trace many edges before coming to this conclusion.

There are 2 other intrusion alarms in Figure 46 that according to the attack graph, are
each possible one-step attacks. In fact, if we project (along a column) from Alarm 1 to
the main diagonal, we find Alarm 2 on the projected row, indicating that according to the
attack graph, Alarm 2 follows immediately after Alarm 1. In this case, we correlate the
two alarms based on the likelihood that they are part of a coordinated attack.

Figure 47 shows another intrusion alarm associated with the multi-step reachability
matrix from Figure 43. This time, we project to the main diagonal in each direction, i.e.,
along columns and rows, to explore forward and backward steps from this alarm. In this
way, we can predict the origin of the attack (from the backward direction) and the impact
of the attack (from the forward direction).

 67

∞

1

2

3

4

N
um

be
r o

f a
tta

ck
 st

ep
s

Alarm

Not reachable
(LOW priority)

Reachable
In one step

(HIGH priority)

Reachable
in 2‐3 steps

(MEDIUM priority)

Forward
Steps

B
ac
kw

ar
d

St
ep

s

O
ri
gi
n
of
 a
tt
ac
k

Figure 47. Predicting attack origin and impact

Projecting along the row to the main diagonal, we reach a column that has non-zero
entries only within the 2nd main-diagonal block (block A2,2). In fact, these non-zero
entries are all of unity value, indicating that these are all one-step attacks. In other words,
only an attack from one of the machines in block A2,2 could have led to the detected
intrusion, and that could have happened within one attack step.

In Figure 47, when we project the detected intrusion to the main diagonal along its
column, the row of intersection shows all possible forward steps from the detected event.
In this case, we see that machines in the 2nd block cannot be reached by the attacker,
since block A3,2 is zero-valued. For this reason, no attack response is necessary for
defending machines in these columns.

However, because block A3,1 shows reachability within 2 to 3 steps, measures might
be taken to defend machines in these columns, although not at the highest priority. The
highest priority should be for machines in the columns of block A3,3, because those
machines are all reachable from the detected event within a single step.

 68

4.3 Sensor Placement and Alert Prioritization
At this point in the network defense process, our TVA tool has captured the network

configuration, used it to predict all possible paths of vulnerability through the network,
and applied hardening measures to help reduce known paths. But because of real-world
mission and operational constraints, we are unlikely to eliminate all paths. Our next line
of defense is to rely on intrusion detection.

Now, given our knowledge of the network configuration and residual paths of
vulnerability, where should we place intrusion detection sensors so as to monitor all these
paths? Moreover, what placement will cover all critical paths with the fewest number of
sensors, to minimize our deployment costs? The residual attack graph defines the sources
and destinations of traffic to be monitored. Then, through analysis of network topology,
we identify sensor locations that cover the critical paths.

Consider the testbed network in Figure 48, which we implement through a
combination of real and replicated machine scans, and simulated network connectivity
and firewall effects. There are 8 subnets, with 10-20 hosts in each subnet, and routers
(and the internet backbone) providing connectivity among the subnets. There are
vulnerabilities on many of the network hosts. Though not shown explicitly, the firewalls
limit connectivity and help protect the network. Still, vulnerabilities remain on the
network, and many are stepping stones, giving new vantage points for further penetration.

Network
Attack
Graphα β

γ δ

ε

Figure 48. Testbed network and its high-level attack graph

 69

The right side of Figure 48 is a high-level view of attacks through this network, based
on TVA tool results. We assume that Subnet 3 contains critical network assets to be
protected. The attack graph shows all possible paths leading to Subnet 3, at the subnet-
to-subnet (protection domain) level. Here, an edge means there is at least one exploit
between given protection domains. While other paths may exist through this network,
only the ones shown are relevant to the protection of Subnet 3. So it is precisely these
paths that need to be monitored by the intrusion detection system.

Now, given our knowledge of vulnerable paths through the network, we can analyze
the network topology for placing sensors to cover all paths. To minimize costs, we seek
to cover all critical paths (the attack graph) using the least number of sensors. As we
have defined it, this optimal sensor placement is an instance of the classical set cover
problem. In set cover, we are given certain sets of elements, and they may have elements
in common. The problem is to choose a minimum number of those sets, so that they
collectively contain all the elements.

In this case, the elements are the edges (between protection domains) of the attack
graph, and the sets are intrusion detection sensors deployed on particular network
devices. Each intrusion detection sensor monitors a given set of edges, i.e., can see the
traffic between the given attacker/victim machines.

Consider Figure 49, which builds from the testbed network in Figure 48. Here,
through the network topology, we trace the routes of each subnet-to-subnet edge of the
attack graph. For example, the vulnerable paths from Subnet 1 to Subnet 2 are shown as
a red route, from Subnet 1 to Subnet 4 as a blue route, etc. The problem is then the
selection of a minimum set of routers (sensors) that covers all the vulnerable paths in the
attack graph.

 70

1→4 4→5

1→2

2→5

5→3

α

β

γ

δ

ε

Figure 49. Optimal sensor placement for testbed network

Set cover is known to be computationally hard, one of Karp’s original 21 NP-
complete problems [56]. Fortunately, there is a well known polynomial-time greedy
algorithm for set cover that gives good results in practice [43]. The greedy algorithm for
set covering follows this rule: at each stage, choose the set that contains the largest
number of uncovered elements.

In our case, each router can see traffic for a subset of the entire attack graph, i.e., each
router covers certain attack graph edges. The problem is then to choose a minimum set
of routers that cover all edges. From Figure 7, we have the following:

• Router A covers {(1,2), (1,4), (4,5)} = {α, β, δ}

• Router B covers {(1,2), (4,5)} = {α, δ}

• Router C covers {(1,2), (4,5), (2,5)} = {α, δ, γ}

• Router D covers {(2,5), (4,5), (5,3)} = {γ, δ, ε}

Here, the element (x, y) means an attack graph edge set from Subnet x to Subnet y.

 71

A refinement of the greedy algorithm is to favor large sets that contain infrequent
elements. In this example, Router A is a large set (3 elements) with the infrequent
element β = (1,4), so we choose it first. In the next iteration, we choose Router D, which
has the largest number of uncovered elements, i.e., γ = (2,5) and ε = (5,3). At this point, we
have covered all 5 elements (edges in the attack graph). Our sensor-placement solution is
thus complete, shown in Figure 7 as red eyes at the optimal sensor locations Router A
and Router D.

In this instance, we have in fact found the actual optimal solution. In general, the
greedy algorithm approximates the optimal solution within a factor of ln(n), for n
elements to be covered, though in practice it usually does much better than this. In our
case, n is the number of attack graph edges, aggregated by protection domains, which is
usually much smaller than the number of edges between individual machines.

The greedy algorithm has been shown to be essentially the best possible polynomial-
time approximation algorithm for general set cover [57]. However, for restricted cases in
which each element (per-domain edge) occurs in at most f sets (routers), a polynomial-
time solution is possible that approximates the optimum to within a factor of f.

Using appropriate data structures, the greedy algorithm for set cover can be
implemented in O(n), where n is again the number of per-domain attack graph edges.
More nearly optimal solutions for set cover may be possible through more sophisticated
algorithms, with longer run times, such as simulated annealing [58] and evolutionary
algorithms [59].

Set cover (and its dual the hitting set problem) is one the most well-studied problems
in computer science. While experimental validation of complexity and solution
optimality are outside the scope of this report, our formulation of intrusion detection
sensor placement as an instance of set covering places our proposed approach on firm
ground.

Once intrusion detector sensors are in place and alerts are generated, we can use the
attack graph to correlate alerts, prioritize them, predict future attack steps, and respond
optimally. Figure 50 shows attack graph details for the testbed network in Figure 48,
where each graph edge is a set of exploited vulnerabilities from one machine to another.
Within each subnet (the shaded regions in the figure), the machines have unrestricted
access to one another’s vulnerabilities. Paths in the graph all lead to the assumed critical
network assets (shown in the figure as crowns).

 72

Priority 0

Priority 1

Priority 2

Priority 3

Priority 4

Figure 50. Priority of alerts for testbed network

We can prioritize alerts based on attack graph distance to critical assets. That is,
attacks closer to a critical asset are given higher priority, since they represent a greater
risk. At any point that an attack is detected, we can use to graph to predict next possible
steps, and take specific actions such as blocking specific source/destination machines and
destination port.

As an example operational scenario, in Figure 50, assume that a security operator sees
the Priority-4 intrusion alarm. From the attack graph, he knows that this potential attack
is still at least three steps away from mission-critical machines. Because of the
possibility of a false alarm, the operator might delay taking action initially. Then, if he
sees the Priority-3 alarm (one step closer to a critical machine), the attack graph shows
that this is an immediate next possible step, providing further evidence that this is a real
attack (versus a false alarm).

 73

If the operator still delays action (e.g., after detail drilldown yields no conclusive
result), a subsequent Priority-2 alarm (now only one step away from the critical machine)
might then cause him to respond. The attack graph shows exactly which
source/destination machines and ports the operator should block to prevent attacker
access to the critical machine, while avoiding disruption of other potentially mission-
critical network services. This is the kind of highly focused attack response capability
provided by our predictive TVA attack graphs coupled with deployed intrusion detection
sensors.

4.4 Security Metrics for Risk Analysis
Removing attack paths reduces options for an attacker, but at what cost to the

defender? For example, in Figure 16, blocking ssh or rsh traffic removes certain initial
network conditions, preventing exploits that depend on these vulnerable connections,
thereby reducing the number of attack paths.

But what is lacking is a clear measure of exactly how security has been improved in
each case. For example, which is better, blocking ssh or blocking rsh? Are these
significant or only marginal improvements over the current system configuration? These
are the kinds of questions that are answered though our attack graph metric.

For our risk analysis, we simulate attack graphs through Monte Carlo methods. This
allows us to handle uncertain input values, by modeling their distributions through
statistics such as numerical ranges, mean values, etc. We then propagate attacks through
the attack graph, from inputs generated according to our assumed input probability
distributions. This allows us to make optimal choices for complex cyber-attack models
that cannot otherwise be easily found.

Monte Carlo methods are ideal for such problems with highly complex logical (non-
linear) relationships with many input variables. For optimum performance, the attack
graph is computed once, and then evaluated for each Monte Carlo input sample.

In Figure 16, the network hardening options are to block either ssh or rsh traffic (to
the file server) through the firewall. Here, we assume that no software patches or other
forms of mitigation are available for the ftp and buffer overflow vulnerabilities on the
inner network. Thus the available options are to block these services.

In this example, the remote shell service is working correctly (even though it is being
leveraged in the attack), and needs no patching. Let us assume that the workstation
(Machine 1) needs the ftp services on the inner network, i.e., we avoid blocking ftp traffic
through the firewall. Further, we assume that the workstation needs at least one type of
shell access (either remote shell or secure shell) on the inner network. This means we
can block either rsh or ssh traffic, but not both.

Figure 51 shows the residual attack graphs resulting from blocking rsh or ssh traffic.
In other words, for each network hardening choice, a particular set of attack paths still
remains. We then use this residual attack graph to compute our attack graph metric. That
is, we propagate likelihoods of vulnerability exploitation according to the logical
relationships in the attack graph. The result is an overall likelihood of reaching the attack
goal, for each of our two choices of network hardening.

 74

Block rsh

OROR

()sshd_bofP=β

()ftp_rhostsP⋅= βδ ()ftp_rhostsP=ε

()rshP⋅= δφ ()rshP⋅= εγ

[]
()local_bofP

⋅−+= φγγφη

Block ssh

OROR

()ftp_rhostsP=α

()rshP⋅= αχ

()ftp_rhostsP=ε

()rshP⋅= εγ

[]
()local_bofP

⋅−+= φγγφη

()ftp_rhostsP⋅= χδ

()rshP⋅= δφ

Figure 51. Residual attack graphs for network configuration choices

In the figure, the cumulative likelihood of each exploit is shown, as propagated
through the attack graph. For example, the likelihood of rsh(0,2) occurring is the
conjunctive combination (Boolean AND) of ftp_rhosts(0,2) and rsh(0,2), while the
likelihood of local_bof(2) is the disjunctive combination (Boolean OR) of rsh(0,2) and
rsh(1,2). Since local_bof(2) yields the overall goal for this attack scenario (compromise
of the database server), the likelihood of local_bof(2) occurring is the overall attack graph
metric.

In Figure 51, the model inputs P(•) represent the inherent chance of each exploit
occurring, independent of other exploits. For example, these could be relative
frequencies of events observed on a network over a period of time. Or, they could be
scores from a source such as NVD (CVSS scores) or Symantec DeepSight.

In this particular case, let us assume we have a minimum and maximum likelihood
value for each exploit. We model these likelihoods as uniformly distributed between
their minimum and maximum values, i.e., ftp_rhosts and rsh between [0.5, 0.6], and
sshd_bof and local_bof between [0.1, 0.2]. We can interpret such input distributions as
likelihoods of successful exploit execution over a given period of time (month, year,
etc.).

Figure 52 shows the result of Monte Carlo simulations of the attack graph model in
Figure 51. Each choice of network configuration (block ssh, block rsh, and no change)
has a corresponding residual attack graph.

In the simulations, we generate large samples of inputs (individual vulnerability
scores) randomly according to the given distributions. We then propagate these
vulnerability scores according to the logical relationships of the corresponding residual
attack graph. In this way, we measure the overall likelihood of system compromise, for
the given choice of network hardening.

For example, at the top of Figure 52, the input for ftp_rhosts(0,1) is a uniform
distribution U1[0.5, 0.6]. When this is combined conjunctively (Boolean AND) with the
input for rsh(0,1), which is U2[0.1, 0.2], the resulting U1•U2 is the triangle distribution
T[0.24, 0.36] shown as the combined likelihood for the attacker accomplishing rsh(0,1).

 75

0.5 0.6

0.05 0.3

0.02 0.18 0.24 0.36

0.5 0.6

0.1 0.2
0.24 0.36

0.02 0.1

No change
Block ssh
Block rsh

OR

OR

Compromise
Likelihood

Block rsh
Best Choice
(Compromise
Least Likely)

Figure 52. Attack-graph metrics for each network configuration choice

The simulation output (bottom of Figure 52) is the overall attack-graph metric
distributions. This shows the overall likelihood of database compromise (the attack goal)
for each option of network configuration. This shows that blocking rsh traffic provides
the best overall protection for this system. In particular, with this network hardening
choice, there is lower likelihood of attack compromise.

Simply comparing representative (e.g., mean) values gives is an immediate
determination of the best choice. Or we could gain further insight by comparing such
features as uncertainty spread.

Through our attack graph simulations, we analyze risks in terms of attack likelihoods.
In this section, we extend this risk analysis to include associated operational costs, attack
impact costs, etc. This is useful for economic analysis, and supports informed decision
making about return on security investment. In other words, we can quantify whether
expenditures on additional security measures are justified by reduction in expected losses
from security breaches.

 76

Figure 53 shows a model for such return-on-investment analysis. We first compute
the metric for likelihood of attack compromise, i.e., the distribution of resulting attack
graph metrics shown in Figure 52. This metrics distribution feeds a cost analysis, which
combines compromise likelihood from the attack graph with the projected costs of an
actual compromise. This is then weighed against the costs of actually implementing
network changes to mitigate the risk.

Attack
Graph Cost

Analysis

Risk
Model

Figure 53. Security return-on-investment model

In other words, each network security option has a particular implementation cost.
Each option in turn reduces the risk of a security breach by a certain amount, and there is
an assumed loss for a breach actually occurring. The overall cost for each security option
is then

Overall Cost = Implementation Cost + Cost of Security Breach × Likelihood of Breach

We seek the security solution that optimizes overall costs. In other words, the cost of
implementing a security measure is offset by a corresponding reduction in expected value
of cost for a breach, in which the cost of a breach is weighed by its likelihood of actually
occurring.

In this example, we assume the estimated cost of recovering from a database breach
(Incident) is $200,000, with standard deviation of $20,000. Each network configuration
has an associated likelihood of a breach occurring, with a corresponding multiplicative
reduction (from the full $200,000) in expected loss.

The estimated cost for implementing firewall changes (Firewall) is $1,000, with
standard deviation of $100. So the question is whether the firewall implementation costs
are justified in terms of reduced risk (expected loss), versus simply making no change to
the network.

 77

Figure 54 shows the resulting probability distributions (density and cumulative) of
overall costs for each network configuration. In terms of overall cost, blocking ssh traffic
is now seen to actually cost more than simply making no change to the network. This is
because the slight decrease in breach likelihood (expected loss) is outweighed by the cost
of implementing the firewall change. On the other hand, blocking rsh traffic reduces
breach likelihood more, making its overall costs lower versus leaving the network
unchanged.

Block rsh

Best Choice
(Lowest Cost)

Block rsh

Best Choice
(Lowest Cost)

Pr
ob

ab
ili

ty
 D

en
si

ty

0

1.6e-4

-20K -4000
0

1

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Cost ($)
Lower costHigher cost

No Change

Block ssh

No Change

Block ssh

Figure 54. Cost of each network change based on attack-graph metrics

In our risk model in Figure 53, the overall cost for each network configuration (Cost
Per Change) is input to Savings Over No Change. This directly compares the costs of
blocking rsh and ssh (respectively) to the cost of no change, for each Monte Carlo
sample. In particular, we use the “no change” option as the baseline, and compute
differences in mean, minimum, and maximum costs for each hardening option.

The resulting model comparisons are shown in Figure 55. We see that blocking rsh
traffic can provide almost $2,500 in reduced cost (maximum difference from no change),
while blocking ssh traffic can incur almost $1,000 additional cost (minimum difference
from no change).

 78

Sa
vi
ng
s O

ve
r N

o
Ch

an
ge

($
)

‐1000

‐500

0

500

1000

1500

2000

2500

Block ssh Block rsh

Min Mean

Max

Min

Mean Max

Figure 55. Comparative savings (versus no change)

To quantify the confidence in our analysis, we begin by measuring how strongly the
model output is correlated with each model input. This shows the relative importance of
each input variable, i.e., how strongly its uncertainty translates to uncertainty in the
output result. In our risk model (Figure 53), this is Importance Of Inputs, which
correlates Cost Per Change (Figure 54) with each of the model inputs (indexed by Cost
Inputs).

Im
po

rt
an
ce
 O
f I
np

ut
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No change Block ssh Block rsh
Figure 56. Relative importance of model inputs

 79

Figure 56 shows the resulting input/output correlations, for each network
configuration (block rsh, block ssh, or no change). For all configurations, the output
uncertainty is dominated by the likelihood of local_bof, a critical exploit that is included
in all attack paths. The next most important input is the cost of a database compromise
incident, followed by likelihoods of the rsh and ftp_rhosts exploits. Uncertainty in
firewall costs or the likelihood of sshd_bof have little impact on uncertainty of results.

We gain further confidence by testing how model input changes might potentially
alter our choice of the best network configuration. In particular, we calculate how overall
costs (Cost Per Change) vary as each model input changes.

Figure 57 is the variation in Cost Per Change as a function of each input individually,
with all other inputs held at their nominal (mean) values. To test robustness, we vary
input values well outside their actual ranges in the model. The goal of this analysis is to
verify that our conclusions are valid throughout the entire range of possible model input
values.

C
os

t (
$)

Firewall ($)
-4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0

-15K

-14.5K

-14K

-13.5K

-13K

-12.5K

-12K

-11.5K

-11K

-10.5K

-10K

C
os

t (
$)

P(sshd_bof)
0 0.2 0.4 0.6 0.8 1

-17K

-16K

-15K

-14K

-13K

-12K

-11K

-10K

Co
st

 ($
)

P(rsh) and P(ftp_rhosts)
0 0.2 0.4 0.6 0.8 1

-22.5K

-20K

-17.5K

-15K

-12.5K

-10K

-7500

-5000

-2500

0

Co
st

 ($
)

P(local_bof)
0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

-16K

-14K

-12K

-10K

-8000

-6000

-4000

-2000

0

Co
st

 ($
)

Incident ($)
-500K -400K -300K -200K -100K 0

-30K

-25K

-20K

-15K

-10K

-5000

0

No change
Block ssh
Block rsh

Actual Range

Breakpoint Actual Range

Breakpoint

Actual Range

Breakpoint

Actual
Range

Breakpoint

Actual
Range

Breakpoint

Figure 57. Cost dependency on individual inputs

 80

The confidence results in Figure 57 validate our conclusions. The upper left of the
figure shows how model output depends on the likelihood of the local_bof exploit. If the
likelihood of local_bof were less than the breakpoint value of 0.09, then making no
change to the network would be the best solution. But in our model, the range of
local_bof likelihood is actually between 0.1 and 0.2. Blocking rsh traffic remains the
best solution throughout this range.

The upper right of Figure 57 shows the how the model output depends on the cost of
a database compromise incident. In the model, the cost per incident is between about
$130,000 to $275,000. Except for a small portion of this range (up to about $135,000),
blocking rsh traffic remains the best solution.

Figure 57 also shows the model dependencies on the remaining input variables. For
all these variables, blocking rsh traffic is the best solution within the full range of actual
model values. Overall, we have a strong measure of confidence that blocking rsh traffic
is the best choice for providing return on security investment.

4.5 Formal Evaluations
Various activities were performed for testing the TVA tool, and evaluating its new

capabilities. Preliminary testing was performed by independent analysts at AFRL/Rome,
in preparation for a more in-depth formal evaluation. Here we summarize some of the
results of preliminary testing.

As part of preliminary testing, a network was developed to serve as a testbed
environment for evaluating TVA and other network security tools. As part of its design
for testing TVA, the intention is for the network to have sufficient complexity for
evaluating multiple-step attack paths.

This means that a number of subnets are needed, with connectivity-limiting devices
like firewalls in place. Testing numerous types of vulnerabilities requires a range of
machine platforms, operating systems, services, host applications, etc. Overall, the
intention is simulate environmental conditions that might be encountered within a DoD
network.

Figure 58 shows the structure of the testbed network for preliminary testing. There
are 7 subnets for testing TVA, with a total of about 70 host machines. Of the 7 total
subnets, 3 subnets were combined into one TVA protection domain, since they are known
to have unrestricted connectivity among them. This results in 5 protection domains for
the TVA network model.

 81

Figure 58. Testbed network for preliminary testing

To build the network model for input to TVA, Nessus scans were performed from
each of the testbed subnets (5 protection domains). Each scan targeted the entire testbed
network. This provides vulnerable connectivity from different network vantage points, as
for an actual attacker at different locations. TVA then merges all the scan data into a
single network model that reflects connections to vulnerable services throughout the
network.

Figure 59 shows the resulting attack graph of all possible attacks through the network.
This shows that the graph is nearly fully connected, i.e., from any point in the network,
there are direct attacks (or at most 2-step attacks) to anywhere else in the network. This
suggests that an operational network having this configuration is fully open to attack.

 82

Figure 59. Attack graph for preliminary testing

Figure 60 shows the same attack graph as Figure 59, this time with the protection
domains expanded to show the machines in each domain. This shows that there is a
direct one-step attack from/to nearly every machine in the network.

 83

Figure 60. Attack graph for preliminary testing (expanded)

Figure 61 shows attacks specifically between 2 protection domains. This shows that
for every victim machine in the lower domain, only a subset of all its vulnerabilities is
reachable (through the firewall) from the upper domain. For example, the machine on the
far right has 25 total vulnerabilities (reachable within the protection domain itself). But
only 4 of those 25 vulnerabilities are reachable from the other domain.

 84

Figure 61. Attacks between a pair of protection domains

In Figure 61, for each victim machine in the lower domain, the attack graph shows
exploitable vulnerabilities from all machines in the upper domain. This is the result of an
implied policy during the import of Nessus scan data by the TVA tool. In particular, we
assume that the scan from a subnet represents vulnerabilities that are reachable from all
other machines in that subnet.

This is a worst case assumption that, in the absence of additional information, the
firewall rules are liberal. We subsequently changed this policy to show only reachable
vulnerabilities that are actually detected by Nessus scans. The presence of additional
reachability can then be inferred by looking at the attack graph. This in turn makes the
attack graph less complex and easier to understand. Also, we supplement vulnerability
scan data with firewall rule data to provide the additional vulnerable connectivity in the
network model.

A more formal evaluation of our TVA was then performed by independent analysts at
AFRL/Rome, a testbed network environment. Here we summarize some of the results of
that evaluation.

The testbed network was further developed after preliminary testing. The testbed
network design includes sufficient subnet complexity and range of hosts, services,
firewalls, host applications, etc. The intention was simulate the type of environmental
conditions for security testing that might be encountered within a DoD network.

 85

Figure 62 shows the structure of the testbed network for evaluation of the TVA tool.
Functionally, 9 subnets were used for building a TVA network model. This involved
deploying a Nessus scanner in each of the 9 subnets. Then each scanner was configured
to target the full set of 9 subnets. The resulting 9 Nessus scan files were then imported
into TVA.

Figure 62. Testbed network for TVA tool evaluation

From this, we generate a baseline attack graph. This is shown in Figure 63. This
attack graph is configured to generate attacks from all possible attack starting points, and
all possible attack goals. In other words, it shows all possible attack paths, unconstrained
by start or goal. Because the Nessus scans were run from different parts of the network,
TVA is able to infer firewall effects.

 86

Figure 63. Baseline attack graph for Nessus scan data

Some interesting aspects of the attack graph in Figure 63 are that the .217 subnet and
.8 subnet are attack sources, but no attacks lead into them. Conversely, the .1 subnet is an
attack sink, with no attacks away from it. The .4 subnet has the highest density of
connections to other subnets.

Figure 64 shows the same attack graph as Figure 63. Here the subnets in the attack
graph are repositioned to show certain attack relationships more clearly.

 87

Figure 64. Repositioned baseline attack graph

The Nessus scan data was supplemented with data from the Sidewinder firewall in the
testbed network. In particular, a new component of the TVA import process is able to
parse Sidewinder data and apply it to the TVA network model. Figure 65 shows the
resulting attack graph.

 88

Figure 65. Attack graph with Sidewinder firewall rules data added

Compare the attack graph in Figure 65 with the baseline in Figure 63. The .217
subnet is no longer solely an attack source, because of the vulnerable connection
introduced from the .8 subnet to the .217 subnet. The .1 subnet is still an attack sink. But
overall, the attack graph is significantly more densely connected.

 89

The addition of Sidewinder data in the model has revealed vulnerable connections
that are not in the Nessus scan data. This is because the Nessus scans were performed
from a single source host in each subnet. The firewall may have host-specific rules that
block certain source hosts but allow others. This information could also be obtained from
additional Nessus scans from different source hosts in each subnet.

Figure 66 shows the same attack graph as Figure 65. Again, the subnets in the attack
graph are repositioned to show certain attack relationships more clearly.

Figure 66. Repositioned attack graph for added firewall data

The “direct paths” option of our TVA tool constrains the attack graph to include only
the most direct paths from attack start to attack goal. In general this may be multiple-step
paths, if those are the most direct. This option highlights the most critical vulnerability
paths. Figure 67 shows the attack graph for the testbed network, using direct paths.

Figure 67. Direct path showing single-step attack from start to goal

 90

Here we use a machine in the .8 subnet as the attack starting point, and a machine in
the .1 subnet as an attack goal. In general, our TVA supports an arbitrary choice of attack
start and goal, even for direct paths. The attack graph in Figure 67 clearly shows that
there are 8 vulnerabilities that are directly exploitable (in one attack step) from the .8
subnet to the .1 subnet.

Figure 68 shows an attack graph for the same network model, this time using the .52
subnet rather than the .1 subnet as the attack goal (critical network resource to protect).
In this case the attacker can reach the critical resource in 2 attack steps.

Min‐cost hardening

Figure 68. Direct paths to a different attack goal

Figure 68 also shows the minimum-cost hardening recommendation that TVA
computes for this attack scenario. In particular, hardening this particular minimum set of
vulnerabilities ensures that the attacker must exploit at least 3 vulnerabilities to reach the
critical resource.

Figure 69 shows the attack graph for the same network, with the same attack starting
point and attack goal as in Figure 68. This time the direct-paths option is turned off so
that all possible attacks from start to goal are shown.

 91

1

1

1

1

1

1

10

11

Min‐cost hardening

Figure 69. All attack paths, with minimum-cost hardening recommendation

Figure 69 also shows the minimum-cost hardening recommendation for all possible
attack paths from start to goal. In this case, hardening this particular set of 27 total
vulnerabilities prevents the attacker from reaching the critical resource. Figure 70 shows
the resulting attack graph after these 27 vulnerabilities have been hardened.

 92

Figure 70. Application of minimum-cost hardening

Figure 71 shows the same attack graph as Figure 70, with the subnets repositioned to
show attack relationships more clearly. This more clearly shows that while there are
exploitable vulnerabilities from .218 and .219 into the goal .52 subnet, there are no
incoming attacks to these from elsewhere in the network.

 93

Figure 71. Repositioned attack graph after minimum-cost hardening

4.6 Model Population Extensions
Key feedback from the testing and evaluation of our TVA tool includes the following:

• The TVA tool supported the Nessus vulnerability scanner, but not
Retina. The Retina vulnerability scanner is in widespread use in the
Department of Defense (DoD).

• Alternatives to multiple vulnerability scans from different network
vantage points should be considered.

Figure 72 shows the architecture of our TVA tool, in which importers for various
input sources can be integrated. The importers for Retina and Sidewinder are
highlighted. This also shows that the TVA tool has a FoundScan importer, although that
is outside the scope of this project.

The architecture diagram in Figure 72 shows that the result of the TVA tool importers
is a network model for consumption by the attack graph analysis engine. This canonical
vendor-neutral network representation decouples the importer code from the analysis
engine code.

 94

Nessus Import

Retina Import

Sidewinder Import

FoundScan Import

Network model

Scenario configuration

Analysis engine

Attack graph
visualization

Network
hardening

Vulnerability mitigation

Graphical
User Interface
Scan Import

Graphical
User Interface
Configuration

Graphical
User Interface
Visualization

Figure 72. TVA tool architecture

Figure 73 shows the structure of our TVA network model. This shows that a network
is compose of a number of protection domains, each containing a number of machines.
Each machine has a number of vulnerabilities that are exploitable within the local
domain. Each machine also has a number of connections to vulnerabilities on machines
in other domains.

Figure 73. Structure of TVA network model

In the TVA architecture, the importer for Retina has a preprocessor written in
eXtensible Stylesheet Language (XSL) [60]. XSL is a powerful pattern-matching
language for performing transformations on XML data.

As shown in Figure 74, the Retina preprocessor converts native Retina data to a
generic scanner format. This format represents scan data for TVA, independent of a
particular scanner vendor’s format. The vendor-neutral format is the provided as an input
to the scan import module that analyses scan data and builds the network model.

 95

retinaScan.neutral.xml

convert_retina_to_neutral.xsl

retinaScan.xml
From
Retina

Convert Retina
output to TVA
neutral scanner

format

cve2nessus. xml

To Scan
Import

Figure 74. Preprocessing of Retina scan data

The preprocessing in Figure 74 takes native Retina scan XML documents as input.
Figure 75 shows the structure of native Retina scan data.

Figure 75. Structure of Retina native scan data

Figure 76 shows the structure of the resulting vendor-neutral TVA scan data format.
This includes only the data needed for building the input network model for TVA. In
particular, a network scan contains a set of hosts. Each host has a set of ports, where
each port represents a vulnerability detected by the scanner (in this case, Retina).

 96

Figure 76. Structure so TVA scan data

The scan import preprocessing in Figure 74 shows an additional input, i.e., a set of
mappings from CVE to Nessus identifiers. This allows TVA to share vulnerabilities
modeled for Nessus with vulnerabilities detected by Retina. This correlation is based on
common CVEs between vendors. Figure 77 shows the structure of this mapping file,
which simply maps a CVE to a set of corresponding Nessus identifiers.

Figure 77. Mapping from CVE to Nessus identifier

As originally designed, to capture the network model for TVA, vulnerability scans are
performed from each subnet (or group of subnets comprising a protection domain). Each
scan is configured to scan all machines within the subnet and all machines in neighboring
subnets. The idea is to capture the visibility of all machines to all other machines across
all subnets.

In this design, one scan per subnet, correctly configured, provides the input for TVA.
In other words, the scans need to include not only intra-subnet, but also inter-subnet. One
could also augment the TVA model with additional scans from a particular subnet, to
capture firewall rules that are source-host dependent.

As an example, Figure 78 shows two subnets connected by a firewall. For this
network, one would perform these 2 vulnerability scans:

• Scan 10.10.1.1-254 and 10.10.2.1-254 from machine 10.10.1.1

• Scan 10.10.1.1-254 and 10.10.2.1-254 from machine 10.10.2.1

CAULDRON can then merge the resulting scan files, and build a network model that
includes connectivity (to vulnerable services) among all machines. Each of the scan
results in a single output XML file per scan.

 97

Figure 78. Vulnerability scans for two subnets

Figure 79 shows a similar example, this time with 3 subnets connected by firewalls.
For this network, one would perform these vulnerability scans:

• Scan {10.10.1.1-254, 10.10.2.1-254, 10.10.3.1-254} from 10.10.1.1

• Scan {10.10.1.1-254, 10.10.2.1-254, 10.10.3.1-254} from 10.10.2.1

• Scan {10.10.1.1-254, 10.10.2.1-254, and 10.10.3.1-254} from 10.10.3.1

Figure 79. Vulnerability scans for three subnets

 98

Again, the TVA tool will merge the three resulting scan XML files. As before, each
scan (with multiple targets) results in a single XML file per scan. Each XML scan file is
then preprocessed to convert to a vendor-neutral format, and then merged into a single
TVA input network model.

A new capability was developed for augmenting the TVA network model by
importing firewall rules directly. Any connections to vulnerable services in the firewall
data are added to any vulnerable connections created from vulnerability scans to remote
subnets. Our TVA tool currently supports the import of Sidewinder firewall native data.

One could rely entirely on firewall data for capturing vulnerable connectivity across
subnets. In this case, scan would be done locally in individual subnets for detecting
vulnerable services on hosts in each local subnet. The firewall data then determines
connections to vulnerable services across subnets. One could also scan locally and
remotely, and use firewall data to discover any additional vulnerable connectivity, e.g.,
host-specific firewall rules.

Figure 80 shows the structure of generic (vendor-neutral) firewall data for import to
TVA. Firewall data is a set of ALLOW rules, each rule having a source and destination
that is allowed. Each source or destination has attributes for IP address, subnet mask,
protocol, and port.

Figure 80. Structure of TVA firewall rule data

 99

4.7 Project Events
The following is a summary of project events:

• Kickoff meeting at Air Force Research Laboratory (AFRL) in Rome,
New York (November 17, 2006).

• Presented at US Secret Service Electronic Crimes Task Force Meeting,
Miami, Florida (February 13, 2007).

• Demonstrated at Department of Homeland Security (DHS) Identity
Theft Technology Council, Menlo Park, California (February 27,
2007).

• Presented at AFRL (Rome) Cyber Defense Conference, May 22, 2007.

• Technical Meeting: With Frances Rose (AFRL), at George Mason
University, Fairfax, Virginia, January 8, 2008.

• Technical Meeting: With Thomas Parisi (AFRL), Gilberto Garza (Air
Force), et al, at Lackland Air Force Base, San Antonio, Texas,
February 12, 2008.

• Invited Talk: DHS System Integrator Forum, Arlington, Virginia,
February 21, 2008.

• Provided Project Software: To Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, March 18, 2008.

• Invited Talk: Air Force Scientific Advisory Board, March 28, 2008.

• Technical Meeting: With Thomas Parisi (AFRL), Gilberto Garza (Air
Force), et al, at AFRL, Rome, New York, June 5, 2008.

• Provided Project Software: To Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, April 23, 2008.

• Provided Project Software: To Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, May 8, 2008.

• Provided Project Software: To Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, June 27, 2008.

• Telephone Conference: With Anita Bhat (AFRL) and Thomas Parisi
(AFRL), regarding planned deployment of project software, August
12, 2008.

• Provided Project Software: To Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, July 14, 2008.

• Provided Project Software: To Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, July 30, 2008.

• Provided Project Software: To Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, August 8, 2008.

 100

• Provided Project Software: To Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, September 4, 2008.

• Received Test Scan Data: From Jason Fingerman (AFRL), in support
of attack graph testbed evaluation, September 5, 2008.

• Technical Meeting: With Anita Bhat (AFRL), regarding planned
deployment of project software, Arlington, Virginia, October 17, 2008.

• Provided Technical Briefing Material: To Jason Fingerman (AFRL),
November 12, 2008.

• Reviewed Technical Report: From Jason Fingerman (AFRL), attack
graph tools comparative analysis, November 19, 2008.

• Technical Meeting: With Thomas Parisi (AFRL), Gilberto Garza (Air
Force), and Jason Fingerman (AFRL) at AFRL, regarding evaluation
of project software, Rome New York, November 24, 2008.

• Provided Technical Briefing Material: To Jason Fingerman (AFRL),
December 9, 2008.

• Reviewed Evaluation Data: From Jason Fingerman (AFRL), detailed
testbed data from evaluation of project software, December 8, 2008.

• Technical Support: To Michael Pepin of United States CENTral
COMmand (CENTCOM), responded to technical questions about
deployment of project software, January 5, 2009.

• Software Validation: From Michael Pepin (CENTCOM), indicated
that project software passed Gold Disk validation, January 22, 2009.

• Technical Discussions: With Jason Fingerman (AFRL), regarding
alternative firewall device for possible future input to project software,
January 23, 2009.

• Analyzed Firewall Data: From Jason Fingerman (AFRL),
configuration data for firewall device on attack graph testbed network,
January 26, 2009.

• Technical Support: To Anita Bhat (AFRL), responded to technical
questions about project software deployment, February 3, 2009.

• Tool Demonstration: By Jason Fingerman (AFRL) to Major General
Senty. Resulted in action item to define a strategy for transfer of
project software to (Kelly USA) for operational evaluation, with
technical integration support from AFRL (Brian Spink and Col Dewey
Parker), March 6, 2009.

• Technical Discussions: With Jason Fingerman (AFRL), regarding
support for integrating with Retina vulnerability scanner for input to
project software, March 9, 2009.

 101

• Technical Discussions: With Jason Fingerman (AFRL), regarding
new format for expressing generic firewall rules data for input to
project software, March 9, 2009.

• Reviewed Technical Report: From Gilberto Garza (Air Force), review
of 2008 attack graph tools evaluation conducted by AFRL Rome,”
March 25, 2009.

• Technical Discussions: With Jason Fingerman (AFRL), regarding
improvements to integration with SideWinder firewall device as input
to project software, March 26, 2009.

• Provided Project Software: To Jason Fingerman (AFRL), imports
Sidewinder firewall data, April 8, 2009.

• Provided Project Software: To Jason Fingerman (AFRL), supports
recent Nessus vulnerability scanner output format, April 23, 2009.

• Network Data Analysis: Analyzed network data from Jason
Fingerman (AFRL), recent Nessus scans and Sidewinder rule export
for attack graph testbed network, May 4, 2009.

• Provided Project Software: To Jason Fingerman (AFRL), handles
resolution of domain references in Sidewinder data, May 6, 2009.

 102

5. CONCLUSIONS

We demonstrate a new approach for visualization, correlation, and prediction of
complex multi-step cyber attack graphs through networks. This approach considers
software vulnerabilities across all network hosts, network connectivity, firewall effects,
and potential attacker exploits. This approach augments traditional graph-centric
representations with graph adjacency matrices.

This approach helps make complex attack graphs manageable, while including all
known network attack paths. We show application of this approach to network
hardening, attack correlation, and attack origin/impact prediction.

Our analysis combines cyber vulnerabilities in ways that real attackers might do,
discovering all possible known attack paths through a network. This comprehensive
result provides network defense in depth, showing multiple options (and optimal
recommendations) for mitigating potential attacks.

From TVA attack graphs, we compute recommendations for optimal network
hardening. We also demonstrate sophisticated visualization capabilities for attack graph
exploration.

Our TVA tool was subjected to testing and validation by an independent team.
Feedback from the evaluation led to two important extensions to our TVA tool:
additional scanner support (Retina), and firewall support (Sidewinder). Support for these
is important because of their widespread deployment throughout the DoD.

From the attack graphs predicted by TVA, we demonstrate optimal deployment of
intrusion detection sensors. This covers all known vulnerability paths using the
minimum number of sensors. Our optimal sensor placement is an instance of the NP-
hard minimal set cover problem, which we solve through an efficient greedy algorithm.

Once sensors are deployed and alerts are raised, the predictive attack graph allows us
to correlate isolated intrusion alerts into multi-step attacks. It also supports prioritization
of alerts based on attack graph distance to critical assets. Overall, this helps us formulate
the best options for responding to attacks.

By propagating individual vulnerability metrics through our attack graphs, we
compute a new metric that measures the cyber security of a network. We use this metric
to compare risk mitigation options in terms of maximizing security and minimizing cost.
Our flexible new attack graph metric model quantifies overall security of networked
systems, e.g., for cost/benefit tradeoffs for analyzing return on security investment.

 103

6. REFERENCES

[1] S. Noel, S. Jajodia, “Understanding Complex Network Attack Graphs through
Clustered Adjacency Matrices,” in Proceedings of the 21st Annual Computer
Security Applications Conference, Tucson, Arizona, December 2005.

[2] S. Jajodia, S. Noel, “Topological Vulnerability Analysis,” in Proceedings of the
Army Research Office Cyber Situational Awareness Workshop, S. Jajodia, C. Wang,
V. Swarup, P. Liu (eds.), Springer, 2009.

[3] S. Noel, S. Jajodia, “Proactive Intrusion Prevention and Response via Attack
Graphs,” in Practical Intrusion Analysis: Prevention and Detection for the Twenty-
First Century, R. Trost (ed.), Addison-Wesley Professional, 2009.

[4] S. Noel, S. Jajodia, “Advanced Vulnerability Analysis and Intrusion Detection
through Predictive Attack Graphs,” Critical Issues in Command, Control,
Communications, Computers, Intelligence (C4I), Armed Forces Communications
and Electronics Association (AFCEA) Solutions Series, Lansdowne, Virginia, May
2009.

[5] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, K. Prole, “Advances in
Topological Vulnerability Analysis,” in Proceedings of the Cybersecurity
Applications & Technology Conference For Homeland Security, Washington, DC,
March 2009.

[6] S. Noel, S. Jajodia, “Optimal IDS Sensor Placement and Alert Prioritization Using
Attack Graphs,” Journal of Network and Systems Management, special issue on
Security Configuration Management, acceptance ratio 4/27, September 2008.

[7] S. O’Hare, S. Noel, K. Prole, “A Graph-Theoretic Visualization Approach to
Network Risk Analysis,” in Proceedings of the Workshop on Visualization for
Computer Security, Cambridge, Massachusetts, September 2008.

[8] S. Jajodia, S. Noel, “Topological Vulnerability Analysis: A Powerful New
Approach for Network Attack Prevention, Detection, and Response,” in Algorithms,
Architectures, and Information Systems Security, B. Bhattacharya, S. Sur-Kolay, S.
Nandy, and A. Bagchi (eds.), World Scientific Press, 2007.

[9] S. Noel, S. Jajodia, “Attack Graphs for Sensor Placement, Alert Prioritization, and
Attack Response,” Cyberspace Research Workshop, Air Force Cyberspace
Symposium, Shreveport, Louisiana, November 2007.

[10] L. Wang, S. Noel, S. Jajodia, “Minimum-Cost Network Hardening Using Attack
Graphs,” Computer Communications, 29(18), 3812-3824, November 2006.

[11] S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis of Network Attack
Vulnerability,” in Managing Cyber Threats: Issues, Approaches and Challenges, V.
Kumar, J. Srivastava, A. Lazarevic (eds.), Kluwer Academic Publisher, 2005.

 104

[12] S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion Events and Building
Attack Scenarios through Attack Graph Distances,” in Proceedings of the 20th
Annual Computer Security Applications Conference, Tucson, Arizona, December
2004.

[13] S. Noel, S. Jajodia, “Managing Attack Graph Complexity through Visual
Hierarchical Aggregation,” in Proceedings of the Workshop on Visualization and
Data Mining for Computer Security, Fairfax, Virginia, October 2004.

[14] P. Ning, D. Xu, C. Healey, R. St. Amant, “Building Attack Scenarios through
Integration of Complementary Alert Correlation Methods,” in Proceedings of the
11th Annual Network and Distributed System Security Symposium, February 2004.

[15] S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, “Efficient Minimum-Cost Network
Hardening via Exploit Dependency Graphs,” in Proceedings of the 19th Annual
Computer Security Applications Conference, Las Vegas, Nevada, December 2003.

[16] R. Ritchey, B. O’Berry, S. Noel, “Representing TCP/IP Connectivity for
Topological Analysis of Network Security,” in Proceedings of the 18th Annual
Computer Security Applications Conference, Las Vegas, Nevada, December 2002.

[17] P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, Graph-Based Network
Vulnerability Analysis,” in Proceedings of the 9th Conference on Computer and
Communications Security, Washington, DC, November 2002.

[18] F. Cuppens, A. Miege, “Alert Correlation in a Cooperative Intrusion Detection
Framework,” in Proceedings of the 2002 Symposium on Security and Privacy, May
2002.

[19] G. Di Battista, P. Eades, R. Tamassia, I. Tollis, Graph Drawing: Algorithms for the
Visualization of Graphs, Prentice Hall, 1999.

[20] J. Heer, S. Card, J. Landay, “Prefuse: A Toolkit for Interactive Information
Visualization,” in Proceedings of the Conference on Human Factors in Computing
Systems, Portland, Oregon, April 2005.

[21] B. Shneiderman, Treemaps for Space-Constrained Visualization of Hierarchies,
http://www.cs.umd.edu/hcil/treemap-history/, last updated June 25, 2009.

[22] L. Williams, R. Lippmann, K. Ingols, “An Interactive Attack Graph Cascade and
Reachability Display,” in Proceedings of the Workshop on Visualization for
Computer Security, 2008.

[23] D. Chakrabarti, S. Papadimitriou, D. Modha, C. Faloutsos, “Fully Automatic Cross-
Associations,” in Proceedings of the 10th International Conference on Knowledge
Discovery & Data Mining, Seattle, Washington, August 2004.

[24] P. Eades, Q.-W. Feng, “Multilevel Visualization of Clustered Graphs,” in
Proceedings of the Symposium on Graph Drawing, September 1996.

[25] K. Lakkaraju, W. Yurcik, A. Lee, “NVisionIP: NetFlow Visualizations of System
State for Security Situational Awareness,” in Proceedings of the Workshop on
Visualization and Data Mining for Computer Security, Fairfax, Virginia, October
2004.

http://www.cs.umd.edu/hcil/treemap-history/

 105

[26] J. McPherson, K.–L. Ma, P. Krystosek, T. Bartoletti, M. Christensen, “PortVis: A
Tool for Port-Based Detection of Security Events,” in Proceedings of the Workshop
on Visualization and Data Mining for Computer Security, Fairfax, Virginia,
October 2004.

[27] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Koné, A. Thomas, “A Hardware
Platform for Network Intrusion Detection and Prevention,” in Proceedings of the
3rd Workshop on Network Processors & Applications, Madrid, Spain, 2004.

[28] M. Rolando, M. Rossi, N. Sanarico, D. Mandrioli, “A Formal Approach to Sensor
Placement and Configuration in a Network Intrusion Detection System,” in
Proceedings of the International Workshop on Software Engineering for Secure
Systems, Shanghai, China, 2006.

[29] S. Jha, O. Sheyner, J. Wing, Minimization and Reliability Analyses of Attack
Graphs, Technical Report CMU-CS-02-109, School of Computer Science, Carnegie
Mellon University, 2002.

[30] R. Deraison, Nessus, http://www.nessus.org, last retrieved June 2008.

[46] MITRE, CVE – Common Vulnerabilities and Exposures, http://cve.mitre.org/, last
retrieved October 2008.

[47] Bugtraq Vulnerabilities, http://www.securityfocus.com/vulnerabilities, last
retrieved October 2008.

[48] Centennial Software, Discovery Asset Management, http://www.centennial-
software.com/products/discovery/, last retrieved September 2008.

[49] Symantec Corporation, Symantec DeepSight Threat Management System,
https://tms.symantec.com/Default.aspx, last retrieved August 2008.

[50] eEye Digital Security, Retina Network Security Scanner, http://www.eeye.com/
html/Products/Retina/index.html , last retrieved July 2008.

[51] Foundstone, FoundScan, http://www.foundstone.com/us/index.asp, last retrieved
September 2008.

[31] D. Zerkle, K. Levitt, “Netkuang – A Multi-Host Configuration Vulnerability
Checker,” in Proceedings of the 6th USENIX Unix Security Symposium, 1996.

[32] R. Ritchey, P. Ammann, “Using Model Checking to Analyze Network
Vulnerabilities,” in Proceedings of the Symposium on Security and Privacy, 2000.

[33] L. Swiler, C. Phillips, D. Ellis, S. Chakerian, “Computer-Attack Graph Generation
Tool,” in Proceedings of the Information Survivability Conference & Exposition II,
2001.

[34] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, “Automated Generation and
Analysis of Attack Graphs,” in Proceedings of the Symposium on Security and
Privacy, 2002.

[35] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K. Kratkiewicz, M. Artz, R.
Cunningham, “Validating and Restoring Defense in Depth Using Attack Graphs,”
in Proceedings of the Military Communications Conference, 2006.

http://www.nessus.org
http://cve.mitre.org/
http://www.securityfocus.com/vulnerabilities
http://www.centennial-software.com/products/discovery/
http://www.centennial-software.com/products/discovery/
http://www.centennial-software.com/products/discovery/
https://tms.symantec.com/Default.aspx
http://www.eeye.com/
http://www.foundstone.com/us/index.asp

 106

[36] W. Li, An Approach to Graph-Based Modeling of Network Exploitations, PhD
dissertation, Department of Computer Science, Mississippi State University, 2005.

[37] M. Swanson, N. Bartol, J. Sabato, J Hash, L. Graffo, Security Metrics Guide for
Information Technology Systems, Technical Report 800-55, National Institute of
Standards and Technology, 2003.

[38] Forum of Incident Response and Security Teams (FIRST), Common Vulnerability
Scoring System (CVSS), http://www.first.org/cvss/, last retrieved June 2008.

[52] Internet Engineering Task Force, The Intrusion Detection Message Exchange
Format (IDMEF), http://www.ietf.org/rfc/rfc4765.txt, last retrieved November
2008.

[53] ArcSight, Enterprise Security Management, http://www.arcsight.com/, last retrieved
October 2008.

[54] SourceForge, Snort IDMEF Plugin, http://sourceforge.net/projects/snort-idmef, last
retrieved July 2008.

[55] Sourcefire, Snort – The De Facto Standard for Intrusion Detection/Prevention,
http://www.snort.org/, last retrieved September 2008.

[39] A. Gilat, MATLAB: An Introduction with Applications, 3rd Edition, Wiley, 2008.

[40] P. Grünwald, “A Tutorial Introduction to the Minimum Description Length
Principle,” in Advances in Minimum Description Length: Theory and Applications,
P. Grünwald, I. Myung, M. Pitt (eds.), MIT Press, 2005.

[41] Matrix Decomposition, http://en.wikipedia.org/wiki/Matrix_decomposition, last
modified September 13, 2009.

[42] E. Nuutila, Efficient Transitive Closure Computation in Large Digraphs, Ph.D.
dissertation, Acta Polytechnica Scandinavica, Helsinki, 1995.

[43] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 2nd
Edition, MIT Press and McGraw-Hill, 2001.

[56] R. Karp, “Reducibility among Combinatorial Problems,” in Complexity of
Computer Computations, 1972.

[57] “A Threshold of Ln N for Approximating Set Cover,” Journal of the Association of
Computing Machinery, 45(4), 1998.

[58] S. Skiena, The Algorithm Design Manual, Springer-Verlag, 1997.

[59] R. Kalapala, M. Pelikan, A. Hartmann, Hybrid Evolutionary Algorithms on
Minimum Vertex Cover for Random Graphs, Report No. 2007004, University of
Missouri–St. Louis, 2007.

[44] Security Content Automation Protocol (SCAP), http://scap.nist.gov/, last retrieved
September 2009.

[45] National Vulnerability Database (NVD), http://nvd.nist.gov/, last retrieved
September 2009.

[60] The Extensible Stylesheet Language Family (XSL), http://www.w3.org/Style/XSL/.

http://www.first.org/cvss/
http://www.ietf.org/rfc/rfc4765.txt
http://www.arcsight.com/
http://sourceforge.net/projects/snort-idmef
http://www.snort.org/
http://en.wikipedia.org/wiki/Matrix_decomposition
http://scap.nist.gov/
http://nvd.nist.gov/
http://www.w3.org/Style/XSL/

 107

7. LIST OF ACRONYMS

Acronym Meaning

AFCEA Armed Forces Communications and Electronics Association

AFRL Air Force Research Laboratory

ARP Address Resolution Protocol

C4I Command, Control, Communications, Computers, Intelligence

CENTCOM CENTral COMmand

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DoD Department of Defense

DHS Department of Homeland Security

DMZ Demilitarized Zone

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

IDMEF Intrusion Detection Message Exchange Format

IIS Internet Information Server

IP Internet Protocol

LAN Local Area Network

NIST National Institute of Standards and Technology

NT New Technology

NVD National Vulnerability Database

RSH Remote SHell

SCAP Security Content Automation Protocol

SSH Secure SHell

TCP Transmission Control Protocol

TVA Topological Vulnerability Analysis

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

