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ABSTRACT 
 
Many agencies construct catalogs of the hundreds of seismic events that occur daily around the world. The  
Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) program merges these 
catalogs together into a composite catalog containing multiple descriptions of the same seismic event, one from each 
catalog of interest. The merging process requires associating seismic events in individual catalogs (herein called 
origins), that are independent estimates of the same seismic event. In this paper we describe application of classical 
cluster analysis techniques that provide a straightforward and robust solution to this merging problem. The resulting 
algorithm is much simpler to tune than the rule-based methodology used by EvLoader, which is the application 
currently used to merge catalogs in the GNEMRD program. 

For this study, we used a simple agglomerative hierarchical clustering technique to create clusters of similar origins 
where the various origins in a cluster represent different estimates of the seismic parameters of the same actual 
seismic event. Similarity between origins is calculated using a difference measure based on latitude, longitude, 
depth, time, and catalog author. Uncertainty in locations is accounted for by dividing distances between origins and 
differences in origin time by uncertainty estimates from the catalogs. To enforce the assumption that each catalog 
contains only a single origin for each event, origins from the same catalog are assigned infinite difference, regardless 
of other parameter values.  

To evaluate our new method, we processed a dataset from December 2004 to May 2005 that contains approximately 
65,000 origins from 34,000 events recorded in a total of 15 different catalogs including standard global catalogs 
(e.g., International Data Centre [IDC], PDE) as well as various regional catalogs. We compare our results with the 
results generated by processing with the existing rule-based algorithm used in the EvLoader software. The vast 
majority of the event groupings generated by the clustering algorithm are equivalent to the event groupings created 
by EvLoader. Some of the event groupings that are different arise from differences in how time versus depth across 
origins is interpreted, and we examine these in some detail. We conclude that the new agglomerative clustering 
methodology produces better results and is significantly easier to tune; hence, we plan to incorporate the new 
algorithm into EvLoader in the near future. 
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OBJECTIVES 

As seismic events occur around the world, different agencies construct catalogs containing information describing 
those events. The GNEMRD program takes these event descriptions, herein called origins, from multiple catalogs 
and combines them into one catalog with origins for common events grouped through an EVENT table. This process 
must ensure that the resulting event groupings do not contain more than one origin from the same originating 
catalog, and that the origins describing an event do in fact describe the same seismic event, which can be very 
challenging for poorly determined catalog origins.  

Due to the volume of data collected on a daily basis, this process should be automated as much as possible. Most 
agencies that create these event groups from multiple catalogs use either an automated process or some combination 
of an automated process with some level of human interaction to resolve the cases the automated process was unable 
to handle properly. 

EvLoader (Ballard and Lewis, 2004) is the current application used during integration of the multiple sets of 
information contained within the Air Force Technical Applications Center (AFTAC) Knowledge Base. EvLoader 
merges one or more events from a source EVENT table into a target EVENT table. All information linked to the source 
event is also merged. With EvLoader, origins in the source event can be merged with origins in the target event 
based on either EVID number or spatial/temporal correlation. While EvLoader yields correct results, it is essentially a 
rule-based application that is cumbersome to comprehend and maintain. 
  
We propose an automated solution to this problem that uses an application of classical cluster analysis techniques, 
specifically a solution based on an agglomerative hierarchical clustering algorithm (Everitt et al., 2001; Romesburg, 
1984). The resulting algorithm is much simpler to tune than the rule-based methodology used by EvLoader and 
generates clusters with errors at a rate of approximately 0.1% (errors are discussed in greater detail in the Validation 
section).  

RESEARCH ACCOMPLISHED 

Clustering is a mathematical method for determining which subsets of objects in a dataset are similar enough to be 
clustered together (Everitt et al., 2001; Romesburg, 1984). To cluster objects, a similarity function must be defined 
that returns how similar any two objects in a set are. Objects in a set that are sufficiently similar can be grouped into 
the same cluster.  

This mechanism of assigning similarity values to pairs of origins and then grouping origins that are sufficiently 
similar into an event (cluster) seemed well suited to an automated process for grouping origins into events. While 
assorted clustering techniques were explored, an approach based on agglomerative hierarchical clustering performed 
well for our initial attempt at automating a solution to this merging problem. Future work will explore alternate 
clustering techniques (i.e., min-cut) in order to ascertain which clustering approach is the most appropriate fit for 
this problem domain. 

Dissimilarity Function 

A pivotal component to the clustering process is the mathematical function that assigns a similarity value to two 
objects. This function is continuous on [0, 1]. Two objects are identical if they have a similarity value of 1, and they 
are not at all similar if they have a similarity value of 0.  

When determining how similar two origins are, the spatial and the temporal distances between two origins are used. 
Thus, lower distance values represent origins that are “closer” to each other (more similar) while higher distance 
values indicate origins that are “farther” from each other (less similar). This characteristic of how origin similarity is 
determined resulted in the use of a dissimilarity measure in place of a similarity measure; low dissimilarity values 
indicate origins that are similar while high dissimilarity values indicate origins that are not at all similar. 

This dissimilarity function must assign a value used to determine if two origins have low enough dissimilarity to be 
contained in the same event. It must take into account the distance between the latitude and longitude of the two 
origins under consideration as well as their separation in time, and it must account for the uncertainties associated 
with these values. If two origins have the same catalog author, they are assigned infinite dissimilarity to mark them 
as completely dissimilar since they cannot be in the same event.  
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The dissimilarity function used is as follows: 
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where  

D is the dissimilarity of two origins (∞ = completely dissimilar, 0.0 = identical),  
Ai and Aj are the catalog authors of the two origins, 
δ is the horizontal separation of the two origins in degrees,  
dδ is the sum of the lengths of the semi-major axes of the uncertainty ellipses surrounding the two origins, in 

degrees,  
t is the difference between the origin times of the two origins, in seconds, corrected for origin depth as described 

in the Adjustments to Data section, and  
dt is the sum of the origin time uncertainties of the two origins, in seconds. 

 
Calculating the dissimilarity using this dissimilarity function results in values that are on the interval [0, ∞]. In order 
for these values to be useful in a clustering context, they must be scaled to values ranging from 0.0 (lowest 
dissimilarity) to 1.0 (completely dissimilar). Evaluation of initial results revealed that any dissimilarity value greater 
than 10 represented origins that could not possibly be in the same event grouping. Thus, all values generated by this 
dissimilarity function that were greater than 10 were simply set to a dissimilarity value of 1.0 to represent complete 
dissimilarity. All values less than or equal to10 were divided by 10 to produce a dissimilarity value ranging between 
0.0 and 1.0. 
  
One of the many benefits of this dissimilarity measure is how much information can be taken into account when 
calculating dissimilarity. Currently, the only origin data factored into this dissimilarity calculation are latitude, 
longitude, time, catalog author, origin time error, and semimajor axis of error ellipse information. However, if other 
information such as magnitude or event type needed to be utilized, this could easily be handled by modifying the 
dissimilarity function. 

Agglomerative Hierarchical Clustering Algorithm Summary 

When clustering a set of N origins, clustering begins with a set of N clusters, i.e. one for every origin. The 
agglomerative hierarchical clustering algorithm then assigns a dissimilarity value to each pair of origins in the set 
under consideration and stores these dissimilarity values in a dissimilarity matrix. For a set of five origins, the 
dissimilarity matrix might look something like the contents of Table 1. 

Table 1. Sample Dissimilarity Matrix for Five Origins. 

 1 2 3 4 5 
1 0.00 0.04 0.30 0.02 0.01 
2 0.04 0.00 0.09 0.07 0.40 
3 0.30 0.09 0.00 0.08 0.90 
4 0.02 0.07 0.08 0.00 0.15 
5 0.01 0.40 0.90 0.15 0.00 

  

The dissimilarity function returns 0.0 if two origins have no dissimilarity (are identical) and 1.0 if they have high 
dissimilarity (not at all similar). Recall that if two origins are from the same catalog, they are immediately assigned a 
maximum dissimilarity since they can never belong in the same cluster (event grouping). Notice that the matrix is 
symmetric because the dissimilarity of origin A with origin B is the same as origin B with origin A. Further, the 
diagonal terms themselves are the dissimilarities of each origin with itself (always 0.0). Thus, we only need to store 
the upper right or lower left portion of the matrix. 
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Once this matrix has been constructed, the clustering can begin. The first step in the clustering algorithm is to find 
the two origins that are the least dissimilar. In Table 1, this would be the dissimilarity value of 0.01 between origins 
1 and 5. These origins are linked together in a cluster, and the dissimilarity matrix must be updated to contain 
dissimilarity information for this new cluster and the remaining origins. The dimension of the matrix (i.e., the 
number of rows and columns) will also be reduced by 1. 

The dissimilarity between this new cluster (1,5) and the other origins (2, 3, and 4) can be computed based on the 
existing dissimilarity values between the origins in the original dissimilarity matrix, i.e. no new dissimilarities need 
to be computed. For example, when determining which dissimilarity to keep between cluster (1,5) and origin 2, the 
dissimilarity between origin 1 and origin 2 (0.04) and the dissimilarity between origin 5 and origin 2 (0.40) are 
considered. A variety of techniques exist that consider those two dissimilarities when yielding a new dissimilarity 
between (1,5) and origin 2 such as keeping the lowest dissimilarity, keeping the highest dissimilarity, or keeping the 
average. Analysis of our initial results revealed that keeping the average dissimilarity yields the best results, so the 
dissimilarity between (1,5) and origin 2 is set to 0.22 (the average of 0.04 and 0.40). Table 2 shows the results the 
resulting rebuilt dissimilarity matrix for our example. 

Table 2. Rebuilt Dissimilarity Matrix after Creating the (1,5) Cluster  

 2 3 4 (1,5) 
2 0.00 0.09 0.07 0.22 
3 0.09 0.00 0.08 0.60 
4 0.07 0.08 0.00 0.09 

(1,5) 0.22 0.60 0.09 0.00 
 

If this process continues, every origin will eventually be combined into one all encompassing cluster, which is not 
the intended result. Thus, a dissimilarity threshold must be established that determines when no new clusters should 
be formed. This threshold is a value that represents the highest possible dissimilarity values that are allowed for 
origins within the same cluster. For the example in Table 2, if this threshold were set at 0.06, then all possible 
clusters would have been found since no remaining dissimilarity values are lower than 0.06. (Recall that lower 
dissimilarity values indicate higher similarity between origins.) The algorithm would have clustered five origins into 
four event clusters: (1,5), (2), (3), and (4). With a threshold set, this clustering process will continue to group origins 
into event clusters until all of the remaining dissimilarities in the dissimilarity matrix are greater than the 
dissimilarity threshold.  

A dendrogram is a useful way to visualize which origins are grouped into clusters. The dendrogram in Figure 1 was 
generated from the results of clustering 77 origins into events. Events that contain only 1 origin are not represented 
in the dendrogram. Events containing more than one origin are represented by tree branch-like (or root-like) 
structures, where the lines tie together the least dissimilar two events, then the next least dissimilar event is tied to 
that line, and so on. The horizontal axis represents the dissimilarity value that existed between the origins when they 
were grouped into the same event cluster. Figure 1 demonstrates how origins with a range of dissimilarity values can 
still be clustered into events. Origins originally clustered into the event with EVID 29, had a higher dissimilarity 
value than the rest of the origins (between 0.00175 and 0.0020); this dissimilarity value was still low enough for 
those origins to be considered part of the same event. Origins originally clustered into the event with EVID 19 were 
much less dissimilar.  
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Figure 1. Sample dendrogram built from clustering 77 origins into events (only events with more than one 
origin shown) 

Dataset Used 

The origin dataset used by the clustering algorithm to generate event clusters and to check the accuracy of those 
clusters was a 7-month time segment of a much larger dataset collected by GNEMRD researchers at Los Alamos 
National Laboratory (LANL). This dataset contains predominantly global bulletin event information that LANL has 
collected from the following agencies: 

• REB: the Reviewed Event Bulletin of the International Data Centre for the Comprehensive  
Nuclear-Test-Ban Treaty Organization, Vienna, Austria 

• PDE: Preliminary Determination of Epicenters, the monthly version of event bulletins from the National 
Earthquake Information Center (NEIC) 

• EHB: Engdahl, van der Hilst, and Buland which are refined origins from Engdahl et al., (1998) 

In all, this dataset included origin information from 17 different catalogs, and event groupings had already been 
assigned and checked by LANL. Having an existing grouping provided a way to verify that the groupings generated 
by the clustering algorithm were indeed correct. For our test, we selected the November 2004–May 2005 timeframe 
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because it contains the December 26, 2004 Sumatra earthquake along with thousands of aftershocks spanning the 
next several months, thus providing a good test for our clustering algorithm. 

This data were stored in database tables that conform to the National Nuclear Security Administration (NNSA) Core 
Schema (Carr, 2007). 

Adjustments to Data 

In order to accurately determine the dissimilarity between two origins, certain adjustments had to be made to the 
original data to accommodate missing uncertainty information. When no uncertainty information existed for the 
semimajor axis of error ellipse (SMAJAX column in the ORIGERR table), a default value of 20 km was used. When the 
origin time error uncertainty information (STIME column in the ORIGERR table) did not exist or was lower than a 
threshold of 10 seconds (an STIME threshold determined to be the best through analysis of the results of using a 
range of STIME values), an origin’s STIME would be adjusted to be equal to the STIME threshold of 10 seconds.  

Since some catalogs may have computed free-depth origins or may have fixed the origin depth at different values, 
we adjusted all origin times to 0 depth before calculating the dissimilarity between origins. This was accomplished 
by subtracting from the original origin time a correction term equal to the depth of the event, lengthened to account 
for an incidence angle of 30º, then multiplied by the integrated crustal slowness from the AK135 velocity model 
(Kennet et al., 1995). 

Validation 

One of the benefits of using origin data from a dataset that has already grouped those origins into events is that the 
event groupings generated by the clustering algorithm can easily be checked against the event groupings in the 
original dataset. The event groupings in the original origin data are represented in the form of the EVID column (in 
the ORIGIN table) that identified which event the origin belonged to, i.e., all origins in the same event have the same 
EVID.  

Evaluation of our approach demonstrated that the number of event clusters found by the clustering algorithm was 
comparable to the event groupings that already existed in the LANL dataset when an appropriate dissimilarity 
threshold (dissimilarity values low enough to belong in the same cluster) was used as shown in Figure 2.  
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Figure 2. Difference in the number of clusters found versus the number of events designated in the original 
dataset as a function of the dissimilarity threshold allowed within a given cluster. 
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Figure 2 shows that once an appropriate dissimilarity threshold was determined, the clusters formed were 
comparable to the event groupings in the original data. The resulting clusters were checked to determine the 
following:  

a) Clusters had more than one EVID in them. This would indicate that a cluster was formed that contained 
origins that were not originally grouped together. 

b) Origins that were originally grouped in the same event were now in separate clusters. This would 
indicate that the algorithm determined that these origins should not be in the same event, while the 
original event grouping placed the origins in the same event. 

Many of the errors found involved origin times that had been adjusted to depth 0; this could account for why the 
clustering algorithm found different event groupings than were present in the original dataset.  

The clustering algorithm did not produce clustering results that were identical to the original event groupings found, 
although the number of generated clusters with errors was around 0.1% of the total number of clusters generated. 
The following types of errors were encountered: origins with low enough dissimilarity to be grouped in the same 
event cluster that had the same catalog author, origins that were originally in separate events that were placed in the 
same event cluster, and origins that were originally in the same event that were divided into separate events. The 
different types of errors found in the clustering results are discussed in greater detail below.  

Error Scenario 1: Origins with Low Dissimilarity and Non-Unique Authors 

In this scenario, multiple origins exist that have dissimilarities low enough to indicate that they could belong in the 
same event grouping. However, some of the origins have the same catalog author, which prevents grouping all of the 
origins into the same event. In some cases, the clustering algorithm did not always preserve the groupings present in 
the original dataset. Consider the following origin data: 

 LAT LON DEPTH TIME AUTH STIME SMAJAX 
1 -1.8306 

 
99.5737 
 

0 
 

1113135202.4700 
 

REB-IDC 
 

0.780000 
adjusted: 
10.0 

32.200000 
 

2 -1.802 
 

99.625 
 

30 
 

1113135207.0700 
adjusted to depth 0: 
1113135201.3118 
 

EDR-M 
 

0.380000 
adjusted: 
10.0 

17.200000 
 

3 -1.51 
 

99.798 
 

38.7 
 

1113135202.1800 
adjusted to depth 0: 
1113135195.0024 
 

EDR-M 
 

5.250000 
adjusted:  
10.0 

55.407895 
 

4 -1.4674 
 

99.8207 
 

0 
 

1113135196.6700 
 

REB-IDC 
 

1.150000 
adjusted:  
10.0 

59.000000 
 

 
The dissimilarity values for these origins are as follows (sorted from lowest to highest): 

Origins 3 and 4: 0.0000956 
Origins 1 and 2: 0.0001441 
Origins 2 and 4:  0.0006088 
Origins 1 and 3: 0.0006195 
Origins 1 and 4: 1.0 (same auth) 
Origins 2 and 3: 1.0 (same auth) 

In the original dataset, origins 1 and 3 were in the same event and origins 2 and 4 were in the same event. However, 
based on the dissimilarity values, the clustering algorithm clustered together origins 1 and 2 as one event and origins 
3 and 4 as another event. 
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Error Scenario 2: Origins Originally in Separate Events Grouped into a Single Event 

The clustering algorithm would occasionally group origins that were originally in separate events into one event. 
Consider the following origin data: 

 LAT LON DEPTH TIME AUTH STIME SMAJAX 
1 11.2033 90.6702 0 1104059010.1300 REB-IDC 7.420000 

adjusted:  
10.0 

63.000000 

2 11.27864693 
 

93.94496788 
 

20 1104059031.5828 
adjusted to depth 0: 
1104059027.6011 

LANL:GT20070601
 

1.135997 
adjusted:  
10.0 

33.956238 
 

3 11.231 93.867 20 1104059031.8200 
adjusted to depth 0: 
1104059027.8383 

EHB05_O-FEQ -1.000000 
adjusted:  
10.0 

191.000000

 

The dissimilarity values for these origins are as follows (sorted from lowest to highest): 
Origins 2 and 3:  0.0000460 
Origins 1 and 3: 0.0013246 
Origins 1 and 2: 0.0020136 

 
In the original dataset, origins 2 and 3 were in the same event and origin 1 was in an event on its own. The clustering 
algorithm determined that these three origins should be grouped in the same event cluster since the dissimilarity 
values were low enough, and all of the authors were unique. 
 
Error Scenario 3: Origins Originally in the Same Event Divided into Separate Events 

In this final scenario, origins that had originally been part of the same event were separated into two different events. 
Consider the following origin data: 

 LAT LON DEPTH TIME AUTH STIME SMAJAX 
1 38.6051 27.4052 0 1105623537.5800 REB-IDC 1.36 

adjusted: 
10.0 

18.5 

2 39.25 27.98 10 1105623441.6000 
adjusted to depth 0: 
1105623439.60913 

EDR-M:ATH -1 
adjusted: 
10.0 

-1 
adjusted: 
20.0 

 
The dissimilarity value for origins 1 and 2 is 0.0053974. This dissimilarity value was higher than the dissimilarity 
threshold, which resulted in the clustering algorithm determining that these origins could not be part of the same 
event. Thus, it took two origins that had been part of the same event and separated them into two separate events. 
 

CONCLUSIONS AND RECOMMENDATIONS 

Based on the results of comparing the clusters/event groupings generated by the clustering algorithm with the event 
groupings already present in the LANL data and the event groupings generated by EvLoader, this clustering 
approach holds promise for an automated means to discovering event groupings from origin data. The high level of 
flexibility offered by an easy-to-customize dissimilarity function allows the clustering application to take any 
relevant origin information into account when determining which origins are similar enough to belong in the same 
event.  
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