

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2009
2. REPORT TYPE

Conference Paper Postprint
3. DATES COVERED (From - To)

June 2007 – March 2009
4. TITLE AND SUBTITLE

ENABLING DISTRIBUTED MANAGEMENT FOR DYNAMIC
AIRBORNE NETWORKS

5a. CONTRACT NUMBER
FA8750-07-C-0110

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Cho-Yu J. Chiang, Gary Levin, Shihwei Li, Constantin Serban, Michelle
Wolberg, Ritu Chadha, Gregory Hadynski, Lee LaBarre

5d. PROJECT NUMBER
NATM

5e. TASK NUMBER
TE

5f. WORK UNIT NUMBER
LC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Telcordia Technologies, Inc.
One Telcordia Drive
Piscataway, NJ 08854-4182

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIGC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2009-64

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited PA# 88ABW-2009-1101 Date Cleared: 20-March-2009

13. SUPPLEMENTARY NOTES
© 2009 IEEE. This paper was published in the Proceedings of the IEEE: International Symposium on Policies for Distributed
Systems and Networks; Imperial College London, UK, 20-22 July-2009. This work is copyrighted. One or more of the authors is a
U.S. Government employee working within the scope of their Government job; therefore, the U.S. Government is joint owner of the
work and has the right to copy, distribute, and use the work. All other rights are reserved by the copyright owner.
14. ABSTRACT
In this paper we describe our experience with integrating a distributed policy-based management system (DRAMA) with an open-
source network management system (OpenNMS). Network operations seeking the benefits of policy-based network management
often have pre-existing network monitoring systems. While these pre-existing systems are capable of monitoring the network, they
are limited in their: 1) ability to provide distributed network management, 2) support for automatically reconfiguring the network in
response to network events, and 3) ability to adjust management traffic bandwidth consumption based on network conditions. For
dynamic networks such as those consisting of airborne platforms, there is a need to provide the above capabilities in any
management solution while preserving any underlying management systems. As a result, we integrated DRAMA with OpenNMS to
add distributed policy management capability to a commonly used network management system. In this paper, we describe the
background for this effort, our approach for integrating OpenNMS with DRAMA, and the design of a distributed resource
indirection framework that allows the use of the same policies across different distributed policy decision points managing network
devices with different attribute values.
15. SUBJECT TERMS
Mobile networks, intelligent agents, policy based networking, ad-hoc networks, network management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF RESPONSIBLE PERSON
Gregory Hadynski

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Enabling Distributed Management for Dynamic Airborne Networks

Cho-Yu J. Chiang, Gary Levin, Shihwei Li, Constantin Serban, Michelle Wolberg, Ritu Chadha
Telcordia Technologies

{chiang, gary, sli, serban, mwolberg, chadha} @research.telcordia.com
Gregory Hadynski, Air Force Rome Laboratories, Gregory.Hadynski@rl.af.mil

Lee LaBarre, MITRE, clabarre@mitre.org

Abstract

In this paper we describe our experience with
integrating a distributed policy-based management
system (DRAMA) with an open-source network
management system (OpenNMS). Network operations
seeking the benefits of policy-based network
management often have pre-existing network
monitoring systems. While these pre-existing systems
are capable of monitoring the network, they are
limited in their: 1) ability to provide distributed
network management, 2) support for automatically
reconfiguring the network in response to network
events, and 3) ability to adjust management traffic
bandwidth consumption based on network conditions.
For dynamic networks such as those consisting of
airborne platforms, there is a need to provide the
above capabilities in any management solution while
preserving any underlying management systems. As a
result, we integrated DRAMA with OpenNMS to add
distributed policy management capability to a
commonly used network management system. In this
paper, we describe the background for this effort, our
approach for integrating OpenNMS with DRAMA, and
the design of a distributed resource indirection
framework that allows the use of the same policies
across different distributed policy decision points
managing network devices with different attribute
values.

1. Introduction

The benefits of distributed policy-based network
management for mobile ad hoc networks have been
demonstrated in previous work [1][3][4][5][6]. All of
our prior effort was “green field” work and assumed a
clean slate where no management capabilities existed
and therefore management capabilities would need to
be developed from the ground up for the network
elements and the network environment at hand. In
reality, however, a policy-based management system

often has to interface and interoperate with existing
network management systems in order to augment
their capabilities for many reasons, including cost
effectiveness and continuity of operations.

Our work was performed in the context of an airborne
network consisting of multiple high-speed flying
platforms, a handful of ground mobile nodes and a
ground control station. The nodes communicate with
each other using several different types of radios. On
board these airborne platforms, there are network
assets on multiple local area networks. If a traditional
centralized network management solution were used to
manage such a network, either the entire airborne
network needs to be managed from the ground, or each
platform needs to be managed independently by its
local management systems. The former is not
considered an effective approach because of lack of
bandwidth efficiency and inability to support
disconnected operations; the latter is not a perfect
solution either as the ground control station will not
have sufficient control over the platform networks. In
addition, it is desirable that the management system be
able to respond to network events by supporting
autonomous changes to the network.

Since it is highly desirable to support any existing
platform-based network management solution, we
explored the concept of integrating a distributed
policy-based management system with a fixed-network
management solution. Such a combination makes
sense because 1) the existing management system can
remain in place and perform its function as usual, 2)
the ground control station can have control over the
entire network, 3) the combined system can respond to
network events with appropriate changes by allowing
policies to invoke local management scripts, and 4)
bandwidth efficiency is significantly enhanced as
policies are used to control bandwidth consumption for
network management purposes based on dynamic
network conditions.

1

POSTPRINT

mailto:@research.telcordia.com
mailto:Gregory.Hadynski@rl.af.mil
mailto:clabarre@mitre.org

The challenge, therefore, is to architect a solution that
preserves the capabilities of the existing monitoring
system while augmenting its capability to provide
policy-based control of the network. The result is a
hybrid management system that allows the existing
system to preserve its “look and feel” for the network
administrators, while adding policy management
capabilities and achieving bandwidth efficiency. This
paper describes the architecture of this integration, the
enhancements to DRAMA [3] to allow for its
integration with OpenNMS [7], an open-source
centralized network management system, and the
results accomplished via the integrated system. To
facilitate managing multiple airborne platforms with
different configuration settings using the same set of
policies, we also designed a resource indirection
representation framework to facilitate the distributed
network management paradigm.

The remainder of this paper is organized as follows:
Section 2 provides background about the target
airborne network, DRAMA, and OpenNMS. Section 3
discusses the integration of OpenNMS with DRAMA.
Section 4 provides an overview of the resource
indirection framework, which allows policies to be
written once, and be applicable to network elements
across multiple platforms that comprise the network. A
discussion of the functionality provided by the
integrated system, lessons learned from this exercise
and possible future work are provided in Section 5,
followed by a summary in Section 6.

2. Background

The focus of this work is to design a distributed
policy-based management solution for a dynamic
airborne network by integrating a distributed PBNM
system with a conventional network management
system. Below we provide some background for the
work.

The airborne network under consideration comprises
an immobile ground node, multiple airborne nodes and
several surface mobile nodes. All nodes contain local
area networks on board, and they use multiple different
types of radios to communicate with each other. The
network is a special type of Mobile Ad hoc NETwork
(MANET) communicating over wireless links. Each
node can act as a router forwarding transit traffic.
Major characteristics of MANETs include absence of
network infrastructure, dynamic wireless link
conditions, and unstable network topology. Because
physical environments could be noisy and distances
between nodes change over time, effective bandwidth
on radio links fluctuates and link connectivity changes.

These characteristics provide a strong motivation for
providing self-forming, self-configuring, and self-
healing capabilities in the network.

DRAMA, a distributed policy-based network
management system [1][3], is a good candidate for the
airborne network for the following reasons: 1) its
ability to provide distributed network management
even when the network is partitioned, 2) its support of
automated changes to the network configurations in
response to network events and 3) its ability to adjust
management traffic bandwidth consumption based on
network conditions. The high-level architecture of the
DRAMA system is shown in Figure 1. As shown here,
a collection of Policy Agents with different roles
manage the airborne network. At the highest level, the
Global Policy Agent, or GPA, manages multiple
Domain Policy Agents, or DPAs. A DPA can manage
multiple DPAs or Local Policy Agents (LPAs). An
LPA manages a node. LPAs perform local policy-
controlled configuration, monitoring, filtering,
aggregation, and reporting, thus reducing management
bandwidth overhead. Policies are disseminated from
the GPA to DPAs to LPAs. Policy Agents react to
network status changes on various levels (globally,
domain-wide, or locally) by automatically
reconfiguring the network as needed to deal with fault
and performance problems. In this hierarchical
architecture, any node can dynamically take over the
role that was assumed by another node to provide
resilience to network failures.

LPA

LPA

LPA

LPA

LPADomain 1
DPA

GPA: Global Policy Agent
DPA: Domain Policy Agent
LPA: Local Policy Agent

Domain 2

GPA

Domain 3

Policies

Policies

DPA

Policies

Management
Information
Reporting

Management
Information
Reporting

Mgmt
info Mgmt

info

Figure 1. High-level Architecture of the DRAMA System

DRAMA policies are Event-Condition-Action (ECA)
[2] obligation policies. A policy can be triggered by a
single event or one of many events associated with the
policy. The condition part of a policy is represented by
a boolean expression containing system and/or policy
variables. Whenever an event occurs, DRAMA

2

identifies the currently activated policies that are
triggered by the event and evaluates their conditions. If
the condition of a policy evaluates to true, then all the
actions associated with the policy will be executed.

Figure 2. DRAMA and OpenNMS Integration – High-Level Approach

OpenNMS: OpenNMS [7] is an open source network
management system. It provides scalable monitoring
facilities for a wide range of devices and services.
OpenNMS uses a centralized network management
model, that is, a designated management station is
responsible for monitoring the health of the network.
The station can be configured to poll devices, receive
traps, send notification events, generate alarms based
on threshold crossings, and provides a Web Server that
allows data to be presented on a web-based dashboard.
It also incorporates other open source efforts including
JRobin [10] to produce graphs displaying the values of
designated monitored parameters as they vary over
time.

3. Integration of DRAMA and OpenNMS

3.1 Motivation

OpenNMS uses a centralized management station to
collect data from all the nodes in the network. The
management station periodically polls the devices to
retrieve their data. Therefore, a break in network
connectivity would result in OpenNMS not being able
to collect data and manage the network. While losing
network connectivity is infrequent in a wired network,
it is quite common in a wireless ad hoc network. In
addition, periodic polling is an expensive and
unnecessary operation for collecting data in bandwidth
deficient networks. On-demand data push is
considered a more appropriate model for such

networks. OpenNMS is essentially a network
monitoring system and does not provide the capability
to automatically trigger management actions, with the
exception of sending notification alerts. Finally,
OpenNMS is completely unaware of its own
bandwidth usage, and as a result, its management
behavior is independent of network conditions.

On the other hand, DRAMA complements OpenNMS
by supporting the management data push model,
providing automated distributed management actions,
and changing its management behavior (e.g., changing
reporting intervals) according to network conditions.
Nevertheless, DRAMA does not have the rich
monitoring facilities that OpenNMS provides.
DRAMA also does not compare to OpenNMS with
respect to monitoring report generation and display, as
well as the ability to alert network administrators using
a variety of alerting mechanisms.

3.2 Approach

To take advantage of the respective strengths of both
DRAMA and OpenNMS and keep the look and feel of
OpenNMS for network administrators, we designed
and implemented an approach to integrate the two
management systems that exhibites the strengths of
both. A high-level architecture showing our approach
integrating the two systems is shown in Figure 2. In
this figure we simplify matters by showing only a GPA
and some LPAs. OpenNMS is co-located with
DRAMA on both the GPA node and LPA nodes. On

3

the LPAs, OpenNMS is used to monitor the local area
networks on board the nodes, and it can be configured
to feed the data to J-Robin for generating monitoring
graphs. We connect OpenNMS and DRAMA by
having OpenNMS send certain events to DRAMA.
These events are processed by the event conversion
component supplied by OpenNMS to convert
OpenNMS events into DRAMA events. Once
DRAMA receives events, two types of policies could
be triggered. The first type of policy is a thresholding-
based report policy, which will determine if an event
should be forwarded up the management hierarchy,
and if so, what types of events should be forwarded
and how they should be forwarded. The second type of
policy could trigger local management actions, such as
a script being invoked to change certain configuration
settings on a device. When an event is forwarded by
DRAMA, it will reach its parent node in the hierarchy
(a DPA or a GPA); the parent node will convert the
event and pass it to OpenNMS, as if a device managed
by OpenNMS had been configured to push data to
OpenNMS. The process of converting between
OpenNMS and DRAMA events is illustrated in Figure
3.

Figure 3. DRAMA/OpenNMS Event Conversion Process

The above architecture has the following salient
features. First, from the OpenNMS viewpoint, it
monitors the entire airborne network from the GPA,
while the relay/filter function provided by DRAMA is
completely transparent. Second, DRAMA is used in
this management framework, and local management
policies can be triggered to realize the distributed
policy management paradigm. Third, it takes
advantage of DRAMA’s capability to reduce
management traffic bandwidth usage according to
network conditions. Finally, for DRAMA-aware
network administrators, they can watch the network
monitoring reports and decide if any on-board policies

should be activated or deactivated, or any new policies
should be pushed to the remote platform to adjust
network communication behaviors. These policy
operations are transparent to OpenNMS operations.

3.3 Implementation

The implementation of the integration comprises two
independent components: the conversion of events
between the two systems and the transport of the
events between nodes in the system.

One guiding principle of the design was to minimize
the impact on the OpenNMS implementation, avoiding
the modification of any OpenNMS source code. A
second principle was to keep libraries for the two
systems independent, to avoid complexities in the
build process and to allow support of a version of
DRAMA without OpenNMS. This was accomplished
by using TCP to avoid the tight binding of RMI and
using introspection and dynamic loading of classes to
remove compile-time dependencies.

3.3.1 Conversion of events

The conversion of events between OpenNMS and
DRAMA comprises the following components:

• Capture of OpenNMS Events

• Creation of DRAMA Events from OpenNMS
Events

• Creation of OpenNMS Events from DRAMA
Events

3.3.1.1 Capture of OpenNMS Events

OpenNMS provides a highly configurable system and
support for the development of plug-in components.
We wrote an EventListener and installed it as a
service in OpenNMS. This component receives a copy
of every generated OpenNMS Event, filters it
according to a configurable list of patterns (which
reduces the number of events reported to DRAMA),
and sends the OpenNMS Event over TCP as a
Serialized String of the XML representation of the
event to the component that creates DRAMA Events.
The XML String is marked with “opennms:” so that
the receiver can recognize the source of the message.

3.3.1.2 Creation of DRAMA Events from
OpenNMS Events

The component that creates DRAMA Events listens on
a TCP port. If a String arrives, prefixed by

DRAMA
Engine

convert

OpenNMS

Passive
Device

DRAMA
Engine

convert

OpenNMS
Notifications

OpenNMS

Send to GPA
using DRAMA
AMS
communications

GPA

LPA

Policy Rule
(Filter/Forward)

sendToOpenNMSAction

DRAMA
Convert
from :OpenNMS
to: DRAMA

Convert
from :DRAMA
to: OpenNMS

Pre-configure
OpenNMS to send
these notifications to
DRAMA convert

Pre-configure DRAMA with filter/forward policy rules
(Telcordia will provide initial rules for forwarding all OpenNMS
events that have been converted to Drama events. The rules could
be modified to further reduce the events sent.)

4

“opennms:”, it is treated as the XML for an
OpenNMS Event and a DRAMA openNms Event is
created, with the XML as a component field.

3.3.1.3 Creation of OpenNMS Events from
DRAMA Events

A DRAMA Action is provided to transmit DRAMA
openNms Events to the GPA. It uses the
PersistentCommsSender to reliably and
persistently transmit the event to the GPA.

A DRAMA application implements this component,
listening with a PersistentCommsReceiver.
When a String is received, it is the XML representation
of an OpenNMS Event.

OpenNMS provides a port to which the XML
representation of an OpenNMS Event may be sent to
create the event. The DRAMA Event openNms
contains the original XML for the OpenNMS Event, so
we need only pass it to the port and the event is
recreated.

3.4 Transport of Events

Connectivity in an ad hoc wireless network may
change over time and occasionally be lost. DRAMA
provides reliable delivery of messages, but reliability
only guarantees that the sender will know whether the
message has been received. The classes
PersistentCommsSender and
PersistentCommsReceiver provide a layer
above reliable communications, queuing messages and
resending periodically until the message has been
received.

3.5 User Scripts for Configuration

The need to reconfigure devices on remote platforms
when specific network conditions are detected is a
challenge for distributed ad hoc networks. How do
you control actions on remote platforms when
connectivity to that platform may not be possible from
the central platform? DRAMA’s capability to have
policy rules that enforce actions when events are
detected provides the infrastructure necessary to solve
this challenge.

Another important issue is that while monitoring of
network devices utilizes standard SNMP MIBS,
configuration (or re-configuration) of network devices
often requires software that is not standards-based
(e.g., CLI interface, device-specific loading, etc.).

The solution for the OpenNMS integration is to allow
DRAMA to support a generic policy action that can
invoke a user-written script. The user-written script
can then provide the code needed to interface to the
device and re-configure it as appropriate. With this
capability policy rules can be written that can be
triggered by events in the network to invoke re-
configuration actions on the remote platforms without
full connectivity to that platform.

4. Device Resource Indirection

4.1 Motivation

One of the challenges for policy-based network
management is ensuring that the policy language
effectively supports the operational requirements of the
administrators. It must not burden the administrators
with additional work to manage all the nodes/devices
in the network. In order to allow DRAMA to define
policy rules that are applicable to many platforms that
have similar device resources, there is a need to
provide device resource indirection (or device
resource meta-data) in a policy rule action for
attributes such as the management interface address
and the management port of a network device (device
resource). This meta-data will allow a generic policy
rule to be written and that policy rule can be enforced
for the local device resources on each platform. Each
platform keeps its own platform-dependent device
resources.

By applying meta-data to policy rules, a DRAMA
system will:

• Require fewer rules. Having fewer rules to
write means easier management.

• Distribute fewer rules. Having fewer rules to
distribute results in lower network bandwidth
usage. This is critically important in a
wireless network environment.

4.2 Approach

The concept of meta-data is not new. Applying device
resource meta-data to DRAMA is similar to using
variables in programming. The concerns to be
addressed are as follows:

• How to statically specify device resource data
on each platform?

• How to statically represent device resources
in a rule?

5

• How to dynamically bind generic device
resource meta-data in a rule to the local data
on each platform during rule enforcement?

4.2.1 Platform-dependent Device Resource Data

Each platform is preconfigured with a device resource
file, which contains device resource data relevant to
the platform. Each network device under DRAMA’s
management is represented as a device resource in the
file. A device resource contains information including
the platform id, the device type, the device instance
name on the platform, and the IP address and a port
number through which DRAMA talks to the device.
Figure 4 provides an example.

Figure 4. A Device Resource File Example

When DRAMA boots up on a platform, it verifies the
device resource file and loads data from the file into a
device resource repository. The device resource
repository, a singleton in the system, provides device
resource inquiry services to the system. The repository
takes a criterion and returns a list of device resources
that match the criterion. The results are cached to
speed up future searches based on the same criterion.

4.2.2 Device Resource References in a Policy
Rule

A policy rule contains a list of actions. To enforce a
rule, each action is enforced in the sequence order it
appears on the list. An action might be to monitor
certain devices; the next action might be to configure
other devices. We want to apply an action to each of
device resources we care about. For this reason, in a
rule, the place to associate the searching criterion and
device resource references is in each individual action:
an optional device resource filtering criterion is
associated with an action; device resource references
are used in the parameters to the action.

4.2.2.1 Device Resource Filtering for Action

Each rule action can have an optional device resource
filtering criterion. If a criterion appears, the action will

be applied to each of device resources matching the
criterion during the enforcement.

A filtering criterion has three parts: <Platform
id>.<Device type>.<Device instance name>. Each
part allows a string or a wildcard character, ‘*’. Using
a wildcard is to match all device resources for the
corresponding part. In addition, <Platform id> allows a
special keyword, LOCAL. Using LOCAL is to match
all device resources that belong to the local platform
where DRAMA is running.

A device resource matches a criterion if and only if the
device resource matches each part of the criterion.

4.2.2.2 Device Resource References in Action
Parameters

Device resource references can be used only in the
parameters to an action. The five fields in the matched
device resource are $deviceResource->platformId,
$deviceResource->deviceType, $deviceResource-
>deviceInstance, $deviceResource->mgmtIpAddress
and $deviceResource->mgmtPort.

During the enforcement, DRAMA will substitute each
reference with its true local environment value. To
escape the value substitution to a reference, prefix a
backslash, ‘\’, to the reference. A pair of curly braces
can surround a reference to clearly mark the start and
the end of the reference (for example,
${deviceResource->mgmtIpAddress}). This is useful
when we try to do string concatenations in the
parameters.

4.2.3 Dynamic Binding in Action Enforcement

4.2.3.1 Action Enforcement

A device resource criterion in an action is optional, and
we use the following algorithm to enforce the action:

• If NO criterion is provided, then enforce the
action only once.

o If parameters refer to device resource, throw
an exception (rule enforcement fails).

• If a criterion is provided,

o If it matches NO device resources, then skip
this action enforcement, continue to the next
action,

o Else enforce the action for each of the
matched device resources.

Device Resource File on planeQQ123

platformID deviceType deviceInstance mgmtIPAddress mgmtPort

planeQQ123 radioXYZ leadRadio1 72.100.10.10 161
planeQQ123 cisco3000 router1 72.100.10.20 161
planeQQ123 cisco3000 router2 72.100.10.30 161
planeQQ123 cisco3000 router3 72.100.10.40 161
planeQQ123 radioXYZ radio2 72.100.10.50 161

…

6

DRAMA

DRAMA.prop router1

router2

router3

leadradio1

radio2

platformTail# - planeQQ123

SNMPRegisterTrapAction

SNMPReportAction

#platformID resourceType resourceInstance mgmtIpAddress mgmtPort

planeQQ123 DRAMA <NON-GPA> 72.100.10.1 -
planeQQ123 radioXYZ leadRadio1 72.100.10.10 161
planeQQ123 cisco3000 router1 72.100.10.20 161
planeQQ123 cisco3000 router2 72.100.10.30 161
planeQQ123 cisco3000 router3 72.100.10.40 161
planeQQ123 radioXYZ radio2 72.100.10.50 161

planeBB555 DRAMA <NON-GPA> 72.100.20.1 -
planeBB555 radioXYZ leadRadio1 72.100.20.10 161
…
planeZZ999 DRAMA <NGPA> 72.100.90.1 -
planeZZ999 radioXYZ leadRadio1 72.100.90.10 161

<?xml version="1.0" ?>
<!DOCTYPE policyRule SYSTEM "policyRule.dtd">

<policyRule ruleId="7@[USI,global]"
name="SNMP_Report_CPULoad“
…

<do>
<action name="fcncnm.policy.action.implementation.snmp.anyAction“

deviceResourceFilter=“*.radioXYZ+leadRadio1”>
<parameter name="mibOid" value="CPULoadRelative"/>

<parameter name=“target" value=“$deviceResource.mgmtIpAddress"/>
</action>

….

DRAMA

DRAMA.prop router1router1

router2router2

router3router3

leadradio1leadradio1

radio2radio2

platformTail# - planeQQ123

SNMPRegisterTrapAction

SNMPReportAction

#platformID resourceType resourceInstance mgmtIpAddress mgmtPort

planeQQ123 DRAMA <NON-GPA> 72.100.10.1 -
planeQQ123 radioXYZ leadRadio1 72.100.10.10 161
planeQQ123 cisco3000 router1 72.100.10.20 161
planeQQ123 cisco3000 router2 72.100.10.30 161
planeQQ123 cisco3000 router3 72.100.10.40 161
planeQQ123 radioXYZ radio2 72.100.10.50 161

planeBB555 DRAMA <NON-GPA> 72.100.20.1 -
planeBB555 radioXYZ leadRadio1 72.100.20.10 161
…
planeZZ999 DRAMA <NGPA> 72.100.90.1 -
planeZZ999 radioXYZ leadRadio1 72.100.90.10 161

<?xml version="1.0" ?>
<!DOCTYPE policyRule SYSTEM "policyRule.dtd">

<policyRule ruleId="7@[USI,global]"
name="SNMP_Report_CPULoad“
…

<do>
<action name="fcncnm.policy.action.implementation.snmp.anyAction“

deviceResourceFilter=“*.radioXYZ+leadRadio1”>
<parameter name="mibOid" value="CPULoadRelative"/>

<parameter name=“target" value=“$deviceResource.mgmtIpAddress"/>
</action>

….
Figure 5. A Resource Indirection Example

4.2.3.2 Dynamic Device Resource Binding

For each matched device resource, we perform value
substitutions for action parameters against the device
resource, and use the new parameters after
substitutions for the actual work in the action
enforcement. The work of parsing parameters and of
performing substitutions is delegated to the interpreter
generated from ANTLR [9] a popular Java parser
generator.

To conclude this section, we use Figure 5 to illustrate
the concept of resource indirection. In this figure, a
resource description file that contains the resource
descriptions of all resources on all nodes is shown. A
DRAMA policy excerpt is also shown to illustrate the
concept. Assume in this example that platformID is
planeQQ123. The policy specifies that if it is triggered,
its action will be applied to radioXYZ and leadRadio1
only, and the mgmtIPAddress attribute of the
applicable devices will be passed to the action as a
parameter so that the action can retrieve the CPU load
information via SNMP. Therefore, this policy is
generically applicable to all nodes where radioXYZ
and leadRadio1 are on board, as long as the resource
description file contains the correct attribute
information.

5. Discussion
This work to extend DRAMA is currently being
integrated into the customer’s operational
environment. The benefits of this work are currently
being evaluated. However, we believe that this will
provide valuable insights into specific areas where
further work may be needed to derive additional
benefits from the inter-operations of DRAMA (policy-
based network management) and OpenNMS (open
source network monitoring software). Specifically we
are interested in the following:

• What capabilities are needed to allow network
management staff to effectively troubleshoot
network problems?

The capabilities provided by this work address the
need to notify the network administrators of
network problems across the distributed network.
Further operational use cases are needed to define
the data flows that will be required in this
integrated environment to troubleshoot problems on
remote platforms.

• Can network administrators work effectively with
the OpenNMS display (dashboard) and DRAMA’s
policy-based controls (policy editor)?

Both the OpenNMS and the DRAMA network
management consoles will be used in this solution.

7

A better understanding of the needs of network
managers to access both consoles is required to
understand any display integration that may be
required.

• Does this integration solution work effectively for
mobile ad hoc networks?

The bandwidth-limited mobile ad hoc network
provides many operational challenges for network
management. In particular, the overhead to perform
network monitoring and control should not over-
burden the network. As this solution is made
operational, it will be important to understand
whether this architecture meets the requirement that
network management traffic use the available
network capacity in an efficient manner.

Finally, we plan to perform a detailed performance
study of the integrated software using the Virtual Ad
hoc Network testbed [8], which allows unmodified
software instances to communicate with each other
over a high-fidelity simulated network that can
simulate various airborne network scenarios. Not only
will this approach help us gauge the system
performance and fine-tune the design, but it will also
test the software robustness in a highly dynamic
wireless network environment.

6. Conclusion
This paper describes the integration of DRAMA with
OpenNMS to provide a network management solution
for airborne networks. The rich OpenNMS monitoring
facilities are used to manage local area networks on the
airborne platforms, and via event relay facilities
provided by DRAMA, OpenNMS can be used to
monitor the entire airborne network without incurring
excessive bandwidth overhead. In this integration,
DRAMA provides a generic capability to invoke user-
written scripts as policy actions allowing for automated
remote re-configuration. In addition, DRAMA also
allows network administrators to activate and
deactivate policies to change the airborne network
behavior according to the collected network
monitoring status on the ground. Lastly, the DRAMA
policy language was extended to provide a generic
resource indirection framework, which makes the
creation and maintenance of policy rules more
operationally viable.

7. Acknowledgments
The authors would like to acknowledge the operational
input provided by the airborne network managers who
reviewed the integrated software.

8. References
[1] R. Chadha et al., “Policy-Based Mobile Ad Hoc

Network Management”, Proceedings of the IEEE 5th
International Workshop on Policies for Distributed
Systems and Networks, Yorktown Heights, New
York, June 7-9 2004.

[2] R. Chadha, “Beyond the Hype: Policies for Military
Network Operations”, ICSNC 2006, French
Polynesia, October-November 2006.

[3] R. Chadha, Y.-H. Cheng, C.-Y. J. Chiang, S. Li, G.
Levin, and A. Poylisher, “DRAMA: A Distributed
Policy-Based Mobile Ad Hoc Network Management
System”, Proc. of the 2005 Military Communications
Conference (MILCOM 2005), Atlantic City, NJ.

[4] C.-Y. J. Chiang, R. Chadha, G. Levin, S. Li, and Y.-
H. Cheng, “AMS: An Adaptive Middleware System
for Ad hoc Networks”, Proc. of the 2005 Military
Communications Conference (MILCOM 2005),
Atlantic City, NJ.

[5] C.-Y. J. Chiang, R. Chadha, Y.-H. Cheng, S. Li, G.
Levin, and A. Poylisher, “A Novel Software Agent
Framework with Embedded Policy Control”, Proc. of
the 2005 Military Communications Conference
(MILCOM 2005), Atlantic City, NJ.

[6] C.-Y. J. Chiang, Y.-H. Cheng, S. Demers, P.
Gopalakrishnan, L. Kant, R. Chadha, S. Li, G. Levin,
A. Poylisher, Y.Ling, S. Newman, and R. Lo,
“Performance analysis of DRAMA: A distributed
policy-based system for MANET management”, Proc.
of the 2006 Military Communications Conference
(MILCOM 2006), DC.

[7] OpenNMS, http://www.opennms.org/
[8] P. Biswas et al, “An Integrated Testbed for Virtual Ad

hoc Networks“, Proceedings of TRIDENTCOM 2009,
April 6-8, 2009, DC, USA.

[9] ANTLR, http://www.antlr.org/
[10] JRobin, http://www.jrobin.org/

8

http://www.opennms.org/
http://www.antlr.org/
http://www.jrobin.org/

