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Objectives 

The present effort seeks development of efficient algorithms for evaluation of leakage of 
electromagnetic scattering through openings in context in which significant uncertainty 
may exist. Our effort addresses this main objective through three main complementary 
goals, namely: 1) Development of fast and accurate solvers for electromagnetic scattering 
by open surfaces containing edges, corners and other geometric singularities; 2) Accurate 
representation of surfaces, with particular emphasis on surface anomalies, openings and 
random surface features; and, for problems including surface imperfections and/or other 
random geometric features 3) Appropriate methods enabling uncertainty quantification and 
evaluation of random effects. In November 2007 a new task was added to this list, namely, 
4) Modelling of the scattering and radiation properties of wire antennas. The CEM software 
resulting from this work should enable effective evaluation of leaking fields for complex 
structures of interest to the Air Force, for all frequencies arising in relevant applications. 

Figure 1: Propagation and scattering problems enabled by the new methodologies. 

Status of Effort 

The work performed under this effort has resulted in development of variety of important 
computational-electromagnetics tools enabling efficient application to problems involving 
small geometric anomalies and associated uncertainty evaluation, including 



Figure 2: Left and Center: Curved wire antennas considered in our development of wire 
antenna solvers. Right: Fields leaked through an opening in a body containing a small 
interior structure. 

1. Issues related to highly efficient implementations of integral EM approaches suitable 
for extension to high-performance parallel solvers; 

2. Surface repair and representation of openings and surface variabilities and method- 
ologies for surface repair of highly-damaged or highly-inaccurate geometry represen- 
tations; 

3. Consideration of issues related to uncertainty quantification for both continuous and 
discrete random variables, with special attention to the context of EMC/EMI, and 
development of adaptive stochastic collocation and reduced order modelling methods; 
and 

4. Development of integral-equation solvers for electromagnetic scattering by wire an- 
tennas and open surfaces, with attention to solution singularities, pseudo-differential 
character of the integral operators, and associated spectral distributions and required 
numbers of GMRES iterations. 

Our results in these areas is described in what follows. 

Electromagnetic scattering from open surfaces: Mathematical 
Formulation 

In view of the normal and tangential singularities of surface currents for open surfaces, we 
seek the scattered electric field off an open Perfect Electrically Conducting (PEC) surface 
T in the form 

E '(*) = ik J Gk(\z - y\)WI(y)ds(y) + *-V f Gk{\z - y\)dWr(WI)ds(y), (1) 

where W is a "weight" matrix and where, denoting by J the actual surface current and 
letting J = WI (I is a "regularized" bounded surface current and W carries explicitly the 



current singularity at the edge), the regularized current I satisfies the EFIE equation 

Twl = -n x Einc. (2) 

Here n is the normal to T. The weighted integral operator can be written as 

Twl = Swl + 2VI (3) 

where operators Sw and T>w are defined as 

SwI = iknx J Gk(\x-y\)WI(y)ds(y) (4) 

and 

VWI = -fink J Gk(\x - y\)dWr(WI)ds(y) (5) 

respectively. Here, for a scalar field F defined on the surface T, curlp denotes the operator 

curlrF = (VF) x n. 

Let f(u,v) be a local coordinate chart with (u,v) £ (0,1) x (0,1) such that v = 0 
correspond to an open edge. In this case, the unknown density I can be decomposed as 

I = Iuru + Ivrv 

where /" and Iv are the tangential and normal components of the surface current. Given 
that the tangent and normal components of the solution have singularity of 0(l/Vd) and 
0(\fd) respectively, where d denotes the distance to the edge, the choice of weight matrix 

-4(5^) 
with u> ~ \fd, and 0 = ru-fv/fu-ru, that act on tangential and normal components (/", IV)T 

of I as a multiplication by the matrix renders Iu and Iv smooth. 

Before we discuss the numerical method that is used of to solve (2), we note that once the 
surface current density J is obtained as a solution of (2), the electric field can be retrieved 
using equation (1). Also, if we define the electric far field E^x) as 

Es(x) = ^(E0O(x) + 0(\x\-1)) (7) 

then, one can use the expression 

Eoo(x) = ^x x J e-ik*v(Wl(y) x x)ds(y) (8) 



Figure 3: Electromagnetic scattering of an x-polarized incident plane wave of k = 16 from 
an annulus. Top row, left, center and right show x, y and z components of the total field 
near the scatterer whereas bottom row shows corresponding far fields in dB, normalized to 
the maximum. 

for the electric far field computation. 

Scatterers with corners 

The presence of corners in a scattering geometry results in solutions that become unbounded 
where this blow-up is of different nature from that at open edges. It, thus, poses a significant 
challange for the numerical scheme described above in term of achieving high accuracy. In 
view of this, we adopt a strategy where we solve "nearby" problems on smooth domains 
that coincide with the original scatterer except in small neigborhoods near the corner. 
The success of the strategy hinges on its ability to use extremely close approximations of 
the domains with corners and use of discretization that give rise to solution with limited 
computational cost. Here, corners have been smoothed via a systematic blending of two 
arcs on either side of the corner. In the following discussion, we describe the procedure that 
we adopt to smoothly round these corners. We emphasize that the procedure is completely 
general and automatic: it can be applied with ease to a general open surface, with curved 
edges and associated corners. 



Figure 4: Electromagnetic scattering of an x-polarized incident plane wave of k — 16 from 
a unit disc. Top row, left, center and right show x, y and z components of the total field 
near the scatterer whereas bottom row shows corresponding far fields in dB, normalized to 
the maximum. 

Preconditioned Equations 

In order to solve better conditioned integral equations, we precondition equation (2) on the 
left by means of the regularizing operator 7^ defined by 

7LK    =   ikn x j Gk{\x y\)WK(y)ds(y) 

-curlr / Gk(\x - y\)u(y)divr(K)ds{y) 

=   SwK + VuK. 

More precisely, we will solve 

TuoTff(I) = -T>xE«) 

where we express the operator on the left-hand side as 

%j o Tw = Sw ° <Sw + Sw ° T^w + T^u> ° $w • 

(9) 

(10) 

(11) 

We note that the operator V^ can be evaluated in a straightforward manner using differ- 
entiation and integration methods described in the previous section. 

Numerical implementation 

In this section, we present the main algorithmic components of the numerical scheme that 
we employ in solving (2), which in turn reduces to accurate evaluations of the weighted 
integral operator Tw and hence Sw and Dw- 
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Figure 5:   A unit squaxe with smoothly rounded corners.   The geometry is divided into 
interior, edge and corner patches and are discretized as shown above. 

We note that the accurate evaluation of Sw in (4) entails obtaining (IU,IV)T from 
I, which is quite straightforward. An application of the ^-matrix on (Iu, IV)T leads to 
integrals of the form 

,[<j>]{x) = f-Gk(\x-y\)if>(y)da(y), 
Jr w 

(12) 

where <j> is smooth, that can then be approximated through a specialized numerical integra- 
tion method. Toward this end, we employ a high order quadrature that relies on a smooth 
cut-off function r/x supported in a small neighborhood of the target point x that is also 
identically equal to one, i.e., r)x = 1, in the immediate neighborhood of x, to split (12) as 

Su[4>](x) =   f       -Gk(\x-y\)rlx{y)cj>{y)ds{y) + f -Gk{\x-y\){l-rlx{y))(j>{y)ds{y).  (13) 

Clearly, the second integral in (13) can be accurately approximated using a "Weighted 
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Figure 6: Electromagnetic scattering of an x-polarized incident plane wave of k = 16 from 
a square plate. Top row, left, center and right show x, y and z components of the total field 
near the scatterer whereas bottom row shows corresponding far fields in dB, normalized to 
the maximum. 
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Figure 7: Scalar case: Scattering of a normally incident plane wave of wavelength 8.4 mm 
from a 6 by 6 array of square plates of dimensions 2 by 2 mm. In this example, we allowed 
a random variation in dimensions and locations of plates on the scale of microns. Left : 
The held near the array is shown. Right : Corresponding far held in dB, normalized to the 
maximum. 

Clenshaw-Curtis" quadrature of the form 

/   -?=f(v)dv&y2wnf(vn), (14) 



where the quadrature points are given by 

v» = U1 + COB((n + li)jr 

and quadrature weights, wn, by 

N 
1 ^/ 1\ raw 

w„ = — > ^ cos I I n H—      
AT^„    4m2 - 1       V V       2)   N 

m=0 

where the primed sum denotes that the first term (m = 0) is halved. The first integral in 
(13), on the other hand, is evaluated by changing to polar coordinates, where p-integrals are 
performed using a scaled version of (14) and 0-integral is evaluated using regular Clenshaw- 
Curtis quadrature for each piecewise smooth 0-interval. 

In the evaluation of Dw in (5), however, care should be taken when dealing with the 
term divr(WI) so that the singular weight co gets proper treatment. To this end, we use 
the formula for the surface divergence in coordinates. For this, we use the fact that for a 
given tangential field X = Xufu + Xvfv on the patch f(u, v), the formula for the tangential 
divergence reads: 

divrX = ^-[du{JgXu) + dv(^gXv)\ (15) 

where g = EG — F2 is the Riemannian metric tensor, with E = fu • fu, F = fu • fv and 
G = fv • fv. A straightforward application of (15) thus yields 

divr(Ha)    =    - 
CO 

Y (dug(Iu - du2F) + dvg u;2Iv) 

+  oui
u - dudu^r - 0u2dur + u2dvr + \dv{u2)iv 

(16) 

assuming that u> depends only on v. From the expression in (16), it follows that the integral 

Gk(\x - y\)divr(Wl)ds(y) I- 
in (5) has the same form as in (12) and thus can be evaluated using the integration scheme 
described above. 

The last remaining element of our numerical algorithm pertains to derivative computa- 
tions that arise in (16) as well as in the surface curl differential operator in (5). As these 

S 



expressions only involve partial derivatives of smooth functions, one can use Chebyshev 
polynomials as spectrally accurate functional approximations, which can then be used for 
finite difference approximation of the derivatives of these functions. One can also directly 
differentiate the approximating Chebyshev series to obtain necessary derivatives. In this 
case, the loss of accuracy near patch edges can be controlled by restricting the degree of 
Chebyshev polynomials to a moderate number. 

Numerical Experiments 

In this section we report on a variety of numerical experiments we have conducted to 
demonstrate the solvers developed under the present effort, for both scalar and vector 
electromagnetic cases, and from various scattering configurations. We start by presenting 
two examples of electromagnetic wave scattering from an annulus in Figure 3 and from a 
unit disc in Figure 4. One critical difference between these simulations and similar ones 
we considered in previous methods is the use of non-overlaping patches for the description 
of the scattering geometry. The use of non-overlapping patches, even though not essential 
for annulus and disc geometries, is the backbone of our technology required for scattering 
simulations from geometries with corners. For these singular geometries, we adopt the 
corner smoothing described above Section. An electromagnetic wave scattering from a 
"sharply-smoothed" square plate, that coincide with the original scatterer except in small 
neighborhoods near the corner (and essentially equals the sharp square plate), is presented 
in Figure 6. We also include some results for scalar wave scattering where the scattering 
geometry mimics a small scale array of size 6 by 6 in Figure 7. Figures 2 right and 8, finally, 
depict solutions of problems involving leakage of energy through holes, and the interaction 
of leaked energy with scattering elements. 

Enhancement and Extension of Geometry Representation Soft- 
ware 

Significant enhancements were introduced to the geometry representation capability, en- 
abling treatment of heavily damaged structures. The new capabilities are demonstrated in 
Figures 10 and 11. Clearly, the new software can be used to repair surfaces containing very 
challenging features, including very coarse, low quality discretizations, detachment, lack of 
water-tightness, etc. 

Curved wire antenna solvers 

We developed an extension of the methodology previously put forward in collaboration 
with M. Haslam for straight wire antennas ("Regularity theory and super-algebraic solvers 
for wire antenna problems", O. Bruno and M. C. Haslam; SIAM Jour. Sci. Comp. 29 
1375-1402. (2007)) that applies to arbitrary curved wire antennas. The resulting code 
is applicable to arbitrary closed or open curved wires (such as those shown in Figure 2) 
driven by an incident field. The present curved wire code is based on use of the electric 
field integral equation with a thin-wire approximation—according to which the electrical 
current J is constant around the circular cross-section that results as the wire is cut by 
an orthogonal plane. This approximation is commonly used in the literature; for example 
we mention the contributions provided by Wu (1962) for a circular geometry, as well as 



Figure 8: Leakage: Scalar fields within and around a body containing a an opening and a 
small interior structure. 

the recent article by Champagne and Wilton (2006). (The latter paper incorporates high- 
order elements; however, since the logarithmic singularity is treated using a tangent line 
approximation the approximation is reduced to lowest order.) We believe our algorithm 
is the first one to deliver high-order accuracy for the curved-wire problem. Our code is 
able to solve highly challenging wire-scattering problems. For example, interactions with 
RPIs Prof. Margaret Cheney and AFRL's Dr. Matthew Ferrara resulted in solutions for a 
very challenging problem concerning a wire 600A in length. Solutions with eight digits of 
accuracy were obtained for this problem in a computational time of the order of ten minutes 
in a single processor computer. We were told by Dr. Ferrara that commercial software they 
use requires inordinately long computing times to produce any sort of approximate solution 
for this problem. 

Uncertainty quantification for EMC/EMI applications 

We have developed and implemented a fast method to enable the statistical characterization 
of electromagnetic interference and compatibility (EMI/EMC) phenomena on electrically 
large and geometrically complex targets. The main goal is to demonstrate the ability to 
accurately and robust characterize the impact of uncertainty in electromagnetic excitations 
and/or system geometry and configuration on electrical components. The focus has been 
on problems related to aircraft safety. 

The system uncertainty is parameterized in terms of a, potentially high, number of ran- 
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Figure 9: Left: model open surface scatterer: annulus; note the arrow indicating the prop- 
agation direction of the incident held, and the radius indicating the polarization, that is, 
the orientation of the electric held vector. Right: resulting current on the annulus. Note 
that, in spite of the symmetry of the incidence, the current is not circularly symmetric—as 
a result of the electrical polarization. 

dom variables. The dimensionality of the system is estimated based on prior knowledge of 
the problems, e.g., number of wires or dimensional estimation through spatial correlations 
for materials or geometries, and the type of the random variables are chosen to most ac- 
curately reflect the prior knowledge. In the problems we have consider both normal and 
beta-distributed random variables. 

After parametrization, the uncertainty is addressed through a polynomial chaos rep- 
resentation and a stochastic collocation procedure, requiring the solution of a number of 
problems for specific parameter choices. We used a fast time-domain solver for this but 
alternatives are equally useful. The collocation approach is based on Stroud sparse integra- 
tion methods, which require only 2d+l samples for a d-dimensional problem while yielding 
reasonable accuracy. The saving over a standard Monte Carlo method is dramatic. Outputs 
of interests are then computed by processing the particular solutions to compute mean and 
variances for measures of interest, e.g., induced currents. 

As an example of demonstrated capability and practicality of the approach, consider 
an airplane cockpit (Figure 12), which is illuminated by a plane wave at a random angle. 
The source induces currents on cables and shielded PC cards and one wishes to statistically 
characterize these current under the uncertainty of the source location, cable positions and 
cable loads. The general setup is illustrated below. We use 17 uniformly distributed vari- 
ables to represents the location of cables, direction of plane wave source and load resistors 
in the shielded PC boxes. In Figure 13 we illustrate the computed current at a terminal as 
well as the sensitivity of the current over a frequency range of the source. This technique 
has been carefully validated against direct Monte Carlo modeling for simpler tests, showing 
excellent agreement at a dramatically reduced computational cost. 

11 



Figure 10: Detached and re-attached pylon, front view. Left: Original low quality surface 
rendering. Right: processed surface by means of the continuation method surface represen- 
tation algorithm. 

We are currently exploring the extension of these techniques to discrete random variables 
to enable the modeling of holes and cracks along with the other types of uncertainty already 
discussed in the above. 

Adaptive stochastic collocation methods 

In the example above, we used Stroud based integration techniques to enable the modeling 
of high-dimensional problems. While these often are successful, there are more complex 
problems where higher accuracy is needed, e.g., to compute higher moment statistics. 

To address this problem, we have developed adaptive stochastic collocation methods. 
These are based on the Smolyak construction of high-dimensional sparse grids in combina- 
tion with the lesser-known hierarchical Gauss-Patterson integration rules. The hierarchical 
nature of the integration points along with the Gauss-like accuracy (3/2N exactness vs 2N 
for Gauss) enables a dramatically reduced overall cost for a given accuracy. This is illus- 
trated in Figure 14 where we show the time vs accuracy curve for three integration formulas 
Gauss quadrature, Gauss-Patterson, and Clenslaw-Curties the latter one is the standard 
use in most existing Smolyak based integration methods. 

The results in Figure 14 are for one-dimensional functions but the benefits in higher 
dimensional problems are even more striking due to the hierarchical nature of the quadrature 
points. For example, in a three-dimensional space, the number of points for Clenshaw-Curtis 
and Gauss-Patterson rules are about the same for a given level of refinement, however, as we 
see above, the accuracy is considerably better for the latter case. The number of quadrature 
points for the Gauss-based approach is twice that, i.e., for a similar accuracy, the work has 
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Figure 11: Side view. Left: Original low quality surface rendering. Right: processed surface 
by means of the continuation method surface representation algorithm. 

been reduced by 50%. 

The hierarchical nature of the Gauss-Patterson rules offers another benefit at limited 
cost an embedded error estimator since at any level we can also look back and compute 
statistical measures at a lower formal accuracy and compare to estimate accuracy. 

We have developed in a dimension-by-dimension approach in which the Smolyak sparse 
grid develops and refines only on those dimensions where the error estimator indicates 
significant activity. This not also reduces the computational cost but also offers valuable 
insight into the strength of parameter-space coupling. 

This has been successfully tested on high-dimensional dynamical systems, leading to 
substantial computational savings, and we are currently exploring the use of such techniques 
for electromagnetic scattering problems and extensions to discrete variables. 

Reduced order modeling for uncertainty quantification 

A final major effort concerning uncertainty quantification has been devoted to the ongoing 
development of methods of reduced computational complexity to further limit the cost of 
sampling in high-dimensional parameter space. This has been successfully demonstrated 
for parametrized Maxwells equations on differential form and we have recently begun the 
development of such techniques for methods based on integral equations and boundary 
element methods. 

The computational and theoretical bottleneck in these based is the development of a 
rigorous a posteriori error-theory. This is, however, essential for validate the accuracy of 
the reduced complexity model and is also used in a greedy approach in the construction of 
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Figure 12: On the left is shown the general cockpit layout with source and shielded PC 
boxes for EMI/EMC computation. On the right is illustrated the location of the cables 
under the cockpit floor. The locations of these are all uncertain. 
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Figure 13: Computed current at a terminal as well as the sensitivity of the current over a 
frequency range of the source. 

the reduced model. 

This work is still ongoing for general cases and integral equation based models and we 
hope to report on more details and results during the coming year. 

Personnel Associated with the Research Effort 

A. Anand, O. Bruno, J. Hesthaven, J. Huh. 
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Figure 14: Cost vs accuracy for different integration formulas, highlighting the importance 
of using the Gauss-Patterson approach. 
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