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Mission 

 
The Transfer Learning program seeks to solve the problem of reusing knowledge derived 
in one domain to help effect solutions in another domain. Adaptive systems, systems that 
respond to changes in their environment, stand to benefit significantly from the 
application of TL technology. Today's adaptive systems need to be trained for every new 
situation they encounter. This requires building new training data, which is the most 
expensive and most limiting aspect of deploying such systems. The TL program 
addresses this shortcoming by imbuing adaptive systems with the ability to encapsulate 
what they have learned and apply this knowledge to new situations. Thus, rather than 
having to be retrained for each new context, TL enables systems to leverage what they 
have already learned in order to be effective much sooner and with less effort spent on 
training. Early applications of TL technology include adaptive ISR systems, robotic 
vision and manipulation, and automated population of databases from unstructured text. 
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Goals 
 
The general theme of the project is transfer learning, i.e., the process whereby the 
learning process in task Y is improved by prior learning experience in task X. The project 
addresses transfer learning in three application areas: strategy games, robotic object 
manipulation, and visual object recognition.  
Existing machine learning methods assume that the training data is drawn from the same 
distribution as the task they are learning; they do not recognize and apply knowledge and 
skills learned in previous tasks to novel tasks in new domains. The result is excessive 
need for either human time or expensive training data.  
The primary goal of the research has been to develop a general theory of transfer learning 
and effective instantiations thereof for perception, planning, and action. Effective transfer 
requires strong prior knowledge, hence a major subgoal is to develop forms of prior 
knowledge that express strong, high-level, cross-task and cross-domain regularities, as 
well as methods for their use in transfer and their acquisition by learning. Well-founded 
transfer learning, i.e., learning that can be shown to work well, requires development of a 
unified theoretical framework (encompassing prior knowledge, observations, actions, 
rewards, etc.) that supports mathematical results on learning capacity and limitations. 
Finally, we aim to develop reproducible domains and task families of sufficient richness 
to support substantial transfer learning.  
Cumulative, knowledge-intensive Bayesian learning enable much faster learning of much 
richer models from much less data, and rapid adaptation of persistent autonomous agents 
to new circumstances without extensive reprogramming or retraining. Furthermore, we 
have seen specific gains in the form of more effective systems for visual perception and 
manipulation.  
 
 
Go/NoGo and Scientific Summaries 
 
Graphical summaries of the scientific results for each year of the program, including 
detailed results of the Go/NoGo tests for each year are attached as Appendices, one for 
each year.  
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Selected Accomplishments 
 
Task R1: Hierarchical Bayes 
 
Michael Jordan, UC Berkeley, developed a new approach to feature selection based on 
block L1 norms.  His group found that dual extra-gradient algorithms provide a stable, 
robust numerical platform for this approach. The algorithm has been tested on standard 
machine learning benchmarks, including handwritten character recognition (where the 
multi-task aspect arises from the multiple writers). Testing on these benchmarks has been 
essential---it allowed them to be able to judge the performance, scaling and robustness of 
the algorithm relative to accumulative wisdom of the literature.  
 
Developed a fully Bayesian hierarchical model for feature selection which uses separate 
hierarchical pathways for feature relevance and feature values. Thus a feature may 
transfer if it is relevant for a task, even if the parameter value has a different sign across 
tasks. The model uses Dirichlet process priors to permit clustering of feature values.  
 
Developed a new algorithm known as “ebb-flow” for inference in (hierarchical) Dirichlet 
process mixtures (aka, infinite tied mixture models). Jordan's group carried out 
experiments to compare the new approach to standard Gibbs sampling and split-merge 
algorithms.  
 
Developed a new algorithm for finding common subspaces for multi-task regression and 
classification problems. This problem is the counterpart of the feature selection problem. 
Rather than finding a set of features that are useful across multiple tasks, the algorithm 
finds sets of feature combinations (i.e., a subspace) that are useful across multiple tasks. 
Our approach is based on random projections. They choose a large number of random 
projections and treat these projections as features for the block L1 norm algorithm that 
they developed earlier. That algorithm selects subsets of projections that are useful across 
tasks; i.e., it selects a multi-task feature subspace.  
 
Developed a third approach to feature selection based on block L1 norms, in addition to 
the dual extra-gradient and sequential optimization approaches developed in their 
previous work. This new method is based on the recently-developed BLasso algorithm of 
Peng and Yu (2006); it extends that algorithm to the block-norm setting. Jordan's group 
found that this approach has advantages in terms of scaling with respect to the other 
approaches, and it also has the advantage of being an online algorithm. Jordan's group 
views this approach as our main algorithmic platform for multi-task feature selection.  
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Developed a novel nonparametric hierarchical Bayesian framework for transferring 
attribute-based (i.e., featural) representations in the multi-task setting. Their earlier work 
on the hierarchical Dirichlet process provided a nonparametric approach to clustering in 
the multi-task setting. The new approach is an analogous methodology for problems in 
which object identity is not reduced to the cluster that it belongs to, but is encoded by a 
set of attributes. The learning algorithm finds attributes that are useful across multiple 
tasks. The approach is based on a L'evy process known as the beta process, a stochastic 
process in which the sample paths that encode probabilities of sparse Bernoulli matrices. 
Jordan's group showed how to define a “hierarchical beta process,” in which these 
probabilities are shared across multiple Bernoulli matrices.  
 
Developed a novel approach to inference in Dirichlet process mixtures. The approach is 
referred to as a “permutation-augmented sampler.” Standard approaches to sampling-
based inference essentially move a single data point at time. This makes it difficult for the 
Markov chain to mix at the level of clusters, and these algorithms can be quite slow. The 
new approach samples an entire permutation and then sums over all clusterings consistent 
with the clustering. This is done with a dynamic programming algorithm. In experiments, 
they have shown that this yields burn-in times that are significantly smaller than those of 
the Gibbs sampler.  
 
Made progress on the problem of transfer among the states of semi-Markov models. 
Using the hierarchical Dirichlet process approach and hidden Markov model (HDP-
HMM) developed in their earlier work, they have shown how to extend the HDP-HMM 
to allow separate control over self-transitions.  
 
Developed a new hierarchical nonparametric Bayesian approach to hidden Markov 
modeling. Current approaches to the nonparametric hidden Markov models have been 
plagued by the over-abundance of switching transitions among closely-related states. Our 
new approach---the “tempered HMM”---solves the problem by allowing separate control 
over self-transitions.  
 
Developed a new approach to transfer learning that they referred to as “agreement-based 
learning.” This consists in a novel use of latent variable models in which multiple models 
are forced to agree on a set of latent variables. This provides a new approach to symbolic 
transfer.  
 
Developed a new class of nonexchangeable nonparametric priors based on Markov 
chains. Such priors allow entities to share features if those entities are close together in 
time. Jordan's group has developed computationally efficient inference procedures for 
posterior inference under such priors. Similar nonparametric priors have been developed 
for other data types, including counts and rates, using Kingman's theory of completely 
random processes.  
 
The focus of the research on hierarchical Bayesian transfer learning has been limited to 
exchangeable models. These are models in which the entities being modeled are treated 
as independent and identically distributed given the latent variables in the hierarchy. 
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While leading to tractable models this is an overly strong assumption that is ill-suited to 
many problems; specifically it does not allow additional covariates to be observed. They 
have begun to work on the “Phylogenetic Indian Buffet Process,” a nonparametric 
hierarchical Bayesian methodology for partially exchangeable models. They assume that 
the similarity among entities can be described by a tree and they develop a set of 
posterior update rules for the Indian buffet process that makes use of belief propagation 
in the tree. Despite the non-exchangeability the overall update is as tractable 
computationally as an exchangeable model.  
 
Developed a new methodology for transfer in temporal domains. The methodology builds 
on their earlier work with the hierarchical beta process (HBP). The beta process is a 
nonparametric Bayesian prior that allows a system to discover sets of features that are 
shared among multiple groups. The new idea is to associate to each feature a dynamical 
system (in particular, a state-space model). When this feature is instantiated, the model 
produces dynamical behavior according to that state-space model. Thus, selecting a set of 
features corresponds to selecting a set of dynamical behaviors which can be switched in 
or switched out over time. The HBP allows these dynamical behaviors to be shared 
across groups as well as across time. Jordan's group has demonstrated that this approach 
can be used to segment videos of human activity (from the CMU video database), where 
transfer is achieved among types of activities.  
 
Andrew Ng, Stanford, formulated a new, widely applicable learning problem in which 
high-level knowledge is transferred from easily available unlabeled data. This problem is 
called self-taught learning.  His group developed algorithms for a high-level abstraction 
algorithm called sparse coding, that are two orders of magnitude faster than previous 
algorithms. Using this technical advance, they applied the sparse coding algorithm to 
self-taught learning, and demonstrated highly effective transfer using only unlabeled data.  
 
Within the self-taught learning framework, they developed the first tractable algorithm 
for solving the shift-invariant formulation of sparse coding. This algorithm enabled them 
to learn succinct, higher-level transfer learning representations for audio and image data. 
The new algorithms were shown to outperform well-known and widely used baseline 
algorithms in the presence of real-world noise. They tested them on self-taught learning 
tasks involving image and audio classification. They packaged and released their 
implementation.  
 
Developed new algorithms for learning hierarchical representations, allowing the transfer 
of knowledge from easily available unlabeled data to supervised tasks. These algorithms 
learn abstract, higher-level patterns automatically from data by piecing together several 
simpler patterns that were also learnt from data. Unlike previous algorithms, the learnt 
hierarchical representation also reduces redundancy by concisely representing any input 
using only a small number of patterns. Consequently, the representation produced is 
succinct and more robust to noise, capturing higher-level abstractions that should be well-
suited to transfer learning applications.  
 

5 
 



 

Extended their new self-taught learning algorithms for learning hierarchical 
representations from unsupervised data. This algorithm extends the deep belief network 
learning algorithm by encouraging the features to be sparse (i.e., to be zero most of the 
time). Crucially, Ng's group demonstrated that the new algorithm can transfer higher-
level patterns (such as angles in images) than previous methods, and can lead to better 
classification accuracy than the previous single-layer self-taught learning algorithm.  
Developed a new self-taught learning model for transfer learning domains in which the 
input data is binary, discrete, or of several other types that were difficult to handle using 
their previous algorithm. This includes important data types such as text documents. The 
model allows the domain characteristics to be explicitly captured, allowing higher-level 
transfer than before. Ng's group also developed an efficient algorithm for learning and 
inference in this model. In preliminary results, the algorithm is several times faster than 
standard off-the-shelf optimization software.  
 
Implemented their exponential family sparse coding algorithm for self-taught learning, 
and applied it to two types of transfer tasks. In one, they tested transfer from news articles 
to 50 webpage classification tasks; in another, they tested transfer from news articles to 
10 newsgroup classification tasks. They found that, on average, the transferred 
knowledge leads to a 10-30% improvement in accuracy on the target task.  
 
Implemented a distributed program to learn large restricted Boltzmann machine (RBM) 
models for transfer learning. The parallel algorithm is guaranteed to converge to the 
optimal parameter values. The computation was successfully tested on a cluster 
consisting of 20 individual computers.  
 
Developed a translation-invariant sparse deep belief network model for self-taught 
learning, along with an efficient algorithm for training the model from unlabeled data. 
Using a probabilistic max-pooling operation, the algorithm can perform inference in a 
probabilistically sound way. Ng's group showed that this algorithm can learn interesting 
features -- such as object parts -- from large, unlabeled images (whose size is much 
beyond the typical size of images that could be used efficiently in past work).  
 
Evaluated the model by applying it to self-taught learning tasks. They showed that the 
model learns useful hierarchical features for self-taught learning, and that the second 
layer representation for natural images contains more informative features (such as 
corners, arcs, contours) than the first layer features (oriented gabor filters) for object 
recognition in terms of both mutual information and classification accuracy. Further, their 
algorithm learns a hierarchical representation from images in an unsupervised way: it can 
learn object-part-based intermediate level features, as well as recursively composing 
them into more complex part or whole-object features in the higher layer.  
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Tommi Jaakkola, MIT, developed inference algorithms analogous to tree decomposition 
but based on planar graphs. The algorithms operate by decomposing the overall non-
planar model in terms of planar graphs (as opposed to trees) and optimize the structure as 
well as the parameters of the decomposition so as to find either the MAP configuration or 
marginal probabilities. The results represent a step in the direction of finding effective 
hierarchical decomposition strategies for broader classes of probability models. The 
algorithms and the theoretical guarantees they are pursuing can be expected to be 
generally useful in transfer learning.  
 
Developed deterministic iterative methods based on staged mixture models to effectively 
find and represent posterior distributions over shared parameters in parametric Bayesian 
models, and to replace slow sampling methods in non-parametric hierarchical Bayesian 
models. The methods relying on staged mixtures enjoy nice theoretical guarantees in 
addition to being algorithmically simple and fast.  
 
Developed distributed message passing algorithms for finding most probable 
configurations. Inference tasks involving both marginalization and maximization 
operations are arguably the most common, especially in joint hierarchical inference 
across tasks, yet lack efficient algorithms. These algorithms exploit specific variational 
forms to enable effective propagation of max marginals across marginalizations. In 
addition, they are characterizing the approximation properties of such algorithms.  
 
Implemented and tested a class of approximate inference algorithms based on parametric 
decompositions. The algorithms decompose non-planar graphical models into a collection 
of planar graphs (as opposed to trees) and optimize the graph structure as well as the 
parameters of the components so as to evaluate marginal probabilities over subsets of 
variables. These planar decomposition algorithms are slower than related approaches 
based on trees. This is primarily due to the difficulty of obtaining a closed form 
expression for the entropy of planar graphs. The new algorithms nevertheless provide 
superior bounds on the partition function and significantly improve the accuracy of 
(especially multivariate) marginal probabilities.  
 
Developed a flexible class of approximate inference algorithms for large hierarchical 
models. The new methods are based on two types of controlled approximations: an upper 
bound on the entropy of any distribution defined over the relevant marginal polytope, and 
the expansion of the marginal polytope. The entropy bound is based on truncating 
conditional entropies associated with elimination orders. The outer bound on the marginal 
polytope is obtained by enforcing agreement over neighboring regions related to the 
original model and the specific entropy approximation. A combination of the two types of 
upper bounding approximations leads to widely applicable and accurate inference 
algorithms subsuming previous methods such as Tree-reweighted (TRW.) In particular, 
the approach provides a tighter upper bound on the log-partition function as well as more 
accurate marginals.  Jaakkola et al. expect these algorithms to be of greater use in specific 
transfer problems (matchings, relevance determination, object recognition) than those 
based on planar decompositions discussed in earlier reports while still providing 
controlled approximations.  
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Implemented hierarchical non-parametric models based on sequential minimum entropy 
estimation. These methods lead to sparse explicit models and could be used as 
alternatives to sampling based hierarchical non-parametric Bayesian models.  
 
Developed non-parametric hierarchical Bayesian models where the hierarchical 
organization of the samples is estimated together with the model parameters. The 
approach is designed for identifying shared sub-structure as well as differences across 
tasks. This sampling based approach complements their earlier work on deterministically 
estimating hierarchical models through staged minimum entropy regularization and will 
serve to better integrate deterministic (explicit) approximation methods with non-
parametric sampling methods. The sampling approach has already been demonstrated in 
the context of multiple biological data sources and is readily applicable to problems such 
as object recognition where “examples” can be transformed into “bags of samples”.  
 
Complemented their previous work on inference methods based on truncated conditional 
entropies with reparameterization algorithms (in the dual form) for finding maximum a 
posteriori (MAP) configurations. The combination is expected to be useful in mixed 
propagation setting where the goal is to identify the most likely configuration of 
structural variables while marginalizing over variables specific to each (sub)task.  
 
Formulated new transfer learning problems from the point of view of robust (minimax) 
estimation. Their approach deviates from the more common characterization of transfer 
in terms of what is shared across tasks and instead focuses on robustness against how the 
tasks may differ. It is no longer necessary to specify a distribution over tasks, and 
guarantees can be obtained on the basis of robustly solving a single task.  
 
Developed approached for efficiently integrating inference calculations across different 
tasks. One of the key problems in this context is intersecting marginal polytopes (sets of 
valid marginal distributions) from different subtasks. The marginal polytopes are often 
non-trivial even within subtasks. The difficulties of evaluating most likely configurations 
of variables or computing marginal probabilities can be directly traced back to problems 
with characterizing the marginal polytope. Our strategy is based on controlled 
approximations that maintain inner or outer bounds on the marginal polytopes and their 
intersections. As the first step, we have developed cutting plane methodologies for 
obtaining tighter outer bounds on marginal polytopes. The advantage of iteratively 
constraining the marginal polytope is that the polytope needs to be well-specified only 
near the actual solution.  
 
Extended their cutting plane methodologies for obtaining tighter outer bounds on 
marginal polytopes. These results were limited to random field models with binary and 
pairwise connectivity. The extension involves deriving a new class of outer bounds on the 
marginal polytope for non-binary and non-pairwise models. The key realization is that 
valid constraints on the marginal polytope can be constructed by a series of projections 
onto the cut polytope. Our approach is broadly applicable and highlights emerging 
connections between polyhedral combinatorics and probabilistic inference.  
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Developed a new generation of message passing algorithms for finding the MAP 
configuration of variables. The methods are aimed at resolving hidden causes in object 
models and training energy based models in multi-task settings (see task R8 below). The 
algorithms are similar in structure to max-product but always converge and can be shown 
to find the exact MAP solution in various settings. They are derived as block coordinate 
descent methods in a dual of the LP relaxation of MAP but require no tunable parameters 
such as step size or tree weights, and are as easy or easier to implement than the typical 
max-product or its generalizations.  
 
Developed energy based latent variable models for multi-task object modeling.The 
overall formulation (it turns out) is in broad terms similar to the recent approach by 
McAllester et al. These models, however, make use of a specific class of message passing 
algorithms for finding MAP configurations of latent variables. These algorithms 
monotonically decrease the dual of an LP relaxation and, as a result, enable us to train the 
energy based models iteratively, analogously to EM, regardless of the latent structure. 
Evaluation of the approach is underway.  
 
Developed anytime algorithms for combining different learning tasks. The overall 
problem involves two main threads. First, one approximately characterizes the marginal 
polytope associated with each model (task) and determines how such polytopes can be 
intersected to combine the different tasks. The second thread extends the cutting plane 
methodology for inference to incremental anytime induction of models. Jaakkola's group 
has previously developed cutting plane methodologies (with projection) to accurately 
represent the marginal polytope of each model (task) around the solution of interest. The 
intersections of such marginal polytopes, exact or approximate, can be easily 
characterized for models with fixed graphical structures and partially shared variables. 
They have further characterized the intersection of marginal polytopes for graphical 
models combined through data association (matchings). The matching portion is used to 
resolve the identities of shared variables. The complexity of the resulting problem can be 
shown to be at least that of max-cut. The second thread concerns with incremental 
(anytime) construction of models suitable for anytime (cutting plane) inference and is 
essentially based on cutting plane formulation for the Legendre dual.  
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Further developed methodologies for anytime inference and model induction. The goal of 
this work is to solve a set of related tasks under specific constraints on computational 
resources. To this end, they have developed anytime algorithms for distributed inference 
where the complexity of the inference calculations is iteratively tailored to the task at 
hand. This is accomplished by iteratively enforcing higher order consistency constraints 
in an overall (dual) re-parameterization approach. The algorithm provides a certificate of 
optimality or an acknowledgement of failure when the available resources have been 
exhausted. The methods have already been successfully demonstrated on hard 
combinatorial design tasks that reflect structural alignment problems accompanying high 
level transfer learning problems. The complementary model induction step is in progress 
(expected to be completed by the next reporting period). They have also focused on 
exploiting sparse model descriptions both in the distributed operations as well as in 
selecting appropriate consistency constraints. Higher level models are predominantly 
sparse.  
 
Explored the use of anytime inference algorithms for transfer learning. The formulation 
treats task specific inference calculations interchangeably with estimation and leads to a 
new measure of transfer in terms of task specific computation. A simple realization of 
this problem formulation appears in structured prediction where challenging inference 
calculations for each training instance can be cast in terms of estimation. The task 
specific parameters to be estimated in this setting correspond to a (monotone dual) 
relaxation of inference calculations, tailored to minimize the same loss. A number of 
approximate inference methods have been proposed for structured prediction (e.g., by 
Koller's group, UAI 2008). They provide a particularly stable extension of such 
approaches to broader classes of transfer learning tasks that are solved via monotone 
relaxations.  
 
Analyzed transfer learning from the point of view of quantifying how computational 
resources should be allocated across tasks. The amount of computation spent on each task 
can vary in small increments (the increments correspond to elementary operations in 
distributed inference). The inference operations, on the other hand, can be related in a 
strong way to the effective degrees of freedom that are fit to each task separately. The 
analysis setup is designed to reveal stronger generalization by limiting task specific 
computation.  
 
Extended linear programming relaxations for complex inference calculations by 
introducing a latent hierarchy of sparsely represented functional constraints between the 
variables. The approach is designed for computational efficiency and accuracy in models 
where relaxations based only on direct interactions are insufficient (most models) and 
models where clusters containing more than a few variables are too costly (e.g., 
stereopsis).  
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Models where the variables take a large number of distinct values are particularly 
challenging for anytime inference algorithms. This is because finding and incorporating 
higher order consistency constraints in linear programming relaxations becomes quickly 
infeasible as the order of the constraint increases. Jaakkola's group has worked towards 
solving this problem by sparsely representing higher order consistency constraints 
between the marginal probabilities and developing dual messaging passing algorithms 
that exploit the sparsity. Jaakkola's group has derived crisp and efficient dual message 
passing algorithms for sparse constraints, formulated a margin based approach to 
efficiently search for sparse constraints, and demonstrated the computational gains from 
the approach.  
 
The success of transfer learning with approximate inference depends critically on the 
representation of anytime inference operations. Jaakkola's group has developed a 
unifying framework for dual LP relaxations, mapping different formulations to each 
other, including block updates. These results are useful in an overall transfer learning 
approach where the allocation of computational resources across tasks plays a central 
role.  
 
Leslie Kaelbling and Tomas Lozano-Perez, MIT, defined hyperprior on rule sets and 
conditional distribution of specific rule set given the prior and developed staged 
approximate inference strategy, in which data from observed tasks 1 to k are used to infer 
general rule distribution; and then that general distribution, plus a small amount of data 
from task k is used to infer a rule distribution for task k.  
 
Task R2: Bayesian Reinforcement Learning 
 
Michael Littman, Rutgers, dolved a long-standing open problem in efficient 
reinforcement learning---learning a Bayesian network model (DBN) of an environment in 
polynomial time. The problem was originally posed by Koller and Kearns in 1999 and 
the solution built on insights from Koller, Ng, and Abbeel. As part of the solution, 
Littman formulated a new metric for measuring efficient learning, which he refers to as 
“KWIK” learning. A KWIK learner “Knows What It Knows” about its environment, 
meaning that it can guide its own exploration, as appropriate, to quickly acquire the 
knowledge needed to maximize performance.  
 
Explored a new model of RL environments, originally due to Sherstov and Stone (2005). 
The model, which they are calling “RAM” for “relocatable action model”, holds promise 
for capturing and transferring transition knowledge between states and problems. 
Littman's group's RAM learner was applied to transfer in a set of simpler grid-world 
domains. They found that, in spite of the rapid speed with which RAM learners acquire 
and use models, there was a 23% improvement when transfer was used. In this 
experiment, the source domain was tiny (9 states) and the target domain substantially 
larger (81 states) and optimal paths grew from roughly 5 or 6 to over 200. Nevertheless, 
positive transfer was observed.  
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A similar experiment was carried out using another representation developed in Littman's 
group. Specifically, they have devised the first Bayes-net-based RL system that 
automatically learns its own Bayes net representation. They showed that, in domains in 
which the Bayes net is unchanged between source and target; excellent transfer rates can 
be demonstrated.  
 
Developed a new approach to reinforcement learning that combines the strengths of 
efficient learning in the “PAC-MDP” framework with the powerful, flexible 
representations provided by Bayesian approaches. They demonstrated the approach in the 
transfer setting by exploiting a hierarchical Bayesian model to speed up learning of a new 
task based on experience with similar tasks.  
 
Carried out an evaluation of their novel Bayesian reinforcement learning algorithm, 
BOSS, in stochastic domains. It soundly outperformed existing Bayesian and non-
Bayesian approaches variations of standard testbed problems. It was also demonstrated 
working with a non-parametric Bayesian model learner, demonstrating within-domain 
transfer that led to faster learning than when run with a transfer-less prior. These results 
were disseminated at the UAI 2009 conference. An unexpected accomplishment was that 
several students in the lab participated in the international reinforcement-learning 
competition and took first prize in two of the five categories.  
 
Studied the problems of exploration in domains with Bayesian priors. Given a Bayesian 
representation of the probability over models in the class being learned, there are several 
possible goals for action selection. The most natural and best studied is Bayes optimal 
action selection. This approach says that actions should be taken to maximize expected 
reward in the start state given the uncertainty in the current model. Littman's group has 
focused instead on the PAC-MDP objective, which says that actions should obtain near 
optimal reward in all but a few time steps. Building on a result from Ng's group, 
Littman's group recognized that PAC-MDP is not an approximation of Bayes optimal, 
but, in fact, can be preferable. In many scenarios it is also more consistent with human 
and animal behavior.  
 
Analyzsis of “Thompson sampling”, a simple sampling approach to acting in domains 
with Bayesian priors, has shown that it can achieve the PAC-MDP objective. This 
realization greatly simplifies the types of algorithms that can be studied to obtain useful 
guarantees and allows the focus to be on the Bayesian modeling instead of complex 
issues on the decision-making side.  
 
Tom Dietterich, Alan Fern, Prasad Tadepalli, OSU, evaluated a multiagent RL approach 
that combines the two ideas assignment-based task decomposition and relational 
templates. By decomposing the overall task into task assignment to agents and the task 
execution by agent teams, they achieved significant scaling up to 12 agents. The lower 
level of task execution has small decomposed state space and can be transferred across 
multiple domains. The higher level search is more global but takes advantage of efficient 
algorithms like the Hungarian algorithm for bipartite graphs. This combination proved 
very effective and resulted in successful transfer from 6v2 agent domains to 12v4 agents.  
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Extended their model-free Bayesian policy search approach to allow for contextual 
information to be used when assigning roles to agents. The approach is based on a 
hierarchical DP model which is used to learn about the number and types of agent roles in 
a decision problem, where an agent role corresponds to a distribution over policy 
parameters, so that agents of the same role behave similarly. The model was extended to 
allow for the DP class assignment of agents to roles to depend on contextual features of 
individual agents. An MCMC inference process was developed that automatically learns 
the kernel parameters dictating the assignments as well as the number and types of agents 
roles. Experiments were conducted in multi-agent battles in the game of Wargus. It was 
demonstrated that the role structure of a domain can be learned from demonstrations 
provided by an expert. Further, it was shown that this role structure could be transferred 
to new problem using our Bayesian policy search approach, leading to significant 
speedups in learning. Finally, it was demonstrated that role structure could be discovered 
automatically during the RL process with an uninformative prior, leading to speedup 
compared to baseline approaches that do not attempt to discover role structure.  
 
Developed an assignment-based decomposition approach to multi-agent reinforcement 
learning. They show effective transfer across different numbers of agents of different 
types in a tactical RTS domain by combining assignment-based task decomposition and 
relational templates. At the high level, the task of defeating the enemies is decomposed 
into defeating each enemy using a group of friendly agents. At the lower level each group 
of friendly units is scheduled to defeat their assigned enemy independent of other enemy 
units. The lower level is efficient because each team works independently of each other 
and leads to transfer across multiple domains. The higher level search is more global but 
takes advantage of the Hungarian algorithm for bipartite graphs. This combination proved 
very robust and resulted in successful transfer from 6v2 agent domains to 12v4 agents of 
different agent types.  
 
Task R3: Hierarchical Reinforcement Learning 
 
Tom Dietterich, Alan Fern, Prasad Tadepalli, OSU, developed an approach to learning 
MAXQ subtask hierarchies for transfer. A MAXQ subtask is defined by a subgoal reward 
function (the pseudo-reward function), set of actions and a region of state space, and a 
state abstraction function such that certain conditions hold (e.g., MAX node irrelevance 
as defined in Dietterich, 2000, JAIR 13:227-303). The method is based on a combined 
top-down and bottom-up reasoning process. First, the source domain learning problem is 
identified without a hierarchy. The top-down process then analyzes trajectories followed 
by the learned policy to identify important subgoals. A bottom-up process then finds a 
maximal region of state-action space that satisfies the MAX node irrelevance conditions. 
This process is iterated to produce a subtask hierarchy. The value functions and policies 
are then re-learned in the source domain using this hierarchy, and the learned subtasks 
can then be transferred to the target domain.  
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Investigated learning hierarchies in RL. The goal is to learn a task hierarchy from task A 
which can be reused in task B, so that learning can be much faster in task B. The focus 
was to learn a task hierarchy from trajectories of an optimal policy. This has several 
subproblems as listed below: (a) Learn state-transition models from trajectories. Some 
progress was made on this problem by learning state-action dynamics in the form of 
model trees. The model trees succinctly capture the effects of actions in simple 
benchmark domains used in hierarchical reinforcement learning. (b) Learn to break-up 
trajectories into subtasks. They designed a heuristic algorithm to do this, which uses the 
causal structure of the actions in the trajectory to break it into subtask segments. The 
causal structure is deduced from the action models derived in part (a). (c) Learn 
appropriate abstractions for the subtasks. The goal here is to identify the subset of the 
features which are relevant for the completion function of the subtask. They implemented 
an algorithm to do this, which computes the largest set of features whose values influence 
the reward either directly or indirectly through other actions.  
 
Finished a set of experiments that utilize hierarchical Bayesian models for multi-task, 
model-based Bayesian RL. An infinite component hierarchical model is learned from 
previous tasks providing an informed prior over MDP models. This prior is used to 
speed-up the Bayesian RL agent on new target tasks. The agent utilizes an action 
selection strategy inspired by Thompson sampling. The use of an infinite component 
model allows the agent to automatically learn the number of components and create new 
components when a target task is fundamentally different compared to prior source tasks. 
Results in a multi-terrain, multi-goal navigation world are good.  
 
An algorithm was developed to learn hierarchies from trajectories of optimal policies in 
the source domain. The algorithm uses dynamic Bayesian network (DBN) models of the 
primitive actions to causally annotate the trajectory by identifying producer-consumer 
relationships between the different actions in the trajectories. It uses the causal 
annotations to heuristically partition the trajectory into subtasks. The algorithm is 
recursively called on the subtasks to create a full hierarchy with associated abstractions 
that are computed from the DBN models. Empirical comparisons of the hierarchy 
learning algorithm in several domains showed that the new algorithm outperforms hand-
designed hierarchies. Under some favorable conditions, learning is orders of magnitude 
faster than other state-of-the-art algorithms.  
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Extended methods for learning subroutine hierarchies in RL. The primary algorithm 
works by analyzing a single training trajectory in the source domain and exploits two 
critical concepts. First, based on Dietterich's MAXQ theory, it searches subroutines that 
enable good state abstractions (i.e., where many state variables can be ignored). Second, 
it searches for subroutines that achieve important subgoals for the overall problem. These 
subgoals are identified via a causal analysis of the training trajectory under the additional 
assumption that it should look for goals of achievement (i.e., that cause state variables to 
change value; as opposed to goals of maintenance that try to prevent certain variables 
from changing value). The primary algorithm relies on having a good algorithm for 
learning dynamic bayesian network (DBN) models of the effects of actions. They have 
developed a novel algorithm for doing this that is of independent interest for learning 
regression trees in which the leaf values can be functions of the predictor variables.  
 
Developed a hierarchical Bayesian model for transferring multi-agent polices in a tactical 
battle setting with multiple unobserved unit types. The model learns an infinite mixture 
model over agent policies, where there is a component for each of the fundamental types 
of policies observed, which roughly correspond to one component per distinct agent role. 
This model is used as a restart distribution for policy gradient on new tactical battle 
problems.  
 
Proved a theorem that characterizes the extent to which the single-trajectory MAXQ 
hierarchy learning algorithm (HI-MAT) finds optimal state abstractions. The theorem 
shows that if the DBN models analyzed by HI-MAT are minimal, then HI-MAT find 
optimal state abstractions for Max node irrelevance.  
 
Developed a new method for decomposing an action sequence into subtasks. This method 
guarantees that each sub-task is decomposed into a set of child sub-tasks that have the 
minimum possible number of parameters to learn. The previous method only guaranteed 
that the maximum number of parameters required by any single child tasks was minimal.  
 
Developed a new algorithm to learn task hierarchies for deterministic serializable 
domains through partial action models. This approach is expected to clarify and refine the 
multi-trajectory learning algorithm that is under development and lead to a more 
streamlined implementation combining model learning with hierarchy learning.  
 
Extended the approach to hierarchy learning from multiple trajectories in the context of 
hierarchical planning. The work focuses on learning hierarchical knowledge in the form 
of component graphs. These graphs are proven to always exist for serializable planning 
domains and a sound, complete, and efficient algorithm is given for planning with them 
in such domains. The work also gives a sound and complete algorithm for inferring 
component graphs from partial models constructed from sample trajectories.  
 
Stuart Russell, UC Berkeley, devised new representation for temporally decomposed Q-
functions that avoids problems of representationally expensive nonlocal Qe component 
used in previous Hierarchical RL systems. Devised a new Hierarchical RL algorithm to 
take advantage of the new representation.  
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Completed and published the first satisfactory semantic definition for high-level actions, 
called “angelic semantics” because it captures the fact that the uncertainty in action 
outcomes caused by the availability of many possible concrete implementations of any 
abstract plan will always be resolved in the agent's favor because the agent will choose 
the implementation. On this basis, the group developed, implemented, and tested the first 
hierarchical planning algorithms that guarantee the following properties: 1) “upward 
solution” --- every abstract plan that provably fails to achieve the goal has no concrete 
implementation that achieves the goal; 2) “downward refinement” --- every abstract plan 
that provably achieves the goal has a concrete implementation that achieves the goal. 
These properties enable efficient planning that was shown to be several orders of 
magnitude faster than either flat planning or hierarchical planning without semantic 
annotations for high-level actions. They then developed a new, generalized definition of 
admissible heuristic function for state sets under the angelic semantics and used it to 
specify and implement the first provably optimal hierarchical planner and the first 
hierarchical lookahead agent. Like realtime search algorithms such as LRTA*, the agent 
operates in scenarios where computational limitations preclude finding guaranteed plans, 
but is guaranteed to eventually achieve the goal if this is possible.  
 
Leslie Kaelbling and Tomas Lozano-Perez, MIT, developed an algorithm for transferring 
across tasks by finding a task hierarchy that can be used to dramatically speed up learning 
and/or planning in a new domain. The crucial step was formulating an objective function 
for what constitutes a good hierarchy, given a set of data that needs to be explained. This 
criterion has two components: it must be simple and explain the data well. Simplicity is 
measured as the sum of the complexities for solving the subproblems in the hierarchy 
(which should be considerably smaller than the complexity of solving the problem 
monolithically). Explaining the data well is measured by the degree to which the actions 
taken in the sample trajectories are optimal given the subgoals in the task hierarchy. This 
is a general approach which has been demonstrated in Stratagus scenarios.  
 
Task R4: Transfer Learning Theory 
 
Peter Bartlett, UC Berkeley, developed general techniques for obtaining performance 
guarantees for transfer learning methods based on regularized risk minimization. The 
results apply to prediction problems with independent data. They imply that, under 
suitable conditions on the transfer learning problem, the performance improves with 
sample size more quickly than suggested by previous results.  
 
Obtained performance guarantees for Bayesian methods that apply even when the data is 
chosen adversarially. Specifically, whatever the data sequence, these results show how 
the loss accumulated during learning by a Bayesian method is related to the cumulative 
loss of any model in the class. The key benefit over previous analyses is that the results 
are universal over data sequences. In particular, the assumption underlying previous 
analyses --- that the tasks are conditionally independent --- is rather arbitrary. The new 
techniques seem well suited to understanding the benefits of transfer in a hierarchical 
Bayesian model, particularly when the number of related tasks is small.  
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Studied the problem of online multitask prediction with expert advice. The relatedness of 
tasks is modeled by aiming to compete on each task against the best expert chosen from a 
small set. They have provided performance guarantees for a Bayesian method. 
Unfortunately computing the predictions is a hard problem. They have also developed an 
efficient online prediction strategy whose performance degrades linearly with the number 
of times the task changes. In the special case of sequentially presented tasks, this efficient 
method gives the same performance guarantees as the Bayesian method.  
 
Developed an algorithm and performance bounds for the problem of online discovery of 
similarity mappings. This is a generalization of the problem of multitask learning with 
expert advice that includes problems such as online clustering and feature selection. The 
application to multitask feature selection has been implemented as part of the transfer 
learning toolkit.  
 
Developed an adaptive online prediction method for online convex optimization, adaptive 
online gradient descent. (Online minimization of a convex criterion is a general 
formulation that includes worst-case prediction problems.) Bartlett's group also provided 
general lower bounds for these prediction problems, which, in particular, show that the 
new method gives optimal rates of decrease of regret.  
 
Developed worst-case log-loss regret bounds for Bayesian model averaging algorithms in 
the regression setting. These bounds are valid for arbitrary priors, and the regret term 
includes a smoothness property of the prior.  
 
Developed an algorithm for reinforcement learning, called Optimistic Linear 
Programming, and showed that in learning to control a Markov Decision Process, the gap 
between the performance of this algorithm and that of the optimal policy grows only 
logarithmically with time.  
 
Investigated the problem of multitask prediction with limited feedback, which is a step in 
the direction of multitask sequential decision problems. They developed a prediction 
method for online linear optimization with partial monitoring (a bandit problem, where 
only the loss of the chosen action is available). They showed that, with high probability 
over the choices of the algorithm, its regret, that is, the amount by which its performance 
falls short of the best choices in retrospect, grows at an optimal rate.  
 
Investigated the problem of linear prediction with partial monitoring. Previous algorithms 
that gave optimal regret (regret is the amount by which performance falls short of the best 
choices in retrospect) required computation time exponential in the problem dimension. 
They developed efficient algorithms for these problems.  
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Developed regularization-based methods for online learning, together with analysis 
techniques that should facilitate the choice of appropriate regularization functionals for 
these methods. These techniques generalize the techniques that they developed to obtain 
efficient algorithms for linear prediction with partial monitoring that have optimal 
expected regret. They also applied these techniques to design algorithms for bandit linear 
prediction that have high probability guarantees on their regret. In addition, Bartlett's 
group has made progress on using these techniques to develop effective online multitask 
learning algorithms.  
 
Investigated a novel approach to online multitask prediction via matrix regularization. 
The analysis showed that known spectral norms (often used in the literature) are not 
suited for the problem. On the other hand, structural norms yield better results.  
 
Obtained bounds on the optimal regret rates for prediction problems in adversarial 
settings, which are the most natural way to model transfer learning problems. By 
studying the dual of the prediction problem they demonstrated a close link between 
performance guarantees in adversarial and probabilistic settings.  
 
Investigated the problem of learning to control a Markov decision problem, and in 
particular examined the dependence of the performance of an optimal strategy on 
complexity properties of the problem, such as the mixing time, that measure the effective 
size of the MDP. They have developed a milder notion of complexity that can be viewed 
as a one-way mixing time --- it involves the time it takes to reach favorable states. They 
have made progress on the development of strategies that exploit this one-way mixing 
time for more rapid learning.  
 
Developed performance guarantees for the problem of learning to control Markov 
decision problems, and developed strategies whose performance depends on milder 
notions of problem complexity than those previously considered.  
 
Task R5: Metareasoning 
 
Stuart Russell, UC Berkeley, investigated partial-program-constrained lookahead in a 
classical planning context. Identified major gaps in the field's analysis of the semantics of 
high-level actions. Proposed new lower and upper bound semantics that yield guarantees, 
where applicable, of the downward and upward solution properties. Devised lookahead 
planning algorithms based on the new semantics and showed order-of-magnitude speedup 
over flat planning and hierarchical planning without semantics.  
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Implemented a simple metalevel reinforcement learning task in ALisp. The partial 
program repeatedly samples from one of k choices, each of which returns a value drawn 
from an unknown distribution. Each sample has a fixed cost and at some point the 
sampling stops and the program commits to one of the k choices. The ALisp engine will 
learn to make the sampling and stopping choices. The problem, as defined, supplies 
external positive rewards only once a choice is made, leading to slow learning. They 
devised a suitable metalevel shaping reward that meets the criterion for preserving 
optimal policies. Experimented with features for Q-function approximation.  
 
Conducted experiments with metalevel RL within ALisp. The basic setup is simple --- an 
ALisp program is written that includes choices for computational steps that eventually 
lead to the selection of an action. The partial program repeatedly samples from one of k 
choices, each of which returns a value drawn from an unknown distribution. Each sample 
has a fixed cost and at some point the sampling stops and the program commits to one of 
the k choices. Metalevel reinforcement learning was demonstrated for the first time. 
Developing a suitable function approximator is not straightforward, however. Since the 
choices are a priori indistinguishable, the approximator should be permutation-invariant. 
Also, the final payoff calculation is not straightforward, since the mean estimate for the 
current-best-action is biased by the max selection step.  
 
Task R6: Transfer Learning for Strategy Games 
 
Tom Dietterich, Alan Fern, Prasad Tadepalli, OSU, developed an approach to learning 
linear heuristic functions for controlling beam search and applied the algorithm to 
learning heuristics for STRIPS planning domains. The approach uses example problems 
labeled by a target sequence of search steps as training data. Perceptron updates are then 
used to keep the target sequence on the beam. The notion of “beam margin” is introduced 
and a convergence result is given that provides a necessary condition on the beam width, 
relative to the beam margin, which guarantees learning will converge.  
 
Implemented routines for Bayesian linear regression with Gamma-Normal priors. Used 
these to implement a model-based multi-task RL agent that learns a prior on linear reward 
function models based on previous tasks and transfers that prior to new tasks. Learning in 
the new task is done using Thompson sampling for action selection and posterior 
updating. Initial experiments in colored grid-world domains show that the approach 
yields positive transfer.  
Implemented a method for learning heuristics for controlling a breadth-first beam search 
planner for the tactical planning domain. This included implementing feature functions 
for the search nodes (i.e. partial plans) and integrating Perceptron-style weight updates 
into the search process. The learner takes a set of training problems that are annotated 
with tactical plans found using a large beam width and a hand-coded heuristic. The 
learner then attempts to find weights for a linear heuristic function that guides a search to 
the training plan using a small beam width. Our initial experiments show that the learner 
is able to find heuristics that have a much better performance versus beam width profile 
than the hand-coded heuristic.  
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Formulated a wide class of resource production problems and a process-centric problem 
formulation. The motivation for the process-centric formulation is that more standard 
formulations (e.g. in PDDL) result in plan lengths that are exponential in the problem size 
(pseudo-polynomial in the resource goals). The problem class requires reasoning about 
numeric resources, continuous time, durative actions, concurrent actions, numeric action 
arguments, and other aspects of processes. The standard planning domain language 
PDDL supports the first four properties to varying degrees, but extensions are required to 
support the full process semantics. We conducted an extensive survey of planning 
literature and did not find any existing planners that handle all of the features we require. 
They did identify two planners that appear to be promising to build on. One is LPG a 
planner based on local search over planning graphs and handles a reasonably large 
fragment of PDDL, but not continuously changing resources. The second is TM-LPSAT 
which is based on compiling planning problems to LCNF form (a combination of logical 
and linear constraints) and solving them using LPSAT. This planner is not available but 
in concept handles all of PDDL.  
 
Implemented a process plan executor for resource production in Stratagus. This involved 
implementing a number of generic processes in Stratagus (e.g. “collect gold with a 
maximum of n peasants until accumulating m gold units”) and a plan executor that 
handles resource contention and the startup and termination of processes.  
 
Carried out two experiments to evaluate the utility of constructing transferable 
representations using PCA. The approach assumes the availability of optimal value 
functions for a number of source problems, expressed as linear combinations over a set of 
basis functions (that are common to all problems) and then performs PCA on the weights 
of the basis functions. These components are then used as basis functions in the target 
problems. The experiments involved a set of 50 randomly generated 5-on-5 tactical 
battles in Stratagus (40 source problems and 10 target problems). The results showed that 
the rate of convergence to optimal was improved in the target problems on average for 
policy search. However, because of specific implementation issues, the learned policy 
using the transformed basis had a slightly lower value than the policy learned using the 
primitive basis. For Q-learning, however, there was little observed improvement in the 
rate of convergence to the optimal value. This is because the primitive basis is highly 
engineered (because Q-learning needs to be able learn on the source problems), which 
leads to very rapid convergence of Q-learning in the target problems.  
 
Implemented routines for finite and infinite mixtures of Gamma-Normal linear regression 
components. They used these to implement a model-based RL agent that learns a prior on 
linear reward functions and transition models from previous tasks and transfers that prior 
to new tasks. Learning in the new task is done using Thompson sampling for action 
selection and Gibbs sampling for posterior inference. Initial experiments in a colored 
grid-world domain show that the approach yields positive transfer. However, the transfer 
ratios are quite small due to the relative simplicity of the task.  
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Implemented the TM-LPSAT planner. The planner handles continuous time, numeric 
resources, continuous change, and numeric action arguments which are required for 
resource production planning in Stratagus. First, they developed a compiler from 
planning problems to LPSAT problems for a restricted class of PDDL+. Then they 
revamped an existing LPSAT solver.  
 
Studied the computational complexity and convergence properties for the supervised 
learning of linear ranking functions for controlling beam search. Tractable and hard 
subclasses of the learning problem were identified and the convergence of simple online 
algorithms was shown.  
 
Developed a SAT-based planner for resource production problems and ran initial 
experiments in Wargus. The planner can handle problems with small resource goals 
and/or a small number of “distinct processes” comprising a plan. The most natural way to 
extend to large resource goals results in non-linear (quadratic) constraints, which are not 
handled by our current system. Rather than move to a quadratic constraint solver they 
used coordinate ascent approaches that make multiple calls to the planner each involving 
only linear constraints.  
 
Developed the infrastructure for an online planner for resource production problems in 
Wargus. The main component is a heuristic calculation that is based on a suitably 
modified variant of means-ends analysis, which is guaranteed to terminate given the 
assumptions satisfied by our problem. Initial experiments with the heuristic are 
encouraging but also highlight areas for improvement.  
 
Completed an evaluation of utilizing PCA analysis for transfer in RL within the tactical 
domain. After solving a number of source problems, PCA is used to learn an orthogonal 
basis to represent policies, which is used for learning on target problems. Performance in 
terms of regret is promising compared to several baseline transfer mechanisms.  
 
Developed a domain specific approach to learning the numeric parameters of Wargus 
actions (e.g. resource amounts required and produced, duration) given qualitative 
schemas of those actions. The algorithm uses the qualitative schemas to organize its 
exploration in order to quickly discover the numeric parameters.  
Extended their SAT-based planner for resource production to scale to larger problems. 
The final approach utilizes a incremental plan refinement strategy that attempts to 
improve the current best plan via repeated calls to the base planner in an anytime fashion. 
The resulting planner improves on the original TM-LPSAT planner, which they have 
been building on, in terms of both speed and plan quality. However, the resulting planner 
is still many orders of magnitude slower than the more recent heuristic search planner for 
the resource production domain and is still not suitable for real-time environments which 
was one of the original goals.  
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Developed an online planning algorithm for the resource production domain that is 
suitable for real-time execution. The planner is based on an efficient computation of an 
informative heuristic and bounded search. They have found that even for a search depth 
of one the planner is able to outperform a human expert at complex resource production 
task in terms of time to achieving the goal. This planner works for a subset of PDDL that 
captures typical resource production actions in RTS games. To the best of our knowledge 
it is the only AI planner that can effectively deal with temporal, concurrent actions and 
numeric resources in a way that is suitable for a real-time setting.  
 
Developed an algorithm for model learning in resource production domains that can 
leverage qualitative action schemas. The algorithm uses the qualitative schemas both to 
help decide what actions might be worth exploration and as a bias on the action 
definitions themselves. Initial tests show that the schemas speedup model learning by a 
factor of about eight.  
 
Created a problem generator for the Y2 tactical CP, which is substantially more complex 
than that of Y1. A base non-transfer learning algorithm was developed where multiple 
version of OLPOMDP are used to train the multiple agents. For this problem it does not 
appear necessary to include explicit coordination structures in order to find a solution in a 
practical time frame.  
 
Developed a transfer mechanism for the multi-agent tactical CP. The basic idea is to 
analyze learned policies from source problems to discover the fundamental “roles” 
played by the various agents. Here agents that have the same role have similar policies 
(e.g. a long range unit generally has a different role than a close range unit). The analysis 
also attempts to discover a mapping from properties of units in the initial state of the 
battle to their roles. Given a new problem the agents are each assigned roles and their 
policies are initialized accordingly. For the purposes of the challenge problems they are 
using a simple role discovery approach that just clusters policies using k-means, using a 
measure of policy similarity as a distance metric (the number of clusters is automatically 
selected). They then learn a classifier that is able to accurately map agents to their 
appropriate cluster/type.  
 
Developed an approach for analyzing the topological structure of Stratagus maps 
resulting in a graph representation of regions and connectivity.  
 
Developed a new UCT-based algorithm that supports planning fully concurrent activity. 
It is easy to plug in new actions models into the resulting planner, which supports our 
goal of model-based transfer. The algorithm can also take as input a variety of 
optimization goals that trade-off the speed of the assault with the damage taken. They 
have evaluated the resulting UCT algorithm on a set of 15 diverse tactical assault 
problems and compared to a number of baselines including the existing Wargus AI. The 
planner is a consistent top performer, often by a significant margin. Experiments 
demonstrate that one can effectively use the UCT stochastic planning algorithm in a 
domain where there are a large number of agents with temporal actions that must be 
executed concurrently.  
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Task R7: Transfer Learning for Manipulation 
 
Andrew Ng, Stanford, developed and tested an algorithm for choosing appropriate grasp 
positions for a novel object, whose 3D shape is unknown, and where the object is being 
perceived for the first time by the algorithm using vision. Using a computer graphics 
simulator to generate training data, the group has developed transfer learning methods to 
identify good grasps for such object, given (usually two or more) input images of the 
object to be manipulated. They developed a statistical triangulation method to estimate 
the 3D location of the grasping point for the object. They tested the transfer learning 
methods on a real 5 degree-of-freedom robot arm to pick up various novel objects. The 
algorithm used was an approximate variant of a hierarchical Bayesian learning algorithm 
(developed by Jordan, and also similar to the class of algorithms analyzed by Bartlett's 
work under task R4). With emphasis on transferring one type of objects to another, (e.g., 
coffee cups to tea cups) Ng's group has generated transfer ratios in the range of 3.0 to 4.5, 
depending on the transfer level.  
 
Developed and tested an algorithm for choosing appropriate grasp orientations for a 
known object (for when the object is placed at an unusual orientation). This builds on 
their earlier work, which focused mainly on predicting the location of a grasp. Using a 
computer graphics simulator to generate training data, they developed transfer learning 
methods for identifying good grasp orientations for such an object, given two input 
images of the object to be manipulated. The approach developed uses a probabilistic 
learning algorithm, and poses the problem of predicting the 3D grasp orientation by 
embedding the manifold of 3D grasps in a non-Euclidean space, and learning an 
appropriate representation over this manifold.  
 
Developed the basic components required to develop higher level transfer learning 
algorithms. These transfer algorithms are used to pick up objects lying in a dishwasher. 
Previously, they developed transfer algorithms for predicting the location of grasps for 
single unknown objects against a white background. However, clutter in the images (e.g. 
due to dishwasher prongs) caused further challenges in perceiving the image to determine 
grasp. The first component that Ng's group developed was the probabilistic framework 
that allows transfer of knowledge to predict grasp for objects placed in a cluttered area 
(e.g. a dishwasher), from previously learned knowledge of grasping objects against a 
white uncluttered background. They improved their probabilistic model to jointly 
estimate the grasps from multiple cameras, and also developed a set of stereo features for 
improving accuracy in predicting grasp locations. Finally, they developed learning 
algorithms to perceive the obstacles (e.g. prongs of a dishwasher) and avoid them while 
grasping the object.  
 
Demonstrated their transfer algorithm that predicts grasping points in presence of 
background clutter, to unload objects from a dishwasher using their robotic platform. 
They integrated their various subcomponents---image features (stereo and monocular), 
learning framework to predict grasps, and path planning algorithm to reach and pick up 
an object---to unload items from a dishwasher. They developed a set of stereo features, 
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and an improved probabilistic model for transfer that resulted in higher accuracies in 
predicting grasping points and identifying obstacles such as dishwasher prongs. They 
improved their potential field based algorithm to plan a path in presence of simple 
arrangement of obstacles. The algorithm also decides the order in which to pick the 
objects. For unloading a complex arrangement of objects (in which objects are closely 
placed on top of each other in presence of obstacles), they use a different algorithm such 
as Probabilistic Roadmaps.  
 
Tested their transfer learning algorithm for grasping objects in presence of obstacles for 
the task of unloading a dishwasher and picking or placing objects in kitchen or office 
environments. They further tested their algorithms on their second robotic platform 
STAIR 2.0.  
 
Developed a probabilistic model to generate data for training a transfer learning 
algorithm to recognize objects, their orientations and the point at which to grasp them. 
Using this data and their transfer learning algorithm, they demonstrated a robot fetching a 
stapler in response to a verbal request completely autonomously.  
 
Improved their grasping algorithm, and tested it for grasping tasks on a second improved 
robotic platform. These tests demonstrated that transfer learning algorithms for grasping, 
trained on synthetic images, transferred well to grasping on different robots (with 
different cameras/arms).  
 
In the application domain of grasping, the grasping strategy changes with different 
kinematics of the arms. E.g., for a five degree-of-freedom arm with a two-fingered hand, 
a single grasping point is enough; however, for a seven degree-of-freedom arm with 
three-fingered hand, a detailed configuration of each of the three fingers needs to be 
inferred. Ng's group developed a transfer learning algorithm that is agnostic to the 
particular kinematic configuration of the arm and infers the configuration of the all the 
joints in the arm and fingers jointly. An extensive experimental evaluation on grasping 
novel objects using a three-fingered hand showed a grasping success rate of 86% for 
medium-sized objects.  
 
Developed a transfer learning algorithm that incorporates information from multiple 
sensors: stereo cameras and time of flight sensors. They identified the most informative 
visual features from vision data (i.e., without depth information), and used those features 
in a transfer learning algorithm to identify the grasping points from the 3-d data (from 
time-of-flight sensors).  
 
Developed a learning algorithm that considers 3D data for inferring a grasp strategy. The 
3D sensors (based on time of flight) give only partial (they see only front face of the 
object), sparse (sensors return no depth for many regions in the image) and noisy 
estimates of 3D depth. This makes it hard to compute measures such as form and force 
closure, contact, etc., which are required for a good grasp. Further, for grasping in 
cluttered environments, they need to predict full configuration of the arm (as opposed to a 
2D point in the image, which they did in our prior work). Ng's group developed a 
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supervised learning algorithm that takes partial, noisy 3D data and infers a good grasp 
(i.e., a full configuration for arm and fingers) for a robotic arm. Further, the same 
algorithm works for different types of robotic arms. The learning algorithm combines the 
2D grasp estimates from the 2D image, with the 3D data to produce a full arm/finger 
configuration. They tested it on two robots with different kinematic configurations. In 
extensive experiments, the algorithm was successfully able to grasp novel objects in 
cluttered environments.  
 
In another application of this algorithm, Ng's group also considered the problem of 
opening doors, even ones that were never seen before in the training set. Opening a door 
is a manipulation task that goes beyond grasping in that a robot needs not only to infer 
how to grasp a door handle, but also to infer how to turn it in order to open the door. 
Using our algorithm that considers multiple sensors (2D and 3D), Ng's robot infers how 
to manipulate the door handle in order to open it. In extensive experiments in (pushing) 
open different types of new doors performed in two different new buildings, their robot 
was able to open doors (by turning the handle) 31 out of 34 times in doors on five 
different floors. There were 20 different types of doors in these experiments. This makes 
their robot the first to be able to open new doors.  
 
Developed a transfer learning algorithm for optical proximity sensors for grasping. While 
long range sensors such as vision or 3d sensors are useful for predicting an approximate 
grasp, the optical proximity sensors are useful for reactively adjusting the grasp while 
actually executing it. (Long range sensors are less useful here because of spatial 
resolution and occlusions by the robotic hand.) Ng's method employs a robust, belief-
state-based surface pose estimation from the sensor data. They also developed a reactive 
hierarchical grasp controller that regulates contact distances for grasp even in absence of 
reliable surface estimates. The sensor model learned from a set of surfaces, and the 
probabilistic models transferred it to surfaces with very different optical properties.  
 
Devised a simple and novel method for visual serving and automatic calibration using the 
robot end effector as a target. Ng's group also proposed a simple nonparametric, transfer 
learning method for calibrating a 3D sensor and a camera (2D sensor), using only very 
few unlabeled images. The new methods led to significantly better performance on the 
transfer learning task of grasping and picking up different objects.  
Combined 3D sensors with a camera (2D sensor) for improving object-detection and used 
it with transfer learning algorithms developed earlier (e.g., manipulation for door-
opening) for having a robot find and make an inventory of objects in office environments.  
 
Tested the 3D sensor algorithm on a number of applications including object detection 
and door opening. They also show that incorporating high-quality 3D information into 
the sensing scheme of a mobile manipulator can increase its robustness when operating in 
a cluttered environment.  
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Leslie Kaelbling and Tomas Lozano-Perez, MIT, developed a method for using previous 
experience in robot motion planning problems to speed up solution of new problems. The 
planning algorithm builds a graph of known free locations and uses it to plan a path from 
a starting to a goal configuration. In a new problem, some of these links may not be 
traversible due to obstacles, so those are temporarily pruned from the graph. In addition, 
the start and goal locations may not be currently included in the graph. They carried out 
experiments to study the transfer-learning properties of this method, including transfer to 
robots with different sizes, to different goals, and to different obstacle configurations. 
These experiments generated transfer ratios in the range 1.5 to 6.0, depending on the 
detailed setting.  
 
Kaelbling and Lozano-Perez implemented and tested an algorithm for choosing 
appropriate learnt grasp prototypes for a novel object and adapting the learned grasp to 
the new object. The approach uses nearest neighbors for selecting a grasp prototype and a 
learned quality function to choose the most likely grasp adaptation. They carried out 
experiments to study the transfer-learning properties of this method, with an emphasis on 
transfer from manipulating simple boxes to manipulating complex objects composed of 
multiple sub-parts. These experiments generated transfer ratios in the range 5.2 to 14.0, 
depending on the detailed setting.  
 
Task R8: Transfer Learning for Vision 
 
Daphne Koller, Stanford, addressed the important challenge of recognizing a variety of 
deformable object classes in images. Of fundamental importance and particular difficulty 
in this setting is the problem of “outlining” an object, rather than simply deciding on its 
presence or absence. A major obstacle in learning a model that allows us to address this 
task is the need for hand-segmented training images. They have developed a novel 
landmark-based, piecewise-linear model of the shape of an object class. They then 
formulate a learning approach that allows us to learn this model with minimal user 
supervision. They circumvent the need for hand-segmentation by transferring the shape 
“essence” of an object from drawings to complex images. They have shown that our 
method is able to automatically and effectively learn and localize a variety of object 
classes.  
 
Discriminative tasks, including object categorization and detection, are central 
components of high-level computer vision. Sometimes, however, one is interested in 
more refined aspects of the object in an image, such as pose or particular regions. They 
developed a method (LOOPS) for learning a shape and image feature model that can be 
trained on a particular object class, and used to outline instances of the class in novel 
images. Furthermore, while the training data consists of uncorresponded outlines, the 
resulting LOOPS model contains a set of landmark points that appear consistently across 
instances, and can be accurately localized in an image. Our model achieves state-of-the-
art results in precisely outlining objects that exhibit large deformations and articulations 
in cluttered natural images. These localizations can then be used to address a range of 
tasks, including descriptive classification, search, and clustering.  
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One of the original goals of computer vision was to fully understand a natural scene. This 
requires solving several sub-problems simultaneously, including object detection, region 
labeling, and geometric reasoning. The last few decades have seen great progress in 
tackling each of these problems in isolation. Only recently have researchers returned to 
the difficult task of considering them jointly. In this work, they consider learning a set of 
related models in such that they both solve their own problem and help each other. 
Koller's group developed a framework called Cascaded Classification Models (CCM), 
where repeated instantiations of these classifiers are coupled by their input/output 
variables in a cascade that improves performance at each level. Our method requires only 
a limited “black box” interface with the models, allowing us to use very sophisticated, 
state-of-the-art classifiers without having to look under the hood. They demonstrate the 
effectiveness of our method on a large set of natural images by combining the subtasks of 
scene categorization, object detection, multiclass image segmentation, and 3D 
reconstruction.  
 
Many problems in computer vision can be modeled using conditional Markov random 
fields (CRF). Since finding the maximum a posteriori (MAP) solution in such models is 
NP-hard, much attention in recent years has been placed on finding good approximate 
solutions. In particular, graph-cut based algorithms, such as alpha-expansion, are 
tremendously successful at solving problems with regular potentials. However, for 
arbitrary energy functions, message passing algorithms, such as max-product belief 
propagation, are still the only resort. They developed a general framework for finding 
approximate MAP solutions of arbitrary energy functions. Our algorithm (called 
Alphabet SOUP for Sequential Optimization for Unrestricted Potentials) performs a 
search over variable assignments by iteratively solving sub problems over a reduced 
state-space. They provide a theoretical guarantee on the quality of the solution when the 
inner loop of the algorithm is solved exactly. They show that this approach greatly 
improves the efficiency of inference and achieves lower energy solutions for a broad 
range of vision problems.  
 
Developed an articulated shape model based on a tree-structure of parts and rotation 
about a “joint.” A parts-based localization technique has been implemented and tested for 
localizing articulated objects in images.  
 
Showed that transferring learned part models to neighboring object classes is appropriate 
for learning shape distributions more effectively. It was even demonstrated that more 
distantly related classes benefit from transferring part models for the purpose of learning 
shape. Koller also showed that the transfer of part models to sibling object classes 
improves localization of articulated objects in real images.  
 
Demonstrated the effectiveness of the LOOPS model for answering semantic questions 
about the data not known at training time. By projecting the test data into a shape space 
learned in the training data, many shape-based tasks become much easier. This will allow 
the transfer of metadata along the surface of an object in the case of articulated objects, 
and shows that such metadata can be “attached” to semantically consistent locations on 
the object.  
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Developed a context model relating superpixel classification to object detection, which 
will allow the combination of a region-based monocolar 3D reconstruction with Koller's 
shape models. The group also began to integrate these two methods toward the goal of 
using shape models with 3D information for improved 3D reconstruction of scenes and 
objects for robotic manipulation.  
 
Developed a framework for transferring knowledge between the tasks of object detection, 
segmentation, and 3D reconstruction. The model developed achieved mutual benefit 
above considering each of these tasks separately.  
 
Solved the problem of negative transfer for shape models. The algorithm automatically 
learns which shape components are beneficial for transfer and uses them to achieve 
positive results.  
 
Achieved transfer for object shape and feature models to specific classification problems. 
General object class knowledge is learned in the first stage, and this knowledge is 
transferred to a separate, supervised classification problem. The strong benefit of this 
transfer was demonstrated.  
 
Demonstrated the ability to register 3D models to 2D images. The algorithms used a 2D 
match of the 3D model to the image, as well as a 3D reconstruction of the image. Positive 
results were reported for the Y3 deliverable.  
 
Completed exploration of the benefits that TAS and CCM models can have compared to 
each other in leveraging context for successful transfer. Experiments were performed in 
the context of high-level scene understanding, demonstrating that the context is not only a 
cue for solving subtasks but an element of interest on its own.  
 
Developed a model for incorporating hierarchical relationships in appearance models. 
The group also developed an algorithm for transferring knowledge between a pixel-based 
segmentation model and a shape-based object model.  
 
Andrew Ng, Stanford, successfully applied their convolutional deep belief network model 
to perform object detection, achieving more than 90% performance on a sample task. The 
model was also capable of filling-in severely impaired images, by performing 
hierarchical inference using parameters learned using unlabeled data.  
 
Developed a hierarchical image model that does not use parameter sharing, and has more 
than a hundred million independent weights to be tuned. They developed a parallel 
method using graphics processors that can learn such large models in an order of 
magnitude less time than a non-parallel method.  
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Demonstrated that their two-layer representation for images produces better performance 
on a standard image classification task than a conventional single-layer representation. 
This demonstration validates their search for “deeper” transfer learning algorithms, that 
transfer higher-level knowledge between tasks.  
 
Applied the convolutional deep belief network (CDBN) model for unsupervised transfer 
learning to two challenging tasks: object recognition and handwritten character 
recognition. On both tasks, they demonstrated performance comparable to extensively 
hand-engineered state-of-the-art methods, even though the CDBN model is trained only 
using unlabeled data. This shows that the CDBN model can achieve high-quality transfer 
even with unlabeled data and no hand-engineering of transfer features.  
 
Implemented a parallel learning algorithm for learning large deep belief networks using 
commonly available graphics hardware. Using this algorithm, they were able to reduce 
the learning time from two weeks to 6 hours for a large model, and train models that are 
an order-of-magnitude larger than previously published models.  
 
Developed the CDBN model for unsupervised transfer of features for image data, and 
demonstrated that the model can be successfully applied to several challenging image 
tasks. Applied the CDBN framework to object detection tasks. To incorporate scale 
invariance in the image features obtained by transfer learning, they designed an image 
pyramid architecture, and computed the object bounding box and detection score using 
convolutional voting on the high-level CDBN feature activations. The resulting algorithm 
outperforms previous state-of-the-art algorithms on the task of bicycle detection on the 
PASCAL 2006 object detection dataset.  
 
Generalized their approach to using parallel graphics processors for large-scale 
implementation of two widely used unsupervised transfer algorithms for learning of high-
level features. Their method is up to 70 times faster on the task of learning deep belief 
networks, and up to 16 times faster on the sparse coding learning algorithm. To further 
encourage this line of work, they also documented and released their code for using 
graphics processors for the sparse coding algorithm.  
 
Developed an active perception algorithm for improving object detection. In home and 
office environments, the object may appear in non-canonical views to the robot (e.g., it’s 
hard to detect a mug if its handle is not visible). Their transfer learning algorithm chooses 
an optimal manipulation or navigation action for the robot to take, using a criterion based 
on mutual information. The robot actively decides to either move the object or see it from 
a different view. This algorithm helped improve the performance of object recognition 
significantly.  
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Michael Jordan, UC Berkeley, developed a new approach to the joint recognition and 
segmentation of natural scenes. Two complementary problems in scene understanding are 
those of segmenting scenes into constituent objects and structures, and recognizing the 
objects depicted in the image. The new approach involves integrated scene models which 
use cues developed for image segmentation to better recognize objects, and identified 
objects to regularize segmentation.  
 
Explored an application of their earlier work on hierarchical Dirichlet processes (HDPs) 
to learning low-level image representations suitable for multiple high-level vision tasks. 
In particular, they have shown how to extend the HDP formalism to hidden Markov trees. 
In this setting the cardinality of the state nodes in the tree is unknown and is inferred 
from data. This approach makes it possible to learn representations that capture non-local 
appearance patterns and to perform scene categorization.  
 
Developed a new approach to the joint recognition and segmentation of natural scenes. 
Scene understanding systems must simultaneously segment images into constituent 
objects and structures, and recognize depicted objects. They have developed a 
hierarchical model which shares object appearance information across a family of related 
scenes, and thus transfers learned segmentation cues to new environments. They have 
shown that the “Pitman-Yor prior” underlying our model better matches the heavy-tailed, 
power law statistics of human segmentations than existing approaches, and are currently 
exploring performance in a large-scale database of natural scenes.  
 
Released a publicly distributable software implementation of their hierarchical 
nonparametric Bayesian method for image segmentation and unsupervised object 
discovery.  
 
Developed a library of learned low-level image representations that are suitable for many 
high-level tasks. The approach is based on a hierarchical Dirichlet process hidden 
Markov tree which discovers non-local appearance patterns which characterize natural 
scenes. Current experiments are exploring the usefulness of these representations for two 
challenging tasks: image denoising (process of removing noise from an image) and scene 
recognition. They are also developing more efficient learning algorithms which better 
scale to large databases.  
 
Developed a new architecture for visual scene recognition known as a “hierarchical 
Dirichlet process hidden Markov tree.” This architecture makes it possible to model 
relationships among clusters of wavelet coefficients that transfer among scenes. This 
approach has been shown to be effective using standard scene recognition testbeds.  
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Developed a novel image segmentation method based on nonparametric hierarchical 
Bayesian models. In this approach, a Pitman-Yor model is used to place a prior on 
segmentations (in earlier work, Jordan's group has demonstrated that this model captures 
the empirical distribution of segment sizes across a wide range of real images). The key 
to this approach has been to use latent Gaussian processes to parameterize each of a set of 
Pitman-Yor processes and to couple these processes across the image. They have 
developed efficient variational inference algorithms for this architecture and 
demonstrated that the approach yields state-of-the-art performance in visual 
segmentation. They have also shown that this architecture yields a new methodology for 
unsupervised object discovery.  
 
Showed that their hierarchical Pitman-Yor model for unsupervised image segmentation 
can also be used for unsupervised object discovery in visual scenes. The model allows 
knowledge about putative object types that is discovered in one scene to be transferred to 
other scenes.  
 
Leslie Kaelbling and Tomas Lozano-Perez, MIT, implemented two separate methods for 
using a 3D model to compile view-specific templates for detection of objects in images. 
One method was tested in a large collection of images of chairs, under a variety of 
transfer-learning settings, including transfer from synthetic to real images and from one 
view to another view (both directly and by learning the view transform). These 
experiments generated transfer ratios in the range 2.25 to 11.85, depending on the error 
metric and the transfer method.  
 
Implemented and tested a method for learning the parameters of a hierarchical Bayesian 
grammatical model that describes the high-level structure (presence and absence of parts) 
as well as the shapes of those parts and their relations. They applied it to a synthetic data 
set of labeled 3D images of chairs and tested how well learning one class of chairs could 
transfer to learning of other classes of chairs, and generated transfer ratios in the range 
8.7 to 15.0.  
 
Developed a grammar-based object recognition approach using probabilistic shape 
grammars whose productions are specified by a human but where shape, appearance and 
geometric relationships among parts are learned from labeled data. An efficient 
recognition algorithm has been tested as well as a variant of the inside-outside algorithm 
for learning the parameters of probabilistic shape grammars. An extension of the 
algorithm to sum out all the grammar parameters so as to achieve more reliable class 
comparisons has produced significantly increased accuracy over a “single best parse” 
approach. This method was tested in the domain of tools, in particular, localizing 
wrenches in very cluttered scenes. This was the basis of the successful Y2 Go-NoGo test. 
The most recent focus has been on automatic learning of appearance models in 
conjunction with learning the grammars.  
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Developed a hierarchical bayesian approach to generating virtual views of objects from 
novel viewpoints. In particular, they developed an approach to select the most appropriate 
cross-view shape transformations from a library of how known shapes transform. They 
extended their approach to require only a single image labeled with part information, this 
is then propagated to all subsequent images to predict the part labeling. Performance of 
this semi-supervised system is comparable (or better) than the fully supervised system. 
This approach was also extended to predict the relative depth of parts on an object based 
on a single training example. This leads to better predictions of novel views.  
 
The approach has been extended to make detailed prediction of the depth map of an 
object given an estimate of the ground plane. This can generate data that is accurate 
enough to grasp an object. They have tested the method with the robot and obtained good 
grasping performance, including grasping of parts of the object not visible to the camera. 
They performed successful experiments on reconstruction and grasping of 5 object 
classes.  
 
Task E1 and E2: Manipulation and Vision Testbeds 
 
Ng's group created a dataset for testing by manually labeling grasps in the images of real 
objects placed in a dishwasher. They used this dataset to extensively evaluate the 
performance of the transfer algorithm for predicting grasps. They also performed 
experiments on their robotic platform to unload objects from a dishwasher. They 
performed extensive experiments on the STAIR platform to test grasping of objects using 
higher-level transfer from easily generated, simulated images of other objects. They also 
tested their algorithm for predicting grasp orientations on the STAIR platform. With 
these experiments, they demonstrated the practical applicability of their transfer-based 
grasp prediction algorithms. Further, they started to implement their new unsupervised 
transfer learning algorithms for the transfer learning toolkit. Ng's group developed a 
transfer learning algorithm to transfer from vision to grasping. Using the object detection 
algorithm developed by Koller's group, Ng's group developed transfer learning 
algorithms that improve the accuracy of grasping significantly in cluttered environments. 
Ng's group developed a method to improve the performance of vision using robot 
manipulation. The transfer learning method maximizes the mutual information using 
Gaussian processes to choose an optimal manipulation action in order to improve the 
performance of object detection significantly. Ng's group developed a new joint 
probabilistic model for location and orientation of objects. This solves the problem of 
learning in the highly non-linear and non-Euclidean space of orientations, thus advancing 
the state-of-the-art for transfer algorithms in real domains.  
 
Kaelbling and Lozano-Perez's group developed large sets of labeled images of chairs and 
tools for testing object recognition algorithms.   Their group also developed and 
demonstrated an approach to transfer from visual recognition to grasp learning. This 
formed the basis of the successful Y3 Go-NoGo test.  
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Task I: Integration (the Toolkit) 
 
Bartlett's group made the key design decisions for the transfer learning toolkit 
(http://multitask.cs.berkeley.edu/), and implemented four transfer learning methods for 
prediction problems. The toolkit is based on the open source Spider machine learning 
toolbox, written in Matlab, and using Matlab's object-oriented classes. The key objects 
are a multi-task data object (a generalization of the data object in Spider), an algorithm 
object and a model object. Within this design, they have implemented Ando and Zhang's 
multitask transfer method for prediction, based on transferring a common subspace.  
 
Bartlett's group has implemented various components of the toolkit for handling data for 
multiple tasks, as well as components for testing and performing cross-validation. The 
toolkit interface for algorithms is implemented. The hierarchical Bayes model for logistic 
regression of Liang et al has also been implemented. The feature selection method of 
Jordan and Obozinski is being implemented, and an interface to BUGS for general 
hierarchical Bayesian models is under development.  
 
Bartlett's group has added functionality to the transfer learning toolkit, including an 
implementation of the method of Abernethy, Bartlett, Rakhlin (COLT 2007, to appear) 
and Rakhlin, Abernethy, Bartlett (ICML 2007, to appear), an interface to BUGS to 
provide a general purpose Bayesian inference engine, and a space-efficient data 
representation suitable for a large text corpus. The central toolkit components have been 
documented, and a tutorial has been written.  
 
Bartlett's group extended the transfer learning toolkit in several directions. The feature 
selection transfer method of Jordan and Obozinski has been implemented in the toolkit. 
The Ando and Zhang method has been extended to include a stochastic gradient descent 
optimization method that is appropriate for large data sets. Methods for computing 
transfer learning metrics have been implemented. The toolkit tutorial and developer 
documentation have been expanded. Additional datasets, including handwritten character 
recognition data and Reuters newsgroup data, have been packaged as toolkit objects. 
Improved functionality, such as conversion from multiclass data to multitask objects, has 
been added. A web interface to the toolkit, with access to the version control system, has 
been developed.  
 
Bartlett's group further developed the transfer learning toolkit. Implementations of 
methods for calculating transfer learning metrics were completed. Nonparametric 
Bayesian prediction methods based on hierarchical Dirichlet process priors were 
implemented. An improved toolkit interface to the parametric Bayesian inference engine 
(BUGS) was developed. In collaboration with Ng and Koller's groups, Bartlett's group 
completed implementations of the Raina/Ng/Koller algorithm for Bayesian transfer 
learning via covariance estimation and of the Lee/Chatalbashev/Vickrey/Koller meta-
prior algorithm. Several transfer learning datasets (robot grasp point prediction and 
Netflix movie preference prediction) were incorporated into the toolkit.  
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Bartlett's group published on the web an updated version of the toolkit, incorporating 
eight data sets and improvements to a number of methods, including the Ando-Zhang 
method, the BBLasso method, parametric Bayesian methods, and HDP methods.  
 
Ng's group submitted their transfer learning algorithm for learning priors, for inclusion in 
the TL toolkit. The implemented code has been uploaded to the TL toolkit code base. 
Ng's group also prepared a transfer learning dataset for robotic grasping, for inclusion in 
the TL toolkit. This dataset has been delivered (by sending a url) to the UC Berkeley 
group. The datasets generated as part of the group's robotic grasping work have been 
incorporated into the Transfer Learning toolkit and are available to other researchers to 
further aid in the development of transfer learning and robotic manipulation algorithms. 
The grasping code is now being used by several research groups around the world.  
 
 
 
 
 
 
 
 
 
  

34 
 



 

Conclusions 
 
The key high-level scientific lessons from the Transfer Learning program are:  
 

1. Distant tasks require general knowledge  
1. As tasks become more distinct (higher transfer levels), the form of the 

knowledge learned and transferred needs to become more general purpose.  
2. For example, we can learn to improve object recognition or grasping or 

bicycle riding or foraging by adjusting low-level parameters; but 
transferring from one to the other requires higher-level knowledge like 
causal or geometric models.  
 

2. Meta learning is crucial  
1. There are too many possible aspects of transfer to know how, in general, 

to move from one single task to another.  
2. Multiple training tasks allow learning of kinds of regularities that are 

likely to hold across tasks, which guides transfer to novel tasks by 
prioritizing hypothesized similarities.  
 

3. Hierarchical Bayes is foundational  
1. It allows integration of prior knowledge and data from multiple sources 

and maintains receptivity to new information.  
2. Very rich and flexible classes of hypotheses, including sets of logical 

rules, meta-features, geometric models, hierarchical control strategies  
3. Hypothesis complexity automatically adapted based on amount and 

diversity of available data; for example, flexible clustering of previously-
seen individuals speeds transfer by "soft assignment" of new individual to 
clusters  
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List of Acronyms 

 
DBN    Dynamic Bayesian Network 
HDP-HMM   Hierarchical Dirichlet Process – Hidden Markov Model 
HMM    Hidden Markov Model 
ISR    Intelligence, Surveillance and Reconnaissance 
MAP    Maximum a Posteriori 
RAM    Relocatable Action Model 
RL    Reinforcement Learning 
TL    Transfer Learning 
TRW    Tree-reweighted 
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Glossary 
 
An excellent glossary of terms in Transfer Learning can be found at:  
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/  
 
Statistical Learning/Pattern Recognition - An approach to machine intelligence which 
is based on statistical modeling of data. With a statistical model in hand, one applies 
probability theory and decision theory to get an algorithm. This is opposed to using 
training data merely to select among different algorithms or using heuristics/"common 
sense" to design an algorithm.  
 
Features - The measurements which represent the data. The statistical model one uses is 
crucially dependent on the choice of features. Hence it is useful to consider alternative 
representations of the same measurements (i.e. different features). For example, different 
representations of the color values in an image. General techniques for finding new 
representations include discriminant analysis, principal component analysis, and 
clustering.  
 
Classification - Assigning a class to a measurement, or equivalently, identifying the 
probabilistic source of a measurement. The only statistical model that is needed is the 
conditional model of the class variable given the measurement. This conditional model 
can be obtained from a joint model or it can be learned directly. The former approach is 
generative since it models the measurements in each class. It is more work, but it can 
exploit more prior knowledge, needs less data, is more modular, and can handle missing 
or corrupted data. Methods include mixture models and Hidden Markov Models. The 
latter approach is discriminative since it focuses only on discriminating one class from 
another. It can be more efficient once trained and requires fewer modeling assumptions. 
Methods include logistic regression, generalized linear classifiers, and nearest-neighbor.  
 
Reinforcement Learning - Learning how to act optimally in a given environment, 
especially with delayed and nondeterministic rewards. It is equivalent to adaptive 
control. There are two interleaved tasks: modeling the environment and making optimal 
decisions based on the model. The first task is a statistical modeling problem (see URL 
above.)   The second task is a decision theory problem: converting the expectation of 
delayed reward into an immediate action. Since reinforcement learning requires 
exploration, it is often combined with active learning, though this is not essential. Most 
learning problems that humans face are reinforcement learning problems, e.g. deciding 
which melon to buy, which coat to wear outside today, or which friends to have.  

http://alumni.media.mit.edu/~tpminka/statlearn/glossary/
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TL Y1 Internal Evaluation Summary 

Simulated Robot Manipulation 

Leslie Pack Kaelbling 

Tomas Lozano-Perez 

Kaijen Hsiao 

MIT CSAIL 

Problem Statement  

•! We wish to enable a simulated robot to learn grasps by imitation 

•! A human demonstrates picking up 5 simulated objects 

•! The robot practices those grasp types on simple objects  

•! The robot performs the same grasp types on new objects that 
are different than the training objects, thus exhibiting transfer 

TL Time Goal RMS Err Goal Pct 

Success 

Goal 

1 80.60 sec 900 sec 1.52 cm 2cm  96.0% Not 

specified 

2 82.84 sec 900 sec 1.75 cm 2cm  95.5% Not 

specified 

3 91.08 sec 900 sec 1.95 cm 2cm  94.3% Not 

specified 

Domain Performance Metric(s) & Goal(s) 

RMS error metric:  !

Defined on objects that were grasped 
correctly!

Measured degree of object slippage 
during grasp stabilization!

Evaluation Analysis Summary 

TL TL Metric Goals Met? Discussion 

1 TRS = infty 

2 TRS = infty 

3 TRS = infty  

TRS = 3.3632  

Evaluation Type: Internal 

Client: UCB/MIT 

Domain: Simulated robot manipulation 

Level 3 experiment considered two different “source” 

objects:  one proved to be a good “universal donor” of 

experience;  the other did not. 

Year 1 goal: Transfer ratio > 10 

TRSx: Transfer ratio (smoothed) at #B = x 

TL Time Goal RMS Err Goal Pct 

Success 

Goal 

1 80.60 sec 900 sec 1.52 cm 2cm  96.0% Not 

specified 

2 82.84 sec 900 sec 1.75 cm 2cm  95.5% Not 

specified 

3 91.08 sec 900 sec 1.95 cm 2cm  94.3% Not 

specified 

4 
optional 

91.08 sec 900 sec 1.79 cm 2cm  92.9% Not 

specified 

Domain Performance Metric(s) & Goal(s) 

RMS error metric:  !

Defined on objects that were grasped 
correctly!

Measured degree of object slippage 
during grasp stabilization!

Evaluation Analysis Summary 

TL TL Metric Goals Met? Discussion 

1 TRS = infty 

2 TRS = infty 

3 TRS = infty  

TRS = 3.3632  

4 
optional 

TRS = 13.7701 

Evaluation Type: Internal 

Client: UCB/MIT 

Domain: Simulated robot manipulation 

Level 3 experiment considered two different “source” 

objects:  one proved to be a good “universal donor” of 

experience;  the other did not. 

Year 1 goal: Transfer ratio > 10 

TRSx: Transfer ratio (smoothed) at #B = x 

tlp
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Experimental protocol summary 

Level Task A Task B Repli

catio

ns 

Task 

A 

size 

B 

train 

size 

Test 

interv

al 

Test 

set 

size 

Obje

cts 

1 Object at fixed 

pose 

Same object, 

orientation; different 

positions 

10 5 12 1 5 10 

2 Object at fixed 

pose 

Same object; 

different positions 

and orientations 

10 5 12 1 5 10 

3 Object at 

varying poses 

Other objects from 

same class at varying 

poses 

10 50 10 1-5 100 2 

4 
optional 

Objects from 

one class at 

varying poses 

Objects from different 

class at varying 

poses 

10 50 100 1-5 100 1 

Transfer Level 1 
Varying object position 

Task A: Grasping one particular complex object in a single  

 position and orientation 

Task B: Grasping the same object in the same orientation, 

 but different positions 

Transferred knowledge:  

•! Examples for nearest-neighbor grasp type selection 

•! Quality metric for grasps 

Method for choosing 

among candidate grasps 
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Varying object position 

Task A (10 objects) Task B (10 objects) 
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TL1 Statistics 
Varying object position 

Metric Score P Value 

Transfer ratio (smoothed) infty! 0.0000!

Transfer ratio (max asymp) infty! 0.0000!

Truncated transfer ratio infty! 0.0000!

Average relative reduction 0.5013! 0.2670!

ARR (narrow) 0.0000! 0.5044!

Asymptotic advantage 0.0000! 0.4782!

Jump start 0.7800! 0.0000!

Ratio 1.035! 0.0240!

Transfer difference 0.3920! 0.0272!

Scaled transfer difference 0.4083! 0.0258!

TL1 Notes 
Varying object position 

•! For each of 10 objects 

•! Set A: slightly varying sizes in same position 

•! Set B: same object in different positions (same 

orientation) 

•! Results for all objects analyzed jointly 

•! “Degenerate” experiment, because internal 

representation is designed to be position invariant 

•! No significant asymptotic advantage:  noA quickly 

learns to perform as well as transfer 

•! No significant average relative reduction:  noA’s 

performance is only briefly below that of transfer 

•! Narrow ARR is essentially undefined 

Transfer Level 2 
Varying object orientation 

Task A: Grasping one particular complex object  

Task B: Grasping that same object in    

 arbitrary positions and orientations 

Transferred knowledge:  

•! Instances for nearest neighbor grasp type selection 

•! Quality metric for grasps 

Methods for choosing 

among candidate grasps 

TL2 Objects 
Varying object orientation 

Task A (10 objects) Task B (10 objects) 

TL2 All Raw Curves 
Varying object orientation 
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Discrete performance levels due to test sets of size 5 
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TL2 Average Curves 
Varying object orientation 

TL2 Statistics 
Varying object orientation 

Metric Score P Value 

Transfer ratio (smoothed) infty! 0.0000!

Transfer ratio (max asymp) 5.5162! 0.0000!

Truncated transfer ratio 17.8330! 0.0000!

Average relative reduction - infty! 0.2852!

ARR (narrow) 0.0000! 0.5052!

Asymptotic advantage -0.0040! 0.5996!

Jump start 0.7600! 0.0000!

Ratio 1.0380! 0.0228!

Transfer difference 0.4200! 0.0206!

Scaled transfer difference 0.4357! 0.0200!

TL2 Notes 
Varying object orientation 

•! For each of 10 objects 

•! Set A: varying position, same orientation 

•! Set B: same object in different orientations 

•! Results for all objects analyzed jointly 

•! Internal representation is designed to be orientation 

invariant, but relationship of object to robot and table 

affects grasp quality 

•! No significant asymptotic advantage:  noA quickly 

learns to perform as well as transfer 

•! No significant average relative reduction:  noA’s 

performance is only briefly below that of transfer; 
narrow ARR undefined 

Transfer Level 3 
Varying object shape within class 

Task A: Grasping one particular complex object  

Task B: Grasping other complex objects in    

 arbitrary positions and orientations 

Transferred knowledge:  

•! Instances for nearest neighbor grasp type selection 

•! Quality metric for grasps 

Methods for choosing 

among candidate grasps 

TL3 Objects 
Varying object shape within class 

Task A (2 objects) Task B (100 objects) 

TL3 All Raw Curves 
Varying object shape within class 
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TL3 Average Curves 
Varying object shape within class 
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Domain A Object 1 Domain A Object 2 

TL3 Statistics 
Varying object shape within class 

A object 1 A object 2 

Metric Score P Value Score P Value 

Transfer ratio (smoothed) infty! 0.0000! 3.3632! 0.0014!

Transfer ratio (max asymp) 4.7836! 0.0000! 2.5343! 0.0000!

Truncated transfer ratio 12.1240! 0.0000! 2.5454! 0.0004!

Average relative reduction 0.9938! 0.0000! 0.9212! 0.0014!

ARR (narrow) 0.9772! 0.0006! 0.7580! 0.0018!

Asymptotic advantage 0.0220! 0.1134! 0.0150! 0.2062!

Jump start 0.4800! 0.0000! 0.4100! 0.0000!

Ratio 1.1318! 0.0000! 1.0947! 0.0002!

Transfer difference 9.1260! 0.0000! 6.5615! 0.0006!

Scaled transfer difference 11.2946! 0.0000! 8.1916! 0.0004!

TL3 Notes 
Varying object shape within class 

•! No significant improvement in asymptotic advantage 

in either case 

•! Transfer ratio considerably higher when object 1 is 

used as the A domain:  the boxy shape applies more 

broadly to other objects than the barbell (which 

encourages grasps that don’t work well on other 

objects) 

Transfer Level 4 
Varying object class 

Task A: Grasping boxes 

Task B: Grasping more complex objects in    

 arbitrary positions and orientations 

Transferred knowledge:  

•! Instances for nearest neighbor grasp type selection 

•! Quality metric for grasps 

Methods for choosing 

among candidate grasps 

TL4 Objects 
Varying object class 

Task A (100 objects) Task B (100 objects) 

TL4 All Raw Curves 
Varying object class 
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TL4 Average Curves 
Varying object class 

TL4 Statistics 
Varying object class 

Metric Score P Value 

Transfer ratio (smoothed) 13.7701! 0.0002!

Transfer ratio (max asymp) 6.3627! 0.0000!

Truncated transfer ratio 47.1485! 0.0000!

Average relative reduction 0.9752! 0.0018!

ARR (narrow) 0.9907! 0.0020!

Asymptotic advantage 0.0210! 0.0418!

Jump start 0.6000! 0.0000!

Ratio 1.2092! 0.0000!

Transfer difference 13.5595! 0.0000!

Scaled transfer difference 16.7608! 0.0000!

Transfer Level 4: Summary 
Varying object class 

Task A: Grasping boxes 

Task B: Grasping more complex objects in arbitrary 

positions and orientations 
Transferred knowledge:  

•! Instances for nearest neighbor grasp type selection 

•! Quality metric for grasps 

Task A (100 objects) 

Task B (100 objects) 
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Metric Score P Value 

Transfer ratio 

(smoothed) 

13.7701! 0.0002!

Transfer ratio 

(max asymptote) 

6.3627! 0.0000!

Truncated 

transfer ratio 

47.1485! 0.0000!

Average relative 

reduction 

0.9752! 0.0018!

ARR (narrow) 0.9907! 0.0020!

Asymptotic 

advantage 

0.0210! 0.0418!

Jump start 0.6000! 0.0000!

Ratio 1.2092! 0.0000!

Transfer 

difference 

13.5595! 0.0000!

Scaled transfer 

difference 

16.7608! 0.0000!

Raw 

Average 

Some Successful Grasps 

A Few Failed Grasps TL Y1 Internal Evaluation Summary 

Object Recognition 

Leslie Pack Kaelbling 

Tomas Lozano-Perez 

Han-Pang Chiu 

Sam Davies 

MIT CSAIL 
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Problem Statement  

•! We wish to enable a computer vision system to learn to recognize 
structured objects 

•! The vision system is trained on images with the objects and their parts 
labeled 

•! The system recognizes related objects in related situations, exhibiting 
transfer by doing so more quickly than it would otherwise have been 
able to 

2D shape 

model 
part appearance 

model 

3D shape 

model 

image part detections 2D hypoth 

TL Time Goal* RMS Err % Goal** 

1 ~300 sec ~7296 sec 15.95% 30% rel err 

2 ~300 sec ~7296 sec 12.69% 30% rel err 

3 ~300 sec ~7296 sec 16.12% 30% rel err 

Domain Performance Metric(s) & Goal(s) 

*1000 seconds to process an image of complexity 1000!

 Complexity = #models *  #parts * # image complexity (edge segs)= 1*6*1216 = 7296 (avg)!

**Error of predicted part centroids as a percentage of smallest image dimension (300 pixels)!

Smallest dimension 

Predicted 

Correct 

Evaluation Analysis Summary 

TL TL Metric Goals Met? Discussion 

1 TRS6 = infty 

2 TRS10 = 33.7929 

3 
TRS10 = infty 

TRS50 = infty 

Evaluation Type: Internal 

Client: UCB/MIT 

Domain: Object recognition 

Year 1 goal: Transfer ratio > 10 

TRSx: Transfer ratio (smoothed) at #B = x 

TL Time Goal* RMS Err % Goal** 

1 ~300 sec ~7296 sec 15.95% 30% rel err 

2 ~300 sec ~7296 sec 12.69% 30% rel err 

3 ~300 sec ~7296 sec 16.12% 30% rel err 

2/3/5 
optional 

~300 sec ~7296 sec 12.79% 30% rel err 

5 
optional 

~300 sec ~7296 sec 13.83% 30% rel err 

Domain Performance Metric(s) & Goal(s) 

*1000 seconds to process an image of complexity 1000!

 Complexity = #models *  #parts * # image complexity (edge segs)= 1*6*1216 = 7296 (avg)!

**Error of predicted part centroids as a percentage of smallest image dimension (300 pixels)!

Smallest dimension 

Predicted 

Correct 

Evaluation Analysis Summary 

TL TL Metric Goals Met? Discussion 

1 TRS6 = infty 

2 TRS10 = 33.7929 

3 
TRS10 = infty 

TRS50 = infty 

2/3/5 
optional 

TRS10 = 30.4089        chairs 

TRS50 = 5.1530 

5 
optional 

TRS10 = infty               chairs 

TRS50 = 349.3649 

Evaluation Type: Internal 

Client: UCB/MIT 

Domain: Object recognition 

Year 1 goal: Transfer ratio > 10 

TRSx: Transfer ratio (smoothed) at #B = x 

Error Metrics for Learning 

Overlap for regions 

Predicted 

Actual 

Overlap = Intersection / Union 
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Experimental protocol summary 

Level Task A Task B Repli

catio

ns 

Task 

A 

size 

B 

train 

size 

Test 

interv

al 

Test 

set 

size 

1 Single object, single 

view, single position 

Same object, view; 

different positions 10 10 10 1 10 

2 Single object class, 

single view, various 

positions 

Same object class; 

different single view, 

various positions 
25 20 10 1 30 

3 Single object, single 

view, various positions 

Other objects from 

containing class at 

same view, various 
positions 

10 20 50 1-10 30 

2/3/5 Synthetic images from 

two views, real images 

from one view 

Real images from 

same class at second 

view, various 
positions  

15 50 50 1-10 30 

5 Synthetic objects from 

one class at various 

views and positions 

Real images from 

same class at various 

view and positions 
10 150 50 1-10 50 

Some values vary from original specifications 

Transfer Level 1 
Varying position 

Task A: Recognizing a narrow class of objects at one 

image location  

Task B: Recognizing that same class of objects at other 

locations 

Transferred knowledge:  

•! Structure and local appearance models for object 

Structure and local 

appearance models 

TL1 Raw Curves 
Varying position 
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TL1 Average Curves 
Varying position 

TL1 Statistics 
Varying position 

Metric Score P Value 

Transfer ratio (smoothed) infty! 0.0000!

Transfer ratio (max asymp) 20.3021! 0.0006!

Truncated transfer ratio 163.3375! 0.0002!

Average relative reduction 0.9900! 0.0004!

ARR narrow 0.0000! 0.6888!

Asymptotic advantage 0.0376! 0.0000!

Jump start 0.2878! 0.0000!

Ratio 1.1581! 0.0000!

Transfer difference 0.7251! 0.0000!

Scaled transfer difference 1.1662! 0.0000!

TL1 Notes 
Varying position 

•! There was actually a small amount of variation in the 

viewpoints of the training images 

•! ARR is ill-defined for this curve 
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Transfer Level 2 
Varying viewpoint 

Task A: Recognizing a class of objects at from one 

   viewpoint 

Task B: Recognizing that same class of objects at a  

 different viewpoint 

Transferred knowledge:  

•! Structure and local appearance models or object 

Built-in knowledge:  

•! Known transform between views 

Structure and local 

appearance models 

TL2 Raw Curves 
Varying viewpoint 
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TL2 Average Curves 
Varying viewpoint 

TL2 Statistics 
Varying viewpoint 

Metric Score P Value 

Transfer ratio (smoothed) 35.7929! 0.0000!

Transfer ratio (max asymp) 6.5887! 0.0000!

Truncated transfer ratio 51.2116! 0.0000!

Average relative reduction 1.0000! 0.0000!

ARR Narrow 0.0000! 0.6822!

Asymptotic advantage 0.0279! 0.0000!

Jump start .5728! 0.0000!

Ratio 1.1837! 0.0000!

Transfer difference 0.8710! 0.0000!

Scaled transfer difference 1.3591! 0.0000!

TL2 Notes 
Varying viewpoint 

•! ARR narrow is ill-defined because the initial point on 

the transfer curve is also the max 

•! This works well because we have built knowledge of 

the transformation between the two views into the 

system. 

•! In TL2/3/5, we learn the transformation from synthetic 

data.  

•! In the future, we will learn it from real, weakly labeled 

data. 

Transfer Level 3 
Varying shape within class 

Task A: Recognizing a narrow class of objects at one 

orientation  

Task B: Recognizing a broader class of objects at that 

same viewpoint 

Transferred knowledge:  

•! Structure and local appearance models of object 

Built-in knowledge:  

•! Object representation should make all elements of the 

class similar 

Structure and local 

appearance models 
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TL3 Raw Curves 
Varying shape within class 
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TL3 Average Curves 
Varying shape within class 

TL3 Statistics 
Varying shape within class 

Metric Score P Value 

Transfer ratio (smoothed) infty! 0.0000!

Transfer ratio (max asymp) 6.5689! 0.0000!

Truncated transfer ratio 17.9033! 0.0004!

Average relative reduction 0.9980! 0.0000!

ARR Narrow 0.8580! 0.0000!

Asymptotic advantage 0.0190! 0.0078!

Jump start 0.5362! 0.0000!

Ratio 1.0783! 0.0000!

Transfer difference 2.0356! 0.0000!

Scaled transfer difference 3.5137! 0.0000!

TL3 Statistics at #B=10 
Varying shape within class 

Metric Score P Value 

Transfer ratio (smoothed) infty! 0.0000!

Transfer ratio (max asymp) 15.9540! 0.0000!

Truncated transfer ratio 17.9033! 0.0004!

Average relative reduction 0.9971! 0.0000!

ARR Narrow 0.8484! 0.0000!

Asymptotic advantage 0.0204! 0.0276!

Jump start 0.5362! 0.0000!

Ratio 1.3068! 0.0000!

Transfer difference 1.2053! 0.0000!

Scaled transfer difference 2.0805! 0.0000!

Transfer Level 2/3/5 
Varying viewpoint and shape within class - using synthetic data 

Task A: Recognizing a broad class of objects at one 

orientation; given synthetic data of two views  

Task B: Recognizing the same class of objects at a 

different viewpoint 

Transferred knowledge:  

•! Transformation between views 

Built-in knowledge:  

•! Labels of synthetic images according to view 

affine transform 

of shape and structure 

TL2/3/5 Raw Curves 
Varying viewpoint and shape within class - using synthetic data 
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TL2/3/5 Average Curves 
Varying viewpoint and shape within class - using synthetic data 

Metric Score P Value 

Transfer ratio (smoothed) 5.1530! 0.0000!

Transfer ratio (max asymp) 4.7440! 0.0000!

Truncated transfer ratio 9.0671! 0.0000!

Average relative reduction 0.9617! 0.0000!

ARR Narrow 0.6781! 0.0004!

Asymptotic advantage 0.0207! 0.0438!

Jump start 0.5400! 0.0000!

Ratio 1.0670! 0.0006!

Transfer difference 1.9854! 0.0000!

Scaled transfer difference 3.0217! 0.0004!

TL2/3/5 Statistics 
Varying viewpoint and shape within class - using synthetic data 

Metric Score P Value 

Transfer ratio (smoothed) 30.4089! 0.0020!

Transfer ratio (max asymp) 8.7922! 0.0000!

Truncated transfer ratio 9.0671! 0.0000!

Average relative reduction 0.6410! 0.0000!

ARR Narrow 0.9612! 0.0004!

Asymptotic advantage 0.0287! 0.0210!

Jump start 0.5400! 0.0000!

Ratio 1.2594! 0.0006!

Transfer difference 1.1868! 0.0000!

Scaled transfer difference 1.8062! 0.0000!

TL2/3/5 Statistics at #B=10 
Varying viewpoint and shape within class - using synthetic data 

Transfer Level 5 
Synthetic to real 

Task A: Recognizing a broad class of objects from 

synthetic images 

Task B: Recognizing the same class of objects from real 

images 

Transferred knowledge: 

•! Structure and local appearance models 

Built-in knowledge:  

•! Edges have similar information in synthetic and real 

images 

Structure and local 

appearance models 

TL5 Raw Curves 
Synthetic to real 
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TL5 Average Curves 
Synthetic to real 
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Metric Score P Value 

Transfer ratio (smoothed) 349.3649! 0.0000!

Transfer ratio (max asymp) 4.0892! 0.0004!

Truncated transfer ratio 22.5331! 0.0000!

Average relative reduction 0.9995! 0.0000!

ARR Narrow 0.9293! 0.0000!

Asymptotic advantage 0.0089! 0.0268!

Jump start 0.4567! 0.0000!

Ratio 1.0428! 0.0000!

Transfer difference 1.2784! 0.0000!

Scaled transfer difference 1.9865! 0.0000!

TL5 Chair Statistics 
Synthetic to real 

Metric Score P Value 

Transfer ratio (smoothed) infty! 0.0000!

Transfer ratio (max asymp) 12.1900! 0.004!

Truncated transfer ratio 22.5331! 0.0000!

Average relative reduction 1.0000! 0.0000!

ARR Narrow 0.0000! 0.6410!

Asymptotic advantage 0.0218! 0.0316!

Jump start 0.4567! 0.0000!

Ratio 1.0428! 0.0000!

Transfer difference 0.9366! 0.0000!

Scaled transfer difference 1.4554! 0.0000!

TL5 Chair Statistics at #B=10 
Synthetic to real 

TL5 Ongoing: Other object classes 
Synthetic to real 

TL2/3/5 Ongoing: Other object classes 

 Varying viewpoint and shape within class - using synthetic data 

Sample Images 
Some successful results 
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Some less successful results 

Most failures due to problems with region finder 

TL Y1 External Evaluation Summary 

Stratagus 

Tom Dietterich 

Alan Fern 

Prasad Tadepalli 

School of EECS 

Oregon State University 

Problem Statement 

•! Objective: demonstrate transfer between complex sequential decision making tasks 
-! Technology: hierarchical reinforcement learning with function approximation 

-! Domains: Sub-problems of the Stratagus game Wargus 

-! TL levels addressed this year  
•! Resource Gathering Experiment 1 (R-1): Level 3 

•! Resource Gathering Experiment 2 (R-2): Levels 1 and 3 

•! Resource Gathering Experiment 3 (R-3): Levels 4 and 3 

•! Tactical Experiment 1 (T-1): Level 3 
•! Tactical Experiment 2 (T-2): Levels 3 and 4 

•! Approach 
-! Each experiment includes a number of A-B task pairs. For each pair a number of transfer and 

non-transfer curves were generated. Transfer metrics were computed for each pair and 
averaged across all pairs of an experiment to judge overall performance  

Example: T-2 

transfer from small tactical 

battles to larger battles  

Wargus Sub-Problems Summary 

•! Goal: learn to defeat Stratagus’ AI in tactical battles  

•! Parameterized by: # of enemy and friendly squadrons/
units 

•! # of states: > 1e49  for small 5 vs. 5 battle 

•! compared to ! 1e43 for full size chess 
•! # of actions:  3125 for small 5 vs. 5 battle 

•! compared to  ! 30 for chess 
•! Transfer Levels:  

•! (Level 3) Transfer between different initial 
configurations of squadrons/units; same number 
of squadrons/units 

•! (Levels 4 & 3) Transfer between different number 
of units; # of squadrons remains unchanged 

Tactical Domain 

•! Based on the popular commercial game Warcraft  

•! The objective of the game is destroy an enemy by 

managing/growing resources and strategic military activity 

•! Year 1 focus is on two Wargus sub-problems: resource 

gathering and tactical battles 

Wargus  

•! Goal: learn to quickly gather specified amount of 
resources (e.g. gold, wood, etc.) 

•! Parameterized by: # and sizes of communities, # and 
sizes of forests, # of gold mines, resource requirments 

•! # of states: > 1e62 for small 5 peasant, 10 tree, 2 
goldmine scenario 

•! # of actions: > 750K joint actions for 5 peasants 
•! Transfer between:  

•! (Level 3) Transfer between different initial terrain 
and community configurations 

•! (Levels 3 & 1) Transfer between different resource 
requirements; number of peasants unchanged 

•! (Levels 4 & 3) Transfer between different number 
of peasants; # of communities remains unchanged 

Resource Gathering Domain 

Experiment Metric(s) 

Tactical  

TL 3 

Damage differential: 

difference between enemy 

and friendly health after 

one side is destroyed 

Tactical  

TL 3 & 4 

Damage differential 

Resource  

TL 3 

Time to achieve resource 

requirements 

Resource 

TL 1 & 3 

Time to achieve resource 

requirements 

Resource 

TL 3 & 4 

Time to achieve resource 

requirements 

Domain Performance Metric(s) & Goal(s) Evaluation Analysis Summary 

Evaluation Type: External 

Client: Oregon State 

Domain: Stratagus 

Experiment TL Metric Goals Met? Discussion 

Tactical 

TL 3 

No     TR = 6.65 

Average over 8 A-B pairs 

Tactical 

TL 3 & 4 

TR = 11.16 
Average over 8 A-B pairs 

Resource 

TL 3 

TR = 19.81 
Average over 12 A-B pairs 

Resource 

TL 1 & 3 

TR = 11.28 
Average over 16 A-B pairs 

Resource 

TL 3 & 4 

TR = 13.41 
Average over 16 A-B pairs 

Year 1 goal: Transfer ratio > 10 
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TL 3 : Resource Gathering 

Task A: Gathering target amounts of gold and wood on map A 

Task B: Gathering target amounts of gold and wood on map B 

     Maps A and B differ in locations of resources, bases, & peasants 

Transferred knowledge:  

•! Parameters for hierarchically decomposed value function 

Performance goal: demonstrate faster gathering via transfer 

Value function for choosing 

among actions  

Ran experiments for 12 different A-B pairs of maps 

Resource TL 3 Average Curves: Pair 1 
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Average curves for other pairs are similar 

Resource TL3 Statistics: Pairs 1- 4 

TL Metrics 

Pair 1 Pair 2 Pair 3 Pair 4 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 14.24 0.0002 17.34 0.0000 13.80 0.0000 26.07 0.0000 

Transfer ratio (truncated) 14.24 0.0010 21.95 0.0018 20.93 0.0000 34.89 0.0000 

Jump start 4904 0.0008 4768 0.0010 5782 0.0002 3750 0.0016 

ARR (narrow) 0.568 0.0278 0.00 0.6062 0.767 0.0036 0.860 0.0092 

ARR (wide) 0.996 0.0094 1.00 0.0006 0.994 0.0000 0.998 0.0114 

Asymptotic advantage 2.00 0.4052 26.40 0.0288 8.60 0.2090 10.40 0.1764 

Ratio (of area under the curves) 0.556 0.9992 0.525 0.9998 0.548 0.9996 0.496 0.9990 

Transfer difference 9206 0.0000 9551 0.0000 9875 0.0000 10556 0.0000 

Transfer difference (scaled) -20.3 0.9998 -22.9 1.0000 -21.12 0.9998 -25.35 0.9998 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL3 Statistics: Pairs 5 - 8 

TL Metrics 

Pair 5 Pair 6 Pair 7 Pair 8 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 21.32 0.0002 17.04 0.0000 20.21 0.0002 12.18 0.0002 

Transfer ratio (truncated) 99.40 0.0002 20.12 0.0000 41.28 0.0000 16.07 0.0000 

Jump start 4758 0.0004 5790 0.0006 3709 0.0008 4868 0.0006 

ARR (narrow) 0 0.6132 0.789 0.0012 0.851 0.0024 0.653 0.0066 

ARR (wide) 1.001 0.0004 0.995 0.0000 0.996 0.0076 0.993 0.0020 

Asymptotic advantage 28.20 0.0160 12.40 0.1308 11.60 0.1766 13.20 0.0928 

Ratio (of area under the curves) 0.518 0.9994 0.537 0.9994 0.501 0.9992 0.550 0.9992 

Transfer difference 9701 0.0000 10108 0.0000 10461 0.0000 9335 0.0000 

Transfer difference (scaled) -23.37 0.9998 -21.79 0.9998 -25.19 0.9998 -21.13 1.0000 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL3 Statistics: Pairs 9 - 12 

TL Metrics 

Pair 9 Pair 10 Pair 11 Pair 12 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 14.04  0.0002 33.01 0.0000 21.77 0.0002 26.75 0.0000 

Transfer ratio (truncated) 16.99 0.0000 108.2 0.0000 36.91 0.0006 33.63 0.0002 

Jump start 5780 0.0012 3754 0.0002 4909 0.0008 4753 0.0010 

ARR (narrow) 0.762 0.0026 0.896 0.0078 0.854 0.0044 0.000 0.6124 

ARR (wide) 0.994 0.0000 0.998 0.0114 0.998 0.0016 1.000 0.0000 

Asymptotic advantage 14.20 0.1122 4.40 0.3278 10.80 0.1562 25.80 0.0164 

Ratio (of area under the curves) 0.542 0.9998 0.499 0.9990 0.535 0.9998 0.516 0.9994 

Transfer difference 10014 0.0000 10504 0.0000 9648 0.0004 9742 0.0000 

Transfer difference (scaled) -21.67 0.9998 -24.86 0.9998 -21.73 0.9996 -23.34 0.9994 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL3 Statistics:  

Average Across Pairs 

TL Metrics 
Score 

Average Minimum Maximum 

Transfer ratio 19.81 12.18 33.01 

Transfer ratio (truncated) 29.04 14.24 108.2 

Jump start 4753 3709 5782 

ARR (narrow) 0.5833 0.000 0.860 

ARR (wide) 0.9968 0.993 1.000 

Asymptotic advantage 14.00 2.00 28.20 

Ratio (of area under the curves) 0.526 0.496 0.556 

Transfer difference 9891 9206 10556 

Transfer difference (scaled) -22.72 -25.35 -20.30 

Averaged across 12 A-B pairs 
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TL 1 & 3: Resource Gathering 

Task A: Gathering target amounts of gold and wood on map A 

Task B: Gathering target amounts of gold and wood on map B 

     Maps A and B differ in resource requirements and locations of    

     resources, bases, and peasants 

Transferred knowledge: parameters for hierarchically decomposed 

value function 

Performance goal: demonstrate faster gathering via transfer 

Value function for choosing 

among actions  

Ran experiments for 16 different A-B pairs of maps 

Resource TL 1&3 Average Curves: Pair 1 

Average curves for other pairs are similar 
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Resource TL 1&3 Statistics: Pairs 1- 4 

TL Metrics 

Pair 1 Pair 2 Pair 3 Pair 4 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 7.79 0.0002 13.02 0.0000 11.02 0.0000 8.04 0.0006 

Transfer ratio (truncated) 8.55 0.0002 17.05 0.0004 11.40 0.0000 9.183 0.0000 

Jump start 7954 0.0006 7520 0.0006 6441 0.0000 7384 0.0006 

ARR (narrow) 0.57 0.0114 0.69 0.0090 0.336 0.1002 0.456 0.0116 

ARR (wide) 0.99 0.0030 -INF 0.2432 0.994 0.0026 0.991 0.0002 

Asymptotic advantage 4.40 0.3592 -1.20 0.5518 0.80 0.4586 15.00 0.1316 

Ratio (of area under the curves) 0.71 0.9996 0.69 0.9998 0.720 0.9994 0.732 0.9998 

Transfer difference 8833 0.0004 8583 0.0002 8410 0.0004 8324 0.0002 

Transfer difference (scaled) -10.08 0.9996 -10.76 0.9996 -9.696 0.9996 -9.251 1.0000 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL 1&3 Statistics: Pairs 5 - 8 

TL Metrics 

Pair 5 Pair 6 Pair 7 Pair 8 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 8.29 0.0004 20.00 0.0000 18.65 0.0000 9.54 0.0002 

Transfer ratio (truncated) 9.911 0.0000 30.59 0.0006 18.65 0.0020 11.60 0.0012 

Jump start 8008 0.0008 7564 0.0006 6450 0.0004 7310 0.0008 

ARR (narrow) 0.435 0.0450 0.804 0.0054 0.813 0.0082 0.749 0.0024 

ARR (wide) -INF 0.2452 -INF 0.2440 0.998 0.0030 0.993 0.0008 

Asymptotic advantage -6.40 0.6494 -1.40 0.5690 0.00 0.4918 18.00 0.0566 

Ratio (of area under the curves) 0.716 0.9998 0.689 0.9996 0.709 0.9996 0.724 0.9998 

Transfer difference 8818 0.0002 8832 0.0002 8736 0.0002 8575 0.0004 

Transfer difference (scaled) -10.01 0.9996 -11.0 0.9994 -10.06 0.9998 -9.562 0.9998 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL 1&3 Statistics: Pairs 9 - 12 

TL Metrics 

Pair 9 Pair 10 Pair 11 Pair 12 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 8.99 0.0000 10.67 0.0000 8.66 0.0008 9.05 0.0000 

Transfer ratio (truncated) 11.75 0.0012 10.67 0.0000 10.49 0.0014 10.92 0.0016 

Jump start 7967 0.0006 7471 0.0008 6344 0.0006 7243 0.0000 

ARR (narrow) 0.669 0.0066 0.714 0.0118 0.736 0.0070 0.720 0.0018 

ARR (wide) -INF 0.286 0.993 0.0004 0.991 0.0024 0.990 0.0004 

Asymptotic advantage -1.80 0.5402 7.40 0.2138 12.60 0.1556 17.80 0.0808 

Ratio (of area under the curves) 0.713 0.9998 0.698 0.9996 0.719 0.9996 0.726 0.9996 

Transfer difference 8912 0.0004 8587 0.0002 8433 0.0002 8517 0.0004 

Transfer difference (scaled) -10.12 0.9998 -10.8 1.0000 -9.856 0.9998 -9.495 0.9998 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL 1&3 Statistics: Pairs 13- 16 

TL Metrics 

Pair 13 Pair 14 Pair 15 Pair 16 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 7.17 0.0004 18.02 0.0002 12.00 0.0002 9.58 0.0000 

Transfer ratio (truncated) 7.39 0.0024 22.82 0.0008 17.60 0.0002 9.58 0.0002 

Jump start 8023 0.0002 7616 0.0002 6426 0.0008 7334 0.0002 

ARR (narrow) 0.416 0.0570 0.553 0.0162 0.759 0.0042 0.717 0.0034 

ARR (wide) 0.992 0.0050 0.998 0.0028 0.997 0.0008 0.994 0.0006 

Asymptotic advantage 10.00 0.2642 7.40 0.2088 11.60 0.1196 21.60 0.0650 

Ratio (of area under the curves) 0.716 0.9990 0.685 0.9992 0.710 0.0008 0.721 0.9996 

Transfer difference 8835 0.0004 8949 0.0002 8717 0.0004 8657 0.0012 

Transfer difference (scaled) -10.15 0.9988 -11.3 0.9990 -10.1 0.9986 -9.692 0.9996 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 
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Resource TL 1&3 Statistics:  

Average Across Pairs 

TL Metrics 
Score 

Average Minimum Maximum 

Transfer ratio 11.28 7.17 20.00 

Transfer ratio (truncated) 13.63 7.39 30.59 

Jump start 7216 6344 8023 

ARR (narrow) 0.633 0.336 0.813 

ARR (wide) -INF -INF 0.998 

Asymptotic advantage 7.24 -6.40 21.60 

Ratio (of area under the curves) 0.711 0.685 0.732 

Transfer difference 8669 8410 8949 

Transfer difference (scaled) -10.12 -11.3 -9.25 

Averaged across 16 A-B pairs 

TL 3 & 4: Resource Gathering 

Task A: Gathering target amounts of gold and wood on map A 

Task B: Gathering target amounts of gold and wood on map B 

       Maps A and B differ in number of peasants and locations of  

       resources, bases, and peasants 

Transferred knowledge: parameters for hierarchically decomposed 

value function 

Performance goal: demonstrate faster gathering via transfer 

Ran experiments for 16 different A-B pairs of maps 

Value function for choosing 

among actions  

Resource TL 3&4 Average Curves: Pair 1 

Average curves for other pairs are similar 
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Resource TL 3&4 Statistics: Pairs 1- 4 

TL Metrics 

Pair 1 Pair 2 Pair 3 Pair 4 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 10.11 0.0008 12.90 0.0000 10.47 0.0004 15.85 0.0000 

Transfer ratio (truncated) 10.11 0.0008 13.76 0.0000 14.94 0.0008 18.51 0.0018 

Jump start 1968 0.0008 1720 0.0002 2728 0.0008 2481 0.0006 

ARR (narrow) 0.734 0.0020 0.714 0.0156 0.837 0.0110 0.838 0.0050 

ARR (wide) 0.990 0.0004 0.989 0.0018 0.995 0.0002 0.994 0.0004 

Asymptotic advantage 11.00 0.0664 4.00 0.2384 7.20 0.0494 1.80 0.3588 

Ratio (of area under the 

curves) 

0.595 0.9992 0.571 0.9992 0.580 0.9994 0.562 0.9996 

Transfer difference 4987 0.0006 5129 0.0004 4486 0.0002 4725 0.0010 

Transfer difference (scaled) -17.64 0.9992 -19.2 0.9986 -18.78 0.9994 -19.67 0.9996 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL 3&4 Statistics: Pairs 5 - 8 

TL Metrics 

Pair 5 Pair 6 Pair 7 Pair 8 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 12.01 0.0000 14.91 0.0000 15.86 0.0000 15.85 0.0000 

Transfer ratio (truncated) 16.32 0.0006 17.34 0.0006 15.86 0.0016 25.18 0.0088 

Jump start 1911 0.0006 1712 0.0006 2750 0.0002 2504 0.0008 

ARR (narrow) 0.829 0.0020 0.784 0.0212 0.797 0.0196 0.816 0.0088 

ARR (wide) 0.988 0.0006 0.991 0.0020 0.997 0.0062 0.995 0.0026 

Asymptotic advantage 10.40 0.0918 0.20 0.4746 0.00 0.4842 2.00 0.3338 

Ratio (of area under the 

curves) 

0.589 0.9998 0.573 0.9992 0.580 0.9994 0.562 0.9996 

Transfer difference 5060 0.0012 5102 0.0008 4485 0.0010 4730 0.0002 

Transfer difference (scaled) -12.8 0.9996 -18.8 0.9996 -18.23 0.9996 -19.70 0.9998 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL 3&4 Statistics: Pairs 9 - 12 

TL Metrics 

Pair 9 Pair 10 Pair 11 Pair 12 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 8.24 0.0004 10.72 0.0004 13.29 0.0004 12.34 0.0004 

Transfer ratio (truncated) 8.24 0.0008 11.92 0.0000 17.25 0.0078 15.48 0.0002 

Jump start 1884 0.0000 1706 0.0000 2734 0.0006 2484 0.0010 

ARR (narrow) 0.781 0.0004 0.698 0.0118 0.908 0.0006 0.842 0.0010 

ARR (wide) 0.982 0.0004 0.985 0.0014 0.998 0.0012 0.994 0.0004 

Asymptotic advantage 17.20 0.0314 3.00 0.3234 4.20 0.1998 6.60 0.1296 

Ratio (of area under the 

curves) 

0.594 0.0004 0.580 0.9994 0.577 0.9992 0.561 0.9994 

Transfer difference 4993 0.0002 5019 0.0010 4519 0.0008 4741 0.0004 

Transfer difference (scaled) -18.0 0.9994 -18.7 0.9998 -18.6 0.9998 -20.1 0.9994 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 
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Resource TL 3&4 Statistics: Pairs 13- 16 

TL Metrics 

Pair 13 Pair 14 Pair 15 Pair 16 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 13.91 0.0000 10.73 0.0006 21.09 0.0000 16.25 0.0002 

Transfer ratio (truncated) 15.60 0.0000 10.73 0.0018 30.28 0.0060 30.21 0.0050 

Jump start 1966 0.0006 1755 0.0000 2777 0.0006 2563 0.0006 

ARR (narrow) 0.862 0.0000 0.631 0.0094 0.629 0.0269 0 0.6118 

ARR (wide) 0.995 0.0008 0.991 0.0032 0.999 0.0240 0.999 0.0198 

Asymptotic advantage 12.80 0.0514 9.60 0.0428 0.20 0.4752 6.40 0.1524 

Ratio (of area under the 

curves) 

0.579 0.9994 0.568 0.9994 0.573 0.9996 0.552 1.0000 

Transfer difference 5176 0.0002 5164 0.0000 4564 0.0004 4837 0.0006 

Transfer difference (scaled) -18.43 0.9992 -19.7 0.9994 -18.5 0.9988 -20.53 0.9996 

Ratio (of area under the curves) and Transfer difference (scaled) are not well behaved for negative  

valued performance metrics, such as Negative Episode Duration. 

Resource TL 3&4 Statistics:  

Average Across Pairs 

TL Metrics 
Score 

Average Minimum Maximum 

Transfer ratio 13.41 8.24 21.09 

Transfer ratio (truncated) 16.98 8.24 30.28 

Jump start 2228 1706 2750 

ARR (narrow) 0.734 0.000 0.908 

ARR (wide) 0.992 0.982 0.999 

Asymptotic advantage 6.04 0.000 17.20 

Ratio (of area under the curves) 0.574 0.552 0.595 

Transfer difference 4857 4725 5176 

Transfer difference (scaled) -18.58 -20.53 -12.8 

Averaged across 16 A-B pairs 

TL 3: Tactical Domain 

Task A: Destroy 5 enemy units with 5 friendly units on map A 

Task B: Destroy 5 enemy units with 5 friendly units on map B 

Maps A and B differ in initial locations of enemy and friendly units 

Transferred knowledge: Parameters for shared multi-agent value 

function 

Performance goal: demonstrate improved tactics via transfer 

Ran experiments for 8 different A-B pairs of maps 

Value function for choosing 

among enemy targets  

Tactical TL3 Average Curves: Pairs 1- 4 
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Tactical TL3 Average Curves: Pairs 5 - 8 
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Tactical TL3 Statistics: Pairs 1- 4 

TL Metrics 

Pair 1 Pair 2 Pair 3 Pair 4 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 2.12 0.0224 1.51 0.0394 0.79 0.9218 3.58 0.0004 

Transfer ratio (truncated) 2.14 0.0156 1.51 0.0378 0.78 0.9328 3.62 0.0004 

Jump start 190.0 0.0000 26.00 0.0000 -610.0 1.00 251.0 0.0000 

ARR (narrow) 0.511 0.0194 0.752 0.0004 -INF 0.5994 0.661 0.0128 

ARR (wide) -INF 0.2742 -INF 0.1904 -INF 0.3536 -INF  0.2842 

Asymptotic advantage -5.20 0.6752 -19.10 0.9936 -14.60 0.95 -0.30 0.5558 

Ratio (of area under the curves) 1.027 0.0410 1.021 0.0136 0.983 0.946 1.028 0.0042 

Transfer difference 10928 0.041 8887 0.0116 -6850 0.9384 12767 0.0042 

Transfer difference (scaled) 17.31 0.0394 13.47 0.0146 -10.47 0.9424 17.95 0.0050 

tlp
A-17

Tomas Lozano-Perez




18 

Tactical TL3 Statistics: Pairs 5 - 8 

TL Metrics 

Pair 5 Pair 6 Pair 7 Pair 8 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 1.84 0.0524 3.34 0.0000 4.22 0.0010 35.80 0.0000 

Transfer ratio (truncated) 1.86 0.0506 3.31 0.0000 4.21 0.0012 32.73 0.0002 

Jump start -6.0 1.000 154.0 0.0000 63.00 0.0000 330.0 0.0000 

ARR (narrow) -INF 0.5994 0.684 0.0088 0.866 0.0008 0.890 0.0008 

ARR (wide) -INF 0.2986 0.802 0.0036 -INF 0.2602 0.809 0.0020 

Asymptotic advantage -5.10 0.6536 4.90 0.186 -6.00 0.8168 1.00 0.2556 

Ratio (of area under the curves) 1.035 0.0770 1.066 0.0006 1.045 0.0010 1.04 0.0000 

Transfer difference 14473 0.0686 26955 0.0004 18392 0.0010 18202 0.0000 

Transfer difference (scaled) 21.70 0.077 39.85 0.0004 28.33 0.0006 25.61 0.0000 

Tactical TL3 Statistics:  

Average Across Pairs 

TL Metrics 
Score 

Average Minimum Maximum 

Transfer ratio 6.65 0.79 35.80 

Transfer ratio (truncated) 6.27 0.78 32.73 

Jump start 49.75 -610.0 330.0 

ARR (narrow) -INF -INF 0.890 

ARR (wide) -INF -INF 0.809 

Asymptotic advantage -5.55 -19.10 4.9 

Ratio (of area under the curves) 1.03 0.983 1.066 

Transfer difference 12969 8887 26955 

Transfer difference (scaled) 19.21 -10.47 39.85 

Averaged across 8 A-B pairs 

TL 3 & 4: Tactical Domain 

Task A: Destroy 5 enemy units with 5 friendly units on map A 

Task B: Destroy 10 enemy units with 10 friendly units on map B 

Transferred knowledge: Parameters for shared multi-agent value 

function 

Performance goal: demonstrate improved tactics via transfer 

Ran experiments for 8 different A-B pairs of maps 

Value function for choosing 

among enemy targets  

Tactical TL 3&4 Average Curves: Pairs 1-4 
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Tactical TL 3&4 Average Curves: Pairs 5-8 
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Tactical TL 3&4 Statistics: Pairs 1- 4 

TL Metrics 

Pair 1 Pair 2 Pair 3 Pair 4 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 4.41 0.0002 37.62 0.0000 5.00 0.0002 17.67 0.0002 

Transfer ratio (truncated) 4.34 0.0000 37.62 0.0002 4.92 0.0004 16.20 0.0004 

Jump start 665.0 0.0000 1339 0.0000 1018 0.0000 1315 0.0000 

ARR (narrow) 0.574 0.056 0.894 0.0082 0.579 0.0476 0.931 0.0070 

ARR (wide) 0.733 0.0026 -INF 0.2962 0.724 0.0054 0.846 0.0080 

Asymptotic advantage 12.30 0.0068 -0.70 0.5690 4.90 0.2900 17.60 0.0014 

Ratio (of area under the curves) 1.031 0.0004 1.060 0.0008 1.026 0.0028 1.068 0.0000 

Transfer difference 28717 0.0002 53641 0.0000 24975 0.0022 60712 0.0000 

Transfer difference (scaled) 20.03 0.0004 37.72 0.0004 17.09 0.0006 42.35 0.0000 
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Tactical TL 3&4 Statistics: Pairs 5 - 8 

TL Metrics 

Pair 5 Pair 6 Pair 7 Pair 8 

Score P Value Score P Value Score P Value Score P Value 

Transfer ratio 12.77 0.0002 6.32 0.0000 2.08 0.0052 3.38 0.0000 

Transfer ratio (truncated) 12.84 0.0000 6.22 0.0004 2.46 0.0006 3.33 0.0000 

Jump start 1072 0.0000 1033 0.0000 944.0 0.0000 1128 0.0000 

ARR (narrow) 0.735 0.0134 0.762 0.0016 0.063 0.4428 0.643 0.0146 

ARR (wide) -INF 0.2902 0.689 0.0028 -INF 0.2472 0.715 0.0008 

Asymptotic advantage -0.60 0.5220 2.5 0.3236 -13.20 0.8872 7.90 0.1510 

Ratio (of area under the curves) 1.09 0.0002 1.031 0.0000 1.028 0.0026 1.04 0.0004 

Transfer difference 75294 0.0002 28987 0.0000 26544 0.0038 39889 0.0006 

Transfer difference (scaled) 54.58 0.0002 19.73 0.0000 18.00 0.0022 27.83 0.0002 

Tactical TL 3&4 Statistics:  

Average Across Pairs 

TL Metrics 
Score 

Average Minimum Maximum 

Transfer ratio  11.16 2.08 37.62 

Transfer ratio (truncated) 10.99 2.46 37.62 

Jump start 1064 665.0 1339 

ARR (narrow) 0.647 0.063 .931 

ARR (wide) -INF -INF 0.846 

Asymptotic advantage 3.84 -13.20 17.60 

Ratio (of area under the curves) 1.046 1.026 1.09 

Transfer difference 42344 24975 75294 

Transfer difference (scaled) 29.70 17.09 54.58 

Averaged across 8 A-B pairs 

Transfer Learning in Robot 
Manipulation:  
Year 1 Results 

Andrew Y. Ng 
Ashutosh Saxena 

Stanford University 

Problem Statement (1) 

•! Current robots can be “scripted” to perform difficult 
tasks in highly constrained, known environments. 

•! Most are hopeless when there is uncertainty in the 
environment, or at manipulating novel objects.  

•! Seeing a 3-d object for the first time using a 
webcam. 

•! Grasp the object using a robotic arm. 

Testbed: STAIR 

(STanford AI Robot)  

Problem Statement (2) 

•! TL Levels addressed this year: 

•! Level 1: Parameterization 

•! Level 2: Extrapolating 

•! Level 3: Restructuring 

•! Level 4: Extending 

•! Level 6: Composing 

•! Approach 

•! Predict correct grasp from images. 

•! Transfer ratio performance metric is percent 
agreement with labeled grasp. 

•! Objects we considered have 2-5 parts. 

Domain Performance Metric(s) & Goal(s) 

TL Time Goal RMS Err Goal 

1 232 sec/part 300 sec/part 1.94 cm 2cm  

2 232 sec/part 300 sec/part 1.94 cm 2cm  

3 232 sec/part 300 sec/part 1.94 cm 2cm  

Labeled 

Predicted 

RMS error metric:  !

Distance between predicted grasp and 
nearest labeled grasp!
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Evaluation Analysis Summary 

TL Level TL Metric Goals Met? Discussion 

1 TL ratio achieved = 24.81 

2 TL ratio achieved = 10.37 

3 TL ratio achieved = 21.51 

Evaluation Type: Internal 

Client: Stanford University 

Domain: Robotic manipulation 

Year 1 goal: Transfer ratio > 10 

Transfer Level 1 
Varying position 

Task A: Grasp objects 

Task B: Grasp objects at different locations 

Transferred knowledge:  

•! Visual grasping instances 

TL 1 Raw Curves 
Varying position 

TL1 Average Curves 
Varying position 

TL1 Statistics 
Varying position 

Metric Score P Value 

Transfer ratio 24.81! 0.0130!

Truncated transfer ratio 8.951! 0.0010!

ARR -999999! 0.1820!

ARR (narrow) 0.0945! 0.5026!

Asymptotic advantage -0.2716! 0.9154!

Jump start 35.10! 0.0004!

Ratio 1.080! 0.0008!

Transfer difference 2373.04! 0.0000!

Scaled transfer difference 27.51! 0.0002!

Transfer Level 2 
Varying orientation 

Task A: Grasp objects (Thick pencil) 

Task B: Grasp objects of different dimensions in random 

locations and orientations. (Thin pencil) 

Transferred knowledge:  

•! Visual grasping instances 

tlp
A-20

Tomas Lozano-Perez




21 

TL 2 Raw Curves 
Varying orientation 

TL2 Average Curves 
Varying orientation 

TL2 Statistics 
Varying orientation 

Metric Score P Value 

Transfer ratio 10.37! 0.0008!

Truncated transfer ratio 10.37! 0.0002!

ARR 0.8332! 0.0064!

ARR (narrow) 0.3738! 0.2368!

Asymptotic advantage 0.2182! 0.2748!

Jump start 28.12! 0.0002!

Ratio 1.0662! 0.0004!

Transfer difference 2131.19! 0.0002!

Scaled transfer difference 23.12! 0.0002!

Transfer Level 3 
Varying shape within class 

Task A: Instances of an object from the same class. 

(Coffee mug) 

Task B: Instances of a different object from the same class. 

(Tea cup) 

Transferred knowledge:  

•! Visual grasping instances 

TL 3 Objects 
Varying shape within class 

Task A (500 objects) Task B (375 objects) 

TL 3 Raw Curves 
Varying shape within class 

Train and test sets are "
randomly chosen.  The"

correlations here are"
statistical “flukes”. 
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TL3 Average Curves 
Varying shape within class 

TL3 Statistics 
Varying shape within class 

Metric Score P Value 

Transfer ratio 21.51! 0.0006!

Truncated transfer ratio 21.51! 0.0004!

ARR 0.7922! 0.0118!

ARR (narrow) 0.5677! 0.0998!

Asymptotic advantage 0.1258! 0.2576!

Jump start 38.516! 0.0002!

Ratio 1.1096! 0.0002!

Transfer difference 3307.10! 0.0000!

Scaled transfer difference 36.875! 0.0002!

Transfer Level 4 
Multiple objects 

Task A: Grasp objects (coffee mugs) 

Task B: Grasp multiple objects (multiple cups) 

Transferred knowledge:  

•! Visual grasping instances 

Explanation: There are two sets of grasping points: one for each cup.  In detail, in this task we 

label every possible position in the image as a grasp or not; we then measure agreement with 

the ground-truth labels.#

TL 4 Objects 
Multiple objects 

Task A (750 objects) Task B (375 objects) 

TL 4 Raw Curves 
Multiple objects 

TL4 Average Curves 
Multiple objects 
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TL4 Statistics 
Multiple objects 

Metric Score P Value 

Transfer ratio 9.89! 0.0006!

Truncated transfer ratio 10.30! 0.0004!

ARR 0.8605! 0.0130!

ARR (narrow) 0.1280! 0.4502!

Asymptotic advantage 0.1098! 0.3428!

Jump start 24.47! 0.0002!

Ratio 1.066! 0.0004!

Transfer difference 2124.49! 0.0002!

Scaled transfer difference 22.91! 0.0002!

Transfer Level 6 
New Class 

Task A: Grasp objects (pencils, cups) 

Task B: Grasp objects from a new class (martini glass) 

Transferred knowledge:  

•! Visual grasping instances 

TL 6 objects 
New Class 

Task A (1500 objects) Task B (375 objects) 

TL 6 Raw Curves 
New Class 

TL6 Average Curves 
New Class 

TL6 Statistics 
New Class 

Metric Score P Value 

Transfer ratio 2.30! 0.0014!

Truncated transfer ratio 2.30! 0.0014!

ARR -999999! 0.1466!

ARR (narrow) 0.4587! 0.0270!

Asymptotic advantage -0.5441! 0.9676!

Jump start 31.85! 0.0002!

Ratio 1.0404! 0.0004!

Transfer difference 1357.78! 0.0000!

Scaled transfer difference 14.13! 0.0000!
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Experimental protocol summary 

Level Task A Task B Rep

licat

ions 

Task A 

size 

B 

train 

size 

Test 

interval 

Test 

set 

size 

1 Objects at fixed location Same object, different 
location 

5 500 375 37 125 

2 Objects of one 
dimension 

Same object; but of different 
dimensions, and at different  

orientations 

5 500 375 37 125 

3 Instances of an object 
from a class 

Instances of a different object 
from the same class 

5 500 375 37 125 

4 Objects from one class Multiple objects 5 750 375! 37 125!

6 Objects from some 
classes 

Objects from a new class 5 1500 375! 37 125!

Experimental Results Summary 

For repeatability in experiments, transfer learning numbers are given for synthetic data set. 

Level Type Transfer ratio 

1 Parameterization 24.81 

2 Extrapolating 10.37 

3 Restructuring 21.51 

4 Extending 9.89 

6 Composing 2.30 

Transfer Learning metrics: 

Testbed: STAIR 

(STanford AI Robot)  

Predicted Grasp Locations 

Predicted grasp locations 
Some Successful Grasps on Robotic Arm 

TL Y1 Internal Evaluation Summary 

Object Recognition 

Daphne Koller (PI) 

Gal Elidan 

Geremy Heitz 

Ben Packer 

Computer Science Dept. 

Stanford University 

Problem Statement 

•!Objective:  
-!Technology used: Probabilistic models of object shape 
-!Domain used: Object recognition in images 
-!TL levels addressed this year  

•!TL 3: One subtype of a class to other subtypes of same class 

•!TL 5: Synthetic images to real images 
(optional) 

•!TL 7: One class of object to another 
(optional) 

•!Approach 
-! Train on task A images, learn shape model 

-! Train on task B images, comparing performance with & without 
transferring learned task A shape model 
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TL Level Running time Goal(s) 

TL 3  < 1 sec / complexity 20 

 (20 keypoints) 

< 1000s / complexity 1000 

Domain Performance Metric(s) & Goal(s) 

TL Level Error (relative RMS) Goal(s) 

TL 3  ~5% (most likely point position) < 30% of object size 

Evaluation Analysis Summary 

TL Level TL Metric Goals Met? Discussion 

3 TRS = 12.13 

Evaluation Type: Internal 

Client: UCB/Stanford 

Domain: Vision 

Year 1 goal: Transfer ratio > 10 

TRS: Transfer ratio (smoothed) 

TL Level Running time Goal(s) 

TL 3  < 1 sec / complexity 20 

 (20 keypoints) 

< 1000s / complexity 1000 

TL 5 
optional 

< 150 sec / complexity 1250 (25 

keypoints x 50 features) 

< 1000s / complexity 1000 

TL 7 
optional 

 < 60 sec / complexity 120 

(60 keypoints x 2 classes) 

< 1000s / complexity 1000 

Domain Performance Metric(s) & Goal(s) 

TL Level Error (relative RMS) Goal(s) 

TL 3  ~5% (most likely point position) < 30% of object size 

TL 5 
optional 

5-18% (mean of object center)   < 30% of object size 

TL 7 
optional 

5-11% (most likely point position) < 30% of object size 

Evaluation Analysis Summary 

TL Level TL Metric Goals Met? Discussion 

3 TRS = 12.13 

5 
optional 

TR = 13.66 

Average TR for 6 classes  

7 
optional 

             Not yet 

Evaluation Type: Internal 

Client: UCB/Stanford 

Domain: Vision 

Year 1 goal: Transfer ratio > 10 

TRS: Transfer ratio (smoothed) 

Error Metrics for Learning 

Overlap for regions Distance log-likelihood for 

missing points on outlines 

Predicted  

distribution 

for location of 
missing point 

on outline 

Correct position  

of boundary point 

is assigned 
likelihood from 

distribution 

Given outline 

Predicted 

Actual 

Overlap = Intersection / Union 

Transfer Level 3 
Varying shape within class 

•! Learning task definition:  

•! Input: Object shape outlines 

•! Performance goal: Predicting missing points 

•! Set A: Outlines of one kind of sedan 

•! Set B: Outlines of other kinds of sedan 

•! Transferred knowledge:  

•!  Location of keypoints (landmarks) that define car shape 
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TL3 Raw Curves 
Varying shape within class 
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TL3 Average Curves 
Varying shape within class 
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TL3 Statistics (50 folds) 
Varying shape within class 

Metric Score P-Value 

TRANSFER-RATIO (smoothed)                      12.13 0.0006 

ASYMPTOTIC-ADVANTAGE                   4.25 0.0000 

JUMP-START                           730.69 0.0000 

AVERAGE-RELATIVE-REDUCTION          0.99 0.0000 

THE-RATIO                           0.213 1.0000 

TRANSFER-DIFFERENCE                 779.28 0.0000 

AVERAGE-RELATIVE-REDUCTION-NARROW   0.54 0.0000 

The-Ratio (of area under the curves) are not well behaved for negative valued  

performance metrics, such as Log Likelihood. 

TL3 Notes 
Varying shape within class 

•! There is a dip in performance for the no-transfer curves at the 

point n=1 

•! The reason is as follows: 

•! The performance at the n=0 point is an artificial estimate, 

based on a simple approach that performs no learning: it 

interpolates the outline based on the observed points 

•! The performance at the n=1 point uses the learned model 
from a single instance, which is a really poor estimator, 

hence the poor performance 

•! The performance at the n=2 point generally exceeds the 

performance at n=0, showing that learning does work better 

•! It is possible to artificially inflate the performance at n=1 by 

averaging with the interpolated estimate used for n=0, but that is 

against the spirit of using a purely learning-based approach 

Transfer Level 5 
Cartoons to real images 

•!Learning task definition:  

•!Input: Object shape outlines in cartoon images 

•!Evaluation: Outlining objects in real images 

•!Set A: Synthetic (cartoon) images of class 

•!Set B: Real images of class 

•!Classes: cougar, car, butterfly, rooster, bass, buddha 

•!Transferred knowledge:  

•!Keypoints (landmarks) that define the shape 

•!Location of keypoints 

TL5 Raw Curves for Buddha Class 
Cartoons to real images 

Transfer 

No Transfer 
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TL5 Raw Curves for all classes 
Cartoons to real images 

bass buddha butterfly 

car cougar rooster 

TL5 Average Curve for Butterfly class 
Cartoons to real images 

Transfer 

No Transfer 

TL5 Average Curves for all classes 
Cartoons to real images 

bass buddha butterfly 

car cougar rooster 

TL5 Cartoon Training Images 
Cartoons to real images 

TL5 Notes 
Cartoons to real images 

•! Based on human learning, we expected cartoons to 

facilitate rapid learning of basic shape 

•! Experiments show: Learning curve from outlines in 

real images deteriorates with # of training instances 

•! Reason: Shape learning from real images is less 

robust because of the complexity of real-life variation 

•! Conversely, cartoon learning is more robust by itself, 

and also helps resolve ambiguities in real images 

•! Reason: Cartoon drawings capture intrinsic shape 

and keypoint properties 

DETAILED EXPLANATION: The first key step in learning the  shape model from outlines is registering the different outlines. This is 

completely unsupervised in the cartoons, and to  make the real image data comparable, we have only provided an  outline, but no 

annotation of landmarks. It turns out that  registering outlines without any model is not at easy, but the  cartoons, by nature, exaggerate 
elements of shape and therefore  make that task easier.  The real images are less exaggerated, and  also exhibit some subtle variation in  

pose (e.g., the fish twisting  around).  That makes the correspondence task much harder, and  the results less robust.  By contrast, once 

we have learned a shape model from the cartoons, the registration of the real images is  more robust, and we can avoid many of the 

ambiguities and local  maxima. 

TL5 Statistics (30 folds) 
Cartoons to real images 

bass buddha butterfly 

Metric Score P-Val Score P-Val Score P-Val 

TRANSFER-RATIO                        18.94 0.0000    8.06 0.0000   16.38 0.0000 

TRUNCATED-TRANSFER-

RATIO            
  18.94 0.0000  229.20 0.0000  311.12 0.0000 

ASYMPTOTIC-ADVANTAGE                   0.05 0.0004    0.03 0.1452    0.07 0.0000 

JUMP-START                             0.53 0.0000    0.70 0.0000    0.58 0.0000 

AVERAGE-RELATIVE-

REDUCTION          
   0.68 0.0000    0.54 0.1578    0.62 0.0012 

THE-RATIO                              1.34 0.0000    1.11 0.0136    1.25 0.0000 

TRANSFER-DIFFERENCE                    1.39 0.0000    0.68 0.0108    1.17 0.0000 

AVERAGE-RELATIVE-

REDUCTION-NARROW   
   0.00 0.5050    0.00 0.4958    0.00 0.4990 
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TL5 Statistics (30 folds) 
Cartoons to real images 

car cougar rooster 

Metric Score P-Val Score P-Val Score P-Val 

TRANSFER-RATIO                        11.69 0.0000   24.18 0.0000    2.73 0.0578 

TRUNCATED-TRANSFER-RATIO               8.36 0.0000   24.18 0.0000    3.01 0.0060 

ASYMPTOTIC-ADVANTAGE                   0.00 0.4932    0.06 0.0174   -0.01 0.7124 

JUMP-START                             0.44 0.0000    0.59 0.0000    0.49 0.0000 

AVERAGE-RELATIVE-REDUCTION             0.62 0.0004    0.60 0.0170 - 0.2594 

THE-RATIO                              1.31 0.0002    1.21 0.0010    1.08 0.0992 

TRANSFER-DIFFERENCE                    1.12 0.0000    1.01 0.0002    0.37 0.0994 

AVERAGE-RELATIVE-REDUCTION-

NARROW   
   0.15 0.5056    0.00 0.5018   -0.44 0.5072 

Transfer Level 7 
One class to another class 

•!Learning task definition:  

•!Input: Object shape outlines 

•!Performance goal: Predicting missing points 

•!Set A: Synthetic (cartoon) images of class 

•!Set B: Real images of class 

•!Classes: llama, deer, horse, giraffe, elephant, anteater 

•!Transferred knowledge:  

•!Location of keypoints (landmarks) 

•!Variability of keypoints 

TL7 Raw Curves for deer-llama 
One class to another class 

Transfer 

No Transfer 

TL7 Raw Curves for pairs 
One class to another class 

Deer-Elephant Deer-Horse Deer-Giraffe Deer-Llama 

Giraffe-Deer Elephant-Deer Llama-Deer Horse-Deer 

TL7 Average Curve for deer-llama 
One class to another class 

Transfer 

No Transfer 

TL7 Average Curves for pairs 
One class to another class 

Deer-Elephant Deer-Horse Deer-Giraffe Deer-Llama 

Llama-Deer Giraffe-Deer Elephant-Deer Horse-Deer 
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TL7 Statistics (10 folds) 
One class to another class 

Deer-Horse Horse-Deer Deer-Giraffe Giraffe-Deer 

Metric Score P-Val Score P-Val Score P-Val Score P-Val 

TRANSFER-RATIO                         3.83 0.0000    4.20 0.0000    2.66 0.0000    1.66 0.0026 

TRUNCATED-

TRANSFER-RATIO            
   3.83 0.0000    4.20 0.0000    2.66 0.0000    1.66 0.0032 

ASYMPTOTIC-

ADVANTAGE                
  70.56 0.0000   63.69 0.0004    7.14 0.2796   52.76 0.0034 

JUMP-START                           742.20 0.0000  587.73 0.0000 1621.28 0.0000 - 1.0000 

AVERAGE-RELATIVE-

REDUCTION          
   0.77 0.0002    0.73 0.0042    0.53 0.0052 - 0.1570 

THE-RATIO                              0.46 1.0000    0.42 1.0000    0.55 0.9996    0.71 0.9966 

TRANSFER-

DIFFERENCE                 
2077.95 0.0000 2354.83 0.0000 1612.78 0.0000 1180.72 0.0024 

AVERAGE-RELATIVE-

REDUCTION-NARROW   
   0.81 0.0000    0.78 0.0006    0.63 0.0004 - 0.5050 

The-Ratio (of area under the curves) are not well behaved for negative valued  

performance metrics, such as Log Likelihood. 

TL7 Statistics (10 folds) 
One class to another class 

Deer-Llama Llama-Deer Deer-Elephant Elephant-Deer 

Metric Score P-Val Score P-Val Score P-Val Score P-Val 

TRANSFER-RATIO                         5.55 0.0000    3.78 0.0000    2.32 0.0000    1.96 0.0000 

TRUNCATED-

TRANSFER-RATIO            
   5.55 0.0000    3.78 0.0000    2.32 0.0000    1.96 0.0000 

ASYMPTOTIC-

ADVANTAGE                
  36.11 0.0000   63.98 0.0006   72.40 0.0004   46.57 0.0022 

JUMP-START                          1015.02 0.0000  579.62 0.0000 369.82 0.0000    7.27 0.4208 

AVERAGE-RELATIVE-

REDUCTION          
   0.64 0.0002    0.71 0.0050 0.63 0.0004    0.67 0.0004 

THE-RATIO                              0.41 1.0000    0.44 1.0000    0.67 1.0000    0.65 1.0000 

TRANSFER-

DIFFERENCE                 
1443.16 0.0000 2274.51 0.0000 1318.81 0.0000 1432.05 0.0000 

AVERAGE-RELATIVE-

REDUCTION-NARROW   
   0.74 0.0002    0.72 0.0002    0.66 0.0000    0.65 0.0054 

The-Ratio (of area under the curves) are not well behaved for negative valued  

performance metrics, such as Log Likelihood. 

TL7 Transfer Ratios 
One class to another class 

1.66 

2.66 

3.83 

4.20 

2.32 

1.96 

3.78 

5.55 

Experimental protocol summary 

TL Task A Task B Replic

ations 

Task 

A 

size 

B 

train 

size 

Test 

interval 

Test 

set 

size 

Objects 

3 Several instances 

of one type of car 

Other cars 50 5 10 1 15 1 

5 Cartoon drawings Outlines in real 

images 

30 5 10 1 15 6 

7 Outlines of one 

quadruped class 

Outline of another 

quadruped class 

10 10 10 1 15 8 pairs 

Some Successful Outlining A Few Failed Examples 

Most failures due to problems with image features 
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TL Y1/Y2 Site Visit 

Year 1 Accomplishments 

Year 2 Planning 

Leslie Pack Kaelbling 

Tomas Lozano-Perez 

MIT 

Stuart Russell 

UCB 

Project Goals 

•! Creation of generic, retargetable transfer learning system(s) 

•! Theory and implementation for effective transfer learning, 
based on provision and accumulation of declarative 
probabilistic knowledge supporting transfer and improved 
learning 

•! Demonstration in robotics, vision, strategy games, with 
transfer ratios > 10 at transfer levels 3/6/10 in Years 1/2/3. 

•! Part of larger thrust within machine learning to create 
cumulative, knowledge-guided mechanisms enabling very fast 
learning about new phenomena and unbounded extensibility. 

Military relevance 

•! Sensor systems: 

•! Target recognition systems need to adapt quickly to new 
target types, new background/atmospheric conditions, new 
sensor hardware 

•! IED detection systems need to adapt quickly to new IED and 
camouflage types 

•! Control systems: 

•! UAV controllers need to adapt quickly to new payloads, 
damaged control and lift surfaces 

•! AGV controllers need to adapt quickly to new terrain types, 
road surfaces, obstacle/vegetation types, etc. 

•! Decision (support) systems: 

•! Tactical and strategic planning systems must adapt quickly 
to novel enemy behavior, new weapon systems, new terrain 
factors, etc., without having to relearn all levels of behavior 
from scratch. 

Ideal EBTL system 

Cumulative learning agent 

•! General prior knowledge (type hierarchies, part-whole 

hierarchies, feature relevance models, RMDP lattices, etc., all 

learnable) 

•! Input: observations (e.g., (s,a,r) triples) 

•! Process: Bayesian inference 

•! Output: updated model, action selection 

Project Theses 

In many modern applications, it is more efficient and effective to 

design a learning system than to hard-code knowledge into the 

system. 

1.! Two-domain transfer-learning is often a more effective way to 

obtain a strong bias for a new domain than hand-crafting that 

bias directly.  Therefore, it’s an effective engineering strategy 

for applications. 

2.! Domain-independent multi-task transfer-learning algorithms 

require a much weaker and easier to engineer inductive bias 

than a base-level learning algorithm. 

2-Domain Transfer 

Induction 

alg 

Induction 

alg 

task A data 

task B data 

task A predictor 

task B predictor 

inductive bias 

refined  

inductive bias 

Requires knowledge 

about relation 
between domains  
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Multi-Domain Transfer 

Induction 

alg 

Weaker, more 

general, easier to 
provide than bias for 

task B 

Induction 

alg 
Induction 

alg 
Induction 

alg 
Induction 

alg task A1 … An 

data 

Induction 

alg 
task B data 

Induction 

alg 

learned  

inductive bias 

meta-level  

inductive bias 

UCB Transfer Project 

In application domains, we are building 2-domain 

sequential transfer systems 

•! to discover kinds of transfer that can be made 

effective in domain-independent algorithms 

•! to construct data-efficient learning methods for 

applications 

In theoretical work and toolkit, we are inventing and 

building domain-independent methods for multi-

domain transfer 

•! to apply broadly to new domains 

Two-domain transfer example 

•! Labeled synthetic images are cheap and easy to 

obtain 

•! Very difficult to write a strong prior bias for learning 

from real images 

•! Easy to learn the first domain with a weak bias and 

lots of data 

•! Knowledge from first domain is a strong bias for the 

second 

Structure and local 

appearance models 
Knowledge-Based 

Logical Learning 

Hierarchical Bayesian 

         Learning 

Effective Bayesian 

Transfer Learning 

Bayesian Reinforcement 

          Learning 

P(w,y) & P(x,y)& 

Q(w,z)=>Q(x,z) 

Hierarchical RL and 

Partial Programming 

Relational 

Markov 
Decision 

Problems 

Science Plan 

Expressive 

 Languages 
 (BLOG++) 

Stanford Vision: Year 1 Summary 
PI: Koller 

Algorithm idea 

Problem From simple to complex Across related classes 

Military impact: - Recognize “home made” weapons by transferring shape 
                  as a surrogate for functionality 
               - Recognize weapons/machines that are similar to known ones 

Broader impact: Scene analysis for retrieval or surveillance 

General technology: - Transfer knowledge using class hierarchy 
                        - Learn object landmarks/parts that can be 
                          transferred when learning for other objects 

(tomahawk) 
+ 

“flying weapon” 

Impact 

Year 2 plans 

1.66 

2.66 

3.83 

4.20 

2.32 

1.96 

3.78 

5.55 

•! Learn probabilistic model of shape and its deformation 

•! Use inference to match models to image: Recognize & localize objects 

•! Learn to identify object landmarks, and shape variation as function of 
them 

•! Learn commonalities/differences of shape models along class hierarchy 

Year 1 Accomplishments 
•! Built infrastructure for probabilistic shape representation, learning  
 and matching to real images 

•! Developed method for learning landmarks (keypoints) of shape from 
cartoon or hand segmented outlines thus laying basis for shape learning 

•! Demonstrated importance of intrinsic shape (exaggerated in cartoons) for 

  the task of recognition in real image (transfer ratio up to 25) 

•! Developed novel mechanism for transfer across related classes in a 
hierarchy, with initial transfer results 

•! Extend object model to take into account appearance,  
 texture and other image based properties  

•! Generalize shape learning and recognition to 3D models, and 
learn 3D model from 2D images 

•!Transfer across 2D poses using learned 3D shape model 
•! Apply transfer hierarchies to the task of object class 
recognition in real images 

•! Incorporate object parts and skeleton into object hierarchy 
and use for transfer 

•! Automatically learn hierarchy structure toward identification of 
“transferable” knowledge 

MIT Vision: Year 1 Summary 
PI: Kaelbling, Lozano-Perez 

•! Use training images and synthetic data to 
learn probabilistic model of appearance 
and geometric relationship among object 
parts 

•! Learn transformation across views from 
training data, use transformation to 
generate “virtual” training data 

•! Detect candidate part locations in image 
•! Find likely assignments of part detections 

to model parts 

Achieved TR > 10 for 

transfer across pose 
and shape 

Algorithm idea 

•! Enable a computer vision system to learn to recognize 
structured objects, with large shape variability 

•! The vision system is trained on images with the objects 

and their parts labeled 

•! The system recognizes related objects in related 

situations, exhibiting transfer by doing so more quickly 
than it would otherwise have been able to 

Impact 

•! Practical robots for military and civilian applications will 
need to recognize a wide variety of objects.  Transfer 
learning of object recognition will require less training data 

Problem 

•! Transfer across object pose using a learned 3D model 

•! Learn grammatical models for transferring object and 

scene structure 

•! Combine transfer of shape and structure 

•! Extend to multiple object classes: furniture, tools, dishes 

and flatware 

Year 2 plans 
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Stanford Traffic Vision: Year 1 Summary 
PI: Thrun 

•! Developed transfer machine learning technique. 

•! Transfer at multiple levels: 
•! Appearance 
•! Behavior of moving objects 

•! Approach based on  
•! Viola-Jones feature tracker 

•! Particle filter method for motion tracking and 
prediction 

•! Hierarchical Bayes for Transfer, with meta-
parameters for appearance and motion 

•! We now know that transfer improves the performance in 
recognizing and predicting a new car; we are currently 
measuring the improvement (transfer ration etc). 

Algorithm idea 

•! Detection, classification, and prediction of vehicular traffic.  

•! Is an application of Transfer Learning to the Visual Domain 

•! Impact: May make cars safer by avoiding collisions; will be 

necessary for meeting 2001 congressional mandate to 
make 1/3 of all ground vehicle unmanned. 

Problem 

•! Continue the development of this project 

•! Empirical evaluations 
•! Integration into a physical testbed 
•! Porting to/from other transfer learning techniques in the 

image domain. 

Year 2 plans 
•! Learn association between template grasp 

types and object features 
•! Learn quality metric on grasps 
•! Given new object, find most similar template 

grasp 
•! Find many ways of transforming the training 

object to the new object, each transformation 
produces a candidate grasp. 

•! Choose transformed grasp with highest quality 

Achieved TR > 10 for 
transfer across pose 
and shape 

MIT Manipulation: Year 1 Summary 
PI: Kaelbling, Lozano-Perez 

Algorithm idea 

•! Enable a simulated robot to learn grasps by imitation 

•! A human demonstrates 5 grasp types on simulated objects 

•! The robot practices those grasp types on simple objects  

•! The robot performs the same grasp types on new objects 
that are different than the training objects, thus exhibiting 
transfer 

Impact 

•! Practical robots for military and civilian applications will 
need to learn to carry out new tasks.  Transfer learning of 
manipulation tasks will require less training data  

Problem 

•! Transfer of motions from uncluttered domains to 
cluttered domains: training on a table, transfer to a 
dishwasher 

•! Learning manipulation sequences and transferring 
components to be recombined and adapted in new 
domains: train on opening cupboard, transfer to 
dishwasher door 

•! Learning force-based grasp controllers via 
reinforcement learning: transfer across shape, mass, 
and material properties 

Year 2 plans 
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Stanford Manipulation: Year 1 Summary 
PI: Ng 

•! Learn grasps for 5 objects; 
transfer grasp to novel test set 
objects.  

•! Grasping approach:  
•! Given 2 or more images 

of object, identify 2-d 
“grasping points” (shown 
in red below) in image 
plane. 

•! Triangulate grasping 
points to identify 3-d 
grasp position. 

•! Approach works even on 
objects where full stereo 
3-d reconstruction fails.  

Algorithm idea 

•! Today’s robots can be “scripted” to perform complex-

seeming tasks, but are hopeless when there is uncertainty 
in the environment, or at manipulating novel objects. 

•! Seeing a 3-d object for the first time using a camera 

•! Grasp the object using a robotic arm. 

Problem 

•! Robotic manipulation in cluttered environments, e.g. 
unloading a dishwasher. 

•! Develop transfer algorithms to transfer from grasping one 
object in white background to grasping in presence of 
background clutter. 

•! Develop transfer algorithms for perceiving obstacles and 
grasp point in presence of other objects and background. 

•! Develop control algorithms to navigate robotic arm. 

•! Improve grasp algorithm to learn other grasp parameters, 
e.g. orientation and finger parameters, besides grasp 
location, which we did in year 1. 

Year 2 plans 

Real Object 

Projected Object 

OSU Stratagus: Year 1 Summary 
PI: Dietterich, Fern, Tadepalli 

•! To transfer between tasks from a given class, design a 
single abstract MDP M  that includes all of the tasks as 
special cases 

•! Hierarchically structure M so that common subtasks  of 
all tasks are explicit and are described by the same set 
of relational features 

•! Transfer from task A to B by initializing parameters to 
those learned on A when learning on B 

Algorithm idea 

•! Investigate transfer in real-time strategy (RTS) games, 
focusing on the Stratagus RTS engine 

•! Provides a venue to investigate transfer between complex 

sequential decision making problems 

•! Long term practical benefits: facilitate faster 

development of automated decision-making tools for 
complex military domains 

•! Shorter term practical benefits: facilitate faster 

development of intelligent agents for complex simulation 
environment, e.g. in training simulators 

Problem 

•! Challenge problems: transfer between tasks that are 
more complex and more dissimilar than in year 1 

1.! transfer between complex resource-production 
tasks that involve diverse goals and different sets 
of operators/resources 

2.! transfer between complex tactical-battle tasks with 
diverse unit configurations/compositions and 
different unit types 

•! Approaches 

1.! Develop “deeper” abstract MDP models that span 
a wide range of diverse tasks 

2.! Develop transfer techniques for model-based 
learning methods 

3.! Develop hierarchical Bayesian RL techniques 

Year 2 plans 
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MIT Toolkit: Year 1 Summary 
PI: Jaakkola 

Our approach derives from the following two lines of 
reasoning: 

•! Decomposing complex models   

 - a class of planar models, useful in image analysis, can 
be solved exactly in polynomial time 

 - more expressive non-planar models can be 
decomposed into planar models 

 - the resulting decomposition (controlled approximation) 
can be optimized for accuracy 

•! Building sparse models 

 - reusable components come from enforcing sparsity 
(limiting modeling resources for special purpose 
solutions)  

 - sparse minimum entropy models can be estimated 
efficiently in stages (adding one piece at a time) 

Algorithm idea 

•! P1: how to automatically divide complex inference tasks 

such as object recognition into reusable sub-problems 

•! P2: how to automatically build reusable hierarchical 

models for multi-task recognition tasks 

•! Solutions to these permit robust object recognition across 

different contexts and types of objects 

•! e.g., by allowing us to assemble groups of correlated 

“features” into reusable “parts” 

Problem 

We plan to continue the work in the following four directions:  

 1) refine the algorithms so they can be made available as 
solid implementations  
 2) demonstrate the methods in the context of recognizing 
classes of objects from different viewpoints  
 3) analyze how many samples per task and how many 
model building iterations are required to attain prescribed 
performance levels across all tasks 

 4) extend the automated decomposition methods for 
general hierarchical models 

Year 2 plans 

new planar 
decomposition 

tree 
decomposition 

UCB Toolkit: Year 1 Summary 
PI: Jordan 

Algorithm idea 

•! Distantly-related tasks may have little in common on the 

surface 

•! At a deeper level, what tasks may have in common is that 

the same features are relevant across tasks 

•! How to automatically discover which of a large set of 

features are relevant across multiple tasks?  

•! Many practical consequences: e.g., what visual features 

matter for grasping, what aspects of game configurations 
matter for making strategic decisions? 

Problem 

Year 2 plans 

T1 T2 T3 

ta
s

k
s

 

features 

•! We have solved this problem by developing a novel block-

norm regularization framework 

•! Efficient optimization algorithm based on Blasso 

•! The other major feature selection problem is that 

of finding effective combinations of features 
(subspaces) 

•! In the multi-task setting, we ask how to find a 

single subspace that is useful in multiple tasks 

•! Our approach: generate many random 

projections and use our block-norm method to 
find overlapping sets of combinations---these 
determine a subspace 

•! We will develop an algorithmic and software 

platform for solving general multi-task feature 
selection problems 

Pool of features 

Find relevant subset 
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UCB Toolkit: Year 1 Summary 
PI: Bartlett 

•! Developed general techniques to provide 
performance bounds for a family of transfer learning 
methods for prediction problems, which includes: 

•! Maximum a posteriori probability Bayesian 
inference (parametric models for strategy games 
of Fern and Tadepalli, hierarchical models for 
grasp selection of Ng) 

•! Regularization-based multi-task prediction 
methods (feature selection and subspace 
selection methods of Jordan) 

Key Results 

•! Provide performance guarantees for TL methods. 

•! Practical consequences: 

•! Allow us to understand how performance is affected 

by the amount of data/experience, the number of 

tasks, and the flexibility of transfer between tasks. 

Hence, 

•! Provide guidance on the design of TL methods 

•! Allow confident deployment on new TL problems 

Problem 

•! Use these techniques to develop performance 
guarantees for non-parametric methods for transfer 
learning including nonparametric hierarchical Bayesian 
methods, such as hierarchical Dirichlet processes. 

•! Develop flexible nonparametric regularized risk 

minimization TL methods, based 

Year 2 plans 

data per 

task 
num 

tasks 
“size” of 

task 

space 

“size” of 

shared 

space 

Lots of sharing: Large ds:  Little sharing: Small ds 

m: num tasks m: num tasks 

r = risk, expected decrease from optimal performance, percent error 

n from 200 - 3200 
n from 200 - 3200 

linkage space 

task C 

hypothesis 

space 

Task A  

data 

Task B  

data 

on the performance guarantees 
obtained in year 1. 

UCB Toolkit: Year 1 Summary 
PI: Russell 

•! Threads = tasks 

•! Each effector assigned to a thread 

•! Threads can be created/destroyed 

•! Effectors can be reassigned 

•! Effectors can be created/destroyed 

•! Decompose reward among threads (Russell+Zimdars, 
2003) 

•! E.g., rewards for thread j only when peasant j drops off 
resources or collides with other peasants 

•! Qj(!,u) = “Expected total reward received by thread j if 
we make joint choice u and make globally optimal 
choices thereafter” 

•! Threadwise Q-decomposition Q = Q1+…Qn 

•! Recursively distributed SARSA gives global optimality 

Algorithm Idea 

•! Single Alisp program 

•! Partial program must essentially implement multiple 

control stacks 

•! Independencies between tasks not used 

•! Temporal decomposition is lost 

•! Separate Alisp program for each effector 

•! Hard to achieve coordination among effectors 

•! Our approach - single multithreaded partial program to 

control all effectors 

Problem 

•! Integrate declarative Hierarchical Bayes inference engine 
for supervised and RL transfer 

•! Complete the first round of metareasoning experiments in 
ALisp 

Year 2 plans 

Learning 
algorithm 

Completion 
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1 

APPROACH: Transfer Learning by learning invariant 

structures across tasks 

UCB 

Common Structure Discovered Statistically 

CLAIM 

Deep Transfer enables learning with 

limited training data by exploiting 

commonalities between domains. 

•!Cross-task commonalities discovered 

using hierarchical Bayes techniques 

DELIVERABLES 

Deliver General-Purpose Algorithms 

•! Specialized to particular classes of 

knowledge: parametric, relational, 

and procedural 

•!Generally available (downloadable) 

Source Target 

LEARN: 

SHAPE, PARTS, 

& 

ARTICULATION 

TRANSFERRED 

DEER MODEL 

LOCALIZATION 

IN TEST 

IMAGES 

Empirical Testing: Multi-domain 

demonstrations 

•! Object recognition 
•! Strategy-game 

•! Named entity classification (Text) 

2 

TOOLS – Discover and reuse hierarchical structure ANIMALS – Discovering invariants across outline of animals 

UCB Evaluation Domains 

Structured Statistical Models 

Source Target 

Source Target 

Composing 

Grammar and 
local 

appearance 
models 

Source Target 

LEARN: 

SHAPE, PARTS, & 

ARTICULATION 

TRANSFERRED 

DEER MODEL 

LOCALIZATION 

IN TEST IMAGES 

wrench 

round right-open 

Hierarchical Bayesian approach: 

1.! Learn structured statistical model of domain    

regularities 

2.! Transfer to new task 

wrench 

left-open right-open 

wrench 

round round 

Level 6 

Stratagus/Wargus – Discover/reuse procedural structures 

Deposit 

Get Wood 

Get Put 

Navigate Harvest 

N S E W 
Abstract Task  

Hierarchy 

Abstracting 

Level 7 

Abstracting 

Level 7 

Common Structure Discovered Statistically 

Structure enables high-level transfer of abstract 

knowledge 

Statistics enables robust transfer in face of 

uncertainty 

3 

UCB: Year 2 Results 

Exceeded Regret Targets for All Levels and Domains 

Transfer 

Level 

Vision 

Goals: 
Regret/Overlap/Comp 

(15/0.75/!100) 

Strategy 

Game 
Goal: 

Regret"15 

4 
Extending 

Regret:   17 " 15   # 
Overlap:0.75 " 0.75 # 

Comp:   0.03 ! 100  # 
Tools 

68 " 15 # 

6 
Composition 

Regret:   19 " 15   # 
Overlap:0.77 " 0.75 # 
Comp:   0.03 ! 100  # 

Tools 

66 " 15 # 

7 
Abstraction 

Regret:   20 " 15   # 
Overlap:0.85 " 0.75 # 
Comp:   0.03 ! 100  #  

Animals 

34 " 15 # 

Overlap of predicted and actual regions 

(2D) 

Computational efficiency: Number of 

seconds to process a scene of fixed 

complexity 
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Iterations (or time to solve) 

With Transfer 
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Transfer 

Definition of Regret 

4 4 

Discovering Shape, Parts and Articulation 

Transfer Between Sibling Classes (TL 7) 

Outlines of one class in real images 

Images of a different sibling class 

with a common parent (quadruped) 

Shape 

and parts 

Source class: learn parts, shape and articulation from many (40) instances 

Target class: - transfer parts and articulation distribution 

                       - transfer shape distribution as prior 

                       - use target task instances to refine part-based shape distribution 

Application: use final model to detect + outline articulated objects in test images 

Class A “Rich” Model 
•! Learned part structure 

•! Articulation model 

•! Per-part shape variability   

Class B Model 
•! Less data = no parts 

•! No articulation 

•! Little variability 

= 
Class B “Rich” Model 
•! Transferred parts 

•! Better articulation 

•! Transferred variability 

outline in 

test images 

$ 
$ 

$ 

$ 
$ 
$ 

.. 

! "#$
p

ppP NLN log5.0),(log µ

Part selection with BIC score 

Articulation 

Transfer Distributions for Shape and Component Models 

Learned from class A 

Class A Class B 

+ 

5 

Discovering Visual Grammar 
 Transfer Substructure (TL 6) 

wrench :- leftOpenEnd, closedEnd 

wrench :- closedEnd, rightOpenEnd  

leftOpenEnd :- upperPoint, lowerPoint,  

closedEnd :- circleTop, circleLeft, … 

…  

wrench :- leftOpenEnd, closedEnd 
wrench :- closedEnd, rightOpenEnd 

wrench :- leftOpenEnd, rightOpenEnd 

wrench :- closedEnd, closedEnd 

leftOpenEnd :- upperPoint, lowerPoint 

…  

Grammar 
Learning 

Transfer 
Learning

modifies 
grammar 

! 

µ = 3.2,4.7( )," = 1.8,2.3( )

! 

µ = 2.9,4.8( )," = 1.4,2.6( )

Grammar Learning: 

•!  Structure Search to find compact 

model that explains data and 
discriminates between classes 

•!  Expectation-Maximization to find 
maximum-likelihood parameters 

Task B Data Task A Data 

! 

µ = 2.8,4.7( )," = 1.2,2.8( )

Transfer Grammars for Shape and Appearance Models 

Apply Grammar 

Test Data 

6 

Additional UCB Science 

Discovering Abstract Task Hierarchies (TL 7) 

Transfer Learned Abstract Task Hierarchies 

Source Tasks:  

Wargus maps w/ goal of collecting wood & gold 

Primitive state and action sequences experienced 

by agent while learning source tasks 

. . . . 

Target Tasks: different maps 

solution traces look completely different when viewed 

from the primitive state/action representation 

S1, A1  %  S2, A2 %  S3, A3  

Get Wood 

Get Put 

Navigate Harvest Deposit 

N S E W 

Learned Abstract Task Hierarchy 

north % north  % east %  harvest % south  % south  % west % deposit 

PeasantAtForest PeasantHasWood PeasantAtBase 

Learning w/ and without Transferred Hierarchy 

Leaves : primitive tasks 

Internal Nodes : abstract tasks 

•!Learned hierarchy decomposes complex task into abstract 

subtasks and states that make source and targets appear similar  

•!Subtasks specify local subgoals that are meaningful across 

tasks with scrambled maps  

(provide more frequent rewards for faster learning) 

•!Subtasks specify abstract state space 

(ignores irrelevant variables for faster learning of task) 

•!Subtasks specify relevant child subtasks 

(prunes number of choices at each decision point) 

How? 

1) Compute causal graphs of  

    primitive action sequence 

2) Recursively segment action sequences based on graph and organize into hierarchy 
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New Object 

UCB: Y3 Machine Vision Challenges 

Target  – New Object Source  – Cars, Buildings, People 

+ 

Source  – Cars, Buildings, People 

= building 

= person 

“ bicycle ” 

= person 

“ bicycle ” 

= car 

= wheel 

= person 

= building 

= car 

= wheel 

= person 

= building 

= building 

= wheel 

= tree 

Target - Learning how to grasp object classes - Source - Multi-view object class recognition 

= person 

= wheel 

Ultimately Transferring from Seeing to Doing 

Target – Campus Scene 

TL 8 

Transferring 

parts from one 

object type to 

another within 

a scene 

TL 9 

Transferring 

parts between 

scene types, 

creating new 

parts/objects 

as needed 

TL 10 

Multi-view 

recognition 

transfer from 

perception to 

action 

8 

What if you give it a 3-legged stool? 

Training Data 

4-legged chairs 

Virtual training examples generated from single real image using 4-legged chair model 

Accuracy of detection of 3-legged stools against office 

backgrounds.  All the images in training data are of 4-
legged chairs. 

9 9 

Regret 

Score = 

Attempt transfer to class with less similar shape 

Measure log-likelihood of test instances 

Given train/test outlines; do not localize in images 

Transferred knowledge:  

•! Parts and articulated shape model 

Built-in knowledge:  

•! Same structural composition (e.g. quadruped) 

Part-based  

shape model 

14 

What If you give it a kangaroo? 

Processing Time 

Score = < 1 

Deer 
Kangaroo 

Overlap 

Images not 

used 
10 Unsupervised, Self-taught Learning 

Learning high-level structure 

Self-taught learning: Transfer Learning from Unlabeled Data 

10 

Most of human learning is believed to be unsupervised 
Informal argument: Your brain has 1014 synapses, and you will live for 109 
seconds.  If each synapse requires 1 bit to parameterize, you need to “learn” 

1014 bits in 109 seconds.  Or, 105 bits per second.  It’s very unlikely that we get 
that many bits of external supervised data (labels) per second of our lives.   

Need to develop algorithms that use readily available unlabeled data. 

Unlabeled images Some of the “patterns” 

discovered for transfer 

    0.8 *            + 0.3 *             + 0.5 * 

Complex image input 
Higher-level representation obtained by 

finding a sparse decomposition into edges. 

Unlabeled English characters 

Self-taught 

Learning: 

Unsupervised 

transfer 

algorithm 

Input image Transfer Representation 

The representation captures high-level 

features of the input image, 

and can be used for classification. 

Results 

Classification task Error reduction 

Image classification 36% 

Character recognition 2.8 -- 8.2% 

Text classification 4.0 -- 6.5% 

Audio classification 17.4% 

Self-taught learning algorithm leads to 

significant improvements on several 

hard classification tasks. 

 [Raina, Lee, Battle, Packer & Ng, ICML 2007] 

11 

Learning Meta-Level Priors 

Discovering Feature Relevance using Transfer Learning 

11 Meta-Level Priors 

Real world prediction problems have a huge number of features. 

Star 
Wars VI 

Indiana 
Jones 

… 
…

Matrix 

Harry 
Potter II 

Star 

Wars I 

Example: Predict a user’s rating for 

Star Wars I. 

Features: Ratings for other movies by 

the user. 

Problem: More than 100,000 features. 

Observation: All of the features may 

not be equally relevant 
For example, Star Wars VI is a sequel, and 

Indiana Jones has the same writer.  The ratings 

for these movies might be much more relevant. 

Idea: We use transfer learning and 

meta-features to learn feature 

relevance. 

We define meta-features such as: 

Is the movie a sequel? 

Do the movies have the same director? 

…… 

xmk 

Feature k 

wmk 

ym 

Task m 

Star wars I 
rating 

Star wars 
VI rating 

meta-prior ß 

!2
mk 

fmk 

Transfer learning 
algorithm learns these 

parameters jointly for 
all tasks. 

Probabilistic Bayesian Network Formulation:  We formulate 

the transfer learning task with meta-features using a Bayesian 

network that can be solved jointly over all parameters. 

Key advantage over previous models: Use of meta-

features allows the relevant features to be different for 

each task.  The tasks do not need to share features. 

Sample Result 
Algorithm achieves lower error 

than baseline for the movie 

ratings task, and for a hard natural 

language task. 

 [Lee, Chatalbashev, Vickrey & Koller, ICML 2007] 
12 

Transferring Dynamics Rules 

move(a,x,y), at(a,x), 
clearRoad(x,y) %  
at(a,y)          0.8 
at(a,x)         0.1 
damaged(x) 0.1 

blueForce(x,y), 

move(a,x,y), 
at(a,x), 

clearRoad(x,y) %  
at(a,y)         0.6 

at(a,x)         0.1 

damaged(x) 0.3 

noSandstorm, 

move(a,x,y), at(a,x), 
clearRoad(x,y) %  

at(a,y)          0.88 
at(a,x)         0.02 

damaged(x) 0.1 
… 

maximum  

a posteriori probability 

 shared and per-task rule sets 

Prior knowledge: task domains have similar dynamics 
•!  prior distribution over shared rules 

•!  distribution over per-task deviations from shared rules 
Input: examples of state transitions in k domains 

Approximate hierarchical Bayesian inference 

Shared 
rules: 

minimize 
complexity 

Task-specific additions 
and modifications: 

minimize number and 
complexity 

transfer shared rules 

0 

1 
regret 

bridgeIntact(x,y), 

move(a,x,y), at(a,x), 
clearRoad(x,y) %  

at(a,y)           0.8 
at(a,x)           0.1 

damaged(x)   0.1 
roadPlowed(x,y), 

move(a,x,y), 
at(a,x), 

clearRoad(x,y) %  
at(a,y)           0.8 

at(a,x)           0.1 

damaged(x)   0.1 

Urban Navigation Desert Movement Wilderness Travel 

sample data 

in tasks 1…k 

Rural Navigation 

sample data 

in task k+1 

Distributions Over Shared Rules Enable Focused Learning 

maximum  

a posteriori probability  

task k+1 rule set 
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Learning Part Structures 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

* Circles indicate high-scoring partitions chosen for split in the next stage 

Part model  

•! Models landmark 

covariance and part 

articulation 

•! BIC score trades off 

likelihood with complexity 

Algorithm 

•! Maintain a pool of 

“particles” (partitions) 

•! Keep top-scoring 

particles according to BIC 

score 

•! Generate new particles 

by splitting a part into two 

$ 
$ 

$ 

$ 
$ 
$ 

.. 

! "#$
p

ppP NLN log5.0),(log µ

14 

Problem: 

!! Continuous localization of 

outlines in images is susceptible 

to local maxima 

!! Finding a good starting point, 

and matching outline exactly to 
image is difficult 

Solution: 

!! Global discrete inference to find 

starting point 

!! Refinement step searches in 

continuous domain to match 

outline precisely 

Top candidates for 
landmarks/parts 

using image 
features alone 

Global discrete 
inference using 

combination of 
features and shape 

Refinement using 
local adjustments to 

locations in 
continuous domain 

Localizing Outlines in Images 

15 

Discovering Abstract Agent Role Structure (TL 4) 

Transfer Learned Abstract Agent Role Structure 

Source Tasks:  

destroying enemy command headquarters 

Primitive state and action sequences experienced 

by agent while learning source tasks 

. . . . 

Target Tasks: different maps 

different numbers of enemy/friendly units 

different locations  

agent is not told type of each unit 

S1, A1  %  S2, A2 %  S3, A3  

Learned Agent Role Structure 
Learning w/ and without Transferred Roles 

•!Agent is not told the type/role of each unit: e.g. a ballista (long-

range, powerful) versus archer (shorter-range, weaker)  

•! Learns to cluster  units into fundamental unit roles 

•! Learns a classifier that assigns roles to units based on      

  observable properties 

  (used to assign roles to units on new maps) 

•!Learn default policy for each learned role 

 (used to initialize the policy of units on a new map based 

  on their predicted role) 
How? 

1)! Learn joint policy for friendly agents on source map 

(represented as a local policy for each agent) 

2)! Cluster local policies into n groups based on policy behavior  

(value of n automatically selected) 

(medoid of cluster i becomes default policy for role i)  

3)! Learn a classifier from agent observables to role index 

(used to assign agents in new problems to one of our roles) 

-1200

-1000

-800

-600

-400

-200

0

200

0 10 20 30 40 50 60 70 80 90

Non-Transfer

Transfer

Role 1: policy 1 
Role 2: policy 2 

….. 
Role n: policy n 

Abstract Roles 

Classifier: 
assign agents 

to {1,…,n} 

Role Assigner 

Regret = 68.48 
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Discovering Action Schemas (TL 6) 

Transfer Learned Action Schemas 

Source Tasks:  

Wargus maps w/ arbitrary resource goal 

(e.g. create 10 footmen and 10 archers) 

Primitive state and action sequences experienced 

by agent while learning source tasks 

. . . . 

Target Tasks: Different map, different goal,  

and different action model 

Actions are structurally similar to source 

S1, A1  %  S2, A2 %  S3, A3  

Learned Action Schemas 
Learning w/ and without Transferred Schemas 

Captures qualitiative effects but 

has quantitative uncertainty 

•!The source and target action models have the same qualitative 

structure (e.g. collect gold produces gold), but differ 

quantitatively (e.g. the amount of gold produced differs) 

•!We learn the qualitative action schema and possibly 

constraints on the numeric quantities 

•!Qualitative structure is useful for planning actions even 

without exact numbers  

(e.g. we know what resources action requires and 

produces) 

BuildBarrack :  durations = ? 

    Produces : 1 Barrack 

    Consumes : ? Gold, ? Wood 

    Requires : 1 Mill 

    Borrows : ? Peasants 
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Non-Transfer

Transfer

Regret = 66.07 

How? 
1)! Learn actions models from a variety of source tasks and learn the common 

structure of actions. The common structure is taken to be the Schema. 

2)! On target task use the action schemas to drive an intelligent exploration 

procedure that learns the missing quantitative aspects of actions that are needed 

to achieve the goal of the target problem 

3)! As the model becomes more and more accurate the planner finds better and 

better solutions 
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Discovering Abstract Task Hierarchies (TL 7) 

Transfer Learned Abstract Task Hierarchies 

Source Tasks:  

Wargus maps w/ goal of collecting wood & gold 

Primitive state and action sequences experienced 

by agent while learning source tasks 

. . . . 

Target Tasks: different maps 

solution traces look completely different when viewed 

from the primitive state/action representation 

S1, A1  %  S2, A2 %  S3, A3  

Get Wood 

Get Put 

Navigate Harvest Deposit 

N S E W 

Learned Abstract Task Hierarchy 

north % north  % east %  harvest % south  % south  % west % deposit 

PeasantAtForest PeasantHasWood PeasantAtBase 

Learning w/ and without Transferred Hierarchy 

Leaves : primitive tasks 

Internal Nodes : abstract tasks 

•!Learned hierarchy decomposes complex task into abstract 

subtasks and states that make source and targets appear similar  

•!Subtasks specify local subgoals that are meaningful across 

tasks with scrambled maps  

(provide more frequent rewards for faster learning) 

•!Subtasks specify abstract state space 

(ignores irrelevant variables for faster learning of task) 

•!Subtasks specify relevant child subtasks 

(prunes number of choices at each decision point) 

How? 

1) Compute causal graphs of  

    primitive action sequence 

2) Recursively segment action sequences based on graph and organize into hierarchy 
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Transferring Model Structure 

Source Tasks:  

Learner experiences source 

domains with states 

represented by a set of state 

variables. 

Dynamics can be captured 

using a Bayesian model. 

Variables depend few others. 

Target Tasks: 

Using previously discovered 

model structure, learner can 

quickly discover the new task-

specific parameters and make 

near-optimal decisions. 

Learning algorithm solves the 

problem and also the statistical 

independence of state 

variables. 

. . .. S1, A1  %  S2, A2 %  S3, A3  

Learned Model Structure Learning  with and without Bayes Net Structure 

Discovers Relationships Between State Variables During Learning 

Target 

Source 

Source 

 (no structure) 

Key Insight 

Structure discovery depends on learning 

which variables to ignore. 

Novel algorithm quickly narrows down 

which dependencies are needed 

Illustrative example: Stock Trading domain.!

State space: !n sectors, m stocks per sector. Agent buys/ 
sells by sectors. Stocks can be either rising or dropping. 
Probability of a stock rising at time t+1 depends on all 
stocks in the sector at time t.!

Actions: n+1 actions: buy/sell sector i or do_nothing. !

Reward: +1 for each owned stock rising, -1 for each 
owned stock dropping.!

What it learns: Price dependencies of stocks, as well as 
how to use this information to maximize profit.!
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Foundations of Transfer Learning 

When is transfer possible and how is it best achieved? 

Adversarial formulation of prediction 

problems: 

•! Measure performance via regret 

relative to best model. 

•! Eliminates the need for probabilistic 

assumptions on the structure to be 
transferred. 

Multitask prediction with expert advice 

•! Structure to be transferred: small set of 

effective experts (=prediction strategies) 

•! Similar approach + performance guarantees 

for transferring features between prediction 

problems 

•! Efficient algorithm, optimal regret rate: 

         loss ! optimal loss + T log m + m log |E|/m 

where: 

E = (very large) set of experts 

loss = cumulative prediction error (e.g., number of misclassifications), 

optimal loss = best performance by a subset of m experts in E 

T= number of tasks 

linkage space 

task C 

hypothesis 

space 

Task A  

data 

Task B  

data 

Analysis of Bayesian model averaging for 

prediction 

•! For transfer learning in regression, 

density estimation problems 

•! Measure performance via regret  relative 

to any comparison predictor in model 

•! Regret depends on properties of the 

Bayesian prior (weight & smoothness near 
comparison predictor) 

•! The advance: Performance guarantees 

are relative to best in model – not 

assuming `correctness’ of Bayesian prior. 

20 

Abstract Lookahead, Angelic Semantics 

Efficient planning over very long time scales 

1) ! Given an approximate value function, lookahead gives much more 
effective decision making [cf chess programs] 

2) ! Hierarchy with high-level actions (HLAs) should support effective 

planning over long time scales 

Open problem since 1977 (Tate’s HTN planning) 

James Allen (2000) “The semantics of hierarchical planning have never been 
clarified … no one has ever figured out how to reconcile the semantics 

of hierarchical plans with the semantics of primitive actions” 

Hence no models for HLAs, no learning method and no transfer 

Why? HLAs have many possible refinements, so effects vary 

Idea: reachable set = set of all states reachable by *any* refinement 

Plan works iff its reachable set *intersects* goal set 

Enables new planning algorithms with very strong properties: first 

planner able to generate provably correct abstract plans without 
refining to primitive actions, and to prune provably incorrect 

abstract plans 

100X-1000X increases in efficiency compared to classical non-

hierarchical and HTN planners 

New generalized definition of admissible heuristics for reachable sets 

First provably optimal hierarchical planning algorithm 

First algorithm for online hierarchical planning and action selection 

Dramatically better performance than previous methods (eg LRTA*) 

Next steps: apply in Wargus, develop learning and  transfer methods for 

HLA models, extend to stochastic case 

Exact  

Complete 

State  

space 

Sound 

Reachable sets 
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Nonparametric grammars 

•! Probabilistic context-free grammars  

  (PCFGs) model the syntax of language, 

  which is an important first step for many NLP 

  applications  

•! Our hierarchical Bayesian nonparametric 

  model allows automatic selection of 

  grammar complexity, providing robustness 

  to overfitting 

•! Leverage transfer learning to share power 

  between different rules in the grammar 

•! Variational inference algorithm 

•! Fast training: minimal computational 

  overhead over ordinary PCFG training 

•! Modularity: Dirichlet process 

  component plugs into existing parsers 

22 

Transfer Across Views via Structure Model 

Different members of a single class in 
viewpoints 1 .. k 

Members of the same class in new 
viewpoint 

Shape library 

Regret = 48.67 

•! Phase 0: generate view-to-view transform library from shape library 

•! From source tasks: 

•! estimate 3D part centroids 

•! compute posterior distribution on view-to-view transforms 

•! estimate shape distribution for parts from transforms 

•! In target task: 

•! refine transforms given small amount of data in new view, if 

available 

•! use transforms to map data in other views to the new view 

•! feed transformed data into any 2D recognition system 

Transfer Distributions of 2D views of 3D Composite Objects 
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Transfer via Learned Meta-rules 

Local 

Rules 

Local 

Rules 

Local 

Rules 

Genera

l 

Rules 

pickup(X, Y):"

on(X, Y), 
clear(X), 

size(x,med)
, inhand-nil"

inhand(X), ¬clear(X), ¬inhand-nil, "0.8 #
¬on(X, Y), clear(Y) "

on(X, table), ¬on(X, Y), clear(Y) " 0.1"
no change

0.02"
noise "

0.08"

pickup(X, Y):"

on(X, Y), 
clear(X), 

size(x,large)
, inhand-nil"

on(X, table), ¬on(X, Y), clear(Y) "0.2"
no change "

"0.6"
noise " " 

0.2"

pickup(X, Y):"

on(X, Y), clear(X), 

inhand-nil"

inhand(X), ¬clear(X), ¬inhand-nil,  3.6 #

¬on(X, Y), clear(Y) "

on(X, table), ¬on(X, Y), clear(Y)     2.1"
no change                                       1.5"

noise                                               1.5"

•! Individual rule set learned for each source task 
•! Meta rule-set captures regularities in source task  

•! Meta rule-set provides strong bias for learning in target task 
•! Easy to modify meta rule-set to depend on gripper size in 

new task 
•! Compared different numbers and sizes of source tasks 
•! Applicable, eventually, to learning domain models for 

strategy games 
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Transfer Learning Toolkit 1.0 

•! For general-purpose 

application of multitask 

data analysis methods 

•! Domain independent 

Algorithms: 
•!l1-l2 regularization 
•! Parametric Bayes 

•! Parametric empirical Bayes 

•! Ando-Zhang support vector 

transfer 

•! Nonparametric Bayes: 
hierarchical Dirichlet process 

•! Meta-level prior for feature 

relevance 

•! Feature transfer for online 

prediction 

Datasets: 
•! Hand-written digits 
•! Hand-written letters 

•! Reuters part-of-speech 

tagging 

•! Multi-language named entity 

classification 
•! Netflix movie preferences 

•! Robot grasp point prediction 

Utilities: 
•! single task algorithms 

•! kernel methods 

•! decision trees 

•! Boosting 

•! k-NN, ... 

•! cross-validation 
•! data visualization 

•! transfer metrics 

General Purpose, Multiple Algorithms, Domain Independent 
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Transfer Learning Toolkit 1.0 

Toolkit, data sets, user/developer documentation 

downloadable from:     http://multitask.cs.berkeley.edu/ 

General Purpose, Multiple Algorithms, Domain Independent 26 

UCB: Y3 Strategy Game Challenges 

TL Level 8 (Generalization): transfer from tactical tasks to tactical tasks with resource production 

Tactical w/ Resource Production Tactical Only 

TL Level 9 (Reformulation): transferring between resource production tasks with different worker types 

Small # of workers of different types Large # of workers of different types 

Building to Transferring Between Different Games 

TL Level 10 (Differing): transferring between different Stratagus games 

Wargus Magant 

Progress here enables employment  

of TL in the context of highly  

configurable military simulators 
such  

as OneSAF 

27 

Regret Metric 

The y-range will be defined as:  
      [95th percentile of max observed performance of either transfer or NoA] - [random performance on zero data] 

That is, the difference between (a) the 95th percentile of performance of transfer and No-A over the experiment and b) the 
performance of an algorithm that has never been trained on the task (in many cases, this will be random guessing). Here 

we are trying to protect against outliers by using the 95% of max observed performance. That probably will not make much 
difference but we're essentially trying to measure the bounding box of the interesting parts of the learning curves. 

The x-range of performance will be the lesser of 
•! the k-value where the y-values of the curves are within 5% of each other, or  

•! a pre-negotiated reasonable value of k, defined by the task B training set size.  

Transfer Regret 

1 

Regret = 100 * 

G 

AB 

B 

No Transfer 

With Transfer 

AB 

+ 
+ G AB B 

P
e

rf
o
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a

n
c

e
 

Iterations 

Go/NoGo Testing Details 
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TL 4 (UCB):   Related classes  
  More subparts 

Task A: Recognizing related classes of objects 

Task B: Recognizing related classes of objects with 

 more parts 
Transferred knowledge:  

•! Grammar and local appearance models of parts 

Built-in knowledge:  

•! Same viewpoint, same orientation 

Grammar and 
local 

appearance 
models 
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TL 4 (UCB): Discovering Abstract  

                      Agent Role Structure  
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Task A: Destroy a defended enemy building with force  

 containing variety of unit types (e.g. archers, 

 ballistas) 
Task B: Destroy a defended enemy building on map  

 with different numbers of friendly enemy  

 at different locations and configurations 

Transferred knowledge:  

•! Abstract agent role structure 
Built-in knowledge:  

•! Assumed that observable features of units can 

   be used to infer their fundamental roles 

Regret 

Score = 

     " 15 

68 
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TL 6 (UCB):  Related classes  
 Different substructures 

Task A: Recognizing several related classes of objects 

 from one viewpoint 

Task B: Recognizing a related class of objects with 
 shared structure 

Transferred knowledge:  

•! Grammar and local appearance models of parts 

Built-in knowledge:  

•! Same viewpoint, same orientation 

Grammar and 
local 

appearance 
models 
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Regret 

Score = 

     " 15 

Overlap 

Score = 

     " .75 

19 0.77 

Processing Time 

Score = 

     <100 secs/1000 comp 

0.03 
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TL 6 (UCB): Discovering Action Schemas  

Task A: Produce a goal amount of certain set of  

 resources  

Task B: Produce a different resource goal from a 
 different initial state with qualitatively similar, 

 but quantitatively different actions 

Transferred knowledge:  

•! Qualitative action schemas 

Built-in knowledge:  
•! Actions across problems are qualitatively the  

   same but may different quantitatively  

Regret 

Score = 

     " 15 

66 

Both domain and TL algorithm are  

deterministic so each trial run was  
identical 

33 33 

Regret 

Score = 

     " 15 

Overlap 

Score = 

     " .75 

Task A: Outlining objects from one/several classes 

              with structural regularity 

Task B: Outlining a sibling class that has a  
             common parent structural meta-class 

Transferred knowledge:  

•! Parts and articulated shape model 

Built-in knowledge:  

•! Same structural composition (e.g. quadruped) 

Part-based  

shape model 

20 .85 

TL 7 (UCB):  Sibling classes  
 Same structural metaclass 

Processing Time 

Score = 

     <100 

< 1 

Rhinoceros Bison 

34 34 

Regret 

Score = 

     " 15 

Overlap 

Score = 

     " .75 

Task A: Outlining objects from one/several classes 

              with structural regularity 

Task B: Outlining a sibling class that has a  
             common parent structural meta-class 

Transferred knowledge:  

•! Parts and articulated shape model 

Built-in knowledge:  

•! Same structural composition (e.g. quadruped) 

Part-based  

shape model 

18 .81 

TL 7 (UCB):  Sibling classes  
 Same structural metaclass 

Processing Time 

Score = 

     <100 

< 1 

Giraffe Llama 

35 35 

Regret 

Score = 

     " 15 

Overlap 

Score = 

     " .75 

Task A: Outlining objects from one/several classes 

              with structural regularity 

Task B: Outlining a sibling class that has a  
             common parent structural meta-class 

Transferred knowledge:  

•! Parts and articulated shape model 

Built-in knowledge:  

•! Same structural composition (e.g. quadruped) 

Part-based  

shape model 

31 .78 

TL 7 (UCB):  Sibling classes  
 Same structural metaclass 

Processing Time 

Score = 

     <100 

< 1 

Llama Deer 

36 

TL 7 (UCB): Discovering Abstract  

                     Task Hierarchies  
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Task A: Collect a goal amount of wood and gold 

Task B: Collect gold and wood on a different map 

Transferred knowledge:  

•! Abstract task hierarchy 

Built-in knowledge:  

•! Assume that source and task problem have    

   shared hierarchical structure 

Regret 

Score = 

     " 15 
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1 

1 

UCB’S Year 3 Go/NoGo 

From Monoscopic Views to 3D Manipulation 

Target - Learning how to grasp 

object classes 

Source - Multi-view object class 

recognition 

Multi-view 

recognition 
transfer 

from 
perception 

to action 

!  Regret " 25 

Reconstruct the 3D geometry from 
monocular images 

Use object detection to add 3D constraints 

image groundtruth depth reconstructed 

Transfer: Qualitative 3D Model 

Qualitative model seeds metric 

localization and transfer of learned grasps 

2 

Transfer Using Learned Shape Models 

Image 
3D shape 

distribution 

Grasp type 

distribution 
Learn Learn 

Plan & 
Execute 

Learn 

Class shape prior     

(Potemkin) 

Image 

Grasp 

example 

learned grasping  
locations in 3D as 

function of shape 
parameters 

learned (weak) 3D  
generic shape model 

grasp selection  based 
on real vision of new 

instances in new views 

learned (weak) 3D  
generic shape model 

(Potemkin model) 

Feedback from execution 

Learned 3D Shape Models Speed Manipulation of New Objects 

Learning in Task A 

•! Given images of 

objects of known class 

(shaded variables) 

•! Learn coordinate 

frames and outlines for 

each part (unshaded 

variables in plate – 
indicating that there 

are repeated for each 

part) 

•! This is the 3D 

Potemkin model for the 

class 

3 

Class 

Frame Outline 

Image 

Learning in Task AB 

•! Given shaded 

variables for each 

training instance 

•! Learn which part to 

grasp (Handle) 

•! Learn location of 

grasp relative to part 

(!) 

•! To maximize 

probability of 

observed training 

Grasps 

4 

Class 

Frame Outline Handle ! 

Image Grasp 

Performing Task B 

•! Given image of test 

case: 

•! First, pick best Class 

value (based on 

Outline) 

•! Then, pick best 

Grasp, given Class 

5 

Class 

Frame Outline Handle ! 

Image Grasp 

4 Class Experiments 

•! Train: 

•! 5 objects per class (3 train, 2 test) 

•! 10 poses per training object 

•! 1 grasp demonstrated per object 

•! Test:  

•! 2 objects x 2 poses x 4 classes  

•! 16 tests per point on learning curve 
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2 

Localized objects 

8 

TL 10 (MIT):  Vision to Grasping 

Task A: Visual recognition of object classes 

Task B: Ability to grasp objects with a robot arm 

Transferred knowledge:  
•! Rough 3D model of shape of the class 

Built-in knowledge:  

•! 3D models are the key knowledge to transfer 

•! Grasps are associated with parts of the models 

3D class 
shape models 
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Regret 

Score = 

     " 25 
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9 

Grasping Under Uncertainty 

Robust grasping from models 

Belief-based Strategies 

•! Maintain an explicit belief structure (probability 
distribution over states), updated based on sensors 
and actions 

•! Trajectory waypoints are defined relative to the 
current most likely state 

•! Pick among trajectories based on current belief 

•! Terminate trajectories based on conditions on belief 
state 

TL via Cascaded Classification Models 

•! Formal framework for transferring 

knowledge between different learned 

classifiers in a single domain 

•! Information learned by one classifier is 

used as context in training another 

10 
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Segmentation Training Set Size 

Segmentation Only 

Segmentation with Detection 

Each component performs better than it could on its own…  

TL for Indoor Scene Reconstruction 

scale of detected object provides 

information about depth 

type of object provides 

information about local 

geometry 

Presence of object 

provides information 

about supporting surfaces 

image depth map 

Extract 

appearance 

features 

Learn  relationship 

appearance/object 

to geometry 

Encode 

relationships as 

probabilistic 

(soft) constraints 

Find reconstruction 

that has highest 

probability 

Learn Object 

Detector 

Information learned by object detector 

imposes geometric constraints… 

Instantiation of the Cascaded 
Classifier Model presented above, 

but with lower level integration: 
3D groundtruth obtained 

from panning laser line 

scanner. 

TL for Indoor Scene Reconstruction 

image ground truth 

quantized depth reconstructed depth 

image ground truth 

quantized depth reconstructed depth 
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3D Model 

Target Object Class 

All Labeled Images 

Synthetic (First Stage) Real (Second Stage)  

Few Labeled 

Images  

2D Synthetic Views 

Primitive Selection 

Shape Primitives 

Generic Transforms Skeleton 

Part Transforms 

Infer Part Indicator 

Virtual Objects 

Combine Parts 

Part Transforms 

13 

  The Potemkin Model From Recognition to Manipulation 

Potemkin model for Car class: acquired from a few monocular images 

3D Class-Specific Reconstruction from a Single Image 

3D Object Popup 

•! Automatic (Detection, Segmentation, Part Registration) 

•! 3D Class-Specific Reconstruction from a Single 2D 

Image 

15 

Input Detection 

(Leibe et al. 07)  

Segmentation 

(Li et al. 05)  

Output Self-Supervised 

Part Registration 

Potemkin Geometric  

Context 

The Emerging Science of TL 

•! Distant tasks require general knowledge 

•! As tasks become more distinct (higher transfer levels), the form of the knowledge 

learned and transferred needs to become more general purpose.   

•! For example, we can learn to improve object recognition or grasping or bicycle 

riding or foraging by adjusting low-level parameters;  but transferring from one to 

the other requires higher-level knowledge like causal or geometric models. 

•! Meta learning is crucial 

•! There are too many possible aspects of transfer to know how, in general, to move 

from one single task to another. 

•! Multiple training tasks allow learning of kinds of regularities that are likely to hold 

across tasks, which guides transfer to novel tasks by prioritizing hypothesized 

similarities. 

•! Hierarchical Bayes is foundational 

•! It allows integration of prior knowledge and data from multiple sources and 

maintains receptivity to new information. 

•! Very rich and flexible classes of hypotheses, including sets of logical rules, 

meta-features, geometric models, hierarchical control strategies 

•! Hypothesis complexity automatically adapted based on amount and diversity 

of available data;  for example, flexible clustering of previously-seen 

individuals speeds transfer by "soft assignment" of new individual to clusters 

16 

17 

TL for Segmentation and Object Discovery 

Small 
Objects 

Large 
Objects 

Common 
Categories 

Rare  
Categories 

Statistics of Human-Marked Semantic Boundaries  

Power Law Priors for Object Sizes & Frequencies  

and  

Segmentation of Unknown Sets of Objects  

Automatic Discovery of Visual Categories  

Hierarchical Pitman-Yor Processes 

18 

TL for Role Transfer in Multi-Agent RL 

Transfer Learned Abstract Agent Role Structure 

•! In multi-agent RL, different agents in different situations play different roles (e.g. decoys, defense, offense, support) 

•! The role of an agent strong influences the agent’s policy. 

•! Learning to assign roles and bias policy learning accordingly can significantly speed-up learning 

Source Tasks:  

tactical problems where agents must  

learn to play different roles in order to succeed 

Target Tasks:  

tactical problems with different,  

but similar, agents 

Distribution over roles R  

conditioned on state 

“Defensive Role” 

P(!|R=1) 

!
1
 !

2
 

“Decoy Role” 

P(!|R=2) 

!
3
 !

4
 

“Aerial Attack Role” 

P(!|R=k) 

!
5
 !

6
 

Learning w/ and w/o Transferred Roles 

Transferred Knowledge: 

posterior over role assignments 

and policies for agents in new 

problem 

Details:  

Use Dirichlet  Process 

inference to infer roles. 

Initial policy gradient 

RL with sample from  

posterior 
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TL via Transfer of MAXQ Hierarchies 

Transfer Learned Sub-Task Hierarchy 

Hierarchy Transfer:  learn sub-task hierarchies and transfer to new task with similar solution structure   

Learned Sub-task Hierarchy 

Learning w/ and without Transferred Hierarchy 
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Non-Transfer

Transfer

Root 

Harvest Wood Harvest Gold 

Get Gold Get Wood 

Goto(loc) 

Mine Gold Chop Wood GDeposit 

Put Gold Put Wood 

WGoto(townhall) GGoto(goldmine) WGoto(forest) GGoto(townhall) 

WDeposit 

Mehta, Ray, Tadepalli, Dietterich, ICML2008 

Trial-and-error 

exploration 

Learn DBN 

action models 

sample 

trajectories 

action 

models 

Construct 

hierarchy 

MAXQ 

hierarchy 

Wynkoop & Dietterich, ECML2008 
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TL as Inference 

Advancing the Science Base for TL 

•!Inference underlies all aspects of transfer learning 

•!Restriction to sub-tasks (MAP, marginalization) 

•!Restriction to evidence (data association) 

•!Partitioning into subtasks 

•!We have developed robust generic tools for 
addressing these sub-problems 

•!Model decomposition (G and J, 2007) 

•!Cutting plane refinement (S and J, 2007) 

•!Solving MAP (G and J, 2007, S et al., 2008)  

•!Scalability (S et al., 2008) 

•!The effectiveness of these tools has been 

demonstrated across a number of “arrangement” 

problems 

  Model-based reinforcement learning: Agent builds a model 
of transitions in the environment. Uses it to plan to 

maximize reward. 

21 

Bayesian Transfer of Model Dynamics 

  BOSS: Best of Sampled Set 

Approach: Learn the model dynamics by sampling complete models from the prior. Act 

in the world using the model that can achieve highest reward. 

Guarantee: With high probability, finds optimal behavior quickly. Exploits prior to focus 
learning on likely models, even if space of possible models is very large. 

Transfer: After solving a task, adapt the priors to reflect the new information. 

Experiment: BOSS tested on same three grid experiments as people. Agent keeps 
prior over what the wall might be on the next grid. After solving each grid, agent adapts 

prior based on observations.  Result indicate average number of times agent hits a wall, 

over the 10 grids, for each experiment. 

Simple Behavior Transfer Example 

Robot learns about how 

motion actions work. 
In new task, robot also learns about 

moving obstacle, but transfers its 
understanding of motion actions. 

Transfer Model: Existing algorithms can handle new aspects of  dynamics, but old aspects 

are assumed to be unchanged. 

Hierarchical Bayesian idea: Learn model using a prior #learns more likely models faster. 

Now, transfer the prior from one task to the next.  

Goal 

Goal 

Solve a set of 10 grids.  In each, the agent 

controls the white box  (up/down/left/right) 
to reach either goal position ("G"). 

Each position contains one of 27 shape / 
color / background combinations.  A rule 

determines which grid positions are "walls" 
and are not passable.  Agent is penalized 

for each wall encountered.   

The rule for which objects are walls can change from one grid to the next according to 

experiment. People are able to learn a prior that helps them solve grids faster, which effects 
how they explore new environments.  The more precise the prior, the faster the  learning: 

 Experiment 1: Walls are always plus. 

 Experiment 2: Walls are always plus, circle or diamond. 

 Experiment 3: Walls are always determined by one feature. 

Experiment Average 
Penalty 

1. Walls are always plus 0.29 

2. Walls are either plus, circle or diamond 1.53 

3. Walls determined by one feature (shape, background, or color) 2.10 

Representation Steps until optimal 

Flat state-space 47157 

Bayes Net   1676 

Object-oriented     529 

Humans     ~50 (strong prior!) 

  Current work: Achieve more abstract transfer using more 
complex representations.   

Order of magnitude 

improvement by 
Bayesian transfer of 

model.  

Pitfall domain (Atari 2600 videogame) 5x5 and 10x10 versions of Taxi domain 

Representational bias has a tremendous 

impact on learning time (two orders of 
magnitude). 

Object oriented representations provide 
fast learning of challenging  tasks ( Diuk, 

Littman, Cohen 2008). 

5x5 Taxi Results 

Singapore DSO: Information Extraction 

Experiment:  Named Entity Classification 

•! Task:  Label people, organizations, facilities, etc. E.g., George Bush should be labeled person. 

•! Evaluated with Berkeley Toolkit and DSO/MIT Partition Reweighting Algorithm : 

o! Transfer across style: newswire, broadcast news, broadcast conversation, weblogs, newsnet. 

o! Transfer across languages: German from English, Spanish and Dutch. 

o! Transfer across topics of interest to DSO: military, politics, terrorism. 

•! Ando-Zhang from Berkeley Toolkit best across style (figure on the left), baseline of pooling all data best 

across languages, DSO/MIT Partition Reweighting best across DSO topics (figure on the right). 

•! Conclusions: Transfer works but different algorithms are effective in different situations. Currently doing 

error and distribution analysis on the domains to find out why. 
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	Mission
	Goals
	Go/NoGo and Scientific Summaries
	Selected Accomplishments
	Task R1: Hierarchical Bayes
	Michael Jordan, UC Berkeley, developed a new approach to feature selection based on block L1 norms.  His group found that dual extra-gradient algorithms provide a stable, robust numerical platform for this approach. The algorithm has been tested on standard machine learning benchmarks, including handwritten character recognition (where the multi-task aspect arises from the multiple writers). Testing on these benchmarks has been essential---it allowed them to be able to judge the performance, scaling and robustness of the algorithm relative to accumulative wisdom of the literature. 
	Andrew Ng, Stanford, formulated a new, widely applicable learning problem in which high-level knowledge is transferred from easily available unlabeled data. This problem is called self-taught learning.  His group developed algorithms for a high-level abstraction algorithm called sparse coding, that are two orders of magnitude faster than previous algorithms. Using this technical advance, they applied the sparse coding algorithm to self-taught learning, and demonstrated highly effective transfer using only unlabeled data. 
	Tommi Jaakkola, MIT, developed inference algorithms analogous to tree decomposition but based on planar graphs. The algorithms operate by decomposing the overall non-planar model in terms of planar graphs (as opposed to trees) and optimize the structure as well as the parameters of the decomposition so as to find either the MAP configuration or marginal probabilities. The results represent a step in the direction of finding effective hierarchical decomposition strategies for broader classes of probability models. The algorithms and the theoretical guarantees they are pursuing can be expected to be generally useful in transfer learning. 
	Leslie Kaelbling and Tomas Lozano-Perez, MIT, defined hyperprior on rule sets and conditional distribution of specific rule set given the prior and developed staged approximate inference strategy, in which data from observed tasks 1 to k are used to infer general rule distribution; and then that general distribution, plus a small amount of data from task k is used to infer a rule distribution for task k. 

	Task R2: Bayesian Reinforcement Learning
	Michael Littman, Rutgers, dolved a long-standing open problem in efficient reinforcement learning---learning a Bayesian network model (DBN) of an environment in polynomial time. The problem was originally posed by Koller and Kearns in 1999 and the solution built on insights from Koller, Ng, and Abbeel. As part of the solution, Littman formulated a new metric for measuring efficient learning, which he refers to as “KWIK” learning. A KWIK learner “Knows What It Knows” about its environment, meaning that it can guide its own exploration, as appropriate, to quickly acquire the knowledge needed to maximize performance. 
	Tom Dietterich, Alan Fern, Prasad Tadepalli, OSU, evaluated a multiagent RL approach that combines the two ideas assignment-based task decomposition and relational templates. By decomposing the overall task into task assignment to agents and the task execution by agent teams, they achieved significant scaling up to 12 agents. The lower level of task execution has small decomposed state space and can be transferred across multiple domains. The higher level search is more global but takes advantage of efficient algorithms like the Hungarian algorithm for bipartite graphs. This combination proved very effective and resulted in successful transfer from 6v2 agent domains to 12v4 agents. 

	Task R3: Hierarchical Reinforcement Learning
	Tom Dietterich, Alan Fern, Prasad Tadepalli, OSU, developed an approach to learning MAXQ subtask hierarchies for transfer. A MAXQ subtask is defined by a subgoal reward function (the pseudo-reward function), set of actions and a region of state space, and a state abstraction function such that certain conditions hold (e.g., MAX node irrelevance as defined in Dietterich, 2000, JAIR 13:227-303). The method is based on a combined top-down and bottom-up reasoning process. First, the source domain learning problem is identified without a hierarchy. The top-down process then analyzes trajectories followed by the learned policy to identify important subgoals. A bottom-up process then finds a maximal region of state-action space that satisfies the MAX node irrelevance conditions. This process is iterated to produce a subtask hierarchy. The value functions and policies are then re-learned in the source domain using this hierarchy, and the learned subtasks can then be transferred to the target domain. 
	Stuart Russell, UC Berkeley, devised new representation for temporally decomposed Q-functions that avoids problems of representationally expensive nonlocal Qe component used in previous Hierarchical RL systems. Devised a new Hierarchical RL algorithm to take advantage of the new representation. 
	Leslie Kaelbling and Tomas Lozano-Perez, MIT, developed an algorithm for transferring across tasks by finding a task hierarchy that can be used to dramatically speed up learning and/or planning in a new domain. The crucial step was formulating an objective function for what constitutes a good hierarchy, given a set of data that needs to be explained. This criterion has two components: it must be simple and explain the data well. Simplicity is measured as the sum of the complexities for solving the subproblems in the hierarchy (which should be considerably smaller than the complexity of solving the problem monolithically). Explaining the data well is measured by the degree to which the actions taken in the sample trajectories are optimal given the subgoals in the task hierarchy. This is a general approach which has been demonstrated in Stratagus scenarios. 

	Task R4: Transfer Learning Theory
	Peter Bartlett, UC Berkeley, developed general techniques for obtaining performance guarantees for transfer learning methods based on regularized risk minimization. The results apply to prediction problems with independent data. They imply that, under suitable conditions on the transfer learning problem, the performance improves with sample size more quickly than suggested by previous results. 

	Task R5: Metareasoning
	Stuart Russell, UC Berkeley, investigated partial-program-constrained lookahead in a classical planning context. Identified major gaps in the field's analysis of the semantics of high-level actions. Proposed new lower and upper bound semantics that yield guarantees, where applicable, of the downward and upward solution properties. Devised lookahead planning algorithms based on the new semantics and showed order-of-magnitude speedup over flat planning and hierarchical planning without semantics. 

	Task R6: Transfer Learning for Strategy Games
	Tom Dietterich, Alan Fern, Prasad Tadepalli, OSU, developed an approach to learning linear heuristic functions for controlling beam search and applied the algorithm to learning heuristics for STRIPS planning domains. The approach uses example problems labeled by a target sequence of search steps as training data. Perceptron updates are then used to keep the target sequence on the beam. The notion of “beam margin” is introduced and a convergence result is given that provides a necessary condition on the beam width, relative to the beam margin, which guarantees learning will converge. 

	Task R7: Transfer Learning for Manipulation
	Andrew Ng, Stanford, developed and tested an algorithm for choosing appropriate grasp positions for a novel object, whose 3D shape is unknown, and where the object is being perceived for the first time by the algorithm using vision. Using a computer graphics simulator to generate training data, the group has developed transfer learning methods to identify good grasps for such object, given (usually two or more) input images of the object to be manipulated. They developed a statistical triangulation method to estimate the 3D location of the grasping point for the object. They tested the transfer learning methods on a real 5 degree-of-freedom robot arm to pick up various novel objects. The algorithm used was an approximate variant of a hierarchical Bayesian learning algorithm (developed by Jordan, and also similar to the class of algorithms analyzed by Bartlett's work under task R4). With emphasis on transferring one type of objects to another, (e.g., coffee cups to tea cups) Ng's group has generated transfer ratios in the range of 3.0 to 4.5, depending on the transfer level. 
	Leslie Kaelbling and Tomas Lozano-Perez, MIT, developed a method for using previous experience in robot motion planning problems to speed up solution of new problems. The planning algorithm builds a graph of known free locations and uses it to plan a path from a starting to a goal configuration. In a new problem, some of these links may not be traversible due to obstacles, so those are temporarily pruned from the graph. In addition, the start and goal locations may not be currently included in the graph. They carried out experiments to study the transfer-learning properties of this method, including transfer to robots with different sizes, to different goals, and to different obstacle configurations. These experiments generated transfer ratios in the range 1.5 to 6.0, depending on the detailed setting. 

	Task R8: Transfer Learning for Vision
	Daphne Koller, Stanford, addressed the important challenge of recognizing a variety of deformable object classes in images. Of fundamental importance and particular difficulty in this setting is the problem of “outlining” an object, rather than simply deciding on its presence or absence. A major obstacle in learning a model that allows us to address this task is the need for hand-segmented training images. They have developed a novel landmark-based, piecewise-linear model of the shape of an object class. They then formulate a learning approach that allows us to learn this model with minimal user supervision. They circumvent the need for hand-segmentation by transferring the shape “essence” of an object from drawings to complex images. They have shown that our method is able to automatically and effectively learn and localize a variety of object classes. 
	Andrew Ng, Stanford, successfully applied their convolutional deep belief network model to perform object detection, achieving more than 90% performance on a sample task. The model was also capable of filling-in severely impaired images, by performing hierarchical inference using parameters learned using unlabeled data. 
	Michael Jordan, UC Berkeley, developed a new approach to the joint recognition and segmentation of natural scenes. Two complementary problems in scene understanding are those of segmenting scenes into constituent objects and structures, and recognizing the objects depicted in the image. The new approach involves integrated scene models which use cues developed for image segmentation to better recognize objects, and identified objects to regularize segmentation. 
	Leslie Kaelbling and Tomas Lozano-Perez, MIT, implemented two separate methods for using a 3D model to compile view-specific templates for detection of objects in images. One method was tested in a large collection of images of chairs, under a variety of transfer-learning settings, including transfer from synthetic to real images and from one view to another view (both directly and by learning the view transform). These experiments generated transfer ratios in the range 2.25 to 11.85, depending on the error metric and the transfer method. 
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