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EXECUTIVE SUMMARY

Abstract

Traditional auditory perceptual models for detection of complex signals
against complex ambient soundscapes are based on the human audibility
threshold imposed upon computed representations of auditory critical band
filters. Such models attempt to locate a positive signal to noise ratio (SNR) in
any singular band or group of bands and then apply classic signal detection
theory to derive detectability measures (d prime, d') and probability of detection
(POD) values for the event. One limitation to these models is the low volume of
experimental validation against real human sound jury performance, especially
using very low frequency target signals such as helicopters. This study
compares computational auditory detection model predictions against a
corresponding large sample of human sound jury data points obtained in the
laboratory. Helicopter and ambient soundscape signals were obtained from high
sensitivity recordings in the field. Playback in the laboratory was achieved under
high fidelity large volume headphones calibrated to accommodate helicopter
primary rotor frequencies with minimal distortion above human sensation level.
All sound jury members completed at least 12,000 trials detecting helicopters
against wilderness, rural, suburban, and a variety of urban soundscapes, to
represent the spectrum of potential environments involved in a real world
scenario. Analysis compares the human sound jury performance against a
contemporary computational auditory detection model, called "AUDIB",
developed by the U.S. Army and NASA.



Introduction

Previous work related to auditory detection of U.S. military operations has
resulted in computational models for predicting their audibility. However, these
models have not been fully corroborated by studies in the laboratory using
human listeners in time varying soundscapes. As such, the accuracy of the
model involved has not been confirmed. The current study was conducted to
validate one of the current auditory detection models (AUDIB), and to provide
input regarding improvements for better prediction. The scope of this effort was
limited to helicopters.

Background

Environmental Noise Research

Considerable research, with great success, has been conducted on
annoyance, loudness scales, temporal summation and other perceptual metrics
concerned with environmental consequences of helicopter and fixed wing aircraft
noise on communities and on the wilderness. As a result, standardized metrics
exist to describe and weight these effects (such as the “Noy” scale, the “Bark”
scale, DNL, EPNL, SEL, etc.). However, most of these “environmental” noise
metrics have little utility in predicting aural detection ranges for mission planning.
These metrics are based on an A-weighted scale, which emphasizes sounds in
higher frequencies, while many of the sounds related to aircraft detection are in
lower frequencies. See Figure 1 for examples of signal-to-noise ratios (SNRs)
for detection of aircraft in different backgrounds. The 117.4 mile camp
background includes a greater level of high frequencies, clearly demonstrating
that these metrics do not correlate with detection in all backgrounds. Nor can
they adequately explain how humans use acoustics to classify and track aircraft
in a dynamic context (Horonjeff, 2008). Additionally, these scales were
developed to measure annoyance, rather than detection. While annoyance
measures are based on the desire of the listener to NOT hear the signal,
detection measures apply to listeners who DO want to hear the signal. As a
result, the two kinds of scales measure different response biases for the same
signal. An additional complication lies in the nature of the environment involved.
The criterion for annoyance of the listener is adjusted according to the overall
noise of the environment. Listeners in a city are likely to have a higher tolerance
for detection of aircraft sounds than those in the national parks. Further, Fidell
(1977) reported that below levels of about 65 dBA there is poor correlation
between physical indices of exposure and annoyance judgements.
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Figure 1. Detection SNRs for 8 aircraft in 5 background soundscapes
(Horonjeff, 2008).

Helicopter noise generation

All vehicles have characteristic noise signatures, which allow them to be
detected, identified, and classified by the human ear without additional
technology. The primary sources of helicopter noise are the rotors and the
engines, with three primary components. The first of these components is the
rotational noise, which is caused by the differential air pressure from the blade
passage and produces the helicopter’s characteristic pulsatile sound. The
second component is aerodynamic noise, produced by the disruption of the
surrounding atmosphere caused by the helicopter, and is broadband in nature.
The third component is the blade slap, which occurs only in some circumstances,
such as during high speed flight or in maneuvers, and is caused by the blade
passing through the vortex behind the previous blade of the main rotor (blade
vortex interaction, BVI). Loewy (1973) specifically identified the primary noise
sources as the engine on piston engine helicopters, and the rotors on turbine
powered helicopters. Ungar (1972) provided a comprehensive summary of
research defining the different aircraft components that contribute to the acoustic
signatures of helicopters.




Human audibility/psychoacoustics

Critical Band Detection

Research into prior work and past experiments was conducted
independently by AFRL and the Institute for Defense Analysis. Both teams
concluded the bulk of meaningful attempts to build predictive algorithms for aural
detection are based on some implementation of auditory critical band filters
(Ollerhead, 1971). These critical band functions were first described by Fletcher
(1940), and later by Zwicker, Flottorp, and Stevens in 1957. Through a series of
psychophysical experiments, they developed a set of frequency-based filters that
correspond to the frequency resolution of the human auditory system. Later work
by other researchers has further described the width of these critical bands
(Greenwood, 1961, Moore and Glasberg, 1983, among others). The Moore and
Glasberg (1983) calculation for the critical band is referred to as the equivalent
rectangular band (ERB), as it is determined to be the width of the width of a
bandpass filter with infinitely steep slopes, thus forming a theoretical rectangular
filter. Essentially the models attempt to determine if, relative to the sensitivity
(threshold) of human hearing in each critical band, there is sufficient target signal
relative to the background ambient noise, to trigger detection. This construct is
then coupled to classic signal detection theory (Green, 1959) to produce a
Probability of Detection (POD), and/or d’, for each time step in the model.
Favorable PODs are looped back through sound propagation calculations to
predict the far field range at which the aircraft would be detected. Further
evidence for the applicability of signal detection was reported by Fidell, Pearson,
and Bennett (1974), when they compared a statistical prediction model with a
d'max- Their results indicate that the signal detection predictions were a closer
match to the empirical results than the statistical predictions.

Theory of Signal Detection (TSD)

The theory of signal detection (TSD) describes the performance of an
ideal observer in the detection of signals in noise. This allows for the separation
of the sensitivity of the observer from other components of the decision process,
e.g. response bias or internal “noise” such as memory or attention. TSD uses
statistical methods to calculate the performance of the ideal observer on the
basis of comparison between a distribution of noise alone, and a distribution of
noise with a signal. Each distribution includes the range of possible variations in
the waveform to be detected. Thus, a decision regarding detection of a signal
may be classified in one of four ways: positive responses may be correct (if from
the signal + noise distribution, a hit) or incorrect (if from the noise only



distribution, a false alarm), while negative responses may be correct (if the
sample is from the noise only distribution, a correct rejection) or incorrect (from
the signal + noise distribution, a miss). The detection measure d’ (d prime) is
based on a normalized distance between the means of the two distributions, with
d’ = 1 being equivalent to one standard deviation. [Thus, for a d’ = 1, the means
are separated by one standard deviation, for a d’ = 2, the means are separated
by two standard deviations, etc.] One value of the d’ measure is to account for
differences in response bias of the observer. The response bias exhibited by a
human observer will affect the proportions of ‘yes’ and ‘no’ responses to the
experimental signals, but the d’ measurement is independent of the bias. The
response bias depends on the probability that a signal will occur, and on the
relative rewards for correct responses, versus the cost of incorrect responses. In
a tactical situation, the cost of missing a signal could be loss of life, whereas
identifying a signal that is not actually there may simply be excess use of
ammunition. In this scenario, the response bias would be in favor of ‘yes’, but the
d’ may remain unchanged relative to a different cost/benefit ratio.

Aircraft aural detection/classification

A number of studies have been conducted under the sponsorship of the
U.S. military to quantify the aural detection of aircraft. Among these are studies
are projects measuring detection in field conditions. A study by Hartman and
Sternfeld (1973) tested the model presented by Ollerhead (1971), which was
developed in the laboratory, in a field study. They found the model’'s detection
prediction to be extremely conservative, both when analyzed by sound pressure
level (SPL) of the acoustic signal and by distance of the helicopter from the
subjects. That is, the subjects did not detect the helicopter until a much higher
level relative to the ambient, and at twice the distance the model predicted. They
offer a possible explanation of the difference as their study being the more
representative, but less critical, model for aural detection.

A study reported by Abrahamson (1975), also analyzed helicopter sound
propagation and human aural detection in a field environment. His subjects were
to indicate both when they thought they heard a helicopter, and then again when
they could confirm that they heard it. One group was to focus on the listening
task, while another group was given other tasks as diversions. The results
indicate that the first responses (uncertain detection) appear to be based on low
frequency components, while the late responses (certain detection) are based on
higher frequency components. This study confirmed the results reported by
Ollerhead that showed that helicopter signals could be masked at 5 dB below the
ambient critical band spectrum level.

Similarly, in a review of available data, Loewy (1973) concluded that
based on factors related to ambient sound conditions and terrain, auditory



detection is due primarily to components in the first three octave bands of the
sound. He also concluded that components above 300 Hz could be detected as
low as 9 dB below the ambient, with components below that dependent primarily
on limits in the human auditory response. His conclusions were not based on
human detection results, however, as his analysis was focused on the goal of
helicopter noise reduction.

Ungar et al. (1972) reviewed a wide range of studies related to helicopter
noise generation and the effects of different aircraft components on the noise
signatures. In his report, appendix N addresses briefly the issue of auditory
detection, with an overview of the reported masking effects of different
environments, particularly jungles and forested areas. His summary indicated
that detection levels increased with increasing density of vegetation. He further
reported that detection was better at night in the low frequencies, but better for
the high frequencies in the daytime. His overall conclusion from review of
existing data was that the lowest levels for detection were at midday (easiest
detection of the helicopters) and the highest levels were in the early evening
hours (poorest detection).

A number of researchers have also developed models for the auditory
detection of aircraft by human listeners. Some of these include Taylor and Poe
(1973) and Elshafei, Akhtar, and Ahmed (2000), and the AUDIB model produced
by Wyle Labs, beginning in 1975 as the | Can Hear It Now (ICHIN) model,
developed for the U.S. Army. One of the difficulties presented by all of the
models reported is a lack of corroboration by empirical data from human
listeners.

The field studies described above rely on real world conditions. This is
both a conceptual strength and an experimental design weakness. The strength
assumes no doubt about the realism of the target signal, because the signal is
live. However, the weakness of the approach is found in atmospheric and
aircraft states which can vary across trials, thus confounding the reliable
duplication of the signal at the listener across multiple trials. The signals, by
being live, all include both the target aircraft and the background environment,
making it impossible to separate the two components and analyze the SNR.
These variables also make it impossible to determine what factor is most
responsible for detection, whether a part of the signal or a variation in the
background.

Horonijeff, Fidell, and Green (1983) reported a series of experiments using
laboratory created signals to measure specific factors in detection of periodic
impulse sounds, as a more critical measure for auditory detection thresholds that
would relate to aircraft such as helicopters. In this study, they measured
detection thresholds for impulses at repetition rates in the range of helicopter
rotor frequencies. Their overall conclusions for their signals were that the
individual pulses summed in a predictable manner for detection, and that this



summation is “leaky”, that is, greater signal energy is required for detection with
longer observations.

The strength of the AFRL conducted experiment described below is in the
ability to exactly duplicate the target versus ambient noise in the trials presented
to the sound jury subjects, and to randomize the presentation intervals in order to
maximize the statistical power of the experiment. At the same time, real
helicopter signals are modified and used, rather than simplified laboratory
generated signals. Furthermore, this experiment isolated the acoustic
characteristics of the signal and the noise at the listener from acoustic variance in
the source or the propagation of the signals. The listener judgments were
purposefully decoupled from non-psychoacoustic factors, such as attention.

Each sound jury subject was presented with at least 12,000 intervals of target
versus ambient signals. By controlling for confounding variables that can be
introduced by issues with calibration, recording quality, playback quality,
headphone response, and listener state, this study could ensure high confidence
in the experimental results.

Methods

Experiment Description

Subjects

Fourteen members of a panel of paid subjects, ranging in age from 19 to
57 years with normal hearing acuity, participated in the psychoacoustic (human
detection) portion of the study. Normal hearing was defined as air conduction
thresholds at 20 dB HL or better for octave frequencies between 250-8000 Hz.
Each subject’s hearing was retested on a regular basis to ensure continued
qualification for studies with the requirement for normal hearing. All subjects
were well trained for psychoacoustic experiments, with prior experience in other
auditory studies in this laboratory.



Hardware and Software

Sound Recordings

The acquisition of the acoustic information for this study was
accomplished by Harris, Miller, Miller, and Hanson (HMMH) of Burlington, MA
and AFRL. The efforts accomplished by AFRL will be described here. This data
represents the stimuli and six of the nine ambient waveforms. The data
acquisition for the helicopter stimuli was accomplished at Eglin Air Force Base.
The recording equipment was comprised of three G.R.A.S. low noise microphone
systems. Each system has a microphone power supply (G.R.A.S. Type 12HF),
preamp and microphone that are matched by the manufacturer. Three
microphones were used in the measurement system. One was in the free-field at
four feet above ground level to obtain the monaural recordings, and for use as a
reference microphone. The reference system was the Type 40HH, Figure 2.
Two other microphone systems of Type 40HT, Figure 3, were also used to
capture binaural recordings within a Knowles Electronics Mannequin for Acoustic
Research (KEMAR®). The KEMAR®',Figure 4, is a head and torso simulator
(HATS) which meets the requirements of ANSI S3.36/ASA58-1985. Both
microphone systems were arranged in close proximity to each other with a burlap
wind screen as shown in Figure 7.

Figure 2. G.R.A.S. 40HH low noise system.



Figure 3: G.R.A.S. 40HT low noise system.

Figure 4: KEMAR mannequin.



The signal acquisition for the low noise microphones was accomplished
through the use of a CF-18 Panasonic Toughbook® and a National Instruments
cDAQ-9172 CompagDAQ chassis. The chassis was loaded with the NI-9211 24-
bit 50,000 samples/sec sample rate DAQ boards. The data was collected
through the use of a customized interface built on top of the National Instruments
DAQmx technology. Each of the microphone outputs was stored in a 32-bit
floating point mono canonical wave file.

Analysis for the wave files that were presented to the subject was
accomplished through use of the National Instruments LabVIEW® Sound and
Vibration toolkit. The toolkit implements one-third octave band filters that are
compliant to the ANSI standard. The desire was to have fractional octave
outputs from 10 Hz to 16,000 Hz for each of the ambient and stimulus files. The
stimulus files were 1 second in duration. The settle time for the filterbank in the
analysis due to the 10 Hz low frequency is 2.5 seconds. To compensate for this,
the one second waveform was concatenated with itself three times to create a 4
second long waveform. The ambient files were analyzed with a 1 and 0.5
second integration time to achieve the levels at the 0.5—1.5 and 2—3 second
intervals. These time samples correspond to the stimulus intervals in the
experimental procedure used with the human listener data collection.

Headphones

Headphones for presentation of the auditory signals were selected on the
basis of the response in the low frequencies. Headphone response curves can
be found in Appendix 2, for presented frequencies at 10, 20, 30, and 63 Hz. The
BeyerDynamic DT-990 headphones were chosen because, of the available
headphones, they demonstrated the least harmonic distortion in the low
frequencies. The greatest amount of distortion was found with the 10 Hz and 20
Hz tones, with harmonics between 500 and 1000 Hz at up to 20 dB SPL above
the human audibility curve. This is a low level of distortion, and all of the ambient
soundscape levels were above this, thus this distortion was a minimal concern
for this study.

Stimuli

All sound stimuli were digitally manipulated using Adobe Audition® and
MATLAB® for presentation to subjects. The recordings used a 48000
samples/sec sampling rate, and 24-bit digitization stored in 32-bit form for the
amplitude. The stimuli were then presented with 16-bit digital to analog
conversion through MATLAB®. Stimuli are divided into target and ambient
categories, with targets defined as the auditory signals to be detected, and
ambients defined as the noise backgrounds in which the targets are presented.

10



Targets:

Target stimuli consisted of 1-second samples of helicopter signals taken
from recordings made at the Eglin Air Force Base in August and September of
2007 during a military program known as “Chicken Little”. These target signals
were obtained by selecting portions of recordings that included the approach and
near flight of two different helicopters (MD-902 and MI-8). Portions of the
recordings that included departure were excluded from the study, as the purpose
for the study was for detection of approaching aircraft.

Recordings for the MD-902, Figure 5, aircraft were made on the mornings
of 23 and 24 August 2007. Recordings for the MI-8 aircraft were made on the
mornings of 8 and 9 September 2007. Monaural and binaural detection results
were obtained using 175 exemplars for the MD-902 helicopter, and 236
exemplars for the MI-8 helicopter (Figure 6), for a total of 411 targets. Exemplars
were defined as discrete 1 second samples of the recordings, from which the
target signals were selected.

.....

Figure 6: MI-8 helicopter

11



Foils:

Within the experiments, foils were used to provide a signal without a
helicopter in the reference interval. By introducing sounds taken from a
recording from the same environment in which helicopter signals were taken,
increased confidence can be achieved that the target signal is being detected on
the basis of the helicopter present in the target recording, rather than other
spectral components related to the ambient soundscape during the helicopter
recordings, since those components are presented in both intervals. These
signals were taken from one of the Eglin recordings that included primarily insect
sounds.

Ambient soundscapes

Eqlin

Ambient noise was obtained from the recordings made on 8 and 9
September in an open field on Eglin AFB, Florida (Figure 7). The recordings
were made in the early morning between “Chicken Little” flight tests. Samples
were 5 minutes in length and selected from portions of the recordings in which no
helicopters could be detected. Out of a total of 28 such samples three were used
in the study as ambient sounds. The three signals used as the ambients were
selected to represent the quietest of the recordings, the loudest, and a midpoint
level. The quietest sample (Ambient 19) included no discernable environmental
noises, the midpoint sample (Ambient 5) included primarily insect noises and
occasional birds, and the loudest sample (Ambient 28) included sounds of
clothing rustling and some speech and other human generated sounds. Due to
technical difficulty with the recordings with the KEMAR®, these were not included
in the binaural portion of the study.

Figure 7: Eglin AFB recording setting
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Boston

Three recordings were obtained from Harris, Miller, Miller, and Hanson
(HMMH), an acoustics consulting firm located in Burlington, MA. These
recordings were made in an urban park (Boston Common), a suburban street
(Newton, MA), and a rural road (Boxford, MA), Figure 8-10. The ambient signals
were 5-minute selections extracted from these recordings that were consistent
for content and representative of the overall environment. The urban ambient
soundscape included a variety of traffic noises including trucks, back up signals,
and sirens recorded from in the park. The suburban soundscape included
automobile traffic, birds, and pedestrians. The rural soundscape included birds
and insects, as well as occasional distant ground and air vehicles. These
recordings were only available for monaural signals, and, as such, were excluded
in the binaural portion of the study.

i iEEE: '

[ 1]
]
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P
s

Figure 8: Boston urban recording setting
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Figure 10: Boston rural recording setting

Downtown Dayton

Three recordings were also obtained in Dayton, Ohio, to provide additional
soundscapes. These all included urban settings, but with different environmental
characteristics. Recordings were made at midafternoon at a downtown
intersection surrounded by tall urban buildings, in front of the city courthouse
(Figure 11), which was elevated from street level and across from tall urban
buildings (Figure 12), and near the ATM at the entrance to a bank (Figure 13),
with acoustic characteristics representative of an urban canyon (multiple
reflective surfaces). These samples consisted of various traffic noises and
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speech, with differences in the environments consisting of the number of
reverberant surfaces, distance from traffic, and elevation. All recordings were
made in close proximity to the noise sources. Five-minute selections from these
samples were taken, based on overall consistency in the components of the
soundscape, as well as the overall level.

Figure 12: Dayton recording setting — 3" Street and Patterson
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Figure 13: Dayton recording setting — National City Bank

Descriptions and spectrograms of the specific soundscapes used can be
found in Appendix 1, Table 1-1 and Figure 1-1.

Method

Human Detection

Training

Prior to beginning the experiments, all subjects were provided several
days of training on the task to assure that they were familiar with the target and
ambient signals, as well as the overall task. Conditions during the training period
were identical to those used during the monaural experiment, described below.

Monaural
A two alternative forced choice (2AFC) procedure was used, with 50 trials

in each run. Signals were presented diotically, that is, the same signal was
presented to both ears, so that the perception was centered between both ears.
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Experimental runs were produced by randomly selecting and playing a 5-minute
ambient sound from among the nine possible alternatives. Within an
experimental run, a trial consisted of a 500 msec preparation interval, followed by
a 1 second stimulus interval, a 500 msec interstimulus interval, another 1 second
stimulus interval, and a 3 second response interval. Thus, each trial was 6
seconds long, illustrated in Figure 14. Within each trial, the target signal was
randomly presented in either the first or the second stimulus interval. Subjects
were asked to indicate which stimulus interval contained the target signal within
the ongoing ambient soundscape, and were instructed that the target signal was
one of the helicopters indicated on the response screen (Figure 15). The
alternate interval contained a foil, consisting of a one second sample taken from
an ambient soundscape recorded on the Eglin range. Target signals and
ambient soundscapes were scaled to represent the actual relative intensities in
the field, to compensate for level differences introduced by the equipment used
for presentation. The scaling factor was established by comparing the output
from the laboratory equipment to a 94 dB calibration tone recorded at the same
session as the signals. For each trial, the target was played in one interval,
scaled to 0, -10, -20, or -30 dB relative to the ambient. The RMS amplitude for
each 1-second target ranged from -53 dBv to -18 dBv, and the RMS for the
ambient soundscapes ranged from -54 dBv to -32 dBv. Resulting actual signal-
to-noise ratios (SNRs) ranged from -60 to 30 dB for specific trials. The foil was
adjusted with the target signals to equalize for the ambient components included
in the target recordings. Subjects used a computer mouse to select the interval
in which they heard the helicopter, and which aircraft it was. In this way, data
related to detection and classification could be obtained simultaneously.
Feedback was provided following every trial. Subjects continued with the data
collection until a minimum of 12,000 trials were completed.

1 sec 1 sec

5 5 3 sec

Interval 1 Interval 2 Response Interval

Figure 14: Diagram of an experimental trial.

17



-} Detectinn Response Window

Interval 1 Interval 2

‘ McDonald Douglas ‘ ‘ McDonatd Douglas ‘

Figure 15: Screenshot of computer response screen.

Binaural

The same 2AFC procedure was used for the binaural detection study.
The signals and ambient soundscapes were matched to those used in the
monaural study, using recordings from the microphones installed in KEMAR®.
This provides a representation of the effect of an average human head on a
signal. Subjects again were asked to select the interval containing the target
signal, with actual SNRs ranging from -60 to 30 dB relative to the specific
ambient soundscape. Subijects collected a minimum of 12,000 trials for this
study, as well.

AUDIB model

To test AUDIB against the human subject data the FORTRAN source
code was compiled and used through the MATLAB® interface to run the
application. Routines to write the case file and the associated data files were
written in MATLAB®. A basic description of the AUDIB functions can be found in
Appendix 3. For this first execution of the model each of the stimuli were
compared to a ‘long-term’ ambient spectrum. The five minute ambient files were
run through MATLAB®’s built-in FFT function. The resolution of this FFT was 48
Hz. The one second target signal that was input to AUDIB was a FFT with the
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same frequency resolution. A modification was then made to the AUDIB model
in which the ambient levels were presented to AUDIB in time samples
corresponding to the experimental intervals. This was called the ‘short-term’
data. A further adjustment was made by converting the FORTRAN code to
MATLAB®. Analysis was limited to the lower frequency bands.

Data Analysis

Human detection
In all figures, data for -60 dB SPL SNR and for probability of <0.4 have

been edited due to limited exemplars in these data. As a result, the reliability and
validity of these data points is limited, and were excluded from further analysis.

Overall Results

Overall results from the human listener panel for the monaural detection
study are shown in Figure 16. In this figure, the results are plotted only for the
target amplitudes, using the RMS power (dB SPL) of the one second target
signal for the measure. The data have been binned together into 6 dB wide bins
and averaged together to obtain the individual data points shown in the figure.
Two features can be seen from this figure. First, it is apparent that the probability
of target detection increases with the overall level of the target signal (as
indicated by the general increase in the curves from left to right on the x-axis).
Second, it is clear that, for any given target level, the probability of detection
systematically decreased as the ambient soundscape level increased from a
relatively quiet environment (those collected at Eglin AFB and the Boston Rural
and Suburban soundscapes) to a relatively loud environment (the Dayton and
Boston Urban soundscapes). Notably, these appear to show a clear distinction
between rural/suburban settings and urban settings. For example, the data
appear to show a higher average level of detection performance in the Boston
Suburban environment with a mean level of 43 dB SPL than they do for the
Boston Urban environment with a mean target level of 73 dB. This suggests that
the effective masking level of the urban environment was more than 30 dB higher
than that of the suburban environment, compared with a difference of only 14 dB
in the A-weighted dB SPL (L90) of the urban and suburban environments (56 dB
versus 39.8 dB SPL). As discussed later, this may suggest that the kinds of
sounds present in the urban environments (engine sounds, etc.) were more
similar to the target helicopter sounds than those present in the more rural
environments, and thus listeners had a much harder time identifying the
helicopter sounds in the urban environments.
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Figure 16: Human detection results plotted by target amplitude.

Analysis by SNR

The data plotted in Figure 16 do not account for the instantaneous
variations in the level of each ambient soundscape across the different 1 sec
target intervals for that ambient condition. In order to collapse across different
soundscapes in a meaningful way, a better strategy is to calculate the total target
energy and total masker energy in each stimulus interval and determine the
instantaneous SNR for each individual trial in the experiment. This
instantaneous SNR value was calculated by comparing the RMS amplitude of the
signal with the RMS of the ambient. For example, the data point for -20 dB SPL
SNR includes all responses to targets with a SNR between -15 and -25 dB SPL.
The number of trials represented in each bin is dependent on the level of the
target signal as well as random variations in the ambient levels, which were not
controlled, thus some of the bins have a limited number of trials. Figure 17
shows the average probability of detection for human listeners plotted as a
function of SNR for the monaural signals. These plots exhibit a very different
profile of detection for the very quiet ambient soundscapes of the Eglin
recordings than for the other ambient soundscapes used. Probability of detection
increases rapidly between -50 and -10 dB SPL SNR, where it reaches ceiling,
and all target sounds are detected with occasional errors incidental to the
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procedure. In part, at least, the very high performance levels obtained with the
Eglin recordings may reflect the inclusion of low frequency wind noise in the RMS
estimates of total masker power, which may have inflated the apparent overall
level of performance in these conditions.

The Boston and Dayton ambient soundscapes include sounds common to
more populated areas, and result in probability of detection that does not exhibit
improvement until the SNR reaches -30 to 10 dB SPL. In the ranges from -10 to
0 dB SPL SNR, the probability of detection for the signals decreases across
ambients that increase in human generated sounds, such as traffic sounds.
Specifically, in the rural soundscape, probability of detection is better than
suburban, which, in turn, is better than the urban soundscapes (with detection
the poorest in the Dayton ambients). These results are consistent with the
current understanding of human detection thresholds for target sounds in noise.

(dB)

Figure 17: Probability of detection for human listeners with monaural
signals. Data points for -60 dB SPL SNR and for probability of <.4 edited
from figure due to limited exemplars in these data.
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Binaural

Detection for the binaural targets included only the Dayton urban
soundscapes due to availability of binaural recordings for only these
soundscapes. The results of this study are shown in Figure 18. The results are
consistent with the monaural results, with an improvement in detection between
SNRs of -30 and 10 dB SPL. An improvement in the detection performance can
be seen in these plots relative to the monaural detection.

Figure 18: Probability of detection for human listeners for monaural vs.
binaural signals. Data points for -60 dB SNR and for probability of <.4
edited from figure due to limited exemplars in these data.

AUDIB model prediction

Even if the results from the Eglin ambient soundfields are eliminated, the
results in Figure 18 show that overall, flat-weighted SNR is not a great predictor
of human detection performance. In fact, the SNR value required for 70% correct
detection varied about 15 dB across the six non-Eglin soundscapes. In order to
obtain a better estimate of human detection performance, a more sophisticated
model that accounts for the detection of the stimulus in different frequency bands
is necessary. Thus, the data were also processed with the AUDIB model.

Processing of the same target and ambient sounds through the AUDIB
model yielded the probabilities of detection displayed in Figure 19. The model
predicts an increase in detection at lower SNRs in quieter ambient soundscapes,
with higher SNRs required for detection of the target signal as the ambients
increase in overall content. Thus, more signal energy is required for the target to
be detected when the ambient noise is denser. This pattern does not appear to
be consistent, however, as the model predicts greater detectability in the National
City Bank ambient (with the greatest amount of reverberation) than in the other

22



soundscapes from populated areas with less spectrally dense envelopes. The
detectability predicted in this environment is equivalent with that in the loudest
Eglin environment, which consisted primarily of voices and rustling sounds. The
acoustic content of these two ambients is very different, yet the model predicts
very similar results. Additionally, the probability of detection for the signal in the
Dayton courthouse ambient is much lower, although the acoustic content of this
environment is very similar to the Dayton Patterson environment. In general, the
model predicts comparable detection for the quietest environments, and
comparable detection for most of the moderately dense environments.
Particularly for the more populated environments, this does not account for
variation in the actual acoustic environments. The grouping of the probability
curves cannot be easily explained on the basis of acoustic information in the
ambients, other than the overall trend is for detection to require a greater SNR
with increased noise density.

(dB)

Figure 19: Model data from AUDIB (with long term integration). Curves
reflect detection of 1 second targets predicted in the context of the overall
average level of the ambient over a 5 minute sample.
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Comparison of human and AUDIB results as a function of SNR

The human panel data and AUDIB predictions are represented together
by ambient soundscapes in Figure 20. When plotted by SNR, the AUDIB model
provides a good prediction of target detectability for the ambient soundscapes
with a moderate noise level. These include the Boston recordings, the loudest of
the Eglin recordings, and the Dayton courthouse and Patterson recordings. For
the very quiet ambient soundscapes the model predicts poorer detection, while in
the loudest soundscape, the model predicts better detection than the human
results.

(dB)

Figure 20: Comparison of current AUDIB model results with human data
based on SNR.
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Although some differences can be found on the basis of the type of aircraft
to be detected, the differences in probability of detection between the model
prediction and the human results are maintained when the data are analyzed for
each type of target individually, as can be seen in Figure 21.

(dB) (dB)
(dB) (dB)
(dB) (dB)
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(dB) (dB)

(dB)

Figure 21: Comparison of human and AUDIB results for each type of
helicopter in each soundscape, based on SNR.

While the AUDIB model in its current form provides good prediction for
environments with some ambient noise, it does not hold up well for environments
at the extremes, either quiet or loud. In these cases, it underpredicts or
overpredicts auditory detection, respectively. As a result of the model’s
limitations in ability to match the human results, a modification of the model was
implemented, in which the ambient noise was averaged over the same 1 second
time sample as the target.

Classification

The data collected from the human subjects included classification of the two
helicopters. These results can be seen in Figure 22. As with detection, the
listeners are able to classify the helicopters with approximately equal accuracy,
increasing with SNR in all ambients.
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Figure 22: Classification of helicopters in different ambients.

Comparison of human and AUDIB results as a function of AUDIB
Prediction

If the AUDIB model is properly predicting human performance, then the
average level human performance across all trials that result in the same AUDIB
prediction should exactly match that prediction. Furthermore, there should be no
systematic interaction between the predicted level of performance, the actual
level of human performance, and the type of ambient soundscape.

Figure 23 shows human performance for each ambient soundscape as a
function of predicted AUDIB performance. These results were obtained by 1)
calculating an AUDIB prediction for every target-masker combination that was
presented to at least one listener in the experiment; 2) binning together all trials
that had approximately the same predicted level of AUDIB performance (in bins
that were 10% wide); and 3) taking the average percent correct across all
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listeners for that condition. Accurate prediction from the model should result in
plots with a slope of 1 (that is, from the bottom left corner to the top right corner
of the graph), and with no separation between the lines. The separation between
the lines demonstrates the differences in the probability of detection as predicted
by AUDIB and the human results for each of the ambient soundscapes. These
results show reasonable agreement between the AUDIB Model and human
performance for some of the soundscapes (in particular the three Boston
soundscapes and the Dayton Courthouse soundscape). However, the AUDIB
model severely overpredicted performance in the Dayton Patterson and National
City soundscapes, and it underpredicted it for the Eglin soundscapes.

Figure 23: Correlation of AUDIB with human data (long term integration).

A short-term version of AUDIB

One weakness of the baseline AUDIB model is that it only a single, overall
long-term ambient spectrum to make its audibility calculations. Thus, it does not
account for short-term fluctuations in level that might make a target signal
detectable in a “gap” in the masker waveform. In order to examine the extent to
which this issue could explain the poor performance obtained with the AUDIB
model, a modified AUDIB model was constructed that calculated the probability
of detection on the basis of the masker waveform present in the 1-s interval
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where the target was presented, rather than the long term ambient spectrum of
the masker.

As shown for the long term ambient soundscape analysis, the correlations
for AUDIB and human data are plotted with the short term integration window for
each ambient soundscape. These are shown in Figure 24. This plot shows an
improvement in the correlation between the human data and the model for the
National City Bank ambient, however, the prediction remains limited across the
ambient soundscapes overall. As for the prior correlation, a good prediction
would be revealed in a slope of 1 for the plots, with no separation between them.

Figure 24: Correlation of AUDIB with human data (short term integration).
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Figure 25: Comparison of AUDIB predictions for current version (long) and
modified version (short).

Conclusions

The current version of the AUDIB model for detection of rotorcraft has
been shown to have significant limitations. The predictions based on this model
appear to be a reasonable match to the human listener results for some ambient
soundscapes, but not all. A problem that was found in the implantation of the
model was a limit in the sensitivity of the filters for the low frequency bins. The
model bases the processing on linear frequency bins, rather than logarithmic
frequency, causing it to exhibit poor sensitivity to differences in the low
frequencies. An additional difficulty that was found in the procedures used here
was the use of flat weighting for calculation of the signal-to-noise ratios. While
the low frequency components affected by this are inaudible to humans, and
presumably to the model, by excluding the frequency range below approximately
20 Hz, the model can offer better predictions for the low frequency signals. This
could be accomplished simply with a high pass filter integrated for this range.
Further improvement of the model for a variety of ambient background settings
would account for the spectral and temporal differences in environments, rather
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than simply the intensity levels. As shown in this study, the spectral components
of the background, as well as the temporal variation, provide challenges to the
performance of the model. The urban settings, with their motor noises and
reverberation, provided a significant problem for the predictive ability of the
model.

Subjects were asked to identify which helicopter was presented in the trial,
and these data are plotted individually by helicopter, showing a similar accuracy
for both aircraft in most SNR and ambient soundscape conditions. This basic
level of classification indicates that neither helicopter was more easily identified,
and thus classification was not systematic for these signals in these conditions.

Further examination could include more specific comparison on the basis
of the different spectra in the ambient sounds and the target signals for each
experimental interval. This analysis could provide information about what
components in the noise most influence detection of the targets. Further,
comparison of variability in the amplitude modulation of different ambient
soundscapes should reveal information related to specific detection thresholds.
These analyses are possible based on the data from this study. This analysis
would also be extended to the classification of the target signals.

Another extension to the current study would address localization of the
target sounds within the ambient soundscape. This could not be completed at
this time due to limitations in documentation related to the flight paths of the
helicopters at the times the signals were extracted. Thus, the reference location
could not be generated, and the accuracy of subject responses could not be
determined. Plans are for this completion of this work to be done in the near
future.

The data collected in this study also provides a framework for evaluation

of detection models like AUDIB, and will function as a test bed for future model
development.
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Appendix 1

Ambient soundscapes

Table 1-1: Ambient soundscape descriptions

ambient soundscape

description

Ambient 19 — Eglin quiet

quiet, open field

Ambient 5 — Eglin insects

field with insects, birds

Ambient 28 — Eglin voices

field with some voices, clothing
rustling

Boston urban

vehicle traffic, alarms, set back in
Boston Common

Boston suburban

automobiles, pedestrians, Newton,
MA

Boston rural

distant aircraft and trucks, birds,
Boxford, MA

Dayton courthouse

set back from street, heavy vehicle
traffic, semi-urban canyon, 3™
Street and Main (in downtown)

Dayton Patterson

3rd Street and Patterson, downtown
urban at sidewalk level, heavy
vehicle traffic

Dayton National City

ATM vestibule immediately outside
main entrance to the bank, 3rd
street in downtown, highly
reverberant flat stone surfaces,
heavy vehicle traffic
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Eglin quiet

Eglin insects

Eglin voices
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Boston urban

Boston suburban

Boston rural
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Dayton courthouse

Dayton Patterson

Dayton National City Bank
Figure 1-1: Spectrograms of the ambient soundscapes. Light blue and

green represent the least intense spectrum, dark blue is greater intensity,
fuchsiais the greatest intensity.
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Appendix 2
Psychoacoustic specifications

Headphone responses

Figure 2-1: Headphone response curves for BeyerDynamic DT-990
(selected for this study), Denon AH-D1000, and Sennheiser HD280 pro
headphones plotted against the human audibility curve. Each panel
represents an input frequency as indicated: 10 Hz, 20 Hz, 30 Hz, and 63 Hz.
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Filter weighting

Figure 2-2: Sound level filter weighting functions
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Figure 2-3: Human audibility curves
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Figure 2-4: Equivalent rectangular bandwidths for filters in the human
peripheral auditory system. Taken from Moore and Glasberg (1983).

Figure 2-5: Bandwidth of critical bands and Equivalent Rectangular
bandwidth, ERB. The bandwidth of 1/3-octave filters (straight line) is shown
for comparison. Taken from Poulsen (2007).
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Figure 2-6: Response of the basilar membrane in the cochlea as a function
of stimulus frequency. The critical band/ERB calculation is based on this
response. Taken from EE649: Speech Processing by Computer website,

Purdue University (2002).
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Appendix 3
AUDIB model prediction

A thesis from the Naval Post Graduate School describes the
implementation of the AUDIB predictive audibility code in MATLAB® (Selvy,
2002). A review of that work and AFRL’s own independent analysis of the
AUDIB original FORTRAN code enabled the development and execution of a
new MATLAB® version of AUDIB in this experiment as a “virtual listener’.

Analysis of Rotocraft Noise Model Audibility Module.

This module calculates the human audibility at a single receiver point. It
was initially developed by John Ollerhead at Wyle Laboratories. In 1975 it was
implemented in | Can Hear It Now (ICHIN). The current code is derived from the
1986 version of ICHIN 6 which was developed by NASA. The current model
reads the time history data from an ASCII file. Though the time history may have
discontinuities, the frequency spectrum must be continuous. It assumes that the
background is uniform in time, but the ambient levels can be specified in the first
line of the spectral data to give the user the ability to vary the ambient level by
location. This implementation of human detection is based on the methodology
defined in USAAMRDL-TR-74-102A by Ollerhead. The d* metric was added to
the computations in 2004 by Wyle Laboratories. This is based on the US Park
Service Grand Canyon project. It is implemented for the one-third fractional
octave bands from 50 Hz - 10,000 Hz.

The method uses critical bands and signal-to-noise information to
determine the probability of detection (POD). The receptors used are
characterized by a single listener or group.

Obvious limitations of the FORTRAN implementation:

1. filename and pathnames limited to 1024 characters
2. input narrow band spectra limited to 2048 frequencies

A call diagram is shown in Figure 3-1.
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Figure 3-1: Call tree for AUDIB_RNM.

Most of the functions that are listed in the first row have no lines from
them, as they are not called when executing the audibrnm program. We will
examine these functions first, since they can be removed without impacting the
overall function of the detection program, audibrnm.

AUDhead

This function writes the header of an already opened TIA file. The TIA file
is an output of AUDIBRNM. This is used in an additional model to determine hot
spots call SPAR.

Infodump

This function dumps the input into an output file.
Loss

This function calculates the loss in sound pressure level due to
atmospheric absorption. This is no longer needed since this is done through
RNM.

Retard

Here measured slant range, altitude and velocity are converted using
time-retarded coordinates. This is most likely also a holdover from the ICHIN
program that did some of the propagation that RNM is now responsible to
provide the audibrnm program.

Scat

This is another propagation function. It computes the atmospheric
absorption based on inhomogeneities.
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TIAout

This dumps the detection information to the opened TIA file that was
created as part of the TIAhead function.

Audibrnm

Now that the analysis of the extra functions is complete we can examine the
flow of the audibrnm function. This is the heart of the program. The program first
opens the file that was passed as a command line argument. From this file the
name of the stimulus (*.TIG) is obtained. Additionally the frequency range over
which the detection will be calculated is read from the file. This is adjusted to
ensure that the first and last frequencies are integer multiples of the bandwidth,
which is also read from the input file. Lastly the program reads the path of the
ambient data file. AUDIBRNM starts the data calculations with a TIGhead. This
function will read the header of the propagated data at the various grid points. At
this point the data is stored in a string array for processing in the BlockEcho
function. The BlockEcho function reads the header for the first data section.
From this header the BlockEcho function returns the number of time spectra in
the data section and (x, y, z) position of the point. Following the BlockEcho is a
call to GetBands. This function is a multipurpose function reading the inputs
from multiple files and multiple types of lines. Each of these is selected by
specifying the mode which GetBands is to operate for this call. The modes are
listed below:

Scan the band number and get the min/max band number
Load the Ambient numbers for this grid point

Load the time and SPL spectrum

Populate the frequency array

Load the background data from the ambient file

Read a line from a file and do nothing with it.

2N

The first call to the function is to get the minimum and maximum values for
the frequencies in the data file. Next audibrnm writes the headers for the output
files, i.e. the maxPOD, allPOD and maxDprime files.

GetBands is called again to get the ambient data line for the specific
point, however, this data is not used for the analysis. If the Uniform keyword, in
the ambient data, is set to a value of 1 then the program will read the ambient
data for each of the ambient spectra. The next step is to read the uniform
ambient from the ambient file. This is done within the audibrnm function. The file

format is:

Comment

Uniform keyword with associated value
Number of ambient frequencies

The ambient frequency list

The sound pressure level list

47



The formats of the lists in this case are somewhat arbitrary. The example
files have 10 entries per line. However, the implementation of these values is not
specific on how the data should be formatted. In fact, the creation of the ambient
files listing all the frequencies on one line with the associated SPL levels on the
next line is equally valid, as is listing all the frequencies on separate lines with the
SPL values following. After the frequencies are read, the program checks to
ensure that the frequencies are appropriate based on the previous information.
That is, if the calculation is to be done with one-third octave bands, the frequency
list must contain 31 bands. Additionally the first band is checked to be 10 Hz.
This means that the input spectrum is to be from 10 — 10,000 Hz. If the mode of
calculation is narrow band the program ensures that the first frequency is equal
to the frequency increment from the input file. Also the last frequency must be
equal to the frequency spacing times the number of frequencies.

If the loop has been completed once already, the program skips the above
step and reads the next ambient data line from the file. Next, the program calls
GetBands to read the time and SPL history from the file. The number of time
increments was specified when the program read the header of the data section.
The program then reads this length of data from the file. The frequencies are
checked for consistency with the specified bandwidth. If the frequency
bandwidth is more than 5 Hz from the specified bandwidth then the flag is set to
stretch the data. The algorithm defined by Oll