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EXECUTIVE SUMMARY 
 
Abstract 
 
 
 Traditional auditory perceptual models for detection of complex signals 
against complex ambient soundscapes are based on the human audibility 
threshold imposed upon computed representations of auditory critical band 
filters.  Such models attempt to locate a positive signal to noise ratio (SNR) in 
any singular band or group of bands and then apply classic signal detection 
theory to derive detectability measures (d prime, d') and probability of detection 
(POD) values for the event.  One limitation to these models is the low volume of 
experimental validation against real human sound jury performance, especially 
using very low frequency target signals such as helicopters.  This study 
compares computational auditory detection model predictions against a 
corresponding large sample of human sound jury data points obtained in the 
laboratory.  Helicopter and ambient soundscape signals were obtained from high 
sensitivity recordings in the field.  Playback in the laboratory was achieved under 
high fidelity large volume headphones calibrated to accommodate helicopter 
primary rotor frequencies with minimal distortion above human sensation level.  
All sound jury members completed at least 12,000 trials detecting helicopters 
against wilderness, rural, suburban, and a variety of urban soundscapes, to 
represent the spectrum of potential environments involved in a real world 
scenario.  Analysis compares the human sound jury performance against a 
contemporary computational auditory detection model, called "AUDIB", 
developed by the U.S. Army and NASA.  
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Introduction 
 
 

Previous work related to auditory detection of U.S. military operations has 
resulted in computational models for predicting their audibility.  However, these 
models have not been fully corroborated by studies in the laboratory using 
human listeners in time varying soundscapes.  As such, the accuracy of the 
model involved has not been confirmed.  The current study was conducted to 
validate one of the current auditory detection models (AUDIB), and to provide 
input regarding improvements for better prediction.  The scope of this effort was 
limited to helicopters. 
 
 

Background 
 

Environmental Noise Research 
 
 
 Considerable research, with great success, has been conducted on 
annoyance, loudness scales, temporal summation and other perceptual metrics 
concerned with environmental consequences of helicopter and fixed wing aircraft 
noise on communities and on the wilderness.  As a result, standardized metrics 
exist to describe and weight these effects (such as the “Noy” scale, the “Bark” 
scale, DNL, EPNL, SEL, etc.).  However, most of these “environmental” noise 
metrics have little utility in predicting aural detection ranges for mission planning.  
These metrics are based on an A-weighted scale, which emphasizes sounds in 
higher frequencies, while many of the sounds related to aircraft detection are in 
lower frequencies.  See Figure 1 for examples of signal-to-noise ratios (SNRs) 
for detection of aircraft in different backgrounds.  The 117.4 mile camp 
background includes a greater level of high frequencies, clearly demonstrating 
that these metrics do not correlate with detection in all backgrounds.  Nor can 
they adequately explain how humans use acoustics to classify and track aircraft 
in a dynamic context (Horonjeff, 2008).  Additionally, these scales were 
developed to measure annoyance, rather than detection.  While annoyance 
measures are based on the desire of the listener to NOT hear the signal, 
detection measures apply to listeners who DO want to hear the signal.  As a 
result, the two kinds of scales measure different response biases for the same 
signal.  An additional complication lies in the nature of the environment involved.  
The criterion for annoyance of the listener is adjusted according to the overall 
noise of the environment.  Listeners in a city are likely to have a higher tolerance 
for detection of aircraft sounds than those in the national parks.   Further, Fidell 
(1977) reported that below levels of about 65 dBA there is poor correlation 
between physical indices of exposure and annoyance judgements. 
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Signal-to-Noise Ratios For Equal Detection Performance Under Differing Aircraft and Background 
Conditions
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Figure 1:  Detection SNRs for 8 aircraft in 5 background soundscapes 
(Horonjeff, 2008).  

Helicopter noise generation  
 
 
 All vehicles have characteristic noise signatures, which allow them to be 
detected, identified, and classified by the human ear without additional 
technology.  The primary sources of helicopter noise are the rotors and the 
engines, with three primary components.  The first of these components is the 
rotational noise, which is caused by the differential air pressure from the blade 
passage and produces the helicopter’s characteristic pulsatile sound.  The 
second component is aerodynamic noise, produced by the disruption of the 
surrounding atmosphere caused by the helicopter, and is broadband in nature.  
The third component is the blade slap, which occurs only in some circumstances, 
such as during high speed flight or in maneuvers, and is caused by the blade 
passing through the vortex behind the previous blade of the main rotor (blade 
vortex interaction, BVI).  Loewy (1973) specifically identified the primary noise 
sources as the engine on piston engine helicopters, and the rotors on turbine 
powered helicopters.  Ungar (1972) provided a comprehensive summary of 
research defining the different aircraft components that contribute to the acoustic 
signatures of helicopters. 
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Human audibility/psychoacoustics 
 

Critical Band Detection 
 
 
 Research into prior work and past experiments was conducted 
independently by AFRL and the Institute for Defense Analysis.  Both teams 
concluded the bulk of meaningful attempts to build predictive algorithms for aural 
detection are based on some implementation of auditory critical band filters 
(Ollerhead, 1971).  These critical band functions were first described by Fletcher 
(1940), and later by Zwicker, Flottorp, and Stevens in 1957.  Through a series of 
psychophysical experiments, they developed a set of frequency-based filters that 
correspond to the frequency resolution of the human auditory system.  Later work 
by other researchers has further described the width of these critical bands 
(Greenwood, 1961, Moore and Glasberg, 1983, among others).  The Moore and 
Glasberg (1983) calculation for the critical band is referred to as the equivalent 
rectangular band (ERB), as it is determined to be the width of the width of a 
bandpass filter with infinitely steep slopes, thus forming a theoretical rectangular 
filter.  Essentially the models attempt to determine if, relative to the sensitivity 
(threshold) of human hearing in each critical band, there is sufficient target signal 
relative to the background ambient noise, to trigger detection.  This construct is 
then coupled to classic signal detection theory (Green, 1959) to produce a 
Probability of Detection (POD), and/or d’, for each time step in the model.  
Favorable PODs are looped back through sound propagation calculations to 
predict the far field range at which the aircraft would be detected.  Further 
evidence for the applicability of signal detection was reported by Fidell, Pearson, 
and Bennett (1974), when they compared a statistical prediction model with a 
d’max.  Their results indicate that the signal detection predictions were a closer 
match to the empirical results than the statistical predictions. 
 

Theory of Signal Detection (TSD) 
 

 
The theory of signal detection (TSD) describes the performance of an 

ideal observer in the detection of signals in noise. This allows for the separation 
of the sensitivity of the observer from other components of the decision process, 
e.g. response bias or internal “noise” such as memory or attention. TSD uses 
statistical methods to calculate the performance of the ideal observer on the 
basis of comparison between a distribution of noise alone, and a distribution of 
noise with a signal. Each distribution includes the range of possible variations in 
the waveform to be detected. Thus, a decision regarding detection of a signal 
may be classified in one of four ways: positive responses may be correct (if from 
the signal + noise distribution, a hit) or incorrect (if from the noise only 
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distribution, a false alarm), while negative responses may be correct (if the 
sample is from the noise only distribution, a correct rejection) or incorrect (from 
the signal + noise distribution, a miss).  The detection measure d’ (d prime) is 
based on a normalized distance between the means of the two distributions, with 
d’ = 1 being equivalent to one standard deviation. [Thus, for a d’ = 1, the means 
are separated by one standard deviation, for a d’ = 2, the means are separated 
by two standard deviations, etc.] One value of the d’ measure is to account for 
differences in response bias of the observer. The response bias exhibited by a 
human observer will affect the proportions of ‘yes’ and ‘no’ responses to the 
experimental signals, but the d’ measurement is independent of the bias. The 
response bias depends on the probability that a signal will occur, and on the 
relative rewards for correct responses, versus the cost of incorrect responses.  In 
a tactical situation, the cost of missing a signal could be loss of life, whereas 
identifying a signal that is not actually there may simply be excess use of 
ammunition. In this scenario, the response bias would be in favor of ‘yes’, but the 
d’ may remain unchanged relative to a different cost/benefit ratio.  
 

Aircraft aural detection/classification 
 
 
 A number of studies have been conducted under the sponsorship of the 
U.S. military to quantify the aural detection of aircraft.  Among these are studies 
are projects measuring detection in field conditions.  A study by Hartman and 
Sternfeld (1973) tested the model presented by Ollerhead (1971), which was 
developed in the laboratory, in a field study.  They found the model’s detection 
prediction to be extremely conservative, both when analyzed by sound pressure 
level (SPL) of the acoustic signal and by distance of the helicopter from the 
subjects.  That is, the subjects did not detect the helicopter until a much higher 
level relative to the ambient, and at twice the distance the model predicted.  They 
offer a possible explanation of the difference as their study being the more 
representative, but less critical, model for aural detection. 
 
 A study reported by Abrahamson (1975), also analyzed helicopter sound 
propagation and human aural detection in a field environment.  His subjects were 
to indicate both when they thought they heard a helicopter, and then again when 
they could confirm that they heard it.  One group was to focus on the listening 
task, while another group was given other tasks as diversions.  The results 
indicate that the first responses (uncertain detection) appear to be based on low 
frequency components, while the late responses (certain detection) are based on 
higher frequency components.  This study confirmed the results reported by 
Ollerhead that showed that helicopter signals could be masked at 5 dB below the 
ambient critical band spectrum level. 
 
 Similarly, in a review of available data, Loewy (1973) concluded that 
based on factors related to ambient sound conditions and terrain, auditory 
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detection is due primarily to components in the first three octave bands of the 
sound.  He also concluded that components above 300 Hz could be detected as 
low as 9 dB below the ambient, with components below that dependent primarily 
on limits in the human auditory response.  His conclusions were not based on 
human detection results, however, as his analysis was focused on the goal of 
helicopter noise reduction. 
 
 Ungar et al. (1972) reviewed a wide range of studies related to helicopter 
noise generation and the effects of different aircraft components on the noise 
signatures.  In his report, appendix N addresses briefly the issue of auditory 
detection, with an overview of the reported masking effects of different 
environments, particularly jungles and forested areas.  His summary indicated 
that detection levels increased with increasing density of vegetation.  He further 
reported that detection was better at night in the low frequencies, but better for 
the high frequencies in the daytime.  His overall conclusion from review of 
existing data was that the lowest levels for detection were at midday (easiest 
detection of the helicopters) and the highest levels were in the early evening 
hours (poorest detection). 
 
 A number of researchers have also developed models for the auditory 
detection of aircraft by human listeners.  Some of these include Taylor and Poe 
(1973) and Elshafei, Akhtar, and Ahmed (2000), and the AUDIB model produced 
by Wyle Labs, beginning in 1975 as the I Can Hear It Now (ICHIN) model, 
developed for the U.S. Army.  One of the difficulties presented by all of the 
models reported is a lack of corroboration by empirical data from human 
listeners. 
   
 The field studies described above rely on real world conditions.  This is 
both a conceptual strength and an experimental design weakness.  The strength 
assumes no doubt about the realism of the target signal, because the signal is 
live.  However, the weakness of the approach is found in atmospheric and 
aircraft states which can vary across trials, thus confounding the reliable 
duplication of the signal at the listener across multiple trials.  The signals, by 
being live, all include both the target aircraft and the background environment, 
making it impossible to separate the two components and analyze the SNR. 
These variables also make it impossible to determine what factor is most 
responsible for detection, whether a part of the signal or a variation in the 
background.    
 
 Horonjeff, Fidell, and Green (1983) reported a series of experiments using 
laboratory created signals to measure specific factors in detection of periodic 
impulse sounds, as a more critical measure for auditory detection thresholds that 
would relate to aircraft such as helicopters.  In this study, they measured 
detection thresholds for impulses at repetition rates in the range of helicopter 
rotor frequencies.  Their overall conclusions for their signals were that the 
individual pulses summed in a predictable manner for detection, and that this 
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summation is “leaky”, that is, greater signal energy is required for detection with 
longer observations. 
 
 The strength of the AFRL conducted experiment described below is in the 
ability to exactly duplicate the target versus ambient noise in the trials presented 
to the sound jury subjects, and to randomize the presentation intervals in order to 
maximize the statistical power of the experiment.  At the same time, real 
helicopter signals are modified and used, rather than simplified laboratory 
generated signals.  Furthermore, this experiment isolated the acoustic 
characteristics of the signal and the noise at the listener from acoustic variance in 
the source or the propagation of the signals.  The listener judgments were 
purposefully decoupled from non-psychoacoustic factors, such as attention.  
Each sound jury subject was presented with at least 12,000 intervals of target 
versus ambient signals.  By controlling for confounding variables that can be 
introduced by issues with calibration, recording quality, playback quality, 
headphone response, and listener state, this study could ensure high confidence 
in the experimental results. 
 
 

Methods 

 

Experiment Description 
 

Subjects   
 

Fourteen members of a panel of paid subjects, ranging in age from 19 to 
57 years with normal hearing acuity, participated in the psychoacoustic (human 
detection) portion of the study.  Normal hearing was defined as air conduction 
thresholds at 20 dB HL or better for octave frequencies between 250-8000 Hz.  
Each subject’s hearing was retested on a regular basis to ensure continued 
qualification for studies with the requirement for normal hearing.  All subjects 
were well trained for psychoacoustic experiments, with prior experience in other 
auditory studies in this laboratory. 
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Hardware and Software 

Sound Recordings 
 

The acquisition of the acoustic information for this study was 
accomplished by Harris, Miller, Miller, and Hanson (HMMH) of Burlington, MA 
and AFRL.  The efforts accomplished by AFRL will be described here.  This data 
represents the stimuli and six of the nine ambient waveforms.  The data 
acquisition for the helicopter stimuli was accomplished at Eglin Air Force Base.  
The recording equipment was comprised of three G.R.A.S. low noise microphone 
systems.  Each system has a microphone power supply (G.R.A.S. Type 12HF), 
preamp and microphone that are matched by the manufacturer.  Three 
microphones were used in the measurement system.  One was in the free-field at 
four feet above ground level to obtain the monaural recordings, and for use as a 
reference microphone.  The reference system was the Type 40HH, Figure 2.  
Two other microphone systems of Type 40HT, Figure 3, were also used to 
capture binaural recordings within a Knowles Electronics Mannequin for Acoustic 
Research (KEMAR®).  The KEMAR®,,Figure 4, is a head and torso simulator 
(HATS) which meets the requirements of ANSI S3.36/ASA58-1985.    Both 
microphone systems were arranged in close proximity to each other with a burlap 
wind screen as shown in Figure 7. 
 
 
 
 

 
 

               
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2:  G.R.A.S. 40HH low noise system. 
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Figure 3:  G.R.A.S. 40HT low noise system. 

 

 
Figure 4:  KEMAR mannequin. 
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The signal acquisition for the low noise microphones was accomplished 
through the use of a CF-18 Panasonic Toughbook® and a National Instruments 
cDAQ-9172 CompaqDAQ chassis.  The chassis was loaded with the NI-9211 24-
bit 50,000 samples/sec sample rate DAQ boards.  The data was collected 
through the use of a customized interface built on top of the National Instruments 
DAQmx technology.  Each of the microphone outputs was stored in a 32-bit 
floating point mono canonical wave file. 
 

Analysis for the wave files that were presented to the subject was 
accomplished through use of the National Instruments LabVIEW® Sound and 
Vibration toolkit.  The toolkit implements one-third octave band filters that are 
compliant to the ANSI standard.  The desire was to have fractional octave 
outputs from 10 Hz to 16,000 Hz for each of the ambient and stimulus files.  The 
stimulus files were 1 second in duration.  The settle time for the filterbank in the 
analysis due to the 10 Hz low frequency is 2.5 seconds.  To compensate for this, 
the one second waveform was concatenated with itself three times to create a 4 
second long waveform.  The ambient files were analyzed with a 1 and 0.5 
second integration time to achieve the levels at the 0.5→1.5 and 2→3 second 
intervals.   These time samples correspond to the stimulus intervals in the 
experimental procedure used with the human listener data collection. 
 

Headphones  
 
 Headphones for presentation of the auditory signals were selected on the 
basis of the response in the low frequencies.  Headphone response curves can 
be found in Appendix 2,  for presented frequencies at 10, 20, 30, and 63 Hz.  The 
BeyerDynamic DT-990 headphones were chosen because, of the available 
headphones, they demonstrated the least harmonic distortion in the low 
frequencies.  The greatest amount of distortion was found with the 10 Hz and 20 
Hz tones, with harmonics between 500 and 1000 Hz at up to 20 dB SPL above 
the human audibility curve.  This is a low level of distortion, and all of the ambient 
soundscape levels were above this, thus this distortion was a minimal concern 
for this study. 
 

Stimuli 
 

All sound stimuli were digitally manipulated using Adobe Audition® and 
MATLAB® for presentation to subjects.  The recordings used a 48000 
samples/sec sampling rate, and 24-bit digitization stored in 32-bit form for the 
amplitude.  The stimuli were then presented with 16-bit digital to analog 
conversion through MATLAB®.  Stimuli are divided into target and ambient 
categories, with targets defined as the auditory signals to be detected, and 
ambients defined as the noise backgrounds in which the targets are presented. 
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Targets:   
 

Target stimuli consisted of 1-second samples of helicopter signals taken 
from recordings made at the Eglin Air Force Base in August and September of 
2007 during a military program known as “Chicken Little”.  These target signals 
were obtained by selecting portions of recordings that included the approach and 
near flight of two different helicopters (MD-902 and MI-8).  Portions of the 
recordings that included departure were excluded from the study, as the purpose 
for the study was for detection of approaching aircraft.   
 

Recordings for the MD-902, Figure 5, aircraft were made on the mornings 
of 23 and 24 August 2007.  Recordings for the MI-8 aircraft were made on the 
mornings of 8 and 9 September 2007.  Monaural and binaural detection results 
were obtained using 175 exemplars for the MD-902 helicopter, and 236 
exemplars for the MI-8 helicopter (Figure 6), for a total of 411 targets.  Exemplars 
were defined as discrete 1 second samples of the recordings, from which the 
target signals were selected. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  MD-902 helicopter 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  MI-8 helicopter 
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Foils:   
 

Within the experiments, foils were used to provide a signal without a 
helicopter in the reference interval.  By introducing sounds taken from a 
recording from the same environment in which helicopter signals were taken, 
increased confidence can be achieved that the target signal is being detected on 
the basis of the helicopter present in the target recording, rather than other 
spectral components related to the ambient soundscape during the helicopter 
recordings, since those components are presented in both intervals.  These 
signals were taken from one of the Eglin recordings that included primarily insect 
sounds.   

Ambient soundscapes   
 
Eglin   
 

Ambient noise was obtained from the recordings made on 8 and 9 
September in an open field on Eglin AFB, Florida (Figure 7).  The recordings 
were made in the early morning between “Chicken Little” flight tests.  Samples 
were 5 minutes in length and selected from portions of the recordings in which no 
helicopters could be detected.  Out of a total of 28 such samples three were used 
in the study as ambient sounds.  The three signals used as the ambients were 
selected to represent the quietest of the recordings, the loudest, and a midpoint 
level.  The quietest sample (Ambient 19) included no discernable environmental 
noises, the midpoint sample (Ambient 5) included primarily insect noises and 
occasional birds, and the loudest sample (Ambient 28) included sounds of 
clothing rustling and some speech and other human generated sounds.  Due to 
technical difficulty with the recordings with the KEMAR®, these were not included 
in the binaural portion of the study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  Eglin AFB recording setting 



 

 13 

 
 
Boston   
 

Three recordings were obtained from Harris, Miller, Miller, and Hanson 
(HMMH), an acoustics consulting firm located in Burlington, MA.  These 
recordings were made in an urban park (Boston Common), a suburban street 
(Newton, MA), and a rural road (Boxford, MA), Figure 8-10.  The ambient signals 
were 5-minute selections extracted from these recordings that were consistent 
for content and representative of the overall environment.  The urban ambient 
soundscape included a variety of traffic noises including trucks, back up signals, 
and sirens recorded from in the park.  The suburban soundscape included 
automobile traffic, birds, and pedestrians.  The rural soundscape included birds 
and insects, as well as occasional distant ground and air vehicles.  These 
recordings were only available for monaural signals, and, as such, were excluded 
in the binaural portion of the study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                

Figure 8:  Boston urban recording setting 
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Figure 9:  Boston suburban recording setting 

 

 
 

Figure 10:  Boston rural recording setting 
 
Downtown Dayton 
 

Three recordings were also obtained in Dayton, Ohio, to provide additional 
soundscapes.  These all included urban settings, but with different environmental 
characteristics.  Recordings were made at midafternoon at a downtown 
intersection surrounded by tall urban buildings, in front of the city courthouse 
(Figure 11), which was elevated from street level and across from tall urban 
buildings (Figure 12), and near the ATM at the entrance to a bank (Figure 13), 
with acoustic characteristics representative of an urban canyon (multiple 
reflective surfaces).  These samples consisted of various traffic noises and 
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speech, with differences in the environments consisting of the number of 
reverberant surfaces, distance from traffic, and elevation.  All recordings were 
made in close proximity to the noise sources.  Five-minute selections from these 
samples were taken, based on overall consistency in the components of the 
soundscape, as well as the overall level.   

 

 
Figure 11:  Dayton recording setting – courthouse 
 

 
Figure 12:  Dayton recording setting – 3rd Street and Patterson 
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Figure 13:  Dayton recording setting – National City Bank 
 
  

Descriptions and spectrograms of the specific soundscapes used can be 
found in Appendix 1, Table 1-1 and Figure 1-1. 
 

Method 
 

Human Detection 
 
Training 

Prior to beginning the experiments, all subjects were provided several 
days of training on the task to assure that they were familiar with the target and 
ambient signals, as well as the overall task.  Conditions during the training period 
were identical to those used during the monaural experiment, described below. 

 
 

Monaural 

A two alternative forced choice (2AFC) procedure was used, with 50 trials 
in each run.  Signals were presented diotically, that is, the same signal was 
presented to both ears, so that the perception was centered between both ears.  
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  .5  .5  

1 sec 1 sec 

3 sec 

Interval 1 Interval 2 Response Interval 

Experimental runs were produced by randomly selecting and playing a 5-minute 
ambient sound from among the nine possible alternatives.  Within an 
experimental run, a trial consisted of a 500 msec preparation interval, followed by 
a 1 second stimulus interval, a 500 msec interstimulus interval, another 1 second 
stimulus interval, and a 3 second response interval.  Thus, each trial was 6 
seconds long, illustrated in Figure 14.  Within each trial, the target signal was 
randomly presented in either the first or the second stimulus interval.  Subjects 
were asked to indicate which stimulus interval contained the target signal within 
the ongoing ambient soundscape, and were instructed that the target signal was 
one of the helicopters indicated on the response screen (Figure 15).  The 
alternate interval contained a foil, consisting of a one second sample taken from 
an ambient soundscape recorded on the Eglin range.  Target signals and 
ambient soundscapes were scaled to represent the actual relative intensities in 
the field, to compensate for level differences introduced by the equipment used 
for presentation.  The scaling factor was established by comparing the output 
from the laboratory equipment to a 94 dB calibration tone recorded at the same 
session as the signals.  For each trial, the target was played in one interval, 
scaled to 0, -10, -20, or -30 dB relative to the ambient.  The RMS amplitude for 
each 1-second target ranged from -53 dBv to -18 dBv, and the RMS for the 
ambient soundscapes ranged from -54 dBv to -32 dBv.  Resulting actual signal-
to-noise ratios (SNRs) ranged from -60 to 30 dB for specific trials.  The foil was 
adjusted with the target signals to equalize for the ambient components included 
in the target recordings.  Subjects used a computer mouse to select the interval 
in which they heard the helicopter, and which aircraft it was.  In this way, data 
related to detection and classification could be obtained simultaneously.  
Feedback was provided following every trial.  Subjects continued with the data 
collection until a minimum of 12,000 trials were completed.   

 
 
 
 
 
 
 
 
 

Figure 14:  Diagram of an experimental trial. 
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Figure 15:  Screenshot of computer response screen. 
 
 
Binaural 

The same 2AFC procedure was used for the binaural detection study.  
The signals and ambient soundscapes were matched to those used in the 
monaural study, using recordings from the microphones installed in KEMAR®.  
This provides a representation of the effect of an average human head on a 
signal.  Subjects again were asked to select the interval containing the target 
signal, with actual SNRs ranging from -60 to 30 dB relative to the specific 
ambient soundscape.  Subjects collected a minimum of 12,000 trials for this 
study, as well. 
 

AUDIB model 
 

To test AUDIB against the human subject data the FORTRAN source 
code was compiled and used through the MATLAB interface to run the 
application.  Routines to write the case file and the associated data files were 
written in MATLAB.  A basic description of the AUDIB functions can be found in 
Appendix 3.  For this first execution of the model each of the stimuli were 
compared to a ‘long-term’ ambient spectrum.  The five minute ambient files were 
run through MATLAB’s built-in FFT function.  The resolution of this FFT was 48 
Hz.  The one second target signal that was input to AUDIB was a FFT with the 
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same frequency resolution.  A modification was then made to the AUDIB model 
in which the ambient levels were presented to AUDIB in time samples 
corresponding to the experimental intervals.  This was called the ‘short-term’ 
data.  A further adjustment was made by converting the FORTRAN code to 
MATLAB.  Analysis was limited to the lower frequency bands. 
 
 
 

Data Analysis 
 

Human detection 
 
 In all figures, data for -60 dB SPL SNR and for probability of <0.4 have 
been edited due to limited exemplars in these data.  As a result, the reliability and 
validity of these data points is limited, and were excluded from further analysis. 
 
 
Overall Results 

Overall results from the human listener panel for the monaural detection 
study are shown in Figure 16.  In this figure, the results are plotted only for the 
target amplitudes, using the RMS power (dB SPL) of the one second target 
signal for the measure.  The data have been binned together into 6 dB wide bins 
and averaged together to obtain the individual data points shown in the figure.  
Two features can be seen from this figure.  First, it is apparent that the probability 
of target detection increases with the overall level of the target signal (as 
indicated by the general increase in the curves from left to right on the x-axis).  
Second, it is clear that, for any given target level, the probability of detection 
systematically decreased as the ambient soundscape level increased from a 
relatively quiet environment (those collected at Eglin AFB and the Boston Rural 
and Suburban soundscapes) to a relatively loud environment (the Dayton and 
Boston Urban soundscapes).  Notably, these appear to show a clear distinction 
between rural/suburban settings and urban settings.  For example, the data 
appear to show a higher average level of detection performance in the Boston 
Suburban environment with a mean level of 43 dB SPL than they do for the 
Boston Urban environment with a mean target level of 73 dB.  This suggests that 
the effective masking level of the urban environment was more than 30 dB higher 
than that of the suburban environment, compared with a difference of only 14 dB 
in the A-weighted dB SPL (L90) of the urban and suburban environments (56 dB 
versus 39.8 dB SPL).  As discussed later, this may suggest that the kinds of 
sounds present in the urban environments (engine sounds, etc.) were more 
similar to the target helicopter sounds than those present in the more rural 
environments, and thus listeners had a much harder time identifying the 
helicopter sounds in the urban environments. 
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Figure 16:  Human detection results plotted by target amplitude.   

 
Analysis by SNR 

The data plotted in Figure 16 do not account for the instantaneous 
variations in the level of each ambient soundscape across the different 1 sec 
target intervals for that ambient condition.  In order to collapse across different 
soundscapes in a meaningful way, a better strategy is to calculate the total target 
energy and total masker energy in each stimulus interval and determine the 
instantaneous SNR for each individual trial in the experiment.  This 
instantaneous SNR value was calculated by comparing the RMS amplitude of the 
signal with the RMS of the ambient.  For example, the data point for -20 dB SPL 
SNR includes all responses to targets with a SNR between -15 and -25 dB SPL.  
The number of trials represented in each bin is dependent on the level of the 
target signal as well as random variations in the ambient levels, which were not 
controlled, thus some of the bins have a limited number of trials.  Figure 17 
shows the average probability of detection for human listeners plotted as a 
function of SNR for the monaural signals.  These plots exhibit a very different 
profile of detection for the very quiet ambient soundscapes of the Eglin 
recordings than for the other ambient soundscapes used.  Probability of detection 
increases rapidly between -50 and -10 dB SPL SNR, where it reaches ceiling, 
and all target sounds are detected with occasional errors incidental to the 
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procedure.  In part, at least, the very high performance levels obtained with the 
Eglin recordings may reflect the inclusion of low frequency wind noise in the RMS 
estimates of total masker power, which may have inflated the apparent overall 
level of performance in these conditions.     

 
The Boston and Dayton ambient soundscapes include sounds common to 

more populated areas, and result in probability of detection that does not exhibit 
improvement until the SNR reaches -30 to 10 dB SPL.  In the ranges from -10 to 
0 dB SPL SNR, the probability of detection for the signals decreases across 
ambients that increase in human generated sounds, such as traffic sounds.  
Specifically, in the rural soundscape, probability of detection is better than 
suburban, which, in turn, is better than the urban soundscapes (with detection 
the poorest in the Dayton ambients).  These results are consistent with the 
current understanding of human detection thresholds for target sounds in noise.   

 

 
 
 
Figure 17:  Probability of detection for human listeners with monaural 
signals.  Data points for -60 dB SPL SNR and for probability of <.4 edited 
from figure due to limited exemplars in these data.   
 
 
 
 

(dB) 
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Binaural 

 Detection for the binaural targets included only the Dayton urban 
soundscapes due to availability of binaural recordings for only these 
soundscapes.  The results of this study are shown in Figure 18.  The results are 
consistent with the monaural results, with an improvement in detection between 
SNRs of -30 and 10 dB SPL.  An improvement in the detection performance can 
be seen in these plots relative to the monaural detection.   

 
 
Figure 18:  Probability of detection for human listeners for monaural vs. 
binaural signals.  Data points for -60 dB SNR and for probability of <.4 
edited from figure due to limited exemplars in these data.   
 

AUDIB model prediction 
 
 Even if the results from the Eglin ambient soundfields are eliminated, the 
results in Figure 18 show that overall, flat-weighted SNR is not a great predictor 
of human detection performance.  In fact, the SNR value required for 70% correct 
detection varied about 15 dB across the six non-Eglin soundscapes.  In order to 
obtain a better estimate of human detection performance, a more sophisticated 
model that accounts for the detection of the stimulus in different frequency bands 
is necessary.  Thus, the data were also processed with the AUDIB model.   
 Processing of the same target and ambient sounds through the AUDIB 
model yielded the probabilities of detection displayed in Figure 19.  The model 
predicts an increase in detection at lower SNRs in quieter ambient soundscapes, 
with higher SNRs required for detection of the target signal as the ambients 
increase in overall content.  Thus, more signal energy is required for the target to 
be detected when the ambient noise is denser.  This pattern does not appear to 
be consistent, however, as the model predicts greater detectability in the National 
City Bank ambient (with the greatest amount of reverberation) than in the other 
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(dB) 

soundscapes from populated areas with less spectrally dense envelopes.  The 
detectability predicted in this environment is equivalent with that in the loudest 
Eglin environment, which consisted primarily of voices and rustling sounds.  The 
acoustic content of these two ambients is very different, yet the model predicts 
very similar results. Additionally, the probability of detection for the signal in the 
Dayton courthouse ambient is much lower, although the acoustic content of this 
environment is very similar to the Dayton Patterson environment.  In general, the 
model predicts comparable detection for the quietest environments, and 
comparable detection for most of the moderately dense environments.  
Particularly for the more populated environments, this does not account for 
variation in the actual acoustic environments.  The grouping of the probability 
curves cannot be easily explained on the basis of acoustic information in the 
ambients, other than the overall trend is for detection to require a greater SNR 
with increased noise density. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 19:  Model data from AUDIB (with long term integration).  Curves 
reflect detection of 1 second targets predicted in the context of the overall 
average level of the ambient over a 5 minute sample.   
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(dB) 

 

Comparison of human and AUDIB results as a function of SNR 
 
 The human panel data and AUDIB predictions are represented together 
by ambient soundscapes in Figure 20.  When plotted by SNR, the AUDIB model 
provides a good prediction of target detectability for the ambient soundscapes 
with a moderate noise level.  These include the Boston recordings, the loudest of 
the Eglin recordings, and the Dayton courthouse and Patterson recordings.  For 
the very quiet ambient soundscapes the model predicts poorer detection, while in 
the loudest soundscape, the model predicts better detection than the human 
results.   
 
 

 
 
Figure 20:  Comparison of current AUDIB model results with human data 
based on SNR. 
 

 
  



 

 25 

Although some differences can be found on the basis of the type of aircraft 
to be detected, the differences in probability of detection between the model 
prediction and the human results are maintained when the data are analyzed for 
each type of target individually, as can be seen in Figure 21. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(dB) (dB) 

(dB) (dB) 

(dB) (dB) 
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(dB) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21:  Comparison of human and AUDIB results for each type of 
helicopter in each soundscape, based on SNR. 

 
While the AUDIB model in its current form provides good prediction for 
environments with some ambient noise, it does not hold up well for environments 
at the extremes, either quiet or loud.  In these cases, it underpredicts or 
overpredicts auditory detection, respectively.  As a result of the model’s 
limitations in ability to match the human results, a modification of the model was 
implemented, in which the ambient noise was averaged over the same 1 second 
time sample as the target.   
 

Classification 
 
The data collected from the human subjects included classification of the two 
helicopters.  These results can be seen in Figure 22.  As with detection, the 
listeners are able to classify the helicopters with approximately equal accuracy, 
increasing with SNR in all ambients.  

(dB) (dB) 
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  Figure 22:  Classification of helicopters in different ambients.  
 

Comparison of human and AUDIB results as a function of AUDIB 
Prediction 

 
 
If the AUDIB model is properly predicting human performance, then the 

average level human performance across all trials that result in the same AUDIB 
prediction should exactly match that prediction.  Furthermore, there should be no 
systematic interaction between the predicted level of performance, the actual 
level of human performance, and the type of ambient soundscape. 

 
Figure 23 shows human performance for each ambient soundscape as a 

function of predicted AUDIB performance.  These results were obtained by 1) 
calculating an AUDIB prediction for every target-masker combination that was 
presented to at least one listener in the experiment;  2) binning together all trials 
that had approximately the same predicted level of AUDIB performance (in bins 
that were 10% wide); and 3) taking the average percent correct across all 
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listeners for that condition.  Accurate prediction from the model should result in 
plots with a slope of 1 (that is, from the bottom left corner to the top right corner 
of the graph), and with no separation between the lines.  The separation between 
the lines demonstrates the differences in the probability of detection as predicted 
by AUDIB and the human results for each of the ambient soundscapes.  These 
results show reasonable agreement between the AUDIB Model and human 
performance for some of the soundscapes (in particular the three Boston 
soundscapes and the Dayton Courthouse soundscape).  However, the AUDIB 
model severely overpredicted performance in the Dayton Patterson and National 
City soundscapes, and it underpredicted it for the Eglin soundscapes.   

 

 
 

Figure 23:  Correlation of AUDIB with human data (long term integration).   
 
 

A short-term version of AUDIB 
 
 One weakness of the baseline AUDIB model is that it only a single, overall 
long-term ambient spectrum to make its audibility calculations. Thus, it does not 
account for short-term fluctuations in level that might make a target signal 
detectable in a “gap” in the masker waveform.  In order to examine the extent to 
which this issue could explain the poor performance obtained with the AUDIB 
model, a modified AUDIB model was constructed that calculated the probability 
of detection on the basis of the masker waveform present in the 1-s interval 
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where the target was presented, rather than the long term ambient spectrum of 
the masker.   

 
As shown for the long term ambient soundscape analysis, the correlations 

for AUDIB and human data are plotted with the short term integration window for 
each ambient soundscape.  These are shown in Figure 24.  This plot shows an 
improvement in the correlation between the human data and the model for the 
National City Bank ambient, however, the prediction remains limited across the 
ambient soundscapes overall.  As for the prior correlation, a good prediction 
would be revealed in a slope of 1 for the plots, with no separation between them.   

 

 
 
 
Figure 24:  Correlation of AUDIB with human data (short term integration).   
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Figure 25:  Comparison of AUDIB predictions for current version (long) and 
modified version (short). 
 
 

 

Conclusions 
 

The current version of the AUDIB model for detection of rotorcraft has 
been shown to have significant limitations.  The predictions based on this model 
appear to be a reasonable match to the human listener results for some ambient 
soundscapes, but not all.  A problem that was found in the implantation of the 
model was a limit in the sensitivity of the filters for the low frequency bins.  The 
model bases the processing on linear frequency bins, rather than logarithmic 
frequency, causing it to exhibit poor sensitivity to differences in the low 
frequencies.  An additional difficulty that was found in the procedures used here 
was the use of flat weighting for calculation of the signal-to-noise ratios.  While 
the low frequency components affected by this are inaudible to humans, and 
presumably to the model, by excluding the frequency range below approximately 
20 Hz, the model can offer better predictions for the low frequency signals.  This 
could be accomplished simply with a high pass filter integrated for this range.  
Further improvement of the model for a variety of ambient background settings 
would account for the spectral and temporal differences in environments, rather 
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than simply the intensity levels.  As shown in this study, the spectral components 
of the background, as well as the temporal variation, provide challenges to the 
performance of the model.  The urban settings, with their motor noises and 
reverberation, provided a significant problem for the predictive ability of the 
model. 

 
Subjects were asked to identify which helicopter was presented in the trial, 

and these data are plotted individually by helicopter, showing a similar accuracy 
for both aircraft in most SNR and ambient soundscape conditions.  This basic 
level of classification indicates that neither helicopter was more easily identified, 
and thus classification was not systematic for these signals in these conditions.   

 
Further examination could include more specific comparison on the basis 

of the different spectra in the ambient sounds and the target signals for each 
experimental interval.  This analysis could provide information about what 
components in the noise most influence detection of the targets.  Further, 
comparison of variability in the amplitude modulation of different ambient 
soundscapes should reveal information related to specific detection thresholds.  
These analyses are possible based on the data from this study.  This analysis 
would also be extended to the classification of the target signals.   

 
Another extension to the current study would address localization of the 

target sounds within the ambient soundscape.  This could not be completed at 
this time due to limitations in documentation related to the flight paths of the 
helicopters at the times the signals were extracted.  Thus, the reference location 
could not be generated, and the accuracy of subject responses could not be 
determined.  Plans are for this completion of this work to be done in the near 
future. 
 

The data collected in this study also provides a framework for evaluation 
of detection models like AUDIB, and will function as a test bed for future model 
development. 



 

 32 

 

References 
 
Abrahamson, A.L. (1975), “Correlation of actual and analytical helicopter aural 

detection criteria, volume 1,” U.S. Army Air Mobility Research and 
Development Laboratory, Technical Report #74-102A. 

 
Elshafei, M., Akhar, S., Ahmed M. S. (2000), “Parametric Models for Helicopter 

Identification Using ANN,” IEEE Transactions on Aerospace and 
Electronic Systems, 36(4).  

 
Fletcher, H. (1940).  “Auditory patterns,” Reviews of Modern Physics, 12, p. 47-

66. 
 
Fidell, S. (1977).  “Relationship between detectability and annoyance of low-level 

signals,”  J. Acoust. Soc. Am., 62(S24). 
 
Fidell, S. and Bishop, D.E. (1974), “Prediction of acoustic detectability,” U.S. 

Army Tank Automotive Command, Technical Report #11949. 
 
Fidell, S., Pearsons, K.S., and Bennett, R.L. (1972), “Predicting aural 

detectability of aircraft in noise backgrounds,” A.F. Flight Dynamics 
Laboratory, Technical Report #AFFDL-TR-72-17. 

 
Fidell, S., Pearsons, K.S., and Bennett, R.L. (1974), “Prediction of aural 

detectability of noise signals,” Human Factors, 16(4), p. 373-383. 
 
Green, D.M. (1959), “Auditory detection of a noise signal,”  J. Acoust. Soc. Am., 

32(1), p. 121-131. 
 
Green, D.M. and Swets, J.A. (1966), Signal detection theory and psychophysics

 

, 
John Wiley and Sons, Inc. 

Greenwood, D.D. (1961), “Auditory masking and the critical band,” J. Acoust. 
Soc. Am., 33(4), p. 484-502. 

 
Hartman, L. and Sternfeld, H. (1973), “An experiment in aural detection of 

helicopters,” U.S. Army Air Mobility Research and Development 
Laboratory, Technical Report #73-50. 

 
Horonjeff, R., Fidell, S., Green, D. (1983), “The detectability of repetitive, periodic 

impulses,” U.S. Army Research Office, Technical Report #16729.5-LSl 
 
Loewy, R. (1973) “Aural detection of helicopters in tactical situations,” 

Department of mechanical Engineering, University of Rochester, N.Y. 



 

 33 

 
Jamieson, L.H. (2002), “Speech Processing by Computer,” Purdue Electrical and 

Computer Engineering Course, Purdue University, West Lafayette, IN 
47907-1285. 

 
Ollerhead, J.B. (1971), “Helicopter aural detectability,” U.S. Army Air Mobility 

Research and Development Laboratory, Technical Report #71-33. 
 
Poulson, T.   (2007)  Ear, hearing, and speech, Fundamentals of Acoustics and 

Noise Control (Jacobsen, Poulsen, Rindel, Gade, and Ohlrich), DTU 
Technical University of Denmark, p. 72. 

 
Moore, B.C.J. and Glasberg, B.R. (1983), “Suggested formulae for calculating 

auditory-filter bandwidths and excitation patterns,” J. Acoust. Soc. Am., 
74(3), p. 750-753. 

 
Selvy, R. (2002) “Development of the Matlab-based MICHIN helicopter aural 

detection model,” Master’s thesis, Naval Postgraduate School, Monterey 
CA.  

 
Taylor, D. and Poe, A. (1973) “An Aural Detection Model,” U.S. Army Missile 

Command, Technical Report #RD-73-11. 
 
Ungar, E.E. (1971), “A guide for predicting the aural detectability of aircraft,” A.F. 

Flight Dynamics Laboratory, Technical Report #AFFDL-TR-71-22. 
 
Zwicker, E. and Fastl, H. (1972), “On the development of the critical band,” J. 

Acoust. Soc. Am. 52(2), 548-557. 
 
Zwicker, R., Flottorp, G., and Stevens, S.S. (1957). "Critical bandwidth in 

loudness summation," J. Acoust. Soc. Am. 29, 699-702. 



 

 34 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 35 

TABLE OF CONTENTS 
 

 

APPENDIX 1 ................................................................................................................................. 37 

AMBIENT SOUNDSCAPES ..................................................................................... 37 

APPENDIX 2 ................................................................................................................................. 41 

PSYCHOACOUSTIC SPECIFICATIONS ..................................................................... 41 
Headphone responses .......................................................................................................... 41 
Filter weighting ...................................................................................................................... 42 
Peripheral auditory processing in humans ............................................................................ 42 

APPENDIX 3 ................................................................................................................................. 45 

AUDIB MODEL PREDICTION ................................................................................ 45 
Analysis of Rotocraft Noise Model Audibility Module. .......................................................... 45 
Description of the Stretch function as implemented in AUDIBRNM ..................................... 50 

APPENDIX 4 ................................................................................................................................. 52 

HIDDEN MARKOV MODELING: .............................................................................. 52 
Linear Predictive Coding (LPC) ............................................................................................ 54 
Vector Quantization (VQ) ...................................................................................................... 54 
Hidden Markov Model (HMM) ............................................................................................... 55 

APPENDIX 5 ................................................................................................................................. 57 

ABBREVIATIONS/DEFINITIONS ............................................................................. 57 

 

LIST OF FIGURES 
 
 
Figure 1-1:  Spectrograms of the ambient soundscapes (following pages).  Light 
blue and green represent the least intense spectrum, dark blue is greater 
intensity, fuchsia is the greatest intensity. ............. Error! Bookmark not defined. 
Figure 2-1:  Headphone response curves for BeyerDynamic DT-990 (selected for 
this study), Denon AH-D1000, and Sennheiser HD280 pro headphones plotted 
against the human audibility curve.  Each panel represents an input frequency as 
indicated:  10 Hz, 20 Hz, 30 Hz, and 63 Hz. ....................................................... 41 
Figure 2-2:  Sound level filter weighting functions ............................................... 42 
Figure 2-3:  Human audibility curves ................................................................... 42 
Figure 2-4:  Equivalent rectangular bandwidths for filters in the human peripheral 
auditory system.  Taken from Moore and Glasberg (1983). ................................ 43 
Figure 2-5:  Bandwidth of critical bands and Equivalent Rectangular bandwidth, 
ERB. The bandwidth of 1/3-octave filters (straight line) is shown for comparison. 
Taken from Poulsen (2007). ............................................................................... 43 
Figure 2-6:  Response of the basilar membrane in the cochlea as a function of 
stimulus frequency.  The critical band/ERB calculation is based on this response.  



 

 36 

Taken from EE649: Speech Processing by Computer website, Purdue University 
(2002). ................................................................................................................ 44 
Figure 3-1:  Call tree for AUDIB_RNM. ............................................................... 46 
Equation A-3:  Audibility Equation. ...................................................................... 50 
Figure 4-1: Major blocks of the proposed classification tool ................................ 53 
Figure 4-2: Block diagram of the major components of HMM classifier Stage A 53 

 

LIST OF EQUATIONS  
 
Equation A-3:  Audibility Equation. ...................................................................... 50 
Equation A-4:  LPC  equation ............................................................................. 54 
 
 

LIST OF TABLES 
 
Table 1-1:  Ambient soundscape descriptions .................................................... 37 
Table 4-1: Classification ratios achieved in experiments conducted ................... 56 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 37 

Appendix 1 
 

Ambient soundscapes 
 
Table 1-1:  Ambient soundscape descriptions 
 

ambient soundscape description 

Ambient 19 – Eglin quiet quiet, open field 

Ambient 5 – Eglin insects field with insects, birds 

Ambient 28 – Eglin voices field with some voices, clothing 
rustling 

Boston urban vehicle traffic, alarms, set back in 
Boston Common 

Boston suburban automobiles, pedestrians, Newton, 
MA 

Boston rural distant aircraft and trucks, birds, 
Boxford, MA 

Dayton courthouse 
set back from street, heavy vehicle 
traffic, semi-urban canyon, 3rd 
Street and Main (in downtown) 

Dayton Patterson 
3rd Street and Patterson, downtown 
urban at sidewalk level, heavy 
vehicle traffic 

Dayton National City 

ATM vestibule immediately outside 
main entrance to the bank, 3rd 
street in downtown, highly 
reverberant flat stone surfaces, 
heavy vehicle traffic 
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Eglin quiet 
 

 
Eglin insects 
 

 
Eglin voices 
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Boston urban 
 

 
Boston suburban 
 

 
Boston rural 
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Dayton courthouse 
 

 
Dayton Patterson 
 

 
Dayton National City Bank 
 

Figure 1-1:  Spectrograms of the ambient soundscapes. Light blue and 
green represent the least intense spectrum, dark blue is greater intensity, 

fuchsia is the greatest intensity. 
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Appendix 2 

Psychoacoustic specifications 

Headphone responses 
 
 
 
 

 
 

 

 

 

 

 
Figure 2-1:  Headphone response curves for BeyerDynamic DT-990 

(selected for this study), Denon AH-D1000, and Sennheiser HD280 pro 
headphones plotted against the human audibility curve.  Each panel 

represents an input frequency as indicated:  10 Hz, 20 Hz, 30 Hz, and 63 Hz. 
 
 



 

 42 

 

Filter weighting 
 
 

 
Figure 2-2:  Sound level filter weighting functions 

 

Peripheral auditory processing in humans 

 
Figure 2-3:  Human audibility curves 
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Figure 2-4:  Equivalent rectangular bandwidths for filters in the human 
peripheral auditory system.  Taken from Moore and Glasberg (1983). 

 
 

 
Figure 2-5:  Bandwidth of critical bands and Equivalent Rectangular 

bandwidth, ERB. The bandwidth of 1/3-octave filters (straight line) is shown 
for comparison. Taken from Poulsen (2007). 
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Figure 2-6:  Response of the basilar membrane in the cochlea as a function 
of stimulus frequency.  The critical band/ERB calculation is based on this 
response.  Taken from EE649: Speech Processing by Computer website, 

Purdue University (2002). 
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Appendix 3 

AUDIB model prediction 
 
 A thesis from the Naval Post Graduate School describes the 
implementation of the AUDIB predictive audibility code in MATLAB (Selvy, 
2002).  A review of that work and AFRL’s own independent analysis of the 
AUDIB original FORTRAN code enabled the development and execution of a 
new MATLAB version of AUDIB in this experiment as a “virtual listener”. 
 

Analysis of Rotocraft Noise Model Audibility Module. 
 

This module calculates the human audibility at a single receiver point.  It 
was initially developed by John Ollerhead at Wyle Laboratories.  In 1975 it was 
implemented in I Can Hear It Now (ICHIN).  The current code is derived from the 
1986 version of ICHIN 6 which was developed by NASA.  The current model 
reads the time history data from an ASCII file.  Though the time history may have 
discontinuities, the frequency spectrum must be continuous.  It assumes that the 
background is uniform in time, but the ambient levels can be specified in the first 
line of the spectral data to give the user the ability to vary the ambient level by 
location.  This implementation of human detection is based on the methodology 
defined in USAAMRDL-TR-74-102A by Ollerhead.  The d` metric was added to 
the computations in 2004 by Wyle Laboratories.  This is based on the US Park 
Service Grand Canyon project.  It is implemented for the one-third fractional 
octave bands from 50 Hz - 10,000 Hz. 

 
The method uses critical bands and signal-to-noise information to 

determine the probability of detection (POD).  The receptors used are 
characterized by a single listener or group. 

 
Obvious limitations of the FORTRAN implementation: 

1. filename and pathnames limited to 1024 characters 
2. input narrow band spectra limited to 2048 frequencies 

 
A call diagram is shown in Figure 3-1. 
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Figure 3-1:  Call tree for AUDIB_RNM. 

 
Most of the functions that are listed in the first row have no lines from 

them, as they are not called when executing the audibrnm program.  We will 
examine these functions first, since they can be removed without impacting the 
overall function of the detection program, audibrnm. 

 
AUDhead 
 

This function writes the header of an already opened TIA file.  The TIA file 
is an output of AUDIBRNM.  This is used in an additional model to determine hot 
spots call SPAR. 
 
Infodump 
 

This function dumps the input into an output file. 
 
Loss 
 

This function calculates the loss in sound pressure level due to 
atmospheric absorption.  This is no longer needed since this is done through 
RNM. 
 
Retard 
 

Here measured slant range, altitude and velocity are converted using 
time-retarded coordinates.  This is most likely also a holdover from the ICHIN 
program that did some of the propagation that RNM is now responsible to 
provide the audibrnm program. 
 
Scat 
 

This is another propagation function.  It computes the atmospheric 
absorption based on inhomogeneities. 
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TIAout 
 

This dumps the detection information to the opened TIA file that was 
created as part of the TIAhead function. 
 
Audibrnm 
 

Now that the analysis of the extra functions is complete we can examine the 
flow of the audibrnm function.  This is the heart of the program.  The program first 
opens the file that was passed as a command line argument.  From this file the 
name of the stimulus (*.TIG) is obtained.  Additionally the frequency range over 
which the detection will be calculated is read from the file.  This is adjusted to 
ensure that the first and last frequencies are integer multiples of the bandwidth, 
which is also read from the input file.  Lastly the program reads the path of the 
ambient data file.  AUDIBRNM starts the data calculations with a TIGhead.  This 
function will read the header of the propagated data at the various grid points.  At 
this point the data is stored in a string array for processing in the BlockEcho 
function.  The BlockEcho function reads the header for the first data section.  
From this header the BlockEcho function returns the number of time spectra in 
the data section and (x, y, z) position of the point.  Following the BlockEcho is a 
call to GetBands.  This function is a multipurpose function reading the inputs 
from multiple files and multiple types of lines.  Each of these is selected by 
specifying the mode which GetBands is to operate for this call.  The modes are 
listed below: 

 
1. Scan the band number and get the min/max band number 
2. Load the Ambient numbers for this grid point 
3. Load the time and SPL spectrum 
4. Populate the frequency array 
5. Load the background data from the ambient file 
6. Read a line from a file and do nothing with it. 

 
The first call to the function is to get the minimum and maximum values for 

the frequencies in the data file.  Next audibrnm writes the headers for the output 
files, i.e. the maxPOD, allPOD and maxDprime files.   

 
 GetBands is called again to get the ambient data line for the specific 
point, however, this data is not used for the analysis.  If the Uniform keyword, in 
the ambient data, is set to a value of 1 then the program will read the ambient 
data for each of the ambient spectra.  The next step is to read the uniform 
ambient from the ambient file.  This is done within the audibrnm function.  The file 
format is: 
Comment 
Uniform keyword with associated value 
Number of ambient frequencies 
The ambient frequency list 
The sound pressure level list 



 

 48 

 
 The formats of the lists in this case are somewhat arbitrary.  The example 
files have 10 entries per line.  However, the implementation of these values is not 
specific on how the data should be formatted.  In fact, the creation of the ambient 
files listing all the frequencies on one line with the associated SPL levels on the 
next line is equally valid, as is listing all the frequencies on separate lines with the 
SPL values following.  After the frequencies are read, the program checks to 
ensure that the frequencies are appropriate based on the previous information.  
That is, if the calculation is to be done with one-third octave bands, the frequency 
list must contain 31 bands.  Additionally the first band is checked to be 10 Hz.  
This means that the input spectrum is to be from 10 – 10,000 Hz.  If the mode of 
calculation is narrow band the program ensures that the first frequency is equal 
to the frequency increment from the input file.  Also the last frequency must be 
equal to the frequency spacing times the number of frequencies. 
 
 If the loop has been completed once already, the program skips the above 
step and reads the next ambient data line from the file.  Next, the program calls 
GetBands to read the time and SPL history from the file.  The number of time 
increments was specified when the program read the header of the data section.  
The program then reads this length of data from the file.  The frequencies are 
checked for consistency with the specified bandwidth.  If the frequency 
bandwidth is more than 5 Hz from the specified bandwidth then the flag is set to 
stretch the data.  The algorithm defined by Ollerhead is completed in the 
CalcAud function.  The discussion of that portion of the program follows.   
 
 The probability from the CalcAud function is written to the maxPOD and 
all POD file.  If the data is fractional octave with the number of frequencies equal 
to 31 the function PrimePrep is called on the data.  All this does is to eliminate 
the elements of the 10 - 10,000 Hz array that are without the 50 – 10,000 Hz 
range of the d` calculation.  Unless there was an error in the PrimePrep the 
Dprime function is called.  The results of this function are written to the output 
file.  Once this is completed the next data line is read. 
 
CalcAud 
 

This function is to calculate the audibility of the SPL spectrum against the 
ambient.  It is based on the implementation of a method described by Ollerhead 
in 1974.  The calculation procedure as described in the documentation is: 

 
1. Convert the input sound pressure level spectrum to the users 

working power spectral density spectrum 
a. The number of requested bands is limited to 2048 
b. Frequency bandwidth cannot be less than 15 Hz 
c. Maximum frequency is 8,000 Hz 

2. Initialize the Listener Criteria Critical Band differentials for detection 
distances (maximum, median, minimum) 
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a. Based on criteria specified in the original 1974 TR (page 
109)  

b. Alone(-3.0, 0.0, +3.0) 
c. Crowd (-4.0, -3.0, -2.0) 

3. Compute the absolute threshold for each frequency 
a. Based on 6th order polynomial fit defined in 1974 TR 

4. Compute Critical Band level for the ambient and stimulus data.   
a. Based on Greenwood’s published relation for critical 

bandwidth 
b. Units of BARK 
c. Computed at the user specified frequencies 

5. Determine audibility by summing the audibility in each band 
a. Determined by comparison of signal with the combination of 

the background and absolute tone threshold. 
6. Use listener criteria to assign a probability of detection 

 
For the start of the procedure, if the resolution is fractional octave and all 

of the stimuli are below the level of the background the function returns zeros.  
Next, the levels are converted from centibels to decibels.  The program permits 
the user to provide information in different frequency resolutions in the ambient 
and stimuli definitions.  Neither is required to have the specified frequency 
resolution in the input file.  Regardless of whether the data is sparsely populated 
or not the Stretch function converts the narrow band information into the Master 
Data Format (MDF).  For the fractional octave bands, this is accomplished in the 
THOCPR function.  In this case the Stretch function is nothing more than a dead 
function that sends the data to be converted to the THOCPR function, as the 
number of input data is 31.  This function is never called when the number of 
bands is equal to 31 so this code will NEVER execute.  Rather the stretch 
function will only be used for the call to the NRBNPR function to define the MDF 
for the narrow band input data.  It would be suggested that the stretch function 
be replaced with direct calls to the NRBNPR function. 

 
 After converting the data to the MDF the absolute tone thresholds are 
calculated across the MDF bands through the TONE function.  This is where the 
6th order curve fit is used to compute the tone threshold.  Next the critical bands 
for both the single and crowd are calculated in CRBand.  The audibility of the 
signal is determined for each of the critical bands using Equation 1. 
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Equation 3-1:  Audibility Equation. 
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 The probability of detection is determined by comparing the calculated 
audibility to the audibility of the crowd and single.  This difference is sent to 
detProb where the aural detectability parameter is computed for the difference.  
Finally the maximum audibility is determined. 

Description of the Stretch function as implemented in AUDIBRNM 
 

The STRETCH function that is called at the onset of the audibility 
calculation is used to expand or contract the narrow band and constant 
bandwidth input data before the critical band calculation.  STRETCH calls two 
different functions, one for the narrow band and the other for the one-third octave 
bandwidth.  These functions are similar but will be evaluated the same way.   
 
THOCPR – The stretching function for one-third octave band 
 

This function as initially coded for I Can Hear It Now (ICHIN) in 1986.  It 
has been updated twice since its initial inclusion.  It is meant to expand or 
contract a one-third octave spectrum. 
 

First we define a value called factor.  This is 21/6 and represents the 
distance from the center frequency to the upper cut-off frequency defined in the 
ANSI standard for fractional octave bands.  The upper frequency is then 
determined by multiplying the center frequency by the factor.  Rather than 
determining the bandwidth by computing the lower frequency, i.e. an additional 
factor of 2-1/6, the bandwidth is determined by finding the difference in two 
adjacent upper frequencies.  Finally, the upper frequency is copied to a variable 
call FMOST. 
 

We assign the value of FREQ to be an integer multiple of the desired 
resolution, RES2 prior to starting through the calculation loop.   
 
For j = 1:length of new array 
 Desired frequency is copied from the array 
 Lower limit of that frequency is determined by subtracting half of the 
desired resolution from the desired frequency. 
 Upper limit is determined by adding half of the resolution 
 If (the upper limit is greater that the last given frequency) 
  Make the value at j equal to the value before it… 
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 Determine the index of the fractional octave band the lower limit falls into 
 Determine the index of the fractional octave band the upper limit falls into 
 If (ilow and iupper are equal) 
  Level at j is equal to the level at ilow/iupper minus the bandwidth of 
the ilow/iupper band 
 Else 
  Determine the fractional part of the energy that is above the lower 
boundary (EL1) 
  Determine the fractional part of the energy that is above the upper 
boundary (EL2) 
  Sum the energy in the bands between  the ilow and iupper. (EL3) 
 
  The jth element is 10*log10(EL1 + EL2 + EL3) – NewBandwidth 
 
 

After the examination of the ThoCPR function it was determined that the 
differences between the ThoCPR and NrbNpr functions are when the bandwidth 
is incorporated in the calculations.  Otherwise the flow of the program is the 
same. 
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Appendix 4 

Hidden Markov Modeling: 
 

There have been attempts to build parametric artificial neural network 
classification models for helicopter identification and classification in the technical 
literature (Elshafei, Akhtar, and Ahmed, 2000).   

 
For this experiment, preliminary development of a Hidden Markov Model 

(HMM) based classifier was undertaken to investigate the potential for predictive 
classification for type of helicopter as well as other noise sources based solely on 
auditory signals.  Preliminary results indicate that this HMM based method is very 
attractive for classification of helicopter audio signals. Using the signals of two 
helicopters, i.e. the MD-902 and the MI-8 for training, the HMM based classifier 
was able to correctly classify 95% of the test data files. 
 

Statistical methods are a good technique to classify such processes as 
they have very good recognition ratios. One statistical method that is used 
extensive is the Hidden Markov Model (HMM). 

 
HMMs are used for source classification because of the positive results in 

recognition ratios, based on the statistical method employed.  There are barriers 
to their use, however, including the large numbers of computations required and, 
to a lesser extent, the large amount of memory required. These make 
implementation on notebook PCs problematic, where the computing and storage 
resources are constrained.  When the unit operates in a low signal to noise ratio 
environments, lower classification ratios also become a significant problem.  

 
The overall view of the HMM is given in Figure 1.  This has been 

organized into three stages.  The input enters the model at the first stage (Stage 
A).  This stage has been trained to classify an assortment of signals, including 
trucks, helicopters, motorcycles, etc.  Once an input stream is classified as a 
helicopter signal, it is used as input for Stage B1. In this stage the input stream is 
classified according to type of helicopter (in this study, MD-902 or MI-8).  In 
Stage C1 and Stage C2 the input is classified as moving towards the observer or 
moving away from the observer.  Note that stages B and C have only the HMM in 
them. They do not require linear predictive coding (LPC) and vector quantization 
(VQ) (described in the following section) and can use the same code book.  
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Figure 4-1: Major blocks of the proposed classification tool 
 
Basically, the input stream is classified in multiple HMM stages that are 

trained to various levels of information that is required. This design reduces the 
computations that are required and also increases the classification ratio. It also 
increases the throughput of the system to classify a given input stream by 
hosting each of the stages on a single core of a processor. 

 
The major blocks of HMM stage A are given in Figure 2. The signals are 

considered as input through a microphone and converted to digital values using 
an A/D converter (not shown in figure). The digital signals are processed through 
a series of noise filters (High-Pass Filter and Low-Pass filter) to attenuate the 
noise. It is passed through an LPC module and a VQ module. The resulting 
codes are input to the HMM block (stage B) that determines the classification of 
the input within the larger category. 

 

 
 

Figure 4-2: Block diagram of the major components of HMM classifier 
Stage A 
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Linear Predictive Coding (LPC) 
 
LPC is used to analyze signals by estimating the spectral peaks, removing 

the effects of the peaks from the input signal by inverse filtering and estimating 
the intensity (or power) and frequency (pitch) of the remaining signal, to arrive at 
the residue signal.  A difference equation is used to determine the peaks from the 
signal by expressing each sample of a digitized input signal as a linear 
combination of representations of previous samples.  The coefficients of this 
difference equation characterize the peaks, which are estimated.  For example, 
the maximum coefficient can be selected as the spectral peak for a given signal.  

  
LPC is used to remove the distortion in the input signal caused by 

variations in signal quality.  The underlying theory behind the LPC model is that a 
given sample can be approximated as a linear combination of past samples. 
Mathematically the value s(n) of a sample at time n could be given as: 

 
Equation 4-2:  LPC  equation 

 
s(n) ≅  a1s(n-1) + a2s(n-2) + a3s(n-3) + …+ aps(n-p)  using previous 

samples. 
 
For this study, 10 previous consecutive samples were used to predict the 

sample value. The main objective was to determine the coefficients, ak, which are 
the linear predictor coefficients that give the minimum error to represent an input 
window of 180 samples.  

 
The basic problem is to determine the set of linear predictor coefficients 

from the digital input signal within an analysis window of 180 samples. These 
coefficients are determined so that they match the properties of a digital filter. 
Since the spectral characteristics of the input vary with time, the predictor 
coefficients must be estimated from a short interval of the signal (180 samples) 
around a given time. The approach is to find a set of predictor coefficients that 
minimize the mean-square prediction error. The standard methods to determine 
the prediction coefficients are the autocorrelation method and the covariance 
method.   In addition to 10 LPC coefficients, we use the power and the pitch of 
the 180 samples of the analysis window to characterize the samples.   These 12 
coefficients are considered as the feature vector and used in latter stages. 

 

Vector Quantization (VQ) 
 
The output of the LPC analysis is a series of feature vectors, which consist 

of the predictor coefficients of the LPC analysis and the root mean square energy 
of the input (the power), and pitch, characterizing the signal of a given window.  
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The vector representation after LPC reduces the required number of samples 
from all possible combinations of coefficients to a 12-tuple-feature vector that 
represents the 180 samples of the analysis window.  A single representation for 
each input is ideal, since each input contains more than one 180-sample window.  
A codebook of vectors is generated from these representations with significantly 
more code items.  This is commonly called vector quantization.  Each feature 
vector is represented by a discrete symbol, determined by the codebook of 
vectors that were generated by the training set.  The codebook vectors represent 
a given set of signals used in the training, which are subsequently used by the 
classifier. During training, all the input signals must represent as many targeted 
scenarios as possible and codes are developed based on the input.  These 
codes are stored in a codebook to be used by the classifier to be as complete as 
possible for classifying auditory signals. 
 

Hidden Markov Model (HMM) 
 
One of the most attractive statistical methods and frequently used 

techniques for classification is the HMM approach.  The underlying assumption of 
the HMM is that the input signal can be well characterized as a parametric 
random process, and the parameters of the stochastic process can be 
determined in a precise, well defined manner.  This has been shown to be a 
highly reliable way of classifying in a wide range of applications. 

 
Basically, in a Markov model each state corresponds to a deterministically 

observable event.  Thus, the output produced by the sources in any given state is 
not random.  Since this is very restrictive, this concept is extended to include the 
case in which the observation is a probabilistic function of the state.  The 
resulting model is a doubly embedded stochastic process with an underlying 
process that is not directly observable, but can be observed through another set 
of stochastic processes that produce the sequence of observations.  

 
Mathematically, an HMM can be characterized by the following: 
1. N, the number of states in the model. Generally the states are 

interconnected in such a way that any state can be reached from other states. 
2. M, the number of distinct observation symbols per state, i.e., the total 

number of code items, (512 for example). 
3. The state transition probability distribution, A. 
4. The observation symbol probability distribution, B. 
5. The initial state distribution, π. 
 
Thus, a complete specification of an HMM requires specification of two 

model parameters, N and M; specification of observation symbols; and, the 
specification of the three sets of probability measures A, B, π. 
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Experiments Conducted 
  
We have conducted experiments to determine the efficacy of the proposed 

tool. Existing audio data of the MD-902 and the MI-8 helicopters were used as 
input data to train the HMM and the test. The data are the same recordings used 
for the human detection study.  This data was segmented to one second audio 
files and converted from floating point wav-file format to unsigned 8-bit integer 
raw format. Fifty percent of the data files were used for training, and the rest was 
used for testing. The selection of the training data files was varied and the HMM 
classifier was trained and tested in each case using the specified set of data files. 
The classification ratios obtained in each of the experiments are given in the 
following table. The HMMs were customized for each of these cases. They are 
not the same settings for each of the experiments. The parameters that were 
customized are the number of state and the number of VQ code items.  

 
 

Table 4-1: Classification ratios achieved in experiments conducted 
 

Training Testing 
Correct 
classification 
ratio 

Experiment 1 First 50 % Second 50 % 88% 
Experiment  2 Odd 50 % Even 50 % 95% 
Experiment  3 Extreme 50 % Middle 50 % 95% 
Experiment 4 Middle 50 % Extreme 50 % 91 % 

 
Each experiment took approximately 40 minutes for training and testing. 

Each one second data file require less than 200 msec to be classified. These 
latencies are based on an AMD Athlon 4800 based machine running at 2.4 GHz, 
using a single core of a dual core processor.  

 
Results of the experiments show a good accuracy for the classification of 

these two helicopters based on a limited number of samples, regardless of how 
the samples were organized for training and testing.  Given additional sample 
sounds, it is anticipated that the accuracy for the model classification would 
increase further. 
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Appendix 5 
 

Abbreviations/Definitions 
 
2AFC   Two Alternative Forced Choice 
AFRL   Air Force Research Laboratory 
ANSI   American National Standards Institute 
d prime (d')  Detection metric, independent of bias 
DARPA  Defense Advanced Projects Research Agency 
dB   Decibel 
FFT   fast Fourier transform 
FORTRAN  Computer language 
HL    Hearing level 
HMM   Hidden Markov Model 
HRTF   Head Related Transfer Function 
Hz   Hertz 
ICHIN   I Can Hear It Now (computational model) 
KEMAR  Knowles Electronic Mannequin for Acoustic Research 
LPC   Linear predictive coding 
MAF   Minimal Audible Field 
MAP   Minimal Audible Pressure 
MATLAB  Computer language 
NASA   National Aeronautics and Space Administration 
NI   National Instruments 
POD   Probability of Detection 
RMS   Root-mean-square 
RNM   Rotorcraft Noise Model (computational model) 
SNR   Signal to noise ratio 
SPL   Sound Pressure Level 
USAAMRDL  U.S. Army Aeromedical Research & Development 

Laboratory 
VC   Vector Quantization 
VI   Visual Interface  
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