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Abstract. In this work, we first prove the existence and uniqueness of a strong
solution to stochastic GOY model of turbulence with a small multiplicative
noise. Then using the weak convergence approach, Laplace principle for solu-
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1. Introduction

The large deviations theory is among the most classical areas in probability theory
with many deep developments and applications [10,11,13,17,35,37]. Although it
appears to be no literature on the large deviation results for stochastic shell model
of turbulence, a few authors have proved the Wentzell–Freidlin type large devi-
ations for the two-dimensional stochastic Navier–Stokes equations with additive
noise (e.g. [6]) and also for multiplicative noise (e.g. [34]). For Donsker–Varadhan
type large deviation study related to Navier–Stokes equations we refer the readers
to Quastel and Yau [32]. For the treatment related to stochastic two-dimensional
vorticity equations see the work of Amirdjanova and Xiong [1]. Several authors
have established the Wentzell–Freidlin type large deviation estimates for a class of
infinite dimensional stochastic differential equations (see for e.g., [4,7,9,20,33]).
In these works the proofs of large deviation principle (LDP) (see Definition 2.2)
usually rely on first approximating the original problem by time-discretization so
that LDP can be shown for the resulting simpler problems via contraction prin-
ciple, and then showing that LDP holds in the limit. The discretization method
to establish LDP was introduced by Wentzell and Freidlin[17].
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Dupuis and Ellis [13] have combined weak convergence methods to the
stochastic control approach developed earlier by Fleming [16] to the large devia-
tions theory. Our work is based on the theory introduced by Budhiraja and Dupuis
[4], where they used the stochastic control and weak convergence approach to ob-
tain the LDP for the family {Gε(W (·))}ε>0, where Gε is an appropriate family of
measurable maps from the Wiener space to some Polish space. Their work relied
on the fact that the LDP is equivalent to Laplace principle (see Definition 2.6)
if the underlying space is Polish, which is in turn a consequence of Varadhan’s
Lemma (see Lemma 2.7) and Bryc’s converse to Varadhan’s Lemma (see Lemma
2.8). We refer the reader to Theorems 1.2.1 and 1.2.3 in Dupuis and Ellis [13].

This work deals with an infinite dimensional shell model, a mathematical
turbulence model that received increasing attention in recent years. Apparently
there are only two previous rigorous works on infinite dimensional shell model,
namely [8] and [2], one in the deterministic case and the other in the stochas-
tic case with additive noise, respectively. In both of these works a variational
semigroup formulation has been introduced. Our present work deals with a more
general stochastic model, with multiplicative noise: the proofs of existence and
uniqueness of strong solutions are considerably more difficult in this case. The
main result of this paper is to prove a large deviation principle for the solution of
the shell model.

The construction of the paper is as follows. In the next section, we give some
definitions and basic properties from the large deviation theory. In later part of
this section, we describe briefly the work of Budhiraja and Dupuis [4] to set up
the ground for our main work. In Sect. 3, we formulate the abstract stochastic
GOY model when the noise coefficient is small. We then prove certain a priori
energy estimates with exponential weight. These estimates together with the local
monotonicity property of the sum of the linear and non linear operators play a
fundamental role to prove the existence and uniqueness of the strong solution. In
the last section, we establish the LDP for the stochastic GOY model perturbed
by a small multiplicative noise.

2. Large deviation principle

In this section, we will give an abstract formulation and basic properties for a
class of large deviation problems. Let us denote by X a complete separable met-
ric space and {Pε : ε > 0} a family of probability measures on the Borel subsets
of X.

Definition 2.1. A function I : X → [0,∞] is called a rate function if I is lower
semicontinuous. A rate function I is called a good rate function if for arbitrary
M ∈ [0,∞), the level set KM = {x : I(x) ≤ M} is compact in X

Definition 2.2. (Large Deviation Principle) We say that a family of probability
measures {Pε : ε > 0} satisfies the large deviation principle (LDP) with a good
rate function I satisfying,
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(i) for each closed set F ⊂ X

lim sup
ε→0

ε logPε(F ) ≤ − inf
x∈F

I(x),

(ii) for each open set G ⊂ X

lim inf
ε→0

ε logPε(G) ≥ − inf
x∈G

I(x).

Remark 2.3. For any given {Pε : ε > 0} there is at most one rate function gov-
erning the large deviations of {Pε : ε > 0}.
Example 2.4. As a simplest example we recall the one dimensional version of
Cramér’s theorem [37]. Let Xn = (Y1 + Y2 + · · · + Yn)/n where {Yj} are indepen-
dent random variables with a common distribution α. Assume that the moment
generating function

M(θ) = E[exp(θY )] =
∫
eθydα(y)

is finite for all θ. Then {Xn} satisfies the LDP with rate function (see [11])

I(x) = sup
θ

[θx− logM(θ)].

Example 2.5. We choose Schilder’s theorem as second example which has many
important applications in large deviation theory, such as, in the derivation of the
Strassen’s renowned Law of Iterated Logarithm, in the Wentzell and Freidlin’s
estimate on the large deviations of randomly perturbed dynamical systems, to
name a few.

Let d ∈ Z
+ and

A0 =
{
φ ∈ C([0,∞); Rd) : φ(0) = 0 and lim

t→∞
|φ(t)|
t

= 0
}
.

For φ ∈ A0 define

‖φ‖A0 = sup
t≥0

|φ(t)|
1 + t

.

Then notice that A0 is a separable real Banach space [13]. Next, we define
H1 = H1([0,∞); Rd) to be the space of φ ∈ A0 with the property that φ(t) =∫ t

0
φ̇(s)ds, t ≥ 0, for some φ̇ ∈ L2([0,∞); Rd) and set ‖φ‖H1 = ‖φ̇‖L2([0,∞);Rd), for

φ ∈ H1.
Now for given T > 0, we define IT : A0 → [0,∞] by

IT (ψ) =
{

1
2

∫ T

0
|ψ̇(t)|2dt if ψ ∈ H1,

∞ otherwise.

Let {W (t)} be a standard Wiener process in R
d. Let the process

Xn(t) =
1√
n
W (t)
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takes values in a Polish space E. Then {Xn} satisfies the LDP on E with the rate
function IT (see [13]).

Definition 2.6. (Laplace Principle) For h ∈ Cb([0, 1]),

lim
n→∞

1
n

log
∫ 1

0

e−nh(x) dx = − min
x∈[0,1]

h(x). (2.1)

Lemma 2.7. (Varadhan’s Lemma [37]) Let E be a Polish space and {Xε : ε > 0} be
a family of E-valued random elements satisfying LDP with rate function I. Then
{Xε : ε > 0} satisfies the Laplace principle on E with the same rate function I if
for all h ∈ Cb(E),

lim
ε→0

ε logE
{

exp
[
−1
ε
h(Xε)

]}
= − inf

x∈E
{h(x) + I(x)}. (2.2)

Lemma 2.8. (Bryc’s Lemma [13]) The Laplace principle implies the LDP with the
same rate function. More precisely, if {Xε : ε > 0} satisfies the Laplace principle
on the Polish space E with the rate function I and if the limit

lim
ε→0

ε logE
{

exp
[
−1
ε
h(Xε)

]}
= − inf

x∈E
{h(x) + I(x)}

is valid for all h ∈ Cb(E), then {Xε : ε > 0} satisfies the LDP on E with rate
function I.

Note that, Varadhan’s Lemma together with Bryc’s converse of Varadhan’s
Lemma state that for Polish space valued random elements, the Laplace principle
and the large deviation principle are equivalent.

Let (Ω,F , P ) be a probability space equipped with an increasing family
{Ft}0≤t≤T of sub-sigma-fields of F satisfying the usual conditions of right conti-
nuity and P -completeness. Let H be a real separable Hilbert space and Q be a
strictly positive, symmetric, trace class operator on H.

Definition 2.9. A stochastic process {W (t)}0≤t≤T is said to be an H-valued Ft-
adapted Wiener process with covariance operator Q if

(1) For each non-zero h ∈ H, |Q1/2h|−1(W (t), h) is a standard one-dimensional
Wiener process,

(2) For any h ∈ H, (W (t), h) is a martingale adapted to Ft.

If W is a an H-valued Wiener process with covariance operator Q with
TrQ < ∞, then W is a Gaussian process on H and

E(W (t)) = 0, Cov (W (t)) = tQ, t ≥ 0.

Let H0 = Q1/2H. Then H0 is a Hilbert space equipped with the inner product
(·, ·)0,

(u, v)0 = (Q−1/2u,Q−1/2v), ∀u, v ∈ H0,

where Q−1/2 is the pseudo-inverse of Q1/2. Since Q is a trace class operator, the
imbedding of H0 in H is Hilbert–Schmidt.
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Let LQ denote the space of linear operators S such that SQ1/2 is a Hilbert–
Schmidt operator from H to H. Define the norm on the space LQ by |S|2LQ

=
Tr(SQS∗).

Let

A=

{
H0-valued {Ft}−predictableprocesses v such that

∫ T

0

|v(s)|20ds < ∞ a.s

}
.

Define the set SN of bounded deterministic controls as,

SN =

{
v ∈ L2([0, T ];H0) :

∫ T

0

|v(s)|20ds ≤ N

}
.

The set SN endowed with the weak topology on L2([0, T ];H0) is a Polish space
[12].

Define AN as the set of bounded stochastic controls by

AN = {v ∈ A : v(ω) ∈ SN ,P-a.s.} .
Let E denote a Polish space, and for ε > 0 let Gε : C([0, T ];H) → E be a
measurable map. Define

Xε = Gε(W (·)).
We are interested in the large deviation principle for Xε as ε → 0.

Assumption 2.10. There exists a measurable map G0 : C([0, T ] : H) → E such
that the following hold:
1. Let {vε : ε > 0} ⊂ AM for some M < ∞. Let vε converge in distribution as

SM -valued random elements to v. Then Gε(W (·) + 1√
ε

∫ .

0
vε(s)ds) converges

in distribution to G0(
∫ .

0
v(s)ds).

2. For every M < ∞, the set

KM =
{

G0

(∫ .

0

v(s)ds
)

: v ∈ SM

}

is a compact subset of E.

For each f ∈ E, define

I(f) = inf
{v∈L2([0,T ];H0):f=G0(

∫ .
0 v(s)ds)}

{
1
2

∫ T

0

|v(s)|20ds
}

(2.3)

where infimum over an empty set is taken as ∞.
We now state an important result by Budhiraja and Dupuis [4].

Theorem 2.11. Let Xε = Gε(W (·)). If {Gε} satisfies the Assumption (2.10), then
the family {Xε : ε > 0} satisfies the Laplace principle in E with rate function I
given by (2.3).

Remark 2.12. 1. Notice that since the underlying space E is Polish, the family
{Xε : ε > 0} satisfies the LDP in E with the same rate function I.
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2. Assumption 1. is a statement on the weak convergence of a certain family
of random variables and is at the core of weak convergence approach to the
study of large deviations. Assumption 2. essentially says that the level sets
of the rate function are compact.

3. The stochastic GOY model of turbulence

The GOY model (Gledger–Ohkitani–Yamada) [29] is a particular case of so called
“Shell model” (see [18]). This model is the Navier–Stokes equation written in the
Fourier space where the interaction between different modes is preserved between
nearest modes. To be precise, the GOY model describes a one-dimensional cas-
cade of energies among an infinite sequence of complex velocities, {un(t)}, on a
one-dimensional sequence of wave numbers

kn = k02n, k0 > 0, n = 1, 2, . . .

where the discrete index n is referred to as the “shell index”. The equations of
motion of the stochastic GOY model of turbulence have the form

dun

dt
+ νk2

nun + i
(
aknu

�
n+1u

�
n+2 + bkn−1u

�
n−1u

�
n+1

+ckn−2u
�
n−1u

�
n−2

)
= fn + σn(t, un)

dwn(t)
dt

, for n = 1, 2, . . . , (3.1)

along with the boundary conditions

u−1 = u0 = 0. (3.2)

Here u�
n denotes the complex conjugate of un, ν > 0 is the kinematic viscosity

and fn is the Fourier component of the forcing. a, b and c are real parameters
such that energy conservation condition a+ b+ c = 0 holds (see [19,29]). For the
standard model a = −1, b = 1/2 and c = 1/2. For each n, wn is one-dimensional
Brownian motion and the noise coefficient σn is assumed to satisfy the following
properties,
a.1. For all t ∈ [0, T ], there exists a positive constant K1 independent of t and n

such that,

|σn(t, un)|2 ≤ K1k
2
n|un|2,

a.2. For all t ∈ [0, T ], there exists a positive constant K2 independent of t and n
such that,

|σn(t, un) − σn(t, vn)|2 ≤ K2k
2
n|un − vn|2.

3.1. Functional setting

Let H be a real Hilbert space such that

H :=

{
u = (u1, u2, . . .) ∈ C

∞ :
∞∑

n=1

|un|2 < ∞
}
.



Vol. 16 (2009) Large deviations for the stochastic shell model of turbulence 499

For every u, v ∈ H, the scalar product (·, ·) and norm | · | are defined on H as

(u, v)H = Re

∞∑
n=1

unv
�
n, |u| =

( ∞∑
n=1

|un|2
)1/2

.

Let us now define the space

V :=

{
u ∈ H :

∞∑
n=1

k2
n|un|2 < ∞

}
,

which is a Hilbert space equipped with the norm

‖u‖ =

( ∞∑
n=1

k2
n|un|2

)1/2

.

The linear operator A : D(A) → H is a positive definite, self adjoint linear
operator defined by

Au = ((Au)1, (Au)2, . . .), where (Au)n = k2
nun, ∀u ∈ D(A). (3.3)

The domain of A, D(A) ⊂ H, is a Hilbert space equipped with the norm

‖u‖D(A) = |Au| =

( ∞∑
n=1

k4
n|un|2

)1/2

, ∀u ∈ D(A).

Since the operator A is positive definite, we can define the power A1/2 ,

A1/2u = (k1u1, k2u2, . . .), ∀u = (u1, u2, . . .).

Furthermore, we define the space

D(A1/2) =

{
u = (u1, u2, . . .) :

∞∑
n=1

k2
n|un|2 < ∞

}

which is a Hilbert space equipped with the scalar product

(u, v)D(A1/2) = (A1/2u,A1/2v), ∀u, v ∈ D(A1/2),

and the norm

‖u‖D(A1/2) =

( ∞∑
n=1

k2
n|un|2

)1/2

.

Note that V = D(A1/2). We consider V ′ = D(A−1/2) as the dual space of V .
Then the following inclusion holds

V ⊂ H = H ′ ⊂ V ′.
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We will now introduce the sequence spaces analogue to Sobolev functional spaces.
For 1 ≤ p < ∞ and s ∈ R

Ws,p :=

⎧⎨
⎩u = (u1, u2, . . .) : ‖As/2u‖p =

( ∞∑
n=1

(ks
n|un|)p

)1/p

< ∞
⎫⎬
⎭ ,

and for p = ∞

Ws,∞ :=
{
u = (u1, u2, . . .) : ‖As/2u‖∞ = sup

1≤n<∞
(ks

n|un|) < ∞
}
,

where for u ∈ Ws,p the norm is defined as

‖u‖Ws,p = ‖As/2u‖p.

Here ‖ · ‖ denotes the usual norm in the lp sequence space. It is clear from the
above definitions that W 1,2 = V = D(A1/2).

Remark 3.1. For the shell model we can reasonably assume that the complex
velocities un are such that |un| < 1 for almost all n. Then

‖u‖4
l4 =

∞∑
n=1

|un|4 ≤
( ∞∑

n=1

|un|2
)2

= |u|4,

which leads to H ⊂ l4.

We now state a Lemma which is useful in this work. We omit the proof since
it is quite simple.

Lemma 3.2. For any smooth function u ∈ H, the following holds:

‖u‖4
l4 ≤ C|u|2 ‖u‖2. (3.4)

3.2. Properties of the linear and nonlinear operators

We define the bilinear operator B(·, ·) : V ×H → H as

B(u, v) = (B1(u, v), B2(u, v), . . .),

where

Bn(u, v) = ikn

(
1
4
u�

n+1v
�
n−1 − 1

2
(u�

n+1v
�
n+2 + u�

n+2v
�
n+1) +

1
8
u�

n−1v
�
n−2

)
.

In other words, if {en}∞
n=1 be a orthonormal basis of H, i.e. all the entries of en

are zero except at the place n it is equal to 1, then

B(u, v) = i

∞∑
n=1

kn

(
1
4
u�

n+1v
�
n−1 − 1

2
(u�

n+1v
�
n+2 + u�

n+2v
�
n+1) +

1
8
u�

n−1v
�
n−2

)
en.

(3.5)

The following lemma says that B(u, v) makes sense as an element of H,
whenever u ∈ V and v ∈ H or u ∈ H and v ∈ V . It also says that B(u, v) makes
sense as an element of V ′. Here we state the following lemma which has been
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proved in Constantin et al. [8] for the Sabra shell model, but one can also prove
the similar estimates for the GOY model (see [2]).

Lemma 3.3. (i) There exist constants C1 > 0, C2 > 0,

|B(u, v)| ≤ C1‖u‖|v|, ∀u ∈ V, v ∈ H, (3.6)

and

|B(u, v)| ≤ C2|u|‖v‖, ∀u ∈ H, v ∈ V. (3.7)

(ii) B : H ×H → V ′ is a bounded bilinear operator and for a constant C3 > 0

‖B(u, v)‖V ′ ≤ C3|u||v|, ∀u, v ∈ H. (3.8)

(iii) B : H×D(A) → V is a bounded bilinear operator and for a constant C4 > 0

‖B(u, v)‖V ≤ C4|u||Av|, ∀u ∈ H, v ∈ D(A). (3.9)

(iv) For every u ∈ V and v ∈ H

(B(u, v), v) = 0. (3.10)

We now present one more important property of the nonlinear operator B
in the following lemma which will play important role in the later part of this
section. The proof is straightforward and uses the bilinearity property of B.

Lemma 3.4. If w = u− v, then

B(u, u) −B(v, v) = B(v, w) +B(w, v) +B(w,w).

With above functional setting and following the classical treatment of the
Navier–Stokes equation, and in order to simplify the notation one can write the
stochastic GOY model of turbulence (3.1) in a Hilbert space H in the following
way,

du+ [νAu+B(u, u)] dt = f(t)dt+ σ(t, u)dW (t) (3.11)
u(0) = u0, (3.12)

where u = (u1, u2, . . .) ∈ H, the operators A and B are defined through (3.3)
and (3.5), respectively, f = (f1, f2, . . .), σ(t, u) = (σ1(t, u1), σ2(t, u2), . . .), and
W = (w1, w2, . . .). Here (W (t)t≥0) is a H-valued Wiener process with trace class
covariance, and the space LQ has been defined in Sect. 2. The noise coefficient
σ : [0, T ] × V → LQ(H0;H) is such that it satisfies the following hypotheses:

A.1. The function σ ∈ C([0, T ] × V ;LQ(H0;H))
A.2. For all t ∈ (0, T ), there exists a positive constant K such that |σ(t, u)|2LQ

≤
K(1 + ||u||2).

A.3. For all t ∈ (0, T ), there exists a positive constant L such that for all u, v ∈ V ,
|σ(t, u) − σ(t, v)|2LQ

≤ L||u− v||2.
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Remark 3.5. The above hypotheses can be verified from the assumptions (A.1 −
A.2) on the noise coefficients. Notice that, Q : H → H is a trace class covariance
(nuclear) operator and hence compact. So H0 = Q1/2H is a separable Hilbert
space and the imbedding of H0 in H is Hilbert–Schmidt. Let {en}∞

n=1 be the
eigenfunctions of Q (may not be complete). Then Qen = λnen, where each λn is
positive real and

∑
n λn < ∞. Note,

|σ(t, u)|2LQ
=

∞∑
m,n=1

|(σhm, en)|2 =
∞∑

m,n=1

λm|(σem, en)|2

= (σQ1/2, σQ1/2) = Tr(σQσ),

where {hm}, with hm =
√
λmem,m = 1, 2, . . . are orthonormal basis in H0.

Then, using assumption (A.1) and letting λ = sup1≤n<∞ λn < ∞, one can
have

|σ(t, u)|2LQ
=

∞∑
n=1

λn|σn(t, un)|2 ≤ ( sup
1≤n<∞

λn)
∞∑

n=1

|σn(t, un)|2

≤ K1λ

∞∑
n=1

k2
n|un|2 ≤ K(1 + ‖u‖2

V ),

which shows that hypothesis (A.2) holds.
Similarly,

|σ(t, u) − σ(t, v)|2LQ
≤ λ

∞∑
n=1

|σn(t, un) − σn(t, vn)|2

≤ λK2

∞∑
n=1

k2
n|un − vn|2 = L‖u− v‖2

V .

Thus the hypothesis (A.3.) holds true.
Thus in the abstract setting of stochastic GOY model, the assumptions (a.1–

a.2) are required on the noise coefficient to impose the hypotheses (A.1–A.3) in
the Hilbert space valued construction.

In the following lemma, we will show that sum of the linear and nonlinear
operator is locally monotone in the l4-ball.

Lemma 3.6. For a given r > 0, let us denote by Br the closed l4-ball in V :

Br = {v ∈ V ; ‖v‖l4 ≤ r} .
Define the nonlinear operator F on V by F (u) := −νAu−B(u, u). Then for any
0 < ε < ν

2L , where L is the positive constant that appears in the condition (A.3),
the pair (F,

√
εσ) is monotone in Br, i.e. for any u ∈ V and v ∈ Br

(F (u) − F (v), w) − r4

ν3
|w|2 + ε|σ(t, u) − σ(t, v)|2LQ

≤ 0, (3.13)

where w = u− v.
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Proof. First note that,

ν(Aw,w) = ν‖w‖2.

Next using the Lemma 3.4 and Eq. (3.10) from Lemma 3.3, we have

(B(u, u) −B(v, v), w) = (B(v, w) +B(w, v) +B(w,w), w) = (B(w, v), w).

Now using the definition of the operator B and Eq. (3.4) from Lemma 3.2, we get
for C > 0,

|(B(w, v), w)| =

∣∣∣∣∣
∞∑

n=1

ikn

[
1
4
v�

n−1w
�
n+1w

�
n − 1

2
(w�

n+1v
�
n+2 + w�

n+2v
�
n+1)w

�
n

+
1
8
w�

n−1v
�
n−2w

�
n

]∣∣∣∣
≤ C‖v‖l4‖w‖l4‖w‖
≤ ‖v‖l4 |w|1/2‖w‖3/2

≤ ν

2
‖w‖2 +

27
32ν3

|w|2‖v‖4
l4 .

Since v ∈ Br, the above relation yields

−(B(w, v), w) ≤ ν

2
‖w‖2 +

r4

ν3
|w|2.

Hence by the definition of the operator F ,

(F (u) − F (v), w) ≤ −ν

2
‖w‖2 +

r4

ν3
|w|2. (3.14)

Finally, using condition (A.3) and that ε < ν
2L we get the desired result. �

Remark 3.7. Notice that the trilinear operator can also be estimated as follows,

|(B(w, v), w)| ≤ C|v||w|
(

sup
1≤n<∞

kn|wn|
)

≤ C|v||w|‖w‖W 1,∞

≤ C|v||w|‖w‖V ,

as it is obvious that,

‖w‖W 1,∞ = ‖A1/2w‖∞ ≤ ‖A1/2w‖2 = ‖w‖V .

Then

|(B(w, v), w)| ≤ ν

2
‖w‖2 +

1
2ν

|w|2|v|2.

Proceeding as in the previous Lemma one can see that the operator F (u) =
−νAu−B(u, u) is also locally monotone in l2-ball. But in this paper we prefer to
work with l4-local monotonicity, since it is better as the norm is weaker.
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3.3. Energy estimate and existence theory

Let Hn := span {e1, e2, . . . , en} where {ej} is any fixed orthonormal basis in H
with each ej ∈ D(A). Let Pn denote the orthogonal projection of H to Hn. Define
un = Pnu, not to cause any confusion in notation with earlier un. Let Wn = PnW .
Let σn = Pnσ. Define un,ε as the solution of the following stochastic differential
equation in the variational form such that for each v ∈ Hn,

d(un,ε(t), v) = (F (un,ε(t)), v)dt+ (f(t), v)dt+
√
ε(σn(t, un,ε(t))dWn(t), v),

(3.15)

with un,ε(0) = Pnu(0).
The standard theory of finite-dimensional stochastic differential equations

[21] guarantees the existence of a unique solution to (3.15) under the assumptions
(A.1–A.3) if f ∈ L2([0, T ],H) and u(0) is F0 measurable and in L2(P ).

Theorem 3.8. Under the above mathematical setting let f be in L2([0, T ],H), u(0)
be F0 measurable and E|u(0)|2 < ∞. Let un,ε denote the unique strong solution
of the stochastic differential equation (3.15) in C([0, T ],Hn). Then with K as in
condition (A.2), the following estimates hold:

For all ε < ν
2K , and 0 ≤ t ≤ T ,

E|un,ε(t)|2 +
ν

2

∫ t

0

E‖un,ε(s)‖2ds ≤ E|u(0)|2 +
1
ν

∫ t

0

‖f(s)‖2
V ′ds+ εKT,

(3.16)

and for all ε < 1
2K2 ∧

(√
ν
K + 1

2 − 1√
2

)2

E

[
sup

0≤t≤T
|un,ε(t)|2 +

ν

2

∫ T

0

‖un,ε(t)‖2dt

]
≤ C

(
E|u(0)|2,

∫ T

0

‖f(t)‖2
V ′dt, ν, T

)
.

(3.17)

Also, for any δ > 0 and ε < 3ν
2K ,

E|un,ε(t)|2e−δt +
ν

2

∫ T

0

E‖un,ε(t)‖2e−δtdt ≤ E|u(0)|2

+
1
δ

∫ T

0

|f(t)|2e−δtdt+
εK

δ
. (3.18)

Moreover, if we suppose that f ∈ L4([0, T ],H) and E|u(0)|4 < ∞, then for all
ε < ν

3K and 0 ≤ t ≤ T ,

E

[
sup

0≤t≤T
|un,ε(t)|4e−δt + Cν

∫ T

0

‖un,ε(t)‖2|un,ε(t)|2e−δtdt

]

≤ E|u(0)|4 + Cδ,T

∫ T

0

‖f(t)‖4
V ′e−δtdt+

εM

δ
. (3.19)
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Proof. Replacing v with un,ε in (3.15) and using the properties of the operators
A and B, we notice that,

d|un,ε(t)|2 + 2ν‖un,ε(t)‖2dt
= 2(f(t), un,ε(t))dt+ εTr(σn(t, un,ε(t))Qσn(t, un,ε(t)))dt

+2
√
ε(σn(t, un,ε(t)), un,ε(t))dWn(t).

Using the inequality

2ab ≤ δa2 +
1
δ
b2

on 2(f(t), un,ε(t)) and using the condition (A.2), we obtain

d|un,ε(t)|2 + 2ν‖un,ε(t)‖2dt ≤ (ν‖un,ε(t)‖2 +
1
ν

‖f(t)‖2
V ′)dt

+εK(1 + ‖un,ε(t)‖2)dt+ 2
√
ε(σn(t, un,ε(t)), un,ε(t))dWn(t).

Define

τN = inf
{
t : |un,ε(t)|2 +

∫ t

0

|un,ε(s)‖2ds > N

}
.

Then integrating one can deduce

|un,ε(t ∧ τN )|2 + (ν − εK)
∫ t∧τN

0

‖un,ε(s)‖2ds

≤ |u(0)|2 +
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ds+ εK

∫ t∧τN

0

ds

+2
√
ε

∫ t∧τN

0

(σn(s, un,ε(s)), un,ε(s))dWn(s).

Let ε < ν
2K . Then taking expectation on both sides, and using the fact that the

the stochastic integral appeared in the last term of right hand side in the above
estimate is a martingale, and hence has a zero average, we get

E

[
|un,ε(t ∧ τN )|2 + (ν − εK)

∫ t∧τN

0

‖un,ε(s)‖2ds
]

≤ E|u(0)|2 +
1
ν

∫ t∧τN

0

‖f(s)‖2
V ′ds+ εKT,

thus we have the result (3.16).
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To prove (3.17), we proceed in the similar way as above, but we take supre-
mum upto time T ∧ τN before taking the expectation,

E

[
sup

0≤t≤T∧τN

|un,ε(t)|2 + (ν − εK)
∫ T∧τN

0

‖un,ε(t)‖2dt

]

≤ E|u(0)|2 +
1
ν

∫ T∧τN

0

‖f(t)‖2
V ′dt+ εKT

+2
√
εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

(σn(s, un,ε(s)), un,ε(s))dWn(s)
∣∣∣∣
]
. (3.20)

By means of Burkholder–Davis–Gundy inequality, condition (A.2) and Cauchy–
Schwartz inequality,

2
√
εE

[
sup

0≤t≤T∧τN

∣∣∣∣
∫ t

0

(σn(s, un,ε(s)), un,ε(s))dWn(s)
∣∣∣∣
]

≤ 2
√

2εKE

⎡
⎣
(∫ T∧τN

0

(1 + ‖un,ε(t)‖2)|un,ε(t)|2dt
)1/2

⎤
⎦

≤ 2
√

2εKE

⎡
⎣ sup

0≤t≤T∧τN

|un,ε(t)|
(∫ T∧τN

0

(1 + ‖un,ε(t)‖2)dt

)1/2
⎤
⎦

≤
√

2εK

[
E

(
sup

0≤t≤T∧τN

|un,ε(t)|2
)

+ E

∫ T∧τN

0

‖un,ε(t)‖2dt+ T

]
. (3.21)

Replace (3.21) in (3.20),

(1 −
√

2εK)E
[

sup
0≤t≤T∧τN

|un,ε(t)|2
]

+ (ν − εK −
√

2εK)
∫ T∧τN

0

‖un,ε(t)‖2dt

≤ E|u(0)|2 +
1
ν

∫ T∧τN

0

‖f(t)‖2
V ′dt+KT (ε+

√
2ε). (3.22)

Let

ε <
1

2K2
∧
(√

ν

K
+

1
2

− 1√
2

)2

.

Note T ∧τN → T a.s. as N → ∞. Thus taking the limit in the above estimate
(3.22) as N → ∞, one can get the desired energy estimate (3.17).

Next, we consider the function e−δt|un,ε(t)|2 for δ > 0 and apply the Itô
Lemma to get,

d
[|un,ε(t)|2e−δt

]
+ 2ν‖un,ε(t)‖2e−δtdt+ δ|un,ε(t)|2e−δtdt

= [2(f(t), un,ε(t)) + εTr(σn(t, un,ε(t))Qσn(t, un,ε(t)))] e−δtdt

+2
√
ε(σn(t, un,ε(t)), un,ε(t))e−δtdWn(t). (3.23)
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Note that

2(f(t), un,ε(t)) ≤ δ|un,ε(t)|2 +
1
δ
|f(t)|2.

Hence upon writing (3.23) in the integral form, taking expectation and using
condition (A.2), one can get

E|un,ε(t)|2e−δt + 2νE
∫ T

0

‖un,ε(t)‖2e−δtdt

≤ E|u(0)|2 +
1
δ

∫ T

0

|f(t)|2e−δtdt+ εKE

∫ T

0

(1 + ‖un,ε(t)‖2e−δtdt,

which yields the estimate (3.18) for all ε < 3ν
2K .

To prove (3.19), we first apply Itô Lemma on the function |un,ε(t)|4e−δt to
get,

d
[|un,ε(t)|4e−δt

]
+ 4ν‖un,ε(t)‖2|un,ε(t)|2e−δtdt+ δ|un,ε(t)|4e−δtdt

= |un,ε(t)|2 [4(f(t), un,ε(t)) + 8εTr(σn(t, un,ε(t))Qσn(t, un,ε(t)))] e−δtdt

+4
√
ε(σn(t, un,ε(t)), un,ε(t))|un,ε(t)|2e−δtdWn(t). (3.24)

Using the fact that

4(f(t), un,ε(t))|un,ε(t)|2 ≤ Cδ|f(t)|4 + δ|un,ε(t)|4,
and applying the condition (A.2) and integrating we have,

|un,ε(t)|4e−δt + (4ν − 8εK)
∫ t

0

‖un,ε(s)‖2|un,ε(s)|2e−δsds

≤ E|u(0)|4 + Cδ

∫ t

0

|f(s)|4e−δsds

+4
√
ε

∫ t

0

(σn(s, un,ε(s)), un,ε(s))|un,ε(s)|2e−δsdWn(s).

Finally, taking supremum in 0 ≤ t ≤ T , then taking expectation on both sides and
using the Burkholder–Davis–Gundy inequality on the stochastic integral term, we
get the estimate (3.19). �
Definition 3.9. (Strong Solution) A strong solution uε is defined on a given proba-
bility space (Ω,F ,Ft, P ) as a L2(Ω; L∞(0, T ;H)∩L2(0, T ;V )∩C(0, T ;H)) valued
adapted process which satisfies the stochastic GOY model

duε + [νAuε +B(uε, uε)] dt = f(t)dt+
√
εσ(t, uε)dW (t) (3.25)

uε(0) = u0,

in the weak sense and also the energy inequalities in Theorem 3.8.

Monotonicty arguments were first used by Krylov and Rozovskii [22] to prove
the existence and uniqueness of the strong solutions for a wide class of stochastic
evolution equations (under certain assumptions on the drift and diffusion coeffi-
cients), which in fact is the refinement of the previous results by Pardoux [30,31]
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and also the generalization of the results by Bensoussan and Temam [3]. Menaldi
and Sritharan [27] further developed this theory for the case when the sum of the
linear and nonlinear operators are locally monotone.

Theorem 3.10. Let u(0) be F0 measurable and E|u0|4 < ∞. Let f ∈ L4(0, T ;V ′).
We also assume that 0 < ε < ν

L and the diffusion coefficient satisfies the condi-
tions (A.1–A.3). Then there exists a unique adapted process uε(t, x, w) with the
regularity

uε ∈ L2(Ω;C(0, T ;H) ∩ L2(0, T ;V ))

satisfying the stochastic GOY model (3.25) and the a priori bounds in
Theorem 3.8.

Proof. Part I. (Existence)
Using the a priori estimate in the Theorem 3.8, it follows from the Banach–Alao-
glu theorem that along a subsequence, the Galerkin approximations {un,ε} have
the following limits:

un,ε −→ uε weak star in L4(Ω; L∞(0, T ;H)) ∩ L2(Ω; L2(0, T ;V )),
F (un,ε) −→ F ε

0 weakly inL2(Ω; L2(0, T ;V ′)), (3.26)
σn(·, un,ε) −→ Sε weakly in L2(Ω; L2(0, T ; LQ)).

The assertion of the second statement holds since F (un,ε) is bounded in L2(Ω;
L2(0, T ;V ′)). Likewise since diffusion coefficient has the linear growth property
and un,ε is bounded in L2(0, T ;V ) uniformly in n, the last statement holds. Then
uε has the Itô differential

duε(t) = F ε
0 (t)dt+

√
εSε(t)dW (t) weakly in L2(Ω; L2(0, T ;V ′)).

Let us set,

r(t) :=
2
ν3

∫ t

0

‖vε(s)‖4
L4ds, (3.27)

where vε(t, x, ω) is any adapted process in L∞(Ω × (0, T );H). Here we suppress
the dependence of ε in the notation of r to make it easier to read. Then applying
the Itô Lemma to the function 2e−r(t)|un,ε(t)|2, one obtains

d
[
e−r(t)|un,ε(t)|2

]
= e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

+εe−r(t)|σn(t, un,ε(t))|2LQ
dt

+2
√
εe−r(t) (σn(t, un,ε(t)), un,ε(t)) dW (t).
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Integrating between 0 ≤ t ≤ T and taking expectation,

E
[
e−r(T )|un,ε(T )|2 − |un,ε(0)|2

]

= E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

]

+εE
∫ T

0

e−r(t)|σn(t, un,ε(t))|2LQ
dt

+2
√
εE

∫ T

0

e−r(t) (σn(t, un,ε(t)), un,ε(t)) dW (t).

The last term on the right hand side vanishes since the integral inside the
expectation is a martingale. Then by the lower semi-continuity property of the
weak convergence,

lim inf
n

E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

+ε
∫ T

0

e−r(t)|σn(t, un,ε(t))|2LQ
dt

]

= lim inf
n

E
[
e−r(T )|un,ε(T )|2 − |un,ε(0)|2

]

≥ E
[
e−r(T )|uε(T )|2 − |uε(0)|2

]

= E

[∫ T

0

e−r(t) (2F ε
0 (t) − ṙ(t)uε(t), uε(t)) dt+ ε

∫ T

0

e−r(t)|Sε|2LQ
dt

]
.

(3.28)

Now by monotonicity property from Lemma 3.6,

2E

[∫ T

0

e−r(t) (F (un,ε(t)) − F (vε(t)), un,ε(t) − vε(t)) dt

]

−E
[∫ T

0

e−r(t)ṙ(t)|un,ε(t) − vε(t)|2dt
]

+εE

[∫ T

0

e−r(t)|σn(t, un,ε(t)) − σn(t, vε(t))|2LQ
dt

]

≤ 0.
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Rearranging the terms,

E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)un,ε(t), un,ε(t)) dt

+ε
∫ T

0

e−r(t)|σn(t, un,ε(t))|2LQ
dt

]

≤ E

[∫ T

0

e−r(t) (2F (un,ε(t)) − ṙ(t)(2un,ε(t) − vε(t)), vε(t)) dt

]

+E

[∫ T

0

e−r(t) (2F (vε(t)), un,ε(t) − vε(t)) dt

]

+ εE

[∫ T

0

e−r(t) (2σn(t, un,ε(t)) − σn(t, vε(t)), σn(t, vε(t)))LQ
dt

]
.

Taking limit in n, using the result from (3.28) and rearranging, we obtain

E

[∫ T

0

e−r(t) (2F ε
0 (t) − 2F (vε(t)), uε(t) − vε(t)) dt

]

+E

[∫ T

0

e−r(t)ṙ(t)|uε(t) − vε(t)|2dt
]

+εE

[∫ T

0

e−r(t)‖S(t) − σ(t, vε(t))‖2
LQ

dt

]

≤ 0.

Notice that for vε = uε, S(t) = σ(t, uε(t)). Take vε = uε − λwε with λ > 0 and
wε is an adapted process in L2(Ω;C(0, T ;H) ∩ L2(0, T ;V )) Then,

λE

[∫ T

0

e−r(t) (2F ε
0 (t)−2F (uε−λwε)(t), wε(t)) dt+ λ

∫ T

0

e−r(t)ṙ(t)|wε(t)|2dt
]

≤ 0.

Dividing by λ on both sides of the inequality above and letting λ go to 0, one
obtains

E

[∫ T

0

e−r(t) (F ε
0 (t) − F (uε(t)), wε(t)) dt

]
≤ 0.

Since wε is arbitrary, we conclude that F ε
0 (t) = F (uε(t)). Thus the existence of

the strong solution of the stochastic GOY model (3.25) has been proved.
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Part II. (Uniqueness)
If vε ∈ L2(Ω;C(0, T ;H) ∩ L2(0, T ;V )) be another solution of the equation (3.25)
then wε = uε−vε solves the stochastic differential equation in L2(Ω; L2(0, T ;V ′)),

dwε(t) = (F (uε(t)) − F (vε(t)))dt+
√
ε(σ(t, uε(t)) − σ(t, vε(t)))dW (t). (3.29)

We denote σd = σ(t, uε(t)) − σ(t, vε(t)).
We now apply Itô Lemma to the function 2e−r(t)|wε(t)|2 and using the local

monotonicity of the sum of the linear and nonlinear operators A and B, e.g.
equation (3.14), we get

e−r(t)d|wε(t)|2+νe−r(t)‖wε(t)‖2dt ≤ 2r4

ν3
e−r(t)|wε(t)|2dt+εe−r(t) Tr(σdQσd)dt

+2
√
εe−r(t)(σd, w

ε(t))dW (t). (3.30)

Using condition (A.3),

d(e−r(t)|wε(t)|2) + νe−r(t)‖wε(t)‖2dt ≤ εLe−r(t)‖wε(t)‖2dt

+2
√
εe−r(t)(σd, w

ε(t))dW (t).
(3.31)

Finally integrating in 0 ≤ t ≤ T , taking expectation on both sides and noting
ε < ν

L and the fact that
∫ T

0

e−r(t)(σd, w
ε(t))dW (t)

is a martingale for T < ∞, we obtain P-a.s.

E
[
e−r(t)|wε(t)|2

]
≤ E|w(0)|2,

which assures the uniqueness of the strong solution. �

4. Large deviation principle continued

Let us recall the stochastic GOY model in consideration,

duε + [νAuε +B(uε, uε)] dt = f(t)dt+
√
εσ(t, uε)dW (t) (4.1)

uε(0) = ξ,

has a unique strong solution in the Polish space X = C([0, T ];H) ∩ L2(0, T ;V ).
The solution to the stochastic GOY model, denoted by uε can be written as
Gε(W (·)), for a Borel measurable function Gε : C([0, T ];H) → X (see [21], page
310, [38], Chapter X, Corollary 4.2). The aim of this section is to verify that such
a Gε satisfies Assumption 2.10. Then applying the Theorem 2.11 the LDP for
{uε : ε > 0} in X can be established.

The LDP for {uε : ε > 0}in X have been proved here systematically in four
steps. In the first and second Theorems we show the well posedness of certain
controlled stochastic and controlled deterministic equations in X. These results
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help to prove the last two main Theorems on the compactness of the level sets and
weak convergence of the stochastic control equation stated in Assumption 2.10.

Theorem 4.1. For any v ∈ AM , 0 < M < ∞, the stochastic control equation

duε
v(t) + [νAuε

v(t) +B(uε
v(t), uε

v(t))]dt = [f(t) + σ̃(t, uε
v(t))v(t)]dt

+
√
εσ(t, uε

v(t))dW (t), (4.2)
uε

v(0) = ξ ∈ H,

has a unique strong solution in L2(Ω;X), where X = C(0, T ;H) ∩ L2(0, T ;V ),
f ∈ L4(0, T ;V ′) and σ, σ̃ both satisfy the hypotheses A.1–A.3. in Sect. 3.

Proof. We first prove that if uε
v(t) is a strong solution of the stochastic controlled

equation (4.2), the following energy estimate holds:

E

(
sup

0≤t≤T
|uε

v(t)|2 +
∫ T

0

‖uε
v(t)‖2dt

)
≤ C, (4.3)

where

C = C

(
|ξ|2,

∫ T

0

‖f‖2
V ′dt, ν,K, T,M

)

is a positive constant.
To prove the above estimate, we apply Itô formula on |uε

v(t)|2 and integrating
in 0 ≤ t ≤ T ,

|uε
v(t)|2 + ν

∫ t

0

‖uε
v(s)‖2ds

≤ |ξ|2 +
1
ν

∫ t

0

‖f(s)‖2
V ′ds+ 2

∫ t

0

(σ̃(s, uε
v(s))v(s), uε

v(s)) ds

+ ε

∫ t

0

Tr(σ(s, uε
v(s))Qσ(s, uε

v(s)))ds+2
√
ε

∫ t

0

(σ(s, uε
v(s)), uε

v(s)) dW (s).

(4.4)

Notice that,

2
∫ t

0

(σ̃(s, uε
v(s))v(s), uε

v(s)) ds

≤ 2
∫ t

0

|σ̃(s, uε
v(s))|LQ

|v(s)|0|uε
v(s)|ds

≤ ν

4K

∫ t

0

|σ̃(s, uε
v(s))|2LQ

ds+
4K
ν

∫ t

0

|v(s)|20|uε
v(s)|2ds

≤ ν

4

∫ t

0

(1 + ‖uε
v(s)‖2)ds+

4K
ν

∫ t

0

|v(s)|20|uε
v(s)|2ds

≤ ν

4

∫ t

0

(1 + ‖uε
v(s)‖2)ds+

4KM
ν

sup
0≤t≤T

|uε
v(t)|2, (4.5)
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and for ε < ν
4K ,

ε

∫ t

0

Tr(σ(s, uε
v(s))Qσ(s, uε

v(s)))ds ≤ ν

4

∫ t

0

(1 + ‖uε
v(s)‖2)ds. (4.6)

After rearrangement of the Eq. (4.4), we take supremum in time 0 ≤ t ≤ T and
then expectation to get,

E

[
sup

0≤t≤T
|uε

v(t)|2 +
ν

2

∫ T

0

‖uε
v(t)‖2dt

]

≤ |ξ|2 +
ν

2
T +

1
ν

∫ T

0

‖f(t)‖2
V ′dt+

4KM
ν

E

[
sup

0≤t≤T
|uε

v(t)|2
]

+ 2
√
εE

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

(σ(s, uε
v(s)), uε

v(s)) dW (s)
∣∣∣∣
]
. (4.7)

The last term of the above equation can be estimated in a similar manner as in
(3.21),

2
√
εE

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

(σ(s, uε
v(s)), uε

v(s)) dW (s)
∣∣∣∣
]

≤
√

2εK

[
E( sup

0≤t≤T
|uε

v(t)|2) + E

∫ T

0

‖uε
v(t)‖2dt+ T

]
. (4.8)

Replacing (4.8) in (4.7), and considering

ε < min
{
ν

4K
,
ν2

8K2
,
(1 − 4KM/ν)2

2K2

}
,

we get the energy estimate (4.3).
The proof of the existence and uniqueness of the strong solution of the

stochastic controlled equation (4.2) follow from the Theorem 3.10, only a few
modifications are needed due to the presence of the control term. �
Theorem 4.2. Let v ∈ L2(0, T ;H0), f ∈ L4(0, T ;V ′) and σ satisfy the hypotheses
A.1.–A.3. in Sect. 3. Then the equation

duv(t) + [νAuv(t) +B(uv(t), uv(t))]dt = f(t)dt+ σ(t, uv(t))v(t)dt, (4.9)

where uv(0) = ξ ∈ H, has a unique strong solution in X=C(0, T ;H)∩L2(0, T ;V ).

Proof. This result can be considered as a particular case of the previous Theorem
4.1, where the diffusion coefficient is absent. �

Next we state a important lemma from Budhiraja and Dupuis [4].

Lemma 4.3. Let {vn} be a sequence of elements from AM for some finite M >
0. Let vn converges in distribution to v with respect to the weak topology on
L2(0, T ;H0). Then

∫ ·
0
vn(s)ds converges in distribution as C(0, T ;H)-valued pro-

cesses to
∫ ·
0
v(s)ds as n → ∞.

Now we are ready to check the Assumptions 2.10.
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Theorem 4.4 (Compactness). Let M < ∞ be a fixed positive number. Let

KM :=
{
uv ∈ C(0, T ;H) ∩ L2(0, T ;V ); v ∈ SM

}
,

where uv is the unique solution in X = C(0, T ;H) ∩ L2(0, T ;V ) of the deter-
ministic controlled equation (4.9), with uv(0) = ξ ∈ H. Then KM is compact
in X.

Proof. Let us consider a sequence {uvn
} in KM , where uvn

corresponds to the
solution of (4.9) with control vn ∈ SM in place of v, i.e.

duvn
(t) + [νAuvn

(t) +B(uvn
(t), uvn

(t))]dt = f(t)dt+ σ(t, uvn
(t))vn(t)dt, (4.10)

with uvn
(0) = ξ ∈ H. Then by weak compactness of SM , there exists a sub-

sequence of {vn}, still denoted by {vn}, which converges weakly to v ∈ SM in
L2(0, T ;H0).

We need to prove uvn
→ uv in X as n → ∞, or in other words,

sup
0≤t≤T

|uvn
(t) − uv(t)|2 +

∫ T

0

‖uvn
(t) − uv(t)‖2dt → 0, (4.11)

as n → ∞.
According to the Theorem 4.2, uv is unique strong solution in X of the deter-

ministic controlled equation (4.9). Hence it is obvious to note that, uv satisfies
the following a-priori estimate

sup
0≤t≤T

|uv(t)|2 +
∫ T

0

‖uv(t)‖2dt ≤ C, (4.12)

where

C = C

(
|ξ|2,

∫ T

0

‖f‖2
V ′dt, ν,K, T,M

)

is a positive constant.
For the proof, we refer the Theorem 4.1, where the stochastic version of the

above a priori estimate has been worked out.
Let wvn

= uvn
− uv. Then wvn

satisfies the following differential equation

dwvn
(t) + [νAwvn

(t) +B(uvn
(t), uvn

(t)) −B(uv(t), uv(t))]dt
= [σ(t, uvn

(t))vn(t) − σ(t, uv(t))v(t)]dt, (4.13)

which yields

|wvn
(t)|2 + 2ν

∫ t

0

‖wvn
(s)‖2ds

+2
∫ t

0

(B(uvn
(s), uvn

(s)) −B(uv(s), uv(s)), wvn
(s)) ds

= 2
∫ t

0

(σ(s, uvn
(s))vn(s) − σ(s, uv(s))v(s), wvn

(s)) ds. (4.14)
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First note that, from Lemma 3.4,

B(uvn
, uvn

) −B(uv, uv) = B(uv, wvn
) +B(wvn

, uv) +B(wvn
, wvn

).

Using the above expression and the properties (ii) and (iv) of the bilinear operator
B given in Lemma 3.3, one can find

2 |(B(uvn
(s), uvn

(s)) −B(uv(s), uv(s)), wvn
(s))|

= 2 |(B(wvn
(s), uv(s)), wvn

(s))|
≤ 2‖B(wvn

(s), uv(s))‖V ′‖wvn
(s)‖

≤ 2|wvn
(s)| |uv(s)| ‖wvn

(s)‖
≤ ν

2
‖wvn

(s)‖2 +
2
ν

|wvn
(s)|2|uv(s)|2. (4.15)

Also notice that,
∣∣∣∣
∫ t

0

(σ(s, uvn
(s))vn(s) − σ(s, uv(s))v(s), wvn

(s)) ds
∣∣∣∣

≤
∫ t

0

|((σ(s, uvn
(s)) − σ(s, uv(s))) vn(s), wvn

(s))| ds

+
∣∣∣∣
∫ t

0

(σ(s, uv(s))(vn(s) − v(s)), wvn
(s)) ds

∣∣∣∣
≤

√
L

∫ t

0

‖wvn
(s)‖ |wvn

(s)| |vn(s)|0ds

+
∣∣∣∣
∫ t

0

(σ(s, uv(s))(vn(s) − v(s)), wvn
(s)) ds

∣∣∣∣
≤ ν

4

∫ t

0

‖wvn
(s)‖2ds+

L

ν

∫ t

0

|wvn
(s)|2 |vn(s)|20ds

+ sup
0≤t≤T

∣∣∣∣
∫ t

0

(σ(s, uv(s))(vn(s) − v(s)), wvn
(s)) ds

∣∣∣∣ . (4.16)

By the boundedness of {|wvn
(s)|2} in C(0, T ;H), and using the Lemma 4.3, the

second integral on the right side of (4.16) goes to 0 as n → ∞. Therefore, given
any ε > 0, there exists an integer N large so that for all n ≥ N ,

sup
0≤t≤T

∣∣∣∣
∫ t

0

(σ(s, uv(s))(vn(s) − v(s)), wvn
(s)) ds

∣∣∣∣ < ε/2. (4.17)

Consider,

CL,ν = max
{

2
ν
,
2L
ν

}
.



516 U. Manna et al. NoDEA

Applying (4.15), (4.16) and (4.17) in (4.14), one obtains for n ≥ N ,

|wvn
(t)|2 + ν

∫ t

0

‖wvn
(s)‖2ds ≤ CL,ν

∫ t

0

|wvn
(s)|2 (|uv(s)|2 + |vn(s)|20

)
ds+ ε

(4.18)

Hence by Gronwall’s inequality,

sup
0≤t≤T

|wvn
(t)|2 + ν

∫ T

0

‖wvn
(t)‖2dt ≤ εeCL,ν

∫ T
0 (|uv(t)|2+|vn(t)|20+1)dt. (4.19)

The arbitrariness of ε finishes the proof. �

Remark 4.5. From Theorem 4.1 one can see that the equation

duε
vε(t) + [Auε

vε(t) +B(uε
vε(t), uε

vε(t))]dt
= [f(t) + σ(t, uε

vε(t))vε(t)]dt+
√
εσ(t, uε

vε(t))dW (t), (4.20)

with uε
vε(0) = ξ ∈ H, has unique strong solution in L2(Ω;X).

As before, the solution admits a representation uε
vε = Gε(W (·) +

1√
ε

∫ ·
0
vε(s)ds) by pathwise uniqueness of the solution, and the Girsanov theorem.
For all v ∈ L2(0, T ;H0), let uv be the solution of the deterministic control

equation

duv(t) + [νAuv(t) +B(uv(t), uv(t))]dt = f(t)dt+ σ(t, uv(t))v(t)dt,

with initial condition uv(0) = ξ ∈ H.
Note that

∫ ·
0
v(s)ds ∈ C([0, T ] : H0). Define G0 : C([0, T ] : H0) → X by

G0(h) = uv if h =
∫ ·

0

v(s) ds for some v ∈ L2([0, T ] : H0).

If h cannot be represented as above, then define G0(h) = 0.

Theorem 4.6 (Weak convergence). Let {vε : ε >0} ⊂ AM converges in
distribution to v with respect to the weak topology on L2(0, T ;H0). Then Gε(W (·)+
1√
ε

∫ ·
0
vε(s)ds) converges in distribution to G0(

∫ ·
0
v(s)ds) in X, as ε → 0.

Proof. Since SM is Polish, the Skorokhod representation theorem can be intro-
duced to construct processes (ṽε, ṽ, W̃ ε) such that the distribution of (ṽε, ṽ, W̃ ε)
is same as that of (vε, v,W ), and ṽε → ṽ a.s. in the weak topology of SM . Thus∫ t

0
ṽε(s)ds → ∫ t

0
ṽ(s)ds weakly in H0 a.s. for all t ∈ [0, T ]. Without any loss of

generality, we will write (vε, v,W ) in what follows, though strictly speaking, one
should write (ṽε, ṽ, W̃ ε).

Let wε
vε(t) = uε

vε(t) − uv(t). We need to prove,

sup
0≤t≤T

|wε
vε(t)|2 +

∫ T

0

‖wε
vε(t)‖2dt → 0 (4.21)

in probability as ε → 0.
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Notice that, applying similar estimate as in previous Theorem, equation
(4.18), one can get

|wε
vε(t)|2 + ν

∫ t

0

‖wε
vε(s)‖2ds

≤ 3CL,ν

∫ t

0

|wε
vε(s)|2 (|uv(s)|2 + |vε(s)|20 + 1

)
ds

+
∫ t

0

|σ(s, uv(s))(vε(s) − v(s))|2ds+ εK

∫ t

0

(1 + ‖uε
vε(s)‖2)ds

+2
√
ε

∫ t

0

(σ(s, uε
vε(s)), wε

vε(s)) dW (s). (4.22)

We take supremum in 0 ≤ t ≤ T , then expectation on the above inequality, and
use similar estimate (with the help of Burkholder–Davis–Gundy inequality) as in
(3.21) on the last term of the right hand side to get,

E

[
sup

0≤t≤T
|wε

vε(t)|2 + ν

∫ T

0

‖wε
vε(t)‖2dt

]

≤ 3CL,νE

[∫ T

0

sup
0≤t≤T

|wε
vε(t)|2 (|uv(t)|2 + |vε(t)|20 + 1

)
dt

]

+
∫ T

0

|σ(t, uv(t))(vε(t) − v(t))|2dt+ εK(C + T )

+
√

2εK
(
C + T + E

[
sup

0≤t≤T
|wε

vε(t)|2
])

. (4.23)

Assume that ε < 1
2K2 . Then the Gronwall inequality yields

E

[
sup

0≤t≤T
|wε

vε(t)|2 + ν

∫ T

0

‖wε
vε(t)‖2dt

]

≤
(

(ε+
√

2ε)K(C + T ) +
∫ T

0

|σ(t, uv(t))(vε(t) − v(t))|2dt
)

×e3CL,ν

∫ T
0 (|uv(t)|2+|vε(t)|20+1)dt. (4.24)

Since vε → v a.s. in the weak topology of SM , it is clear from the Eq. (4.24) that
as ε → 0,

E

[
sup

0≤t≤T
|wε

vε(t)|2 + ν

∫ T

0

‖wε
vε(t)‖2dt

]
→ 0.
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Let δ > 0 be any arbitrary number. Then by Markov’s inequality

P

{
sup

0≤t≤T
|wε

vε(t)|2 + ν

∫ T

0

‖wε
vε(t)‖2dt ≥ δ

}

≤ 1
δ
E

[
sup

0≤t≤T
|wε

vε(t)|2 + ν

∫ T

0

‖wε
vε(t)‖2dt

]
→ 0 as ε → 0.

Thus

sup
0≤t≤T

|uε
vε(t) − uv(t)|2 + ν

∫ T

0

‖uε
vε(t) − uv(t)‖2dt → 0

in probability as ε → 0. The proof is now complete. �

Remark 4.7. Sabra shell model of turbulence is the other well accepted model in
the literature, and the fundamental difference with the GOY model lies in the
number of complex conjugation operators used in the nonlinear terms which are
responsible for differences in the phase symmetries of the two models, and as a
consequence, Sabra shell model exhibits shorter-ranged correlations than the GOY
model (see [24]). The equations of motion of the stochastic Sabra shell model have
the following form

dun

dt
+ νk2

nun + i
(
akn+1un+2u

�
n+1 + bknun+1u

�
n−1

−ckn−1un−1un−2) = fn + σn(t, un)
dwn(t)

dt
, for n = 1, 2, . . . ,

along with the boundary conditions

u−1 = u0 = 0.

Under the same assumptions on the noise and noise coefficient given in Sect. 3,
and under the same functional setting, the existence and uniqueness of the strong
solution can be established in L2(Ω;C(0, T ;H) ∩ L2(0, T ;V )). Moreover, by pro-
ceeding in the similar fashion as in Sect. 4, one can easily verify the key estimates
and prove the large deviation principle for the solution of the stochastic Sabra
model in the Polish space C(0, T ;H) ∩ L2(0, T ;V ).
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