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Abstract 
Models of complex systems can be differentiated by their ability to reproduce or generate 
system behavior, by their prediction power, by their robustness, or, conversely, by their 
sensitivity to inputs and parameters; by their uncertainty (if captured); and by their 
intelligence. Even the term “prediction” is not unique. First, a first-principle (physically 
based) distributed parameter model could be an excellent predictor if (a) it captures the 
main system behavior, and (b) its parameters and inputs are known accurately; otherwise, 
it would fail, possibly drastically. Second, predictive power depends on the data, on the 
goal, and on the time scale. For example, scheduling of pumping and injection in an 
oilfield for maximum profit over the next 5 years; or pumping from a contaminated 
aquifer in order to maintain certain (low) concentration at a compliance point for the next 
20 years, vs. prediction of plume migration in groundwater towards a nearby river, over 
time: in each case, the model has a slightly different expected function, as well as 
different intelligence type. The paper reviews the recent developments in subsurface fluid 
flow management such as optimization of oil production and groundwater remediation 
(both sharing similar practices, though for different purposes) as a continuous struggle to 
increase intelligence by (a) adapting new tools such as artificial intelligence and dynamic 
stochastic control; (b) attempting to integrate these tools; and (c) reducing uncertainty. 
Although the systems discussed seem specific to the (mathematical) geosciences 
(specifically to oil reservoirs and contaminated aquifers), and although these systems are 
very different from man-made machines, similar rigid structure and reliance on 
differential-integral calculus, as well as the serial processing, knowledge evolution, and 
uncertainty propagation from one discipline to the next exist in most science and 
engineering fields, and so does the need for a paradigm shift. Given the need in adaptive, 
intelligent control/planning/optimization of such systems, the progress of these 
segregated efforts towards a multiresolutional decision support system is inevitable, 
highly desirable, and highly promising. However, we are still facing the challenge of 
performing and defining optimal integration between PDE models and multiresolutional 
representations, and since such integration depends on model quality and data quantity 
and quality, this is an adaptive integration process as well. One criterion for such 
“optimal” integration would be uncertainty reduction (resulting from the integrated MR 
system), which brings up yet another challenge: to define the metrics for uncertainty 
reduction. 
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1. Introduction 

Management of distributed-parameter systems, particularly where complex natural 
processes intersect with human industrial practice and theoretical knowledge, is 
extremely difficult to analyze and optimize. From a knowledge organization perspective, 
this area of practical knowledge is in disarray. For example, knowledge in the petroleum 
industry relates to many scales of representation, yet this fact is not taken into account in 
an organized manner.  

Indeed, the oil industry is a live example of the need to integrate multiple disciplines 
presently not integrated, including huge volumes of raw data (particularly in geophysics) 
and multiple computational and conceptual models of geology, geophysics, and reservoir 
dynamics. Although the need in unification of the bodies of knowledge in these 
disciplines and the associated (tremendous) benefits of analysis enhancement capability 
has been widely recognized, progress in this direction has been very slow. The main 
reason for this is the rigid, segregated, serial process of knowledge and model building – 
from geophysical signals to simulation-optimization of fluid dynamics in porous media – 
a process that has evolved naturally during the last century, where the simulator has 
become the focal junction where all the knowledge and understanding of the physical 
processes and material properties are being filtered and concentrated in the form of 
partial differential equations (PDE that describe mass balance of oil, water, and gas in 3D 
space) whose coefficients (or distributed parameters) suppose to capture the physical-
chemical properties of the medium on a particular scale, everywhere in the modeled 
subsurface/reservoir domain, assuming some “known” boundary conditions and initial 
conditions. In the following, we will use subsurface flow systems, particularly, oil 
reservoirs, as examples of managed, distributed parameter systems. 

Oil reservoirs are complex systems on all scales. Decisions such as pumping and 
injection (schedule and rates), new well placement, and (directional) drilling in an active 
oil field, are typical of the complex relationships between reservoir characterization and 
oil field/reservoir management. The solutions to such problems involve a complex system 
of multiphase flow equations (linked PDE) in a heterogeneous domain (reservoir), as well 
as economical factors such as short-term and long-term oil price, worth of information, 
inventory/storage/delivery, cost of drilling, maintenance, production, etc. Well drilling 
and construction equipment are costly and cannot be afforded as frequently as necessary, 
while prevalent information gaps render decision-making uncertain and hence, risky.  

Yet, the advantages of reservoir simulations should not be underestimated either. 
Models or simulators based on PDE solutions provide physical insight into various 
important flow phenomena, as well as the general behavior of the fluid movements in the 
reservoirs, under scarcity of spatial data typical of both old and young reservoirs, 
particularly the latter. The ability to capture the essence of the complex physics behind 
the reservoir responses to pumping and injection is the strength of the simulator and the 
essence of its intelligence. However, this strength could promptly become its weakness 
where (a) natural geological heterogeneities on certain scales are being missed, or (b) 
physical/chemical/thermodynamic processes are being missed (e.g., leaching 
geochemistry; instability of the oil-water interface), or (c) uncaptured (or erroneous) 
boundary conditions, all of which would lead to wrong predictions. In other words, 
wherever an essential physical phenomenon on any scale is being missed, the simulator 
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looses its intelligence, i.e., its ability to predict short-term reservoir responses and long-
term oil reserves and revenues.  

The main question we attempt to address in this paper is how to merge the 
advantages and use the intelligence of existing models and interpretations in a 
comprehensive intelligent system that could take advantage of such physically based 
intelligence, while eliminating its limitations. In order to answer this question, we first 
need to understand the structure and limitations of current approaches to 
optimization/control of subsurface fluid flow and solute transport. The reader could 
notice that although the problems discussed here seem to be specific to optimization of 
oil production and groundwater remediation, similar rigid structure and reliance on 
differential-integral calculus exist in most engineering fields, and so is the need for a 
paradigm shift when planning/control/optimization become the focus. Yet, we should 
also keep in mind some major difference between the geosciences (or natural systems in 
general) and man-made machines. In hydrogeology and oil reservoirs, we deal with 
multiphase flow in heterogeneous formations, with transient flow and transport 
phenomena occurring on all scales, with nonlocal dependency on (unknown) fluid flow 
everywhere. However, whenever we focus on operations’ scheduling, feedback and feed-
forward, this complex system becomes similar to other complex operations; finding a 
new well location, however, requires considering the complete heterarchy of transient 
flow phenomena in space, often with major data gaps. Such data gaps challenge all 
models, and consequently, any integration of PDE models with MR knowledge 
representations (and/or MRDS). Such integration seems to be data-dependent, and 
requires optimization on its own merit, weighting the robustness, prediction/anticipation 
(goal-oriented) power, the uncertainty associated with different representations, as well as 
uncertainty reduction produced by such integration. 

 
  

2. Current approaches to simulation-optimization-control of 
distributed-parameter, subsurface flow systems 

 
The cutting edge subsurface fluid management such as oil reservoir optimization and 

groundwater remediation control under uncertainty has been moving in three major 
fronts: (1) operations research (including stochastic models and risk assessment); (2) 
stochastic-dynamic control; and (3) artificial intelligence (AI), particularly artificial 
neural networks (ANN), genetic algorithms (GA), and fuzzy logic (FL). However, under 
the current structure of serial, segregated, and isolated “disciplines” that process the 
information from geophysics/explorations to reservoir characterization, reservoir 
simulations (or flow and transport models in hydrogeology), and optimization/control, it 
is impossible for these three fronts to merge into a unified, integrated approach, nor could 
a major progress in oil field management be made. Under the current paradigm, 
optimization/planning/control of these complex systems have been handicapped by 
uncertainty on one hand, and prohibitive computer power & time requirements on the 
other hand, without benefiting from all available information. 

The typical approach to reservoir characterization and management sketched in 
Figure 1 shows the different subsystems that constitute both exploration and production. 
The figure is highly simplified, with many subsystems not shown, such as subdivision of 



 4

exploration (remote sensing, surface- and borehole-geophysics; seismic, electrical, 
electromagnetic, micro-gravity, SP, etc); geologic investigations (structural geology, 
geochemistry, lithology, bio-stratigraphy); subdivision of production (well pattern design, 
injection and pumping, gas, water, and displacing fluids); and well construction, - all of 
which are complex, interdependent, and require real time updating and decision making. 
The figure illustrates current model construction and subsequent optimization.  

Blocks 1 and 2, and, to some extent, Block 3 (conceptual model), represent reservoir 
characterization, which plays a crucial role in exploration and subsequent reservoir 
management. Typically, the conceptual model (Block 3) of the reservoir is an undeclared 
part of the simulator; this is where all the geology is filtered, upscaled, and translated into 
the simulator’s parameters, which inherently entails averaging and discarding of 
information (acting as a low-band filter), including small scale features that may be crucial 
(in which case, their large-scale influences would be modeled as different, large-scale 
parameters – e.g., dispersion coefficient). Most of the assumptions and decisions related to 
reservoir representation are made at the conceptual model stage, and are subject to 
modeler’s understanding and experience.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

      Figure 1. A schematic view of current approaches to reservoir optimization. 
 

Block 4 is the current quantitative “brain” (or predictor), typically a distributed-
parameter, complex PDE solver that may include several linked PDE with their auxiliary 
constitutive functions (mostly determined in the lab, on a lab-scale), or less commonly, a 
cell model, represented by Ordinary Differential Equations (ODE), implying a larger 
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scale, i.e., lower resolution). Within this computational block, additional analytical forms 
are utilized for computing parameters and constitutive relationships, as well as local 
modeling (e.g., the Buckley-Leverett model of displacement). Ideally, the simulator 
contains multiple analytical models functioning at different time scales, and demonstrates 
processes working at different levels of resolution. However, current models are far from 
this ideal.  

Due to the embedded upscaling and loss of information, feedback from the reservoir 
simulator (4) to the geological model (2) is not reliable, except for special cases where 
certain disparity exists between the measuring window and the scale of the geologic 
feature, and where only a piece of the puzzle is missing (e.g., in well testing with an 
appropriate monitoring system in place, or in dual porosity systems where the rock 
properties are well characterized on all scales). Typical inverse or automatic calibration 
procedures determine some local reservoir-fluid interaction “properties” that fit a 
particular (and hence, uncertain) model. Subsequent interpretations of geologic features 
based on inverse modeling (or calibration of the simulator) are, therefore, speculative.  
 
2.1 Reservoir Simulations and Groundwater Modeling Problems 

Historically, modeling of fluids flow in porous media using PDE started by Muskat 
in the 1930’s [52, 53]. Until that point, predictions of reservoir behavior over time was 
merely extrapolations from a (local) “production curves” or “well performance models”, 
which describe cause-effect relationships between production, fluid content (oil, water, 
gas), and pressures in producing and injection wells, over time, using curve 
fitting/regression [66]. The introduction of PDE suddenly provided insight and extended 
the prediction power significantly, providing intelligence to an otherwise a black box 
model. This addition of intelligence has had a sweeping effect, and was extended to 
groundwater and multiphase flows in porous media, including geothermal reservoirs, 
unsaturated flow in soils, and contaminant transport in aquifers (e.g., [9]), while it has 
been further reinforced by a rapid development of numerical methods and ever-increasing 
computer power. The success of the numerical model that could explain and predict the 
subsidence of Venice in the early 70’s [84-86] has been used as a live example of the 
ultimate intelligence of this new tool. By the early 80’s, reservoir engineers and 
hydrogeologists have developed numerous numerical models (or simulators), which, with 
the help of new visualization tools and mainframe computers, could both predict and 
visualize the movement of oil, gas, water, and contaminants (in groundwater), with 
ultimate confidence and optimism due to the exponential growth of computer power and 
the prospect of optimal management. However, before long, it has become clear that once 
applied to geological formations on a scale where the heterogeneity cannot be neglected, 
the strength of the PDE-based model becomes its weakness; this sensitivity, overlooked 
and even welcomed initially (because sensitivity to certain inputs and parameters is 
consistent with the physics of the phenomenon), came to haunt the modelers later on; the 
exaggerated expectations have turned into disappointment and distrust.  

How could this be explained? A reservoir simulator based on PDE requires accurate 
definitions of reservoir properties on assumed certain scales, everywhere in the reservoir, 
in order to reliably represent the flow, and predict reservoir responses. Such near-ideal 
conditions could occur in cases where the scales of heterogeneities are much smaller than 
the simulated domain, and given the particular question being asked, such heterogeneities 
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could be lumped under unique, measurable  reservoir  characteristics that could be 
assumed uniform on a particular scale. While this could be the case in many sandy 
reservoirs and aquifer, on a certain scale, many more reservoirs and aquifers exhibit non-
uniformity on all scales, and thereby, drastically degrade the prediction capability of 
PDE-based models. This has forced reservoir modelers and hydrogeologists to account 
for heterogeneity in any possible way. Due to lack of spatial data, heterogeneity translates 
to uncertainty, and uncertainty translates to randomness, and thus, the PDE become 
random (or stochastic) PDE [e.g., 87], severely complicating and inhibiting prediction 
capability. Moreover, since the uncertainty is on all scales and in all parameters, 
structural model errors add severe, unquantifiable uncertainty to the already uncertain 
solution [58, 54, 82]. Before we reach this bleak conclusion, let us further explore current 
treatment of heterogeneity/uncertainty in reservoir simulations.  
 
2.2 Dealing with data gaps and uncertainty 

We recognize that knowledge of all reservoir flow properties on all scales 
everywhere in the reservoir is impossible even without considering drilling costs. Due to 
the high cost of drilling, there is typically only sparse information on reservoir behavior, 
while geophysical (esp. seismic) data are by far more abundant. As a separate discipline, 
reservoir modelers have no choice but to rely on geological interpretations and limited 
observations of reservoir behavior, while being forced to average and upscale reservoir 
properties using ad-hoc estimates and geostatistical tools. 

The prevalent method to account for heterogeneity (of reservoir properties) and the 
resulting uncertainty is to treat all the data or interpretations related to one or two 
dominant parameters (typically, saturated permeability) statistically, i.e., transforming 
uncertainty into randomness, typically under the assumptions of underlying joint 
probability distribution (PDF) that (assuming ergodicity) represents space and time as 
well. Once a certain parameter is considered random, the PDE solution becomes random 
(or stochastic) as well, and additional theoretical difficulties emerge [56-58, 87]. This 
approach has been developed and used for the last five decades in different areas of 
science and engineering, including stochastic optimization of oil reservoirs [1, 10-12, 20, 
28, 36, 51, 59, 65-66, 80-81] and groundwater remediation [2, 3, 14-15, 19, 21-23, 25-27, 
31, 39-42, 49, 68-73, 77, 83]. Despite remarkable theoretical advances in this difficult yet 
essential extension of the deterministic approach, developments have been limited to 
simple geometries and far-reaching simplifications.  

The use of Monte Carlo Simulations (MCS), where “equally probable” high-
resolution worlds (or realizations) are generated and simulated in order to compute 
ensemble statistics has been used extensively in the areas of reservoir simulations and 
hydrogeology (e.g., [56-58]); however, in practice, such a procedure results in enormous 
(if not prohibitive) computational burden for predictions alone, and becomes practically 
prohibitive for optimization, unless far-reaching simplifications are being made (e.g., 
[28]). In addition to these limitations, the traditional stochastic approach suffers from the 
following drawbacks and inconsistencies: (a) it cannot overcome, nor assess the major 
uncertainty in the model structure (which remain rigid); and (b) it leads to additional 
(now statistical) models with new parameters that are also uncertain; (c) using 
interpretations of well tests that assume homogeneity on a “near well” scale as the basis 
for conditional (stochastic) simulations; (d) using a single “dominant” parameter (on a 
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single scale) as the only random property (otherwise, computations are prohibitive even 
for limited cases); (e) assuming a PDF based on sparse spatial data; (f) assuming 
deterministic boundary conditions despite the significant uncertainty in it; (g) the 
inability to capture the linked physics and chemistry on all relevant scales (thereby, 
missing important phenomena such as front instability (between displacing and displaced 
fluids during enhanced oil recovery, where micro-scale variations trigger and promote 
fingering and bypassing due to capillary and viscosity differences [e.g., 35] and various 
geochemical reactions. Nevertheless, reservoir simulations and groundwater modeling are 
an important basis for approximations, correlations, and physical interpretations, 
including understanding and highlighting of the gaps and limitations of these 
interpretations.  

Further, repeating the MCS chain of simulations and optimization as soon as new 
information arrives is practically impossible under the current scheme. Thus, despite the 
powerful theoretical framework and insight provided by the stochastic approach, this 
approach is yet in infancy, and does not extend beyond a certain definition of parameter 
uncertainty. Indeed, when optimization is attempted, e.g., for a new well placement, the 
computation-intensive stochastic approach becomes impossible, while a partial use of the 
approach (e.g., using only a few Monte Carlo simulations, as in [28, 12, 71], not 
accounting for uncertainty in other parameters, in the conceptual models, and in all 
interpretations and decisions along the path in Figure 1, leads to largely non-optimal 
decisions. If the reduction of intelligence can be measured by the amount of error 
between optimum and non-optimal operation, such a difference implies a significant 
reduction in intelligence gained by physically based models.  

In conclusion, we recognize relationships between uncertainty, model robustness, 
and intelligence; an ideal PDE-based model is highly intelligent in a sense that it can 
predict reservoir behavior at all points in space and time; however, as soon as the model 
structure is inaccurate or model parameters are uncertain, it looses its intelligence to a 
large degree. Practically, this implies that a sensitive model would be “intelligent” as 
long as all necessary data exist and are accurate, but drastically looses its intelligence 
where data are uncertain, inaccurate, or insufficient; on the other hand, a less sensitive 
(more robust) PDE-based model would also be less intelligent to begin with. Thus, we 
seem to face an optimization problem: what model would be the optimal model for a 
particular problem; or better, what combination of models would be optimal in terms of 
data use, (maximum) intelligence, and robustness.   

2.3 Current use of Artificial Intelligence  

Before we answer this question, we should be aware two other sets of models: one 
based on artificial intelligence (AI) methods (also commonly termed soft computing), 
mostly in the context of geologic analysis and oil explorations, and one based on a 
statistical framework, particularly geostatistics and Bayesian statistics. As to AI, tools 
such as artificial neural networks, fuzzy logic, genetic algorithms, and probabilistic 
reasoning, have been used in reservoir characterization [75-76], subsurface flow [29, 63-
64], and well field development and optimization [1, 10-11, 13, 28-30, 59, 62-64].  
Consistent with the AI approach is the excessive use of geostatistics, such as the search 
for best next well placement described in [30], where the authors bypassed the simulator 
altogether, and used indicator kriging, instead, to interpolate expected production and 
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make corresponding decisions. Nevertheless, one of the important outcomes from these 
developments is the recognition of the need in integration of methodologies rather than 
using them in isolation [75]. In particular, the need to address the issues of (a) integrating 
information from various sources with varying degrees of uncertainty; (b) finding 
relationships between measurements and reservoir properties; (c) reducing uncertainty 
and risk; and (d) using all of these to optimize reservoir development and management, in 
real time. However, the progress in this direction has been slow, and fragmented results 
still dominate the field. The main reason for this is the need to translate information 
among the subsystems that constitute an oil reservoir, from geophysics to geology, and 
from geology to reservoir flow properties, and perform all of these translations on 
different scales of information, with different geometric and stratigraphic representations. 
These integration problems, and the overwhelming problem of uncertainty due to lack of 
data in the presence of inherent heterogeneity, have been unresolved, to date, with only 
scattered use of the various computational tools for limited characterization and 
prediction purposes; hence, leading to non-optimal management of oil reservoirs,  water 
resources, and environmental cleanup (groundwater remediation) operations.  

How could these capable AI models be combined with all other models in an 
adaptive framework that will (a) account for all the information (old and new, without 
initial filtering), and (b) allow continual updating and improvement due to continual data 
accumulation. The challenge is, thus, to integrate various measurements/data and models 
in a comprehensive, flexible, adaptive knowledge representation that will use all the 
available information for optimal decision making in the most intelligent way possible. 
Before trying to answer this question, let us review the third approach to 
control/optimization of subsurface flow and transport problems. One step in that direction 
was made by Rogers and co-workers [63, 64] who ‘trained’ a ANN by using multiple 
deterministic flow and transport simulations of a complex aquifer under a pump & treat 
operation, and later [29] for oil reservoir simulation-optimization, and then used the 
efficient ANN as a replacement (“proxy”) for the cumbersome, slow simulator. Due to 
the limited extrapolation power of the ANN, many model runs were needed for the 
training to cover the expected span of possibilities (in the search space), to enable 
optimization of pumping and injection schedules. Although the method used is 
deterministic, as pointed out by the authors, it could, in principle become stochastic by 
generating multiple realizations and running Monte Carlo simulations (MCS), which, 
however, would result in prohibitive computer power. In other words, since the 
unsupervised ANN used is relatively less intelligent than the PDE models, it was used 
only as a minor auxiliary function. We would like to reverse this ranking of intelligence 
in a way that will enable broader conceptualization and knowledge representation. 

 
2.4 Applying Dynamic Control 

Dynamic, stochastic control has been used and further developed mainly for 
groundwater remediation purposes, specifically for pump & treat operations, which are 
similar to oil production operations; while the goal in oil production is to maximize 
production profit (over a certain period), the goal of groundwater remediation is to 
maximize extraction of contaminated water from the aquifer over a reduced period. The 
dynamic-stochastic control approach in this field [6-7, 16-18, 24, 32-34, 37-38, 60-61, 
74] is an extension of the more general stochastic control theories of [8, 50, 67, 78-79]. 
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While under the dynamic control approach, inverse modeling (i.e., updating/calibrating of 
uncertain parameters in a simulator or in a flow and transport model) is done jointly with 
the optimization process (hence, dual control), while feedback control rules enable 
changing of pumping rates (control variables) in response to changing hydraulic heads or 
contaminant concentrations (state variables). The stochastic simulator varies from 
extended Kalman filter to PDE, using perturbation methods and dividing the cost 
function into deterministic and stochastic parts, with the goal of minimizing remediation 
or plume-containment cost while optimizing both sampling and control actions. 
Typically, differential dynamic programming (DDP) is used to compute the deterministic 
control [6] while the solution of the stochastic part of the cost function is obtained 
analytically using stochastic control techniques applied to the governing flow and 
transport equations (PDE), with challenging mathematical derivation that requires a twice 
differentiable cost function. The on-line parameter estimation fed into the flow equation 
enables updating of both state variable estimates and state covariances. In terms of 
formulation of the cost function, the following highlights are worth mentioning: (a) the 
goal is to minimize the average (estimated, probabilistic) cost function; (b) the cost 
function is separable in stages, and according to the dynamic programming approach, 
whatever the initial state and initial decision are, the remaining (future) 
decisions/solutions should constitute an optimal solution based on the current state; i.e., 
the problem is reduced to finding a current optimal control variable, given a cost function 
over the remaining (future) periods, and given the current information state which 
includes all relevant a priori knowledge of the system and its history of observations and 
control; probabilistically, this information state is the conditional probability density 
function of the state at the current period conditioned on all past information; 
consequently, the cost function depends on uncertainty, directly. The two hidden 
elements in this procedure are: (a) the Bayesian approach, and (b) learning (from past 
experience).  

Similar works [24] emphasize the use of all available information to estimate all 
present and future uncertainties, solving the management problem over the designated 
control horizon, applying the optimal control action (pumping or injection) during the 
current time period, and repeating this process at the next decision time, with PDE (flow 
equations) treated as a dynamical state-space system using finite element and finite 
difference techniques, considering (both) transmissivities and boundary conditions 
uncertain, and hence, perturbed in a highly simplified aquifer system, with the goal of 
minimizing pumping (and treatment) costs while maintaining hydraulic heads that 
guarantee containment of the contaminant plume. The results (a) provided insight into 
system response under uncertainty; (b) assessed trade-offs between satisfying goals and 
minimizing uncertainty (based on a simplified uncertainty model); (c) emphasized the 
effect of management decisions at any stage on model predictions in the next step. 
Explicit optimization combined with sensitivity analysis appeared to be an effective 
management approach. Other works [37-38, 60-61] extended the methodology of optimal 
estimation and scheduling of aquifer remediation under uncertainty, by allowing more 
complexity to be introduced, while performing real time (dynamic) feedback from 
measurements, as well as joint (on-line) parameter estimation - optimization and 
stochastic optimization. Subject to constraints and a specified reliability of meeting water 
quality requirements for a current period, the method minimizes the expected value of the 



 10

cost in the next (remaining) periods. A comparison between (adaptive) deterministic 
feedback control and the stochastic control formulated by [37] showed a clear cost 
reduction using the stochastic control formulation, with increasing difference as the 
uncertainty increases. Despite the accommodation of more complexity, and more general 
constraints, dynamic control methods that rely on PDE models are not yet suitable for 
complex real world problems.  

One of the important insights that emerged in this implementation of stochastic 
control is the “probing” and “caution” effects highlighted by Bar Shalom [8]; the effect of 
the stochastic/perturbation part in the dual-control example [of Lee and Kitanidis] is that 
of sensitivity analysis and system excitation (the “probing” effect) followed by 
measurements and gaining information about system parameters that resulted in a 
substantial improvement. A paradigm shift is embedded here: rather than focusing on 
general predictive power (or lack of it), the dynamic control approach anticipates how the 
actual (future) state will deviate from estimated state currently in hand, and steers the 
system to mitigate possible losses (the “caution” effect). These two effects (of probing 
and anticipation/caution) imply yet another effect – that of goal-oriented learning.  

The advantage of dynamic control was demonstrated by [16] who used differential 
dynamic programming to determine the benefits of time-varying optimal groundwater 
pumping policies, with the goal to reduce groundwater concentrations (of a contaminant) 
to acceptable levels. They demonstrated that static pumping policies would cost 45-75% 
more than policies that allow time-varying pumping rates, where the management model 
can “chase” the contaminant plume. Another set of developments along this line [17-18, 
74] made use of the “transition function” (TF) that models (or transforms) the system 
from one state to the next (in the groundwater contamination case, the TF consists of the 
matrices generated by the finite element model at each time step) in order to reduce the 
number of iterations needed for convergence and overall computational time in the 
differential dynamic programming.  

A substantial use of the second derivatives of the transition function in a constrained 
differential dynamic programming (DDP in a complete form) was made [74] with respect 
to a general case pump & treat remediation, including pumping scheduling and finding 
best well location. In this work [74], these derivatives were used to generate feedback 
laws with the aid of the penalty function method (which converts the constrained optimal 
control problem to unconstrained optimization, and consequently, allows flexibility in the 
response of the feedback laws to violation of constraints). These feedback laws describe 
relationships between required corrections of the control variables and weighted 
deviations of observed states from the predicted states. The goal was to find the 
relationships between the second derivatives of the transition function and evolutionary 
feedback laws, where the latter relate deviations from (and hence, required corrections to) 
optimal pumping scheduling and deviations of heads and concentrations (state variables) 
from their anticipated states, through weights discovered/assigned to these state 
deviations. The methods requires, as a first step, to employ a (deterministic) model and 
initial “optimal” pumping policy, which enables to build the first transition function, and 
find relationships between control and state deviations. The feedback laws are obtained 
by adjusting the relative weight assigned to each penalty function (corresponding to each 
control variable).  
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If we disregard the evolutionary nature of the feedback laws, the simple linear 
relationships expressed by the feedback laws (between observed deviation and required 
action) resembles the inverse of action-response functions used in different works [39-
40]. It is interesting to note that while the transition function is derived from the 
governing PDE (flow and transport) model (which could be viewed as an elaborated 
response function model), the feedback law represents cause-effect rules (much like the 
inverse of the transition function) that compensate for model errors, regardless of the 
source of the errors. It is also interesting to note that the evolution of the feedback laws 
over time has an element of memory and learning (from past cause-effect relationships).  
Results from a simplistic example [74] showed to be robust and efficient in terms of 
reducing cost (by 4-51% less than optimization without using a feedback law) as well as 
required computer time, for up to 25% deviations from mean parameter values (i.e., 
uncertainty up to CV = 0.25).  

Although exercised with only small perturbations (hence, small uncertainty) and 
some other limitations, this particular (complete) DDP approach is the first 
control/optimization method that frees itself not only from the need in a rigorous, well 
defined statistical/uncertainty model (with assumed PDF, correlation structure, etc.) but 
also free from both parameter errors and model errors, yet without neglecting uncertainty, 
and indirectly, reducing it, which makes this work a milestone that calls for continuation. 
Other works have coupled optimization with network design (optimal monitoring and 
information extraction from new wells) [7, 31, 40-42, 68], where the former [7] coupled 
sequential development of the groundwater withdrawal management with sampling 
strategies, dynamically, which led to the solution of the withdrawal design using a 
closed-loop stochastic control (dual control) method that includes anticipation of future 
observation locations; the decomposition of the cost function into deterministic and 
stochastic parts, particularly, the inclusion of uncertainty in the cost function leads to 
trade-off between cost of new wells and uncertainty reduction. The sampling network 
design method sequentially selects new measurement locations based on the combined 
effect of the state variable (hydraulic head) uncertainty at that location, and the sensitivity 
of the cost function to that uncertainty. More specifically, new sampling locations are 
selected using the Bayesian approach (to condition new measurements on existing 
information) and based on the product of the sensitivity of the stochastic part of the cost 
function and the modeled (predicted) variance of the state-variable (hydraulic head) at 
that location; that is, the sensitivity of the cost function to the head uncertainty is 
weighted by the magnitude of the prediction error – and vice versa (the prediction error is 
weighted by the sensitivity of the cost function to this error). The head uncertainty is 
evaluated by first-order, second-moment groundwater flow model, where the head 
uncertainty is linked to uncertainty in hydraulic conductivity, boundary conditions, 
recharge, and leakage (all are inputs of the PDE).  
 
3. Interim conclusions 

The theoretical developments and adaptations of methods from the different disciplines 
of operations research, stochastic control theories, and artificial-intelligence/soft-
computing for management of oil reservoirs and groundwater remediation have provided 
insight into 
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a) the effect of uncertainty (even if just in one parameter) on optimal management and 
cost; 

b) the inseparability of the various components of optimal reservoir management, such 
as optimal scheduling and best new well location for either pumping/injection or new 
monitoring wells; 

c) the inseparability between optimal management and characterization;  
d) the relationships between parameter uncertainty, reliability, and risk;  
e) the relationships between parameter uncertainty and cost;  
f) the effect of probing the system, system anticipation, and the “caution” that follows;  
g) the similarity between the components of sensitivity analyses, random perturbations, 

and response functions and their “inverse” - weighted feedback laws; 
h) the ability to compensate for unknown model errors by determining appropriate 

weighted feedback policies, particularly under dynamic feedback control; 
i) the hidden forms of memory and learning that exist in some statistical models 

(particularly Bayesian statistics), particularly where recursive/evolutionary information 
processing takes place, as is the case in some dynamic control systems, and particularly 
where such processing results in corresponding feedback; 

j) the strength of Bayesian approaches in both estimation and uncertainty reduction. 
 
The advantage of the control approach is in shifting the emphasis from one type of 

intelligence – that of predictions of first principle (physically-based) models to goal-
oriented system anticipation (the anticipation of the effect that a control action would 
have on the goal, i.e., on the cost function), as well as shifting sensitivity analysis (of 
general model predictions) to sensitivity of the cost function (to parameter uncertainty 
and particularly, to state uncertainty), which changes the experimental design and overall 
planning. This goal-oriented intelligence is less “ambitious” than the “know-it-all” first-
principle model. Our goal is to increase the intelligence of the goal-oriented anticipating 
model by combining/integrating knowledge and models from all disciplines in a 
multiresolutional decision support system (MR-DSS or MRDS), e.g., [4-5, 43-48].  

 
4. Increasing intelligence with intelligent control  

Fortunately, the area of intelligent control, particularly, the MRDS has been 
developing rapidly during the last two decades, combining the advantages and eliminating 
the limitations of control theories, operations research, and artificial intelligence. For 
example, an intelligent control agent such as MRDS could free the dynamic control from 
its ultimate dependence on the rigid PDE, and can increase its learning, accumulated 
memory, and speed of convergence to optimal solutions by orders of magnitude. 
Moreover, one of the appealing outcomes of the stochastic approach (including stochastic 
PDE) – the effect of conditioning on uncertainty reduction via correlations among 
variables – could be amplified significantly by extending the associations among 
variables on all relevant scales (through advanced MR clustering methods) far beyond 
linear the statistical correlation used in the traditional stochastic approach; the Multi-
Resolutional (MR) knowledge representation in MRDS maximizes the information 
hidden in interdependencies among these variables on all levels of resolution, independent 
of any particular single-scale model. By maximizing extraction of information, the MR 
approach effectively reduces uncertainty and overcomes the problem of lacking and 
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corrupted information. Most importantly, by using intelligent control, specifically, a goal-
oriented MR knowledge representation, we could eliminate the dependency on PDE 
models, and use them just as interpretations and general gap-filler in the process of MR 
rule building (the latter being based on experiences and cause-effect relationships). An 
adaptive MR knowledge representation is the only way to integrate all the methods from 
all disciplines – to benefit from the advantages of the different models and eliminate their 
limitations (particularly their rigid structure); to break through the rigid serial, model-
building process (currently done in segregation and isolation) and (hence) to enable more 
powerful use of data and knowledge from all disciplines; to provide the highest 
uncertainty reduction possible, and efficient global stochastic optimal control of complex 
natural resources systems such as oil reservoirs and groundwater, with the highest 
intelligence and autonomy possible for particular goals. 
 However, we are still facing the challenge of performing and defining optimal 
integration between PDE models and multiresolutional representations, and since such 
integration depends on model quality and data quantity and quality, this is an adaptive 
integration process as well. One criterion for such “optimal” integration would be 
uncertainty reduction (resulting from the integrated MR system), which brings up yet 
another challenge: to define the metrics for uncertainty reduction. 
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