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Alternative Phenomenologies
• Many other phenomenologies for landmine 

detection have been suggested
– Electromagnetic induction (EMI)

– Infrared techniques [Lopez, 2004]

– Seismic & Acoustic-seismic coupling [Sabatier, 
2001.  Scott, 2001]

– Ground penetrating radar (GPR)

– Many others [MacDonald, 2003]

• Note: 
– Due to differences in:

• Landmine types

• Percent clearance requirements
• Other operational requirements

– No “silver bullet” landmine detection 
phenomenology

• Sensor fusion is an active area of research 
[Collins, 2002.  Ho, 2004.]
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Motivation & Goal
• Significant diverse research on landmine detection in time-domain GPR data

– Ground tracking and removal [Gu, 2002.  Abrahams, 2001.  Larsson, 2004. 
Guangyou, 2001]

– Pre-screening [Carevic, 1999.  Zoubir, 2002. Kempen, 2001. Karlsen 2001]

– Feature extraction [Kleinman,1993.  Carevic,1997. Frigui, 2004. Gader, 2004. Ho, 
2004]

– Image segmentation [Verdenskaya, 2006. Bhuiyan, 2006.  Shihab, 2003]

– Etc…

• Many proposed techniques are implicitly based on different underlying models 
of received time-domain data
– Makes direct motivation and comparison of algorithms difficult without expert 

modifications

• Propose an underlying statistical model for GPR responses that incorporates 
spatial variations in response heights and response gains 
– Can formalize development of pre-screener algorithms based on underlying models

• Under what conditions will adaptive algorithms perform well?

• Are other algorithms also applicable?

– Can provide forward generative model of large data sets
• Given parameters, can simulate roads

• Can not model responses from mines, etc.



Outline
• Consider various modeling techniques for GPR data

– Computational concerns – FDTD, transmission lines

– Applicability under fielded (unknown soil property) scenarios

• Incorporating statistical parameterization of transmission line 
models
– Markov Random Fields (MRF)

• Gaussian Markov random fields (GMRF)

– Application of MRFs to parameters of interest in transmission-line model

• Implications of proposed statistical model for pre-screener 
development
– Adaptive maximum likelihood solution for GMRF parameters in GPR 

data time-slices

– Adaptive discriminative algorithms for dual GMRF under both 
hypotheses

• Results & Conclusions / Future work



Modeling of GPR Returns

• Finite difference time-
domain (FDTD) models 
provide state of the art 
modeling of GPR responses
– Highly generalizable

– Computationally expensive

• Require:
– Accurate knowledge of soil and 

anomaly properties

– Locations of discontinuities

– Etc

• Inversion / fielded 
application of FDTD models 
is difficult



Basic Transmission Line Model

• Significant simplification of 
GPR responses
– Treats dielectric 

discontinuities in soils as 
impedance mismatches on a 
transmission line

• Received signal is a sum of 
time-delayed pulses 
– Response depends on: time 

of arrival, gain on received 
pulses 



Restrictions of Transmission Line-Based 

Modeling
• Transmission line models 

assume:
– Planar waves

– Planar interfaces

– Homogeneous transmission 
media

– Etc.

• Obviously these assumptions 
are violated in fielded 
scenarios

• Question:
– Can a statistical model over 
parameters (time of arrival, gain) 
mitigate these violated assumptions?



GMRF Modeling of TOA and Gain

• For simplicity; focus on 

modeling of air/ground 

interface

– Other subtleties for sub-

surface layers

• Estimating TOA is 

straightforward; model as 

GMRF

• Model received gain as 

combination of deterministic 

& stochastic part



Modeling of Received Gain

• Model received gain as 
combination of deterministic 
part (spreading loss)

• Stochastic part (soil 
roughness, dielectric 
properties, etc)

• Image on right shows 
original measured gain, 
deterministic gain, MRF gain

gr = A+B
1

t0

g = gr + gmrf



Proposed Statistical Model

• Combination of simple A-scan 
transmission line modeling & 
spatial statistical modeling of 
underlying gain & time of arrival 
(TOA)

• By applying spatial statistical 
models over A-scan parameters �
computationally tractable 3-D 
volume model for GPR data

Gain

TOA



Sample Generative Model Application

• Images on right show original data (top 
images), synthetic data (bottom images)
– Top figure shows ~500 scans

– Bottom figure shows 50 scans

• Synthetic data only models initial 
ground bounce response
– Both height and gain terms are 

modeled stochastically using Markov 
random fields

– MRF parameters trained using data 
from UK testing site

• Generative model may be useful in its 
own right for simulating responses 
over soils with varying parameters, 
simulating large data sets, etc.
– Modeling sub-surface structure is a 

little more complicated; requires 
parameter estimation techniques, 
statistics for appearance / 
disappearance of sub-surface responses



Implications of Transmission Line MRF 

Modeling of Soils For Pre-Screening

• Consider distribution of data 
in a time-slice

• � Data in time slice also 
MRF, although not closed 
form;
– Assume GMRF

p(Ai,j(tm)) = p(gi,jf(tm − t0i,j ))

Ai,j(tm) = gi,jf(tm − t0i,j )

p(Ai,j(tm)) = p(gt0i,j f(tm − t0i,j ))
+p(gmrfi,jf(tm − t0i,j ))



Target Detection Using GMRF For 

Data Under H0
• Desire LRT:

• Assume data under H1 is ~ improper uniform; 

data under H0 is ~ GMRF 

• Need parameters for GMRF!

• Consistent parameter estimation equations 

[Kashyap, 1983]

λ(x) =
p(x|H1)p(H1)
p(x|H0)p(H0)

p(x(n)|xNn
) =

1√
2πσ2

e−
(x(n)−

∑
n′∈Nn

β
n′

x(n′))2

2σ2

βc = [
∑

s∈Ω x(N(s))x
T (N(s))]−1

∑
s∈Ω x(N(s))x(s)



MPLE MRF Modeling � Weiner 

Hopf?

• Kashyap et al. result 

is very similar to 

Weiner-Hopf 

equations

• Turns out, can 

directly motivate 

Weiner-Hopf from 

maximum pseudo-

likelihood form of 

distributions

d
dw
= 0 = 2Rw − 2ρ

p(x|w,xN ) = 1√
2πσ

exp
(x−wT xN )2

2σ2

maxwEx,xN (log(p(x|w,xN ))

maxwEx,xN log
1√
2πσ

− 1
2σ2 (x−wTxN )2

maxw log
1√
2πσ

− 1
2σ2E(x

2)−wTRw − 2wTρ

w = R−1ρ�

p(x|w) ≈∏s p(xs|w,xNs
)



Motivating Adaptive Pre-Screening

• Last slides illustrated how 

pseudo-likelihood GMRF 

leads to Weiner-Hopf

• Similar arguments (removing 

expected values) show that 

ML estimates of non-

stationary GMRF 

parameters yield LMS 

update equations

• This provides a model-based 

motivation of the application of 

AR based signal processing to 

pre-screening in GPR data

d

dβ
= −2x(n)d(n) + 2xNxTN β̂n

β̂n+1 = β̂n + µxN (x(n)− xTN β̂n)



Discriminative Learning in GMRF 

Models
• Previously H1 ~ improper uniform

• Alternatively, Consider if data 
under H1 is also ~ GMRF

• Can directly solve for discriminative
parameters

• Turns out, for many models the 
form of the discriminative logistic 
function is linear in the weights

• GMRF Models do not lead to 
linear logistic discriminative models

p(yi|xi, θ) = p(xi,yi|θ)∑
k
p(xi,ck|θ)

p(H1|X) = σ(wTx)



Solving For Adaptive Discriminative 

GMRF/GMRF Update Equations

p(xi|xNi
, θ1,H1) =

1√
2πσ

exp
−
(θT1 xNi

−xi)
2

2σ21

agmrf = log
p(H1)
p(H0)

+ log σ0
σ1
− (θT1 xNi−xi)

2

2σ21
+

(θT0 xNi−xi)
2

2σ20

dagmrf

dθ1
= − (θT1 xNi−xi)xNi

σ21

• Turns out

– Given: Θ1,Θ2,σ1,σ2

– Given: xi, yi

σ2 = σ2 + ( 1σ2 − (θT2 ∗xNi−xi)2
σ32

(yi − σ(a))) ∗ µ

σ1 = σ1 + (−1σ1 +
(θT1 ∗xNi−xi)2

σ31
(yi − σ(a))) ∗ µ

θ2 = θ2 +
(θT2 xNi−xi)xNi

σ22
(yi − σ(a)) ∗ µ

θ1 = θ1 +− (θT1 xNi−xi)xNi
σ21

(yi − σ(a)) ∗ µ

New GMRF 

update equations



Advantages of Discriminative 

Classification
• Modeling data under H1 as 

GMRF has several implicit 
advantages
– Provides natural estimation of 

discriminative Akaike 
Information Criteria

– Probabilistic outputs from each 
time-slice allow principled 
depth-bin fusion

• Inclusion of prior information 
regarding target depths

• Can be computationally 
complex, however



Pre-Screener ROC Curves

• Results show sample ROC 
curves for energy (red-dotted), 
LMS (blue), discriminative 
(green-dashed)
– Note, no pre-processing/post-

processing of outputs.

– ROCs not indicative of system 
performance, provide algorithm 
comparison only

• Discriminative algorithm 
provides slight performance 
improvements
– Underlying H1 model (GMRF) 

may be overly simplistic



Other MRF Applications (Image Segmentation)

• Image segmentation for 

target localization

– Improve extracted feature 

SNR, computational 

complexity

• Shown to improve 

performance for target 

identification against AP, 

AT, IED responses



GMRF-HMM For Landmine Detection

• Similar to [Gader, 2001] 
consider locally stationary 
distributions of target 
responses

• Idea: Directly model received data 
as GMRF
– No need for ad-hoc feature 

extraction

– Requires neighborhood system 
N

– Can we simultaneously learn 
parameters of GMRF 
(features) and underlying 
states?

S1
p1(f(x))

S2
p2(f(x))

S3
p3(f(x))

A12

A11 A22

A23

A33

psn(xn|xNn
) = GMRF(θsn , σsn)

psn(xn|x) = psn(xn|xNn
) =



Conclusions & Future Work
• Developing a generative model for GPR responses 

based on spatial stochastic parameterization of the 
transmission line model
– Enables generation of data from sample data; eliminates need 

to estimate soil electromagnetic properties directly

• Proposed model
– Provides direct motivation for application of AR approaches 

to pre-screening

– Motivates application of discriminative approaches to pre-
screening when distribution under H1 is known
• Current GMRF distribution appears to be overly simplistic

• Future work:
– Incorporate model implications to: 

• Ground tracking, image segmentation, feature extraction
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Backup



Adaptive Training Issues

• Haven’t incorporated the p(H1), p(H0) terms in 
adaptive updates; these will need to be set
– Should not be learned adaptively?

• Issues in adaptively training discriminative models 
when we may only see data from H0 – the parameters 
under H1 will be driven to unrealistic values since 
model will do “well” when everything is considered H0
– Solution: Consider library of mine signatures; stochastically 

select from these and for every H0 sample, train the model 
also with a random set of mine data



Image Depth-Bin Fused Decision 

Statistics

• Top image: Energy

• Middle image: LMS Outputs

• Bottom image: p(H1|D,M)



Global Model

• Differentiating:

p(Y|X,M) =∏N

n=1 p(H1|M,Xn)yn(1− p(H1|M,Xn))1−yn

log(p(Y|X,M)) =∑N

n=1 yn log(p(H1|M,Xn))+(1−yn) log(1−p(H1|M,Xn))
p(H1|X) = σ(a)

d
dθ1

=
∑ dagmrf

dθ1
(yn − σ(a))

d
dθ1

=
∑− (θT1 xNi−xi)xNi

σ21
(yn − σ(a))


