

Results of SEI Independent Research and
Development Projects

Len Bass, Paul Clements, Dionisio de Niz, Peter Feiler, Matthew Geiger, Jeffrey Hansen,
Jörgen Hansson, Scott Hissam, James Ivers, Mark Klein, Karthik Lakshmanan, Gabriel Moreno,
Daniel Plakosh, Raj Rajkumar, Kristopher Rush, Cal Waits, Kurt Wallnau, & Lutz Wrage

December 2009

TECHNICAL REPORT
CMU/SEI-2009-TR-025
ESC-TR-2009-025

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2009 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and

derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at per-

mission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

mailto:permission@sei.cmu.edu
mailto:permission@sei.cmu.edu

i | CMU/SEI-2009-TR-025

Table of Contents

Abstract vii

1 Introduction 1
1.1 Purpose of the SEI Independent Research and Development Program 1
1.2 Overview of IRAD Projects 1

2 Modeling and Validating MILS Security Architecture 3
2.1 Purpose 3
2.2 Background 3
2.3 Approach 5

2.3.1 Validating MILS Architectures with the MBE Approach 5
2.3.2 MILS Classification in AADL 8
2.3.3 MILS Classification of AADL Components 9
2.3.4 Information Flows in AADL Models 10
2.3.5 Execution Platform Bindings 12

2.4 Collaborations 13
2.5 Evaluation Criteria 13
2.6 Results 13
2.7 Publications and Presentations 14

3 Relating Business Goals to Architecturally Significant Requirements for Software Systems15
3.1 Purpose 15
3.2 Background 15
3.3 Approach 16
3.4 Collaborations 16
3.5 Evaluation Criteria 17
3.6 Results 17
3.7 Publications and Presentations 21
3.8 Bibliography 21

4 Achieving Predictable Performance in Multicore Embedded Real-Time Systems 23
4.1 Purpose 23
4.2 Background 23
4.3 Approach 25
4.4 Collaborations 25
4.5 Evaluation Criteria 26
4.6 Results 26

4.6.1 Coordinated Allocation, Synchronization, and Scheduling 26
4.6.2 Additional Inefficiencies in MPCP 27
4.6.3 Multicore Real-Time Queuing Theory 29
4.6.4 Mixed-Criticality Scheduling of Real-Time Tasksets on Multiprocessors 30
4.6.5 Zero-Slack Scheduling 32
4.6.6 Zero-Slack Bin-Packing 33

4.7 Publications and Presentations 35
4.8 Bibliography 35

5 Parallel Distributed Acquisition System 37
5.1 Introduction 37
5.2 Purpose and Goals of the Research 37

ii | CMU/SEI-2009-TR-025

5.3 Background 38
5.4 Approach 39
5.5 Success Criteria and Initial Results 40
5.6 External Collaborators 40

6 Programming Models for the Multicore Era 41
6.1 Purpose 41
6.2 Background 42

6.2.1 Varieties of Multicore 42
6.2.2 Concurrency and Parallelism 43
6.2.3 Programming Models 43

6.3 Approach 45
6.4 Collaborations 45
6.5 Observations 46

6.5.1 Programmers Need to “Think Parallel” 46
6.5.2 Not All Programmers Will See the Same Impact 47
6.5.3 Multicore is Mostly About Performance 48
6.5.4 Multicore is New; There Will Be Growing Pains 49

6.6 Results 49
6.7 Bibliography 50

iii | CMU/SEI-2009-TR-025

List of Figures

Figure 2-1: System Perspective on Security 4

Figure 2-2: An Example of Impact on and Interaction of Non-Functional Behavior Due to a Change in
Security 4

Figure 2-3: Conceptual View of a MILS System 6

Figure 2-4: Application Layer View of a MILS System in AADL 7

Figure 2-5: MILS Application Layer Components Bound to Execution Platform 8

Figure 3-1: Some business goals lead to quality attribute requirements (which lead to architectures;
others lead directly to architectural decisions; still others lead to non-architectural
solutions). 16

Figure 3-2: Ten Categories of Business Goals 17

Figure 3-3: Business Models Lie at the Intersection of Strategy, Organization, and Technology 18

Figure 3-4: Stakeholder Model of a Corporation (reproduced from Donaldson [Donaldson 1995]) 18

Figure 4-1: Penalty of Global Synchronization 27

Figure 4-2: Multiple-Priority Inversions Due to Suspension 28

Figure 4-3: Efficiency of Task-Aware Packing 28

Figure 4-4: Comparison of Global Scheduling, Partition Scheduling, and Fast Server 29

Figure 4-5: Effect of Increasing Number of Cores in Highly Variable Workloads 30

Figure 4-6: Benefit of Dropping a Job with Missed Deadlines 30

Figure 4-7: Laxity Utilization Comparison 33

Figure 4-8: Efficiency of ZSBin-Packing 34

Figure 5-1 Parallel Distributed Acquisition System 38

Figure 6-1: Flynn’s Taxonomy 42

iv | CMU/SEI-2009-TR-025

v | CMU/SEI-2009-TR-025

List of Tables

Table 2-1: The MILS Property Set 9

Table 3-1: Business Goals’ Goal-Objects 19

vi | CMU/SEI-2009-TR-025

vii | CMU/SEI-2009-TR-025

Abstract

The Software Engineering Institute (SEI) annually undertakes several independent research and

development (IRAD) projects. These projects serve to (1) support feasibility studies investigating

whether further work by the SEI would be of potential benefit and (2) support further exploratory

work to determine whether there is sufficient value in eventually funding the feasibility study

work as an SEI initiative. Projects are chosen based on their potential to mature and/or transition

software engineering practices, develop information that will help in deciding whether further

work is worth funding, and set new directions for SEI work. This report describes the IRAD

projects that were conducted during fiscal year 2009 (October 2008 through September 2009).

viii | CMU/SEI-2009-TR-025

1 | CMU/SEI-2009-TR-025

1 Introduction

1.1 Purpose of the SEI Independent Research and Development Program

Software Engineering Institute (SEI) independent research and development (IRAD) funds are

used in two ways: (1) to support feasibility studies investigating whether further work by the SEI

would be of potential benefit and (2) to support further exploratory work to determine whether

there is sufficient value in eventually funding the feasibility study work as an SEI initiative. It is

anticipated that each year there will be three or four feasibility studies and that one or two of these

studies will be further funded to lay the foundation for the work possibly becoming an initiative.

Feasibility studies are evaluated against the following criteria:

 Mission criticality: To what extent is there a potentially dramatic increase in maturing and/or

transitioning software engineering practices if work on the proposed topic yields positive re-

sults? What will the impact be on the Department of Defense (DoD)?

 Sufficiency of study results: To what extent will information developed by the study help in

deciding whether further work is worth funding?

 New directions: To what extent does the work set new directions as contrasted with building

on current work? Ideally, the SEI seeks a mix of studies that build on current work and stu-

dies that set new directions.

1.2 Overview of IRAD Projects

The following research projects were undertaken in FY 2009:

 Modeling and Validating MILS Security Architecture

Jorgen Hansson, Lutz Wrage, and Peter Feiler

 Relating Business Goals to Architecturally Significant Requirements for Software Systems

Paul Clements and Len Bass

 Achieving Predictable Performance in Multicore Embedded Real-Time Systems

Dionisio de Niz, Jeffrey Hansen, Gabriel Moreno, Daniel Plakosh, Jorgen Hanson, Mark

Klein, Karthik Lakshmanan, and Raj Rajkumar

 Parallel Distributed Acquisition System

Kristopher Rush, Matthew Geiger, and Cal Waits

 Programming Models for the Multicore Era

James Ivers and Kurt Wallnau

These projects are summarized in this technical report.

2 | CMU/SEI-2009-TR-025

3 | CMU/SEI-2009-TR-025

2 Modeling and Validating MILS Security Architecture

Jorgen Hansson, Lutz Wrage, and Peter Feiler

2.1 Purpose

The Department of Defense (DoD) policy of multi-level security (MLS) has long employed the

Bell-LaPadula and Biba approaches for confidentiality and integrity; more recently, the multiple

independent levels of security/safety (MILS) approach has been proposed. These approaches al-

low designers of software-intensive systems to specify security levels and requirements for access

to protected data, but they do not enable them to predict runtime behavior. In this article, model-

based engineering (MBE) and architectural modeling are shown to be a platform for multi-

dimensional, multi-fidelity analysis that is conducive for use with Bell-LaPadula, Biba, and MILS

approaches and enables a system designer to exercise various architectural design options for con-

fidentiality and data integrity prior to system realization. In that way, MBE and architectural

modeling can efficiently be used to validate security of system architectures and thus gain confi-

dence in the system design.

Initial studies have shown the feasibility of using model-based engineering as a proactive measure

to determine the viability of a system architecture to enforce security. In this project we propose a

model-based engineering (MBE) framework containing techniques for validating MILS architec-

tures. In epitome, this means validating structural rigidity of MILS decomposition and enforce-

ment of assumptions and constraints required by MILS.

2.2 Background

Security and confidentiality
1
 are becoming increasingly important in embedded and real-time sys-

tems, which are characterized to operate under significant resource constraints while ensuring

high levels of dependability (e.g., reliability, availability, safety) as well as security. Encryption,

authentication, security and protection mechanisms add increased bandwidth (CPU, network,

memory), affect temporal behavior of the system as well as power consumption (especially im-

portant in battery-driven, or limited-life time devices (e.g., sensor networks or cellular phones).

Model-based engineering has shown promise in validating non-functional behavior of a system

architecture, and by annotating a model with multiple dimensions of attributes regarding perfor-

mance, power usage, security, etc., it becomes possible to conduct in-depth validation of system

behavior, and also reason about the effects of architectural changes, or changes in, for example,

security requirements.

Security as an architectural concern crosscuts all levels of the system (application, middleware,

operating systems, and hardware). Security requires intra- and inter-level verification and has

immediate effects on the runtime behavior of the system, specifically on other dependability

attributes.

1 Confidentiality addresses concerns that sensitive data should be disclosed to or accessed only by authorized

users (i.e., enforcing prevention of unauthorized disclosure of information). Data integrity is closely related, as it
concerns prevention of unauthorized modifications of data.

4 | CMU/SEI-2009-TR-025

The designer must enforce inter-level and intra-level security through the architecture. Figure 2-1

depicts various system levels involved in the verification of security privileges against confiden-

tiality requirements. The designer seeks to ensure that the software applications do not compro-

mise the confidentiality of the secure information they are exchanging. Consequentially, software

applications must execute on top of a secure operating system, be mapped to a protected and se-

cured hardware memory space, and communicate over a secure communication channel. If the

data is labeled confidential, then, every architectural layer must have a clearance of at least that

level.

Secure

information

Secure

information

SW

application

Operating

system

Hardware

platform

SW

application

Operating

system

Hardware

platform

Communication channel

System 1 System 2

OS runs on a trusted
platform

OS supports
protection of

applications, e.g.,
memory partitioning

Application is trusted
to deal with protected

resources

Communication is
secured, e.g.,

encryption

Figure 2-1: System Perspective on Security

As mentioned earlier, the designer needs to acknowledge that security comes with a cost. Encryp-

tion, authentication, security, and protection mechanisms increase bandwidth demand in terms of

CPU, network, and memory. These increases affect temporal behavior of the system (worst-case

execution time, response time, schedulability, and end-to-end latency) as well as power consump-

tion (especially important in battery-driven or limited-life time devices). Security is interlinked

with the other non-functional behaviors, such as predictability/timeliness and resource consump-

tion, and it inadvertently affects reliability and availability. As a result, security cannot be consi-

dered in isolation. The system designer makes choices to trade these quality attributes against

each other. Figure 2-2 illustrates some of those dependencies on the single model–multiple ana-

lyses view.

Figure 2-2: An Example of Impact on and Interaction of Non-Functional Behavior Due to a Change

in Security

5 | CMU/SEI-2009-TR-025

MILS has been proposed as an approach to building secure systems, and it provides a reusable

framework for high assurance system specification and verification. It is led by the United States

Air Force Research Laboratory, and represents a joint effort across the Air Force, Army, Navy,

National Security Agency, Boeing, Lockheed Martin, and others. The core idea of MILS is to re-

duce the amount of safety/security critical code; reducing the size allows scrutiny and analysis to

be conducted that otherwise would be deemed intractable. To achieve this, MILS adopts the con-

cept of a separation kernel. The identified benefits of using a MILS architecture are

 reduction in physical hardware

 easier control and management of information among various communities of interest

 cheaper development of highly secure systems, as well as a faster time-to-market

 overall increase in safety

 less need for re-architecting systems to meet security standards

2.3 Approach

Modeling of system quality attributes, including security, is often done—when it is done—with

low-fidelity software models and disjointed architectural specifications by various engineers using

their own specialized notations. These models are typically not maintained or documented

throughout the life cycle and make it difficult to obtain a system view. However, a single-source

architecture model of the system that is annotated with analysis-specific information allows

changes to the architecture to be reflected in the various analysis models with little effort; those

models can easily be regenerated from the architecture model. This approach also allows the de-

signer to conduct adequate tradeoff analysis and evaluate architectural variations prior to system

realization, gaining confidence in the architectural design. Models also can be used to evaluate

effects of reconfiguration and system revisions in post-development phases.

To model and validate the confidentiality of a system, we distinguish between general and appli-

cation-dependent validation. General validation of confidentiality is the process of ensuring that a

modeled system conforms to a set of common conditions that support system confidentiality inde-

pendent of a specific reasoning framework for security. MBE takes advantage of the versatile

concept of subjects operating on objects by permissible access (read, execute, append, and write),

a notion introduced by Bell and LaPadula, enabling us to model and validate security at both the

software and hardware levels. This form of validation assumes that subjects and objects are as-

signed a security level that is the minimum representation to enforce basic confidentiality and

need-to-know principles. By contrast, application-specific validation relies on detailed confiden-

tiality requirements and a specific reasoning-based security framework.

2.3.1 Validating MILS Architectures with the MBE Approach

MILS uses two mechanisms to modularize—or to ―divide and conquer‖—in architecting secure

systems: partitions and separation into layers. The MILS architecture isolates processes in parti-

tions that define a collection of data objects, code, and system resources and can be evaluated

separately. Each partition is divided into three layers, each of which is responsible for its own se-

curity domain and nothing else: separation kernel, responsible for enforcing data isolation, control

of information flow, periods processing, and damage limitation; middleware service layer; and

application layer.

6 | CMU/SEI-2009-TR-025

Thus, MILS separates security mechanisms and concerns into the following components types,

classified by how they process data:

 SLS—single-level secure component: processes data at one security level

 MSLS—multiple single-level secure component: processes data at multiple levels, but main-

tains separations between classes of data

 MLS—multi-level secure component: processes data at multiple levels simultaneously

The MILS architecture approach builds on partitioning as one key concept to enforce damage li-

mitation.

At an abstract level, a MILS architecture is a collection of data processing components

(processes) that can communicate with each other. These processes are isolated, such that they

can communication over known communication paths only—that is, there are no covert channels

between any two processes. Isolation of components can be achieved by placing each process on a

different processor and connecting them with one or more networks As shown in Figure 2-3, each

process is labeled with its MILS classification (SLS, MSLS, MLS) and the security levels of the

data it is permitted to process.

Figure 2-3: Conceptual View of a MILS System

Using one processor per MILS process is expensive and adds weight to the system. Also, the net-

work connection adds latency to communication and may limit the available bandwidth. For these

reasons it is preferable to be able to place multiple processes on the same processor. This can be

achieved by a trusted separation kernel (SK) that partitions a single physical computer into a

number of virtual machines or partitions that can each provide an execution environment for a

process. The concept of partitions is also used in avionics systems, where the main motivation is

fault containment. All communication between partitions on the same processor is controlled by

the SK. Many real-world systems contain multiple processing nodes that are connected via one or

more networks. Each processing node can run an SK to manage local partitions, whereas trusted

middleware is needed to control information flow between partitions on different nodes.

A system is secure if all information flows through and between processing components adhere to

the system’s security policy. Information flows inside a process depend on the implementation

 Component

Network

SLS

{L1}

MSLS

{L1, L2}

MLS

{L1, L2}

MLS

{L1, L2}

SLS

{L2}

7 | CMU/SEI-2009-TR-025

and must be evaluated for each individual process. MILS focuses on enforcing the security policy

for information flows between processes. The SK and middleware are trusted to check if data ex-

changed between processes adheres to the policy. In particular, for the Bell-LaPadula security, the

MILS approach guarantees that a system is secure if it is composed of secure components.

There are two possible approaches to enforcing the security policy for inter-partition policy en-

forcement: dynamic and static. Dynamic policy enforcement is needed if a system has a variable

number of processes where a process can communicate with any other process, or the security

level of processes can change at runtime. A static environment has a fixed number of processes

communicating using fixed channels, and the security level of a process remains constant. If a

process exchanges information at different security levels, this must happen through communica-

tion ports that have different but fixed security levels.

In the dynamic case, messages exchanged between components must be labeled with the security

level of the contained data. This security level can be the (current) security level of the sender

processes or the security level of a communication port of the process. The trusted intermediary

(SK and/or middleware) verifies at runtime—based on the message security level and receiver’s

(current) security level—that the security policy allows the delivery of the message to the receiv-

ing process.

In the static case, all communication channels and the security level of data exchanged over them

are known a priori. The conformance of communication paths to the security policy can be veri-

fied statically at design time. It is now sufficient to configure the trusted intermediary to allow

only communication along these pre-determined channels. There is no need to evaluate security

levels at runtime.

The Architecture Analysis & Design Language (AADL) can be used to model a MILS system

with static policy enforcement as outlined in the previous section. For example, an AADL process

can model a MILS partition, and one or more AADL threads can model the execution of a MILS

process inside a partition. Ports and their connections represent a static set of communication

channels along which processes exchange information. We indicate the security level of the in-

formation at the AADL port using an AADL property.

Figure 2-4: Application Layer View of a MILS System in AADL

A MILS SK can be modeled as the software part of an AADL processor. Such a processor also

represents hardware components that execute threads. To indicate the presence of an SK in a pro-

cessor we label the processor as trusted. In AADL we model the fact that a partition executes on a

SLS MSLS MLS

MLS SLS

{L2}

{L2}

{L2} {L2}

{L1}

{L1}

{L2}

{L1} {L1} {L1} {L1}

{L2}

8 | CMU/SEI-2009-TR-025

processor by binding the corresponding AADL process to the AADL processor. The network that

connects a set of processors is modeled as one or more AADL bus components. Connections be-

tween AADL processes that reside on different AADL processors are bound to these bus compo-

nents to model that a communication channel is routed over a certain network. An AADL bus

component represents the physical network and the protocols used in the communication. This

means that trusted middleware is considered to part of the bus. If communication over a network

uses trusted middleware we label the corresponding bus component accordingly. Figure 2-5

shows AADL processes bound to trusted processors and connections bound to a trusted bus. To

simplify the picture, we have grouped processes that run on the same processor in an AADL sys-

tem component. The processor binding is shown at the system level.

Figure 2-5: MILS Application Layer Components Bound to Execution Platform

2.3.2 MILS Classification in AADL

The MILS classification of a subject is a label that expresses if a subject may handle objects of

only a single security level or objects of multiple security levels. In addition, if a subject can han-

dle multiple security levels, the label must capture if a subject that handles objects of multiple

security levels keeps these security levels separate from each other. We use the labels SLS,

MSLS, and MLS. In AADL, we define a property MILS::Classification in a new property set

named MILS. The type of this property, MILS::Classes, is defined as an enumeration containing

the three MILS category labels.

SLS MSLS MLS

MLS SLS

{L2}

{L2}

{L2} {L2}

{L1}

{L2}

{L1} {L1} {L1} {L1}

{L2}

{trusted} {trusted} {trusted}

9 | CMU/SEI-2009-TR-025

Table 2-1: The MILS Property Set

property set MILS is
 Classes: type enumeration (SLS, MSLS, MLS);

 Classification: MILS::Classes
 applies to (system, process, device);

 Partition: aadlboolean => false
 applies to (process);

 Trusted: aadlboolean => false
 applies to (processor, bus);
end MILS;

We assign no default value to the MILS::Classification property, such that the classification of an

AADL component is initially undefined. Assuming that all system, process, and device compo-

nents should be explicitly assigned a MILS classification, we can develop a simple checking pro-

cedure to identify components that still need a classification in a partially refined model. Based on

the component’s features and flows through the component, the analysis can also propose an ap-

propriate label. The MILS classification of a component does not propagate down the contain-

ment hierarchy to subcomponents because the MILS classification does not generally constrain

valid classifications of its subcomponents; it depends only on the component’s features and flows.

The standard AADL semantics of process components are not quite strong enough to model

MILS partitions. AADL processes have their own protected address spaces (space partitioning),

but they may interfere with each other’s timing (i.e., no time partitioning). This opens up the pos-

sibility of covert channels between two processes based on timing variations. We add this re-

quirement to processes through the property MILS::Partition.

The third property, MILS::Trusted, can be applied to execution platform components. It indicates

if a component guarantees the enforcement of constraints on the allowed communication between

application software components that are bound to it.

2.3.3 MILS Classification of AADL Components

A MILS classification can be assigned to AADL process, device, and system components. Exter-

nal enforcement of security policy is possible for interactions between components of these cate-

gories.

An AADL process component represents a protected address space that contains executable code

and data. The code inside a process is executed by one or more threads, where each thread may

potentially access all memory locations that belong to its containing process and execute all code

loaded into that process. The execution platform cannot enforce any constraints on these intra-

process interactions. In contrast, interactions between threads that execute in different processes

can be controlled by the underlying execution platform. Any communication that leaves the

process’s address space can only be performed indirectly by invoking services of the execution

platform.

An AADL device component typically represents a physical device together with associated de-

vice driver software. The device driver runs in kernel space and is considered part of an AADL

10 | CMU/SEI-2009-TR-025

processor component. User-space device drivers are modeled as explicit threads. Any communi-

cation between a device and a process can be controlled by the execution platform because the

communication must either use platform services for communication or use shared data under the

control of the platform’s MMU.

AADL system components can represent a complete system or a subsystem composed of execu-

tion platform and application software components. We include system components as MILS

components to support hierarchical and incremental modeling.

System, process, and device components can be treated as isolated entities, where the isolation is

enforced by the AADL semantics. Other application software components are not isolated, that is,

there is no a priori guarantee that other application software components do not interact in a way

that violates MILS constraints. As an example, assume that an AADL model contains a process

that has two thread subcomponents. If the model does not indicate any interactions between these

two threads, if must be verified, by inspecting the actual thread implementations as used in the

deployed system, that there are indeed no interactions between them. In contrast, the execution

platform can prevent threads from exchanging data across process boundaries if such an interac-

tion is not specified in the model.

Execution platform components are not assigned a MILS classification because all application-

specific manipulation of data happens in application software components. Application software

components are bound to execution platform components, such that we need to capture if an ex-

ecution platform component can support only application components that have a single security

level or if application components with multiple security levels can be bound to it. The property

MILS::Trusted indicates if an AADL processor component provides verified enforcement me-

chanisms to limit communication between processes and devices to only those that are explicitly

allowed, that is, are declared as connections in the AADL model. Similarly, a bus is trusted if it

only allows information flow along communication paths that are specified in the model.

Memory components are passive and cannot cause unintended information flow, such that they

are implicitly trusted.

2.3.4 Information Flows in AADL Models

In AADL we model explicit information flow into and out of application software components

with features (ports, parameters, and shared data access). These features are connected to model

the path along which information flows either between features of components on the same level

of the containment hierarchy or between subcomponent features and features of their enclosing

component. The directions of features and connections determine the direction of information

flow. Explicit information flows through a component can be represented in an AADL component

type by a flow specification that starts at an incoming feature and ends at an outgoing feature.

Such a flow specification is an abstraction of the path along which information flows from the

incoming feature through contained connections and subcomponents to the outgoing feature.

In addition to explicitly connected features, remote subprogram calls implicitly introduce infor-

mation flows via subprogram parameters (and outgoing subprogram ports) whose values are

transferred between the calling and the called thread. The direction of subprogram parameters and

ports determines the direction of information flows. If a remotely called subprogram has access to

11 | CMU/SEI-2009-TR-025

shared data, its features may be the source or destination of a flow through the component con-

taining the subprogram.

2.3.4.1 Information Flow Through Ports and Parameters

Port connections represent the main sources of information flows between components and

through each individual component. Connections between processes features are directional such

that information flow along a connection can be unidirectional or bidirectional.

An AADL port group represents an aggregation of ports and nested port groups. A security level

is associated with each individual port that is part of a port group; it is assigned in a port group

type declaration. In general, information flows of different security levels may pass through the

same port group. To evaluate MILS characteristics of a port group, it would then be necessary to

inspect the security level of each port inside a port group and flows between individual ports. In

the following, we limit the discussion to models without port groups.

Parameter connections are very similar to port connections. The only difference is that at least one

end of a parameter connection must be a subprogram parameter.

2.3.4.2 Shared Data Access

If processes that share data are deployed on the same execution platform, shared data can be im-

plemented by mapping the same portion of physical address space into these processes’ virtual

address spaces. This way all processes that share the data have direct access to the same memory

area containing shared data. Even though the memory mapping may constrain the access to read-

only or write-only access, this is not sufficient because it is not based on the security level of the

data. From a MILS perspective, access to this shared data area happens outside the control of the

execution platform such that it cannot enforce constraints on information flow via the shared data.

In practice this means that all participating processes must be SLS processes of the same security

level because the shared data area breaks the encapsulation that is otherwise guaranteed by the

process. In an AADL model, a situation where shared data is mapped into the virtual address

space of multiple processes, the shared data component is placed inside a system component that

also contains processes that access the data.

Another implementation option is to place the data in the virtual address space of one participat-

ing process and have all access by other processes under the control of the execution platform.

The process that owns the shared data has full access to the shared data and can read or write data

of any security level. A certain security level for the shared data can only be enforced if it is

owned by an SLS process. In AADL, we model this by making a shared data component a sub-

component of a process. This process makes the data available to others via access features.

The execution platform has full control over all accesses to shared data when the data is placed

inside a separate address space. In AADL this is modeled as a data subcomponent inside a process

that contains only data subcomponents and no threads. Such a process represents a passive data

store, and if all data subcomponents have the same security level, the process is an SLS compo-

nent. The individual data subcomponents can also have different security levels such that the

process is an MSLS component.

12 | CMU/SEI-2009-TR-025

2.3.5 Execution Platform Bindings

Processes are deployed on an execution platform. The deployment assigns a processor for execut-

ing the process’s threads, and memory to store its code and data. The deployment includes the

configuration of communication channels between processes on the same processor and assign-

ment of network communications to connections between processes deployed on different proces-

sors.

2.3.5.1 Binding Processes to Processors

A trusted processor includes an SK. Such a processor supports execution of partitions as isolated

components (space and time partitioning). In an AADL model this means that multiple processes

with property MILS::Partition=>true can be bound to an AADL processor with property

MILS::Trusted=>true. The trusted processor also supports enforcement of constraints on the in-

formation flows between partitions. It must be configured to allow only those communication

paths between partitions that are present in the AADL model. The configuration can be derived

directly from the AADL model. Allowed communication paths include

1. semantic connections between thread subcomponents of different partitions

2. bindings of subprogram calls and server subprograms (as recorded in Actual_Subprogram_

Call property associations), where the call crosses a partition boundary

An SK needs certain hardware support to provide space and time partitioning.

For an untrusted processor one must assume that arbitrary communication between processes can

occur. Such a processor does not provide time partitioning and may not be able to enforce con-

straints on communication paths. As a result, only SLS processes of the same security level may

be bound to an untrusted processor. Note that, from a MILS perspective, it is irrelevant if an un-

trusted processor provides space partitioning, such that an untrusted processor can have any com-

bination of hardware and operating system.

2.3.5.2 Binding Devices to Processors

An AADL device component represents a physical device and kernel mode driver components.

The binding to a processor determines which process executes the kernel-mode driver. Secure

bindings are the same as for processes: If the processor is untrusted, devices bound to it must be

SLS devices of the same security level as the processes on the processor. MSLS and MLS devices

must be bound to a trusted processor.

2.3.5.3 Binding Processes to Memory

Processes are bound to memory components that provide the address space for the process.

AADL allows binding of processes to overlapping memory address ranges. An overlapping bind-

ing is only allowed if the involved processes are SLS components of the same security level.

Overlapping memory binding can be used to share data among SLS processes. MSLS and MLS

processes must always be bound to disjoint memory address ranges.

13 | CMU/SEI-2009-TR-025

2.3.5.4 Binding Connections to Buses

Connections between processes that are bound to different processors must be bound to AADL

bus components. These buses represent a physical communication medium together with the

communication protocols. In MILS terms, a bus represents the trusted middleware layer. A trusted

bus includes a protocol that can be configured to allow only certain explicitly specified communi-

cation paths. The configuration can be derived from the connections and actual subprogram call

properties in an AADL model. A trusted bus can carry information at different security levels.

An untrusted bus can only carry data at a single security level because it does not guarantee deli-

very to the intended recipient only. For example, any node can listen to all packages traveling on

an Ethernet bus. This implies that encryption must be added to make such an Ethernet trusted.

2.4 Collaborations

This project was done in collaboration with Professor Sang H. Son, Professor John A. Stankovic,

and Vibha Prasad (all with the University of Virginia, Charlottesville), and Julien Delange (Ecole

Nationale Supérieure des Télécommunications).

Valuable comments on the approach and work were also provided by Mark Vanfleet and Matthew

Benke (both with the National Security Agency).

2.5 Evaluation Criteria

The key criteria for evaluating this project have been the ability to model and validate security

and confidentiality using a MILS approach.

2.6 Results

Architectural modeling provides a platform for multi-dimensional, multi-fidelity analysis that is

conducive for use with Bell-LaPadula, Biba, and MILS approaches and enables a system designer

to exercise various architectural design options for confidentiality and data integrity prior to sys-

tem realization. In that way, architectural modeling can efficiently be used to verify security of

system architectures and thus gain confidence in the system design. Using AADL and OSATE,

the SEI has developed analytical techniques to represent standard security protocols for enforcing

confidentiality and integrity, such as Bell-LaPadula, Chinese wall, role-based access control, and

Biba model; and model and verify security using system architecture according to flow-based ap-

proaches early and often in the life cycle. In this project we have demonstrated that an MBE ap-

proach is conducive to the validation concerns most critical to MILS, including:

 validating the structural rigidity of architecture, such as the enforcement of legal architectur-

al refinement patterns with security components. This decomposition can be applied to com-

ponents, connectors, and ports. Confidence in validation of an architecture increases with the

fidelity of the modeling; MBE analysis can be applied at different architectural refinement

levels.

 architectural modeling and validation of assumptions underlying MILS, such as assumptions

with respect to damage limitation and partitioning, and validation of separation in time (and

space). The AADL supports the modeling of partitions and virtual processors. The virtual

14 | CMU/SEI-2009-TR-025

machine mechanism is recognized as a key concept for providing robustness through fault

containment, because it provides time and space partitioning to isolate application compo-

nents and subsystems from affecting each other due to sharing of resources. This architecture

pattern can be found in the ARINC 653 standard.

 architectural modeling validation that software applications executing on top of a secure op-

erating system map to a protected and secured hardware memory space and communicate

over secure communication channels. It also enables the analysis of security measures early

and throughout the development life cycle.

The validation through architectural modeling of system security given confidentiality require-

ments of data objects and security clearance by users must include validation of (i) software archi-

tecture and (ii) system architecture where the software architecture is mapped to hardware com-

ponents. Through an MBE approach, by mapping the entities of a software architecture (e.g.,

processes, threads, and partitions) to a hardware architecture (consisting of, for example, CPUs,

communication channels, and memory), we can ensure that the hardware architecture supports

required security levels.

2.7 Publications and Presentations

Presentations have been given in a number of forums including the SAE AADL Standards User

Group meeting, the Open Group RT-Forum Workshop, Institute for Defense and Government

Advancement (IDGA), Aerospace Vehicle Systems Institute (AVSI), Lockheed Martin, and Uni-

versity of Illinois, Urbana-Champaign.

The following publications are related to this project. All conference papers were accompanied by

a presentation.

[Hansson 2008a]

J. Hansson, P. H. Feiler, & A. Greenhouse. ―Enforcement of Quality Attributes for Net-centric

Systems through Modeling and Validation with Architecture Description Languages.‖ Fourth

Congress on Embedded Real-Time Systems (ERTS), January 2008.

[Hansson 2008b]

J. Hansson, P. H. Feiler, & J. Morley. ―Building Secure Systems Using Model-Based Engineering

and Architectural Models.‖ Crosstalk 21, 9 (September 2008).

[Hansson 2009]

J. Hansson, P. H. Feiler, J. Hugues, B. Lewis, & J. Morley. ―Model-Based Validation of Security

and Non-Functional Behavior Using AADL.‖ submitted to IEEE Security & Privacy, Special Is-

sue on Complex Architectures (2009).

15 | CMU/SEI-2009-TR-025

3 Relating Business Goals to Architecturally Significant
Requirements for Software Systems

Paul Clements and Len Bass

3.1 Purpose

The purpose of this project is to facilitate better elicitation and capture of high-pedigree quality

attribute requirements. Towards this end, we want to be able to reliably elicit business goals and

understand how those business goals influence quality attribute requirements and architectures.

The elicitation approaches produced by this project can be used by

 requirements engineers who want to produce a set of requirements helpful to the software

architect

 outside parties such as those running a Quality Attribute Workshop

 the architect in case nobody else has done it

3.2 Background

A quality attribute of a system is a characteristic that helps to determine whether the system is fit

to use. A runtime quality attribute is one that can be observed and measured as the system ex-

ecutes; these include security, performance, availability, and usability. Development time quality

attributes are those that can be measured by observing the development or maintenance of the

system and include many that are not included in standard lists of quality attributes [Donaldson

1995] such as modifiability, reusability, shortening time to market, conformance with legal and

regulatory requirements, etc. All of these, however, affect the fitness for use of a system to its

stakeholders (the definition of quality in ISO standard 9126) and have, potentially, strong and de-

finable influence on the architecture of the system being constructed.

Properties of a system that help determine whether it satisfies the fitness criteria derive from busi-

ness goals. If we ask, for example, ―Why do you want this system to have a really fast response

time?‖ we might hear that this will differentiate the product from its competition and let the de-

veloping organization capture market share, or that this will make the end user more effective and

this is the mission of the acquiring organization, or other reasons having to do with the satisfac-

tion of some business goal.

Not all business goals for an organization are achieved through the construction of a system. For

example, ―reduce cost‖ may come about by lowering the facility’s thermostats in the winter or

reducing employees’ pensions. Other business goals may directly affect the system without preci-

pitating a standard quality attribute requirement per se. For example, we know of a case where a

manager pressed for an architecture to include a database because the organization’s database

group was currently sitting idle. No requirements specification would capture such a ―require-

ment.‖ And yet that architecture, if delivered without a database, would be just as deficient from

the point of view of the manager as if it had failed to deliver an important user function.

16 | CMU/SEI-2009-TR-025

Figure 3-1 illustrates the salient points. In the figure, the arrows mean ―leads to‖; the solid arrows

highlight the relationships of most interest to architects.

Figure 3-1: Some business goals lead to quality attribute requirements (which lead to architectures;

others lead directly to architectural decisions; still others lead to non-architectural solu-

tions).

3.3 Approach

Our approach was four-fold:

1. We conducted a thorough search of the business literature to collect examples of common

business goals. We had hoped to discover and use an existing taxonomy of business goals

based on decades, if not centuries, of businesses going about achieving specific goals. Such a

taxonomy was not forthcoming. However, the business literature did provide a plethora of

papers on business goals or business models for organizations. Our literature search used the

Proquest ABI/Inform Global database, which covers over 3,000 business-oriented publica-

tions, as well as a simple Google search. In both cases, various combinations of ―business

goals,‖ ―business models,‖ and ―survey‖ or ―studies‖ were used as search terms.

2. We used the results of the survey to produce a canonical set of ten business goal categories.

Our belief is that any specific business goal will fall into at least one of our categories.

3. We crafted a seven-part syntactic structure to unambiguously express a business goal.

4. We designed (and piloted) a method, which we call the Pedigreed Attribute eLicitation Me-

thod (PALM), for articulating and capturing the business goals that underlie the development

and/or acquisition of a software system. Those business goals can then be used as the basis

for an investigation into relevant quality attribute requirements for the system.

3.4 Collaborations

The SEI team consisted of Paul Clements and Len Bass, assisted in the early stages by John Ber-

gey. Our collaborators (providing their own support) included participants in two workshops held

in Pittsburgh and Amsterdam, respectively, plus the pilot application of our business goal elicita-

tion method.

The workshops were intended for us to try out the ideas behind our work, and to receive feedback

from architects and acquirers as to the role of business goals in architecture. At the Pittsburgh

workshop, we were joined by attendees from the U.S. Army, Boeing, Raytheon, Lockheed Mar-

tin, the U.S. Naval Research Laboratory, and VistaPrint, Inc. At the Amsterdam workshop, we

17 | CMU/SEI-2009-TR-025

were joined by participants from Logica, Vreije Universiteit, Atos Consulting, and the Dutch

Ministry of Home Affairs.

Finally, we conducted a full pilot exercise using the method derived from our work at the Air

Traffic Management business unit of Boeing.

3.5 Evaluation Criteria

Peer review accounts for our primary evaluation criterion. Attendees at both workshops were en-

thusiastic about a method to help put clearly articulated business goals on the table, where they

could be examined and used as the explicit pedigree for quality attribute requirements. We expect

to publish reports in relevant forums and the acceptance of these publications will constitute

another measure of project success. Finally, the incorporation of our method into an SEI offering

(either as a standalone method or as part of an existing architecture analysis activity) will consti-

tute a measure of success.

3.6 Results

A canonical categorization of business goals

We conducted an affinity (clustering) exercise with the goals uncovered from our search of the

business goal literature. The result is the set of ten business goal categories shown in Figure 3-2.

Space limitations prevent us from showing the goals we captured in our literature search and how

each one maps to one or more of these categories.

1. Growth and continuity of the organization
2. Meeting financial objectives
3. Meeting personal objectives
4. Meeting responsibility to employees
5. Meeting responsibility to society

6. Meeting responsibility to country
7. Meeting responsibility to shareholders
8. Managing market position
9. Improving business processes
10. Managing quality and reputation of products

Figure 3-2: Ten Categories of Business Goals

In addition to papers enumerating and describing business goals, we also discovered two other

relevant studies. In the first, Osterwalder and Pigneur 0 describe how managers should deal with

changing forces in the social, legal, competitive, customer, and technological realms (Figure 3-3).

When we elicit a business goal, this gives us insight into asking how that business goal might

change over time.

The second relevant study from our literature survey comes from a field of research in the busi-

ness/management world called ―stakeholder theory.‖ Here, organizations (e.g., corporations) are

viewed as a collection of stakeholders all working out their vested interests with each other. Do-

naldson and Preston [Donaldson 1995] provide a stakeholder-centric model of a corporation, as

shown in Figure 3-4. In this view, all persons or groups with legitimate interests participating in

an enterprise do so to obtain benefits and there is no prima facie priority of one set of interests and

benefits over another. Hence, the input–output arrows between the firm and its stakeholder consti-

tuents run in both directions.

18 | CMU/SEI-2009-TR-025

Figure 3-3: Business Models Lie at the Intersection of Strategy, Organization, and Technology

(reproduced from Osterwalder [Osterwalder 2004])

A stakeholder is broadly viewed as ―any group or individual who can affect or is affected by the

achievement of the organization’s objectives‖ [Freeman 1984] although narrower definitions exist

that try to focus on stakeholders of the greatest importance.

Figure 3-4: Stakeholder Model of a Corporation (reproduced from Donaldson [Donaldson 1995])

Stakeholder theory gives us another way to view business goals by categorizing them according to

the stakeholders they are intended to address and by helping us identify sources of business goals.

A Syntax for Expressing Business Goals

Capturing business goals and then expressing them in a standard form will let them be discussed,

analyzed, argued over, rejected, improved, reviewed—in short, all of the same activities that re-

sult from capturing any kind of requirement. To this end, we introduce business goal scenarios.

The purpose of a business goal scenario is to ensure that all business goals are expressed clearly,

in a consistent fashion, and contain sufficient information to enable their processing through the

further steps of our technique.

Our business goal scenario has seven parts. They all relate to the system under development, the

identity of which is implicit. Together, they provide a provenance for a business goal that will

contribute to its understanding and its interplay with other goals. The seven parts are

1. Goal-source. Who (or what artifact) provided the statement of the goal?

2. Goal-subject. To express a business goal meaningfully, as well as capture information to

resolve goal conflicts, we need to know the person who owns the goal. This we call the goal-

19 | CMU/SEI-2009-TR-025

subject. If the business goal is, for example, ―maximize dividends for the stakeholders‖ (a

goal described in Fulmer [Fulmer 1978]), who is it that cares about that? It is probably not

the programmers, the system’s end users, or (if an acquired system) anyone in the acquisition

organization. Stakeholder theory [Donaldson 1995] will help us identify the goal-subject(s)

of a business goal, as well as help us identify people who might have business goals to con-

tribute. We will seek stakeholders with high ―salience‖ from whom to elicit business goals,

and record those stakeholders as the goal-subjects.

3. Goal-object. A goal’s object (in the sense of a verb’s object in a sentence) lets us ask, ―What

do you wish to be true for or about X as a result of developing or acquiring this system?‖

The placeholder X is the goal’s object. All goals have goal-objects—we want something to

be true about something (or someone) that (or whom) we care about. Seen in this light, the

goals captured in our literature search can all be re-elaborated by making their respective

goal-objects explicit. By doing so, we were able to discern the goal-objects listed in Table

3-1.

Table 3-1: Business Goals’ Goal-Objects

Goal-Object Remarks

Individual The individual who has these goals has them for him/herself or his/her family.

System These can be goals for a system being developed or acquired.

Portfolio These goals apply either to a single system, or to an organization’s entire portfolio

that the organization is building or acquiring to achieve organization-wide goals.

Organization’s
employees Before we get to the organization as a whole, there are some goals aimed at specific

subsets of the organization. Organization’s

shareholders

Organization These are goals for the organization as a whole. The organization can be a devel-
opment or acquisition organization.

Nation Before we get to society at large, this goal-object is specifically limited to the goal-
owner’s own country.

Society Some interpret “society” as “my society,” which puts this category closer to the Na-
tion goal-object, but we are taking a broader view.

4. Environment. This is the context for this goal. It acts as a rationale for the goal. One source

for this entry is the five different environmental factors of Osterwalder and Pigneur [Oster-

walder 2004] (Social, Legal, Competitive, Customer, and Technological).

5. Goal. This is any business goal (whether mentioned in this paper or not) able to be articu-

lated by the person being interviewed.

6. Goal-measure. This is a measurement to determine how one would know if the goal has

been achieved.

7. Value. This is how much the goal is worth. It might be expressed in terms of what might be

willingly paid to achieve it, or a ranking against other goals in a collection.

A method for eliciting business goals and comparing them to quality attribute requirements

The Pedigreed Attribute eLicitation Method (PALM) is a seven-step method. The steps are:

20 | CMU/SEI-2009-TR-025

1. PALM overview presentation: Overview of PALM, the problem it solves, its steps, its ex-

pected outcomes.

2. Business drivers presentation: Briefing of business drivers by project management. What

are the goals of the customer organization for this system? What are the goals of the devel-

opment organization? This is a lengthy discussion that gives the opportunity to ask questions

about the business goals as presented by project management.

3. Architecture drivers presentation. Briefing by the architect on the driving (shaping) busi-

ness and quality attribute requirements.

4. Business goals elicitation. Using the standard business goal categories to guide discussion,

we capture the set of important business goals for this system. Business goals are elaborated,

and expressed as business goal scenarios. We consolidate almost-alike business goals to

eliminate duplication. Participants then prioritize the resulting set to identify the most impor-

tant ones.

5. Identifying potential quality attributes from business goals. For each important business

goal scenario, participants describe a quality attribute that (if architected into the system)

would help achieve it. If the QA is not already a requirement, this is recorded as a finding.

6. Assignment of pedigree to existing quality attribute drivers. For each architectural driver

named in Step 3, we identify which business goal(s) it is there to support. If none, that is rec-

orded as a finding. Otherwise, we establish its pedigree by asking for the source of the quan-

titative part: e.g.: Why is there a 40ms performance requirement? Why isn’t 60ms adequate?

Or 80ms?

7. Exercise conclusion. Results, next steps, and participant feedback are reviewed.

Using PALM

We see PALM as helping architects in the following ways:

1. PALM can be used to sniff out missing requirements early in the life cycle. For example,

having stakeholders subscribe to the business goal of improving the quality and reputation of

their products may very well lead to (for example) security, availability, and performance re-

quirements that otherwise might not have been considered.

2. PALM can be used to inform the architect of business goals that directly affect the architec-

ture without precipitating new requirements. This is the diagonal arrow in Figure 3-1. For

example, if an organization has the ambition to use the product as the first offering in a new

product line, this might not affect any of the requirements for that product (and therefore not

merit a mention in the project’s requirements specification). But this is a crucial piece of in-

formation that the architect needs to know early so it can be accommodated in the design.

3. PALM can be used to discover and carry along additional information about existing re-

quirements. For example, a business goal might be to produce a product that out-competes a

rival’s market entry. This might precipitate a performance requirement for, say, half-second

turnaround when the rival features one-second turnaround. But if the competitor releases a

new product with half-second turnaround, then what does our requirement become? A con-

ventional requirements document will continue to carry the half-second requirement, but the

goal-savvy architect will know that the real requirement is to beat the competitor, which may

mean even faster performance is needed.

21 | CMU/SEI-2009-TR-025

4. PALM can be used to examine particularly difficult quality attribute requirements to see if

they can be relaxed. We know of more than one system where a quality attribute requirement

proved quite expensive to provide, and only after great effort, money, and time were ex-

pended trying to meet it was it revealed that the requirement had no analytic basis, but was

merely someone’s best guess or fond wish at the time.

5. Different stakeholders have different business goals for any individual system being con-

structed. The acquirer may want to use the system to support their mission; the developer

may want to use the system to launch a new product line. PALM provides a forum for these

competing goals to be aired and resolved.

PALM can be useful to developing organizations as well as acquiring organizations. Acquirers

can use PALM to sort out their own goals for acquiring a system, which will help them to write a

more complete request for proposals (RFP). Developing organizations can use PALM to make

sure their goals are aligned with the goals of their customers. We do not see PALM as anointing

architects to be the arbiter of requirements, unilaterally introducing new ones and discarding vex-

ing ones. Rather, the purpose of PALM is to empower the architect to gather necessary informa-

tion in a systematic fashion.

3.7 Publications and Presentations

[Bass 2010]

Len Bass & Paul Clements. ―Business Goals as a Basis for Architecturally Significant Require-

ments,‖ tutorial, 2010 International Conference on Requirements Engineering (in progress).

[Clements 2009]

Paul Clements & Len Bass. Relating Business Goals to Architecturally Significant Requirements

for Software Systems (CMU/SEI-2009-TN-026). Software Engineering Institute, Carnegie Mellon

University, 2009. http://www.sei.cmu.edu/library/abstracts/reports/09tn026.cfm

[Clements 2010]

Paul Clements & Len Bass. ―Eliciting and Capturing Business Goals to Help Architects Design

Systems: Experience with the Pedigreed Attribute eLicitation Method,‖ 2010 International Confe-

rence on Software Engineering (submitted).

3.8 Bibliography

[Donaldson 1995]

Thomas Donaldson & Lee E. Preston. ―The Stakeholder Theory of the Corporation: Concepts,

Evidence and Implications.‖ The Academy of Management Review 20, 1 (January 1995): 65.

[Freeman 1984]

R. Edward Freeman. Strategic Management: A Stakeholder Approach. Pitman, 1984 (ISBN-10:

0273019139).

[Fulmer 1978]

R. M. Fulmer. ―Questions on CEO Succession,‖ American Management Association, 1978.

http://www.sei.cmu.edu/library/abstracts/reports/09tn026.cfm
http://proquest.umi.com/pqdweb?index=30&did=4674943&SrchMode=3&sid=2&Fmt=3&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1252258701&clientId=3259&aid=3
http://proquest.umi.com/pqdweb?index=30&did=4674943&SrchMode=3&sid=2&Fmt=3&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1252258701&clientId=3259&aid=3

22 | CMU/SEI-2009-TR-025

[ISO 1998]

International Standardization Organization ―Quality Characteristics and Sub-Characteristics.‖ In-

formation Technology—Software Quality Characteristics and Metrics, ISO/IEC FCD 9126–1.2,

1998.

[Mitchell 1997]

Ronald K. Mitchell, Bradley R. Agle, & Donna J. Wood. ―Toward a Theory of Stakeholder Iden-

tification and Salience: Defining the Principle of Who and What Really Counts.‖ The Academy of

Management Review 22, 4 (October 1997): 853-886. http://www.jstor.org/stable

/259247

[Osterwalder 2004]

Alexander Osterwalder & Yves Pigneur, ―An Ontology for E-Business Models,‖ in W. Currie

(Ed.), Value Creation from E-Business Models, Oxford: Butterworth-Heinemann, 65-97 (2004).

http://www.jstor.org/stable

23 | CMU/SEI-2009-TR-025

4 Achieving Predictable Performance in Multicore
Embedded Real-Time Systems

Dionisio de Niz, Jeffrey Hansen, Gabriel Moreno, Daniel Plakosh, Jorgen Hanson, Mark
Klein, Karthik Lakshmanan, and Raj Rajkumar

4.1 Purpose

The community at large has already recognized the risk involved in the trend to base the speedup

of processors on an increasing number of cores instead of faster single cores. To harvest such a

speedup enough executable elements (tasks, processes, threads, instructions depending on the lev-

el of parallelism desired) to be executed in parallel in each of the cores need to be found. New

allocation, scheduling and synchronization techniques are needed in order to utilize the capacity

of the cores. There are two aspects: (1) ensuring that the system maintains its predictable timing

behavior when executing on a multicore, and (2) maximizing the parallelism in order to minimize

idleness of some of the cores. It is paramount that we get a predictable timing of such execution to

be able to guarantee deadlines. For any power-constrained or energy-conserving embedded sys-

tems it is also essential that no core is idly consuming energy (one can adjust and voltage scale a

multicore chip, but not necessarily turn off a single core). On top of this, the consequence of wast-

ing processor performance in embedded systems thus can have a higher penalty provided that cost

is an important driving force in embedded systems as is the case in, for example, automotive sys-

tems, where economy of scale magnifies the cost of hardware underutilization. As a result, miss-

ing the performance improvements of multicore systems in embedded systems can have huge

economic consequences. Current multicore chips contain typically four to eight homogeneous

cores. Within three to five years, multicore chips will exceed 32 cores, and also be heterogeneous,

that is, they will be able to run at different speeds, and possibly be tailored for specific functions.

The goal of this proposed research is to identify anomalies that can jeopardize timeliness, and the

problems that prevent the full utilization of multicore systems for embedded real-time systems.

Our focus is to develop analysis techniques and architectural abstractions to build real-time sys-

tems with predictable timing behavior that efficiently utilizes all the cores available in the plat-

form. The practicality of such techniques and abstractions will be tested and evaluated by apply-

ing them to a real system from the automotive domain.

4.2 Background

In the embedded system arena, the need to preserve performance improvements and to lower cost

is significant. A recent example that demonstrates how increased performance enables new fea-

tures in embedded systems is the Mercedes Benz F700 concept car. Voelcker discusses how the

engine of this car combines features from diesel and gasoline engines, but more importantly he

highlights the fact that even though the concept had existed for years it was not until recently that

the performance of the processors was sufficient to be able to implement the system that controls

it [Voelcker 2008]. This is just one of the many examples where improvement in the performance

of processors enables new features. Of significant importance is also the fact that the complexity

and richness of features in cars, phones, aircraft, and multiple other embedded systems keep in-

creasing along with the pressure to reduce cost.

24 | CMU/SEI-2009-TR-025

Real-time systems are inherently parallel; this is a function of the intrinsic parallelism of the ex-

ternal and physical environment in which the real-time system actuates in response to the events

in the environment. Real-time systems are already being designed with threads and tasks that can

be executed in parallel. To be more precise, on a single processor only one task can execute in-

structions on the processor at any point in time. Consequently, the execution of tasks is inter-

leaved. When a task cannot continue its execution due to a resource being held by another task, it

becomes blocked. For the single-processor case the blocking can be bounded and made predicta-

ble in a number of fashions, for example, by deploying synchronization mechanisms or defining

preemption points in tasks. In the case a task is blocked, the scheduler changes the execution to

another task. For the multi-processor case, a task can become blocked due to a task, possibly on

another core, holding a resource. An allocation and synchronization scheme needs to minimize the

inter-core dependencies that can cause unpredictable blocking. Thus, when migrating legacy em-

bedded real-time software to multicore, we need to expand our understanding of the task depen-

dencies.

Even after threads without logical dependencies are created some other dependencies related to

the access to shared memory areas can reduce the potential parallelism of these threads. While

these dependencies do not explicitly impose a specific order of the executions of application

threads, they restrict the execution of the code that accesses shared memory to avoid conflicts.

One technique to avoid these conflicting accesses is the use of locks to ensure that only one thread

accesses a shared memory area at a time (mutually exclusive access). However, locks block the

execution of a thread if it wants to access a shared area that is in use by another thread. As a re-

sult, the amount of parallel computation that can be preformed is also limited by the time threads

spend waiting for a lock to be released.

Mutual exclusion is of paramount importance in real-time systems because it is a source of priori-

ty inversions [Sha 1990]. In the case of multicore systems the solutions developed for single pro-

cessor exhibit important inefficiencies. This is the case when tasks deployed on different cores

share locks. In this case it is possible for a task τi to wait on a lock that is being held by a remote

task τj. Then if the lock is not released until the last instant in which the task τi can meet its dead-

line at the end of the period (period=deadline) then a second activation of task τi can arrive imme-

diately after the completion of the current activation and impose a back-to-back preemption (not

considered in the RMA assumptions) against lower priority tasks. Some techniques [Rajkumar

1991] have already been created to alleviate this problem but we foresee further opportunities to

improve this situation.

The scheduling of multicore systems also has important problems that need to be addressed. One

of the key observations that evidence these problems is Dhall and Liu anomaly [Dhall 1978]. This

anomaly occurs in a multiprocessor system using a fixed-priority global scheduler. This global

scheduler has the objective to always keep the m highest priority tasks running in a system of m

processors. This means that if a task becomes ready to run and all the processors are busy, it can

preempt any of the running tasks with lower priority than the new one. While the objective of this

scheduler seems to be obvious and straight forward to implement Dhall and Liu discovered cases

that can lead to very low utilization. One such case can be constructed with m-1 tasks (τ1,…, τ m-1)

with computation 2є and period 1 and one task with computation 1 and period 1+є. In this case

the last task τm cannot be scheduled on less than m processors (when using rate-monotonic sche-

duling to assign their priorities) even though for a very small є and a large m the utilization can be

25 | CMU/SEI-2009-TR-025

arbitrarily low. This is because if the last task τm is scheduled to run in a processor together with

one of the other tasks, say τi,, then τi will run first (due to its higher priority) leaving only 1-є time

left for task τm to complete. In such a case, τm will miss its deadline at the end of the period.

Recent work on scheduling [Andersson 2001, 2003] resulted in an increase of the global schedul-

ing utilization to a 33% for periodic tasks and 50% for aperiodic tasks. Some other approaches

[Srinivasan 2001, Anderson 2006], have chosen to use quantized assignments of processor cycles

to tasks with a scheduler that calculates a scheduling window at fixed intervals. However, none of

these works takes into account the task interactions and different task and application structures.

In our project we will explore the combination of task scheduling and task synchronization along

with different application structures that can increase the utilization of multicore systems for real-

time applications.

4.3 Approach

Our approach to address the issues of the current software development theory and practice for

embedded real-time systems when using multicore platforms is as follows:

First, we characterized the limitations and applicability of current real-time scheduling theory for

multicore computers. In particular, we characterized the critical anomalies coming from assump-

tions that are rooted in a single core and the resulting effects that those assumptions impose, for

example, on predictability and system utilization. This includes the specific characteristics of mul-

ticore systems such as memory hierarchy.

Secondly, we studied the current limitations of existing real-time synchronization protocols with

respect to multicore platforms and developed new protocols. This includes the exploration of new

synchronization mechanisms arising from the non-real-time arena that are considered amenable

for adaptation to achieve predictable timing performance.

Thirdly, we specified and analyzed architectural patterns to ensure timeliness and efficient utiliza-

tion of multicore systems. These new patterns are key to unleashing the potential parallelism of

the applications to seize the full potential of multicore systems.

Finally, we developed experiments to evaluate our solutions and demonstrate relevant problems

specific to real-time systems. These experiments were identified with the help of Lockheed Mar-

tin.

4.4 Collaborations

Our collaborators included

 Prof. Raj Rajkumar, Carnegie Mellon University, Electrical and Computer Engineering, co-

director of the General Motors Collaborative Research Laboratory (host of the Boss auto-

nomous vehicle) and co-director of the GM Autonomous Driving Laboratory.

 Karthik Lakshmanan, a graduate student under Prof. Rajkumar.

 Ben Watson, Russell Kegley, Daniel Waddington, et al. from Lockheed Martin.

26 | CMU/SEI-2009-TR-025

4.5 Evaluation Criteria

The evaluation of this project was based on the following deliverables:

 A paper on collaborative synchronization, allocation, and scheduling. Published in RTSS09.

 A paper on the scheduling of mixed criticality tasksets. Published in RTSS09.

 A demonstration of the mixed-criticality scheduler with a radar surveillance system.

 Application of each of our solutions to a model problem defined by Lockheed Martin.

4.6 Results

Our results can be grouped into three research topics and the application of such criteria to a mod-

el problem. We now discuss the results in each of these areas.

4.6.1 Coordinated Allocation, Synchronization, and Scheduling

Task synchronization in real-time systems is a well-known problem. Fixed-priority scheduling

schemes employ techniques like priority inheritance and priority ceiling protocols to enable re-

source sharing across real-time tasks. Dynamic priority scheduling schemes also use mechanisms

like the stack-based resource policy (SRP) to handle real-time task synchronization. In the context

of fixed-priority multiprocessor scheduling, the priority ceiling protocol has been extended to

realize the multiprocessor priority ceiling protocol (MPCP). Synchronization schemes have also

been developed for other related scheduling paradigms like PFair. Multiprocessor extensions to

SRP have also been considered and performance comparisons have been done with MPCP. This

paper adopts a more holistic approach to partitioned task scheduling by explicitly considering

MPCP synchronization penalties during task allocation and investigating the impact of different

ECPs.

The Priority Ceiling Protocol (PCP) is a real-time synchronization protocol that minimizes the

time a high-priority task waits for a low-priority one to release the lock on the shared resource,

known as blocking time. When PCP is used by tasks deployed on different processors, this block-

ing time can lead to idle times in processors. In Figure 4-1, there are three tasks, 1 and 2 running

in processor P1 and 3 running in processor P2. In addition, a resource is shared between tasks 2

and 3 using PCP. The figure depicts how 2 locks the resource at time 9 making 3 wait for the

lock up to time 51 when the lock is released by 2. This waiting leaves processor P2 idle because

the only task deployed there, 3, is waiting for the lock (known as remote blocking). Furthermore,

during the time 2 holds the lock it suffers multiple preemptions from the higher priority task 1.

As a consequence, 3 misses its deadline at time 68. Such a problem is removed if, instead of shar-

ing the resource across processors, it is shared on the same processor, that is, tasks 2 and 3 are

deployed together, say in processor P2. The key aspect of the example in Figure 4-1 is that pro-

cessor utilization is wasted during remote blocking. This is because a task that could be scheduled

in the remote processor is blocked leaving the cycles reserved for it idle. This contrasts with local

blocking because the task holding the lock uses the cycles the blocked task leaves idle. This is the

core motivation of our synchronization-aware task allocation algorithm. In the worst case, howev-

er, some degree of global resource sharing may be unavoidable. As a result, techniques to mitigate

its consequences were also explored.

27 | CMU/SEI-2009-TR-025

Figure 4-1: Penalty of Global Synchronization

To mitigate the remote blocking problem we considered two bin-packing algorithms, the synchro-

nization-agnostic and the synchronization-aware algorithms. The former packs objects exclusively

by size and the latter tries to pack together tasks that share mutexes. The result is that, if we allo-

cate these tasks to the same processor, the shared mutex becomes a local mutex and local PCP can

be used. The strategy of the synchronization-aware packer is twofold. First, tasks that share a mu-

tex are bundled together. This bundling is transitive, that is, if a task A shares a mutex with task

B, and B shares a mutex with C, all three of them are bundled together. Then, each task bundle is

attempted to be fitted together as a single task into a processor. Secondly, the task bundles that do

not fit are put aside until all bundles and tasks that fit are allocated without adding processors. At

the end, these bundles are broken and fitted into the processors, adding new processors if neces-

sary.

4.6.2 Additional Inefficiencies in MPCP

The key scheduling inefficiency resulting from the remote blocking behavior of tasks is that of

multiple-priority inversions due to lower priority critical sections. For example, consider the sce-

nario shown in Figure 4-2. Whenever task 2 suspends, task 3 can get a chance to execute, and

block to access the global critical section shared with 1. When 1 releases the global critical sec-

tion, 3 preempts 2 due to its higher priority ceiling and interferes with the normal execution of 2

twice. In the worst case, each normal execution-segment (of duration Ci,k 1 ≤ k ≤ s(i)) of a task i

can be preempted at most once by each of the lower priority tasks j (j > i) executing their global

critical sections released from remote processors.

28 | CMU/SEI-2009-TR-025

Figure 4-2: Multiple-Priority Inversions Due to Suspension

To solve the inefficiencies of MPCP, we developed execution control policies called spin-like

locking. The spin-like locking prevents lower priority tasks from requesting any mutex whenever

it runs during the time a higher priority task is blocked waiting for another mutex. This prevents

the multiple-priority inversion by not allowing the lower priority tasks to be awakened when a

mutex with a higher priority than the high-priority task.

Among the most interesting results of our algorithms is the efficiency of the synchronization-

aware bin-packing algorithm. Figure 4-3 depicts the difference between our synchronization-

aware bin-packing and a synchronization-agnostic bin-packing. The figure shows the number of

bins needed to pack the same amount of workload (eight fully packed processors).

Figure 4-3: Efficiency of Task-Aware Packing

29 | CMU/SEI-2009-TR-025

4.6.3 Multicore Real-Time Queuing Theory

Real-Time Queuing Theory (RTQT) is a method for analyzing the fraction of jobs that will miss

their deadlines given a generic set of information about each task. Given the mean and standard

deviation of the job inter-arrival and service times, and the mean deadline of jobs for each task,

RTQT determines the fraction of jobs that miss their deadline. We use RTQT to evaluate the im-

pact of different scheduling policies in multicore processors and the effect of dropping jobs to the

general workload.

In our investigation we compared global scheduling vs. partitioned scheduling vs. single server as

fast as the combined number of cores. To understand this comparison, let us first introduce the

concepts of global and partitioned scheduling. Global scheduling allows a task to run on any

available core. In contrast, in partitioned scheduling a task is assigned to a core and it can only run

on it. We used RTQT to investigate the number of deadline misses that can be expected from

these schedulers when the number of cores increases.

Figure 4-4 shows a comparison of global scheduling vs. partitioned scheduling vs. a fast proces-

sor. It is worth noting that the scheme that drops the lesser number of deadlines as the number of

cores increases is the fast processor (its speed increases to a speed equivalent to the sum of the

speed of all the cores). In addition, we also note that the global scheduler performs better than the

partitioned scheduler.

Figure 4-4: Comparison of Global Scheduling, Partition Scheduling, and Fast Server

While the results from Figure 4-4 may be discouraging from the point of view of multicore tech-

nology, Figure 4-5 shows us one of the advantages. In particular, Figure 4-5 shows that as the

number of cores increases, the fraction of jobs that miss their deadline decreases. This is the case

when the workload of the jobs has high variance. This implies that multicore processors are more

tolerant to workload variation.

30 | CMU/SEI-2009-TR-025

Figure 4-5: Effect of Increasing Number of Cores in Highly Variable Workloads

The second issue that we investigated with RTQT was the effect of dropping jobs that already

miss their deadlines. Figure 4-6 shows the effect of two types of droppings: (1) immediate drop-

ping as soon as the deadline is missed and (2) dropping the next periodic job. While the figure

shows us that most of the benefits can be obtained when we immediately drop a job that missed

its deadline, it also shows that we can still improve significantly if we drop the next job (to stop

the overload). This is an important result, since the complications of stopping immediately can be

significant due to locked mutexes, stopping modification to shared data, leaving inconsistent state,

and related issues.

Figure 4-6: Benefit of Dropping a Job with Missed Deadlines

4.6.4 Mixed-Criticality Scheduling of Real-Time Tasksets on Multiprocessors

Priority-based preemptive scheduling policies assign priorities to tasks, and at runtime, attempt to

schedule the highest priority ready task. The priority assignment can be fixed across task instances

(fixed-priority schedulers) or it can change across task instances (dynamic priority schedulers). In

traditional real-time scheduling, priorities are assigned with the purpose of maximizing schedula-

ble utilization while respecting the deadlines of all the tasks in the set. The utilization maximiza-

tion approach of traditional real-time schedulers makes two important assumptions: (1) all tasks

are equally important, and (2) the utilization never goes beyond the allowable threshold(s). These

two assumptions seldom hold in mixed-criticality systems. In particular, tasks can have different

31 | CMU/SEI-2009-TR-025

criticality levels. Hence, if there is ever a situation where we can only satisfy the deadline of one

task, then we should choose to meet the one with higher criticality. The second assumption does

not hold for a more subtle reason. Specifically, in mixed-criticality systems there is a need to en-

sure that the tasks do not execute longer than their specified worst-case execution time. This is to

prevent low-criticality tasks from interfering with higher criticality ones. While this is, in general,

considered a fault, an explicit protection against it is needed because it can create (temporal) over-

load situations. Since the traditional priority assignment made by the scheduler was tailored to

increase schedulable utilization, it is agnostic to criticality. In particular, under priority-based

preemptive scheduling, a low criticality task can have a higher scheduling priority than a higher

criticality task. Such priority assignment would schedule the low criticality task earlier than the

higher criticality task, potentially making the latter miss its deadline. This is known as a criticality

inversion. On the other hand, if we assign priorities based on criticality, then we eliminate critical-

ity inversion. However, this assignment can potentially create significant priority inversion from

the perspective of priority-based preemptive schedulers. To consider both scheduling priorities

and task criticalities, and explicitly capture the overload execution requirements, let us define a

task i as:

i = (Ci,C
o
i , Ti,Di, i)

where:

 Ci is its worst-case execution time under non-overloaded conditions

 C
o
i is the overload execution budget

 Ti is the period of the task

 Di is the deadline of the task (with Di ≤ Ti)

 i is the criticality of the task. We follow the same convention as with priorities: the lower its

value, the higher the criticality. It is worth noting that the overload budget C
o

i is used to

create a precise definition of our guarantee, that is, how much overload is guaranteed. As we

will show later, it is possible to reserve a conservative (large) C
o

i since it does not add up

across criticality levels. The priority blocking utilization PBi for task i is defined as:

where:

 pb
j
i is the maximum time that a higher criticality task j can block the execution of an in-

stance of i during which the scheduling priority of i is higher than that of j . Similarly, the

criticality blocking utilization CBi for task i is:

where:

 cb
j
i is the maximum time that a lower criticality task j can block the execution of an instance

of i during which the scheduling priority of j is higher than that of i. Both pb
j
i and cb

j
i vary

32 | CMU/SEI-2009-TR-025

depending on how and when the scheduler assigns priorities and the strategies used to tra-

deoff priority and criticality blocking. In the next section we discuss the strategies taken in

our new scheduling scheme.

4.6.5 Zero-Slack Scheduling

Our scheduling policy works on top of traditional priority-based preemptive real-time schedulers.

It is based on the observation that criticality inversion only matters under overload conditions. We

use this observation to create two execution zones for each task i. In the first zone, every task is

included while in the second zone, every task j | j > i is suspended. This suspension effectively

blocks the interference of lower criticality tasks in the case of an overload condition, up to the

completion of the task activation. It must be noted that i itself can also be suspended by a task

c| c < i in c’s second zone. The execution zones partition the execution of each task into two

modes: the normal mode (N mode) and the critical mode (C mode). Our scheduling algorithm

then calculates the execution time for each mode. We now define our scheduling guarantee: a task

i is guaranteed to run up to C
o
i if no higher criticality tasks exceed its Ci.

To evaluate the effectiveness of the ZSRM to schedule a mixed-criticality task set we use the con-

cept of laxity utilization. The laxity utilization of a task i measures the available utilization for i

after we discount the preemptions of higher priority tasks and the blocking factors left by the

scheduling algorithm of interest for this task. The laxity utilization for a task i is then defined as:

where:

 A(i) is the available utilization for task i for a specific priority-based preemptive scheduler.

For instance, for rate-monotonic scheduling with implicit-deadline tasks, this is

 is the overload density of i

 PBi + CBi is the blocking factor for the scheduling algorithm of interest

 is the utilization consumed by the higher priority and higher criticality tasks

33 | CMU/SEI-2009-TR-025

Figure 4-7: Laxity Utilization Comparison

Figure 4-7 shows a comparison of the laxity utilization between ZSRM (ZS), criticality-as-

priority-assignment (CAPA), and RM scheduler. It is worth noting that while other algorithms can

get more total laxity utilization, ZSRM is able to keep the minimum laxity at or above zero in all

cases making the tasks schedulable.

4.6.6 Zero-Slack Bin-Packing

Multiprocessor scheduling has taken two main forms: global scheduling and partitioned schedul-

ing. In global scheduling jobs from the same task are allowed to be executed in any processor. In

contrast, in partitioned scheduling tasks are assigned to a processor and all the jobs from a particu-

lar task always run on the processor the task was assigned to. In this case, to achieve a high level

of utilization, the assignment of tasks to processors must minimize the number of processors re-

quired to schedule the task set. Given that an optimal solution to this problem is NP hard, the do-

minant solution is a class of near-optimal algorithms known as bin-packing. As a result, the level

of utilization that it is possible to achieve in a partitioned scheduling scheme depends on both the

uniprocessor scheduler and the task set partitioning algorithm. Bin-packing algorithms are defined

in terms of object sizes and the level of fullness of the bins where the objects are packed. These

sizes and fullness levels are used to order objects and bins to try their matching with a single pass

with an efficient greedy algorithm. One of the most common bin-packing algorithms is best-fit

decreasing (BFD). This algorithm tries to fit each object in non-increasing order of size into a list

of bins ordered in non-increasing order of fullness level. The resulting strategy is to match the

largest unassigned object to the fullest bin that is able to host it. This order allows this algorithm

to have a worst-case ratio against the perfect packing in the order of 11/9. In contrast, if no order

is used, then the algorithm behaves as a next-fit algorithm with a worst-case bound ratio of 2.

When bin-packing algorithms are used to pack tasks, the task utilization is used as its size. This

size matches the level of interference (either because it preempts the other tasks or because such

cycles are reserved for the task) that the task imposes on other tasks when used with traditional

uniprocessor real-time schedulers such as RMS or EDF. This level of interference can be used to

34 | CMU/SEI-2009-TR-025

represent the level of fullness of a bin. Unfortunately, in ZSRM, tasks do not have one utilization

figure but two: a normal utilization (U) and an overloaded utilization (U
o
). In this case, the inter-

ference that the task imposes on other tasks depends on both their relative criticality level and

their RM priority. In particular, a task i, with lower criticality level but a higher RM priority than

a task j, imposes an interference equal to its overloaded utilization (U
o

i) to task j . However, the

same task i imposes an interference equal to its normal utilization (Ui) to a task k that has lower

criticality but higher RM priority. This relative interference prevents the mapping of the utiliza-

tion to the size to be used with traditional bin-packing algorithms. In this paper we present a new

bin-packing algorithm with an absolute size figure that reflects the capacity of the ZSRM to sche-

dule tasks.

To build a total order that is congruent with the ZSRM scheduler it is necessary to take into ac-

count the two aspects: (1) it should reflect an absolute size (as opposed to relative) and (2) it must

reflect the opportunities for higher-to-lower criticality cycle stealing.

To use an absolute size it is enough to use the overloaded execution time of the tasks. However,

this still does not provide a concept of the size of the higher-to-lower cycle stealing opportunities.

To use an absolute size it is enough to use the overloaded execution time of the tasks. In order to

add to the size the cycle stealing opportunities we add the total blocking of the tasks to the over-

loaded utilization. The two components of the total blocking of a task i CBi and PBi quantifies

the higher-to-lower criticality cycle stealing opportunities (possible reduction of the criticality

blocking) and the cost of such a reduction (potential increase of priority blocking) that ZSRM

incurs in a taskset. It should be noted that the total blocking of the tasks is calculated with respect

to all the taskset. While this calculation provides an imprecise figure when the tasks are split into

different processors, it keeps the size figure stable (and hence the order).

Figure 4-8: Efficiency of ZSBin-Packing

0

5

10

15

20

25

Perfect Packing
ZSRM

ZSBinPacking
ZSRM

ZSBinPacking RM BinPacking RM

35 | CMU/SEI-2009-TR-025

Figure 4-8 depicts a comparison of the ZS bin-packing algorithm with and without ZSRM. It is

worth noting that ZS bin-packing in conjunction with ZSRM is able to use half the processors that

a traditional bin-packing with RM scheduling would use.

4.7 Publications and Presentations

[de Niz 2009]

Dionisio de Niz, Karthik Lakshmanan, & Raj Rajkumar. ―On the Scheduling or Mixed-Criticality

Real-Time Tasksets.‖ Real-Time Systems Symposium, December 2009. Washington, D. C.

[Lakshmanan 2009]

Karthik Lakshmanan, Dionisio de Niz, & Raj Rajkumar. ―Coordinated Task Scheduling, Alloca-

tion, and Synchronization in Multiprocessors.‖ Best student paper award at the Real-Time Sys-

tems Symposium, December 2009. Washington, D. C.

4.8 Bibliography

[Anderson 2001]

Björn Andersson, Sanjoy Baruah, & Jan Jonsson. ―Static-Priority Scheduling on Multiproces-

sors,‖ 193-202. Proceedings of the IEEE International Real-Time Systems Symposium, London,

December 2001.

[Anderson 2003]

Björn Andersson, Tarek Abdelzaher, & Jan Jonsson. ―Global Priority-Driven Aperiodic Schedul-

ing on Multiprocessors.‖ International Parallel and Distributed Processing Symposium. Nice,

France, 2003.

[Anderson 2006]

James H. Anderson, John M. Calandrino, & UmaMaheswari C. Devi. ―Real-Time Scheduling on

Multicore Platforms,‖ 179-190. 12th IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, April 2006.

[Belloch 1996]

Guy E. Belloch. ―Programming Parallel Algorithms.‖ Communications of the ACM 39, 3 (March

1996): 85-97.

[Chu 2008]

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng, &

Kunle Olukotun. ―Map-Reduce for Machine Learning on Multicore.‖ In Neural Information

Processing Systems 20 (NIPS-07), 2008.

[de Niz 2009]

Dionisio de Niz, Peter Feiler, Jorgen Hansson, & John Hudak. Near-Optimal Cache Partitioning

for Real-Time Systems. SEI technical report, forthcoming.

[Dhall 1978]

Sudarshan K. Dhall, & C. L. Liu. ―On a Real-Time Scheduling Problem.‖ Operations Research

26, 1 (1978): 127-140.

36 | CMU/SEI-2009-TR-025

[Hill 2008]

Mark D. Hill & Michael R. Marty. ―Amdahl’s Law in the Multicore Era.‖ IEEE Computer (July

2008): 33-38.

[Hudak 2008]

John Hudak, Peter Feiler, & Jorgen Hansson. ―Performance Challenges of Modern Hardware Ar-

chitectures for Real-Time Systems.‖ in Results of SEI Independent Research and Development

Projects (CMU/SEI-2008-TR-017). Software Engineering Institute, Carnegie Mellon Universi-

ty, 2008. http:/www.sei.cmu.edu/library/abstracts/08tr017.cfm

[Jones 1987]

Geraint Jones. Programming in Occam. Prentice Hall, 1987.

[Rajkumar 1991]

Ragunathan Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach.

Kluwer Academic Publishers, 1991 (ISBN: 0792392116).

[Rawal 2008]

G. Rawal. ―Intel Multi-Core University Initiative Charges Ahead.‖ Intel Corporation (July 2008).

[Reza 2007]

Ali-Reza Adl-Tabatabai, Christos Kozyrakis, & Bratin Saha. ―Unlocking Concurrency.‖ ACM

Queue 4, 10 (December-January 2006-2007): 24-33.

[Sha 1990]

Lui Sha, Ragunathan Rajkumar, & John P. Lehoczky. ―Priority Inheritance Protocols: An Ap-

proach to Real-Time Synchronization.‖ IEEE Transactions on Computers 39, 9 (1990): 1175-

1185.

[Srinivasan 2001]

Anand Srinivasan & James H. Anderson. ―Optimal Rate-Based Scheduling on Multiprocessors.‖

34th Annual ACM Symposium on Theory of Computing, 2001.

[Vachharajani 2005]

Neil Vachharajani, Matthew Iyer, Chinmay Ashok, Manish Vachharajani, David I. August, &

Daniel Connors. ―Chip Multi-Processor Scalability for Single-Threaded Applications.‖ ACM

SIGARCH Computer Architecture News 33, 4 (November 2005): 44-53.

[Voelcker 2008]

John Voelcker. ―Top 10 Tech Cars.‖ IEEE Spectrum (April 2008). http://spectrum.ieee.org/green-

tech/advanced-cars/top-10-tech-cars-2008

http://www.sei.cmu.edu/library/abstracts/08tr017.cfm
http://spectrum.ieee.org/green-tech/advanced-cars/top-10-tech-cars-2008
http://spectrum.ieee.org/green-tech/advanced-cars/top-10-tech-cars-2008

37 | CMU/SEI-2009-TR-025

5 Parallel Distributed Acquisition System

Kristopher Rush, Matthew Geiger, and Cal Waits

5.1 Introduction

The CERT Forensics Team is working to develop a new method of collecting forensics data. With

disk size nearly doubling each year from 1995 to 2007 forensics analysts have seen their jobs get

increasingly difficult in many ways. The days of seizing a handful of drives with a total capacity

of several gigabytes are over. Drive size is soaring and we are now seeing drives in excess of

1TB. The larger the capacity of the drive the longer it takes to image. Collection of forensic data

is currently done on a serial basis (one drive at a time) and results in the collected data being scat-

tered across multiple destination drives. This requires more time and manpower than is feasible by

most agencies.

The industry has responded to this problem by pushing out portable (and expensive) RAID sto-

rage arrays. This is akin to taking a bigger bucket when trying to clean up a flood. It still gets

filled up one disk at a time. What is really needed is a series of sponges that can be distributed

simultaneously. Currently this is a gap area in the field of computer forensics and is not addressed

by commercial vendors or private development efforts. This project would represent an alternative

(improved) approach to the serial acquisition model deployed.

5.2 Purpose and Goals of the Research

There currently exists no commercial or government solution that enables field personnel to ac-

quire multiple drives in parallel and to have all of the digital evidence/data written to a centrally

managed collection of storage devices.

Under the current serial paradigm, field personnel acquire disk images on a one-to-one basis. For

example, DISA may send out members of the Field Security Operations (FSO) Division in re-

sponse to a suspected computer security incident. Once on the scene the FSO personnel determine

they need to image three 1TB drives, four 500GB drives, and two laptops with 200GB drives.

Typically the target drive is imaged to a separate evidence drive. Depending on equipment and

training, field personnel may be able to have two sets of identical equipment operating simulta-

neously; this doubling of effort yields very little impact because of the serial nature of the current

process. A 1TB drive will take approximately six to eight hours to hash, another six to eight hours

to image, and yet another six to eight hours to verify the post image hash with the acquired image.

This represents approximately 24 hours to acquire just one image. Even with a doubling of effort

there would still be five days of imaging. With almost 5.5TB to acquire, the FSO team is in for a

long stretch.

The proposed parallel acquisition solution will overcome these problems by achieving the follow-

ing characteristics:

 The solution will provide for efficient utilization of a centrally managed set of storage media.

 It will be capable of imaging multiple target drives in parallel.

38 | CMU/SEI-2009-TR-025

 It will use a smart algorithm to balance the DISK I/O demands across multiple storage

nodes, which will achieve the most efficient READ/WRITE(S).

 It will be developed and transferred to embedded devices making it affordable and extremely

deployable.

Figure 5-1 Parallel Distributed Acquisition System

5.3 Background

The CERT Forensics Team is in a unique position that enables us to interact directly with a large

number of federal, state, and local law enforcement groups for both training and investigative

support. Drawing on the team’s past experience in federal law enforcement, intelligence, and cor-

porate security we have become a trusted authority on issues including forensics counter encryp-

tion techniques, gap area tool development, and large acquisition/operational support. This has

given us the necessary insight into current capabilities and obstacles that exist. Therefore, we are

able to focus our research and development efforts in areas where true gaps in technology exist.

The issue of large-scale data acquisition is an area facing real operational changes and more im-

portantly one where little progress or research is being focused.

As data storage gets cheaper and larger the forensics community is faced with finding a solution

for acquiring large amounts of digital evidence in the most efficient and effective manner possi-

ble. To date, there are no solutions that offer forensic investigators the ability to seize and acquire

digital images from multiple drives in a manner that is both centralized and concurrent. This re-

sults in forensics images that are spread across numerous media and requires constant user inte-

raction in order to image all drives. The current scenarios also require that investigators be

equipped with a large variety of computers, storage, and specialized imaging equipment. All of

this equipment can be very expensive and difficult to transport.

39 | CMU/SEI-2009-TR-025

As an example of the increasing size of data to be acquired and analyzed, we recently supported a

very large U.S. Secret Service (USSS) investigation. This effort included providing on-site search

warrant support. This one search warrant yielded 15TB of data. It took four CERT members and

three USSS agents five days to process the data. This situation posed a major challenge in acquir-

ing and transporting the sensitive forensics data. Agents often are not given adequate hardware

resources to facilitate all the facets of an investigation’s list size. Had it not been for our on-site

support, much of the usable data would not have been processed.

In addition to increasing size, there has been an alarming increase in the number and type of de-

vices that require imaging at a crime scene. Desktops, laptops, external drives, DVRs, PDAs, GPS

devices, MP3 players, cameras, phones, thumb drives, Xboxes, and just about any other electronic

device may contain critical evidence. A typical living room can hold all of the above and more.

Imaging each device one at a time can stretch the process out for days or weeks.

The CERT Forensics Team is fast building a history of bringing leading-edge solutions to our

customers and to the forensics community. We have successfully created numerous forensic gap

area tools that are widely distributed and routinely requested from law enforcement agencies

across the globe. The Forensics Team has successfully designed and implemented the Clustered-

Computing Analysis Platform (C-CAP) (http://www.cert.org/forensics/c-cap.html), a state-of-the-

art forensic analysis platform, for multiple clients with increasing requests for additional units.

This next project addresses another desperately needed capability missing in today’s technology.

5.4 Approach

The involved team members are all members of the highly skilled CERT Forensics Team. This

project combines our collective skills and abilities with our real-world experience in forensics

investigations to develop a practical and relevant solution to a growing problem in the field of

digital forensics. Our unique ability to engage investigators across numerous federal, state, and

local investigative agencies allows us to fully capture the needs of our target audience during the

development stages and will ensure a useful solution that can then be transitioned to the forensics

community.

Our solution is to build a distributed system that enables field personnel to acquire multiple drives

simultaneously. This will maximize efficiency and reduce response time. There are three compo-

nents in our proposed design: the acquisition drone (AD), the storage drone (SD), and the central

controller (CC). The ADs are attached to the suspect drive and report to the CC the size and I/O

speed of the disk. The SDs are attached to the evidence drives and report similar information to

the CC. The key to this system, and the focus of the research, is a smart algorithm used by the

central controller to balance the bandwidth and DISK I/O to achieve the most efficient distribu-

tion of data images across the available storage media. This capability will be unique in that it will

have a minimal footprint (transferring this algorithm to embedded devices) allowing for easy

transportation and field deployment. This new capability will not only reduce the resources neces-

sary to perform an acquisition, but more importantly improve both the efficiency and speed by

leveraging parallel processing combined with our developed algorithm.

This work has the potential to cause a paradigm shift in the collection of digital evidence. By

enabling investigators to perform fast, parallel collections to either a series of separate disks or to

a large storage array we can overcome the need for a large collection of special equipment, mi-

http://www.cert.org/forensics/c-cap.html

40 | CMU/SEI-2009-TR-025

nimize the human interaction required to image the disk and potentially use the time savings to

perform further pre-processing of the data, which will give investigators the ability to begin inves-

tigations faster and find critical evidence, whether it be the be actionable intelligence data or data

necessary for pursuing further law enforcement investigation or prosecution.

5.5 Success Criteria and Initial Results

1. Our initial work resulted in a working prototype of the systems as envisioned. We were able

to successfully create a system that could intelligently image multiple drives over a series of

closed network connections as well as provide an investigator-friendly interface for captur-

ing metadata about the evidence. Further development of the concept is now being pursued

to improve upon our existing work and to capture evidence using the same methodology, but

using a single system with multiple buses. Along with this work we are investigating possi-

bilities in pre-processing of the digital evidence in the same amount of time required to per-

form the drive acquisition.

2. We successfully designed and prototyped

 a fully functioning imaging system

 capable of at least 10 imaging nodes

 multiple imaging nodes

 a centralized management station

3. We designed a purpose-built self-contained field deployable case, capable of housing the

system with no need for removal of any components to perform the drive imaging.

5.6 External Collaborators

There were no official external collaborators for this project. We engaged current customers dur-

ing our development efforts and used their input to assist in ensuring optimal usability. We uti-

lized graduate students from both the H. John Heinz III School of Public Policy and Management

and The Information Networking Institute at Carnegie Mellon University to perform some of the

initial prototyping and benchmarking. There is a solid history of graduate student work from both

of these institutions that have contributed to our position as a leading-edge development group in

the field of forensics.

41 | CMU/SEI-2009-TR-025

6 Programming Models for the Multicore Era

Scott Hissam, James Ivers, Dan Plakosh, and Kurt Wallnau

6.1 Purpose

Consumers have grown accustomed to a computer industry that regularly produces new comput-

ers that are less expensive, have faster processors, and more memory. Processor manufacturers,

however, have recently encountered physical limits that prevent further speed improvements. Fig-

ure 6-1 shows that clock frequency hit a wall around 2003, with excessive power consumption,

heat generation, processor reliability, and rising manufacturing costs driving industry to new ap-

proaches to processor design. Among these new approaches, ―multicore‖ is arguably the most

significant, at least in terms of its potential to disrupt software engineering practice.

Figure 6 1: Processor Frequencies 1971-2007

Computer programs cannot simply gain the benefits of multicore ―for free,‖ though. They must be

designed to exploit the potential parallelism possible with multiple independent cores, for exam-

ple through informed choice of algorithms and data structures. Unfortunately, writing ―parallel

software‖ can be quite challenging, and doing so well requires specialized skills and considerable

experience. Parallelism introduces a number of profound difficulties in testing, and is a notorious

source of pitfalls for even the most skilled programmers,
2
 and the resulting bugs can be subtle and

difficult to diagnose. If multicore is to succeed, the skills required to develop parallel software

must become routine rather than specialized, and the technologies used to develop parallel soft-

ware must become more widely available and more robust, and must scale to arbitrarily many

cores.

The purpose of this work was to understand how multicore computing will affect the broad prac-

tice of computer programming and computer programmers. Programmers are strongly affected by

the programming languages, libraries, and environments that they use on a day-to-day basis, re-

2 See http://www.cs.kent.ac.uk/projects/ofa/java-threads/0.html (last accessed December 3, 2009) for a discus-

sion of a thread starvation “bug” in a product release of the Java software development kit. This case is reveal-
ing because thread safety is a key design goal of the Java programming model.

http://www.cs.kent.ac.uk/projects/ofa/java-threads/0.html

42 | CMU/SEI-2009-TR-025

ferred to collectively as ―programming models.‖ We aimed to understand current and emerging

multicore programming models and gaps in these models, and to identify where the SEI might

have the biggest impact in filling these gaps.

6.2 Background

Multicore processors represent a fundamental change in strategy to improving computer perfor-

mance, from manufacturing processors with faster clock speeds, to manufacturing processors with

two or more independent processing cores. The premise is that additional computing cores will

allow parallel execution of computer programs on the generally sound principle that doing two

things at the same time (i.e., ―in parallel‖) will be faster than doing one thing and then another

(i.e., ―sequentially‖). Thus, multicore for the programmer is fundamentally about issues of paral-

lelism.

6.2.1 Varieties of Multicore

―Multicore‖ covers a wide range of processor architectures, and should not be identified with the

specific multicore architectural choices made by Intel and AMD in their various processor product

lines.

A multicore processor has at least two independent processors on one piece of silicon that makes

up a single integrated circuit. Using terminology introduced by Flynn long before multicore, our

work focused on two classes of multicore architecture that are now available on conventional

desktop platforms (Figure 6-2)—multiple instruction multiple data (MIMD) and single instruction

multiple data (SIMD).

Figure 6-1: Flynn’s Taxonomy

As always, however, ―there is no free lunch.‖ Conventional programming models apply to MIMD

architectures, but radically different programming models are required for SIMD architectures,

with Nvidia’s CUDA being a well-known, but not the only, example.
3
 Deciding how to decom-

pose problems in a way that exploits the capabilities of SIMD and MIMD is challenging; reconcil-

ing different programming models to make different processor architectures work together adds

additional difficulty.

3 See http://www.nvidia.com/object/cuda_home.html for details on CUDA (last accessed December 3, 2009).

Focus of

this
research

MISD SIMD SISD MIMD

Uncommon architecture
that is generally used
for fault tolerance

Common uni - core
architecture, e.g., found
on PCs prior to 2006

Common CPU architecture
found on PCs today, often
called „multi

Common GPU architecture
found on PCs today, is
another kind of „multi core‟ core‟

http://www.nvidia.com/object/cuda_home.html

43 | CMU/SEI-2009-TR-025

6.2.2 Concurrency and Parallelism

Though the terms ―concurrent‖ and ―parallel‖ are sometimes used interchangeably, there is a dis-

tinction. The difference between a concurrent and parallel program arises not from the code (in

fact, they often use the same programming models), but from the execution environment:

 Concurrent: Pertaining to the occurrence of two or more activities within the same interval

of time, achieved either by interleaving the activities or by simultaneous execution.

 Parallel: Pertaining to the simultaneous processing of the individual parts of the whole using

separate facilities for the various parts.

Because parallelism is a special case of concurrency, we will use the term ―concurrent‖ in places

to refer to the general phenomenon where confusion will not result.

Here an important point to note is that concurrent programs that appear to behave correctly when

running on a single processor may exhibit hidden defects when run as parallel programs on mul-

tiple processors; indeed there is substantial anecdotal evidence that this is likely to be the case

even for programs written in languages such as Java that provide built-in support for programs

that specify multiple independent threads of control.
4

6.2.3 Programming Models

Wikipedia defines parallel programming model as ―a set of software technologies to express pa-

rallel algorithms and match applications with the underlying parallel systems. It encloses the areas

of applications, programming languages, compilers, libraries, communications systems, and paral-

lel I/O.‖
5

We strongly endorse the idea expressed in the underlined passage—a programming model in-

cludes much more than what is defined by the programming language. However, for our purposes,

we considered the following elements of parallel programming models: theories, platforms, lan-

guages, and patterns. These elements comprehend but are not restricted to the concurrency.

Theories

These are the logical or other mathematical constructs that programmers use to reason about, spe-

cify, and possibly prove important properties of program behavior—for example, algorithm com-

plexity and program correctness.

Theories of particular importance to multicore programming include process algebraic theories

concurrency, of which there are a wide variety that differ in ways that are mostly significant to

theorists rather than programmers. Significantly, the ―theory‖ of concurrency and parallelism—at

least that part of the theory of direct relevance to the programmer—is relatively unchanged since

the early 1980s.

4 One vendor of high-end Java hardware platforms (with hundreds of core processors) reported in a closed door

briefing of IFIP Working Group 2.4 (see http://wg24.cs.uvic.ca/ContentWG24.shtml) that mission critical, multi-
threaded applications currently in use in major financial institutions that appear to work correctly on uni-core
hardware platforms routinely failed when executed on highly parallel architectures: parallelism exposed latent
defects, most notably race conditions, in code.

5 See http://en.wikipedia.org/wiki/Parallel_programming_model (last accessed December 3, 2009).

http://wg24.cs.uvic.ca/ContentWG24.shtml
http://en.wikipedia.org/wiki/Parallel_programming_model

44 | CMU/SEI-2009-TR-025

On the other hand, theories for reasoning about so-called real-time behavior of software are un-

dergoing substantial renovation to accommodate multicore; see Section 6.5 on page 46 for an

overview of some results in this area.

Platforms

These are the operating systems, middleware, libraries and exolinguistic tools, such as program

generators, profilers, monitors, static analyzers, and testing tools, that programmers use to develop

programs.

Platforms of particular importance to multicore programming include: recent enhancements of

thread libraries, such as Intel’s Thread Building Blocks (TBB);
6
 GPU programming libraries and

tools such as CUDA; and hardware and/or software transactional memory.

Languages

These are, to programmers, the most obvious and familiar components of a programming model,

and include popular languages such as C, C++, C# and Java. Not all programming languages pro-

vide direct support for concurrency; C and C++, for example, have no provisions for concurrency

but instead rely on platform services. Ada, Java and C#, on the other hand, provide language sup-

port for concurrency, but only as a peripheral concern of the language, and rely for the most part

on primitive locking and synchronization mechanisms, virtually unchanged since their invention

in the 1970s.

Various niche languages, such as Erlang and Haskell regard concurrency as a central concern,

although each of these takes quite a different approach to addressing the concern. For example,

Occam exposes concurrency as a fundamental unit of program composition, while Haskell uses

transactional memory to make concurrency as transparent as possible to programmers. The ten-

sion between making concurrency abstractions explicit or implicit is a recurring one in current

language research. The high-performance computing community is also investigating new pro-

gramming languages, notably X10 and Chapel, although as noted earlier it is not clear that the

concerns being abstracted by these languages (for example, non-uniform memory hierarchy) are

necessarily critical beyond the supercomputing niche.

Patterns

These are the solution templates that are defined by recurring and intended interrelationships

among a collection of component parts. Patterns appear at program scale and at architecture scale.

The numerous reprintings of Mattson, Sanders, and Massingill’s Patterns for Parallel Program-

ming in the one year since its publication reflects a keen interest by programmers to understand

the basic structures programs must exhibit if they are to exploit multicore architecture. However,

there remains still a paucity of guidance on how to compose parallel programming patterns, or

how to combine programming patterns with architecture patterns, or how to isolate patterns from

(or conversely, how to inform the selection of patterns by) the details of processor and memory

architecture now exposed (but formerly abstracted) by multicore.

6 See http://TBB.html (last accessed December 3, 2009).

http://tbb.html/

45 | CMU/SEI-2009-TR-025

6.3 Approach

We combined traditional market surveys and literature surveys with the development of non-

trivial prototype software using selected, emerging multicore programming technology.

The prototype was developed to investigate whether existing programming models could be used

to implement real-time face recognition on a mid-range multicore machine. We also used the pro-

totype to identify challenges likely to confront programmers who attempt to

 integrate software packages that have each been designed to exploit multicore, but which

have made different and possibly conflicting choices in their approaches

 understand the issues that arise when combining various programming and architecture pat-

terns, and the relative effectiveness of specific patterns

 obtain a limited though well-grounded understanding of the maturity and usability of se-

lected programming technologies

For the prototype we used Intel’s TBB, OpenMP, and used the open source Open Computer Vi-

sion Library (OpenCV) in combination with various open source and otherwise publicly available

software packages for face recognition, image scaling, and related tasks.

6.4 Collaborations

The SEI joined the Multicore Association (MCA)
7
, an organization that works to create open in-

dustry standards that improve organizations’ ability to develop multicore and multiprocessor sys-

tems. In particular, we focused our efforts on MCA’s Programming Practices working group,

where we collaborated with other volunteers (including representatives from Intel, Critical Blue,

Freescale Semiconductor, imec, PolyCore, Samsung, and Virtutech) on the creation of a multicore

programming practices (MPP) guide.

The MPP guide, not yet released, contains guidance on how to migrate today’s sequential C/C++

applications to a multicore environment. It serves as a primer on fundamental concepts of multi-

core development, including

 an overview of several current technology options

 advice for analysis of existing applications

 design and implementation strategies for multicore environments

 advice for debugging and improving the performance of multicore applications

The MPP guide will be an important asset for organizations migrating existing applications to

multicore in the near term. Its focus on current, established technologies rather than new research

ideas provides practical help for those that must move to multicore while new approaches are still

being developed. We used much of the MPP material during our experiments in migrating the

face recognition application to a multicore environment, and used our experiences to help im-

prove the MPP.

7 http://www.multicore-association.org (last accessed December 3, 2009).

http://www.multicore-association.org/

46 | CMU/SEI-2009-TR-025

6.5 Observations

Our research and experiments reinforced many lessons from previous experience with concurren-

cy, all of which are still relevant but bear repeating. Principally, the following four observations

seemed key

1. More programmers need to learn to ―think parallel.‖

2. Multicore will be prevalent, but not all programmers will see the same impact.

3. Multicore is mostly about improving performance.

4. Like other new technologies, there will be growing pains.

6.5.1 Programmers Need to “Think Parallel”

The vast majority of today’s software programmers and university programs are grounded in se-

quential development practices. Concurrent software, though, is substantially different from se-

quential software. Control and coordination follow different patterns that many programmers are

not as adept at creating. This is simply a reality stemming from the trends of recent decades:

 Many programmers, until recently, have had little access to parallel hardware.

 Many of today’s mainstream languages, like C and C++, are sequential languages.

 Many universities have largely restricted concurrency to advanced topics or high-level

courses for some time.

In short, the commercial marketplace has not had substantial demand for concurrent development

skills. This is now changing.

Software must be written to exploit available parallelism. Parallel code faces different challenges

in control and coordination patterns, algorithm design, and resource allocation. Good decisions for

sequential applications can be bad decisions in parallel applications, and programmers need to

learn how to think through these problems and embrace parallelism as a primary design consid-

eration.

Table 6-1 summarizes some of the challenges facing programmers in a parallel world. This is not

a comprehensive list, but identifies some challenges relating to different aspects of multicore pro-

gramming models that may be encountered during different development activities.

47 | CMU/SEI-2009-TR-025

Table 6 1: Some Development Challenges in a Parallel World

6.5.2 Not All Programmers Will See the Same Impact

While multicore computing platforms are inevitable, almost unavoidable, not all programmers

will see the same impact. Some communities will see much less impact than others. In some cas-

es, such as in the HPC community and among operating system and real-time embedded pro-

grammers, there is already a great deal of experience in developing parallel software and thinking

meticulously about the capabilities and limits of different hardware platforms. These communities

already have many of the skills necessary to successfully develop parallel software.

In other cases, there will be little need to explicitly manage parallelism. In some types of applica-

tions, such as web applications, middleware can and will manage much of the complexity. In such

cases, programmers can continue to develop sequential software that is executed in parallel with

other sequential applications. In other cases, such as some classes of desktop applications, there is

no driving performance problem. If a sequential application can execute quickly enough on a sin-

gle core, there is no need to reengineer it to spread the load across multiple cores.

However, there is another extreme. Those currently developing sequential software that needs

additional computing resources will have to migrate to multicore. Shifting from sequential devel-

opment to parallel development without prior concurrency experience will be a more difficult and

risk prone endeavor.

Table 6-2 summarizes some of these trends. Columns reflect different kinds of development ef-

forts, from writing new applications from scratch to different migration and integration possibili-

ties. Rows reflect a crude distinction of different types of applications, largely differentiated by

performance needs and likelihood of prior concurrency experience. Different cells in the table

Developer
Activities

Theory Platform Languages Patterns &
Architecture

Writing code Stable, but adequate
concurrency theory…but
many programmers are not
familiar with these.

Variety of good piecewise
solutions emerging, but it
is unclear how they play
together or where they
will interfere.

Variety of good language
ideas emerging, but still
shackled by legacy C/C++
codebases.

Patterns for data
parallelism and task
parallelism are well
understood, but patterns
that combine both are not.

Debugging This is a major and unresolved problem for all aspects of programming models.

Testing Testing sequential code is already challenging (exhaustive testing is infeasible), concurrent code is much worse.

Analysis Many quality attribute
theories need to be adapted
for multi-core; this is not
always trivial.

We don’t know that new
platforms will conform to
analytic assumptions;
aggravated by churn.

Existing tools may need
serious modifications to
accommodate new
execution models.

What patterns lead to
predictable system
qualities?

Documentation
and
Specification

What do we need to know
about platforms to use
them alone or in
combination? Will that
information be available?

Many good, but trivial
code examples are
available, but more
serious exemplars are
needed.

How to document
concurrency in
architecture is not well
understood, but
increasingly important.

Integration All of the familiar “COTS”

integration issues of
mismatched assumptions.

All of the familiar “COTS”

integration issues of
mismatched assumptions.

Design Not yet at a point where we
can hide concurrency theory
the way we do other
theories (e.g., type theory).

Can platforms be
designed to be hardware-
aware, but still portable?

Do languages expose
important abstractions
(e.g., information
locality)?

New techniques and
heuristics needed for
problem decomposition –
“thinking parallel.”

Developer
Activities

Theory Platform Languages Patterns &
Architecture

Writing code Stable, but adequate
concurrency theory…but
many programmers are not
familiar with these.

Variety of good piecewise
solutions emerging, but it
is unclear how they play
together or where they
will interfere.

Variety of good language
ideas emerging, but still
shackled by legacy C/C++
codebases.

Patterns for data
parallelism and task
parallelism are well
understood, but patterns
that combine both are not.

Debugging This is a major and unresolved problem for all aspects of programming models.

Testing Testing sequential code is already challenging (exhaustive testing is infeasible), concurrent code is much worse.

Analysis Many quality attribute
theories need to be adapted
for multi-core; this is not
always trivial.

We don’t know that new
platforms will conform to
analytic assumptions;
aggravated by churn.

Existing tools may need
serious modifications to
accommodate new
execution models.

What patterns lead to
predictable system
qualities?

Documentation
and
Specification

What do we need to know
about platforms to use
them alone or in
combination? Will that
information be available?

Many good, but trivial
code examples are
available, but more
serious exemplars are
needed.

How to document
concurrency in
architecture is not well
understood, but
increasingly important.

Integration All of the familiar “COTS”

integration issues of
mismatched assumptions.

All of the familiar “COTS”

integration issues of
mismatched assumptions.

Design Not yet at a point where we
can hide concurrency theory
the way we do other
theories (e.g., type theory).

Can platforms be
designed to be hardware-
aware, but still portable?

Do languages expose
important abstractions
(e.g., information
locality)?

New techniques and
heuristics needed for
problem decomposition –
“thinking parallel.”

48 | CMU/SEI-2009-TR-025

present different kinds and degrees of risk. For simplicity we have identified regions of high, me-

dium, and low risk, which are labeled in the table.

Table 6 2: Potential Development Impact in Different Areas

6.5.3 Multicore is Mostly About Performance

The primary reason for migrating to multicore development is to be able to exploit more cores to

get work done faster—that is, it’s about performance. There are certainly other benefits to using

multicore, including power consumption, weight, and space benefits, but most programmers will

focus on performance. This is reflected in current research and development efforts, as well,

which push to keep as many cores as possible as busy as possible.

Two broad strategies dominate current discussions:

 Get the same work done faster: This strategy requires programmers to parallelize the algo-

rithms performing work, and can be a complex activity. However, if a unit’s work cannot be

completed by a deadline, it is a necessary change.

 Do more work in the same period of time: This strategy exploits the fact that today’s systems

often do many kinds of activities, many of which have no direct or intricate dependencies.

These kinds of tasks can be executed in parallel on different cores with relatively little work.

It is important to keep a balanced perspective, however, during a move to multicore. While better

and better performance is an appealing notion, programmers must recognize the tradeoffs being

made during parallelization. Changes that improve performance can also introduce many com-

plexities, which potentially introduce incorrect behavior and maintenance headaches, degrade

usability or portability, or compromise other important system qualities. Programmers should

make these sorts of tradeoffs consciously.

New Applications Migrating from
Sequential

Migrating from
Multiprocessor

Integrating from
Multi-Core

Simple (e.g.,
web apps,
desktop apps)

Largely handled by
environment or little
need to exploit MC.

Largely handled by
environment or little
need to exploit MC.

Unlikely.

Already have many skills,
but some new pitfalls.

Need to be cautious of
incompatibility and
interference, particularly
with respect to any
middleware.

Conventional
C/C++

• modest
performance
needs

• pushing
sequential
limits

Little need (for now) to
exploit MC.

Low-risk opportunities
to experiment with
parallelism

Little need (for now) to
exploit MC.

Low-risk opportunities
to experiment with
parallelism

Unlikely.

Already have many skills,
but some new pitfalls.

Need to be cautious of
incompatibility and
interference.

Unlikely to be a lot of
native parallelism to
accommodate.

MC needed to retain
acceptable
performance.

New skills required.

MC needed to retain
acceptable
performance.

New skills required.

Already have many skills,
but some new pitfalls.

Hardware dif ferences
more likely to cause
complications.

Need to be cautious of
incompatibility and
interference.

May not have skills to
anticipate or resolve.

Performance
Intensive
(e.g., RTE,
games)

Already have many
skills, but some new
pitfalls.

More hardware options.

Already have many
skills, but some new
pitfalls.

More hardware options.

Already have many skills
and code is already
structured for some
concurrency.

Need to be cautious of
incompatibility and
interference.

High Risk High Risk

Low Risk

Low Risk

49 | CMU/SEI-2009-TR-025

6.5.4 Multicore is New; There Will Be Growing Pains

Multicore hardware and the programming models that support them are relatively new and still

evolving at a rapid rate. This results in the same kinds of difficulties and risks that accompany

most new technologies. For example, software that exploits particular hardware features (much

more likely given the current erosion of hardware abstraction boundaries) risks being tied to par-

ticular vendors or even processor models.

Likewise, there are several different viable multicore programming models at the moment, and it

is not yet clear which, if any, will dominate. Also, not surprisingly, not all models are compatible

with each other. For example, attempting to integrate applications using different programming

models may require dealing with different middleware, each assuming that it has exclusive access

to all cores for scheduling.

6.6 Results

This study of multicore programming models confirmed many assumptions about the applicability

of longstanding concurrency research and techniques in multicore environments. These findings

are summarized in the previous section. Additionally, this study shed light on different approaches

to addressing multicore issues and important areas for additional work.

While most multicore work is focused on improving performance, the particular techniques used

present their own challenges. Two significant examples are the need to balance performance con-

siderations with other system qualities and the ability to choose the right concurrency approaches

for today’s needs and tomorrow’s.

It is well established that optimizing some system qualities, like performance, often comes at the

cost of degrading other system qualities, like modifiability or portability. More work is needed to

understand how multicore impacts the way we architect our software and to take advantage of the

differing properties of different concurrency strategies.

Even absent the consideration of other system qualities, choosing a concurrency strategy is diffi-

cult. Coarse-grained strategies (e.g., parallelizing large, independent tasks) and fine-grained strat-

egies (parallelizing loops) are both viable options, but not always as solutions to the same prob-

lem. Moreover, many complex applications can make effective use of both strategies, though

more work is needed to ensure that they are used in complementary, rather than interfering ways.

This issue will become increasingly important as more integration efforts have to accommodate

code that has already been optimized for multicore.

The prototype real-time face recognition system was instrumental in grounding the conclusions

presented here, and is itself a platform that can be used to investigate a range of programming

model pragmatics.

In summary, programmers making use of multicore programming models face a complex land-

scape, and should be mindful of new developments and cautious in the face of new challenges.

Commercial and research communities continue to make progress on addressing the challenges of

developing concurrent software for multicore processors, but progress means continuing to learn

and adapt.

50 | CMU/SEI-2009-TR-025

6.7 Bibliography

[Armstrong 2008]

Joe Armstrong. Programming Erlang: Software for a Concurrent World. The Pragmatic Book-

shelf, 2008. http://pragprog.com/titles/jaerlang/programming-erlang

[Bergstra 2001]

Jan A. Bergstra, A. Ponse, & S. A. Smolka (Eds). Handbook of Process Algebras. Elsevier

Science & Technology, 2001 (0444828303).

[Buschmann 1996]

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, & Michael Stal. Patterns of

Software Architecture, John Wiley & Sons, 1996 (ISBN-10: 0471958697).

[Chamberlain 2007]

Bradford Lee Chamberlain, David R. Callahan, & H. P. Zima. ―Parallel Programmability and the

Chapel Language.‖ International Journal of High Performance Computing Applications 21, 3

(August 2007): 291-312. http://portal.acm.org/citation.cfm?id=1286123

[Charles 2005]

Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian Grothoff, Allan Kielstra,

Christoph von Praun, Vijay Saraswat, & Vivek Sarkar. ―X10: An Object-Oriented Approach to

Non-Uniform Clustered Computing,‖ in Proceedings of the 20th Annual ACM SIGPLAN Confe-

rence on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005,

October 16-20, 2005.

[Flynn 1972]

Michael J. Flynn. ―Some Computer Organizations and Their Effectiveness,‖ IEEE Transactions

of Computing C-21, 9 (September 1972): 948.

[Gamma 1996]

Erich Gamma, Richard Helm, Ralph Johnson, & John Vlissides. Design Patterns, Addison Wes-

ley, 1996 (ISBN:3-540-57120-5).

[Halfhill 2008]

Tom R. Halfhill. ―Parallel Processing with CUDA,‖ Microprocessor Report (January 28, 2008).

www.mdronline.com/watch/watch_Issue.asp?Volname=Issue+%23012808&on=1#item2

[Hudak 2000]

Paul Hudak. The Haskell School of Expression. Cambridge University Press, 2000 (ISBN:

0521644089). http://www.haskell.org/soe/

[Mattson 2008]

Timothy G. Mattson, Beverly A. Sanders, & Berna L. Massingill. Patterns for Parallel Program-

ming, Addison-Wesley Professional, 2008 (ISBN-10: 0321228111).

http://pragprog.com/titles/jaerlang/programming-erlang
http://portal.acm.org/citation.cfm?id=1286123
http://www.mdronline.com/watch/watch_Issue.asp?Volname=Issue+%23012808&on=1#item2
http://www.haskell.org/soe/

51 | CMU/SEI-2009-TR-025

[Sutter 2005]

Herb Sutter. ―The Free Lunch Is Over: A Fundamental Turn Toward Concurrency.‖ Dr. Dobb's

Journal 30, 3 (March 2005).

http://mavdisk.mnsu.edu/alleng/courses/EE%20613/Reading/No_Free_Lunch.pdf

http://mavdisk.mnsu.edu/alleng/courses/EE%20613/Reading/No_Free_Lunch.pdf

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

December 2009
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Results of SEI Independent Research and Development Projects

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Len Bass, Paul Clements, Dionisio de Niz, Peter Feiler, Matthew Geiger, Jeffrey Hansen, Jörgen Hansson, Scott Hissam, James Ivers,
Mark Klein, Karthik Lakshmanan, Gabriel Moreno, Daniel Plakosh, Raj Rajkumar, Kristopher Rush, Cal Waits, Kurt Wallnau, & Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2009-TR-025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-TR-2009-025

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
The Software Engineering Institute (SEI) annually undertakes several independent research and development (IRAD) projects. These
projects serve to (1) support feasibility studies investigating whether further work by the SEI would be of potential benefit and (2) support
further exploratory work to determine whether there is sufficient value in eventually funding the feasibility study work as an SEI initiative.
Projects are chosen based on their potential to mature and/or transition software engineering practices, develop information that will help
in deciding whether further work is worth funding, and set new directions for SEI work. This report describes the IRAD projects that were
conducted during fiscal year 2009 (October 2008 through September 2009).

14. SUBJECT TERMS
Security Architecture, Software Requirements, Multicore, Real-Time Systems, Parallel Distri-
buted Acquisition System

15. NUMBER OF PAGES
51

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Results of SEI Independent Research and Development Projects
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Modeling and Validating MILS Security Architecture
	3 Relating Business Goals to Architecturally Significant Requirements for Software Systems
	4 Achieving Predictable Performance in Multicore Embedded Real-Time Systems
	5 Parallel Distributed Acquisition System
	6 Programming Models for the Multicore Era

