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ABSTRACT 

This thesis researches different star pattern recognition and attitude determination 

algorithms for a three-axis rotational spacecraft.  A simulated star field will be suspended 

above the experimental Three-Axis Spacecraft simulator to provide a reference for the 

star-pattern recognition algorithms.  A star field inertial reference frame database of stars 

will be developed with the simulator at zero attitude.  The angle, planar triangle, and 

spherical triangle star pattern recognition algorithms will then be used to identify which 

stars are within a camera’s field of vision.  The imaged stars will then be matched up to 

the corresponding stars within the test bed database.  With the imaged stars identified and 

the corresponding inertial frame reference data, the test bed’s attitude will be determined 

using the least-squares, TRIAD, and Quaternion Estimator (QUEST) attitude 

determination algorithms. On the three-axis simulator, an iterative algorithm is developed 

to demonstrate increasing star tracker accuracy with each updated A matrix.  
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EXECUTIVE SUMMARY 

The objective of this research is the study of star trackers and the use of star 

pattern recognition algorithms and attitude determination algorithms by simulations and 

in a laboratory setting.  The purpose of the algorithms is to resolve satellite attitude 

determination problems.   

The intent is to analyze several star pattern recognition algorithms and determine 

the best algorithm in terms of accuracy and computing resources used.  The algorithms 

used in the study are the angle algorithm, planar triangle algorithm, and the spherical 

triangle algorithms for use in star identification.  All algorithms will be used to compare a 

reference or inertial image of stars to an image simulating a view seen by a star tracker 

onboard an orbiting satellite. 

The star pattern recognition algorithms are an essential part in determining the 

attitude of a satellite in orbit.  The star tracker’s algorithms will match stars observed in 

the star tracker reference frame and calculate the unit vectors to those stars in the 

satellite’s frame of reference.  The algorithm will match the angles or triangles calculated 

by the star tracker in the body reference system to the same angles or triangles in the 

inertial reference system.  Once the matches are made, the inertial star vectors are 

matched to the body-frame vectors.  These vectors in the inertial and body-frame 

coordinated systems are then used in attitude determination algorithms to solve the 

problem that takes the form of y Ax . 

The attitude determination algorithms take the vectors to the stars in the inertial 

coordinate system and the vectors to the same stars as referenced in the body frame of the 

satellite to determine the direction cosine matrix of the satellite.  Once the attitude matrix 

is determined, the quaternions or Euler angles of the satellite can be resolved.  There are 

several algorithms in use for attitude determination, but three were studied in this report. 

The algorithms studied are the least-squares, Quaternion-Estimator (QUEST), and 

the TRIAD algorithm.  Each algorithm operates on unit vectors, but each has its 

differences regarding the mathematical approach.  The least-squares algorithm uses the 
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pseudo-inverse operation in MATLAB.  The QUEST algorithm performs eigenvalue 

calculations to determine the optimal quaternion.  The TRIAD algorithm uses two vectors 

in the inertial coordinate system and the body frame to calculate the attitude 

determination matrix. 

Star Tracker simulations will also be performed on a three-axis simulator, 

representing a spacecraft, in a laboratory environment.  A camera will be installed on the 

simulator to act as a star tracker. A screen installed on the ceiling above the simulator 

will be used to simulate a star field.  Using MATLAB, an inertial database of stars is 

created while the camera detects the stars much in the same way as a star tracker would. 

Since the stars are displayed in close proximity in the laboratory environment, iterative 

algorithm is developed to demonstrate star tracker with the test bed.  
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I. INTRODUCTION 

A. MOTIVATION 

Attitude determination is an extremely important aspect of any spacecraft 

especially a spacecraft required to point with some accuracy.  Spacecraft attitude is 

defined as the alignment of the spacecraft’s fixed body frame with respect to a specified 

frame.  The spacecraft may need to point a camera or payload to satisfy a mission 

requirement, or the craft may need to position its solar arrays accurately at the sun to 

maintain its power requirements.  Without accurate attitude determination, a “Lost in 

Space” condition could occur with the spacecraft tumbling uncontrollably in orbit.  

Therefore, an accurate method is needed for spacecraft attitude determination so the 

spacecraft can point its payload within the required accuracy. 

In space, there are few “landmarks” available for attitude determination.  The sun 

and Earth provide two reference points, but the spacecraft detector may not able to view 

these reference points.  The Earth’s magnetic field may be used for position 

determination, but this is a very inaccurate method.  By far, the object in view for the 

majority of time is deep space and the stars. 

The attitude problem can be solved by vector observations of stars by an onboard 

detector.  For over 40 years, vector observation algorithms have been studied for 

solutions to satellite attitude determination problems (Weiss, Bar-Itzhack, & Oshman, 

2005).  The vector observations of stars via a satellite-mounted camera provide one input 

to the algorithm while the fixed inertial vector measurements of the same stars provide 

the reference.  These observations, measurements, and algorithms are conducted by a 

satellite star tracker. 

With the advent of more modern technology, the use of stars as a visual reference 

point has become more popular for spacecraft.  Initially, star trackers required rough 

attitude estimations from other spacecraft sensors such as a sun sensor or magnetometers.  

Stars within view of the star tracker were locked onto and tracked.  When the stars went 

out of sight, the coarse estimates were used until the algorithm was able to identify new 
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stars (Gwanghyeok & Junkins, 2003).  All processing of stars via algorithms were 

conducted on the ground via telemetry.  The attitude estimates were then uplinked to the 

craft.  These initial trackers were very large, heavy, expensive, and extremely slow 

(Gwanghyeok & Junkins, 2003).  That was in the past. 

Space-qualified microcomputers now can compare camera observations to 

onboard star catalogs in firmware (Christian Liebe, 2002).  Star trackers are now 

available as self-contained, autonomous units incorporated into the satellite’s guidance 

system.  The star trackers are now only one of many instruments that are available as a 

suite of attitude determination devices.  The solutions from these attitude determination 

devices are fed into a filter to generate an overall description of the craft’s attitude. 

Star trackers are the most accurate method of determining spacecraft position 

especially when directing precise payloads such as energy weapons, laser 

communications, and optical payloads.  Most star trackers are a Charge-Coupled Device 

(CCD) that positions the stars on the plane of the CCD.  The CCD converts images into a 

digital signal, which makes this technology ideal for light detection.   

There are many different algorithms for use with star trackers and for attitude 

determination results.  The angle algorithm is the simplest method of matching unit 

vectors of stars in the inertial frame to stars observed in the body frame of the satellite, 

yet this algorithm is prone to erroneous matches.  The spherical triangle algorithm is a 

more robust algorithm, but it requires more calculations and processing.  The planar 

triangle algorithm is similar to the planar triangle method, but requires approximately the 

same amount of calculations as the planar triangle algorithm. 

B. THESIS OVERVIEW 

The work presented will demonstrate star tracker attitude determination for 

slewing maneuvers on a three-axis simulator.  Algorithms will be developed in 

MATLAB to determine star identification in the body frame of the satellite and the 

inertial reference frame.  The star identification algorithms will also calculate the star 

inertial unit vectors and body-frame unit vectors.  Another topic studied will be the 

algorithms for matching inertial vectors to body-frame vectors, therefore determining the 
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attitude quaternions and Direction-Cosine-Matrices (DCMs) of the spacecraft. The 

aforementioned algorithms will be studied by simulations, as well as integration with 

other attitude determination devices on a test bed.   
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II. BACKGROUND 

A. SPACECRAFT ATTITUDE DETERMINATION DEVICES 

There are many devices used today on modern spacecraft to accurately determine 

their position.  Magnetometers can be used in conjunction with the Earth’s magnetic 

field.  Sun sensors can be used for attitude determination, but the sun must be visible to 

the spacecraft.  The problem is that the sun sensor and magnetometers can only achieve 

an accuracy of 0.1 degree (Cole, 2004).  A solution to the accuracy problem is using a 

star tracker. 

Star trackers are the most accurate device in use for determining a spacecraft’s 

position.  The star tracker is essentially a camera for the sole purpose of observing star 

patterns as observed on the celestial sphere (Christian Liebe, 2002).  The star tracker is 

attached to the satellite onboard computer as part of the ADCS (Attitude Determination 

and Control Subsystem) (Christian Liebe, 2002).  The star tracker operates automatically, 

getting images of star patterns within its Field of Vision (FOV).  The stars observed by 

the camera can then be identified and the orientation of the spacecraft can be calculated. 

Modern star trackers are extremely sensitive cameras attached on the bus of the 

spacecraft.  These star cameras are low mass, low power devices that can output centroids 

of stars or quaternions.  The AeroAstro Miniature Star Tracker (MST) in Figure 1 is a 

Miniature Star Tracker with a mass of 375 grams (not including the baffle) that draws 

less than two Watts of power.  The star tracker’s accuracy is ± 70 arc-seconds on all three 

axes with a two Hz update rate.  The star tracker is located away from any propulsion 

exhaust nozzles to prevent “blinding” the camera from propellant exhaust plumes. 
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Figure 1.   AeroAstro Miniature Star Tracker (From AeroAsto) 

A star tracker is capable of attitude determination to within arc-second accuracy 

(Cole, 2004).  For a high-cost spacecraft with accurate pointing requirements, the use of a 

star tracker is the preferred method for attitude determination.  The aforementioned 

magnetometers and sun-sensors can be a back-up to the star trackers.  Sky coverage is the 

percentage of the sky where the star tracker will operate.   

Special considerations for star tracker construction must be taken into account to 

ensure the accuracy of the device.  Each star tracker will have temperature limits at which 

the tracker must be maintained to ensure satisfactory operation.  The star tracker will be 

thermally isolated from the spacecraft to minimize its sensitivity to fluctuations in the 

spacecraft temperature (The Aerospace Press, 2002).  Shutters or other devices will 

ensure that the sun will never be able to shine down the tracker’s optical boresight.  The 

outer surface, like the one seen in Figure 1, will have a thermal finish to minimize effects 

of the space environment (The Aerospace Press, 2002).  The aforementioned features and 

others ensure the optical-support structure is highly isothermal (The Aerospace Press, 

2002).  

Figure 2 is a representation of a generic star tracker, which illustrates the common 

components of a star tracker (Liebe, Dennison, Hancock, Stirbl, & Pain).  The 
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microcomputer is the computer brain of the device and performs all necessary 

calculations (Liebe, Dennison, Hancock, Stribl, & Pain).  The digitizer turns the image 

into a digital image, which is necessary for calculations.  The microcomputer accesses the 

software star catalog to match the stars as visualized by the lens.  The result or output 

from the device is the attitude quaternion with respect to the celestial sphere (Liebe, 

Dennison, Hancock, Stirbl, & Pain). 

 

 

Figure 2.   Star Tracker Diagram (From Liebe, Dennison, Hancock, Stirbl, & Pain). 

To perform the calculations necessary for attitude determination, a set of 

reference stars and their inertial coordinates must be stored within the onboard database.  

Star Catalogs provide the necessary star information for programming a database of star 

data on a satellite. 

B. STAR CATALOGS 

The star catalog used for this research is the Hipparcos catalog of nearby stars.  

The Hipparcos catalog was obtained from the European Space Agency’s Hipparcos 

astrometric mission that operated from November 1989 to March 1993 viewing the 

celestial sphere.  The mission returned very high quality star astrometric and photometric 

data, specifically high precision data on 118,218 stars (Agency, 2009).  The star catalog 

             * 
*  *    *   *    * 
      * 
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     *        * Low, 
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is available for download from www.heasarc.gsfc.nasa.gov.  Approximately half the 

Hipparcos star catalog was downloaded for use in the simulation.   

Half of the Hipparcos catalog was used to illustrate the sky visible to a satellite in 

orbit.  Each star has varies in magnitude and position on the celestial sphere.  The Right 

Ascension and Declination of the stars were converted to x and y coordinates for plotting 

in two-dimensions using MATLAB.  The stars are now an image the star tracker can 

view (Christian Liebe, 2002).  Figure 3 is a plot of half the stars in the Hipparcos catalog.  

The star plot below will be discussed further. 

 

Figure 3.   The Hipparcos star image. 

C. STAR TRACKER OPERATION 

Star trackers operate autonomously providing position data to the satellite ADCS 

system.  Star trackers operate in two modes:  1) initial attitude determination and 2) 

attitude update determination (Christian Liebe, 2002).  The first mode is the spacecraft 

not having any attitude knowledge, and the second mode is when the star tracker provides 

update attitude data to dated spacecraft attitude information.  The second mode is also 

known as the tracking mode (Christian Liebe, 2002). 
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Stars in the star tracker FOV will be detected if their brightness is above the star 

tracker’s minimum detection threshold.  The brightness of the star relies upon the point 

spread function (PSF) as well as the star’s position within the star tracker FOV (Christian 

Liebe, 2002).  The PSF describes an imaging system’s response to an impulse function or 

a point source.  The star tracker above can detect fourth magnitude stars.  Our Sun has an 

apparent magnitude of MV = -26.7. 

Star trackers calculate the centroids of the stars within the FOV by a process 

called centroiding (Christian Liebe, 2002).  A star will appear to the star tracker as a 

source of light covering several pixels, due to lack of focus or smearing of the image due 

to satellite rotation.  The centroid calculation will result in a (xcm, ycm) and a star 

intensity.  Figure 4 illustrates stars as seen from the camera of the star tracker  

 

Figure 4.   Stars as observed from the star tracker camera frame (From Diaz, 2006). 

 

 

 

Image Plane 

Unit Dist. 

Camera 
Frame 
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The mathematical formula for transferring the centroid coordinates into unit vectors 

according the star tracker body from are given as Equation 1 (Christian Liebe, 2002):  

 
C o

C o

X Xi

j Y Y

k f

   
       

      

 (1) 

where (x, y) are the coordinates of the focal plane, ( , )o ox y is the intersection of the focal 

plane and the optical axis, and F is the focal length of the camera.  The star unit vectors, 

as referenced from an inertial coordinate system, are obtained via a star catalog. 

The star tracker uses algorithms to match stars within its field of vision to the 

spacecraft’s database of inertial star positions.  The star tracker will update the position of 

the spacecraft at some frequency determined by the speed of the algorithm parsing 

through the stars within the FOV, and matching them to the onboard inertial database.  

The type of algorithm and the speed of the processing the database will determine the 

frequency of the star tracker attitude solutions.  Naturally, the algorithm must also be able 

to match the stars even with sensor noise and smearing of the stars when the snapshot is 

taken.   

D. STAR PATTERN RECOGNITION ALGORITHMS 

1. Star Pattern Recognition Algorithms 

The star tracker’s star vectors, imaged and determined by the star tracker attached 

to the body frame of the satellite, are useless without some method to correlate them to a 

database of inertial star unit vectors.  The matching of stars is accomplished by a 

matching algorithm.  The algorithms are of the lost-in-space type or the recursive type, 

which runs off of some prior position knowledge (Spratling & Mortari, 2009). 

Attitude calculations can occur only after stars are observed by the spacecraft.  

The star image must then be processed into data that is usable for the various algorithms 

in use by the star tracker.  The algorithm then processes the image into usable body frame 

data.  This image data must then be matched to an onboard database of star data.  When 

matches occur, then the body-frame data is matched to its corresponding inertial data.  

The difference between the inertial data and the body-frame data gives the attitude of the 
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spacecraft.  Subsequent algorithms covered in this report are used to establish a 

transformation that maps the observed star body vectors to the correct reference inertial 

vectors.  Figure 5 illustrates the star pattern recognition, algorithm processing, and 

inertial database matching (Spratling & Mortari, 2009). 

 

 
 

Figure 5.   Star-Patter recognition algorithm flow (From Spratling & Mortari, 2009). 

There are three basic pieces of each star pattern recognition algorithm.  The first 

step is to extract some features from a set of star body vectors and brightness from stars 

within the trackers FOV (Spratling & Mortari, 2009).  Next, the obtained information 

must be matched to entries within an onboard database to obtain the satellite’s position.  

Finally, an estimate of the accuracy of this position is obtained (Spratling & Mortari, 

2009). 

Most of these algorithms involve calculations of angles between observed stars 

(Spratling & Mortari, 2009).  The star pattern algorithms studied in this paper are the 

simple Angle Method, the Planar Triangles Method, and the Spherical Triangles 

algorithm.  All of the above algorithms follow a few basic steps, which will be discussed 

further in this paper.  The following is the generic sequence that assumes using the angle 

method for star pattern recognition: 

1. Supply data – At some time, to, an image is obtained with visible stars.  The 
tracker generates a tracker-framed position vector for each star (Needelman, Li, & 
Wu, 2005). 
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2. Select a primary pair – Two stars are selected and the angle is calculated between 
them. 

3. Determine primary pair candidates – The separation angle between the two stars 

lies in a range of 3 , 3separation separation       , where separation is the one sigma 

error in the angle.  If this pair corresponds to an angle in the lookup table, then 
obtain a set of inertial candidate stars, which are designated as candidate stars, Ci1 
and Ci2 (Needelman, Li, & Wu, 2005). 

4. Formulate primary assumption – Assume that the stars imaged by the star tracker, 
primary candidates, correspond to Ci1 and Ci2 which is termed the “primary 
assumption” (Needelman, Li, & Wu, 2005).  If there are no matches, proceed to 
step 8. 

5. Determine mapping between frames – Using the primary assumption above, find 
the direction cosine matrix A(to). 

6. Apply Direct Match Test – Given A(to), you can now predict which entries in the 
database represent stars within the star tracker’s view at time to (Needelman, Li, 
& Wu, 2005).  If the above is valid, then the algorithm is terminated (Needelman, 
Li, & Wu, 2005).  Otherwise, proceed to the next step. 

7. New Primary Pair Candidate – Switch Ci1’s and Ci2’s position in the database and 
reprocess from step 4.  Otherwise, proceed to step 8. 

8. New Primary Pair – The two initial stars do not match any angles within the 
database.  This may be due to errors in measurements or other reasons.  Another 
pair is selected and another angle is calculated where the process begins at step 3 
(Needelman, Li, & Wu, 2005). 

9. Naturally, there are strengths and weaknesses of each algorithm.   

a. Angle Algorithms 

The angle method is the simplest star identification algorithm.  Star pairs 

are observed by the camera, and their unit vectors are developed in reference to the frame 

of the star tracker, as shown in Figure 6.  The star tracker then calculates the angles 

between all stars within the FOV of the camera as illustrated by Figure 10.  The angle is 

calculated by the equation: 

  1
1 2cos r r    (2) 

where r1 and r2 are the unit vectors pointing to each star (Cole & Crassidus, 2006).  The 

angle θ in Equation 2 will be the same from the inertial frame as it is viewed from the 

satellite.  Figure 6 illustrates two stars detected by the star tracker in the camera frame 

with their respective x and y positions (Diaz, 2006). 
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Figure 6.   Angle detected calculated by star tracker (From Diaz, 2006). 

The angle of the stars in the cameras FOV are calculated using Equation 2.  

However, the angle calculated is in the frame of the star tracker camera.  The angles must 

be converted to the body frame of the satellite for use in any attitude determination 

algorithm.  Those body frame angles must be compared to angles in the inertial reference 

frame.  Therefore, an onboard database of inertial stars with their angles calculated from 

the inertial reference frame must be available.  Figure 7 illustrates two stars with the 

angle between them as viewed from an inertial reference frame. 
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Figure 7.   Angle method star pattern recognition algorithm  (From Diaz, 2006). 

The angle method of Figure 7 is simplistic and ideal for attitude 

determination, but there are significant drawbacks.  The computational requirements for 

determing   in Equation 2 are very simplistic.  The angle measurement, however, will 

have a significant amount of error in it due to noise.  This noise cannot be ignored in the 

calculations and must be dealt with.  If the noise follows a Gaussian distribution, then 

standard deviation can be used to determine a range which these measurements will fall 

in  (Cole & Crassidus, 2006).  Also, care must be taken to ensure the two stars in the 

body frame of the satellite are correctly matched to their corresponding inertial stars, 

therefore careful logic must be setup to ensure correct star matching occurs. 

b. Planar Triangles Algorithm 

Another algorithm for star identification is the method of planar triangles.  

The star tracker develops a triangle from a combination of three stars as shown in Figure 

8.  The benefit of this algorithm is that more information can be obtained from a triangle 

than an angle, which will allow the star tracker to determine the satellite’s attitude faster 

and use fewer stars than the aforementioned angle algorithm (Cole & Crassidus, Fast 

Star-Pattern Recognition Using Planar Triangles, 2006). 
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Figure 8.   Three stars as viewed by the star tracker (From Diaz, 2006). 

From the calculated triangle, the triangles area and polar moment can be 

determined.  The area and polar moment provide two pieces of information vice the 

single angle developed by the angle algorithm.  By observing three stars with unit vectors 

1b , 2b , and 3b , the area of the planar triangle is obtained by Heron’s formula (Cole & 

Crassidus, Fast Star-Pattern Recognition Using Planar Triangles, 2006): 

 ( )( )( )A s s a s b s c     (3) 

where 

  1

2
s a b c    (4) 

 1 2a b b    (5) 

 2 3b b b    (6) 

 1 3c b b    (7) 

Equations 3, 4, 5, 6, and 7 are valid in the Earth-Centered-Inertial or ECI frame as well as 

the star tracker frame (Cole & Crassidus, Fast Star-Pattern Recognition Using Planar 

Triangles, 2006).  In the planar triangle method, three observed stars in Figure 9 provide 
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far more information than only two stars using the angle method.  As shown, there are 

multiple angle calculations as well as other features of the triangle to store. 

 

Figure 9.   Star Tracker body unit vectors obtained for planar triangles  
From Diaz, 2006). 

It will also be necessary to obtain the polar moment in conjunction with 

the area of the triangle.  Two triangles may have the same area, but will have different 

second moments (Cole & Crassidus, Fast Star-Pattern Recognition Using Planar 

Triangles, 2006).  The polar moment is calculated using Equations 3, 5, 6, and 7, in 

addition to: 

 
 2 2 2

36
A a b c

J
 

  (8) 

When using planar triangles, the use of the triangles polar moment and 

planar area will rapidly reduce the number of similar solutions, however there are certain 

costs with using this algorithm.  There are significantly more features a triangle can 

provide when compared to an angle.  Naturally, instead of determining the satellites 
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position with two stars, it now requires three stars if using the planar triangle algorithm.  

There are, however, significantly more mathematical calculations that must be performed 

when using the triangle algorithm compared to the angle calculations.  Also, with the 

triangle there are two data points for each triangle which will require a larger memory to 

hold this data. 

c. Spherical Triangles Algorithm 

As with the planar triangle method, a similar algorithm used in star 

trackers is the use of spherical triangles.  The star tracker calculates a spherical triangle 

when it observes three stars within its FOV, as in Figure 10.  Again, the polar moment 

and area are used to determine which spherical triangle is being observed by the star 

tracker (Cole & Crassidus, 2004). 

 

Figure 10.   Spherical Triangles Method for Attitude Determination (From Diaz, 2006). 

The three unit vectors to the stars within the FOV, allow the area of the 

spherical triangle to be calculated by: 

 14 tan tan tan tan tan
2 2 2 2

s s a s b s c
A                   

       
 (9) 
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where S  is still represented by Equation 4, and a, b, and c are: 
 

 1 1 2

1 2

cos
b b

a
b b

  
   

 


 (10) 

 1 2 3

2 3

cos
b b

b
b b

  
   

 


 (11) 

 1 3 1

3 1

cos
b b

c
b b

  
   

 


 (12) 

Again, the equations 9, 10, 11, and 12 are valid in the ECI frame as well as the star 

tracker frame (Cole & Crassidus, Fast Star Pattern Recognition Using Spherical 

Triangles, 2004). 

The polar moment is also valuable information to be obtained from each 

observed triangle.  Two similar triangles may have similar areas or polar moments, but it 

is extremely unlikely that two triangles will have exactly the same polar moments and 

areas.  The acquisition of two unique pieces of information from each triangle makes the 

algorithm extremely resistant to false attitude determinations from the star tracker using 

an erroneous triangle. 

The polar moment of a triangle is obtained by breaking the spherical 

triangle into smaller triangles.  The area of each of these smaller triangles is then 

multiplied by the square of the arc distance from the centroid of each smaller triangle, to 

the centroid of the overall triangle (Cole & Crassidus 2004).  The spherical triangle’s 

polar moment is then obtained by summing the results of each smaller triangle: 

 2
pI dA  (13) 

where dA is the smaller triangle area and 2 is the arc distance.  The polar moment of 

each spherical triangle is calculated via a recursive algorithm that breaks the triangle into 

smaller triangles successively until the depth of recursion is met. 

2. Summary of Star Identification Algorithms 

The algorithms described perform the basic function of identifying stars within 

the FOV of the star tracker.  Those identified stars are then matched to inertial stars 
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within the onboard database.  The next step is to identify the attitude of the spacecraft 

from the star information of which more computation is necessary. 

With the angles, planar triangles, or spherical triangles calculated from the 

observed stars, the next step is to match the calculated angle with angles between stars as 

observed from the ECI frame.  The satellite will maintain a database of these inertial 

angles.  The angles maintained in the satellite database are only angles that will fit within 

the FOV of the star tracker.  For example, a star tracker with an eight degree FOV, then 

the database will maintain only those angles of eight degrees or less  (Cole & Crassidus, 

2004).  The algorithm will search the inertial database and match the body-frame angle.  

Once the match has been made, the corresponding inertial star vectors are known. 

The next step is to use the vector information obtained by the previous algorithms 

to determine the spacecraft attitude.  Recognition of the stars as seen by the star tracker is 

the first step towards determing the position of the satellite.  The satellite attitude is 

determined by applying rotational kinematics to solve the attitude determination problem. 

E. ROTATIONAL KINEMATICS 

Kinematics is describing the orientation of a body that is in rotational motion.  

There are no forces involved in the spacecraft’s rotation.  With discussing the rotation of 

an object, it is useful to describe its orientation by an imaginary frame fixed in the body 

of the craft.  The moving frame of the spacecraft must also be referenced in relation to a 

fixed Cartesian coordinate system.  If this reference frame is a non-moving frame, then it 

is referred to as an inertial frame. 

To accurately determine where the spacecraft is, reference frames are designated 

in the spacecraft and the Earth for clarification.  The main frames used are the Earth-

Centered Inertial (ECI) reference frame and the body-frame of the satellite.  These frames 

will be used throughout for attitude determination. 
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The stationary frame of reference is the ECI frame with the XYZ frame 

positioned at the center of the Earth. Figure 11, taken from 

http://spaceflight.nasa.gov/realdata/elements/graphs.htm, illustrates the ECI frame.  The 

X axis of the ECI frame points in the direction of the vernal equinox (Curtis, 2005). 

 

Figure 11.   Earth-Centered Inertial (ECI) frame (From www.spaceflight.nasa.gov). 

This frame will not move as the Earth rotates, therefore this fixed frame is used 

for determining star positions, all of which will be referenced from this coordinate 

system.  The Earth is assumed to be a simple sphere in this case.   

The body frame of the satellite is the frame associated with a satellite in orbit 

about the Earth.  Figure 12 depicts the body frame of a vessel.  The body frame is fixed 
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with respect to its vessel, and is used for attitude determination of the vessel.  An image 

of a satellite in orbit with its respective body frame with respect to the ECI frame has 

been included as Figure 13 (Diaz, 2006). 

 

Figure 12.   Satellite or spacecraft body frame (From www.mathworks.com). 

 

Figure 13.   Body Frame with respect to the Earth Centered Inertial (ECI) Frame  
(From Diaz, 2006). 
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The ECI frame, as well as the body frame of the satellite, is fundamentally 

important to the attitude determination of the satellite.  The star tracker provides the 

means to solve the relationship of the body frame of the satellite with respect to that of 

the ECI frame.  However, the stars imaged by the star tracker must be matched to the 

satellite’s onboard star catalog before any attitude solution is obtained. 

1. Direction Cosine Matrix 

In this case we have two different frames; one moving with respect to the other.  

The non-rotating geocentric equatorial frame provides an inertial frame for the two-body 

problem of a satellite in orbit.  In this case, the ECI frame will be called the B frame 

while the satellite’s body-frame is the A frame.  The orthogonal A frame will have unit 

vectors  1 2 3a a a
  

 while the B frame will have units vectors of 1 2 3b b b  
  

.  The 

vectors of B are related to the frame A by the following: 

 

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

b C a C a C a

b C a C a C a

b C a C a C a

  

  

  

   

   

   
 (14) 

where ij i jC b a
   is the cosine of the angle between vectors ib


 and, ia


 and is referred to 

as the direction cosine matrix (Wie, 1998).  Equations 14 can be written in matrix format 

and are given as Equation 15: 

 

1 1 111 12 13

2 21 22 23 2 2

31 32 333 3 3

B
A

b a aC C C

b C C C a C a

C C Cb a a

                                    

  

  

  
 (15) 

where 
B

A
ijC C     is the aforementioned direction cosine matrix.  The direction cosine 

matrix mathematically describes the orientation of B relative to A (Wie, 1998).  The 

direction cosine matrix, 
B

AC , will also be referred to as the direction cosine matrix 

(DCM) or the transformation matrix of B from A throughout this report.  The orientation 

of frame B relative to A is written mathematically as: 
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1 1 1

32

1 2 3 1

2 1 2 2 3 2 1 2

33 1 3 2 3 3

B
A

b a b a b a b

C b a b a b a b a a a

bb a b a b a

     
   

             
       

      

         

     
 (16) 

2. Euler Angles 

For defining or orienting a spacecraft in orbit, Euler’s eigenaxis rotation theorem 

is used.  Euler’s eigenaxis theorem claims that a rigid body rotated about an axis fixed to 

the spacecraft body which is stationary in an inertial reference frame, the spacecraft 

attitude can be aligned from any given orientation to another orientation (Wie, 1998).  

This is commonly called body-axis rotation, which involves successive rotations about a 

body-fixed reference frame (Wie, 1998). 

Body-axis rotation involves three consecutive rotations.  The first rotation is about 

any axis, while the second rotation is about either of the two remaining body axes.  The 

third and final rotation is about the last axis, which has not been rotated.  The number of 

rotations means there are twelve sets of Euler angles for successive rotations about axes 

fixed on the spacecraft body.  These rotations defining an orientation of frame B relative 

to frame A are described mathematically: 

  

'
1 1 13 3
'
2 3 3 2 3 3 2

'
3 33

cos sin 0

sin cos 0

0 0 1

a a a

a a C a

a aa

 
  

                                     

  
  

  
 (17) 

  

" ' "
1 1 1

2 2
" ' "
2 2 2 2 2

" ' "
2 2

3 3 3

cos 0 sin

0 1 0

sin 0 cos

a a a

a a C a

a a a

 


 

           
             
       

     

  

  

  
 (18) 

  
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" "
2 1 1 2 1 1 2
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1 13 3 3

1 0 0

0 cos sin

0 sin cos

a ab

b a C a

b a a

  
 

                                       
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 (19) 
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where A’ and A” are two intermediate frames with unit vectors of 31 2a a a    
  

 and 

 1 2 3a a a    
 (Wie, 1998).  The angles of these rotations  1 2 3   are referred to as 

Euler Angles or the roll, pitch, and yaw angles (Wie, 1998).  The direction cosine for this 

rotation from A to B is the product of the individual rotations as defined below as 

Equation 20: 

 
B

A
ijC C     (20) 

This direction cosine matrix, or attitude determination matrix, is key to understanding the 

orientation of a satellite body frame with respect to the inertial or ECI axis.  It is easier to 

refer to this matrix as A for simplicity. 

3. Euler’s Eigenaxis Rotation 

As mentioned previously, Euler’s eigenaxis theorem states that rotation of a rigid 

body about an axis fixed to the body of the spacecraft and stationary in an inertial 

reference frame, the spacecraft’s attitude can be shifted from any given orientation to 

another orientation (Wie, 1998).  This axis of rotation orientation is the same in the 

inertial reference frame as the body frame.  This axis is called the spacecraft’s Euler axis 

or eigenaxis (Wie, 1998). 

Using frames A and B in the previous section, the orientation of is described via 

the Euler axis.  The orientation of B with respect to A is described by a unit vector  

along the Euler axis with a rotation angle of  (Wie, 1998).  Mathematically this is 

described as follows: 

 1 1 2 2 3 3e e a e a e a  
   

 (21) 

 1 1 2 2 3 3e b e b e b  
  

 (22) 

where  are the direction cosines of the Euler axis for frames A and B. 



 25

4. Quaternions 

Euler angles are used to define the orientation of a spacecraft, but quaternions are 

also used to define the attitude of a spacecraft.  The equations relating Euler angles to 

quaternions are defined in Equation 23: 

 

 
 
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 (23) 

where θ is again the rotation angle about the Euler axis (Wie, 1998).  Since a four 

dimensional vector is used to describe the attitude of the spacecraft in three dimensions, 

the quarternion components are not independent of each other as can be seen in Equation 

23 (Crassidis & Junkins, 2004).  The quaternions are also constrained by the following 

relationship: 

 

2 2 2 2
1 2 3 4 1

or

1T

q q q q

q q

   

 
 (24) 

due to the fact that the following is true: 

 2 2 2
1 2 3 1e e e    (25) 

The ability to link quaternions to a direction cosine matrix is a significant benefit 

for calculations.  The use of quaternions eliminates use of trigonometric functions and the 

singularities that result.  The quaternions are also ideal for calculation onboard a 

spacecraft since only products are calculated (Wie, 1998).  Calculating the direction 

cosine matrix from quaternions is done by the equation: 
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 (26) 

or in Euler angles: 
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 (27) 

where cos , sinc s     , etc, (Crassidis & Junkins, 2004). 

5. Euler Angles and Quaternions in Attitude Determination 

The body frame of the object in Figure 6 or the small boxlike satellite in Figure 7 

can be mathematically mapped from the reference frame which is the Earth shown in 

Figure 5 to the body frame.  Referring to Equation 2 and replacing arbitrary frames A and 

B with the ECI frame and the body frame of the satellite, the attitude of the satellite is 

given as a direction cosine matrix A .  The body frame b has components 

T

x y zb b b b   
 and the ECI frame will have its coordinates as 

T

x y zr r r r    . 

Equation 14 is used to map the frames of the satellite to the ECI frame.  The 

inertial vectors bi are then used to determine the attitude of the satellite by: 

 i ib Ar  (28) 

where A  is the orthogonal and proper direction cosine matrix and ir are the star vectors in 

the body frame (Cole & Crassidus, 2006).  

Naturally, all angles calculated using equation (3) will have some error in them, 

so Equation 27 is not satisfactory.  To account for errors, most of the error is concentrated 

on a small area about the direction of iAr , and therefore the sphere containing that point 

is approximated as a tangent plane, which is represented by the following equation  (Cole 

& Crassidus, 2004): 
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i i i

T
i i

b Ar v

v Ar

 




 (29) 
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where ib is the ith measurement and the sensor error vi is approximately Gaussian  (Cole 

& Crassidus, 2004).  Therefore all angle measurements will contain some error and this 

error must be accounted for. 

F. ATTITUDE DETERMINATION FROM VECTOR OBSERVATIONS 

The problem of attitude determination is obtaining the correct orthogonal rotation 

matrix, so that the measured observations in the sensor frame match the reference frame 

observations mapped by that matrix into the sensor frame (Crassidis & Junkins, 2004).  

The measured vectors are the aforementioned body-frame vectors to imaged stars while 

the reference vectors are those same stars referenced from the ECI frame. 

The stars imaged in the FOV of the star tracker have now been paired to stars in 

the inertial frame by the star pattern recognition algorithms, but the attitude of the 

spacecraft is still unknown.  For this section, the inertial reference unit vectors are 

represented by 1̂ n̂V V , and the body frame unit vectors are represent by 1
ˆ ˆ

nW W  (Shuster 

& Oh, 1981).  Therefore, an orthogonal matrix A is needed that satisfies: 

  ˆ ˆ , 1, ,i iAV W i n    (30) 

Due to measurement errors and corruption in both the star tracker measurements and 

errors in the inertial vectors, there is no exact solution for A.  Therefore an approach is 

needed to select an A that matches îV  to ˆ
iW .  This is known as “Wahba’s Problem.”   

Wahba’s problem is the estimation of a satellite’s attitude by using direction 

cosines (Wahba, 1966).  Given two sets of points, in this case 1̂ n̂V V and 1
ˆ ˆ

nW W where 

n ≥ 2, find a rotation matrix A which aligns the first set of vectors into the best least 

squares coincidence with the second set of vectors (Wahba, 1966).  Mathematically, a 

matrix A minimizes: 

 
2

1

ˆ ˆ
n

j j
j

W AV


  (31) 

where  denotes the Euclidean norm.  Equation 31 is also represented in the terms of a 

cost or loss function as: 
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  
2

1

1 ˆ ˆ
2

n

i i i
i

L A a W AV


   (32) 

subject to the constraint: 

 3 3
T

xAA I  (33) 

The quadratic loss function in the attitude matrix can be transformed into a quadratic loss 

function in the corresponding quaternion (Shuster & Oh, 1981).  Wahba presents a least-

squares criterion to define the best estimate for an orthogonal matrix A that minimizes 

the cost function represented by Equation 32 

G. ATTITUDE DETERMINATION ALGORITHMS 

There are many different types of attitude determination algorithms for star 

trackers in use today, but a common type used is a class that estimates the four Euler 

symmetric parameters that form the quaternion in Equation 23 (Weiss, Bar-Itzhack, & 

Oshman, 2005).  The quaternion outputs of these algorithms are extremely popular as it is 

the minimal non-singular set for global attitude description (Weiss, Bar-Itzhack, & 

Oshman, 2005).  The quaternion also provides an attitude matrix, which is quadratic in 

the parameters and it also is free of transcendental trigonometric functions (Crassidis & 

Junkins, 2004).  The optimal estimator of the quaternion can be used to solve the 

constrained least-squares Wahba problem identified in Equation 31 (Weiss, Bar-Itzhack, 

& Oshman, 2005).  

Other algorithms used in solving Wahba’s problem by obtaining the quaternion is 

the TRIAD algorithm as well as the Quaternion Estimator (QUEST) algorithm.  The 

TRIAD and QUEST algorithms each provide quaternions as well as the direction cosine 

matrix of the satellite.  The TRIAD algorithm is fairly simplistic, without requiring any 

inversion of matrices, while the QUEST algorithm requires fairly complex eigenvalue 

calculations. 
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1. Linear Least Squares Attitude Determination 

a. Least Squares Problem Setup 

Previously, Equation 29 estimated the position of the observed vectors to 

actual star vectors with some error vi.  However, the error or residual errors are assigned 

to each measurement of ri.  Therefore, Equation 29 becomes Equation 34  
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 (34) 

 

where bi is the measured values for the inertial star vectors and ei are the residual errors 

for each star tracker measurement of ri. 

Using Gauss’s principle of least squares, it is desired to obtain an A that 

minimizes the residual errors.  Solving for the residual errors we obtain: 

 i i ie Ar b     (35) 

Using Equation 34 as a cost function of residual errors is (Crassidis & Junkins, 2004):  

 
1

2
TJ e e  (36) 

Or, by substitution of equation 22 into equation 23 and dropping the subscripts for 

clarity: 

  1
2

2
T T T TJ b b b Ar r A Ar         (37) 

There are two requirements for minimizing globally the quadratic function: 1) a 

necessary condition and 2) a sufficient condition (Crassidis & Junkins, 2004).  The 

necessary condition and sufficient conditions are defined as: 
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 (38) 
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J
J A A

r r


  

 
 (39) 

where TA A must be positive definite (Crassidis & Junkins, 2004).  In Equation 38, r J is 

the Jacobian and 2
r J is the Hessian in Equation 39.  The matrix A is positive definite 

when it the matrix has a maximum rank (n) (Crassidis & Junkins, 2004).  The quadratic 

function J is a performance surface in n + 1 dimensional space with a convex shape of an 

n-dimensional parabola with a single distinct minimum (Crassidis & Junkins, 2004).  

From the necessary conditions defined in Equation 38 above, the “normal 

equations” are: 

  T TA A r A b   (40) 

If there are n independent observation equations, therefore the rank of A is n, making 

TA A positive definite (Crassidis & Junkins, 2004).  With equation TA A positive definite, 

 TA A is invertible and an explicit solution for the optimal solution is obtained.  

Therefore r is solved by: 

   1T Tr A A A b


   (41) 

Equation 41 is the matrix equivalent of Gauss’ original “equations of condition” in 

index/summation notation (Crassidis & Junkins, 2004). 

Naturally, an inverse of TA A must exist to find a solution for r .  The 

inverse exists only if there number of linearly independent observations is equal to or 

greater than the number of unknowns.  In least squares, the order of the matrix inverse is 

equal to the number of unknowns, not the number of measurement observations 

(Crassidis & Junkins, 2004).  An example of attitude determination with a star will 

illustrate these principles. 

b. Least Squares Solution 

Using Figure 6, the camera of the star tracker observes two stars within its 

FOV.  The unit vectors of these stars in the star tracker reference frame are calculated 

with Equation 1 and are designated 1r and 2r .  These two stars have unit vectors in the 
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inertial frame as well, 1R̂  and 2R̂ .  For this example, we will only use one of the stars for 

calculations.  The inertial coordinates of the star are matched the body coordinates by a 

direction cosine matrix A.  Therefore the equation is  
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31 32 33

x x
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z z

R a a a r

R a a a r
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 (42) 

Rearranging Equation 42, the equation becomes: 
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 (43) 

Equation 43 can be rearranged to take the following form:  
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Equation 44 now takes the form of the normal matrix equation: 

 ˆ ˆy Ax  (45) 
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with 
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The ŷ vector comprises the known inertial coordinates to the star, the A  

matrix is the known body frame vector to the same star, with the x̂  comprising the 

elements of the direction cosine matrix being the only unknown quantity.  Now Equation 

45 can be solved by inserting the elements of the matrix equation into Equation 46 to 

form the least squares problem: 

   1
ˆ ˆT Tx A A A y


  (46) 

The vector x̂  of the direction cosine matrix is simply reshaped into the usual form to get 

the direction cosine matrix of the frames into its usual form as in Equation 41. 

2. TRIAD Algorithm for Attitude Determination 

The TRIAD algorithm is a deterministic solution that generates a direction cosine 

matrix between two coordinate systems when two vectors are given in each of the 

particular coordinate systems (Bar-Itzhack & Harman).  Applying this algorithm to the 

attitude determination problem is fairly straightforward.  The star tracker needs only to 

see two stars within its FOV to determine two unit vectors using Equation 1.  These are 

referred to as the observed vectors (Shuster & Oh, 1981).  The other two unit vectors, or 

reference vectors, are found using the angle, planar triangles, or spherical triangles 

algorithms defined previously. 
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Using the TRIAD algorithm, two non-parallel unit vectors to stars in the inertial 

frame as well as two non-parallel unit vectors in the star tracker frame are obtained.  

Using the same designation when describing Wahba’s problem in Equation 30, these 

vectors are identified as 1̂V  and 2̂V for inertial stars with two body frame vectors from the 

star tracker as 1̂W and 2Ŵ .  The algorithm then finds an orthogonal matrix A , which 

becomes the attitude matrix for the satellite finds the orientation difference between the 

two systems (Shuster & Oh, 1981).  The equations that the algorithm must satisfy are: 

 1 1 2 2
ˆ ˆ ˆ ˆ      AV W AV W   (47) 

The algorithm then requires computation of the following column matrices or triads 

(Shuster & Oh, 1981): 
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 (49) 

With Equations 48 and 49 defined, there exists a unique orthogonal matrix that satisfies: 

  ˆ ˆ    1, 2,3i iAr s i   (50) 

which is defined as: 

 
3

1

ˆ ˆT
i i

i

A s r


  (51) 

The triads are then constructed into matrices for further computation.  A reference matrix 

is made consisting of the reference triads while an observed matrix is likewise 

constructed of observed triads.  The matrices are: 
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    1 2 3 1 2 3ˆ ˆ ˆ ˆ ˆ ˆ     ref obsM r r r M s s s      (52) 

where refM and obsM matrices are 3x3 matrices.  The attitude determination matrix is 

obtained by: 

 
1 1 2 2 3 3

   orT
obs ref

T T T

A M M

A r s r s r s



    
 (53) 

There are problems with the TRIAD algorithm though.  The first vector 

has more prominence in determination of A .  Some of the information in the second 

vector is discarded (Shuster & Oh, 1981).  It is therefore necessary and best practice to 

obtain use the most accurate instrument to find the first vector of each set, in this case 

1 1
ˆ ˆ and V W .  Therefore, the first anchor (anchor vector) may be obtained by the star 

tracker, while the second vector cold come from the magnetometer (Bar-Itzhack & 

Harman). 

3. QUEST Algorithm for Attitude Determination 

The QUEST algorithm developed for the Magsat mission by Shuster is another 

method to solve Equation 32.  The quadratic loss in the attitude matrix function of 

Equation 32 can be converted to a corresponding quaternion (Shuster & Oh, 1981).  The 

result is that an eigenvalue equation is obtained that provides the quaternion (Shuster & 

Oh, 1981).  This result is that the optimal quaternion is computed by a fast deterministic 

algorithm. 

Equation 32, the loss function, is minimized when an optimal matrix optA is 

determined, however, we can also maximize a gain, g, which also solves the same 

equation.  In Equation 32, the nonnegative ,  1, ,ia i n  are a set of weights (Shuster & 

Oh, 1981).  Since the loss function may be scaled without affecting the resultant, optA , it is 

therefore possible to set: 
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  (54) 
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The corresponding gain function  g A is given as 

    
1

ˆ ˆ1
n

T T
i i i

i

g A L A aW AV q Kq


     (55) 

It is easy to see that the loss,  L A , function will be at a minimum when the gain 

function ,  g A is at its maximum (Shuster & Oh, 1981).  Equation 55 can be 

interpreted in the following way as well: 
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i

g A a tr W AV


     (56) 

where tr represents the trace operation performed in MATLAB.  The matrix A is usually 

represented as quaternions since they are simpler to use. 

To continue with this algorithm, several other quantities will need to be calculated 

to form the matrix K of Equation 55.  The matrix is a 4x4 matrix that takes the following 

form: 

 T

S I Z
K

Z


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 
  
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 (57) 

where Z is a 3x1 vector, S I is a 3x3 matrix, TZ is a 1x3 matrix, and  is a scalar 

(Shuster & Oh, 1981).  The matrix S is defined from the equation: 
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 (58) 

The vector, Z , is defined as: 

  
1

ˆ ˆ
n

i i i
i

Z a W V


   (59) 

The quantity  is the trB or: 
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ˆ ˆ
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i i i
i

aW V


   (60) 

Using these quantities, the gain function can be written in the following form by inserting 

them into Equation 55: 
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  2( ) 2tr 2 trT T T Tg q q Q Q trB QQ B q QB         
 (61) 

where 
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Using the matrix K and Equation 60, this produces a bilinear equation of the form: 

   Tg q q Kq    (63) 

Using the constraint of Equation 24, the quaternion that maximizes Equation 62 

can be used by implementing Lagrange multipliers (Shuster & Oh, 1981).  A new gain 

function is defined.  Using the notation of introduced by Shuster and Oh, this gain 

function is denoted as  g q  .  The gain function is written as: 

   T Tg q q Kq q q        (64) 

which is maximized without constraint (Shuster & Oh, 1981).  The variable,  , is used to 

satisfy this constraint.  The verification is satisfied by differentiating which produces the 

equation: 

 Kq q   (65) 

Therefore, the optimal quaternion is an eigenvector of the matrix K, and  is an 

eigenvalue.  The maximizing of  g q  will occur by choosing the eigenvector that 

corresponds to the largest eigenvalue of the matrix K (Shuster & Oh, 1981).  Therefore in 

reality, Equation 65 takes the form of: 

 opt optKq q   (66) 

4. Attitude Determination Algorithm Summary 

The Least Squares, QUEST, and TRIAD algorithms have been introduced in the 

previous section with each having specific beneficial characteristics.  The function 

1( )TA A  is the core component of any least squares algorithm, but this calculation is very 

expensive (Crassidis & Junkins, 2004).  It is possible to decompose the A  matrix by QR 

decomposition or singular value decomposition.  The singular value decomposition 
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algorithm is one of the most capable algorithms to compute least squares, yet the 

algorithm may be more expensive than the method introduced here.  Due to cost of the 

Least Squares approach, it may be more beneficial to purse the TRIAD or QUEST 

algorithm.  The QUEST and TRIAD algorithms have the ability to provide three-axis 

attitude determinations, without costly computations, which make them ideal for onboard 

attitude determination (Shuster & Oh, 1981).  Yet, for moderate accuracy missions the 

more accurate QUEST algorithm may not be necessary since the QUEST algorithm has 

approximately twice the computation cost as the TRIAD algorithm (Shuster & Oh, 1981). 
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III. SIMULATIONS 

A. EXPERIMENT SETUP 

Prior to performing any experimentation on hardware, the aforementioned star 

tracker star pattern recognition algorithms and attitude determination algorithms were 

tested using extensive simulations.  All simulation runs were performed using MATLAB 

software in combination with images taken from a simulated star field.  The star fields 

represent a scene from the inertial frame of reference and a view representing what a 

satellite in orbit would view. 

1. Star Field Simulation 

Using the Hipparcos catalog, three hundred of the brightest stars were identified 

and made into a two-dimensional star field.  Using the right ascension and declination of 

each star, the right ascension and declination were transferred into x and y coordinates 

and plotted.  The intensities for the stars were also varied according to their intensity 

listed in the catalog.  The 300 stars were then imaged by a camera to provide input to the 

star pattern recognition algorithms.  Figure 14 illustrates the star field designed for testing 

of the star pattern recognition algorithms.  Naturally, 300 stars are only a fraction of the 

stars in the Hipparcos catalog as shown in Figure 3; however, this amount will be 

sufficient for the experiment. 

The simulated star field provides an excellent image for testing star pattern 

recognition algorithms.  The intensity of each star is at a wide range to provide varying 

brightness to the algorithms.  The stars a dispersed to provide ample room between stars 

for ease of star recognition, yet some are extremely close which means the star pattern 

algorithm must be able to handle stars literally on top of each other.   
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Figure 14.   Star Field. 

B. STAR TRACKER SIMULATION SETUP 

The first phase of the simulations involved setting up the equipment in the lab to 

support the star pattern recognition and attitude determination algorithms.  A non-moving 

three-axis simulator was used to perform as a spacecraft.  A camera was then installed to 

perform as a star tracker.  Simulations were then completed to test the algorithms prior to 

installation of any new software onto the Three-Axis Spacecraft Simulator (TASS). 

1. Simulated Star Tracker 

A WAT-902H2 SUPREME (EIA) camera from Watec with an AF NIKKOR 50 

mm lens from Nikon was used to act as a star tracker for the simulations.  MATLAB 

code was developed to perform centroiding calculations on stars imaged within the 

camera’s FOV.  Using Equation 1, the unit vectors in the camera frame were calculated.  

Each pixel has a horizontal length of 8.4 m  and a vertical height of 9.8 m .  The focal 
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length, f, of the camera is 50 mm.  These dimensions will be used in Equation 1 for 

calculating unit vectors to each star.  Naturally, only a small portion of the star field was 

seen by the camera/star tracker.  The camera with a narrow view lens installed is shown 

in Figure 15. 

 

Figure 15.   WAT-902H2 SUPREME (EIA) camera used as a star tracker. 

2. Simulated Star Field 

The star field in Figure 14 was imaged on a monitor installed on the ceiling of the 

lab.  The monitor is seen directly above the TAS-2 as shown in Figure 27.  The monitor is 

directly above the platform with the distance separating the camera and the monitor at 

1.25 meters.  By dimming the lights and installing curtains, the star field is easily visible 

to the camera.  The camera in Figure 15 then captured the image for the experiments. 

3. Star Field Detection Code  

With the simulated star field in Figure 14 and the equipment in Figures 15 and 22, 

the star tracker imaged the stars using a code developed in MATLAB called monograb.  

The code has settings for the size of boxes used for stars detected and the intensity of star 

detected.  The code parses through the image detecting the brightest pixels first.  At each 

run through the image, a box is drawn around the detected bright pixel, then that box is 
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blacked out.  The next run commences with the next brightest pixel is detected and a box 

of a designated area is drawn about that pixel.  The next box is blacked out as well.  The 

code parses through the image until all the brightest stars above a defined threshold are 

only blacked out boxes.  The x and y coordinates or centroids, and brightness for each of 

these boxes, or stars, are stored by the code in arrays.  The Matlab code provides the start 

for all future algorithms. 

Figure 16 is an image of a star field with seven stars picked up by the centroiding 

algorithm.  With the box size set at eight, seven of the eight stars are picked up.  The 

eighth star is too close to the frame edge; therefore, a box cannot be drawn.  The result is 

that only seven of the eight stars can be used for future algorithms even though the 

intensity of the star can be picked up by the code. 

 

Figure 16.   Star centroid plots using Matlab. 
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C. STAR FIELD ALGORITHM TESTING 

1. Satellite Star Database 

Prior to any attitude determination testing, the satellite must possess an onboard 

database of these stars as referenced to the inertial frame. The database must possess the 

attributes necessary for angle, planar triangles, or spherical triangles in storage.  The 

database must also possess the unit vectors to each star  1 2ˆ ˆ n̂r r r  associated with 

the angles, planar triangles, or spherical triangles.  The variance of the angles, planar 

triangles, and spherical triangles must also be stored in the database as well. 

a. Angle Database 

Using the star field image shown in Figure 14, a database of angles was 

created. It is assumed for computer simulations that the database created with the zero 

attitude of the spacecraft simulator is in inertial frame. The origin of the inertial frame is 

not important as long as is the star objects are located at distant locations. In the 

laboratory environment with the stars displayed on the LCD screen in close proximity, 

the origin of the inertial frame must be located at the center of rotation of the spacecraft 

in order to serve as an inertial reference database. This fact is considered in actual 

experiments in Chapter IV.  Figure 17 is a snapshot image of the database stars with the 

detected stars showing up as crosses for clarity.  These stars will perform as the inertial 

stars for all computer simulations. 
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Figure 17.   Database star field image. 

The Matlab software processed the database image for development to run 

simulations and test the star pattern recognition algorithms developed in Chapter II.  The 

first image taken represents an inertial database image of stars with subsequent images 

representing images taken by the satellite for attitude determination.   

The database is formed by selecting a master star and performing angle 

calculations between the master star and all other stars in the image.  Figure 18 is the 

mathematical representation of the image in Figure 17.  The master star is the star with 

the highest intensity and is used as the reference star for each image when conducting 

calculations.  The x and y coordinates and intensity for each star in the image is collected 

and the unit vector to each star is calculated.  The master star is shown in Figure 18 as the 

star in blue.  The angle between the master star and every other star is calculated.  The 

angles between all other stars are calculated, as well leading to a database of over seven 

hundred angles.  The variances of each angle are calculated, as well and stored for 

accuracy measurements later. 
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Figure 18.   Database star field image by MATLAB. 

The problem with the angle database is that there will be numerous 

redundant angles in it.  For example, the angle between an arbitrary star one and two will 

also be the same as the one between two and one. 

b. Planar Triangle Database 

The next database developed was a planar triangle database.  Again the 

image in Figure 17 was used to develop a MATLAB plot of the stars similar to Figure 18 

with a master star.  Using Equations 3, 4, 5, 6, and 7, a planar triangle database was 

created of all sets of planar triangles that could be developed from the visible stars.  The 

polar moment and area of each triangle with their associated unit vectors are stored for 

each triangle.   

The planar triangle database is far larger than an angle database due to 

more record keeping.  Each triangle now has three stars and their respective unit vectors 

associated instead of two stars for each angle.  Also, instead of one piece of data (the 

angle), there are now two pieces associated for each entry, area and polar moment.  The 

results of the added complexity to the database is that searches within the database 

require far more time as well as more complex code.   
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c. Spherical Triangle Database 

Using Figure 17, another image similar to Figure 18 was shot to begin 

calculations for a spherical triangle database.  Equations 8, 9, 10, 11, 12, and 13 were 

used to develop entries for each triangles area and polar moment.  As in the case of the 

planar triangles, the spherical triangles database must have far more entries than a simple 

angle database.   

2. Star Pattern Recognition Algorithm Tests 

a. Angle Simulations 

After establishing all the databases, the next step was to create another 

image that would represent an image taken from the star tracker while the satellite is in 

orbit.  Figure 20 represents the star field as seen from the camera or star tracker.  The 

stars picked up by the star tracker camera are represented by blue crosses for clarity.  The 

image shows five other stars on the right side and lower right that were too faint to be 

used for calculations. 

 

Figure 19.   Star field as seen from the star tracker. 
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The star tracker image of Figure 19 is very close to the inertial image in 

Figure 17.  This similarity is specifically to validate the algorithms used.  Angles, planar 

triangles, and spherical triangles should be extremely close to the corresponding angles, 

planar triangles, and spherical triangles stored in the database.  Therefore, every object 

should be able to match up to a corresponding object in the database.  The result of 

attitude determination from these shots should result in a direction cosine matrix that is 

very close to the identity matrix or: 

1 0 0

0 1 0

0 0 1

A

 
   
 
 

 

MATLAB was again used to store the positions of each star in the star 

tracker image and perform the necessary calculations.  Figure 20 is the representation of 

Figure 20 in MATLAB.  The picked-up stars are shown in red, while the master star for 

the image is shown in blue.  The star intensities in this image are somewhat different 

since the master star is not the same as the master star shown in Figure 19.  

 

Figure 20.   Star Tracker image in MATLAB. 
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The centroiding algorithm is again used to obtain all the necessary data 

from Figure 20.  The master star in blue on Figure 20 is again used to calculate all the 

angles between the master star and the other stars in the image.  For Figures 18 and 19, 

all the angles between all the stars and every other star are calculated.  In the case of 

Figure 19 and 20, the only angles calculated are those between the master star and all the 

other stars in the image.  The reason for this is that a star tracker will not be able to 

calculate several hundred angles and search through its onboard database without 

impacting the frequency of its solutions.  Therefore, in this case it is only necessary to 

calculate angles between the master star and the other stars to ease the star matching 

search.  When calculating the angles from an image, the master star is the brightest star 

and designated as star one in the algorithm.  The star tracker frame angles are stored in an 

array along with the unit vectors to the stars in the camera frame. 

The angle algorithm then compares the angles calculated by the star 

tracker to those angles stored in the onboard database.  The variance in the inertial 

database is used for the accuracy in comparing the inertial angles to the camera angles.  If 

a camera angle falls within the inertial angle +/- some accuracy, there is a match of the 

stars seen by the camera to the inertial stars.   

Even though an angle is matched, there is some ambiguity that must be 

dealt with.  For instance, which of the two body frame stars are associated with the two 

matched inertial stars?  Also, if an angle is matched in the database, it must also have 

another match since two angles can be produced between two stars.  For example if angle 

between the master star and a second star in the body frame is found, there also must 

another angle between the second star and the master star of exactly the same value. 

There are possibilities of errors, since there are numerous angles that are 

very close to each other.  Therefore some stars may be picked up erroneously and throw 

off the attitude determination of the satellite.  When mapping the matched angles and 

their respective stars, not all the angles have matched up and a few angles are 

mismatched.  By plotting all the picked inertial stars with their star tracker stars we can 

see those stars that are matched and those that are not.  The inertial stars are in blue while 

the body frame stars are in red.  As seen in Figure 21 there are four mismatched mis-
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matched inertial and three body frame stars.  The TRIAD, QUEST, or least-squares 

algorithms will attempt to match all stars, even the error stars, to form a best fit solution.  

These error stars must be filtered out to preclude an erroneous attitude solution.  

However, when searching a database of over seven hundred angles, these errors are very 

small when compared to the number of stars correctly matched. 

 

Figure 21.   Inertial stars with their matches from the star tracker. 

To prevent these error angles being included in the attitude calculations, 

filtering logic is developed to remove any erroneous angles and their stars.  Whenever the 

angle algorithm is performed, a match of angles will always have an inertial star from the 

inertial angle matched to a similar star in the body frame.  Since the master star in the 

body frame is designated as star one in the algorithm the inertial star appearing the most 

time in the angle matches is the star that matches the master star or star one in the image.  

The matched inertial star-to-star one is called the prime star for clarity.  Therefore, it is 

easy now to match up the other remaining non number one stars in the body angle to the 

non-prime stars in the inertial angles.   
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After running the angle algorithm on the stars in Figure 21, the angle 

matches were obtained.  A total of 26 angles matched.  For each angle, there are two 

inertial stars and two body frame stars, one of which is the prime or master for the body 

frame stars.  Each column in Table 1 represents an angle match.  The top two rows are for 

the inertial stars, which are matched up to the body frame stars in the next two rows.   

One may be tempted to continue right into attitude determination at this 

point, however, an incorrect solution would be acquired.  Even though all stars are 

identified, the stars in the inertial frame must be correctly matched to the stars in the body 

frame of the satellite.  Therefore, the results in Table 2 must be filtered to ensure all stars 

are matched correctly, and invalid angles with their stars are discarded. 

Matched 
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Body 

Frame 

Stars 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1.   Matched body frame and inertial stars. 

As shown in Table 1, the bottom row is all ones, representing the master 

star in the image.  Therefore, the master star must correspond to the inertial star 

appearing the most in the angle matches.  Table 2 illustrates the frequency of the inertial 

stars showing up in the angle matches.  This table will allow us to determine which star in 

the inertial frame matches up to the body frame master star.   
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As seen in Table 2, the inertial star number showing up the most is star 

number two.  Therefore Body Frame star one is Inertial Star two.  Of the 38 stars imaged, 

the inertial star two appears twelve times or 23% of the time.  With this information, we 

can match up all inertial star angles that have the number two with corresponding body 

with the correct body frame star.  Therefore all angles that do not have body frame master 

star one matching up to an inertial angle with inertial star two in can be discarded as 

erroneous angles. 

Inertial Star 

Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number 

times 

appearing 

2 12 2 2 2 0 0 0 0 2 0 2 0 4 0 

Percentage 3.8 23 3.8 3.8 3.8 0 0 0 0 3.8 0 3.8 0 7.7 0 

 

Inertial Star 

Number 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Number 

times 

appearing 

0 0 0 0 2 2 2 0 2 0 4 0 2 0 6 

Percentage 0 0 0 0 3.8 3.8 3.8 0 3.8 0 7.7 0 3.8 0 11.5 

 

Inertial 

Star 

Number 

31 32 33 34 35 36 37 38 

Number 

Times 

Appearing 

0 0 0 0 2 0 0 2 

Percentage 0 0 0 0 3.8 0 0 3.8 

Table 2.   Inertial star frequency. 
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By using the information gained in Table 2, using the body frame master 

star, we now can successfully match all the other body frame stars to their corresponding 

inertial stars.  Keeping the accurate matches, all other matches where body frame star one 

does not match up to inertial star two are discarded as erroneous angles.  Table 3 shows 

the remaining accurate matches.  Focusing on angle three in Table 1, body frame star one 

is inertial star two, therefore body frame star four must equal inertial star three.  This is 

repeated until all stars are identified correctly.   

Table 3 is a listing of all stars correctly matched.  Now, there are only 

seven star pairs that are accurate matches out of the original 38 stars in the image.  These 

are the final correct angles and matches that now can be used for attitude determination. 

Inertial 

Stars 

2 3 12 14 21 24 28 

Body 

Stars 

1 4 9 13 20 22 27 

Table 3.   Correct body frame and inertial star matchups. 

After filtering, the stars can be processed using one of the attitude 

determination algorithms.  The filtered image of Figure 21 is displayed in Figure 22.  

Now all the imaged stars are matched up to an inertial star, as well as their corresponding 

unit vectors.   
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Figure 22.   Filtered inertial stars with their matches from the star tracker 

The results of the filtering are disappointing.  The majority of the 

matchups are discarded resulting in a significant waste of processing.  The simplicity of 

the algorithm is a benefit, yet with the majority of the results being discarded, the 

advantages of this algorithm may be few.  The next step is to perform an attitude 

determination algorithm on the inertial and body vectors. 

b. Planar Triangle Simulations 

The next simulation test involved using planar triangles for star pattern 

identification.  Figure 17, was used again as the database image to create a large array of 

areas, polar moments, and the inertial unit vectors associated with each triangle.  The 

image in Figure 20 was used to simulate the stars viewed from an onboard star tracker.  

Equations 3, 4, 5, 6, and 7 were used to calculate all the body frame planar triangles. 

The benefit of the planar triangles algorithm is that there is no ambiguity 

on matching up inertial to body triangles.  Both the planar triangle area and the polar 

moment must match in order for the three stars of the inertial frame to be correlated to the 
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three stars in the image planar triangle.  However, there are still possibilities of errors, 

therefore some filtering will be required to ensure error stars are removed.  

Applying the planar triangle algorithm and a defined accuracy, all the 

body frame stars are matched up to the corresponding inertial stars.  Figure 23 is the 

result of the inertial and body frame star matching.  The inertial stars are represented by 

the red circles while the body frame stars matched are the blue crosses.  Even though 

there are twenty-four exact matches, there are four inertial stars and nine body frame star 

without matches.  From the indications of errors in Figure 23, the results of the planar 

triangle algorithm require filtering. 

 

Figure 23.   Planar triangle matches. 

Figure 24 is the resulting image after filtering the calculations from the 

planar triangle algorithm.  Originally, there were 24 star matches.  Twenty-one matches 

remain after filtering using the same accuracy requirement as used in the angle algorithm.  

This is a significant leap, three times the amount, from the seven remaining pairs from 

the angle algorithm in Table 3.  The additional complexity and storage requirements of 

the planar triangle algorithm are a significant improvement over the simplistic angle 

algorithm. 
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Figure 24.   Filtered planar triangle matches. 

c. Spherical Triangle Simulations 

The last attitude determination algorithm tested was the spherical triangle 

algorithm.  Figure 18, was used again as the database image to create a large array of 

areas, polar moments, and the inertial unit vectors associated with each triangle.  The 

image in Figure 20 was used to simulate the stars viewed from an onboard star tracker.  

The spherical triangles were computed using Equations 8, 9, 10, 11, 12, and 13.   

The same benefit of the planar triangles algorithm applies to the spherical 

triangles algorithm; there is no ambiguity on matching up inertial to body triangles.  Both 

the spherical triangle area and the polar moment must match in order for the three stars of 

the inertial frame to be correlated to the three stars in the image spherical triangle.  There 

will still be some error; therefore filtering is required to ensure error stars are removed.  

Figure 25 represents the results of matching the inertial spherical triangles 

to the inertial triangles.  Only seven matches are achieved with the rest being error stars.  

The requirements of matching both the area and polar moment of the triangle cause many 

misses.  This is a significant miss factor for the algorithm; therefore, a significant amount 

of programming is required to remove those stars that are inaccurate. 
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Figure 25.   Spherical triangle algorithm matches. 

After filtering, the final star matches can be used for attitude 

determination.  Figure 26 is the filtered results of Figure 25.  The six matches are clearly 

seen, and are now available for input into one of the attitude determination algorithms.   
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Figure 26.   Filtered spherical triangle algorithm matches. 

There are some pros and cons when using the spherical triangles 

algorithm.  The spherical triangles algorithm may be comparative to the angle algorithm 

in performance, but does not perform nearly as well as the planar triangles algorithm.  

The double requirements of matching the areas and polar moments of triangles, is similar 

to the benefit of the planar triangles algorithm regarding ambiguity, which makes it better 

than the angle method.  The storage requirements for spherical triangles are the same as 

the planar triangle.  The problem comes down to the computer resources necessary to 

determine the polar moment. 

The polar moment calculation for spherical triangles is completed by a 

recursive algorithm.  Equation 13 is a summation of the polar moment for the triangles.  

As previously mentioned, the polar moment of a triangle is obtained by breaking the 

spherical triangle into smaller triangles.  The area of each of these smaller triangles is 

then multiplied by the square of the arc distance from the centroid of each smaller 

triangle, to the centroid of the overall triangle (Cole & Crassidus 2004).  The spherical 

triangle’s polar moment is then obtained by summing the results of each smaller triangle 

with the process repeating until the depth of recursion is met.  This is a significant 
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process for achieving the polar moment of a spherical triangle.  The recursive algorithm 

for the polar moment is a significant amount of complexity on top of the other 

requirements for the spherical triangles algorithm with marginal returns. 

3. Attitude Determination Algorithm Tests 

The testing of the attitude determination algorithms was performed only on the 

results from the angle algorithm.  The simplicity of the angle algorithm with the firm 

results give a background for studying attitude determination algorithms. 

a. Least-Squares Testing 

Equation 15 is the equation with the direction cosine matrix needed to 

represent the correct attitude from the inertial frame to the body frame of the satellite as 

shown in Figure 13.  Equation 29 represents the small amounts of error or distortion in 

the image preventing an exact solution.  Using the least squares method on the star body 

vectors and inertial vectors, the attitude determination matrix is found to solve Equation 

28.   

As described previously the least squares algorithm is a method to solve 

Equation 28 and obtain the direction cosine matrix when an exact solution is impossible.  

By putting the inertial and observed body vectors into Equation 42, and then 

progressively performing the mathematical manipulations of Equations 43 and 44, the 

result is a matrix equation that takes the form of Equation 45, which can be solved by 

Equation 41.  In this case we want to solve for the vector x̂  and therefore rearrange 

Equation 41 into Equation 46.   

The results are as expected with an attitude matrix very close to the 

identity matrix.  By performing the analysis in MATLAB the exact attitude matrix 

calculated is: 

 

1.0003 0.0004 0.2064

0.0007 0.9997 0.2976

0.0000 0.0000 0.9992

A

 
   
 
 

 (67) 
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The results from the least squares algorithm are encouraging for the 

images taken.  The direction cosine matrix does give us the attitude of the craft, but the 

attitude is usually represented in Euler angles.  By using the transformations in Equation 

27 the Euler angles for the satellite can be obtained. 

b. TRIAD Algorithm Testing 

Using two inertial vectors and two body frame vectors, the TRIAD 

algorithm was implemented for attitude determination.  The vectors are identified as 1̂V  

and 2̂V for inertial stars with two body frame vectors from the star tracker as 1̂W and 2Ŵ as 

in Equation 47.  The two triads described by Equations 48 and 49 were formed for 

insertion into the observed and reference matrices,  and ref obsM M respectively, as 

outlined in Equation 52.  The attitude matrix is obtained by Equation 53. 

Using arbitrary vectors obtained from the angle algorithm, the attitude 

determination matrix was obtained.  The attitude matrix is: 

 

1.0000 0.0002 0.0000

0.0002 1.0000 0.0000

0.0000 0.0000 1.0000

A

  
   
  

 (68) 

The matrix results are almost exactly a 3x3 identity matrix when compared to the results 

of the least-squares method in Equation 67. 

The problem with the TRIAD algorithm as mentioned previously is that 

only two observed and reference vectors are used to find A .  For the most accurate 

results from the TRIAD algorithm, the most accurate inertial and body frame vectors 

must be used (Shuster & Oh, 1981).  In this case, it is not known which vectors are the 

most accurate, therefore all vectors are used.  Also, portions of the second vector are 

discarded, therefore the algorithm is heavily influenced by whichever vector is used first 

(Shuster & Oh, 1981).  This sensitivity for which vector is used as the first vector is 

extremely difficult for designers in cases where the accuracy of the vectors is unknown.  

For these reasons, the TRIAD algorithm should not be used for applications with high 
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accuracy requirments, even though it is a simplistic approach for attitude determination.  

In a laboratory setting, the TRIAD algorithm accuracy is sufficent . 

c. QUEST Algorithm Testing 

The QUEST attitude determination algorithm was the final attitude 

determination algorithm tested.  The QUEST algorithm attempts to find a gain function 

that minimizes Equation 32.  The same figures as the Least-Squares and TRIAD were 

used as the inertial database and body frame image.  The vectors are identified as 1̂ nV  for 

inertial stars with the body frame vectors from the star tracker as 1
ˆ

nW for n total vector 

pairings.  

To implement the QUEST algorithm, the complex mathematics was 

developed as a subroutine in MATLAB.  The weighting coefficients, ,  ia is determined by 

the number of vectors in the observations in Equation 54.  The attitude profile matrix, B , 

was developed by summing the weighting coefficients multiplied by the vectors in 

Equation 55.  The quantity S was calculated from adding the attitude profile matrix to its 

transpose as in Equation 55.  The quantity  was calculated from Equation 60 while the 

3x1 vector, Z , was obtained from Equation 59.  The 4x4 matrix K was formed from the 

previously mentioned quantities in Equation 57.  Using the eig function in MATLAB, the 

eigenvectors and eigenvalues for the matrix K was determined.  To find the optimal 

quaternion, the maximum eigenvalue of K was paired with its associated eigenvector. 

In this case, the maximum eigenvalue has a value of one with a 

corresponding eigenvector of  0.0000 0.0000 0.0001 1.0000
T .  Therefore the 

quaternion is: 

  2.3619e-007 -8.1006e-007 -2.0437e-004 1.0000
T

optq   (69) 

which correspond to: 

  1 2 3 4

T

optq q q q q  (70) 

for this system.  To determine the corresponding direction cosine matrix A is found by 

equation inserting the quaternions in Equation 69 into Equation 26.  The attitude matrix 

is: 
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1.0000 0.0001 0.0000

0.0001 1.0000 0.0000

0.0000 0.0000 1.0000

A

 
   
   

 (71) 

The attitude matrix obtained from the QUEST algorithm, which uses all 

the vectors is very close to the results of the TRIAD algorithm which only uses two 

vector pairs. 

There are several benefits and drawbacks of using the QUEST algorithm 

for attitude determination.  The complexity of the QUEST is a significant drain on 

computational resources especially if there are a large amount of body and inertial 

vectors to calculate.  If there are only a few vector pairings, especially if there are only 

two pairings, then the TRIAD algorithm is more suitable due to its simplicity. 
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IV. TEST BED SIMULATIONS 

A. ATTITUDE DETERMINATION OF THE THREE-AXIS SIMULATOR-2 

The previous simulations were all conducted on images obtained from a star field 

with no movement of the spacecraft’s body frame with respect to the ECI frame.  

Implementing these algorithms onto the moving  Simulator-2 (TAS-2) has additional 

complexity because the origin locations of the frames effect the measurement of the star 

vectors and corresponding reference database.   

1. Equipment 

a. Three-axis Simulator 2 (TAS-2) 

The TAS-2 used for the experiment is a second-generation three-axis 

spacecraft simulator used in the Spacecraft Research Design Center (SRDC) at the Naval 

Postgraduate School.  The TAS-2 was designed and built to act as a test bed for the 

development and validation of acquisition, tracking, and pointing techniques.  The five-

foot diameter simulator floats on a spherical air bearing to allow it to rotate freely and 

simulate space flight.  The positioning of the simulator is accomplished by three, 

variable-speed, control moment gyroscopes. 

The TAS-2 simulates spacecraft three-axis motion and has a payload of an 

optical system, which simulates two gimbaled space telescopes along with multiple 

attitude sensors.  The sensors already installed on the platform are Inertial Measurement 

Units (IMUs) with integrated rate gyros, for angular rate, a two-axis analog sun sensor, 

and two inclinometers.  Added to these instruments is a camera to simulate a star tracker. 

The TAS-2 also has several onboard computers installed, one of which is 

used for conducting experiments associated with this project.  The image capturing and 

star-centroiding software has been saved to the computer for processing the star fields 

and obtaining the necessary information for the algorithms.  All algorithms associated 

with testing of the star tracker are also stored on this computer. 
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Figure 27.   TAS-2 with star field monitor installed above it. 

b. Star Field Image 

Another star field was created for use with the TAS-2 three-axis simulator.  

This star field was a generic star field intended only for attitude determination and is 

given as Figure 28.  The field was projected on the screen above the TAS-2.  The star 

field is setup to minimize stars close to each other for algorithm testing.  The star field is 

easily picked up by the camera when the room is darkened.   
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Figure 28.   Star field for TAS-2 testing. 

c. Star Tracker Camera 

A new Pentax wide FOV lens with an 8.5 mm focal length was installed to 

allow a wider angle of detection of the entire star field for use in the algorithms.  The 

camera and lens was installed such that all the stars are visible to the camera for a small 

range of motion.  Figure 29 shows the upgraded lens on the camera, the additional 

standoff on top of the three-axis simulator to get the camera closer to the star field, as 

well as the screen with the field in the darkened lab. 
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Figure 29.   Camera and screen for TAS-2 testing. 

The star field images are again processed using MATLAB, however many 

pixels were picked up where there was no star.  There are therefore several hot pixels 

(stuck pixels) on the CCD, or pixels with higher than normal rates of charge leakage.  By 

placing a cap over the lens, and performing the image capturing routine in MATLAB, an 

image with all the hot pixels has been obtained.  This background image is then 

subtracted from all other images when conducting tests to remove any hot pixels 

preventing them from becoming error stars. 

B. ATTITUDE DETERMINATION OF THE TAS-2 

1. Algorithm Choices 

The first step is determining which star pattern recognition algorithm should be 

used for the inertial database of the TAS-2.  Since this is the first implementation of a star 

tracker and the algorithms associated with it, the angle algorithm was chosen.   

The attitude determination algorithm used for testing on the TAS-2 is the QUEST 

algorithm.  The use of the stars in the FOV and simple eigenvalue calculations on the 4x4 

K matrix make the algorithm suitable for testing.  The QUEST algorithm has been 

modified to return the optimal quaternion as well as the attitude determination matrix. 
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In previous simulations, the star vector measured at zero attitude is considered as 

a reference database.  As seen in Figure 29, the star tracker camera is approximately one 

meter below the screen with the star field.  The TAS-2 is a floating simulator that can 

perform roll, pitch, and yaw maneuvers.  Since the star tracker camera cannot be located 

at the center of rotation of the simulator the frame fixed to the star tracker will not only 

be rotated but also translated.  In space, this translational motion of the frame is not a 

problem since the offset of the camera frame and the satellite’s body frame to the inertial 

frame does not affect angles or triangles of stars since the stars are extremely far away.  

In a laboratory environment, this translational motion will affect the star pattern 

recognition algorithm. 

2. Creating an Inertial Database 

The first step is to develop an inertial database for the TAS-2.  With the TAS-2 

completely level, 200 images are taken of the ceiling-positioned star field.  A total of nine 

stars are displayed on the LCD screen for the experiment.  For each of the 200 images, 

the background noise is subtracted.  The averages of the x and y positions will be taken 

over the 200 images to create a final, averaged image.  This image is used to create an 

inertial database for all test-bed simulations.  Since the image is taken in the camera 

frame, it must be shifted to an inertial frame of reference.  The inertial coordinate system 

is centered at the center of rotation of the TAS-2 which is at the center of the spherical air 

bearing.   

Figure 30 illustrates the star field, the inertial frame I centered at the center of 

rotation of the spacecraft simulator, the camera fixed frame B, the translated inertial 

frame I and the translated body frame B .  The frame I is the non-moving inertial frame 

for the system.  The center of the frame I moves with the camera, but does not rotate and 

its axes are parallel to those of frame I.  The translation of frame I from frame I   is done 

by position vector iR .  Frame B is the frame associated with the camera and therefore is 

fixed with the camera.  The frame B is translated from frame B such that the origin of 

frame Bcoincides with the origin of the inertial frame I. 
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Figure 30.   Vector representations of star field, star tracker frame, and the inertial frame. 

For star fields located at a far distance, the unit vectors ib represented in frame B 

are related to the unit star vector îr represented in frame I by the following relationship: 

 B I
i ib Ar  (72) 

where A is the direction cosine matrix representing the attitude of the spacecraft simulator 

and the superscripts denote the specific frame used for the star vectors.  In addition, the 

angle between 1b  and 2b  is same as the angle between 1r  and 2r  for distant stars.  When 

the stars are displayed in close proximity, the angle between 1b  and 2b  is not same as the 

angle between 1r  and 2r  as can seen in Figure 30.  

In order to solve this problem, let us first define i  representing the distance 

between ith star and the origin of frame B (or frame I  ). Similarly, we can also define  i   
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being the distance between ith star and the origin of frame I (or frame 'B ). Using  i  and 

i , the following relationship can be found. 

 0 i i i ib rR     (73) 

Equation 73 can be rewritten as follows 

 0
B B I

i i i ib A rR      (74) 

From Equation 74, 0
BR   is a constant vector fixed to the spacecraft body, B

ib  is measured 

by the star tracker camera, and I
ir  is a star vector represented in the inertial frame which 

will serve as the database. Equation 74 is not a linear equation to solve for the attitude 

matrix because i  is a function of A.  

Assuming that the star tracker camera is looking at the Bz  direction and defined 

a vector  ' 0 0 1Ip
  .  The distance from the origin of the inertial coordinate 

system to the monitor is 1.7695 m which is defined as h in Figure 30.  The  is derived 

from: 

  ˆ ˆ ˆI I I I
i ib p h p r       (75) 

Equation 75 can be rearranged so that: 
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 (76) 

The i  can also be computed as 

 
 i TI I

i

h

p r



  (77) 

For reference database, the star vectors measured in frame B at zero attitude need to be 

converted into star vectors in frame I . From Equation 74, the unit star vector at the 

inertial frame I which will serve as a database becomes  

 
B B

o i i
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
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 
  (78) 
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Figure 31.   Inertial star database image with numbering. 

Figure 31 illustrates an image from the database stars with the respective star 

numbers.  Once, the vectors are obtained in inertial frame I, the angle database is 

completed.  Using Equation 2, all the inertial angles are calculated.  The inertial numbers 

of the stars used to calculate the angles are stored with their respective angles to create a 

lookup table.  The entire database is stored as a MAT file in the TAS-2 computer system.  

The final database comprises angles with star numbers and the table with the inertial unit 

vectors and star number.   

3. TAS-2 Testing Iterations 

The image capturing and centroiding software in MATLAB is again used to 

detect the centroids of the stars in the image for calculating the unit vectors in the camera 

frame B.   
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Figure 32.   Stars observed by TAS-2 star tracker. 

The stars are picked up by the star tracker camera in Figure 32.  The stars are 

arranged so that the master star is the star closest to the y-axis with successive stars 

numbered according to their proximity to the y-axis.  These stars have their unit vectors 

calculated in the B frame.  There are nine stars counted, therefore there are eight angles 

between the master star and all the eight other stars in the image.  Again, the master star 

in an image is the star with the highest intensity.   

Equation 74, 0
B B I

i i i ib A rR     , is not easily applicable for computation of 

attitude matrix A because i  is also a function of A. Instead of solving complex 

optimization problem, we want to apply the algorithms presented and verified with the 

computer simulation in the previous chapter. In order for this, a simple iterative approach 

is proposed. First, compute the vectors 0
B B

i ibR   using the prediction of a spacecraft 

attitude A. The prediction of a spacecraft attitude can be made from previous estimates of 

the spacecraft attitude or using additional sensors such as rate gyros. With this attitude 
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prediction, the sect of vectors, 0
B B

i ibR   , can be used to compute the angles between 

them. These angles are now compared with the angles in the database and set of matching 

stars are identified for attitude estimation.  If the prediction of the attitude is not accurate, 

the accuracy for the angle matches need to be relaxed. In order for accurate estimation, 

the resulting attitude estimation can again be used to perform more accurate matches and 

attitude estimation. Therefore, this method needs several iterations with slight increases 

in computational power. 

Several testing iterations are planned to test the fidelity of the angle algorithm and 

the QUEST attitude determination algorithm for the test-bed.  For the experiment, star 

unit vectors translated to the B  frame from the star image are first computed, and the 

angles between the brightest or master star and all other stars are calculated.  These 

angles are compared to the inertial angles stored in the database.   

The testing program is setup so that the prediction of A attitude matrix used for 

computation of 0
B B

i ibR   has either no errors or some errors while the test-bed is at zero 

attitude.  By doing these tests, we can measure the accuracy of the estimation as well as 

the required accuracy of the prediction of the A matrix for the proposed algorithm.   

A series of A matrices with an error of six degrees, three degrees, zero degrees, 

minus three degrees, and minus six degrees were chosen.  An accuracy of 500 arc-

seconds for each angle was chosen for all A matrices.  Therefore, an angle from an 

observed star angle must match an inertial angle by the value  250 arc-seconds.  All the 

multiple matches were filtered out to ensure accurate results in the experiment. 

After the angles are matched, the star inertial vectors and observed star vectors are 

then entered into the QUEST algorithm.  The QUEST algorithm will then calculate an 

updated or accurate A matrix and attitude quaternion.  This new A matrix can then be 

used as a new initial estimate for further attitude calculations. 

For each test with 50 attitude estimations, several parameters were observed.  The 

resulting average updated A matrix from the QUEST algorithm for each test with its  
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standard deviation were recorded.  The number of stars and angles matched were saved, 

as well as the Euler angles and their standard deviations.  For these tests, there is only one 

iteration of attitude updates. 

a. Testing of an A of Zero Degree Error 

With a prediction of the A matrix of zero degree error, in other words a 

3x3 identity matrix, five test runs with 50 attitude determinations for each test were 

accomplished with a 500 arc-second accuracy.  The results of the attitude testing for the 

Euler angles and their standard deviations are included in Table 4.  Even though there is 

no error inserted, only seven stars out of nine are easily matched, due to the noise of the 

system.  The mean values and standard deviations for all the Euler angles remain fairly 

constant over the five tests as well. 

  Run 1  Run 2  Run 3  Run 4  Run 5  Overall Average 

Phi  6.86E‐04  5.65E‐04  6‐004  5.65E‐04 9.28E‐04 6.86E‐04 

Theta  3.70E‐03  3.00E‐03  2.00E‐03 3.00E‐03 5.00E‐03 3.34E‐03 

Psi  2.97E‐05  2.30E‐04  1.30E‐04 2.30E‐04 4.30E‐04 2.10E‐04 

             

σ Phi  1.20E‐03  1.10E‐03  9.18E‐04 1.10E‐03 1.40E‐03 1.14E‐03 

σ Theta  0.0066  0.0061  0.005  0.0061  0.0074  6.24E‐03 

σ Psi  6.74E‐04  6.18E‐04  5.06E‐04 6.18E‐04 7.57E‐04 6.34E‐04 

             

Number 
of  stars 
matched  7.000  7.000  7.000  7.000  7.000  7.000 

 

Table 4.   Tabulated results for Euler angles and standard deviation for an A matrix 
of zero degree error. 

The average attitude matrix for this testing is: 

0.9943    0.0002    0.0027

0.0003    0.9927    0.0006

0.0033    0.0005    0.9983

A

 
   
 
 

 

while the standard deviation for this matrix is: 
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0.0121    0.0006    0.0065

0.0006    0.0154    0.0011

0.0062    0.0012    0.0035


 
   
 
 

 

As seen from these simulations, the attitude is approximately equal to the 

true attitude (identity matrix) due to no errors in the predicted attitude.  There is very 

little standard deviation of the A matrix and most of the stars are picked up by the star 

tracker.  The next phase of testing is with an error in the predictive attitude. 

b. Testing of an A With Three Degrees Error 

The next phase of testing inserted an error of 3 degrees into the Euler 

angles to form an initial A matrix used in attitude determination.  Five more test runs for 

attitude determinations were accomplished with a 500 arc-second accuracy.   

The results of the attitude testing for the Euler angles and their standard 

deviations are included in Table 6.  The QUEST and angle algorithms do correct for the 

error, but fewer stars are matched.  The main thing noticeable from this test is the marked 

decline in the number of stars detected by the algorithm.  Only 3.26 stars are detected, 

due to the initial error during 50 runs.  If the initial attitude estimate is off, the results 

from the angle algorithm decline sharply.   

  Run 1  Run 2  Run 3  Run 4  Run 5  Overall Average 

Phi  1.70E‐03  6.58E‐04 2.90E‐03 3.50E‐03 2.70E‐03 2.29E‐03 

Theta  7.40E‐03  1.70E‐03 1.36E‐02 1.71E‐02 1.26E‐02 1.05E‐02 

Psi  3.30E‐04  ‐2.41E‐04 9.58E‐04 1.30E‐03 8.54E‐04 6.40E‐04 

             

σ Phi  3.70E‐03  1.58E‐04 5.50E‐03 6.20E‐03 5.40E‐03 4.19E‐03 

σ Theta  0.0199  4.18E‐04 0.0299  0.0335  0.0294  2.26E‐02 

σ Psi  2.10E‐03  5.77E‐05 3.10E‐03 3.40E‐03 3.00E‐03 2.33E‐03 

             

Number 
of  stars 
matched  3.260  3.320  3.200  3.320  3.200  3.260 

 

Table 5.   Tabulated results for Euler angles and standard deviation for an A matrix 
of three degree error. 
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The average attitude matrix for this testing with a three degree error is: 

0.9832    0.0007    0.0073

0.0012    0.9786    0.0023

0.0131    0.0020    0.8006

A

 
   
 
 

 

while the standard deviation for this matrix is: 

0.0445    0.0139    0.1072

0.0144    0.0556    0.0357

0.1205    0.0896    0.0188


 
   
 
 

 

c. Testing of an A With a Six-Degree Error 

Further testing with a large error of six degrees was attempted with an 

accuracy of 500 arc-seconds.  This error would test the ability of the algorithms to arrive 

at the correct attitude solution with a large initial estimate error.   

The results of this test were poor.  To get the algorithm to function, the 

accuracy had to be dropped to 900 arc-seconds or 0.0044 radians to get two angles to 

match with the database correctly.  Four angles were detected, but only two were 

accurate.  The only way to make the algorithm work with this amount of error, is to filter 

the database further for angles that are within 0.0044 radians of each other.   

d. Testing of an A With a Minus Three-Degree Error 

The next series of tests involved using an A matrix with an Euler error of 

minus three degrees.  The error was inserted and the simulations ran.  Table 7 contains 

the results of the minus three degree angle error tests.  The accuracy is maintained at 500 

arc-seconds for all tests. 
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  Run 1  Run 2  Run 3  Run 4  Run 5  Overall Average 

Phi  ‐3.71E‐04  ‐2.92E‐04 ‐5.49E‐05 ‐2.91E‐04 ‐7.65E‐04 4.30E‐03 

Theta  7.51E‐04  5.86E‐04 9.27E‐05 5.85E‐04 1.60E‐03 1.06E‐02 

Psi  ‐8.86E‐05  ‐7.20E‐05 ‐2.26E‐05 ‐7.23E‐05 ‐1.71E‐04 1.20E‐03 

             

σ Phi  1.20E‐03  1.10E‐03 5.59E‐04 1.10E‐03 1.60E‐03 9.10E‐03 

σ Theta  0.0025  0.0023  0.0012  0.0023  0.0033  2.48E‐02 

σ Psi  2.50E‐04  2.26E‐04 1.17E‐04 2.26E‐04 3.33E‐04 3.50E‐03 

             

Number 
of  stars 
matched  6.020  6.000  6.000  6.000  6.000  6.004 

Table 6.   Tabulated results for Euler angles and standard deviation for an A matrix 
with minus three degrees error. 

From the results in Table 6, the Euler Angles are accurately calculated, but 

the star matches drops from the nine matches achieved with a zero radian error.  Only six 

of the stars are matched in most of the cases with an initial error. 

The average attitude matrix for this testing with a minus three-degree error 

is: 

0.9939   -0.0001    0.0014

-0.0001    0.9937   -0.0006

0.0012   -0.0006    0.9997

A

 
   
 
 

 

while the standard deviation for this matrix is: 

0.0196    0.0004    0.0040

0.0004    0.0202    0.0020

0.0041    0.0019    0.0011


 
   
 
 

 

e. Testing of an A With a Minus Six-Degree Error 

With an A matrix of minus six degrees of error, five test runs for attitude 

determination were accomplished with a 500 arc-second accuracy.  The results of the 
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attitude testing for the Euler angles and their standard deviations are included in Table 7. 

The error still allows six stars to match in all cases. 

 

  Run 1  Run 2  Run 3  Run 4  Run 5  Overall Average 

Phi  ‐6.86E‐04  ‐4.49E‐04 ‐6.08E‐04 ‐4.49E‐04 ‐6.07E‐04 4.30E‐03 

Theta  1.40E‐03  9.12E‐04 1.20E‐03 9.13E‐04 1.20E‐03 1.06E‐02 

Psi  ‐1.55E‐04  ‐7.20E‐05 ‐1.38E‐04 ‐1.05E‐04 ‐1.38E‐04 1.20E‐03 

             

σ Phi  1.50E‐03  1.30E‐03 1.50E‐03 1.30E‐03 1.50E‐03 9.10E‐03 

σ Theta  0.0032  0.0027  0.003  0.0027  0.0015  2.48E‐02 

σ Psi  3.20E‐04  2.71E‐04 3.06E‐04 2.71E‐04 3.06E‐04 3.50E‐03 

             

Number 
of  stars 
matched  6.000  6.000  6.000  6.000  6.000  6.000 

Table 7.   Tabulated results for Euler angles and standard deviation for an A matrix 
with minus six degrees error. 

The average attitude matrix for this testing with a minus six degree error 

is: 

0.9939   -0.0001    0.0014

-0.0001    0.9937   -0.0006

0.0012   -0.0006    0.9997

A

 
   
 
 

 

while the standard deviation for this matrix is: 

0.0125    0.0003    0.0026

0.0003    0.0130    0.0013

0.0026    0.0012    0.0007


 
   
 
 

 

5. TAS-2 Testing Iterations with Attitude Updates 

The next testing incorporated using the QUEST algorithm to provide an updated 

attitude matrix to assist with the attitude solution.  The updated attitude solution should 
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increase the accuracy by providing by providing corrected A matrices as initial estimate 

to the algorithms matching the inertial database to the body frame image. 

The update testing was completed with an initial error of two degrees in the TAS-

2 initial attitude estimate with an accuracy requirement of 500 arc-seconds.  The testing 

starts at a single update, and then continues on up to five attitude updates.  Theoretically, 

at each update, the attitude solution will improve.  Table 8 contains the results of the 

testing.   

  update 1  Update 2 Update 3 Update 4 Update 5 Overall Average 

Phi  1.30E‐03  7.98E‐04 1.50E‐03 2.40E‐03 1.30E‐03 4.30E‐03 

Theta  6.50E‐03  3.20E‐03 4.00E‐03 3.10E‐03 4.00E‐03 1.06E‐02 

Psi  5.05E‐04  3.13E‐04 ‐1.33E‐04 ‐1.63E‐04 ‐6.44E+00 1.20E‐03 

             

σ Phi  2.30E‐03  1.70E‐03 2.90E‐03 3.40E‐03 2.90E‐03 9.10E‐03 

σ Theta  0.0125  0.0094  0.0087  0.0073  0.0093  2.48E‐02 

σ Psi  1.30E‐03  9.91E‐04 1.10E‐03 1.30E‐03 1.10E‐03 3.50E‐03 

             

Number 
of  stars 
matched  5.000  6.640  6.680  6.600  6.630  6.310 

Table 8.   Tabulated results for Euler angles and standard deviation with A matrix 
updates. 

The main result of the update test is the increasing accuracy of the initial estimate 

of the attitude solution.  With an initial error of two degrees, the updates remove the error 

and provide an updated attitude matrix.  As shown in the bottom line, the attitude updates 

improve with increasing amounts of attitude solution updates.  The amount of star 

matches improves from 5.0 at the beginning to ~6.6 stars at the end with five updates.  

Table 9 shows the increase in star identification with increasing updates, while Table 10 

shows the Euler angles over the same updates. 

By using an updated attitude matrix with errors removed while holding accuracy 

constant, star matching improves rapidly.  With only one update, only five star matches  
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are achieved.  When using two updates, the matches increase to almost seven stars 

identified, which is very close to the testing in Table 4, which was conducted using an A 

matrix of zero error. 

 

Table 9.   Tabulated results for Stars Recognized and standard deviation for an A 
matrix with a two degree error. 

With increasing A matrix updates, more precise Euler angles should also be 

obtained from the more accurate A matrix.  The Euler angles, shown in Table 10, overall 

exhibit similar trends of increasing accuracy.  Most improved are the Theta and Psi 

angles  

 

Table 10.   Phi, Theta, and Psi angles plot over iterations. 
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V. CONCLUSIONS 

A. STAR PATTERN RECOGNITION ALGORITHM SIMULATIONS 

The three star pattern recognition algorithms studied were the angle algorithm, the 

planar triangle algorithm, and the spherical triangle algorithm.  Each algorithm was 

simulated using the same images for an inertial database and for a star image as seen 

from on orbiting spacecraft.  After review, the algorithm with the best performance based 

on computational resources, storage requirements, and performance was chosen.  

The computational requirements and computer resources for the algorithms varies 

with each algorithm.  The angle algorithm calculation is very simplistic and requires very 

little computational power.  Both the triangle algorithms require far more calculations 

than the angle algorithm.  The added complexity of the triangle algorithms is offset by the 

additional logic necessary for determining which star is which in the angle algorithm.  

The hardest algorithm for computational requirements is by far the spherical triangle 

algorithm with the recursive calculations of Equation 13 to determine polar moment.   

Each algorithm has its own specific storage requirements.  The angle algorithm is 

simplistic requiring two star unit vectors to be stored with each angle.  The planar triangle 

algorithm is more complex since there are two data points, polar moment and area, which 

must be stored for each triangle.  Additionally for the planar triangles moment and area, 

three star unit vectors must be stored with each of them.  The same is true with the 

spherical triangle algorithm.   

The algorithm that performs the best regarding computational requirements, 

results, and storage requirements is the planar triangle algorithm.  The accuracy of the 

algorithm regarding matches beats the angle and spherical triangle algorithms.  The 

storage requirements are more than the angle algorithm and the same as the spherical 

triangle, but the amount of accurate hits more than offsets the angle algorithm.  The 

planar triangle is comparative to the angle algorithm regarding computing resources but 

beats the spherical triangle algorithm. 
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B. ATTITUDE DETERMINATION ALGORITHM SIMULATIONS 

There are many attitude determination algorithms also in use to solve what is 

known as Wahba’s problem, which was introduced in this report.  Three attitude 

determination algorithms have been simulated and studied, using the results from the 

angle algorithm.  Each algorithm has its specialties and drawbacks.  The TRIAD and 

QUEST algorithms are extremely accurate differing only slightly than the least-squares 

algorithm.  The QUEST and least-squares use all the stars whereas the TRIAD algorithm 

is only used on two stars with the remaining stars in the FOV being discarded.   

The QUEST algorithm is the most suitable algorithm for purposes of this project.  

All stars are used in the algorithm and the results are very accurate.  Even though the 

algorithm involves complex mathematics, the eigenvalue computations are far less 

intensive than the least-squares algorithm.  Specifically of benefit, is that no matter how 

many stars are used in determining the solution, the result is always obtained by finding 

the eigenvalues and eigenvectors of the matrix K  in Equation 57.  The K matrix will 

always be a 4x4 matrix as well which reduces the computational resources. 

The TRIAD and least-squares algorithms achieve the solutions, but they also have 

many drawbacks.  The TRIAD algorithm is simplistic, but it involves only two observed 

vectors and two inertial vectors.  The accuracy of the results are based solely on the 

accuracy of the chosen vectors.  If two vectors are inaccurate, the entire solution is in 

error, even though more accurate vectors cannot be used since the algorithm is designed 

for only two.  On top of that, the TRIAD algorithm is heavily influenced by the vector 

that is chosen first.  For these reasons, the QUEST algorithm is the algorithm of choice 

for attitude determination. 

C. TAS-2 IMPLEMENTATIONS 

The angle algorithm for star pattern recognition and the QUEST algorithm for 

attitude determination were successfully implemented on the TAS-2.  The algorithm 

worked with an accuracy of 500 arc-seconds with an initial estimate of position as a 3x3 

identity matrix.  The algorithms accurately determined the TAS-2 position for a range of 
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error from three degrees to minus six degrees.  Beyond three degrees and minus six 

degrees the angle method breaks down in its ability to accurately determine the position 

of the TAS-2.   

By updating the A matrix by outputs from the QUEST algorithm, the accuracy of 

the attitude solution increased markedly until a certain point, then leveled off.  The 

maximum star recognition increased from approximately five stars with one update and 

up to 6.6 stars with five updates, then levels off.  The testing shows that increased 

accuracy is obtained by providing an updated attitude solution as an initial estimate to the 

algorithms. 
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VI. FUTURE WORK 

A. FUTURE WORK ON THE TAS-2 AND STAR TRACKERS 

There is still much work to be done on the TAS-2 and with star tracker algorithms 

and attitude determination algorithms.  There are many other types of attitude 

determination and star pattern recognition algorithms to study and implement.  Other 

work involves incorporating other sensors into the attitude determination problem.   

Further study in algorithms should also take place.  The planar triangle and 

spherical triangle star pattern recognition algorithms need to be done as well as an 

Optimized TRIAD algorithm for attitude determination. 

The next step regarding instruments on the TAS-2 is routing the IMU data to the 

attitude determination algorithms to provide an initial estimate of the TAS-2.  By 

receiving IMU data, increase accuracy and steering the TAS-2 may be possible.   
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