
A Systems Engineering Process for Development of Federated Simulations
Robert H. Kewley, Jr. Andreas Tolk

Department of Systems Engineering Department of Engineering Management and Systems Engineering
United States Military Academy Old Dominion University
Robert.Kewley@usma.edu atolk@odu.edu

Keywords: Systems Engineering, Distributed Simulation,
Federations, Model Driven Architectures

Abstract

This paper specifies a systems engineering process for the
development of federated simulation models in order to sup-
port systems-of-systems analysis. The specification borrows
ideas from the systems engineering domain, the simulation
interoperability domain, and the software engineering do-
main. It has activities on the operational level to define how
the real system operates, the system level to define the over-
all architecture of the federation, and the technical level to
fully specify requirement to model developers. Use of this
process allow the developers of federated simulations to sep-
arate these concerns and dialog more effectively with all of
these groups.

1. INTRODUCTION
The requirement for a systems engineering approach to

federation development stems from the challenges of repre-
senting systems-of-systems integration in a simulation envi-
ronment. Typically, simulations exist that represent the opera-
tion of some of the subsystems. However, when these subsys-
tems are integrated to form a new capability, a new simulation
model is often useful to support decision making and opti-
mization with respect to that capability. The federation simu-
lation developer must typically rely on a series of techniques
from other disciplines and the expertise of supporting devel-
opers to design the federation. This paper outlines a systems
engineering approach that may be used to guide the process.

2. ENGINEERING SKILLS FOR FEDER-
ATED SIMULATIONS

This paper proposes an systems engineering process to
help orchestrate the engineering tasks required for federated
simulation [1]. These federates must be held together, con-
ceptually and technically, by the engineering capabilities:

Information Exchange System. The capability to pass
meaningful information between federates during the
simulation run.

Environmental Representation. The capability for feder-
ates to reference a shared and correlated environment in
which entities interact.

Entity Representation. The capability for federates to refer-
ence shared conceptually aligned information about en-
tities in the simulation. Some of this representation is
passed via the information exchange system.

Models. Within the context of the analysis or training ques-
tion, the internal models of each federate must be vali-
dated and coordinated across the federation.

Data Collection. The capability to collect meaningful infor-
mation from the simulation run in the context of the anal-
ysis question or training objective for which the federa-
tion was designed.

3. SUPPORTING SPECIFICATIONS
The IEEE Recommended Practice for High Level Archi-

tecture (HLA) Federation Development and Execution Pro-
cess (FEDEP) is an existing process for federation develop-
ment [2]. However, this process focuses primarily on the fed-
eration object model development within the information ex-
change system. It fails to address coordination of the other re-
quired engineering tasks. A more comprehensive systems en-
gineering process has been proposed in [3]. It calls for a com-
mon definition of requirements via the Military Missions and
Means framework [4]. It then goes on to call for further pro-
cess of information exchange system development and anal-
ysis support using Model Driven Architectures [5]. However,
that process assumed the federation supported military sys-
tems analysis. This paper extends that work to further specify
a more general and more formal systems engineering process
that supports development of federated simulations.

Building federations requires more than a simple technical
understanding of how simulations exchange data. It requires
a common shared conceptual understanding of the simula-
tion environment, entities in the models, and exchanges be-
tween them. It is very difficult to gain this by simply looking
at source code and conforming to technical standards. Lev-
els of interoperability shed some light on this challenge [6].
For example, technical interoperability is a very specific set
of protocols that clearly define the standards. Conceptual in-
teroperability, on the highest level, is a loosely defined by

mailto:Robert.Kewley@usma.edu
mailto:atolk@odu.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
A Systems Engineering Process for Development of Federated
Simulations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
United States Military Academy,Department of Systems
Engineering,West Point,NY, 10996

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Live-Virtual Constructive Conference, 12-15 Jan 2009, El Paso, TX

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

39

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

shared concept that provides context and common organiza-
tional uses for the models. For composable models, the devel-
opment team must have this shared conceptual model prior to
detailed engineering of the federation.

Fortunately, the software engineering community has de-
fined a framework to support this level of interoperability.
The Object Management Group’s Model Driven Architecture
(MDA) is an open standard that enables an organization to
specify their domain expertise in a modeling language that is
independent of the technology used to implement that logic
[5]. This specification achieves the technical goal of abstract-
ing the domain logic away from the technical implementation
details. For a simulation model, this supports validation of the
model by domain experts to enable composability.

The underlying idea is to separate business and applica-
tion logic from underlying technology. To enable this, MDA
defines artifacts based on the Unified Modeling Language
(UML) to describe a hierarchy of models that cope with
the various challenges on different levels. Guidelines for the
use of MDA establish three different modeling viewpoints
[7], and these can be interpreted for the simulation domain.
The highest level of abstraction is the Computer Independent
Models (CIM) which focus on the system’s business logic.
The Platform Independent Models (PIM) capture concepts
and processes in software engineering artifacts. If this con-
ceptual model is mapped to a concrete platform and imple-
menting architecture, the result is a Platform Specific Model
(PSM). In the optimal case, the PSM can be used to produce
code, as all information needed is available.

MDA has the additional advantage of standardized meta-
models. The Meta-Object Facility (MOF)[8] and XML Meta-
data Interchange (XMI)[9] declare abstractions for the repre-
sentation and exchange of models. These features of MDA,
if applied for modeling and simulation, allow simulation sys-
tem developers to take advantage of the numerous modeling
and development tools that are available in the commercial
and open source community based on these standards.

4. SYSTEMS ENGINEERING PROCESS
FOR DEVELOPMENT OF FEDERATED
SIMULATIONS

The real challenge of simulation development is to ensure
that the final product is consistent with the purposes for which
the simulation project was originally started. It should support
analysis of different strategies, represented as simulation in-
puts. In so doing, there must be a mechanism for tying differ-
ent simulation development activities to the requirements for
certain system functions to be modeled and to certain outputs
to be produced. A systems engineering approach to simula-
tion development ensures that these ties to requirements are
maintained throughout the process.

The process borrows from the Model Driven Architectures

approach to produce models of the simulation system on three
different levels —targeting three different sets of stakehold-
ers. Operational level activities produce an operational de-
scription of the system to be simulated. The operational prod-
ucts, analogous to the CIM of MDA, are independent of the
fact that a simulation model is being built. They consider the
concerns of the operational stakeholders who must use or op-
erate the system as it functions in the real world. The sys-
tem level activities focus on the simulation architecture as a
whole. These products, analogous to the PIM of MDA, as-
sign simulation functions and metrics to different simulation
models. The primary stakeholder for system level activities
are integration engineers and managers for each of the com-
ponent models. The technical level activities focus on the de-
tailed development of simulation components and the inter-
faces between them. These products, analogous to the PSM
of MDA, provide sufficient detail for software engineers to
develop code that will interface with the overall simulation
federation to provide the required results. In some cases, the
software or test cases may be auto-generated from the techni-
cal specification.

4.1. Operational Level Activities
In performing the operational level activities, simulation

engineers are focused on the problem definition phase of the
systems engineering process [10]. Their primary goal during
this phase is to gain an understanding, documented as a com-
bination of UML specifications and other diagrams, of the
system to be modeled. They should understand its users, its
functions, and the value derived from the operation of the sys-
tem itself. The steps in Figure 5 represent the steps of this
process.

Identify system use-cases. Identify how the system is used
by different classes of users to perform the function for
which it was designed. This results in a high level UML
use-case model for the system.

Functionally define the system. Use the use-case model
and work with system users to define in a hierarchy the
functions of interest for the system. This results in a
functional hierarchy for the system. Figure 2 shows this
for the ground soldier command and control system.

Identify stakeholders. Identify stakeholders for the system.
These are not only users, but also system owners, system
developers, and the client for which the simulation study
is being performed. Ensure the modeling detail captures
enough information to answer the question at hand with-
out incorporating so much detail that simulation devel-
opment becomes overly difficult, expensive, and time
consuming.

Figure 1: Operational level activities.

Figure 2: Functional decomposition for ground soldier com-
mand and control system.

Elicit stakeholder concerns. Using any combination of in-
terviews, focus groups, and surveys, determine the fun-
damental concerns and values of the stakeholders iden-
tified in the previous steps.

Determine system objectives. Based on the functional anal-

ysis and stakeholder concerns, determine the system ob-
jectives that must be successfully met in order to deliver
value back to the stakeholders.

Define value measures. Once the objectives have been iden-
tified, determine value measures that can be used to see
if the system has indeed met those objectives. The simu-
lation system, once developed, must be able to estimate
system performance in terms of these objectives so that
the relative performance of different alternatives can be
determined. The results of this phase may be represented
as a value hierarchy specified as a UML class diagram
where each value measure is a component of an individ-
ual objective, and individual objectives are components
of the overall system objective. It is also helpful to spec-
ify the range of possible values, from least desirable to
most desirable, for each performance measure [10]. Fig-
ure 3 shows a portion of the value hierarchy for a ground
soldier command and control system.

Build system value function. A simple value hierarchy is
not sufficient for direct comparison between alternatives.
The development team must return to the stakeholders
and determine the value curves and weights for each per-
formance measure, taking into consideration the impor-
tance and overall variability of each measure [10]. This
results in a value function that translates a set of perfor-
mance scores for each alternative into an overall value
score that represents the value of that alternative to the
system stakeholders.

Construct operational scenarios. Once the system, its

Figure 3: Value hierarchy for ground soldier command and
control system.

functions, and its values have been defined, the sim-
ulation study team must also define the scenario that
represents the context for evaluation of system perfor-
mance. In a military simulation, this represents details
such as terrain and weather, forces in the engagement,
supporting friendly forces, and full definitions of the
entities in the simulation. The scenario definition
describes the mission, forces involved, and roles of the
simulated entities. In a military context, the Military
Scenario Definition Language is an excellent standard
for this representation [11].

Entity definitions are an important aspect of scenario
definition. All too often, the names of entities can lead to
ambiguous understandings of the actual capabilities rep-
resented. Entity definitions should be as specific as pos-
sible with references to authoritative sources that pro-
vide accurate data to simulation modelers who must rep-
resent these entities in their respective simulations.

Finally, within the scenario, the functions performed by
the system under study should be defined as a functional
flow model so that simulated events can be synchro-
nized in the proper order. This model can be represented
as a UML activity diagram. A portion of the function
flow model for the artillery fires request function of the
ground soldier command and control system is shown in
Figure 4.

Figure 4: Functional flow model for request artillery fires
function of ground soldier command and control system.

4.2. Systems Level Activities
Once the operational picture is well understood and doc-

umented, it is time for the high level systems design of the
federated simulation. The design steps in this phase build
UML specifications of the simulation functions, simulation
data collection, information exchanges, and environmental
data. These steps result in a logical allocation of functionality
and information exchanges that derive from the operational
requirements from the previous step. While not sufficient for
writing code, these models allow simulation engineers and
software engineers from the participating federates to allo-
cate high level tasks and work packages to support simulation
development.

Select participating simulations. Once the required func-
tionality is known, the simulation engineers must re-
search candidate federates for inclusion in the federa-
tion. Some of the considerations for selection are the ca-
pability to model desired phenomena, ease of integration
with the other models, and difficulty of required modifi-
cations. In some cases, a new federate must be developed
in order to model some aspects of the system.

Allocate simulation activities to specific simulation models.
Once the candidate federates are selected, modeling
functions must be allocated to individual federates.

Figure 5: System level activities.

The resulting functional allocation takes the functional
flow diagram from the operational level and allocates
specific functions to federates using swim lanes in the
UML activity diagram. A portion of this allocation for
the ground soldier command and control simulation is
shown in Figure 6.

Allocate value measures to specific simulation models.
In a manner similar to the allocation of functions, the
requirements to collect necessary performance data
should be allocated to federates as well. In some cases,
the required data may not exist in any one federate, but
will have to be collected from network interaction data
collected by loggers.

Define simulation modeling functional requirements.
Once the modeling functions and data collection func-
tions have been determined, the simulation functionality
requirements may be formally specified for the models.
These requirements documents may be used to support
contracting with federate developers who must deliver
models with the required functions.

Determine information exchange requirements. In order
for the federation to execute, data must be exchanged
between the models. These requirements may be derived
from the activity diagrams used to allocate functions to
individual federates. Any time that a control line crosses

a swimlane, there is typically a requirement for some
amount of information to be passed in order to support
that allocation.

Define logical data model for information exchange. As
information exchange requirements are identified in
the previous step, engineers must formally specify the
data elements required to support that data exchange.
These data requirements can often be specified in a
UML class diagram. This is a two-way process. It may
be more efficient to delay this formal specification until
the information exchange architecture is selected in the
technical view. In some cases, information elements
from that architecture may be reverse engineered to
provide the require information elements.

Build entity source data. In addition to developing simula-
tion software, the team must also consider the entities
that will participate in the scenario. In some cases, these
entities must be constructed from a significant amount of
data. This step represents the collection of accurate and
appropriate source data for the entities in the scenario.

Build environmental source data In addition to entities,
the environment must be considered as well. This step
represents the collection of source data necessary to
appropriately represent the environment in the differ-
ent federates. The environmental representation may not

be the same for all federates. However, using the same
source data will lead to correlated representations across
the models.

Once the system has been designed and data has been col-
lected, it is still necessary to do system development for all of
the participating federates and for the overall federation in-
tegration architecture. There are all technical level activities
that look to provide software engineers and programmers suf-
ficient information that will allow them to write code and de-
liver working federates within the overall specification. Fig-
ure 7 shows a diagram of the technical level activities and
products.

Select information exchange technical architecture. The
simulation must exchange information across an archi-
tecture designed for this purpose. Simulation standards
such as Distributed Interactive Simulation (DIS) or the
High Level Architecture (HLA) are possible choices.
Another possibility is to use service oriented archi-
tectures, based on web standards, designed to support
business or industrial systems.

Develop information exchange data model. The informa-
tion exchange data model must be specified and repre-
sented in technical format selected in the previous step.
In the case of HLA, this specification will be a federa-
tion object model (FOM). A web services architecture
would require extensible markup language (XML) rep-
resentations of the data. Once the information exchange
data model is developed, a UML sequence diagram can
be used to translate simulation functions into sequence
diagrams that explicitly show the communications be-
tween federates and the simulation functions performed
by each. Figure 8 shows a sequence diagram for the
communication function of the ground soldier command
and control federation.

Specify simulation models. Required simulation functions
were determined as a systems level activity. Now these
function must be specified using the language and for-
mat of the information exchange architecture. For ex-
ample, in HLA, certain simulation functions could be
started upon receipt of specific interactions from the run-
time infrastructure (RTI). In a web services integration,
these functions could be represented using the web ser-
vices definition language (WSDL).

Build entity data models in simulation specific formats.
In this step, the entity data collected in the system
level activity must be converted into input formats
that can be read by the participating federates. These
representations may be databases, spreadsheets, XML
files, or other file formats required by the participating

Figure 8: Sequence diagram for simulation functions and in-
formation exchanges required to support the communicate
function of the ground soldier command and control simu-
lation.

simulations. In some cases, supporting tools for the
simulation can ease this transition. In other cases, it is a
laborious manual process using basic editors.

Build data collection models in simulation specific formats.
In this step, the data collection requirements determined
in the system level activity must be represented as
output data from simulation federates or from data
loggers tied to the federation. Depending upon the
federate, these format may be supported by standard
database systems, or they may simply be text or log
files that must be processed. The developers must build
queries or tools that collect this raw data and summarize
it as value measures from the value model built in the
operational level.

Build terrain data models in simulation specific formats
The source terrain data must also be converted into
simulation specific formats. In many cases commercial
tools support this process for a variety of formats.
In other cases, the terrain data may be read into the
simulation models in its existing geospatial format. The
result of this step is correlated representation of the
terrain across the federation.

4.3. System Development and Testing
Delivery of the engineering products described at each

level will give system developers all of the specifications they

need to build software components that deliver the required
functionality and interface with the federation architecture.
The operational level will give them a conceptual context for
integration. The system level will give them a semantic view
of their components and an understanding of the overall simu-
lation architecture. Finally the technical products will specify
their components in sufficient detail to allow them to interface
with the selected technical infrastructure. A good systems en-
gineering process requires stakeholders from all three of these
levels for the to work together in a coordinated way.

Despite the best intentions of a well designed architecture,
there is no substitute for component and integration testing to
ensure all of the pieces work as advertised. Component tests
are designed around individual components and their inter-
faces. They typically test a discrete function by replicating
the inputs from the federation and reading the outputs from
the federate. The ground soldier simulation system used the
Modeling Architecture for Technology, Research and Exper-
imentation (MATREX) [12] environment. This environment
supported automatic test case generation to support integra-
tion. Larger scale integration tests bring together a number
of federates and test the ability of the federation to model
system-level capabilities and to collect system-level data.

5. ADVANTAGES OF A SYSTEMS ENGI-
NEERING APPROACH

There are three main advantages to using a systems engi-
neering approach to federated simulation development. The
first advantage is to ensure a clear line of logic from oper-
ational representations, to system level federation design, to
coding and development. A second advantage is the separa-
tion of concerns permitted by modeling the system on three
different levels. Operational experts do not have to read com-
puter code to adjust models on the operational level. System
level experts can organize and specify the system using sys-
tems architecture tools, and code developers can work from
technical level specifications. The final advantage is that all
of the systems engineering products support the engineering
manager in implementation of the development and test plan.
It breaks the complex federation into discrete pieces of func-
tionality that can be developed, component tested, and in-
tegration tested in order to manage progress. This approach
has helped during implementation of the ground soldier com-
mand and control federation, saving a great deal of develop-
ment tim and effort that is typically spent rectifying poorly
specified interfaces during integration tests.

REFERENCES
[1] R. H. Kewley, N. Goerger, E. Teague, D. Henderson,

and J. Cook, “Federated simulations for systems of sys-
tems integration,” in Draft submitted to Proceedings of
the 2008 Winter Simulation Conference, 2008.

[2] IEEE Computer Society, “IEEE Recommended Practice
for High Level Architecture (HLA) Federation Devel-
opment and Execution Process (FEDEP),” Tech. Rep.
1516.3, 2003.

[3] A. Tolk, T. Litwin, and R. Kewley, “A systems engi-
neering process for driving federated model develop-
ment with operational requirements,” in Draft submitted
to Proceedings of the 2008 Winter Simulation Confer-
ence, S. J. Mason, R. R. Hill, L. Moench., and O. Rose,
Eds., December 2008.

[4] J. H. Sheehan, P. H. Dietz, B. E. Bray, B. A. Harris, and
A. B. Wong, “The military missions and means frame-
work,” Army Material Systems Analysis Activity, Tech.
Rep. TR-756, 2004.

[5] Object Management Group. (2007) OMG model
driven architecture. http://www.omg.org/mda. accessed
14 march 2008. [Online]. Available: http://www.omg.
org/mda

[6] A. Tolk, C. D. Turnitsa, S. Y. Diallo, and L. S. Winters,
“Composable M&S web services for net-centric appli-
cations,” Jornal of Defense Modeling and Simulation,
vol. 3, no. 1, pp. 27–44, 2006.

[7] Object Management Group, “MDA guide version
1.0.1,” Object Management Group, Tech. Rep., 2003.
[Online]. Available: http://www.omg.org/technology/
documents/vault.htm#modeling

[8] ——, “Meta Object Facility specification,” Object
Management Group, Tech. Rep. Version 1.4, 2002.
[Online]. Available: http://www.omg.org/technology/
documents/formal/mof.htm

[9] ——, “XMI version 1 production of XML schema
specification,” Object Management Group, Tech. Rep.
Version 1.3, 2003. [Online]. Available: http://www.
omg.org/technology/documents/vault.htm#modeling

[10] G. Parnell, P. Driscoll, and D. Henderson, Eds., Deci-
sion Making in Systems Engineering and Management.
Hoboken: Wiley, 2008.

[11] “Military scenario definition language,” Simulation
Interoperability Standards Organization, 2008. [On-
line]. Available: http://www.sisostds.org/index.php?tg=
articles&idx=More&article=440&topics=103

[12] T. Hurt, T. McKelvey, and J. McDonnell, “The mod-
eling architecture for technology, research, and exper-
imentation,” in Proceedings of the 2006 Winter Simu-
lation Conference, L. F. Perrone, F. P. Wieland, J. Liu,
B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, Eds.,
2006, pp. 1261–1265.

http://www.omg.org/mda
http://www.omg.org/mda
http://www.omg.org/technology/documents/vault.htm#modeling
http://www.omg.org/technology/documents/vault.htm#modeling
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/vault.htm#modeling
http://www.omg.org/technology/documents/vault.htm#modeling
http://www.sisostds.org/index.php?tg=articles&idx=More&article=440&topics=103
http://www.sisostds.org/index.php?tg=articles&idx=More&article=440&topics=103

Figure 6: Allocation to request fires functions to simulation federates, represented as vertical swim lanes.

Figure 7: Technical level activities.

A Systems Engineering Approach to Developing

Federated Simulations for Systems Testing
ITEA Conference, 14 January 2008

LTC Rob Kewley
Director, Operations Research Center
United States Military Academy
Department of Systems Engineering

Combat XXI IWARS

OneSAF

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Agenda

Systems of systems analysis

SysHub concept

Engineering skills

Information exchange system

Environmental representation

Entity representation

Models

Data collection

Time management

Systems engineering process

Operational View Activities

Systems View Activities

Technical View Activities

Applications

Soldier as a System

UAS/Apache Cooperative
Engagements

Swarming UAS

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Cooperative Engagements
System of Systems

GCS
MI Co

Maneuver Bde
Cav Sqdn

Joint Systems and
Requirements

Current Operating

Environment

Supplemental
Budget

Program
Budget

Institutional Bias

Ongoing Analysis

Cooperative Engagements
with ERMP and AH-64D

Maneuver Bde TOC

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

System of Systems Issues

Air space management and safety achieved by all component systems
working together

Individual systems provide useful services (fire power, real time video)

Individual systems are acquired independently with different contractors

Individual systems come and go routinely

Dependent on networked communications

Standard protocols and interfaces

Geographically dispersed

System complexity leads to emergent behavior

Extensive coordination is central to achieving high levels of efficiency and
safety

“Systems of systems exist when there is a presence of a majority of the following
five characteristics: operational and managerial independence,
geographical distribution, emergent behavior, and evolutionary
development.” [Sage and Cuppan 2001]

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Why Federate?

Analysis or performance measurement for
overarching system measures

Considering alternative sub-systems or
architectures

Sub-system models available for reuse

Models are geographically distributed

Building a single model of a large complex system
is difficult and costly

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

SysHub

Composability requires
more than an agreement
to use HLA

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Information Exchange System

Levels of conceptual interoperability (Turnitsa and
Tolk)
Interoperability standards

Distributed Interactive Simulation

High Level Architecture

Web Services

Interoperability tools
UML modeling

Data modeling

Army’s Modeling Architectures for Technology, Research and
Experimentation (MATREX)

The capability to pass meaningful information between
federates during the simulation run.

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Environmental Representation

Reference a conceptually aligned common
environment with detail appropriate for federate
Environmental standards

Synthetic Environment Data Representation and Interchange
Specification (SEDRIS)

GIS standards

Strategies
One common environmental database

Correlated models built using a single tool

Correlated models build using different tools

The capability for federates to reference a shared and
correlated environment in which entities interact.

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Entity Representation

Characteristics that do not change during the
simulation run

Data typically loaded from federate specific data sets

Data from different federates must be conceptually aligned with an
authoritative and shared source, such as AMSAA data

Dynamic characteristics that make up the entity
state

State is dynamically updated based on simulation events

Federates access entity states via the information exchange
system

The capability for federates to referenced shared conceptually
aligned information about entities in the simulation. Some of this
representation is passed via the information exchange system.

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Models

Models running in a new context
Model must be appropriate for simulation
Example – High energy laser modeling to defeat
incoming projectile
Model validation steps

Verify model assumptions within the new context

Run the federation with data for which the results are known or can
be expected to fall within a certain range

System experts can view simulation runs and provide face validity

Within the context of the analysis or training question, the
internal models of each federate must be validated and
coordinated across the federation.

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Data Collection

What is the question?
Define question in terms of simulation inputs and
outputs
Data collection sources

Data collection tools for individual federates

Data loggers for the federation

Custom data collection and analysis tools for a specific federation

Human observation and measurement

The capability to collect meaningful information from the
simulation run in the context of the analysis question or training
objective for which the federation was designed.

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Time Management

Simulations are synchronous
Federates must have a shared representation of
time
Synchronization strategies

Execute in real time

Use a multiple of real time

Federation maintains a clock and look-ahead window

Federation maintains the event list

The capability to execute the simulation in separate federates
in a synchronized way so that the ordering of events and
interactions between entities mirror the real system.

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Model Driven Architectures

Similar system engineering view like captured in
DoDAF (OV, SV, TV) and as supported by
the Military Missions and Means
Framework (MMF)

Computer Independent Model (CIM)

Operational Idea, high-level view

Platform Independent Model (PIM)

Algorithmic Solutions

Identifies classes, associations, etc.

Platform Specific Model (PSM)

Code-level solution

Platform and language specific

All models are connected via
transformation patterns

Problem
Definition

Systems
Definition

System
Specification

OV

SV

TV

CIM

PIM

PSM

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Systems Engineering Process
Operational View Activities

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Functional Hierarchy
Engage
Targets
Cooperatively

Identify
target

Plan
cooperative
mission

Fly attack
helicopters
to target

Deliver
video to
helicopters

Helicopters
assess target

Helicopters
engage
target

Conduct
BDA

Develop
Mission Clear Fires

Clear blue
forces

Clear allies

Establish
hostile intent

Engage threat

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Mission Thread

UAS
identifies
target

GCS reports
target to
TOC

TOC decides
to engage
with attack
aviation

TOC plans
mission

TOC alerts
aircraft

Aircraft fly
to target

Aircraft
receive UAS
video

UAS operator
briefs pilots
on target

Pilots select
engagement
position

Pilots acquire
targets on
UAS video

Pilots acquire
targets on
TADS

Aircraft
engage target

Pilots collect
BDA

Pilots report
BDA

Aircraft egress
from target
area

UAS collects
BDA

UAS reports
BDA

TOC fuses and
reports BDA

TOC clears
blue forces

TOC clears
allied forces

TOC
establishes
hostile intent

TOC clears
fires for
engagement

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Cooperative Engagement
Effectiveness

Conduct effective
cooperative
engagements

Identify
target
quickly and
accurately

Plan
cooperative
mission
quickly

Fly to
engagement
position
quickly

Gain rapid and
accurate
understanding
of target area

Destroy
enemy
targets

Report
accurate
BDA

Time required
to ID target

% correct target
identifications

Time required
to plan mission

Time required
to fly to position

Time required to
identify target

% enemy targets
identified

% friendly
vehicles identified

% neutral targets
identified

% enemy targets
destroyed

of fratricide
incidents

of collateral
casualties

% enemy damage
correctly reported

Clear
fires
quickly

Time required
to clear blue

Time required
to clear allies

Time required
to establish
hostile intent

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Standards-Based Scenario

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Systems Engineering Process
Systems View Activities

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Apache Virtual Trainer

TOC C2 TrainerC2 NetworkShadow Virtual
Trainer

Allocation of Mission Elements

UAS
identifies
target

GCS reports
target to
TOC

TOC decides
to engage
with attack
aviation

TOC plans
mission

TOC alerts
aircraft

Aircraft fly
to target

Aircraft
receive UAS
video

UAS operator
briefs pilots
on target

Pilots select
engagement
position

Pilots acquire
targets on
UAS video

Pilots acquire
targets on
TADS

Aircraft
engage target

Pilots collect
BDA

Pilots report
BDA

Aircraft egress
from target
area

UAS collects
BDA

UAS reports
BDA

TOC fuses and
reports BDA

TOC clears
blue forces

TOC clears
allied forces

TOC
establishes
hostile intent

TOC clears
fires for
engagement

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

TOC C2 TrainerC2 NetworkShadow Virtual
Trainer

Mission Effectiveness Metrics

Apache Virtual
Trainer

Constructive
SAF

Simulation
Network

Time required
to ID target

% correct
target
identifications

Time required
to plan mission

Time required
to fly to
position

Time required
to identify
target

% enemy
targets
identified

% friendly
vehicles
identified

% neutral
targets
identified

% enemy
targets
destroyed

of
fratricide
incidents

of
collateral
casualties

% enemy
damage
correctly
reported

Time required
to clear blue

Time required
to clear allies

Time required
to establish
hostile intent

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Pilots

UAS Operator

Shadow Virtual
Trainer

Communication Diagram

Apache Virtual
Trainer

Constructive SAF

TOC

Entity Locations
Engagements

Entity Locations
Engagements

UAS Video

Spot report
BDA Report

Spot report
Friendly location report

Spot report
Voice

Voice

Voice

Mission order

BDA Report

Simulation
Network

C2 Network

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Systems Engineering Process
Technical View Activities

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Technical View: Federation Design

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Technical View
MATREX Test Cases

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

AH64 Apache/UAS Cooperative
Engagements

Components
Deployable Virtual Training Environment – Cobra and UAS

Joint Semi-Automated Forces (JSAF)

One Semi-Automated Forces (OneSAF)

Joint Live Virtual Constructive Data Translator (JLVCDT)

Combination of HLA and DIS

Terrain generated with Terra Vista tools

Entity mappings are a challenge

SAF model has lower fidelity representation of
character or vehicle actions

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Soldier Command and Control

Components
One Semi-Automated Forces (OneSAF) or COMBAT XXI

Infantry Warrior Simulation (IWARS)

MATREX Battle Command Management Services

Brigade and Below Propagation Protocol Communications Model

HLA integration in MATREX architecture

All models use OneSAF’s Environmental Runtime
Component (ERC)

IWARS handles high fidelity soldier models

Entity identification is a challenge

Data collection using MATREX federation logger

Combat
XXI

IWARS

OneSAF

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Swarming Unmanned Aircraft Systems

Components

VR-Forces SAF

Visualization federate (Mac-OS)

Swarming control federate

DIS for information exchange

Direct object integration for C2 and visualization

Terrain representation in simulation and in GIS
format for C2

Custom data collection federate written

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Systems Engineering Results

Operational View

System functions to be simulated

Associated metrics to be collected via simulation

Operational descriptions of scenario, forces, and terrain

Systems View

Allocation of system functions and metrics to supporting simulations

Simulation functional requirements

Simulation terrain and entity databases

Information exchange requirements and data model

Technical View

Support for integration with specific interoperability protocol

Automatically generated test cases

Tr
ac

ea
b

ili
ty

TEACHING FUTURE ARMY LEADERS TO SOLVE COMPLEX PROBLEMS

Contacts

LTC Robert Kewley, West Point Dept of Systems Engineering

(845) 938-5529

DSN 688-5529

Robert.Kewley@usma.edu

URLs:

USMA: http://www.usma.edu/

Systems Engineering:
http://portal.dean.usma.edu/departments/se/default.aspx

ORCEN: http://portal.dean.usma.edu/departments/se/Orcen/default.aspx

	INTRODUCTION
	ENGINEERING SKILLS FOR FEDERATED SIMULATIONS
	SUPPORTING SPECIFICATIONS
	SYSTEMS ENGINEERING PROCESS FOR DEVELOPMENT OF FEDERATED SIMULATIONS
	Operational Level Activities
	Systems Level Activities
	System Development and Testing

	ADVANTAGES OF A SYSTEMS ENGINEERING APPROACH

