

AFRL-RI-RS-TR-2010-31
Final Technical Report
January 2010

LEVERAGING PARALLEL HARDWARE TO
DETECT, QUARANTINE, AND REPAIR
MALICIOUS CODE INJECTION (#36)

University of California, Irvine

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report is the result of contracted fundamental research deemed exempt from public
affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is
available to the general public, including foreign nationals. Copies may be obtained from
the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2010-31 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
JAMES SIDORAN WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JANUARY 2010
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

May 2007 – August 2009
4. TITLE AND SUBTITLE

LEVERAGING PARALLEL HARDWARE TO DETECT, QUARANTINE,
AND REPAIR MALICIOUS CODE INJECTION (#36)

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-07-2-0085

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Michael Franz

5d. PROJECT NUMBER
NICE

5e. TASK NUMBER
00

5f. WORK UNIT NUMBER
11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California Irvine
Computer Science, Bren Hall
Irvine, CA 92697-3425

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2010-31

12. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In a Multi-Variant Execution Environment (MVEE), several slightly different versions of the same program are executed in lockstep.
While this is done, a monitor compares the behavior of the versions at certain synchronization points with the aim of detecting
discrepancies which may indicate attacks. A fully functions MVEE has been built and evaluated. The implemented system can
successfully detect previously unknown attacks in real time, in exchange for a small runtime penalty.

15. SUBJECT TERMS
Mobile code distribution, Dynamic code generation, Code verification, Verification complexity

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

56

19a. NAME OF RESPONSIBLE PERSON
James L. Sidoran

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Contents

Title Page i

Notice ii

Report Documentation Page iii

Contents iv

List Of Figures vi

Acknowledgments vii

Summary 1

1 Introduction 1

2 The Monitor 4
2.1 Monitor Security . 6

2.2 System Call Monitoring . 6

2.3 Monitor-Variant Communication 9

3 Inconsistencies Among the Variants 12
3.1 Scheduling . 12

3.2 Signal Delivery . 13

3.3 File Descriptors and Process IDs 14

3.4 Time and Random Numbers . 15

3.5 False Positives . 15

4 Reverse Stack Execution 16
4.1 Technique . 17

4.2 Stack Pointer Adjustment . 18

4.3 Stack-Relative Addressing . 21

4.4 Variable Arguments . 22

4.5 Callee-Popped Arguments . 22

4.6 Structures . 22

4.7 Implementation . 24

4.8 Stack Allocation at Startup . 24

4.9 Effectiveness of Reverse Stack Execution 26

i

5 Evaluation 28
5.1 Security . 28

5.1.1 Apache mod_rewrite Vulnerability 29

5.1.2 Apache mod_include Vulnerability 30

5.1.3 Snort BackOrifice Preprocessor Vulnerability 30

5.1.4 Effectiveness of the MVEE 30

5.2 Performance . 31

5.3 Analysis . 32

6 Related Work 35

7 Conclusions and Outlook 36

List of Written Publications 38

Patent Application Filed 40

Professional Personnel Associated With The Project 41

Presentations at Meetings, Conferences, Seminars, etc. 42

Presentations at Organizations and Corporations 43

References Cited 45

List of Symbols, Abbreviations, and Acronyms 49

ii

List of Figures

1 Architecture overview. 3

2 The monitor is a thin software layer on top of the OS kernel. . . . 4

3 System calls that change the global state are executed by the

monitor and results are communicated to all instances. 7

4 Flowchart showing operations performed by the monitor for every

system call. 8

5 Data transmission performance vs. buffer size. 10

6 Child threads have their own monitoring threads. 13

7 Defending against buffer overflow vulnerabilities. 16

8 Upward growing stack requires more complicated allocation me-

chanics. 18

9 Mechanics of PUSH instruction in reverse stack mode. 19

10 Computing stack offsets for reverse stack mechanics. 21

11 Structure handling for reverse stack mechanics. 23

12 Alternative signal stack used in reverse stack executables. 25

13 Cost for sophisticated attackers can raised almost arbitrarily high

by shortening checkpointing interval. 27

14 A well-documented vulnerability in the Apache web server. . . . 29

15 Comparison of the performance of program variants and the

MVEE relative to conventional programs when run on an otherwise

unloaded system. 32

16 Comparison of the performance of program variants and the

MVEE relative to conventional programs when run on a loaded

system. 33

iii

Acknowledgments

The author would like to thank all team members for their research contributions to

this project, and would like to recognize especially Babak Salamat, who obtained

his Ph.D. for research closely related to this project.

iv

Summary

In a Multi-Variant Execution Environment (MVEE), several slightly different

versions of the same program are executed in lockstep. While this is done, a

monitor compares the behavior of the versions at certain synchronization points

with the aim of detecting discrepancies which may indicate attacks.

We have built a fully functioning MVEE, named Orchestra, and evaluated

its effectiveness. We obtained benchmark results on a quad-core system, using

two variants which grow the stack in opposite directions. The results show that

the overall penalty of simultaneous execution and monitoring of two variants

on a multi-core system averages about 15% relative to unprotected conventional

execution.

The monitor can be implemented entirely in user space, eliminating the need

for kernel modifications. As a result, the monitor need not be part of the trusted

code base.

1 Introduction

Software vulnerabilities have been a major threat for decades. The use of safe

programming languages, such as Java and C#, in recent years has alleviated

the problem, but there are still many software packages written in C and C++.

High performance and low-level programming provisions have made C/C++

indispensable for many applications, but writing safe and secure programs using

these languages is often difficult. As a result, software vulnerabilities continue to

exist in software and finding mechanisms to spot and remove them automatically

continues to be a major challenge.

Many techniques have been developed to eliminate vulnerabilities, but none

of them provide an ultimate solution. Modern static-analysis tools are capable

of finding many programming errors, but lack of run-time information limits their

capabilities, preventing them from finding all errors. They also produce a relatively

large number of false positives, making them expensive to deploy in practice.

Dynamic and run-time tools are often not effective either, because they do not

have a reference for comparison in order to detect misbehavior. Moreover, the

performance overhead of sophisticated detection algorithms utilized by such run-

time tools is often prohibitively high in production systems [19, 33].

Multi-variant code execution [12, 6, 41, 42] is a run-time monitoring technique

that prevents malicious code execution and addresses the problems mentioned

above. Vulnerabilities that allow the injection of malicious code are among

the most dangerous form of security flaws since they allow attackers to gain

1

complete control over the targeted system. Multi-variant execution protects against

malicious code execution attacks by running two or more slightly different variants

of the same program in lockstep. At certain synchronization points, their behavior

is compared against each other. Divergence among the behavior of the variants is

an indication of an anomaly in the system and raises an alarm.

Extra computational overhead imposed by multi-variant execution is in the

range afforded by most security sensitive applications where performance is not

the first priority, such as government and banking software. Besides, the large

amount of parallelism which inherently exists in multi-variant execution helps

it take advantage of multi-core processors. The number of cores in multi-core

processors is increasing rapidly. For instance, Intel has promised 80 cores by

2011 [21]. Many of these cores are often idle due to the lack of extractable

parallelism in most applications or due to the bottlenecks imposed by memory or

I/O devices [20]. A multi-variant execution environment (MVEE) can engage the

idle cores in these systems to improve security with little performance overhead.

Unlike many previously proposed techniques to prevent malicious code exe-

cution [24, 5, 11] that use random and/or secret keys in order to prevent attacks,

multi-variant execution is a secret-less system. It is designed on the assumption

that program variants have identical behavior under normal execution conditions

(“in-specification” behavior), but their behavior differs under abnormal conditions

(“out-of-specification” behavior). Therefore, the choice in what to vary, e.g., heap

layout or instruction set, has a vital role in protecting the system against different

classes of attacks. It is important that every variant be fed identical copies of each

input from the system simultaneously. This design makes it impossible for an

attacker to send individual malicious inputs to different variants and compromise

them one at a time. If the variants are chosen properly, a malicious input to one

variant causes collateral damage in some of the other instances, causing them to

deviate from each other. The deviation is then detected by a monitoring agent

which enforces a security policy and raises an alarm.

In contrast to previous work, our MVEE is an unprivileged user-space applica-

tion which does not need kernel privileges to monitor the variants and, therefore,

does not increase the trusted computing base (TCB) for processes not running on

top of it. Increasing the size of the TCB is detrimental to the overall security of a

system. This is because larger code bases are more prone to errors and are harder

to validate. This has raised concerns in recent years and many researchers have

started investigating methods to reduce the TCB size [28, 23, 31].

Our architecture allows running conventional applications without engaging

the MVEE (see Figure 1). Thus, normal applications may run conventionally on

the system and in parallel with security sensitive applications which are executed

on top of the MVEE.

2

Operating System

Multi-Variant
Execution

Environment
Untrusted

Trusted

Library

Conventional
Applicatoin

Diversified Library

Diversified
Applicatoin

Figure 1: Architecture overview.

In particular, our research contributes the following new techniques to the state

of the art:

• A novel technique to build a user-space MVEE that does not need any

OS kernel modification. Our MVEE supervises the execution of parallel

instances of the subject application using the debugging facilities of a

standard Linux kernel.

• A new technique for variant generation based on reversing the direction of

stack growth. Utilizing this technique with multi-variant execution defends

against known stack-based buffer overflow attacks in real time.

• A solution to the problem of preventing false positives caused as a result

of inconsistent scheduling of threads and processes in multi-threaded and

multi-process applications.

• A solution to the problem of preventing false positives caused by asyn-

chronous signal delivery.

• Solutions to support a wider range of system calls in multi-variant execution,

including the exec family.

The rest of this report is structured as follows: Section 2 describes the

monitoring mechanism used in our MVEE. Section 3 discusses the sources of

inconsistencies among the variants which could cause false positives in MVEEs

and presents methods to handle them. Section 4 presents reverse stack execution

as a variant generation technique that allows stopping stack-based buffer overflow

attacks when used in an MVEE. Section 5 evaluates security and performance of

our implementation. Section 6 presents related work and Section 7 concludes the

technical part of the report.

3

variant
1

variant
2

OS Kernel

Monitor

Figure 2: The monitor is a thin software layer on top of the OS kernel.

2 The Monitor

The monitor is the main component of our multi-variant execution environment.

It is the process invoked by the user and receives the paths of the executables that

must be run as variants. The monitor creates one child process per variant and

starts execution. It allows the variants to run without interruption as long as they

are modifying their own process space. Whenever a variant issues a system call,

the request is intercepted by the monitor and the variant is suspended. The monitor

then attempts to synchronize the system call with the other variants. All variants

need to make the exact same system call with equivalent arguments (explained

below) within a small time window. The invocation of a system call is called a

synchronization point.
Our monitor has a set of rules for determining if the variants are synchronized

with each other. If p1 to pn are the variants of the same program p, they

are considered to be in conforming states if at every synchronization point the

following conditions hold:

1. ∀si, sj ∈ S : si = sj

where S = {s1, s2, ..., sn} is the set of all invoked system calls at the

synchronization point and si is the system call invoked by variant pi.

2. ∀aij , aik ∈ A : aij ≡ aik

where A = {a11, a12, ..., amn} is the set of all the system call arguments

encountered at the synchronization point, aij is the ith argument of the

system call invoked by pj and m is the number of arguments used by the

encountered system call. A is empty for system calls that do not take

arguments. Note that argument equivalence does not necessarily mean that

4

argument values themselves are identical. For example, when an argument is

a pointer to a buffer, the contents of the buffers are compared and the monitor

expects them to be the same, whereas the pointers (actual arguments)

themselves can be different. Formally, the argument equivalence operator

is defined as:

a ≡ b ⇔
{

if type �= buffer : a = b
else : content(a) = content(b)

with type being the argument type expected for this argument of the system

call. The content of a buffer is the set of all bytes contained in it:

content(a) := {a[0]...a[size(a) − 1]}

with the size function returning the first occurrence of a zero byte in the

buffer in case of a zero-terminated buffer, or the value of a system call

argument used to indicate the size of the buffer in case of buffers with explicit

size specification.

3. ∀ti ∈ T : ti − ts ≤ ω
where T = {t1, t2, ..., tn} is the set of times when the monitor intercepts

system calls, ti is the time that system call si is intercepted by the monitor,

and ts is the time that the synchronization point is triggered. This is the time

that the first system call invocation is encountered at this synchronization

point. ω is the maximum amount of wall-clock time that the monitor will

wait for a variant. ω is specified in the policy and is application and

hardware dependent. For example, on an n-processor system ω may be

small because the expectation is that the variants are executed in parallel and

should reach the synchronization point almost simultaneously. Once ω has

elapsed, those variants that have not invoked any system call are considered

non-complying.

If any of these conditions is not met, an alarm is raised and the monitor takes

an appropriate action based on a configurable policy. In our current prototype, we

terminate and restart all the variants, but other policies such as voting among the

variants and terminating the non-conforming ones are possible.

Care should be taken when using majority voting, as behavior of the majority

does not necessarily indicate correct behavior. If the majority are susceptible to

a particular type of attack, the system could incorrectly terminate the legitimate

minority and continue with the compromised variants. Therefore, the choice of

variation mechanisms and the number of the variants have a vital role in the

correctness of the system when majority voting is used to tolerate attacks.

5

2.1 Monitor Security

The monitor isolates the variants from the OS kernel and monitors all communica-

tions between them and the kernel (Figure 2). As mentioned before, the monitor is

implemented as an unprivileged process that uses the process debugging facilities

of the host operating system (Linux) to intercept system calls. This mechanism

simplifies maintenance as patches to the OS kernel need not be re-applied to an

updated version of the kernel. Moreover, errors in the monitor itself are less severe

since the monitor is a regular unprivileged process, as opposed to a kernel patch or

module running in privileged mode. If the monitor was compromised, an attacker

would be limited to user-level privileges and would need a privilege escalation to

gain system-level access.

The monitor is a separate process with its own address space and no other

process in the system, including the variants, can directly manipulate its memory

space. Therefore, it is difficult to compromise the monitor by taking control of a

program variant.

Conventional system call monitors are susceptible to mimicry attacks, e.g., [35].

These monitors expect certain sequences of system call invocations; if the

monitored program does not follow any of the known sequences, they raise an

alarm and stop execution. The conventional monitors cannot check and verify all

the arguments passed to the system calls, especially contents of buffers written

to output devices. This is because input data and OS behavior varies between

sequences of system calls, changing the arguments and making them unpredictable.

Mimicry attacks can remain undetected by keeping system calls the same as those

that would have been invoked by the legitimate program, while only changing some

of the system call arguments. For example, assume a legitimate Apache server

opens an HTML file and sends its contents over the network. A mimicry attack

could keep the open system call intact and pass the path of a file that contains

sensitive information instead of the HTML file to the system call. In this scenario

the Apache server would send sensitive information over the network and a naive

system call monitor would not be able to detect the attack. Mimicry attacks are

not effective against our monitor because the MVEE checks both system calls and

their arguments.

2.2 System Call Monitoring

A multi-variant environment and all the variants executed in this system must have

the same behavior as that of running any one of the variants conventionally on the

host operating system (Figure 3). The monitor is responsible for providing this

characteristic by performing the I/O operations itself and sending the results to

6

Kernel

Hypervisor

Variant 0 Variant 1

Syscall
S1

S1
results

Syscall S1 S1 results

Syscall
S1'

S1
results

Figure 3: System calls that change the global state are executed by the monitor and

results are communicated to all instances.

the variants. When the variants try to read input data, the monitor suspends them,

intercepts the input, and then sends identical copies of the data to all the variants.

This is not only required to mimic the behavior of single application, but it is also

essential to prevent attackers from compromising one variant at a time. Similarly,

all output operations are solely performed by the monitor after making sure that all

the variants agree on the output data.

Depending on the system call and its arguments, the monitor determines

whether the variants should run the system call or it should be executed inside the

monitor (Figure 4). System calls that generate immutable results (e.g., uname) are

allowed to be executed by all the variants. If the system call result is not expected

to be the same among all variants and the system call does not change the system

state (e.g., gettimeofday, getpid), the call is executed by the first variant. If

it changes the system state (e.g., write, mkdir), it is executed by the monitor.

In either case, the results are copied to all other variants.

The monitor is notified twice per system call, once at the beginning of the call

and once when the kernel has finished executing the system call handler and has

prepared return values. After ensuring that the variants have invoked the same

system call with equivalent parameters, the system call is executed. The Linux

ptrace implementation requires us to perform a system call once a system call

has been initiated by a program variant. However, if the system call is executed

only by the monitor, the variants must skip the call. In this case, the monitor

replaces the system call by a low-overhead call that does not modify the programs’

7

Syscalls
Received

Make variants skip the
call and run it in the

Monitor

Let the variants
run it

Should the monitor
change the results?

Let the variants continue to
the next system call

No

No Yes

Copy the results from one
of the variants or from the

monitor to the variants

Yes

Copy the results from the
monitor to the variants

Yes
Apply the policy to

non-complying
variants

Can the system call
be executed by the

 variants?

Are the system calls
 equal and their arguments

 equivalent?
No

Are there enough
variants remaining?

Terminate all the
variants and finish

execution

No

Yes

Figure 4: Flowchart showing operations performed by the monitor for every system

call.

states (e.g., getpid). The debugging interface of the OS allows the monitor to

do this by changing the registers of the variant at the beginning of the system call

invocation. Changing the registers causes a different system call to be executed

than the one initially requested.

File, socket, and standard I/O operations are performed by the monitor and the

variants only receive the results. When a file is opened for writing, for example,

the monitor is the only process that opens the file and sets the registers of the

variants so that it appears to them that they succeeded in opening the file. All

subsequent operations on such a file are performed by the monitor and the variants

are just recipients of the results. This method fails if the variants try to map a file

to their memory spaces using mmap. The file descriptor they received from the

8

monitor was not actually opened in their contexts and, hence, mmap would return

an error. This causes a major restriction because shared libraries are mapped using

this approach. We solve the problem by allowing the variants to open files locally

if requested to be opened read-only. This solution solves the problem of mapping

shared libraries, but if a program tries to map a file opened for writing, it will fail.

This is still an open problem, although our experiences indicate that mmap is rarely

used in this manner.

When the mmap system call is used to map a file into the address space of a

process, reads and writes to the mapped memory space are equivalent to reads and

writes to the file, and can be performed without calling any system call. This

allows an attacker to take control over one variant and compromise the other

variants using shared memory. To prevent this vulnerability, we deny any mmap
request that can create potential communication routes between the variants and

only allow MAP_ANONYMOUS and MAP_PRIVATE. MAP_SHARED is allowed

only with read-only permission. In practice, this does not seem to be a significant

limitation for most applications.

Our platform also puts certain restrictions on the exec family of system calls.

These system calls are allowed only if the files that are required to be executed

are in a white-list passed to the monitor. The full path of all executables that each

variant is allowed to execute is provided to the monitor and the monitor ensures that

the variants do not execute any program other than those provided. It is obvious

that the variants and all the executables that they can execute must be properly

diversified.

2.3 Monitor-Variant Communication

The monitor spawns the variants as its own children and traces them. Since the

monitor is executed in user mode, it is not allowed to directly read from or write

to the variants’ memory spaces. In order to compare the contents of indirect

arguments passed to the system calls, the monitor needs to read from the memory

of the variants. Also, it needs to write to their address spaces, if a system call

executed by the monitor on behalf of the variants returns results in memory.

One method to read from the memory of the processes is to call ptrace with

PTRACE_PEEKDATA when the variants are suspended. PTRACE_POKEDATA
can similarly be used to write to the variants. Because ptrace only returns

four bytes at a time, ptrace has to be called many times to read a large block

of memory from the variants’ address spaces. Every call to ptrace requires a

context switch from the monitor to the OS kernel and back, which makes this

technique inefficient for reading large buffers. To improve performance, we create

a shared memory block per variant which is shared by the monitor and one variant.

9

��

���

����

�����

������

�������

�� ��� ���� ���� �	� �	� ��	� ���	�

�
��
�
��
�
	

��

�
	

�
��
��
��
��
�
�
��
	

�����	����	
������	

��
��� ����� ��
�����������

Figure 5: Data transmission performance vs. buffer size.

Shared memory is chosen over named pipes (FIFOs) for performance reasons.

Anonymous pipes cannot be used because they can only be created between a child

process and its parent, while not all the variants in our system are children of the

monitor. Because the variants may create new child processes, the monitor is not

the parent of these children. Therefore, they cannot be connected to the monitor

through anonymous pipes. Named pipes work well in connecting these processes

to the monitor, but they are not as efficient as shared memory. The downside of

using both shared memory and FIFOs is the security risk, since any process can

connect to them and try to access their contents. However, each shared memory

block has a key and processes are allowed to attach a block only if they have the

correct key. When we create shared memory blocks, their permissions are set so

that only the user who has executed the monitor can read from or write to them.

Therefore, the risk is limited to the case of a malicious program that is executed

in the context of the same user or a super user. Both cases would be possible only

when the system is already compromised. Also note that a compromised variant

cannot access another variant’s shared memory even if it somehow found the other

variant’s shared memory key, because attaching a shared memory block needs a

system call invocation which is caught by the monitor.

Attaching the shared memory blocks to variants, as well as reading from and

writing to them is not built into the applications executed in the MVEE. It is the

monitor that has to force the variants to perform these operations. The creation of

the shared memory blocks is postponed until they are needed. They are created by

the monitor, but attaching to them has to be performed by the variants. Our method

10

of forcing the variants to perform the required operations is based on the fact that

the monitor only needs to read from or write to the address spaces of the variants

when they are suspended at a system call. At such a point, the monitor makes a

backup of the registers of the variants and replaces the original system call with

an appropriate one (e.g., ipc or shmget). This makes the variants run the new

system call instead of the original one and enables them to attach the appropriate

shared memory block. After performing the operation, if the original system call

needs to be executed by all variants (e.g., mmap), the variants’ registers are restored

by the monitor and the original system call is executed.

Reading to or writing from shared memory does not need a system call. In

order to perform these operations, the monitor makes each variant to allocate

a block of memory using the same system call replacement method explained

above. The monitor uses this memory block to inject a small piece of code that

copies the contents of a buffer to another one (similar to memcpy). The injected

code receives the addresses of source and destination buffers and their lengths in

registers. Reading from or writing to the shared memory blocks is done by this

code. When the monitor needs to access a variant’s memory space, it backs up

the variant’s registers and sets the instruction pointer of the variant to the injected

code and makes the variant write to its shared memory. A system call invocation

instruction (i.e., int 0x80) at the end of the injected code notifies the monitor as

soon as the variant finishes copying.

In order to protect this piece of code from being overwritten, the monitor forces

the variant to mark it write-protected immediately after the monitor injects the

code. A malicious variant cannot mark it writable without being detected by the

monitor, because it has to invoke a system call to do so.

Our experiments show that the time spent to transfer a buffer using ptrace
increases linearly with the buffer size, but it is almost constant using FIFOs

when the buffer is smaller than 4KB (see Figure 5). The size of FIFOs is not

configurable without recompiling the OS kernel and is set to 4KB in the Linux

distribution we use for our experiments. As a consequence, large buffer sizes

need multiple FIFO iterations, requiring multiple context switches. These context

switches significantly increase the overhead of FIFOs when transmitting large

buffers. Shared memory has the least overhead when the buffer size is larger than

40 bytes and for buffers fewer than 40 bytes in length, ptrace is the most efficient

mechanism. Therefore, the monitor uses ptrace to transfer buffers smaller than

40 bytes and uses shared memory for transferring larger ones. For a 128KB buffer,

shared memory is more than 900 times faster than ptrace and 20 times faster than

FIFOs. Hence, using shared memory greatly improves the monitoring performance

for applications that frequently pass large buffers to the system calls.

11

3 Inconsistencies Among the Variants

There are several sources of inconsistencies among the variants that can cause false

positives in multi-variant execution. Scheduling of child processes and threads,

signal delivery, file descriptors, process IDs, time and random numbers must be

handled properly in a multi-variant environment to prevent false positives.

3.1 Scheduling

Scheduling of child processes or threads created by the variants can cause the

monitor to observe different sequences of system calls and raise a false alarm.

To prevent this situation, corresponding variants must be synchronized to each

other. Suppose p1 and p2 are the main variants and p1−1 is p1’s child and p2−1

is p2’s child. p1 and p2 must be synchronized to each other and p1−1 and p2−1

must also be synchronized to each other. We may choose to use a single monitor

to supervise the variants and their children or we can use several monitors to do

so. Using a single monitor can cause unnecessary delays in responding to their

requests. Suppose p1 and p2 invoke a system call whose arguments take a large

amount of time to compare. Just after the system call invocation and while the

monitor is busy comparing the arguments, p1−1 and p2−1 invoke a system call

that could be quickly checked by the monitor, but since the monitor is busy, the

requests of the children cannot be processed immediately and they have to wait for

the monitor to finish its first task.

To tackle this problem, a new monitoring thread is spawned by the monitor

responsible for the parent whenever variants create new child processes or threads.

Monitoring of the newly created children is handed over to the new monitor.

Figure 6 shows the hierarchy of the variants and their children and also the

monitoring processes that supervise them. p1 and p2 are the main variants that are

monitored by Monitor 1. p1−1 and p2−1 are the first children of the main variants

that are monitored by Monitor 1-1 which is a child of Monitor 1 and so on.

As mentioned before, we use ptrace to synchronize the variants. Unfor-

tunately, ptrace is not designed to be used in a multi-threaded debugger. As

a result, handing the control of the new children over to a new monitor is not

straightforward. The new monitor is not allowed to trace the child variants unless

the parent monitor detaches from the variants first and lets the new monitor attach

to them. When the parent monitor detaches from the variants, the kernel sends

a signal to the variants and allows them to continue execution normally, without

notifying the monitor at system call invocations. This would cause some system

calls to escape the monitoring before the new monitor is able to attach to the

variants.

12

p1 p2

Monitor
1

p1-1 p2-1

Monitor
1-1

p1-2 p2-2

Monitor
1-2

p
1-2-1

p
2-2-1

Monitor
1-2-1

Figure 6: Child threads have their own monitoring threads.

We solved the problem by letting the parent monitor start monitoring the new

child variants until they invoke the first system call. For example, in Figure 6 the

Monitor 1 starts monitoring p1−1 and p2−1 until they call the first system call.

Monitor 1 saves the system call and its arguments and replaces it with a pause
system call. Then, Monitor 1 detaches from p1−1 and p2−1. The variants receive

a continue signal, but immediately run pause and get suspended. Monitor 1

spawns a new monitoring thread, which would be Monitor 1-1, and passes the

process IDs of p1−1 and p2−1 to it. Monitor 1-1 attaches to the children, restores

the original system call replaced by pause, and starts monitoring p1−1 and p2−1

without missing any system call.

3.2 Signal Delivery

Asynchronous signal delivery can also cause divergence among variants. For

example, assume variant p1 receives a signal and starts executing its signal handler.

p1’s signal handler then invokes system call s1, causing the monitor to wait for the

same system call from p2. Meanwhile, variant p2 has not received the signal and is

still running its main program code. When p2 calls system call s2, the monitor will

detect the difference between s1 and s2 and raise an alarm.

Whenever a signal is delivered to a variant, the OS pauses the variant and

13

notifies the monitor. The monitor has the choice to deliver the signal to the variant

or ignore it. The monitor immediately delivers signals that terminate program

execution, such as SIGTERM and SIGSEGV. Other signals are delivered to all

variants synchronously, meaning that signals are delivered to all variants either

before or after a synchronization point. If at least half of the variants receive a

signal before making a system call, and the rest invoke the system call, the monitor

makes the latter variants skip the system call by replacing it with a non-state-

changing call and forces them to wait for the signal. The monitor then delivers

the signal to all variants and restores the system call in those variants that have

been made to skip it. The variants that are forced to wait for a signal and do not

receive it within a configurable amount of time are considered as non-complying.

If fewer than half of the variants receive a signal and the rest invoke a system

call, the signal is ignored and the variants which are stopped by the signal are

resumed. The monitor keeps a list of pending signals for each variant. The ignored

signals are added to these lists. As more variants receive the signal, the monitor

checks the lists and when half of the variants have received the signal, the signal is

delivered using the method mentioned above. The only difference is that the signal

has to be sent again to the variants that ignored it. The monitor sends the signal to

these variants and removes it from the variants’ pending signal lists.

We use majority voting to decide when to deliver signals despite the fact

that majority voting without further consideration about the type and number of

variants could introduce potential risks in the system. Since signal delivery time

by itself cannot damage the system, using majority voting in signal delivery is not

problematic. In fact the protection mechanisms of all modern operating systems

prevents processes to have any outside effect unless they invoke a system call.

Therefore, if any variant is compromised, it has to eventually invoke a system call

to cause damage. Since the system call monitoring does not use majority voting,

the attack will be eventually caught before it can cause any damage to the system.

3.3 File Descriptors and Process IDs

As mentioned in the previous section, the monitor allows the variants to open files

with read-only permission. Also, anonymous pipes that connect the variants to

their children are created by the variants. The file descriptors assigned to these

files or pipes are not necessarily the same in different variants and can cause

discrepancies among them. Therefore, the monitor replaces the assigned file

descriptors by a replicated file descriptor and sends this replicated file descriptor

to all the variants running the system call. The monitor keeps a record of the

replicated file descriptor and the real file descriptors assigned to the variants by

the OS. When a subsequent system call that operates on one of these files is

14

encountered, the monitor restores the original file descriptors before letting the

system call execute. As a result, the OS receives the correct file descriptor and

operates on the intended file.

A similar approach is taken for process and group IDs. The monitor tracks

the process identifiers (PIDs) of the variants. All PIDs of variants monitored by

a monitoring thread are mapped to a unique value. Whenever a system call that

reads the PID of a variant (getpid) is called, its result is replaced by the unique

value and, consequently, all the variants receive the same PID. System calls that

use these PIDs, such as kill, are also intercepted before their execution and the

real PIDs of the variants are restored by the monitor. Therefore, the OS receives

the correct values when running the system call. The same approach is taken for

the group, parent, and thread group IDs.

3.4 Time and Random Numbers

Time can be another source of inconsistency in multi-variant execution. The

solution for this problem is simple. Whenever a time-reading system call is

encountered, the monitor invokes the same system call only once and sends the

result that it has obtained to all the variants.

Random numbers that are generated by the variants would be different if the

variants used different random seeds. Removing the sources of inconsistencies

makes all the variants use the same seed and generate the same sequence of random

numbers. Reading from /dev/urandom is also monitored. The variants are not

allowed to read this pseudo file directly. The monitor reads the file and sends the

result to all the variants.

3.5 False Positives

We have addressed removing most sources of inconsistency among the variants,

but there are still a few cases that can cause false positives. Although the variants

are synchronized at system calls, the actual system calls are not usually executed

at the exact same time. As mentioned above, files that are requested to be opened

as read-only are opened by the variants. If any of these files is changed by a third

application after one variant has read it and before it is read by the other variants,

there is a race condition and the variants will receive different data which will cause

divergence among them.

Another false positive can be triggered if variants try to read the processor

time stamp counters directly, e.g., using the RDTSC instruction available with x86

processors. Reading the time stamp counters is performed without any system call

invocation, so the monitor is not notified and cannot replace the results that the

15

Free Space

Other Data

Buffer

.

.

.

Frame Pointer

Return Address

Arguments
Free Space

Other Data

Buffer

.

.

.

Frame Pointer

Return Address

Arguments
FreFreFreFree Se Se Se Spacpacpacpaceeee

OthOthOthOther er erer DatDatDatDataaa

BufBuBuBufferferferfe
BufBufBufBu ferferferfer

....

.

.

FraFraFraFrame me me me PoiPoiPoiPointentententerrrr

RetReRetReturnurnurnurn AddAddAddAddresresresresssss

ArgArgArgArgumeumeumeum ntsntsnts

Upward
Growing Stack

Downward
Growing Stack

Figure 7: Defending against buffer overflow vulnerabilities.

variants receive. Using system calls (e.g., gettimeofday) to read the system

time solves this problem, although it has higher performance overhead.

Applications that output their memory addresses, such as printing the address

of objects on the stack or heap, may trigger a false positive.

4 Reverse Stack Execution

Reverse stack execution is a compiler-driven technique to generate variants. We

use this method to evaluate the effectiveness of our MVEE. We generate two

variants that write the stack in opposite directions; one variant writes the stack

conventionally (downward on x86), and the other one writes it in the reverse

direction. The variant that writes the stack upward is resilient against activation

record overwrites. As Figure 7 shows, when a stack-based buffer overflow

vulnerability is exploited, the injected data overwrites the return address of the

function in the conventional variant, but the return address remains intact in

the reverse stack variant. This causes the variants to run two different sets of

instructions which will cause divergence and is detected by the monitor.

Multi-variant execution of these two variants allows us to prevent known stack-

based buffer overflow attacks, including activation record overwrites, return-to-

lib(c) [32, 37] and function pointer overwrites.

We modified GCC version 4.2.1 [18] to generate variants that write to the stack

16

in the reverse direction. We also modified diet libc [13] to be able to generate

reverse-stack executables. Modifying the stack growth direction is not trivial and

involves many challenges.

4.1 Technique

Allowing multi-variant programs to detect malicious code injection, the variance

of each parallel executing instance must guarantee different program behavior

when confronted with an attack vector. Existing techniques for automatic variance

generation such as instruction set randomization and heap object randomization,

only vary the code and the heap, whereas most attack vectors target the stack.

In this section we describe our compiler-based technique to vary the program

stack by reversing the growth direction. This method only introduces a relatively

small degree of variability (1-bit, natural growth direction or reverse growth).

However, in contrast to pure single instance randomization, multi-variant systems

are not dependent on the degree of variance.

The direction of stack growth is not flexible in hardware and almost all

processors only support one direction. For example, in Intel x86 processors, the

stack always grows downward and all the stack manipulation instructions such as

PUSH and POP are designed for this natural downward growth.

To reverse the stack growth direction one could attempt to replace these

instructions with a combination of ADD/SUB and MOV instructions. However, for

certain instruction formats, it is not be possible to do this transformation without a

scratch register, because certain formats of the PUSH instruction allow pushing an

indirect value that is fetched from the address specified in the register operand.

For an indirect push of the value at the address in EAX, the above transforma-

tion would produce an invalid form for the MOV instruction because no instruction

in the x86 instruction set is allowed to have two indirect operands. In this case,

an indirect operand would be the stack on the destination side, and the load of the

indirect value on the source side.

PUSH (%EAX)

after transformation

ADD $4, %ESP
MOV (%EAX), (%ESP)

It is possible to use temporary place holders to store and restore indirect values

when both operands are indirect. This method has multiple drawbacks: there is an

overhead of writing and reading the temporary location, it complicates compilation,

17

4-byte Value

10-byte Space

SP

SP - 10

...

Downward
Growing Stack

SP

SP + 10

4-byte Value

6-byte Space

...

Upward
Growing Stack

Figure 8: Upward growing stack requires more complicated allocation mechanics.

and increases register pressure. Our solution to this problem is using the same

PUSH and POP instructions, and adjusting the stack accordingly to compensate

for the value that is automatically added or subtracted to or from the stack pointer

by these instructions. For the indirect PUSH instruction above we would thus

substitute as follows:

PUSH(%EAX)

after transformation

ADD $8, (%ESP)
PUSH (%EAX)

For the remainder of this section we will focus on reversing the stack growth

direction of the Intel x86 instruction set. However, the techniques that we introduce

should be easily extendable to other architectures with minimal changes.

4.2 Stack Pointer Adjustment

The stack pointer (SP) of the Intel x86 points to the last element on the stack. Since

the stack grows downward, the address of the last element is the address of the last

byte allocated on the stack (see Figure 8). Thus, to allocate space on the stack for

n bytes the stack pointer is decremented by n.

If we preserve this convention with the upward growing stack, the SP would

point to the beginning of the last element on the stack which is no longer the last

18

Occupied

free

free

Occupied

free

Stack Ptr.

Initial State After the first ADD

Stack Ptr.

Occupied

free

free

Occupied

free

After PUSH

Stack Ptr.

Occupied

Occupied

free

Occupied

free

After the second ADD

Stack Ptr.

Occupied

Occupied

free

Occupied

free

addl $4, %esp
push %eax
addl $4, %esp

push %eax
addl $4, %esp addl $4, %esp

time

Figure 9: Mechanics of PUSH instruction in reverse stack mode.

byte allocated on the stack. If we want to allocate n bytes on the stack in this

scenario, it is not enough to perform the mirror image action of the downward

growth case and increment the stack pointer by n. Instead, the amount the stack

pointer has to be incremented by depends on the size of the last element.

One possible solution for this is to store the size of the last element in memory

(i.e. on the stack itself), and then increment/decrement the SP accordingly. This

solution comes with significant overhead, since we have to read/write the size every

time the stack is modified.

Instead, we opted to implement a modification to the default Intel x86 stack

convention. Instead of pointing the SP to the last occupied byte as it is the case

for the natural stack growth direction, we let the stack pointer point to the first

empty slot on the stack when the stack grows upward. With this modification

every PUSH/POP/CALL instruction must be augmented with two instructions: one

to adjust the SP before these instructions and one to adjust the SP after. Figure 9

shows a PUSH instruction with the added instructions before and after the PUSH
instruction and how these instructions adjust the stack properly. Our experimental

results show that the overhead of these adjustments is negligible.

As described above, we need to adjust the stack pointer (SP) before and after

all instructions that manipulate the stack, including call (CALL) and return (RET)

instructions since these store and retrieve the return address on the stack. In

contrast to PUSH and POP instructions, we can not simply adjust the stack pointer

after such control flow instructions because they control flow instructions bypass

any instructions we would want to place after them.

While it would be conceivable to split CALL and RET instructions into

separate stack manipulation instructions followed by an indirect branch instruction,

we insisted on keeping the actual CALL and RET instructions in place to take

advantage of the Return Address Stack (RAS). RAS is a circular LIFO structure

19

in high-performance processors that is used for predicting the target of return

instructions. Whenever a call instruction is executed, the address of the instruction

after the call is pushed on the RAS. Upon executing a return instruction, the value

on top of the RAS is popped and used as the predicted target of the return. Thus, it

is essential to keep call and return instructions in the code in order to take advantage

of the RAS and minimize performance loss.

To ensure that the stack is used properly during function calls, the adjustments

that are done after a CALL, are made at the target site of the call. These adjustments

makes the SP pass over the return address placed on the stack by the CALL
instruction so that the SP points to the first available slot on the stack.

While this works for most regular function calls, in certain cases, functions

are invoked using a jump instruction instead of a CALL instruction. Compilers

apply this optimization when a subroutine is called inside a function that will

immediately return itself once the subroutine completes. In this case, the return

address of the function is left on the stack and a jump to the subroutine is executed.

To return to the caller of the function the subroutine will use a regular RET
instruction.

For proper semantics we have to ensure that we adjust the SP only if control is

transfered to the function via a CALL. At compile time it is not always possible to

determine whether a function will be entered with a jump as C/C++ allows separate

compilation units and the caller and callee functions could be located in different

compilation units. Instead, we always adjust the stack pointer at the beginning

of all functions no matter whether they are the target of a CALL instruction, or

are entered with a simple jump instruction. If a function is invoked by a jump

instruction, we decrement the stack pointer before executing the jump to effectively

offset and eliminate the adjustment that will occur at the call site.

Similarly to the handling of the stack adjustment in case of function calls, the

required adjustment after RET instructions is done after all corresponding CALL
instructions. When a RET is executed and the function returns, the first instruction

that is executed is the next instruction after the CALL that had invoked the function.

Thus, we can adjust the stack pointer after the CALL.

Adjusting the stack pointer is performed by adding/subtracting the appropriate

values to/from the stack pointer before and/or after the afore the instructions

mentioned above. Using ADD and SUB to adjust the SP can causes problem, since

these instructions set CPU condition flags which may interfere with the flags set

by other instructions in the regular instruction stream of the program. To solve

this, we use the LEA instruction of the Intel x86, which can add or subtract a

register without modifying condition flags. For example, “leal 4(%esp), %esp” is

equivalent to “add $4, %esp”.

20

-101

-100

Downward
Growing Stack

Integer (4 Bytes)

Char (1 Byte)

Upward
Growing Stack

Integer (4 Bytes)

Char (1 Byte)
101

100

(a) Incorrect offset conversion

Upward
Growing Stack

Integer (4 Bytes)

Char (1 Byte)
100

96

(b) Correct offset conversion

Figure 10: Computing stack offsets for reverse stack mechanics.

4.3 Stack-Relative Addressing

Converting the stack pointer (SP) or frame pointer (FP) to use relative addresses

is straight forward but not trivial. It is not enough to just negate the offsets of a

downward growing stack and use them for an upward growing one. The reason is

that data always grows upward. If we were to change the data growth direction and

not just the stack growth direction, we would implicitly alter the byte order of the

processor.

Consider a 32-bit integer which is written at offset of -100 from the SP when

stack grows downward. The long word occupies addresses SP-97 to SP-100.

Writing the same integer when the stack grows upward occupies addresses SP+100

to SP+103, as is shown in Figure 10. If a character (one byte) is stored immediately

after this integer, its address for downward growth is SP-101 and for upward growth

is SP+104. If we use the offset of downward growth and just negate it, we will

read SP+101 which is an address within the integer, not the intended address of the

character. To tackle this problem, we need to take into account the size of stack

object when calculating stack offsets. The following equation provides the correct

stack offset:

OU = −OD − OS

in which OU is the offset of upward growing stack, OD is the offset of downward

growing stack and the OS is the size of data being written/read at the offset.

Going back to the above example, we can find the integer stored at SP-100 for

the downward growth case, and at SP+96 when stack grows upward. The character

written after the integer will be located at SP-101 for downward growth and at

SP+100 for the upward growth. Using the above formula we can directly convert

these offsets. In order to keep stack pointer and frame pointer offset conversions

21

consistent, we also make the frame pointer point to the first element on the stack

which is located after where the previous frame pointer stored.

4.4 Variable Arguments

The size of the arguments that are passed to functions that receive variable number

of arguments, e.g. printf, are not known at compile time. In these functions,

va_arg is used to read the arguments from stack. The front-end of the compiler

translates va_arg to an indirect read and an add which adds the size of the

va_arg operand to a temporary value. This temporary value is set to the address

of the first argument at the beginning of the function and used as the operand of

the indirect read. For the reverse stack, since we don’t know the size of the

arguments, the temporary value is initially set to point to the return address of the

function rather than its first argument. In this case we convert a va_arg to a

subtract from the temporary value and then use the result as the address for

the indirect read. Here we not only convert the add to a subtract, but also

interchange the order of subtract and read.

4.5 Callee-Popped Arguments

Some functions pop their arguments from the stack when they return. When

generating Intel x86 code for these functions, compilers emit a RET instruction

which has an operand that indicates the number of bytes that should be popped

from the stack when returning from the function call. This RET instruction first

pops the return address from the stack, and then stores the return address in the

instruction pointer. Finally, the RET instruction adds the stack pointer by the value

of its operand.

When generating code for the reverse stack, we insert a subtract instruction

immediately after a CALL to such a function. The subtract instruction decrements

the stack pointer by twice the amount that the RET adds to the stack pointer. This

subtract instruction compensates for the value that was added by the RET and also

serves the purpose of popping the callee arguments.

4.6 Structures

It is critical to maintain the natural ordering of large data units such as quad word

integers (long long) or C/C++ structures and classes, even in the case of a

reverse stack growth direction. Consider a structure that has two member variables:

an integer and a character. The layout of this structure must always be the same,

no matter whether such an object is allocated from the heap or on the stack. If we

22

_st.m1

int b

char c

Return Address

Prev. Frame Ptr.

_st.m2

_st.m3

int a

...

Downward
Growing Stack

_st.m1_st.m1

int bint b

_st.m2_st

_st.m3_st 3

int at a

}

...

Upward
Growing Stack

{structure
size = 12

address = -16

Return Address

int a

_st.m1

Prev. Frame Ptr.

char c

_st.m2

_st.m3

int b

structure
size = 12

address = 4

distance = 8

Frame Ptr.

Frame Ptr.

distance = 4

distance = 0

Figure 11: Structure handling for reverse stack mechanics.

were to copy the contents of a structure from the stack to heap via memcpy and

the storage layouts differ (or have a different growth direction), the objects would

not be compatible.

It is not possible to compensate for this in the memcpy implementation,

because memcpy receives pointers to the two structures and copies the content

byte by byte without understanding the underlying structure. Since the ordering on

the heap is always fixed, if we don’t preserve the ordering of the members of the

structure on the stack, the values that are copied to the members of the structure on

the heap will be incorrect.

To ensure object compatibility no matter where it was allocated, we only re-

order entire storage units on the stack. The storage layout of the data units remains

unchanged (see Figure 11). For this we keep three values for each unit of data

during compilation: address, distance and size. All the elements inside a structure

have the same address and size. Their addresses are equal to the address of the

structure and their sizes are the same as the size of the structure, but they have

different distances. The distance of an element is equal to the offset of the element

from the beginning of the structure. Thus, to compute the stack pointer offset of an

element, it is enough to add its distance and its address.

When compiling for reverse stack growth, we modify the addresses of the

elements based on the formula mentioned in Section 4.3. We don’t change the

element’s distance and we still add the distance to the address to compute the

element’s stack pointer offset. Using this mechanism, we keep the ordering of

elements within a structure the same as that of the normal stack. The distances of

23

those data items that are not inside any structure and whose sizes are less than 32

bits, are always zero.

4.7 Implementation

We implemented our technique in the llvm-gcc compiler which uses the GNU

C Compiler (GCC) [18] as the front-end and the Low-Level Virtual Machine

(LLVM) [26] as its back-end. To be able to generate executables, we also ported

a library for reverse stack growth. We choose diet libc [13] because it is easily

portable and at the same time has sufficient coverage of the standard C library

functions to run a common benchmark application.

Porting the library is not just a mere recompilation of the library with our

compiler. Low-level libraries such as the standard C library, contain assembly

code, i.e. to invoke system calls or to deal with variable arguments. Such low

level code has to be explicitly adjusted for the modified stack growth direction.

Oh the other hand, the benchmark applications did not need modification, which

indicates that our approach does not interfere with regular application code despite

the reverse stack growth direction.

Most Linux system-calls receive their arguments in general purpose registers.

For these system-calls, all we have to do is to modify the assembly code that grabs

the arguments from the stack and puts them in the registers. However, there are

some system-calls that have more than five input arguments (i.e. mmap). These

system-calls expect to receive their arguments in the conventional order on the

stack with the address of the first argument in the EBX register. Here we have

to increment the stack pointer by the total size of all the arguments, then read the

arguments provided by the caller from the stack, and finally push them using a few

PUSH instructions. After pushing all the arguments, it is enough to copy the stack

pointer to EBX and invoke the system-call.

4.8 Stack Allocation at Startup

When the stack grows in the reverse direction, e.g. upward, it must be allocated

enough room to grow, otherwise the program will overwrite data on the stack,

passed by the OS, and will eventually crash. The default startup code sets up the

stack for a downward growth direction and places the program arguments onto it.

In the case of a upward growing stack, we allocate a large chunk of memory (i.e.

4 MB) on the original downward heap and use it as the new upward growing stack.

To guard against stack overflows, the last valid stack page is marked as not present

using the Linux mprotect system call. If the stack grows beyond the allocated

stack area, an exception is thrown and the application terminates.

24

Address passed to
sigaltstack
at start up

8KB

~1KBSignal Frame
Saved by the OS

Used by
user-defined

signal hanlders

Where the Stack Pointer
 points to, after kernel

 saves the context

1

2

Figure 12: Alternative signal stack used in reverse stack executables.

One of the challenges in reverse stack manipulation is signal handling. If a

signal handler is defined for a signal, when the signal is raised the kernel sets

up a signal frame, saves the context of the process on the stack, and calls the

corresponding handler. Since the kernel expects normal stack growth direction,

e.g. downwards in x86, the context saved by the kernel would overwrite data on

a reverse growing stack. To tackle this problem, we allocate a small block of

memory (9 kB since the default signal stack size is 8 kB) on the heap and call

sigaltstack to notify the kernel that it must use this memory block as the

signal stack to set up the signal frame and save the process’ context. In order for

signal handlers, which are compiled to write to the stack in the reverse direction,

to execute properly, we changed the interface to the C library to include a wrapper

function which moves the stack pointer to bypass the signal frame (see Figure 12).

When the signal handler finishes, the wrapper restores the stack pointer to allow

for proper execution.

The problem is that the handler, which is defined by the programmer, is

compiled for a reverse stack. When the signal rises, the kernel saves the context

on the stack and calls the handler. The handler uses the same signal handling stack

and when it starts execution, the stack pointer is located just below the context

saved by the OS (Shown by arrow 1 in Figure 12). Therefore, a handler compiled

for reverse growing stack could overwrite and destroy the context of the process,

causing a crash when the handler returns.

To solve this problem, we changed the interface to the sigaction system

call in the C library. sigaction registers a new handler for a specified signal

number. We changed the interface to the system call so that whenever it is invoked,

25

the new interface sets the new signal handler to a wrapper function that we have

defined in the C library. The wrapper function increments the stack pointer to

bypass the area used for saving the process’ context and then calls the user-defined

handler. After the user-defined handler returns, the wrapper decrements the stack

pointer to its original location and returns. Using this method, the saved context

remains intact and the kernel is able to restore it without knowledge of the changes

that occurred or the direction of stack growth that the executable uses.

As mentioned above, we allocate a block of memory to use as the alternative

stack. We pass a pointer close to the beginning of the block (Shown by arrow 2

in Figure 12) to sigaltstack. The kernel uses this pointer as the beginning

of the alternative stack and saves the context at this point, writing towards the

beginning of the block. The pointer is set far enough from the start of the block

to provide adequate room for saving the context. After saving the context, our

wrapper function increments the stack pointer to go past the context and uses the

rest of the memory block as an upward growing stack for the signal handler.

4.9 Effectiveness of Reverse Stack Execution

At first glance, it might seem that a reverse stack executable is inherently immune

to stack smashing attacks and there is no need to run a reverse stack executable in an

MVEE. Although a reverse stack executable is resilient against many of the known

stack-based buffer overflow vulnerabilities, it cannot protect against all possible

cases. As an example, consider the following C function:

void foo() {
char buf[100];
strcpy(buf, user_input_longer_than_buf);

}

A user input larger than buf can overwrite the return address of strcpy and

hijack the reverse stack version of the application, since this address is located

above the buf on the stack. This is shown in the right side of Figure 13.

Now compare how effective a reverse stack executable is when it runs alongside

a conventional executable in the MVEE. As Figure 13 shows, exploiting the buffer

overflow vulnerability in the above code enables an attacker to simultaneously

overwrite the return addresses of strcpy and foo in the reverse and normal

executables, respectively. Since no system call is invoked between the point that

strcpy returns and the point that foo returns, the MVEE does not detect any

anomaly and lets the variants continue. Therefore, both variants could be diverted

to an address where the attack code would be stored.

26

buf

foo's Frame Pointer

foo's Return Addr.

strcpy's Frame Pntr.

strcpy's Return Addr.

bubububuffff

ststststrcrcrcrcpypypyy's's'ss F F FFrarararamememem P P P Pntntntntrrrr.

ststststrcrcrcrcpypypypy's's's's R RR Reteteteturururu n n n n AdAdAdAddrdrdrdr....
buf

foo's Frame Pointer

foo's Return Addr.

strcpy's Frame Pntr.

strcpy's Return Addr.

bubububuffff

fofofofoo'o'o'o s ss s FrFrFrFramamamame ee e PoPoPoPoininininteteteterrrr

fofofofoo'o'o'o's sss ReReReRetututuurnrnrnrn AdAdAdAddrdrdrdr..

Upward GrowingDownward Growing

Figure 13: Cost for sophisticated attackers can raised almost arbitrarily high by

shortening checkpointing interval.

Since all inputs are identically given to all the variants, the buffer containing

the attack code would have the same content in both variants. This means that

the addresses used by the instructions in the attack code would be the same in the

two variants. For example, suppose that the attack code includes a call to exec
and passes the address of a small buffer that contains “/bin/sh” to exec. Also,

suppose that “/bin/sh” is on the white-list and allowed by the MVEE. Almost

all modern OS kernels randomize the beginning of the heap and as a result, the

addresses of the corresponding buffers on the heaps of the two variants are not the

same. Also, addresses of stack objects are also totally different. Therefore, the

address of this small buffer passed to exec is different in each variant, but the

attack code would have the same address and would fail.

In order to prevent the failure, the attacker would have to divert each variant to

a different address that contains attack code valid for that particular variant. This is

a high barrier to overcome and the attacker would have to know the exact location

of the return addresses on the stack and also the buffers that contain attack code for

each variant.

In very high security applications, one might want to add other variation

mechanisms or other variants to increase the level of provided security. Instruction

27

set randomization (ISR) [24], heap layout randomization [6, 8] and system-call

number randomization [9] are among possible variation methods that can be used

to add extra security. When ISR is used, the injected malicious code would

be valid only on one of the variants and would cause collateral damage on the

others. ISR requires a software layer that decodes instructions back to those

understandable by the processor at run-time. ISR cannot prevent all kinds of buffer

overflow attacks, for example, return-to-lib(c) would still be possible. Heap layout

randomization, when used in a multi-variant environment, can protect the system

against heap-based buffer overruns. System call number randomization causes

different system calls to be invoked when the same injected code is executed in

different variants. This deviation is easily detectable by the monitor. System call

number randomization is easy to deploy, but like ISR, return-to-lib(c) would be

possible.

5 Evaluation

To demonstrate the effectiveness of the multi-variant execution environment, we

create a customized test suite which includes common benchmarks and frequently

used applications. This suite allows us to evaluate the security claims and assess

the computational tradeoff in CPU- and I/O-bound operations. While our MVEE

is capable of running many different variants, we evaluate it with two variants:

standard and reverse stack.

5.1 Security

An MVEE is well-suited for network-facing services, and we use documented past

exploits of Apache 1.3.29 and Snort 2.4.2 as test vectors. The vulnerabilities and

their corresponding exploits are documented with specific environments. Details

of these environments include versions of the compiler, operating system, as well

as supporting libraries. Changes in one or many of these components of the

environment can prevent an exploit from working. As a result, we reconstruct three

representative exploits for Apache and Snort in our testing environment, a process

that replicates the steps that an attacker would take. Other than these vulnerabilities

that exist in real-life applications, we also write small programs with intentional

buffer overflow vulnerabilities to test our MVEE.

All vulnerabilities used for testing are stack-based buffer overflow exploits and

can be exploited using the techniques described in Aleph One’s stack smashing

tutorial [1]. They are chosen because they are representative of a large number of

stack-based buffer overflow errors that are present in software, and because these

28

token[1]

token[2]

token[3]

token[4]

Unused

Register EBX

Frame Pointer (ebp)

Return Address

token[0]

Register EBX

Frame Pointer (ebp)

token[0]

token[1]

token[2]

token[3]

token[4]

Unused

Return Address

0x08060901

0xbffff1b8

0xb7ffa040

0xb7feb018

0xb7ffa040

0x00000007

0x080a9f8f

0xb7fbce79

0x08063771

0xb7fb8147

0xb7fb8145

0xb7fb8143

0xb7fb8141

0xb7fb813f

0xb7fb8101

0xb7fb80fb

0xb7fb80f5

0xb7fb8018

Before After

Before After
Downward Growing Stack

Upward Growing Stack

0x08069d66

0xb7fbce79

0x080be72f

0x00000006

0xb7ffa040

0xb7feb018

0xb7ffa040

0xbfbff6d8

0x08066619

0xb7fb8141

0xb7fb813f

0xb7fb8101

0xb7fb80fb

0xb7fb80f5

0xb7fb8018

0xb7ffa040

0xbfbff6d8

0x08066619

Calling Function
hook_2urifile+1170

Calling Function
hook_2urifile+1170

Shellcode
Return Address

Shellcode
Return Address

Calling Function
hook_2urifile+1170

Figure 14: A well-documented vulnerability in the Apache web server.

exploits have been available publicly and likely to have been used to obtain illicit

access to Apache servers or systems charged with protecting networks. These

exploits simulate real-world conditions, as it is likely that other server programs

still contain similar implementation errors [45]. Finally, these vulnerabilities are

chosen because they are part of the main source package and not dependent on

third party libraries or plugins.

5.1.1 Apache mod_rewrite Vulnerability

The Apache mod_rewrite vulnerability was first reported by Jacobo Avariento.

It affects all versions prior to Apache 1.3.29 [14]. The vulnerability involves

an array of five char* variables called token in a parsing function called

escape_absolute_uri(), which can be overflowed given the correct input.

In this case, the input required more than five question marks in order to effect the

overflow. Avariento’s proof-of-concept exploit code [3] is a customized version

of Taeho Oh’s bindshell shellcode [34] and was further modified in order to make

Apache exploitable when compiled with GCC 4.2.1. The extra modifications are

29

needed because this version of GCC arranges data on the stack differently than the

versions available when Avariento discovered the vulnerability.

5.1.2 Apache mod_include Vulnerability

An anonymous author with the pseudonym “Crazy Einstein” discovered a vul-

nerability in Apache’s mod_include module in 2004 [15]. The vulnerability

describes an overflow in a static 8 kB array located on the stack created by the

function handle_echo(). The array is passed as an argument to get_tag(),

and when get_tag() is given an input longer than 8 kB, get_tag() over-

writes the return address of handle_echo(). The exploit is successful when

handle_echo() returns and jumps to the shellcode address. In order to

make Crazy Einstein’s exploit program [16] work in our testing environment, the

program was modified to provide extra padding and proper return addresses for

shellcode.

5.1.3 Snort BackOrifice Preprocessor Vulnerability

A stack-based buffer overflow vulnerability in the Snort intrusion detection system

was discovered by Neel Mehta of ISS X-Force in 2005 [30]. Because of the trusted

nature of Snort and the permissions required in order to make it effective, this

vulnerability was considered extremely serious since it can give elevated or system-

level privileges on a target system and the victim computer does not need to be

targeted directly [27]. The vulnerability involves a 1 kB array of char variables in

BoGetDirection(), which is used to decode and decrypt BackOrifice packets.

A carefully crafted packet, as described by an anonymous author named “rd”,

can be used to overwrite the return address of BoGetDirection()’s caller,

BoFind() [40]. In order to make rd’s exploit program work, it was modified

with proper padding lengths and addresses corresponding to the GCC 4.2.1-based

environment.

5.1.4 Effectiveness of the MVEE

For all vulnerabilities, when the variants with a downward growing stack are given

the exploit code the exploits succeed and an attacker is able to obtain illicit access

to the target computer. When an upward growing stack variant is presented with

the same exploit code, the variant continues to run since the buffer overflow writes

into unused memory. When variants of each direction are run in parallel and under

supervision of our monitor, the attempted code injection is detected and execution

is terminated because shellcode executed by the downward growing stack variant

30

contains system calls. All the buffer overflow attacks on our test programs are also

detected by the MVEE, because the attack vectors either cause divergence between

the variants or cause one or both variants to be terminated by the OS.

5.2 Performance

The second component of our test suite includes tests designed to assess perfor-

mance of the MVEE. In order to run these tests, we compile and build executables

of find 4.1, tar 1.12, a MD5 sum generation program (md5deep 2.0.1-001), apache
1.3.29 and SPEC CPU2000 [44] with both downward and upward growing stacks,

and then measure the performance penalty of these applications while running

on the MVEE. Although the MVEE concept is targeted towards running security

sensitive or network-facing applications, the chosen set of benchmark programs

are representatives of I/O- and CPU-bound applications that might be executed in

such an environment.

All performance evaluations are performed on an Intel Core 2 Quad Q9300

2.50 GHz system running Ubuntu Linux 8.10 and Linux kernel 2.6.27-9. All

benchmark applications are run under two conditions: (a) with the highest schedul-

ing priority (nice -20) on an otherwise unloaded machine (Figure 15) and (b)

with normal scheduling priority when three other CPU intensive applications run

in parallel with the benchmark programs (Figure 16).

Disk-based tests are run several times to remove disk caching effects from

skewing the results, and then run again several times to collect data. Once the

data is collected, the highest and lowest times are discarded and the average of the

remaining times is computed.

Find: find is used as an I/O-bound test. In this test, we search the whole

disk partition of our test platform for all C source code files (files ending in “.c”).

To eliminate effects caused by find printing to the screen, the standard output is

redirected to /dev/null.

Tar: tar is selected as a test to show the effects of the MVEE on I/O-bound

applications. In this test, we check out the source code of the Eclipse development

platform and create a tar archive of the data. The source code is composed of many

subdirectories, each of which contains many small text and JAR files. Because of

this property, the tar test is not reduced to a sequential read operation, which would

have occurred if we had used a DVD ISO image. The size of the data set is 3 GB.

md5deep: md5deep is a program that generates MD5 sums for files and

directories of files. It provides a good mix of I/O- and CPU-bound operations,

as the program computes the MD5 sum while reading each file. md5deep has been

run over two CD ISO images, totaling 1.5 GB of data.

Apache: The version of Apache that is used for security testing is the same

31

���

����

����

����

����

 ����

��
��
!�

�"
��
�

��
��

#�
��

��
�	

�
��

�

���

��

��
�

��
��
�

#�
��

$
��

�"
��
��
�

�%
��
���
�

�
&�
�

��

��
���
��

	
��
���

��
��
�

�

��
��

�'
��

�(
�

�
�

�#

�
��

�

����$
�&)�'� ����$
�&)�'� ���$
�&)�'�

SPEC

Figure 15: Comparison of the performance of program variants and the MVEE

relative to conventional programs when run on an otherwise unloaded system.

as that of the one used as a performance test. In order to see what effect the

monitor has on Apache, we use the provided version of ApacheBench [2] to request

a 27 KB HTML document. ApacheBench requests the file 10,000 times from a

separate computer connected to the target server via an unloaded gigabit ethernet

connection.

SPEC CPU2000: SPEC CPU2000 is an industry standard benchmark for

testing the computational ability of a system. It is composed of various tools

that have heavy CPU-bound characteristics. All of the SPEC tests are used when

evaluating the performance of the MVEE, except the FORTRAN and C++ tests,

because we currently only have a C library that operates in the reverse-stack mode.

5.3 Analysis

Figure 15 presents the results of the performance evaluation of the MVEE on an

otherwise unloaded system and Figure 16 shows these results on a loaded system

that runs three other CPU intensive applications in parallel to the benchmarks.

These CPU intensive programs fully utilize three cores of the processor and are

run to simulate an environment where competition to acquire the CPU is high.

The results in Figure 15 show that the monitor imposes an average performance

penalty of 16% and 14% for running both upward and downward growing

variants (DU execution) and two downward growing variants (DD execution),

respectively. Note that the baseline of the comparison (100% performance) is a

normal executable that writes the stack downward. Therefore, in cases where the

benchmark is not multi-threaded or multi-process, only one of the processor cores

32

���

����

����

����

����

 ����

��
��
!�

�"
��
�

��
��

#�
��

��
�	

�
��

�

���

��

��
�

��
��
�

#�
��

$
��

�"
��
��
�

�%
��
���
�

�
&�
�

��

��
���
��

	
��
���

��
��
�

�

��
��

�'
��

�(
�

�
�

�#

�
��

�

����$
�&)�'� ����$
�&)�'� ���$
�&)�'�

SPEC

Figure 16: Comparison of the performance of program variants and the MVEE

relative to conventional programs when run on a loaded system.

is used when running the baseline and the other cores are idle. The figure also

shows that upward-growing stack variants have an average performance penalty of

2%.

The average static size of upward growing stack benchmarks is 10% larger

than that of their downward growing stack counterparts. More importantly, the

number of dynamic instructions executed by the upward growing stack executables

is on average 7% more than those executed by the executables that grow the stack

downward (not shown in the figure). The primary reason why the runtime overhead

of reverse stack execution (U execution in the figures) is small is that the difference

between downward and upward growing stack variants is the addition of some

ADD and SUB instructions to manage the stack pointer. Superscalar processors

parallelize these instructions with other instructions in the program and execute

them with almost no overhead.

In some cases, such as mcf, equake, art, and tar, we experience a small speedup

when the test is run with a reverse stack. This is likely due to the fact that growing

the stack upward better matches the default cache pre-fetching heuristics, which

results in a slightly better cache hit rate and improves overall performance.

When the tests are run in the MVEE (DU execution and DD execution in

Figure 15), the results show that the mostly CPU-bound SPEC tests experience

little performance penalty. The two main exceptions to this are gcc and equake.

gcc invokes more than 7000 system calls per second, which is very high compared

to other benchmarks. Monitoring these system calls causes the performance

degradation. The performance degradation of equake is caused by memory

33

bandwidth. equake is a memory intensive benchmark and memory bandwidth

becomes the bottleneck when running two instances of equake in parallel.

Performance overhead of the MVEE increases significantly when the SPEC

benchmarks are executed on a loaded system (see Figure 16). This is expected,

because these are mostly CPU-bound benchmarks. Running two parallel instances

of a CPU-bound benchmark on a system that has only one available processor core

causes a performance penalty approaching 50%.

The I/O-bound tests, especially apache and tar, experience a larger perfor-

mance penalty. In the case of apache, the monitor does all of the socket operations

and has to examine all the data sent or received via the network. This means that

data that is to be sent has to be transferred from the variants to the monitor, checked

for equality, and then sent over the network by the monitor. Also, all requests from

the network are received by the monitor and then copied to all the variants. The

performance degradation for apache is less than 50%. apache is a multi-process

benchmark and is expected to engage all available processing cores when executed

conventionally. As a result, we expected to see a much larger performance drop

when running apache in the MVEE on a loaded system. Instead, we found that the

network interface is the bottleneck which prevents the server from fully utilizing

the available processing units [38]. Consequently, we do not see a performance

drop for apache on a loaded system comparing to the results obtained on an

unloaded system.

The performance penalty encountered in the tar benchmark is partially due to

the monitor examining the relative path names of over 300,000 files. Moreover,

the output of tar is a large file which is written by the monitor. All data that the

variants write to the file must be transfered to the monitor, compared, and written

to the file by the monitor.

Since the CPU is not the bottleneck in the I/O-bound applications, including

apache, tar and find, we do not expect significant changes in the results when

these tests are run on a loaded system. However, tar results show an improvement

when run on a loaded system. Surprisingly, this is not only a relative performance

improvement, but also an actual performance improvement; tar runs faster on a

loaded system even when it is executed conventionally and in the absence of the

MVEE. While explaining this phenomenon is not easy, we guess that assigning the

same processor core for running the benchmark could be the reason. On a loaded

system where processor cores are running other processes and there is only one

available core, it is likely that the same core be used to run the benchmark after

context switches. This could result in a higher L1 cache hit rate and better overall

performance.

34

6 Related Work

Software security is extremely important, and hence there is a much larger body

of related work than space constraints permit us to cite. We apologize for the

necessity to select a subset and present the following pioneering earlier work that

our research builds upon:

The idea of using diversity to improve robustness has a long history in the

fault tolerance community [4]. The basic idea has been to generate multiple

independent solutions to a problem (e.g., multiple versions of a program, developed

by independent teams in independent locations using even different programming

languages), with the hope that they will fail independently. The expectation is

then that at any given point in time, a majority of the variants will be functioning

correctly, enabling majority-based choice of a correct result even when confronted

with occasional faults.

Along with a rising awareness of the threat posed by an increasingly severe

computer monoculture, replication and diversity have also been proposed as a

means for improving security. Joseph et al. [22] proposed the use of n-version

programming in conjunction with control flow hashes to detect and contain

computer viruses. McDermott et al. [29] proposed the use of logical replication as

a defense tool in an n-version database setting. Rather than merely replicating data

across databases, they re-executed commands on each of the replicated databases.

This made it much more difficult for an attacker to corrupt the database in a

consistent manner by way of a Trojan horse program. Cohen [10] proposed the

use of obfuscation to protect operating systems from attacks by hackers or viruses,

an idea that has reappeared in many variants. Pu et al. [39] described a toolkit to

automatically generate several different variants of a program, in a quest to support

operating system implementation diversity. Forrest [17] proposed compiler-guided

variance-enhancing techniques such as interspersing non-functional code into ap-

plication programs, reordering the basic blocks of a program, reordering individual

instructions via instruction scheduling, and changing the memory layout. Chew [9]

proposed automated diversity of the interface between application programs and

the operating system by using system call randomization in conjunction with link-

time binary rewriting of the code that called these functions. They also proposed

randomizing the placement of an application’s stack.

Recently, researchers have started to look at providing diversity using simul-
taneous n-variant execution on the same platform, rather than merely creating

diversity across a network of computers; our method falls into this category. Cox

et al. [12] proposed running several artificially diversified variants of a program on

the same computer. Unlike our method, their approach requires modifications to

the Linux kernel, which increases the maintenance effort and related security risks.

35

They addressed a limited set of the sources of inconsistencies among the variants

and their platform did not support certain classes of system calls, including exec
family.

Also closely related, Berger and Zorn [6] proposed redundant execution

with multiple variants that provided probabilistic memory safety by way of a

randomized layout of objects within the heap. Their proposed replicated execution

mechanism was limited to monitoring the standard I/O. The focus of the work was

on reliability (in particular resilience against memory errors) rather than on attack

prevention.

A large body of existing research has studied the prevention of buffer overflow

attacks at run-time through software only [25, 46]. Several existing solutions are

based on obfuscating return addresses and other code and data pointers that might

be compromised by an attacker [7]. The simplest of these uses an XOR mask to

both “encrypt” and “decrypt” such values with low overhead. Cowan [11] takes

an alternative approach and places an extra value called a canary in front of the

return address on the stack. The assumption is that any stack smashing attack that

would overwrite the return address would also modify the canary value, and hence

checking the canary prior to returning would detect such an attack. StackGuard

does not protect against overflows in automatically allocated structures which

overwrite function pointers.

[36] and [43] implement non-executable stacks. This technique does not allow

control transfer to the stack by marking the stack memory space as non-executable.

Therefore, it prevents attackers from executing code injected to the stack. While

many new microprocessors have implemented the necessary hardware support

for a non-executable stack, it does not provide protection against return-to-lib(c)
attacks [32]. This technique also causes compatibility issues. For instance, just-in-

time compilers which generate and execute dynamic code may not work properly

with non-executable stacks.

7 Conclusions and Outlook

We have presented a new defense against stack-based attacks and a new technique

to build multi-variant execution environments that run as unprivileged user-

space processes, limiting the repercussions of potential programming errors in

building the MVEE. We have also addressed many challenges in developing

such environments, including how to deal with sources of inconsistencies among

the variants, and have implemented mechanisms to improve performance of the

MVEE.

Our results show that deploying the MVEE on parallel hardware provides

36

extra security with modest performance degradation. Our method uses user-space

techniques to create the perception of a virtual OS kernel without requiring changes

to the OS kernel proper. We have shown that the performance overhead for

this approach is acceptable for many applications, in particular considering the

beneficial effect of not having to modify kernel code.

Many everyday applications are mostly sequential in nature. At the same

time, automatic parallelization techniques are not yet effective enough on such

workloads. Even in parallel applications, such as web servers, limited I/O

bandwidth prevents us from putting all available processing resources into service.

As a result, parallel processors in today’s computers are often partially idle. By

running programs in MVEEs on such multi-core processors, we put the parallel

hardware in good use and make the programs much more resilient against code

injection attacks.

As far as future work is concerned, we are interested in ways to repair
corrupted instances instead of having to terminate them. Such a system would

automatically quarantine, re-initialize, and resume processes that have become

corrupted.

37

List of Written Publications

Peer-Reviewed Papers

• B. Salamat, T. Jackson, A. Gal, and M. Franz; “Intrusion Detection Using

Parallel Execution and Monitoring of Program Variants in User-Space;” in

EuroSys’09, Nuremberg, Germany, ACM Press, ISBN 978-1-60558-482-9,

pp. 33–46; April 2009. doi:10.1145/1519065.1519071

• B. Salamat, A. Gal, and M. Franz; “Reverse Stack Execution in a Multi-

Variant Execution Environment;” in 2008 Workshop on Compiler and Archi-
tectural Techniques for Application Reliability and Security (CATARS’08),
Anchorage, Alaska; June 2008.

• B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M. Franz;

“Multi-Variant Program Execution: Using Multi-Core Systems to Defuse

Buffer-Overflow Vulnerabilities;” in Multi-Core Computing Systems (Mu-
CoCoS 2008), Barcelona, Spain; March 2008. doi:10.1109/CISIS.2008.136

• M. Franz; “Understanding and Countering Insider Threats In Software

Development;” in P. Kropf, M. Benyoucef, and H. Mili (Eds.), 2008 Inter-
national Montreal Conference on e-Technologies (MCETECH 2008), Mon-

treal, Canada, IEEE Computer Society Publications, ISBN 0-7695-3082-6,

pp. 81–90; January 2008. doi:10.1109/MCETECH.2008.32

Technical Reports

• B. Salamat, Ch. Wimmer, and M. Franz; Synchronous Signal Delivery in
a Multi-Variant Intrusion Detection System; Technical Report No. 08-14,

Donald Bren School of Information and Computer Sciences, University of

California, Irvine, March 2009.

• B. Salamat, A. Gal, T. Jackson, and M. Franz; Orchestra: A User Space
Multi-Variant Execution Environment; Technical Report No. 08-06, Donald

Bren School of Information and Computer Sciences, University of Califor-

nia, Irvine, May 2008.

• B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M. Franz;

Stopping Buffer Overflow Attacks at Run-Time: Simultaneous Multi-Variant
Program Execution on a Multicore Processor; Technical Report No. 07-13,

Donald Bren School of Information and Computer Sciences, University of

California, Irvine; December 2007.

38

• B. Salamat, A. Gal, A. Yermolovich, K. Manivannan, and M. Franz; Reverse
Stack Execution; Technical Report No. 07-07, Donald Bren School of

Information and Computer Sciences, University of California, Irvine, August

2007.

Doctoral Thesis

• B. Salamat; Multi-Variant Execution: Run-Time Defense against Malicious
Code Injection Attacks; PhD Dissertation, Computer Science Department,

Donald Bren School of Information and Computer Sciences, University of

California, Irvine, July 2009

39

Patent Application Filed

• M. Franz (lead), A. Gal, and B. Salamat; Multi-Variant Parallel Program
Execution to Detect Malicious Code Injection; United States Patent Appli-

cation No. 12/075,127 (pending), March 2008.

40

Professional Personnel Associated With The Project

Faculty

• Prof. Dr. Michael Franz

Post-Doctoral Researchers

• Dr. Andreas Gal

• Dr. Christian Stork

• Dr. Christian Wimmer

Graduate Students

• Michael Bebenita

• Mason Chang

• Marcelo Cintra

• Eric Hennigan

• Todd Jackson

• Nityananda Jayadevaprakash

• Karthikeyan Manivannan

• Babak Salamat

• Alex Yermolovich

• Gregor Wagner

• Lei Wang

Undergraduate Students

• Giacomo Amorosa

• Christoph Kerschbaumer

• Hadi Nejati

41

Presentations at Meetings, Conferences, Seminars, etc.

NICECAP Kick-Off Meeting

March 2007; Chantilly, Virginia. Dr. Franz made a presentation and both jointly

presented a poster.

IFIP WG 2.4 Meeting

May 2007; Lake Arrowhead, California. Dr. Franz and Dr. Gal both made

presentations on the project.

21st Annual IFIP WG 11.3 Working Conference on Data and Applica-
tions Security (DBSEC’07)

July 2007; Redondo Beach, CA. Dr. Franz talked on a panel entitled “Security and

Privacy in Service Oriented Architectures.”

NICECAP PI Meeting

September 2007; Boston, MA. Dr. Franz made a presentation and he and Dr. Gal

jointly presented a poster.

International Montreal Conference on e-Technologies
(MCETECH 2008)

January 2008; Montreal, Canada. Dr. Franz attended and presented his peer-

reviewed paper on the project.

IARPA NICIAR Reverse Site Visit

January 2008; Annapolis Junction, MD. Dr. Franz and Dr. Gal presented the project

status.

UC Davis

February 2008. Dr. Franz visited on the invitation of Prof. Matt Bishop and gave a

presentation on the NICIAR project.

42

International Workshop on Multi-Core Computing Systems
(MuCoCoS 2008)

March 2008; Barcelona, Spain. Dr. Gal presented the peer-reviewed paper on the

project.

University of Linz, Austria

March 2008. Michael Franz visited on the invitation of Prof. Hanspeter Mössen-

böck and gave a presentation on the NICIAR project.

IARPA NICIAR PI Meeting

April 2008; Lisle, Illinois. Dr. Franz and Dr. Gal presented the project status.

Annual Cyber Security and Information Intelligence Research Work-
shop (CSIIRW-2008)

May 2008; Oak Ridge, Tennesse. Michael Franz gave an invited keynote focusing

on the NICIAR project.

2008 Workshop on Compiler and Architectural Techniques for Appli-
cation Reliability and Security (CATARS’08)

June 2008; Anchorage, Alaska. Dr. Gal presented the peer-reviewed paper on the

project.

IARPA NICIAR Site Visit

July 2008; Palo Alto, California. Dr. Franz, Dr. Gal, Dr. Wimmer and G. Wagner

presented the project status.

IARPA NICIAR PI Meeting

September 2008; Washington, D.C. Dr. Franz and Dr. Wimmer presented the

project status.

EuroSys 2009

March/April 2009; Nuremberg, Germany. T. Jackson presented the peer-reviewed

paper on the project.

43

Presentations at Organizations and Corporations

Symantec

August 2007; Santa Monica, California. Dr. Franz visited on the invitation of

Darren Shou and gave a presentation on the NICIAR project.

VMWare

April 2008; Palo Alto, California. Dr. Franz visited on the invitation of Erwin

Oertli and gave a presentation on the NICIAR project.

SAP

May 2008; Palo Alto, California. Dr. Franz visited on the invitation of Dirk Riehle

and gave a presentation on the NICIAR project.

Mozilla

August 2008; Mountain View, California. The whole research group visited on the

invitation of CTO Brendan Eich. Dr. Franz gave a presentation on the NICIAR

project.

44

References Cited

[1] Aleph One. Smashing the stack for fun and profit. Phrack, 7(2), 1996.

[2] Apache Software Foundation. Apache HTTP Server Benchmarking Tool.

[3] J. Avariento. Exploit for Apache mod_rewrite off-by-one,

http://ciberjacobo.com/sec/mod_rewrite.html, 2006.

[4] A. Avizienis and L. Chen. On the implementation of n-version programming

for software fault tolerance during execution. In IEEE International Com-
puter Software and Applications Conference (COMPSAC), volume 77, pages

149–155, 1977.

[5] E. Barrantes, D. Ackley, T. Palmer, D. Stefanovic, and D. Zovi. Randomized

instruction set emulation to disrupt binary code injection attacks. In

Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), pages 281–289, 2003.

[6] E. Berger and B. Zorn. Diehard: Probabilistic memory safety for unsafe

languages. In Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 158–168,

2006.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient

approach to combat a broad range of memory error exploits. In Proceedings
of the 12th USENIX Security Symposium, pages 105–120, 2003.

[8] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for compre-

hensive protection from memory error exploits. In Proceedings of the 14th
USENIX Security Symposium, pages 271–286, 2005.

[9] M. Chew and D. Song. Mitigating Buffer Overflows by Operating Sys-
tem Randomization. Technical report, Department of Computer Science,

Carnegie Mellon University, 2002.

[10] F. Cohen. Operating system protection through program evolution. Comput-
ers and Security, 12(6):565–584, Oct. 1993.

[11] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,

P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Automatic adaptive

45

http://ciberjacobo.com/sec/mod_rewrite.html

detection and prevention of buffer-overflow attacks. In Proceedings of the
7th USENIX Security Symposium, pages 63–78, 1998.

[12] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,

A. Nguyen-Tuong, and J. Hiser. N-variant systems: A secretless framework

for security through diversity. In Proceedings of the 15th USENIX Security
Symposium, 2006.

[13] Diet libc. http://www.fefe.de/dietlibc/.

[14] M. Dowd. Apache Mod_Rewrite Off-By-One Buffer Overflow Vulnerability,

http://www.securityfocus.com/archive/1/441487/30/0/threaded, 2006.

[15] C. Einstein. Apache mod_include Local Buffer Overflow Vulnerability,

http://www.securityfocus.com/bid/11471, 2004.

[16] C. Einstein. Apache ≤ 1.3.31 mod_include Local Buffer Overflow Exploit,
http://milw0rm.com/exploits/587, 2006.

[17] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems.

In 6th Workshop on Hot Topics in Operating Systems (HotOS), 1997.

[18] GNU. GNU Compiler Collection (GCC), http://gcc.gnu.org.

[19] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access

errors. In Proceedings of the Winter USENIX Conference, volume 136, 1992.

[20] W. Hsu and A. Smith. Characteristics of I/O traffic in personal computer and

server workloads. IBM Systems Journal, 2003.

[21] Intel. Paul Otellini Keynote. Intel Developer Forum, September 2006.

[22] M. Joseph and A. A. A fault tolerance approach to computer viruses. In 1988
IEEE Symposium on Security and Privacy, pages 52–58, 1988.

[23] B. Kauer. Oslo: Improving the security of trusted computing. In Proceedings
of the 16th USENIX Security Symposium, pages 229–237, 2007.

[24] G. Kc, A. Keromytis, and V. Prevelakis. Countering code-injection attacks

with instruction-set randomization. In Proceedings of the 10th ACM Con-
ference on Computer and Communications Security (CCS), pages 272–280,

2003.

[25] B. A. Kuperman, C. E. Brodley, H. Ozdoganoglu, T. N. Vijaykumar, and

A. Jalote. Detection and prevention of stack buffer overflow attacks.

Communications of the ACM, 48(11):50–56, 2005.

46

http://www.fefe.de/dietlibc/
http://www.securityfocus.com/archive/1/441487/30/0/threaded
http://www.securityfocus.com/bid/11471
http://milw0rm.com/exploits/587
http://gcc.gnu.org

[26] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. Code Generation and Optimization,
2004. CGO 2004. International Symposium on, 2004.

[27] A. Manion and J. Gennari. US-CERT Vulnerability Note VU#175500,

http://www.kb.cert.org/vuls/id/175500, October 2005.

[28] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: An

execution infrastructure for TCB minimization. In Proceedings of the 3rd
European Conference on Computer Systems (EuroSys), pages 315–328, 2008.

[29] J. McDermott, R. Gelinas, and S. Ornstein. Doc, wyatt, and virgil:

Prototyping storage jamming defenses. In 13th Annual Computer Security
Applications Conference (ACSAC), pages 265–273, 1997.

[30] N. Mehta. Snort Back Orifice Parsing Remote Code Execution, 2005.

[31] D. Murray, G. Milos, and S. Hand. Improving Xen security through disag-

gregation. In Proceedings of the fourth ACM SIGPLAN/SIGOPS Conference
on Virtual Execution Environments, pages 151–160, 2008.

[32] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack,

2001.

[33] N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework.

Electronic Notes in Theoretical Computer Science, 2003.

[34] T. Oh. Advanced Buffer Overflow Exploit, 2000.

[35] C. Parampalli, R. Sekar, and R. Johnson. A practical mimicry attack

against powerful system-call monitors. In ACM Symposium on Information,
Computer & Communication Security (ASIACCS), pages 156–167, 2008.

[36] PaX. http://pax.grsecurity.net.

[37] J. Pincus and B. Baker. Beyond stack smashing: Recent advances in

exploiting buffer overruns. IEEE Security and Privacy, pages 20–27, 2004.

[38] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load balancing

and unbalancing for power and performance in cluster-based systems. In

Workshop on Compilers and Operating Systems for Low Power, pages 182–

195, 2001.

47

http://www.kb.cert.org/vuls/id/175500
http://pax.grsecurity.net

[39] C. Pu, A. Black, C. Cowan, and J. Walpole. A specialization toolkit

to increase the diversity of operating systems. In ICMAS Workshop on
Immunity-Based Systems, 1996.

[40] rd (a hacker pseudonym). THCsnortbo 0.3 - Snort BackOrifice PING exploit,
http://milw0rm.com/exploits/1272, October 2005.

[41] B. Salamat, A. Gal, and M. Franz. Reverse stack execution in a multi-

variant execution environment. In Workshop on Compiler and Architectural
Techniques for Application Reliability and Security (CATARS), 2008.

[42] B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M. Franz.

Multi-variant program execution: Using multi-core systems to defuse buffer-

overflow vulnerabilities. In Proceedings of the International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS’08), pages 843–

848, March 2008.

[43] Solar Designer. Non-executable User Stack, http://www.openwall.com.

[44] Standard Performance Evaluation Corporation (SPEC).

[45] C. Taschner and A. Manion. US-CERT Vulnerability Note VU#196240,

February 2007.

[46] J. Wilander and M. Kamkar. A comparison of publicly available tools for

dynamic buffer overflow prevention. In Proceedings of the 10th Annual
Symposium On Network And Distributed System Security, 2003.

48

http://milw0rm.com/exploits/1272
http://www.openwall.com

List of Symbols, Abbreviations, and Acronyms

CPU central processing unit

FIFO first-in first-out (a Linux/Unix operating system construct)

GCC Gnu C compiler

HTML hypertext markup language

I/O input-output

ISR instruction set randomization

LIFO last-in first-out

LLVM low-level virtual machine

MVEE multi-variant execution environment

OS operating system

PID process identifier

RAS return address stack

SP stack pointer

TCB trusted computing base

49

