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The growing cost and schedule constraints on government weapons development programs as

well as their rising complexity increase the need for a decision theoretic-framework for product

development. This framework must rely on insight gained from a variety of sources for test

planning, test evaluation, and decision support. The best practices presented in this article for

system-level developmental test planning and execution are collected from reported experience

and criticism of industry and government product development programs. These practices and

methodologies are applied in a coherent framework that allows a formal combination of the

disparate sources of product knowledge available to decision makers in the early stages of

development.
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T
his article illustrates a formal decision
support framework for program man-
agers and testers that embodies the
ideas of knowledge-based acquisition
and incorporates best practices identi-

fied from historical product development programs in
the government and commercial sectors. Emphasis is
on system-level developmental test and evaluation
(DT&E) in support of risk reduction for production
decisions. The framework consists of four basic steps:
identify relevant system performance factors, use prior
knowledge to evaluate system level outcomes, incor-
porate validated knowledge into product improvements
and evaluate sufficiency of testing through external
validation. The motivation for such a formal decision
support framework is the growing complexity of
modern weapon systems. While complexity is not easy
to define or measure consistently, indicators of
complexity are type and number of weapon sensors,
multiple operational modes, multiple communications
links, software for autonomous loitering or targeting,
etc. These indicators have been shown to increase the
cost of test and evaluation (T&E) despite the
significant constraints currently being placed on
weapons development funding (Fox et al. 2004).

The motivation for knowledge-based acquisition is
to improve product development outcomes using
‘‘quantifiable and demonstrable knowledge to make

go/no-go decisions’’ (GAO 2005). It is based on
ensuring that the proper product knowledge is
validated at critical decision points (DoD 2003).
Central to this acquisition approach is the progression
of the product through well-defined maturity levels,
driven by validated product knowledge.

Three main product maturity levels have been
identified through analysis of successful product
development practices in industry. The product
progresses through these levels based on specific events
that demonstrate validated product knowledge rather
than schedule driven milestones (GAO 2000). Heu-
ristics learned from commercial and government
product development programs can guide the planning
of a knowledge validation (testing) program to
successfully progress through the product maturity
levels. Ideas such as ‘‘break it big early’’ are examples of
these sorts of experience-based rules of thumb (GAO
2000).

In addition to informal rules of thumb, there are
rigorous inference methods that can support knowl-
edge validation and decision making even in the system
development phase when sample sizes are too small for
standard large sample size statistical methods to apply.
For example, approaches based on Bayes theorem
which incorporate prior knowledge in evaluating new
knowledge as it arrives can ensure that product
developers are making informed decisions even in the
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face of few samples. Sequential Design of Experiments
is another method that allows for smaller expected
numbers of test events to achieve a given statistical
power by using some sort of stopping rule (Cohen and
Rolph 1998).

The product maturity paradigm, experience-based
heuristics, formal inference and design of experiments
methods can be tied together into a coherent decision
support framework by a high-fidelity system perfor-
mance model as suggested in (Cohen and Rolph 1998).
System performance models provide a repository for
the product knowledge gained as the system matures,
so that successive testing can be planned based on
validated knowledge. They can support a constructive
approach to testing that leverages knowledge discovery
from the early phases of product maturity for more
efficient system level DT&E. Likewise, as has been
previously suggested, the knowledge gained from
DT&E to develop and validate the system performance
model should be used for efficient operational test and
evaluation (OT&E) planning (Cohen and Rolph
1998).

A recurring criticism of Department of Defense
product development is that programs proceed without
the right kind of knowledge gained from test efforts.
When this happens cost, schedule, and performance
problems often result (GAO 2003). As has been
observed, ‘‘It is possible to conduct a test or simulation
that does not contribute worthwhile information’’
(GAO 2003). By focusing on knowledge validation
and knowledge driven product maturity rather than
specific test schedules or events, we hope to avoid this
waste of effort and ensure that all planned test events
validate the right knowledge at the right level of
product maturity.

Product maturity levels
Three levels of product maturity identified in (GAO

2000) are:
1. Technologies and subsystems work individually;
2. Components and subsystems work together as a

system in a controlled setting;
3. Components and subsystems work together as a

system in a realistic setting.
This article will focus on the second and third levels

of product maturity which correspond to system-level
DT&E. Oftentimes because the number of system-
level tests during the DT&E phase of weapon
development is not large enough for statistical
significance in the classical frequentist sense, these
tests are relegated to ‘‘demonstration’’ status. When
incorporated into a Bayesian inference framework,
these tests can support a meaningful estimate of
parameters important to programmatic decisions from

the first test event. In addition, the marginal value
(reduction in risk) of additional testing can begin to be
compared to the marginal cost of that testing. This
comparison is critical to allowing for a decision
theoretic approach to answering the question of how
much testing is enough (Cohen and Rolph 1998).

Knowledge validated by testing drives the progress
of a product through the stages of development.
Incorporating the knowledge gained from each phase
of testing and development can guide the test plan to
be more efficient than starting from assumed ignorance
at each stage. Assuming ignorance is conservative as far
as technical risk goes, it drives larger and less efficient
test plans than if prior knowledge is incorporated into
the planning effort.

Historically based heuristics for test
planning and product development

A very disciplined approach to maturing a product is
required to avoid costly rework late in product
development. The three critical factors that underlie
this disciplined approach ensure that:

1. Validation is event based rather than schedule
based;

2. The quality of the knowledge validated in each
event is not sacrificed;

3. The knowledge validated in each event is used to
improve the product (GAO 2000).

One of the most important heuristics identified
from successful commercial product development
efforts is known as ‘‘break it big early’’, or ‘‘move
discovery to the left’’ (GAO 2000). This means that
challenging validation events are planned early to
expose areas of weaknesses in the new design.

Rigorous subsystem verification has been identified
as one of the means to reduce the burden of discovery
on the later system level test events. This is a way to
ensure that the quality of knowledge gained from test
events does not suffer due to immature test articles.
Aggressive development schedules can often result in
an undue burden of discovery on system-level flight
testing. Experience in the Theater High Altitude Air
Defense (THAAD) program illustrated that short-
comings in component and subsystem validation lead
to very expensive failures in the flight test program
(GAO 2000). Sacrifices were made in the first two
stages of product maturity to keep system level flight
testing on schedule. The problems experienced by
THAAD were not that tests failed or discoveries
occurred, which is the very purpose of testing. In fact,
it has been pointed out that ‘‘...bad things happen in
test and that those bad things are valid results just as
successes are’’ (DOT&E 2007). The object is to find
those bad things early in component level and
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subsystem integration testing, so that the discoveries
during more expensive full-up system level testing are
small and affordably corrected.

Also in line with the ‘‘break it big early’’ philosophy
is to test at factor levels that give the most variation in
system performance. System response in most real
systems is nonlinear, so the factor level matters. The
most knowledge can be gained from a limited number
of test events by testing at the most stressing factor
levels.

In keeping with the third element of disciplined
product development, information gained from initial
test events must be incorporated into improving the
product. Using knowledge to mature the product and
getting the right knowledge to decision makers is the
focus rather than sacrificing the quality of test events to
maintain schedule goals. The DarkStar Unmanned
Aerial Vehicle program experienced significant flight
test failures and was eventually terminated due to
problems that surfaced during initial flight testing
which were not addressed and fixed before subsequent
testing continued (GAO 2000). The point here is not
that flight test failures cause program termination, but
that sacrificing knowledge validation and product
improvement based on validated system knowledge to
maintain schedule is counterproductive.

If these heuristics are applied to the first two levels
of product maturity, then the burden of discovery on
system-level DT&E will be reduced (GAO 2005).
This allows more operational realism to be incorpo-
rated into DT&E, thus improving the quality of
knowledge gained from these test events.

The Stand-off Land Attack Missile – Expanded
Response (SLAM-ER) system experienced failures
during OT&E that were masked in earlier testing
because of unrealistic DT&E test conditions and
immature test articles (GAO 2000). This shows how
the heuristics identified can complement each other,
mature test articles support more operational realism in
DT&E which in-turn supports ‘‘moving discovery to
the left.’’

To summarize the above discussion, here is a
collection of some of the experience-based rules of
thumb:

N Break it big early, move discovery to the left

- Rigorous subsystem verification and integra-
tion minimizes discovery burden on the final,
most expensive system-level development ef-
fort;

- Test difficult technology or design features
early;

- Test at factor levels that give the most
variation in system performance: System

response in most real systems is nonlinear,
the level matters.

N Focus on getting necessary knowledge to decision

makers rather than specific events, techniques, or

schedules

- Incorporate information from early test events
to improve the product before proceeding to
future test events;

- Do not curtail early testing to stay on
schedule;

- Do not sacrifice test-item fidelity to stay on
schedule: Unrealistic system level test events
lower the amount of useful information gained
from those events.

Importance of system
performance models

Incorporating knowledge gained from disciplined
component and subsystem validation into a high-
fidelity system performance model informs decision
makers about development and production risk. This
can also lead to more efficient test planning and
analysis. The system performance model tracks the
system through the product maturity levels. As product
knowledge is validated in each level, that knowledge is
incorporated into the model. The model provides a
means for the heuristics identified in Section 3 to be
rigorously applied. It allows the test planner to answer
the questions like:

N Where can I expect the most variation?
N What level of product maturity is the modeled

performance based on?
N What discoveries have been made, and has that

knowledge been incorporated into the product
(and its model)?

The test planner can make basic decisions about
influential factors and their likely critical levels before
design details of the actual test article are finalized. In
other words, ‘‘one can design an effective test for a
system without understanding precisely how a system
behaves’’ (Cohen and Rolph 1998). This allows testing
for the later levels of product maturity to be based on
knowledge gained during the initial levels. Figure 1

illustrates the progression of model maturity. Initially,
the insight for test planning comes from physics-based
simulation and other analysis tools. As the product
matures and component and integration testing data
become available these can be used for test planning
and decision making. The fast running engineering
models are based on the more fundamental informa-
tion in the detailed physical models. Component
performance and integration testing data are incorpo-
rated as they become available.
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Incorporating prior knowledge
Knowledge captured in the system performance

model (based on component level testing and system
design analysis) can be used to generate prior
probabilities in performance metrics of interest. These
prior probabilities, or degrees of belief, are useful for a
Bayesian inference method.

The Bayesian approach has advantages over ap-
proaches which do not adjust their prior probabilities
based on experience (Robbins 1964). It is desirable
because it gives an optimal prediction: given the
hypothesis prior probabilities, any other prediction
will be correct less often (Russell and Norvig 1995).
Bayes Theorem is shown in Equation 1.

P Hj jEi,I
� �

~
P EijHj ,I
� �

P Hj jI
� �

P EijIð Þ ð1Þ

Where the posterior, or final, probability of the
hypothesis, Hj , being true given the new data, Ei, and
the background information, I is updated by the likeli-
hood, P (Ei |Hj , I ), and the prior or initial probability, P
(Hj |I ). Beliefs about the system under test are updated by
new information gained from each test event.

A common criticism of the Bayesian approach is that
there is subjectivity in choosing the prior probabilities.
This is true, but the benefit is that an explicit
exposition of the assumptions underlying the test
planning and analysis has been made, which is often
not the case for other test planning approaches. In
addition, the dependence of the result on the prior
probability decreases as the sample size increases. In
the large sample size limit, for certain model
assumptions the Bayesian approach matches the more
standard frequentist result (D’Agostini 2003).

High level test planning for weapon development
programs tends to focus on the number of end-to-end
flight tests because this is a significant contribution to
overall test program cost and schedule. Performing
enough end-to-end testing to build confidence inter-
vals based on large sample-size theories is cost and
schedule prohibitive, so the end-to-end testing is many
times relegated to a demonstration only status. If the
system level test events are merely demonstration, there
is little rigorous or quantifiable connection between
those small samples and knowledge gained to support
decision criteria.

Since there is no quantifiable connection the
argument is often put forth that a sample of 1 is as
good as 1 + m, where m is some number small enough
that large sample theories still do not apply with
sufficient power. This argument is fallacious because
large sample theory is not meant to measure the
difference in marginal information gained between two
small samples. It does not follow that there is no
difference in value to the decision maker because large
sample theories cannot measure that difference.

A Bayesian approach incorporates assumptions and
prior knowledge about the system under test in a
formal way so that information gained beginning with
the first test event improves the certainty of the
knowledge about the system in a quantifiable manner.
Some estimation of the marginal value of n and n + 1
samples can be evaluated even though n is far too small
for frequentist statistical approaches to apply. There is
no free lunch here. With very small n the inferences
supported by a Bayesian approach will be quite
sensitive to the priors; however, that sensitivity
information can be provided to decision makers so

Figure 1. Modeling hierarchy
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that they understand what increasing n will mean in
terms of reduced risk.

Hit-point distribution
This section presents an example of the Bayesian

approach evaluating hit-point distributions for a
munition with some type of smart terminal guidance
based on a multimode seeker and target recognition
algorithms. The seeker component level testing and
closed-loop guidance and control simulation can
provide a probability density for the hit-point in the
plane normal to the weapon’s attack vector. This
information provides a prior probability for evaluating
the hit-point from the very first end-to-end flight test.
For smaller, smarter munitions this hit-point becomes
increasingly important. Great variations in system
effectiveness (i.e., killing the target) might be expected
for small variations in hit-point.

Figure 2 illustrates using the Bayesian approach to
estimate the variance in hit-point distribution. The
model predicts a radial distribution of hit-points with a
variance of two, while the actual performance is drawn
from a distribution with variance of three. The variance
in this example is our hypothesis, and the prior
probabilities (see Equation 1) for the hypothesis could
be generated from sensitivity and uncertainty analysis
of the model. The actual form for the prior is not

critical as long as there is some finite probability
assigned to the true answer (Russell and Norvig 1995).

The lowest graph in Figure 2 shows the maximum
probability estimate of the Bayes method and compares
it to the standard frequentist result (for n . 20).
Rather than integrate over the continuous hypothesis
space (variance in this case), a discrete set of hypotheses
is evaluated. This is why the Bayesian estimate in
Figure 2 jumps discontinuously between levels. The
method allows significant insight into the problem
while the sample size is still small compared with more
standard estimation methods.

Model output for prior probabilities
Suppose the output of an uncertainty analysis for a

simple fast-running model can be given by Equation 2,

y~b0ze0z(b1ze1)x ð2Þ
where b0 5 1, b1 5 3, and e0 , e1 are normally
distributed errors with zero mean and 0.25 standard
deviation. The variation simulated here by e0 , e1 can be
generated by sensitivity and uncertainty analysis in a
fast running engineering model. The prior distribu-
tions for the model parameters can be estimated by
holding the other parameters constant at their expected
value and treating each data point as a measurement of
the parameter of interest.

Figure 2. Estimating variance
in hit-point distribution
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Figure 3 shows the probability distributions for the
slope and the intercept of the model’s output following
this method. These prior probabilities can be used to
guide test planning by identifying where variation or
uncertainty is greatest, which leads naturally to where
testing will be most profitably executed. The best
practice heuristics previously discussed become more
than just good rules of thumb when informed by a
Bayesian planning and analysis framework. This
framework provides insight into where the variation
in system performance can be expected, because it
explicitly incorporates the prior knowledge from
component-level testing residing in the system perfor-
mance model.

Sequential design of experiments
The basic idea of sequential design of experiments is

to test progressively from the outside of the parameter
space, capturing linear effects, towards the inside of the
parameter space, capturing higher-order interaction
effects if needed (Curry and Lee 2007). A compre-
hensive review of the field is given in (Lai 2001). At
each level, the predictive power of the effects measured
so far is evaluated and a decision is made about
whether additional testing is required.

For example, perhaps the product development team
has identified some significant factors for a notional
munition with terminal phase guidance and in-flight
communication as follows: target aspect (TA), target
speed (TS), target movement duty cycle (TMDC),
impact angle (IA), engagement mode (EM), and target
type (TT). Factors such as noise environment or weather

are generally uncontrollable by the testers, but it is
worthwhile to note their significance and then record
their levels during test events so their influence on
performance can be quantified (Cohen and Rolph 1998).

An initial experimental design will attempt to
measure the linear or ‘‘main’’ effects. For the six
controllable factors identified above, a seven-parameter
model results, requiring seven tests at the minimum to
make point estimates of the parameters (shown in
Equation 3). Two additional tests are added to the
design so that some estimate of the process variability
can be made, and a final confirmation test is added to
evaluate the sufficiency of the linear model.

Y ~b0z
Xn

i~1

bixi ð3Þ

Given ten test events and minimum and maximum
levels for each of the factors, a constrained optimiza-
tion method can be applied to find the combination of
factor levels across the tests that gives the lowest factor
correlation. This is known as a d-optimal test design
since it maximizes the determinant of the factor
correlation matrix (Curry and Lee 2007).

One method of reaching an approximate optimum is
simulated annealing (exactly orthogonal test series exist
only at multiples of four tests). It is a heuristic
optimization method that combines both divide-and-
conquer and iterative improvement strategies (Kirkpa-
trick and Gelatt 1983). The method starts with a
feasible set of factor levels for the test series and then
swaps factor levels and evaluates if this improves or

Figure 3. Estimation of prior
probability from model

output
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degrades the orthogonality of the tests. If the change
improves the orthogonality, it is accepted with
probability, P 5 1. If the change degrades the
orthogonality, it is accepted with probability relation
shown in Equation 4.

P~e
d1{d0=T ð4Þ

Where d1 is the determinant of the correlation matrix
(a measure of orthogonality or ‘‘goodness’’) and T is the
temperature, a parameter that is gradually reduced
during the optimization. This allows the process to
avoid being trapped by local minima because it accepts
moves which are ‘‘bad’’ according to the difference d1

2 d0 and the cooling schedule in T. As cooling
progresses the algorithm accepts ‘‘bad’’ moves with less
and less probability.

A test series developed by the simulated annealing
method is shown in Table 1. The correlation of factors
across the test events for this design is shown in
Table 2.

An exactly orthogonal series would have no nonzero
off-diagonal terms in the correlation matrix. The goal of
the optimization is to make these terms approximately
zero. The advantage of using an optimization technique
like simulated annealing is that constraints on the test
design can easily be added and optimization can proceed
exactly as before, only within the reduced set of feasible
designs. For example, the factors describing an impor-

tant operationally representative scenario can be con-
strained to occur a given number of times.

Importance of external validation
In a test program that relies heavily on modeling and

simulation, it is critical to guard against over-fitting the
model. The basic algorithm to avoid such over-fitting
is known as ‘‘model-test-model-test’’ (Cohen and
Rolph 1998). The final validation tests are outside
the scenarios which were used for parameter tuning.
Sequential design of experiments naturally provides the
framework for such an approach. The stopping rule in
a standard sequential design depends on evaluating the
predictive power of the simple empirical model using
the final additional test.

When a high-fidelity system performance model is
available the stopping rule should be modified to
depend on an external validation of the system
performance model as well as the more standard
stopping rule. The initial tests used to develop the
simple linear empirical model can also be used for
parameter tuning of the high-fidelity model and the
final test serves as an external validation of the high-
fidelity model as well.

Conclusions
High-fidelity system performance models along

with full-up system level test events incorporated into
a formal inference framework provide rigorous support
to decision makers in developing and acquiring modern
weapon systems of ever-increasing complexity. The
proposed framework for knowledge-based test plan-
ning and execution consists of four basic steps:

1. Identify significant factors and levels based on a
high-fidelity system performance model;

2. Use the model for prior distributions (context,
background knowledge) with which to analyze
full-up system level test outcomes;

3. Incorporate discoveries into product improve-
ments and improved performance model;

4. Evaluate sufficiency of testing based on predictive
power of high-fidelity system performance mod-
el, i.e., model-test-model-test.

Table 2. Factor cross-correlation matrix

TA TS TMDC IA TT EM

TA 1 0 0 0 0.2 0

TS 0 1 20.16667 0.16667 0 0.102062

TMDC 0 20.16667 1 20.16667 0 20.102062

IA 0 0.16667 20.16667 1 0 0.102062

TT 0.2 0 0 0 1 0

EM 0 0.102062 20.102062 0.102062 0 1

TA, target aspect; TS, target speed; TMDC, target movement duty cycle; IA, impact angle; TT, target type; EM, engagement mode.

Table 1. Approximately d-optimal test design

Test TA TS TMDC IA TT EM

1 360 20 0.1 15 1 1

2 360 20 0.9 75 21 21

3 180 4 0.9 15 21 1

4 360 20 0.9 15 21 21

5 180 4 0.9 15 1 1

6 180 20 0.9 75 1 1

7 180 4 0.9 15 1 21

8 180 20 0.9 75 21 1

9 360 4 0.1 75 1 1

10 180 4 0.1 75 21 21

TA, target aspect; TS, target speed; TMDC, target movement duty

cycle; IA, impact angle; TT, target type; EM, engagement mode.
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The exact mechanics of the approach presented in
this article are not critical. Any integrated method that
gives some measure of the marginal value of system-
level test events when sample sizes are small can
provide useful support to decision makers. This
support will begin to allow hard risk management
decisions about how much testing is sufficient to be
made in a more decision-theoretic framework.

The critical aspect of the approach is the knowledge
warehouse known as the system performance model.
The knowledge it contains at the same time informs
decision makers and test planners, and provides a
repository of validated knowledge from test conduc-
tors. The execution of a knowledge-based test program
supports decision makers with solid information about
test sufficiency and risk. Through improvements
incorporated into the product and its model, it ensures
that decisions made about the system are based on the
highest quality of information available. %
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