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Project Statement
• Evaluate the response/induced voltages on electrical 

systems due to radiated EM field environments
– Focus is on upset or damage of digital systems
– For fast transient or pulsed CW excitations at GHz frequencies

Antenna

Wire 
Substructure

Electronics
Package
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EMI/EMC Modeling Approach
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Tasks 1 Focus
Numerically model penetration and coupling of HPM 
and UWB sources into large-scale, complex 
structures 
– Employ frequency domain and time domain methods.
– Decompose structure into pieces

• Black boxes with pins/connectors 
• Cable bundles; 
• Cavities with apertures 
• Cavities containing cable bundles 
• Antennas as direct (front door) and out-of-band (back door) entry 

ports 
• Aperture with cable bundle passing through; 
• Aperture in cavity with cable bundle passing through; 
• Seams in surfaces; 
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First Year Effort
• Characterization of RF coupling into cavity structures using 

multilevel FMM (SIE) with
– Apertures 
– With cables

• Phenomenology  and shielding studies 
• Simplified Circuit characterizations for integration into 

Topology/BLT model
• Initiated development of hybrid finite element-boundary method

for general purpose analysis of enclosed RF circuits
Goal is to evaluate field responses at the chip pins 
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EMC is an old Problem, with new concerns
• High speed devices generate 

coupling and interference
– Radiation from chip surfaces 
– Conduction noise from signal ports
– Power-line conducting noise

• EMI from surrounding electronic 
environment.

• Cavity enclosures may cause 
reverberations that enhance 
interference, particularly at 
exposed wiring

• Intentional sources can cause 
significant high fields to disrupt 
logic functions
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Example Excitation with Pulse Train
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Analog 
Integrated
Circuit 
with pins 
connected
to circuit 
traces

Circuit 
elements 
eg. Filters, 
mixers 
oscillators.

Circuit 
elements 
eg. Filters, 
mixers 
oscillators.

Voutput

V+ V-

VSS
VDD

Ground

Impinging plane 
wave from the 
ambient 
environment

Circuit 
Substrate

Cavities can exhibit a resonance 
amplification of 10 to 20 dB 
amplification of the ambient radiation.

Amplification of signals can have a 
significant impact on circuits with 
Analog ICs and high frequency 
amplifiers.

Induced voltage fluctuations on 
ground, power supply and signal lines 
can change circuit devices 
performance.

Cavities Can Cause Amplification
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Measured Over-Moded Cavity

61 cm

61 cm

25.4 cm
y

x

z

Network
Analyzer

Port 2

Port 1
2 m

Probe inserted
at bottom of box

Measurement with
top plate on/off

Rect. Slot of size
5.2 x 1 cm to emulate
engine compartment
under 1.33 GHz plane 
wave illumination

Box has trapezoidal sides
to avoid some of the higher 
order modal effects.

Cavity is placed at the far field 
of reference horn antenna
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Measured Cavity
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• Measured data is Transmission S12 with the Horn Antenna connected to 
Port 2 and the field Probe  connected to Port 1 in dB.

• Measured with the top cover on and without the top cover.

• Absence of top cover avoids most of the higher order resonances.

Cover on Cover off

15 dB higher with cavity fully closed
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total

inc

E20log
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• Electric Field Shielding

EFS = (dB)

• Magnetic Field Shielding

MFS = (dB)

where E/Htotal is the total E/H field in the presence of the scattering object and E/Hinc is 
the incident E/H field in the absence of the scattering object.

• EFS and MFS are parameters to indicate the degree of coupling from external 
illumination to points within a cavity. Higher values indicate better shielding and thus 
weaker total field values.

• Ratio of the Stored Electric/Magnetic Energy within the volume of the cavity of the total 
fields to the incident fields.

• EFS and MFS are computed using the multi-level FMM code EMCAR.

total

inc

H20 log
H

−

Definition of Coupling Parameters
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MLFMM code Validation

• Rectangular slot in a 30cmx30cmx12cm cavity 
(slot size 20x3cm)
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Presence of wire through apertures increases EFS
Electric Field Shielding for the 2 wire configurations

Presence of wires changes significantly the shielding characteristic of a resonant 
metallic cavity. 

Bent and longer wire configurations couple more energy from external illumination 
into the metallic enclosure.

Increase in coupled energy due to wire penetrations poses a challenge to proper 
circuit device performance.
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Variation of EFS for different locations-1.5GHz

EFS distribution for 
square slot at 1.5 GHz
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What is Important?
• Cavity resonances
• Slot resonances
• Resonances of other substructures (wires, other arbitrary apertures, 

protrusions)
• Interactions between Cavity, Slot and Wire resonances
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Reducing Coupling: Shielding Wires
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Reducing Coupling: Plate Shielding
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Methods to Improve Shielding

Low cost shielding using wire grids across the aperture can reduce 
coupling by 5 to 20 dB over the frequency range around the slot and 
cavity resonance.

Using PEC plates to ‘shadow’ slots leads to a larger improvement of 5 
to 30 dB over the same frequency range.

Both approaches work on attenuating the incident wave and reducing 
the slot resonance so as to reduce EMC coupling.

Cavity resonance at 0.7 GHz acts to amplify the input signal by as 
much as 10-20dB.

Cavity resonance can be further attenuated by a sheet of dielectric 
within the cavity interior.
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Semi Analytical Cavity Analysis
Rectangular metallic cavity

Excitation wave

Arbitrary shaped slot

Dielectric layer Transmitted wave
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Dielectric layer

M
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I
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Why? To develop circuit models for incorporation into overall code 
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Port Analysis

Rectangular 
metallic cavity

Excitation wave
Arbitrary shaped slot

Dielectric layer
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How [Y] is derived?
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Rectangular metallic cavity
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Arbitrary shaped slot
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Antenna to Slot Coupling in Systems

 

Rectangular slot 
resonating at 0.7 
GHz located at 
the dashboard 

Plane of points 
within car hood 
evaluated for 
EFS 

Crossed Magnetic Dipole placed at the 
center of the antenna tray at car’s back

Slot

DashboardFront of Car
Slot is Resonating at 0.7 GHz
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T h e  lo c a t io n  o f  th e  
c r o s s e d  m a g n e t ic  
d ip o le  i s  o p t im iz e d  
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Overall Objective Function
Excitation is a pair of crossed Magnetic 

dipoles with orthogonal phase excitation at 
0.7 GHz (same as cavity).

Antenna location is to be optimized for a 
volume of points on the back of an 
automobile that minimizes the EM 
Coupling from the antenna to the 40 pins of 
a chip placed within a resonant cavity.

Resonant cavity at 0.7 GHz housing the 
electronic chip amplifies incident fields.

Different antenna locations can mitigate 
cavity modal excitation and reduce EM 
coupling. 

Design space bounds: -70 ≤ x ≤ 70,    

-500 ≤ y ≤ 0 and -80≤ z ≤ 48.57 

Optimization For EMC Applications: Minimize Coupling 
at Pre-Specified RF Circuit Location
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Take an initial 
Sample

Fit Kriging 
Models

Choose appropriate 
kriging coefficients

Create Infill 
Sampling Criteria

Optimize criteria 
using DIRECT

Predict next 
optimized iterate

Termination 
Criteria Met?

Stop 

Yes 

No 

Up date 
Kriging 
Models 

   

Analyzer Code such as 
MLFMM or FE-BI.   

Optimization Schemes such 
as SQP, GAs or SuperEGO 
with DIRECT on kriging 
surrogate modeling. 
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Convergence 
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Input   variable 
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Code   
C onvergence? 
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No – Check 
Mesh / 
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Ou t p ut Optimized  variable 
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Termination 
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Flow Model of the superEGO
Global Optimizer code

Optimization Algorithms

The superEGO optimizer continually looks at 
the kriging meta-model to guide the optimizer 
in evaluating promising points with potential to 
obtain a low objective function.

The next predicted design point is obtained 
through DIRECT to optimize an auxiliary model 
characterized by the choice of Infill sample 
criteria with kriging meta-modeling. 
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Automobile model has 26000 
unknowns, MLFMM code takes up 
310 MBytes of RAM and solves in 
slightly over 2 hours on an SGI 
platform.

Initial Kriging Model obtained 
from a sparse randomly generated 
vector of 18 data sampling points 
indicates a Response Surface with 
the presence of multiple local 
minima.

An Initial look at the suitability of the Kriging Metamodel and 
requirements of the MLFMM
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 Using the regional
Extreme Infill Sampling
Criteria Using the Mimimum 

ObjectiveFunction Infill 
Sampling Criteria 

Convergence Rate of the superEGO optimization algorithm

Region of local minimum 
Point

Optimizer found a global minimum solution within tens of iterations besides 
the initial sample size.  This is a significant improvement compared to using 
Genetic Algorithms.

Using the Regional Extreme Infill Sampling criteria, local-global optimization 
scheme forces optimizer to find local minimum.  Applying the Global 
optimization Infill scheme allows optimizer to find other global minimas.
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Final Optimized Antenna Position and Coupling Coefficient

Antenna location at the center of the automobile gives F(x,y,z) = 13.3025

Final Optimized Antenna position gives F(x,y,z) = 0.122057 (20.37 dB 
improvement compared to the center location) at the positions x = 24.19753 mm, y 
= -421.773 mm and z = -34.6448 mm.

Final kriging metamodel plots show a slightly modified Response Surface 
Modeling (RSM) with continual update of the kriging model at each optimization 
iteration.
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Accomplishments
• Phenomenology of cavity coupling
• Effects of wire penetrations and loading
• Simplified semi-analytical model for cavity
• Coupling in systems using general-purpose EMCAR code
• Optimization for coupling control in systems
Computational Tools
• MLFMM for coupling studies
• Hybrid (finite element, boundary/volume integrals) for modeling
realistic systems

Source
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Next Steps
• Complete development of the 

hybrid FE-BI code with various 
Green’s function domains.

• Further development of [Y] matrix 
model for integration

• Modeling of realistic boards 
within enclosures

Interconnect Mesh

Digital Board

Grid Array Package

Actual Interconnect


