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Abstract—In this paper, a fully Bayesian algorithm for endmember
extraction and abundance estimation for hyperspectral imagery is in-
troduced. Following the linear mixing model, each pixel spectrum of
the hyperspectral image is decomposed as a linear combination of pure
endmember spectra. The estimation of the unknown endmember spectra
and the corresponding abundances is conducted in a unified manner by
generating the posterior distribution of the unknown parameters under
a hierarchical Bayesian model. The proposed model accounts for non-
negativity and full-additivity constraints, and exploits the fact that the
endmember spectra lie on a lower dimensional space. A Gibbs algorithm
is proposed to generate samples distributed according to the posterior of
interest. Simulation results illustrate the accuracy of the proposed joint
Bayesian estimator.

I. INTRODUCTION

Over the last years, the spectral unmixing problem has been con-
sidered by many researchers. Spectral unmixing consists of decom-
posing an observed pixel spectrum into a collection of pure spectra,
usually referred to as endmembers, and estimating the proportions or
abundances of each material in the image pixels [1]. To describe the
mixture, the most frequently encountered model is the linear mixing
model (LMM) which gives a good approximation in the reflective
spectral domain ranging from 0.4µm to 2.5µm. It assumes that the
observed pixel spectrum is a weighted linear combination of the
endmember spectra.

Spectral unmixing has often been handled as a two-step procedure:
i) the endmember extraction step dedicated to the identification of
the macroscopic materials that are present in the observed scene and
ii) the inversion step which consists of estimating the proportions
of the materials previously identified. This paper proposes an al-
gorithm that estimates the endmember spectra and their respective
abundances jointly. This approach casts spectral unmixing as a blind
source separation (BSS) problem. The Bayesian model studied in
this paper uses a Gibbs sampling algorithm to efficiently solve the
constrained spectral unmixing problem without requiring the presence
of pure pixels in the hyperspectral image. In many works, Bayesian
estimation approaches have been adopted to solve BSS problems like
spectral unmixing. The Bayesian formulation allows one to directly
incorporate constraints into the model. These constraints include
sparsity [2]; non-negativity [3]; full additivity (sum-to-one constraint)
[4]. In this paper, prior distributions are proposed for the abundances
and endmember spectra to enforce the constraints inherent to the
hyperspectral mixing model. These constraints include non-negativity
and full-additivity of the abundance coefficients (as in [4]) and non-
negativity of the endmember spectra.

Moreover, the proposed joint spectral unmixing approach is able
to solve the endmember spectrum estimation problem directly on a
lower dimensional space within a Bayesian framework. We believe
that this is one of the principal factors leading to performance
improvements that we show in Section V. The problem of hyperpa-
rameter selection in our Bayesian model is circumvented by adopting

the hierarchical Bayesian approach of [4] that produces a parameter-
independent Bayesian posterior distribution for the endmember spec-
tra and abundances. To overcome the complexity of the full posterior
distribution, a Gibbs sampling strategy is derived to approximate
standard Bayesian estimators, e.g., the minimum mean squared error
(MMSE) estimator. Moreover, as the full posterior distribution of
all the unknown parameters is available, confidence intervals can be
easily computed. These measures allow one to quantify the accuracy
of the different estimates.

II. LINEAR MIXING MODEL AND PROBLEM STATEMENT

Consider P pixels of an hyperspectral image acquired in L spectral
bands. According to the linear mixing model (LMM), described for
instance in [1], the L-spectrum yp = [yp,1, . . . , yp,L]T of the pth
pixel (p = 1, . . . , P ) is assumed to be a linear combination of R
spectra mr corrupted by an additive Gaussian noise

yp =

R∑
r=1

mrap,r + np (1)

where mr = [mr,1, . . . ,mr,L]T denotes the spectrum of the rth
material, ap,r is the fraction of the rth material in the pth observation,
R is the number of materials, L is the number of available spectral
bands and P is the number of observations (pixels). Moreover, in
(1), np = [np,1, . . . , np,L]T is an additive noise sequence which is
assumed to be an independent and identically distributed (i.i.d.) zero-
mean Gaussian sequence with covariance matrix Σn = σ2IL, where
IL is the identity matrix of dimension L× L, i.e.,

np ∼ N (0L,Σn) . (2)

Finally, note that the model in (1) can be easily modified (see [5]
and [4]).

Due to physical considerations [1], the fraction vectors ap =
[ap,1, . . . , ap,R]T in (1) satisfy the following non-negativity and full-
additivity (or sum-to-one) constraints{

ap,r ≥ 0, ∀r = 1, . . . , R,∑R

r=1
ap,r = 1.

(3)

In other words, the p abundance vectors belong to the space

A =
{
a : ‖a‖1 = 1 and a � 0

}
(4)

where ‖·‖1 is the `1 norm defined as ‖x‖1 =
∑

i
|xi|, and a � 0

stands for the set of inequalities {ar ≥ 0}r=1,...,R. Moreover, the
endmember spectra component mr,l must satisfy the following non-
negativity constraints

mr,l ≥ 0, ∀r = 1, . . . , R, ∀l = 1, . . . , L. (5)

Considering all pixels, standard matrix notation yields Y =
MA + N where Y = [y1, . . . ,yP ], M = [m1, . . . ,mR],
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A = [a1, . . . ,aP ] and N = [n1, . . . ,nP ]. In this work, we propose
to estimate A and M from the noisy observations Y under the
constraints in (3) and (5).

III. BAYESIAN MODEL

A. Likelihood

The linear mixing model defined in (1) and the statistical properties
in (2) of the noise vector np result in a conditionally Gaussian
distribution for the observation of the pth pixel: yp|M ,ap, σ

2 ∼
N
(
Map, σ

2IL
)

. Assuming independence between the noise se-
quences np (p = 1, . . . , P ), the likelihood function of all the
observations Y is

f
(
Y
∣∣M ,A, σ2

)
=

P∏
p=1

(
1

2πσ2

)L
2

exp

[
−

∥∥yp −Map
∥∥2

2σ2

]
,

(6)
where ‖x‖ =

(
xTx

) 1
2 is the `2 norm.

B. Prior model for the endmember spectra

1) Dimensionality reduction: It is interesting to note that the
unobserved matrix X = MA = Y − N is rank deficient under
the linear model (1). Consequently, in the noise-free case, X can
be represented in a suitable lower-dimensional subset VK of RK

(R − 1 ≤ K ≤ L) without loss of information. As noted in [1],
dimensionality reduction is a common step of the spectral unmixing,
adopted by numerous endmember extraction algorithms (EEAs), such
as N-FINDR [6] or PPI [7]. Similarly, we propose to estimate the
projection tr (r = 1, . . . , R) of the endmember spectra mr in the
subspace VK . The identification of this subspace can be achieved
via a standard dimension reduction procedure. In the sequel, we
propose to define VK as the subspace spanned by K orthogonal axes
v1, . . . ,vK identified by a principal component analysis (PCA) on
the observations Y

VK = span (v1, . . . ,vK) . (7)

2) PCA projection: If D and V denote the diagonal matrix of the
K highest eigenvalues of the empirical covariance matrix and the
corresponding eigenvector matrix, respectively, the PCA projection
tr ∈ RK of the endmember spectrum mr ∈ RL is

tr = P (mr − ȳ) (8)

with P = D−
1
2V . Equivalently,

mr = Utr + ȳ (9)

with U = V TD
1
2 . Note that in the subspace VR−1 obtained for

K = R − 1, the vectors {tr}r=1,...,R form a simplex that standard
EEAs try to recover. In this paper, we estimate the vertices tr
(r = 1, . . . , R) of this simplex using a Bayesian approach. The
Bayesian prior distributions for the projections tr (r = 1, . . . , R)
are introduced in the following paragraph.

3) Prior distribution for the projected spectra: To ensure non-
negativity constraints (5) of the corresponding reconstructed L × 1
spectra mr , a conjugate multivariate Gaussian distribution (MGD)
NTr

(
er, s

2
rIK
)

truncated on the set Tr is chosen as prior distribution
for tr , assumed to be a priori independent. The set Tr ⊂ VK is
explicitly defined in [8] and has the following property

{ml,r ≥ 0, ∀l = 1, . . . , L} ⇔ {tr ∈ Tr} . (10)

This paper proposes to select the a priori mean vectors er (r =
1, . . . , R) as the projected spectra of pure components previously

identified by an EEA, e.g., N-FINDR. The variances s2r (r =
1, . . . , R) reflect the degree of confidence given to this prior infor-
mation. When no additional knowledge is available, these variances
are fixed to large values.

C. Abundance prior

For each observed pixel p, with the full additivity constraint in (3),
the abundance vectors ap (p = 1, . . . , P ) can be rewritten as

ap =

[
cp

ap,R

]
with cp =


ap,1

...

ap,R−1

 ,
and ap,R = 1−

∑R−1

r=1
ap,r . Following the model in [4], the priors

chosen for cp (p = 1, . . . , P ) are uniform distributions on the simplex
S defined by

S =
{
cp; ‖cp‖1 ≤ 1 and cp � 0

}
. (11)

Under the assumption of statistical independence between the abun-
dance vectors cp (p = 1, . . . , P ), the full prior distribution for partial
abundance matrix C = [c1, . . . , cP ]T can be written

f (C) ∝
P∏
p=1

1S (cp) . (12)

As noted in [4], the uniform prior distribution reflects a lack of a
priori knowledge about the abundance vector. However, as demon-
strated in [8], among two a priori equiprobable solutions of the
BSS problem, the uniform prior allows one to favor a posteriori
the solution corresponding to the polytope in the projection subset
VK having smallest volume.

D. Noise variance prior

A conjugate inverse-gamma distribution is chosen as prior for σ2

σ2 |ν, γ ∼ IG
(
ν

2
,
γ

2

)
, (13)

where the hyperparameter ν will be fixed to ν = 2 and γ will be
a random and adjustable hyperparameter, whose prior distribution is
defined below.

E. Prior distribution for hyperparameter γ

The prior for γ is a non-informative Jeffreys’ prior which reflects
the lack of knowledge regarding this hyperparameter

f (γ) ∝ 1

γ
1R+ (γ) . (14)

F. Posterior distribution

The posterior distribution of the unknown parameter vector θ ={
C,T , σ2

}
can be computed from marginalization using the follow-

ing hierarchical structure

f(θ|Y ) =

∫
f(θ, γ|Y )dγ ∝

∫
f(Y |θ)f(θ|γ)f(γ)dγ (15)

where f
(
Y
∣∣θ) and f (γ) are defined in (6) and (14) respectively.

Moreover, under the assumption of a priori independence between
C, T and σ2, the following result can be obtained

f
(
θ
∣∣γ) = f (C) f

(
T | e, s2

)
f
(
σ2 | ν, γ

)
(16)



where f (C), f
(
T | e, s2

)
and f

(
σ2 | ν, γ

)
have been previously

defined. This hierarchical structure allows one to integrate out the
hyperparameter γ from the joint distribution f (θ, γ|Y ), yielding

f
(
C,T , σ2

∣∣Y ) ∝ P∏
p=1

1S (cp)

×
R∏
r=1

exp

[
−‖tr − er‖

2

2s2r

]
1Tr (tr)

×
P∏
p=1

[(
1

σ2

)L
2 +1

exp

(
−

∥∥yp − (UT + ȳ1TR
)
ap
∥∥2

2σ2

)]
(17)

where 1R = [1, . . . , 1]T ∈ RR. Deriving the Bayesian estimators
(e.g., MMSE or MAP) from the posterior distribution in (17) remains
intractable. In such case, it is very common to use Markov chain
Monte Carlo (MCMC) methods to generate samples asymptotically
distributed according to the posterior distribution. The Bayesian
estimators can then be approximated using these samples. The next
section studies a Gibbs sampling strategy allowing one to generate
samples distributed according to (17).

IV. GIBBS SAMPLER

Random samples (denoted by ·(t) where t is the iteration index)
can be drawn from f

(
C,T , σ2 | Y

)
using a Gibbs sampler [9]. This

MCMC technique consists of generating samples
{
C(t),T (t),σ2(t)

}
distributed according to the conditional posterior distributions of each
parameter.

A. Sampling from f
(
C|T , σ2,Y

)
Straightforward computations yield for each observation

f
(
cp
∣∣T , σ2,yp

)
∝ exp

[
−

(cp − υp)T Σ−1
p (cp − υp)

2

]
1S (cp) , (18)

where
Σp =

[(
M -R −mR1TR−1

)T
Σ−1

n

(
M -R −mR1TR−1

)]−1

,

υp = Σp

[(
M -R −mR1TR−1

)T
Σ−1

n

(
yp −mR

)]
,

(19)
with Σ−1

n = 1
σ2 IL and where M -R denotes the matrix M whose

Rth column has been removed. As a consequence, cp
∣∣T , σ2,yp is

distributed according to an MGD truncated on the simplex S in (11)

cp
∣∣T , σ2,yp ∼ NS (υp,Σp) . (20)

Note that samples can be drawn from an MGD truncated on a simplex
using efficient Monte Carlo simulation strategies described in [10].

B. Sampling from f
(
T |C, σ2,Y

)
Define T -r as the matrix T whose rth column has been removed.

Then the conditional posterior distribution of tr (r = 1, . . . , R) is

f
(
tr|T -r, cr, σ

2,Y
)
∝

exp
[
−1

2
(tr − τ r)T Λ−1

r (tr − τ r)
]

1Tr (tr) , (21)

TABLE I
ABUNDANCE MEANS AND VARIANCES OF EACH ENDMEMBER IN EACH

REGION OF THE 100× 100 HYPERSPECTRAL IMAGE.

Endm.
Region #1 Region #2 Region #3

mean var. mean var. mean var.
#1 0.60 0.01 0.25 0.01 0.25 0.02

#2 0.20 0.02 0.50 0.01 0.15 0.005

#3 0.20 0.01 0.25 0.02 0.60 0.02

with 
Λr =

[
P∑
p=1

a2
p,rU

TΣ−1
n U +

1

s2r
IK

]−1

,

τ r = Λr

[
P∑
p=1

ap,rU
TΣ−1

n εp,r +
1

s2r
er

]
,

(22)

and
εp,r = yp − ap,rȳ −

∑
j 6=r

ap,jmj . (23)

Note thatmj = Utj+ȳ . As a consequence, the posterior distribution
of tr is the following truncated MGD

tr | T -r, cr, σ
2,Y ∼ NTr (τ r,Λr) . (24)

C. Sampling from f
(
σ2|C,T ,Y

)
The conditional distribution of σ2|C,T ,Y is the following inverse

Gamma distribution:

σ2|C,T ,Y ∼ IG

(
PL

2
,

1

2

P∑
p=1

∥∥yp −Map
∥∥2

)
. (25)

V. SIMULATIONS ON SYNTHETIC DATA

To illustrate the accuracy of the proposed algorithm, simulations
are conducted on a 100 × 100 synthetic image. This hyperspectral
image is composed of three different regions with R = 3 pure
materials representative of a suburban scene: construction concrete,
green grass and red brick. The spectra of these endmembers have
been extracted from the spectral libraries distributed with the ENVI
software [11] and are represented in Fig. 1 (top, black lines). The
reflectances are observed in L = 413 spectral bands ranging from
0.4µm to 2.5µm. These R = 3 components have been mixed with
proportions that have been randomly generated according to MGDs
truncated on the simplex S with means and variances reported in
Table I. The generated abundance maps have been depicted in Fig. 2
(top) in gray scale where a white (resp. black) pixel stands for the
presence (resp. absence) of the material. The signal-to-noise ratio has
been tuned to SNRdB = 15dB.

The resulting hyperspectral data have been unmixed by the pro-
posed algorithm. First, the space VK in (7) has been identified by
PCA as discussed in paragraph III-B2. The hidden mean vectors er
(r = 1, . . . , R) of the normal distributions introduced in paragraph
(III-B) have been chosen as the PCA projections of endmembers
previously identified by N-FINDR. The hidden variances s2r have
all been chosen equal to s21 = . . . = s2R = 50 to obtain vague
priors (i.e. large variances). The Gibbs sampler has been run with
NMC = 1300 iterations, including Nbi = 300 burn-in iterations. The
MMSE estimates of the abundance vectors ap (p = 1, . . . , P ) and
the projected spectra tr (r = 1, . . . , R) have been approximated
by computing empirical averages over the last computed outputs
of the sampler. The corresponding endmember spectra estimated



Fig. 1. Actual endmembers (black lines), endmembers estimated by N-FINDR (blue lines), endmembers estimated by VCA (green lines) and endmembers
estimated by proposed approach (red lines).

by the proposed algorithm are depicted in Fig. 1 (top, red lines).
The proposed algorithm clearly outperforms N-FINDR and VCA, as
shown in Fig. 1.

Moreover, the MMSE estimated abundance maps are depicted in
Fig. 2 (bottom) and are clearly in good agreement with the simulated
maps (top). Note that the proposed Bayesian estimation provides the
joint posterior distribution of the unknown parameters. Specifically,
this posterior distribution allows one to derive confidence intervals
regarding the parameters of interest.

Fig. 2. Top: actual endmember abundance maps. Bottom: estimated end-
member abundance maps.

VI. CONCLUSIONS

This paper addressed the unsupervised unmixing problem of hy-
perspectral images, i.e. estimating the endmember spectra in the
observed scene and their respective abundances for each pixel. A
Bayesian model as well as an MCMC algorithm was introduced,
based on appropriate priors for the abundance vectors to ensure non-
negativity and sum-to-one constraints inherent to the linear mixing
model. Instead of estimating the endmember spectral signatures in
the observation space, we proposed to estimate their projections
onto a suitable subspace. In this subspace, these projections were
assigned priors that satisfy positivity constraints on the reconstructed
endmember spectra. A Gibbs sampling scheme was proposed to

generate samples asymptotically distributed according to this pos-
terior. The available samples were then used to approximate the
Bayesian estimators for the different parameters of interest. Results of
simulations conducted on synthetic hyperspectral images illustrated
the accuracy of the proposed Bayesian method when compared with
other algorithms from the literature.
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