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ABSTRACT

Cloud-type classification based on multispectral satellite imagery data has been widely researched and

demonstrated to be useful for distinguishing a variety of classes using a wide range of methods. The research

described here is a comparison of the classifier output from two very different algorithms applied to Geo-

stationary Operational Environmental Satellite (GOES) data over the course of one year. The first algorithm

employs spectral channel thresholding and additional physically based tests. The second algorithm was

developed through a supervised learning method with characteristic features of expertly labeled image

samples used as training data for a 1-nearest-neighbor classification. The latter’s ability to identify classes is

also based in physics, but those relationships are embedded implicitly within the algorithm. A pixel-to-pixel

comparison analysis was done for hourly daytime scenes within a region in the northeastern Pacific Ocean.

Considerable agreement was found in this analysis, with many of the mismatches or disagreements providing

insight to the strengths and limitations of each classifier. Depending upon user needs, a rule-based or other

postprocessing system that combines the output from the two algorithms could provide the most reliable

cloud-type classification.

1. Introduction

Automated cloud-type classification in satellite im-

agery is a valuable resource in both the operational and

research communities. Cloud classifier output provides

useful information to researchers and operational users

alike. In an instantaneous sense, knowledge of cloud

types in a given scene improves the retrieval of cloud

parameters (e.g., by providing a priori information on

liquid/ice/mixed phase). When analyzed over a long time

period this knowledge contributes to the analysis of ra-

diation and heat budgets, which are impacted differently

depending upon the cloud types (Li et al. 2007). Owing

to the importance of clouds in climate feedback pro-

cesses, an improved understanding of cloud-type distri-

bution and its change over time would benefit climate

research (Wang and Sassen, 2001). Important operational

uses of cloud-type classification include the identifica-

tion of convective clouds over oceanic regions, where

observational data are sparse (Donovan et al. 2008). In

addition to the identification of convective clouds, diag-

nosing areas of fog/stratus and supercooled liquid clouds

would positively impact aviation route planning.

To determine the cloud type of a pixel or group of

pixels in satellite imagery, an appropriate classification

algorithm must be selected. Algorithm choice is driven

in part by the cloud types of interest and the intended

use(s) of the output. These algorithms can, in general,

be grouped into theoretical/physical (explicit physics,
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hereinafter referred to as EP) or empirical/statistical

(implicit physics, hereinafter referred to as IP) methods.

Recent research in the related areas of scene classifi-

cation and cloud property retrievals is summarized in

the next section.

Validation of an individual classifier applied to real-

time or unlabeled testing data is difficult given the lack

of independent validation data. The objectives of the

research described here are to validate and identify the

strengths and limitations of two classifiers, one based on

EP methods and the other based on IP methods, through

comparison of their output. Geostationary Operational

Environmental Satellite-11 (GOES-11; 1358W lon) data

over a 1-yr period serve as the dataset. This comparison

requires a reconciliation of the various cloud categories

defined in each of the algorithms. Although neither clas-

sifier output should be considered to be ‘‘truth,’’ classifier

agreement can enhance the confidence in the output of

both classifiers. The purpose of this research is to doc-

ument agreements and to explain the disagreements

between the two algorithms. Future research will apply

this analysis to the refinement of current algorithms or

development of new ones.

The EP cloud-type algorithm is described in section 3,

and the IP algorithm is described in section 4. Com-

parison results and analysis are presented in section 5,

followed by a summary discussion in section 6.

2. Related research

Many examples of both EP and IP approaches, ap-

plied to various sensor data for a variety of classification

problems, can be found in the research literature. The

EP algorithms relate the spectral and spatial contrasts

observed in multispectral imagery to characteristics of

various cloud types. For example, the spatial variation in

visible reflectance or infrared brightness temperature

provides textural information for differentiating, for ex-

ample, stratus and stratocumulus cloud fields. Absolute

thresholds in temperature or reflectance provide infor-

mation on the height and/or opacity of the cloud that help

to relate it to a classification. Differential optical prop-

erties can also be exploited, such as the ‘‘split window’’

difference for detecting thin cirrus clouds. Coupling that

information with visible reflectance provides a means to

detect thin cirrus overlapping lower-level cloud (Heidinger

and Pavolonis 2005). Still other channel combinations

enable the distinction among liquid, ice, and super-

cooled or mixed phase cloud-top conditions. These and

other techniques as applied to EP cloud masking and

typing are described by Pavolonis and Heidinger (2004).

Research has also been done on testing the capability

of the Visible/Infrared Imager Radiometer Suite (VIIRS)

cloud mask algorithm as applied to Moderate Resolution

Imaging Spectroradiometer (MODIS) data (Hutchison

et al. 2005). The MODIS cloud mask is discussed in

Ackerman et al. (2008). Using a grouped threshold ap-

proach in addition to the application of radiative transfer

modeling, cloud detection and classification algorithms

were developed for Advanced Very High Resolution

Radiometer (AVHRR) data in Dybbroe et al. (2005).

Earlier work applying a grouped threshold method, with

the aid of radiative transfer calculations, to AVHRR

scene identification is discussed by Baum and Trepte

(1999). Wang and Sassen (2001) describe a physically

based algorithm developed and applied to ground-based

remote sensors. Cloud type and macrophysical cloud

properties were identified. Directly related to this re-

search, cloud property retrieval algorithms from GOES

data are described in Mitrescu et al. (2006).

Machine learning techniques have been applied to

various image classification problems for many years.

A majority of these classification tasks are approached

as supervised learning problems, in which previously

classified samples from a historical dataset are repre-

sented by a characteristic feature vector and serve as a

set of training samples. Mazzoni et al. (2007) apply a

supervised learning technique in the form of support

vector machines to scene classification within Multiangle

Imaging Spectroradiometer (MISR) data. Baldwin et al.

(2005) apply a nearest-neighbor algorithm to the clas-

sification of rainfall systems in radar data. The training

sets were class labeled using cluster analysis, an unsu-

pervised learning method, as opposed to being manually

labeled. Parikh et al. (1997) apply neural networks, ge-

netic algorithms, and statistical methods to the recognition

and tracking of midlatitude cloud systems in cloud-top

pressure datasets. Baum et al. (1997) use labeled AVHRR

samples to train a fuzzy logic cloud classifier.

Classification and retrieval schemes have also been

developed using a combination of EP and IP. Oceanic

convective cloud diagnoses are performed using a fu-

sion of output from a 1-nearest-neighbor cloud classifier

(Bankert and Wade 2007) and a thresholding technique

for deep convection (Schmetz et al. 1997; Mosher 2002)

to produce an enhanced product (Donovan et al. 2008).

Li et al. (2007) compare different satellite sensors (present

and future) in cloud classification using the MODIS cloud

mask as the initial classification for a maximum likelihood

classification procedure (unsupervised learning). Seemann

et al. (2003) apply a statistical retrieval algorithm in

combination with a nonlinear physical retrieval algo-

rithm to MODIS data in the retrieval of atmospheric

temperature and moisture distribution, total column

ozone, and surface skin temperature. Fouilloux and Ia-

quinta (1998) present an AVHRR cloud classification
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algorithm based on physical and textural properties used

in combination with neural networks for the extraction of

cloud optical thickness and droplet effective radius.

3. Cloud-type algorithm—Explicit physics

Based on the research described in Pavolonis et al.

(2005), Pavolonis and Heidinger (2004), and Mitrescu

et al. (2006), an EP algorithm to determine the cloud

type of a given cloudy pixel in GOES imagery is de-

veloped. This EP classifier provides a front-end filter

for locating and identifying the appropriate cloud-top-

properties retrieval algorithm. Using a series of thresh-

olding tests on all five GOES imager channels, each pixel

is assigned one of the cloud types listed in Table 1. Pixels

classified as partly cloudy are ignored for this study. The

algorithm was incorporated into the Naval Research

Laboratory (NRL) automated processing system and

coupled to the Navy Operational Global Atmospheric

Prediction System for auxiliary data requirements.

Using a cloud mask algorithm (Heidinger 2004) that

includes spatial uniformity information, a pixel is first

determined to be clear (no cloud), partly cloudy, or

cloudy. For cloudy pixels, a test for semitransparent ice

cloud overlapping liquid water droplet cloud (Pavolonis

and Heidinger 2004) is performed. This test checks

the behavior of the visible channel reflectance and the

11- and 12-mm brightness temperature difference (split

window). A cirrus (Ci) test for transmissive (optically

thin) ice clouds, as described in Pavolonis et al. (2005), is

also applied. Both the overlapping test and thin cirrus

test are designed to minimize the false alarms of each

type; therefore, one would expect occasional misclassi-

fications when Ci or overlapping clouds are present. If

both of these tests fail, the appropriate (as determined

by the 11-mm channel brightness temperature) cloud

phase tests for 1) liquid water—brightness temperature

greater than 273 K, 2) supercooled water or mixed

phase—composed entirely of supercooled water drop-

lets or both ice and supercooled, and 3) glaciated

(optically thick ice) clouds—entirely ice crystals or gla-

ciated tops (e.g., deep convection)—are applied and the

pixel’s cloud type is assigned.

4. GOES cloud classifier—Implicit physics

Using a supervised learning method that was first ap-

plied to AVHRR data (Tag et al. 2000), an IP cloud

classifier has been developed and further refined for

application to GOES data (Bankert and Wade 2007). A

training dataset is established through independent ex-

pert agreement of thousands of labeled 16 3 16 pixel

samples. The classes used by the experts are listed in

Table 2. In addition to the imagery, the experts had

synoptic weather charts and other data available to assist

in the class assignment of each training sample. General

cloud identification is one use of the classifier, but more

specific or application-driven uses are possible. The IP

cloud classifier is currently being used for an oceanic

convective diagnosis and nowcasting system (Kessinger

et al. 2009). Other potential uses include snow/cloud de-

lineation and low-cloud or thin cirrus detection, depend-

ing upon any given user’s specific needs or application.

Each expert-labeled training set sample is represented

by a vector of characteristic features computed or ex-

tracted from each spectral channel with a final subset

of features (Bankert and Wade 2007) chosen through

a feature selection routine (Bankert and Aha 1996).

Various training sets were established, differentiated

by satellite (GOES-East or GOES-West), sea or land,

and daytime or nighttime scenes. For this research,

GOES-West land day and GOES-West sea day training

sets are used within a 1-nearest-neighbor classifier. Day-

time observations offer an increased number of classes

because of the availability of visible-band data. The

minimum distance in feature space between an unclas-

sified sample presented to the classifier and the training

data samples is found, and the class label of the nearest-

neighbor training sample is subsequently assigned to

each pixel in the unclassified sample.

TABLE 1. Cloud type outputs given by the ‘‘explicit physics’’

classification algorithm.

Clear (Clr)

Partly cloudy

Liquid water (Liq)

Supercooled water or mixed phase (Mix)

Glaciated–opaque ice (Glac)

Cirrus (Ci)

Cloud overlap (OL)

TABLE 2. Classes used in cloud classifier (implicit physics).

Stratus (St)

Stratocumulus (Sc)

Cumulus (Cu)

Altocumulus (Ac)

Altostratus (As)

Cirrus (Ci)

Cirrocumulus (Cc)

Cirrostratus (Cs)

Cumulus congestus (CuC)

Cumulonimbus (Cb)

CsAn—Cs near turret in thunderstorm; more closely related to

deep convection than ‘‘garden variety’’ Cs

Clear (Clr)

Ground snow (Sn)

Haze (Hz)

Sun glint (Sg)
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As described in Tag et al. (2000), classifications of

overlapping boxes (a 16 3 16 pixel window is applied

every 8 pixels) within each image are performed. Each

image pixel in a given 16 3 16 pixel box is assigned

the same class, resulting in every pixel being classified

four times (excluding image edges). The majority class

is assigned (ties broken randomly) to each pixel, fol-

lowed by a postprocessing routine that applies conser-

vative measures to check the classification validity of

each pixel. The use of texture measures within the fea-

ture set and the use of overlapping boxes help to over-

come some of the limitations associated with pixel-based

classifications and provide a more robust classification.

Given the class types used in this IP algorithm, single

pixel spectral information alone would not have provided

satisfactory results. Because each box is assigned a spe-

cific class, no ‘‘multiple,’’ ‘‘overlapping,’’ or ‘‘unknown’’

class is used. For this analysis, pixels classified as ground

snow, haze, and sun glint are ignored.

5. Algorithm comparison analysis

The EP and IP algorithms were applied to hourly

daytime GOES-11 data for a 1-yr period (from October

2006 to October 2007) in the northeastern Pacific Ocean

(Fig. 1). Both algorithms define a pixel as daytime if the

solar zenith angle is below a specified threshold. To

simplify the pixel comparison between the two classi-

fiers, the IP classes are combined to form a set of classes

that match the EP cloud classes. This clustering of classes

is summarized in Table 3. Note that no overlapping

cloud class is possible with the IP algorithm. Because

the method and criteria used to define the classes for

each classifier are different, these clusters are not per-

fect matches for all pixels. However, analysis of the

comparisons should provide an indication as to whether

disagreements are a result of algorithm limitations, class

definitions, or a combination of the two.

More than 1.4 billion classified pixel pairs (from 4295

GOES-11 images) were compared over the year-long

test period. A percentage distribution of all possible

TABLE 3. The IP class clusters used for comparisons with

EP cloud types.

Liquid water

Stratus (St)

Stratocumulus (Sc)

Cumulus (Cu)

Mixed phase/supercooled water

Altocumulus (Ac)

Altostratus (As)

Cumulus congestus (CuC)

Glaciated

Cirrocumulus (Cc)

Cirrostratus (Cs)

Cumulonimbus (Cb)

CsAn

Clear (Clr)—not combined

Cirrus (Ci)—not combined

FIG. 1. GOES-11 visible image depicting the region used for the comparison study.
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combinations for classifications within the two classifiers

is presented in Fig. 2a. Most of the higher percentages

(greater than 2% of the total pixels) of mismatches or

disagreements occurred with pixels classified by the EP

algorithm as either cirrus (Ci) or overlap (OL). The lack

of an OL class in the IP classifier is an obvious expla-

nation for this part of the distribution. A higher total

percentage of Ci samples in the EP algorithm classifi-

cations (14.9%), relative to the IP classifier (7.3%), is a

result of limitations in the IP algorithm and will be

discussed later. To get a more direct comparison on the

‘‘cloud climatology’’ for this region produced by each

algorithm, all pixels classified as OL by EP are removed

from the distribution matrix to produce the same set of

classes for each algorithm and the probability distribu-

tion is recomputed. These results are presented in Fig. 2b,

with total percentages for each class shown in Fig. 3.

The IP classifier has a higher preference for liquid and

glaciated clouds, whereas the EP algorithm prefers

mixed (supercooled water droplets) and Ci clouds as

compared with the IP classifier. The discrepancy in

the number of Ci samples between the two algorithms

stands out.

Other summaries of the pixel-to-pixel comparisons

over the entire dataset can be found in Figs. 4a and 4b.

The percent distributions of all pixels over the entire

year within a specific EP cloud class and the coincident

IP cloud class (as defined in Table 3) are displayed in

Fig. 4a. For example, 57.2% of the pixels classified as

mixed phase or supercooled water by the EP algorithm

were classified as one of the liquid IP cloud classes.

Figure 4b is a graph of the percent distributions within

an IP class and the coincident EP cloud type.

As evident in Fig. 4, a considerable amount of agree-

ment exists between the EP and IP classifiers. A signifi-

cant exception is the high percentage of pixels classified

as supercooled (or mixed) by the EP algorithm and as

one of the liquid water cloud classes by the IP algorithm.

A discussion for that specific disagreement follows be-

low. The most notable agreements, with the highest

percentages, are within the clear (no cloud) and liquid

water cloud classes, which also have the highest fre-

quency of occurrence within the entire dataset (Fig. 2).

Although classifier agreement increases confidence in

each classifier output, some of the disagreements are a

result of the different original class compositions and how

those classes were defined. Therefore, neither classifier

may actually be in error for certain situations. A further

analysis of the results, along with knowledge of each al-

gorithm’s strengths and limitations, led to the following

observations for specific notable disagreements:

FIG. 2. (a) Percent frequency of occurrence, over entire dataset,

of each possible pixel classification combination for the two algo-

rithms (EP and IP). (b) As in (a) after removing all OL samples.

FIG. 3. Percentage distribution of total pixels for the classes within

each classifier, disregarding OL pixels.
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1) IP 5 liquid (St, Sc, Cu) and EP 5 supercooled (or

mixed): Greater than one-half of the EP supercooled

pixels were paired with IP liquid cloud classifica-

tions. Some cases reflect a known bias of EP toward

higher supercooled water or mixed phase type. The

frequent occurrence of clouds generated in cold air

masses that pass over the Pacific results in most of

these mismatches. Figure 5 is presented as an exam-

ple. The cloud tops are too cold to meet the threshold

for liquid clouds in the EP algorithm (Fig. 5b).

Physics allows for these clouds to be composed of

liquid water droplets, but in a supercooled state. The

training set of the IP classifier (Fig. 5a) contains

similar cold-air cloud samples that were classified as

Cu and Sc by the experts because of the estimated

cloud height. Therefore, based on the class defini-

tions for each algorithm, no misclassification occurs

in either classifier. Similar to this situation are pixels

classified as ‘‘mixed’’ by IP and ‘‘glaciated’’ by EP.

These pixels could be actual midlevel atmosphere

clouds (defined as As and Ac within the IP classifier)

with glaciated or very cold tops. Less frequent is that

this situation could be a result of very thin Ci over-

lapping a low cloud deck (i.e., the OL cloud type).

The thin Ci signal is missed by the IP classifier and

the test for OL cloud type fails in the EP algorithm,

most likely because of the split-window threshold

not being exceeded. The pixel is then classified by

EP as supercooled water.

2) IP 5 mixed (As or Ac) and EP 5 overlap: The IP

algorithm does not output an OL class; therefore, ac-

tual OL pixels are being classified as As or Ac (Fig. 5a;

white oval) with signals from both low cloud and

overlying Ci being used to give a mixed phase clas-

sification as found in the nearest-neighbor training

data. In Fig. 5 (white oval), thin high clouds are

streaming over the low clouds associated with the

front.

3) IP 5 liquid and EP 5 Ci: Two aspects of the IP al-

gorithm negatively affect its ability to classify Ci cor-

rectly. Either the classification assignment method (in

which all pixels in a given box are classified as the

same class) or the postprocessing check of IR bright-

ness temperature for initially classified Ci samples

(performed to lower the number of Ci false alarms)

leads to a misclassification in the IP. Also, these could

be OL pixels that are missed by both methods (see

Fig. 6: area enclosed by black oval). Here the OL test

fails in the EP algorithm but the Ci test confirms the

presence of thin high clouds (e.g., Fig. 6b). For this

type of disagreement, based on either reasoning, one

would expect Ci to be present in the pixel.

4) IP 5 mixed and EP 5 Ci: Examples found in the

dataset imply that both classifiers are missing OL

type for this situation. The IP algorithm is getting

signals from both types (e.g., Fig. 6a; white oval) and

classifying the pixel as mixed phase (As or Ac), and

the OL test fails and the Ci test passes in the EP

algorithm (e.g., Fig. 6b; white oval).

5) IP 5 Ci and EP 5 supercooled (or mixed): Although

not nearly as prevalent as the opposite situation

(observation type 4), Ci (or OL type) is missed by the

EP classifier but Ci is detected by the IP classifier.

FIG. 4. (a) Percent distribution of pixels within each EP cloud

type as classified by the IP classifier; EP axis columns sum to

;100%. (b) Percent distribution of pixels within each IP cloud class

as classified by the EP classifier; IP axis columns sum to ;100%.
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Actual OL could also be misclassified as Ci by the IP

classifier. Figure 7a (area within black oval) provides

an example in which an overlapping cloud situation is

misclassified as Ci by IP (which has no OL class) and

the same area in Fig. 7b is classified as supercooled

water or mixed phase by EP. Again, regardless of

whether the actual classification is Ci or OL, thin high

clouds are known to be present in the pixel.

6) IP 5 clear and EP 5 liquid: The IP algorithm can

miss thin low-cloud pixels near the terminator (high

solar zenith angle) resulting in a clear (no cloud)

classification. In some instances, the IP postprocess-

ing check (for the minimum visible channel albedo

threshold for cloud detection) can change an original

liquid cloud class to clear or there could be low thin

clouds misclassified as clear (e.g., Fig. 8a; black oval).

7) IP 5 Glac and EP5 Ci or OL: These pixel pair clas-

sification outputs are most likely the result of class

definitions (particularly with regard to optical thick-

ness for Ci), lack of OL class in IP, and classifier

design rather than misclassifications. Of interest is

that more pixels classified by the IP algorithm as cir-

rostratus and cirrocumulus were paired with EP clas-

sification of OL than Glac, whereas pixels classified by

IP as cumulonimbus and CsAn (see Table 2) had a

higher frequency pairing with Glac than OL. These

distributions are indicative of the optical thickness of

the clouds (e.g., manifesting in magnitude of visible

reflectance) as used indirectly in the class definitions.

6. Discussion

In the ideal case, the validation of a cloud classification

algorithm would involve a truth dataset of cloud types to

match against the classifier output. The truth dataset

could be constructed from a satellite interpretation

FIG. 5. Example case (1700 UTC 16 Apr 2007) of (a) IP classification of low clouds (St, Sc, and Cu; blue colors) and (b) EP classification

of supercooled (mixed) clouds (green) for the same pixels, mainly in cold air behind the front. (c) GOES-11 visible image and (d) IR

image are also provided for reference.
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expert’s analysis and/or through further consensus with

more specialized satellite observations [e.g., active sen-

sors such as CloudSat and Cloud–Aerosol Lidar and In-

frared Pathfinder Satellite Observation (CALIPSO)].

Although developing truth data was not practical and no

other observational datasets were available for validating

the classifiers in the current study, comparing the output

of each classifier with knowledge of their respective

strengths and limitations leads to a more complete un-

derstanding of performance. Future efforts, especially

those with a more limited time period and areal cover-

age, connected with field campaign observations will

provide opportunities along these lines.

Many of the classifier disagreements, as noted in this

study, are a result of the lack of an OL cloud class in the

IP algorithm and/or missed OL cloud types in the EP

algorithm. By enlisting active sensor data (CloudSat and

CALIPSO), adding OL samples to IP training data, and,

if necessary, developing new discriminating features, it

is possible to improve the IP classifier performance in

these situations. Alternatively, a postprocessing check on

specific pixels (e.g., As and Ac pixels) to determine if an

overlapping cloud situation exists could also be im-

plemented. For the EP algorithm, an adjustment to the OL

test, which is designed to minimize false alarms, would

lower the frequency of misses by this classifier. Again, such

adjustments may enlist other observing systems such as

CloudSat, CALIPSO, or the 1.38-mm band on MODIS.

These potential improvement examples to each algorithm

were only revealed through the current comparisons.

A problem with both classifiers—in particular, in the

IP classifier—is the misclassification of actual Ci pixels

because both algorithms are designed conservatively to

minimize the number of false alarms of Ci. Slight modi-

fications could be made to either or both Ci tests (post-

processing part of the IP algorithm) to lower the number

of misclassifications. Modifications should be applied

such that false alarms are not significantly increased.

FIG. 6. The 1900 UTC 27 Mar 2007 (a) IP classification, (b) EP classification with (c) GOES-11 visible channel and (d) IR channel images.
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Development of a hybrid cloud classification algo-

rithm based on both the IP and EP algorithms would

also overcome the OL and Ci problems in addition to

other limitations. This ‘‘classification adjustment’’ al-

gorithm could take the form of a rule set applied to each

pixel. Pixels that have agreement in class label would be

unchanged, with specific rules applied to those pixels in

disagreement. For example, if IP assigns a mixed-phase

class and EP is OL, the pixel is classified as OL (rule

determined through this comparison research). Another

example would be that if a pixel is assigned a mixed

phase class from the IP algorithm and Ci from the EP

algorithm the pixel is given a final classification of OL.

Because of the possibility of more than one explanation

for a specific disagreement, other rules or threshold

checks would be necessary. User needs and knowledge

depth of classifier limitations would ultimately aid in

determining whether just one of the individual classi-

fiers was sufficient or whether a customized combina-

tion of the two algorithms should be applied.
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