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1 Introduction

Microcalcification detection is the hallmark of mammography as a breast cancer screening
modality. For technical reasons, ultrasonic detection of all mammographically-visible micro-
calcifications has been problematic. In clinical ultrasound, high frequencies must be used
to resolve microcalcifications below 200 micrometers. Unfortunately, ultrasonics above 10
MHz suffer from appreciable attenuation in soft tissues, and depth of penetration is limited.
Transmission diffraction tomography, while well-suited for the geometry of the breast, is
inherently insensitive to scattering caused by small, hard inhomogeneities. A more general
form of acoustic inverse scattering is therefore needed for microcalcification detection and
localization by ultrasound. We find rationale in the advanced scalar inverse scattering the-
ory developed by Colton, Kirsch, and others in the RADAR community that can determine
the shape of scatterers with size on the order of the wavelength. In addition to size and
number, the morphology of breast microcalcifications is an important diagnostic indicator.
Our hypothesis is that the linear sampling method (LS), when augmented with a method
for estimating the inhomogeneous Green’s function for wave propagation in the breast, can
be translated to an acoustic imaging system to detect, localize, and characterize microcalci-
fications in breast phantoms using data from the scattering measurements in a tomographic
geometry.

2 Body

The goal of this research endeavor is to develop a bistatic ultrasound imaging method that
specifically targets breast microcalcifications. By bistatic imaging, we mean that receiver
and transmitter can be separated in space. Since there are several commercial breast acoustic
tomography systems currently undergoing FDA trials, we believe that it is the appropriate
time to apply state-of-the-art methods from optimum array processing and inverse scattering
to this important biomedical imaging problem.

In year 2 of this research, the majority of our efforts have focused on development of a
microcalcification detection algorithm that incorporated a priori information on soft tissue
inhomogeneities and experimentation in phantoms to demonstrate the potential of the pro-
posed method. In Task 6 of the original Statement of Work, we have continued our research
into developing an elliptical Radon-based approach to imaging the hetergeneous background
Green’s function. As reported in year 1, the published work of a French group [1] is clearly
incorrect since it does not reproduce the known results for spherical Radon transform in the
limiting case. The applied mathematicians supported under this Synergistic Idea award have
made significant progress in analyzing this model, and a paper on this work is expected to be
submitted in the proposed no-cost extension period. In summary, we have found some suc-
cess in diagonalizing the elliptical Radon transform in a manner that produces a series-based
inversion. The coefficients in this reconstruction algorithm are given by integral equations
that can be solved numerically. Current efforts by collaborators at UT Arlington at in the
direction of efficiently implementing this inversion as a numerical method that can be trans-
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lated to the prototype system at UT Southwestern. For a further review by collaborators on
the sub-award, please see the attached Appendix A.

The second major effort for year 2 of this research project was imaging experiments with
phantoms and simulated microcalcifications. Six high signal-to-noise multi-static response
matrix data sets were acquired. These data supplement the scattering data from wires ob-
tained in year 1 (so-called point scatterers), and include metal scatterers with both circular,
hexagonal, and star cross sections. The strong scatterers were embedded in a 7 cm diameter
gelatin cylinder with known acoustic properties. Image reconstruction and data analysis for
these data sets is on-going and will be submitted for publication in the proposed no-cost ex-
tension period. In addition, since June 2009 we have been investigating more sophisticated
phantoms for validation. In one case, water-filled voids are introduced into the gelatin to
produce a heterogeneous background. Fluctuations in the data due to these hetergeneities
can be similar in appearance to the signals due to the strong scatterer. In a parallel de-
velopment to support Task 7 (statistical characterization of speckle noise and suppression
methods), we have experimented with phantoms with clutter to produce the type of speckle
observed in real soft tissue. We have adopted a method from the literature[2], and have con-
firmed the B-mode appearance of this phantom using a VisualSonics Vevo700 small animal
ultrasound system. In the proposed no-cost extension period, additional data acquisition
experiments will be performed as a part of Task 7 where hard 2D scatterers will be included
in phantom. We anticipate completion of these experiments in the next year with the goal of
understanding the effect of speckle noise on the the robustness of the linear sampling method
for estimating microcalcification morphology.

For Task 13, a peer-reviewed conference proceeding publication[3] was printed in early
2009 (see Appendix B). This work was in support of Tasks 6 and 12, and was made pos-
sible by the support of a Biomedical Engineering graduate student through this research
project. In addition, a collaborator supported under the sub-award published a peer-reviewed
book chapter on acoustic tomography in breast imaging. His support under this research
project was critical to the completion of this, and it is noted in the acknowledgements of
the publication[4]. At present, the BME graduate student and PI at UT Southwestern are
preparing an expanded publication on bistatic ultrasound imaging of scatterers in the breast
for an IEEE transactions, and a supported graduate student in Mathematics and collabo-
rators at UT Arlington anticipate at least 2 submitted publications in the proposed no-cost
extension period.

In the next year, we anticipate completion of the image reconstruction and data analysis
tasks, along with some additional experiments to test the robustness of the described methods
to sub-wavelength scatter. In the proposed no-cost extension period, support will continute
for graduate students at UT Southwestern and UT Arlington, while the PI and collaborators
will continue the Statement of Work research through departmental cost sharing.
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3 Key Research Accomplishments

• Data collection of six 2D phantoms with materials mimicking breast tissues and mi-
crocalfications.

• Development of elliptical Radon transform model for bistatic estimation of background
Green’s function.

• Identification of fundamental shortcoming in the breast ultrasound tomography litera-
ture as it relates to bistatic imaging, and the development of an iterative approach for
estimating the inhomogeneous background in the inverse scattering problem.

4 Reportable Outcomes

• A publication on ultrasound tomography using the elliptical Radon transform model[3].

• A review article on tomographic imaging using spherical Radon transform models[4].

• Two collaborators (M Lewis and G Ambartsoumian) participated in the 2008 NSF/CBMS
Rice Workshop on Imaging in Random Media, where image reconstructions methods
of the types of interest in this research study were the focus.

5 Conclusion

We have maintained a reasonable focus with our original Statement of Work. We self-identify
delayed progress on Task 12 (Image reconstruction and data analysis) which will be remedied
by ongoing work in the no-cost extension period. In addition, further experiments and data
acquisition using more complicated phantoms will faciliate extensions of Tasks 7 and 11. We
anticipate that successful completion of Task 12 will produce multiple additional publica-
tions that will support translation of these image reconstruction methods to a commerical
breast ultrasound tomography system. In the coming year, we will actively solicit research
collaborations in this area.
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Appendix A - Research related to Task 6

performed under UT Arlington subaward

17 September 2009

We consider a simple model of near-field ultrasound tomography, where
a reflecting medium of interest is excited by spherical waves emitted from a
transducer, and the backscattered echoes are registered by a receiver [11, 12].
Assuming an ideal propagative medium, where the speed of sound is constant,
the signal registered at any given moment by the receiver is generated by
reflections from all those points for which the sum of their distances to the
emitter and the receiver is constant (depending on time and sound speed).
In other words, those points are located on confocal ellipses with foci at the
emitter and receiver locations, and the problem of image reconstruction in
2D boils down to the inversion of a transform integrating functions along
such ellipses. In 3D one should consider a transform integrating along the
family of surfaces of revolution (obtained by rotating the 2D ellipse around
its main axis).

Definition 1. The elliptical Radon transform (ERT) of f(x), x ∈ R
2 is

defined as

R̃f(pe, pr, r) =

∫

|x−pe|+|x−pr|=r

f(x)dl(x),

where dl(x) is the arc length of the ellipse |x − pe| + |x − pr| = r.

It is easy to see that the inversion of this transform is an overdetermined
problem (recovering a function of 2 variables from a function of 5 variables).
Hence, one should expect to be able to reconstruct f from restrictions of R̃f

to 2−dimensional families of ellipses. From physical considerations we first
restrict the locations of foci pe and pr (the acquisition geometry) to a curve S
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in R
2 (denoting the transform by R̃Sf(pe, pr, r) = R̃f(pe, pr, r)|pe,pr∈S). We

consider the lines and circles for S in this project. Notice, that R̃Sf(pe, pr, r)
is a three-parameter family, while f(x) is a function of two variables. There
are several ways to reduce the dimension of the family of R̃Sf(pe, pr, r). Mo-
tivated by tomographic models (e.g. [16, 3, 11, 12]) we will assume, that the
distance between the emitter and the receiver stays constant. By matching
the dimensions this way we further denote the ERT by R̃Sf(p, r), where S is
either a circle or a line, and p is the midpoint of the interval joining the foci
of the ellipse.

Notice, that in the degenerate case when the emitter coincides with the
receiver the ellipses become spheres and the ERT becomes a spherical (or
circular) Radon transform (SRT). The latter has been extensively studied in
the past for various applications of imaging and applied mathematics (e.g.
[1, 2, 4, 8, 9, 10, 13, 15] and the references therein). In case of SRT various
exact inversion formulae have been discovered for a limited number of acqui-
sition geometries. These results can be divided into two categories: closed
backprojection type inversion formulae, and expansions into series (usually
involving some special functions). One of the goals of our project has been
obtaining extensions of these results to the case of ERT, and the discov-
ery of some new inversion algorithms. While the work in this direction is
continuing, we can report certain progress here.

We developed an inversion algorithm using the algebraic reconstruction
techniques based on the Kaczmarz method, which can work in any acquisition
geometry. It also provides an effective mechanism for incorporation of certain
side constrains to the reconstruction process, which is an extremely important
tool for stabilizing the inversion in limited data problems. The developed
algorithms have been numerically implemented in Matlab, and are currently
being tested with both synthetic and experimental data. Two publications
describing the developed methods and the obtained results are in preparation.
The mathematical description of the inversion instabilities in limited data
problems has been covered in [17].

We have also made certain progress in generalizing the inversion formu-
las for SRT using series expansion to the case of ERT. Most of the inver-
sion formulas using series expansions for SRT are based on the fact, that
this transform is either shift-invariant, or can become shift-invariant after
a smooth change of variables. For example, the result of [13] is derived as
follows. Let RS be the 2D spherical Radon transform on the plane that inte-
grates functions compactly supported inside the unit disk D over all circles
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|x − p| = ρ with centers p located on the unit circle S. Since this transform
commutes with rotations about the origin, the Fourier series expansion with
respect to the polar angle partially diagonalizes the operator, and thus the
n-th Fourier coefficient gn(ρ) of g = RSf will depend on the n-th coefficient
fn of the original f only. Hence, the problem of reconstructing f from g,
can be reformulated as a problem of reconstructing fn from gn. The lat-
ter requires solving and integral equation, which in [13] is done using the
Hankel transform. In [14] the SRT is inverted in the case of a linear aper-
ture by utilizing the shift invariance of the transform in the direction of the
data acquisition line, and obtaining shift invariance in the orthogonal direc-
tion by a smooth change of variable. Then application of the 2-dimensional
Fourier transform diagonalizes the operator, which enables the inversion. In
case of a non-degenerate ERT in linear acquisition geometry, we have proved
that there does not exist any smooth change of coordinates, which would
make the transform shift-invariant in the second variable, hence one should
not expect inversion procedures using Fourier techniques in this case. In
the case of spherical acquisition geometry the elliptic transform R̃ also com-
mutes with rotations about the origin, hence the inversion method using the
Fourier series expansion may allow generalization to ERT. We have reduced
the problem of recovering f from g to the problem of recovering fn from gn.
The latter is a non-trivial integral equation, and we currently work on its
solution.
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Reconstruction algorithms for interior and exterior spherical Radon 
transform-based ultrasound imaging 
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ABSTRACT 

This work is concerned with the numerical implementation of a reconstruction algorithm developed to recover a function 
from its spherical means over spheres centered on a circle. The algorithm is experimentally verified by simulations using 
numerical phantoms. In the scheme of tomography, acoustic waves are generated by illuminating an object with a short 
burst of radio-frequency waves. In applications, like breast cancer imaging, which use modalities like photo-acoustic 
tomography (PAT) that model the acoustic pressures as spherical means, data are measured on the detectors located in a 
circle surrounding the object. This is then used to reconstruct the absorption density inside the object. In contrast, 
applications like bore hole tomography and improved Intravascular Ultra Sound (IVUS) imaging for prostate cancer, 
which use modalities like Radial Reflection Diffraction Tomography (RRDT), a ring of detectors placed exterior to the 
object, collect the acoustic waves as back-scattered field. This work uses a single algorithm to reconstruct functions from 
data collected using these two different techniques – one, by placing the object inside the ring of detectors, and the other, 
by placing the object exterior to the ring of detectors. The algorithm then draws a comparison between the two 
reconstructions.  The case of bistatic ultrasound imaging, where the elliptical Radon transform is appropriate, is also 
discussed. 

Keywords: Ultrasound Tomography, Spherical Radon, Elliptical Radon, Diffraction Tomography 
 

1. INTRODUCTION 
In imaging techniques like photo-acoustic tomography biological tissues [1] are irradiated with short pulse waves of 
energy, and ultrasound waves are subsequently generated. In medical modalities such as breast imaging [2] these waves 
are measured by sensors on the exterior surface of the tissues. Under the approximation that the speed of sound, c, is 
constant throughout the body, in a monostatic setup (where a single transducer acts as both the source and detector), the 
measured ultrasound waves are modeled as circular means of their reflectivity obtained over concentric circles centered 
at the measured point (fig 1). Formulas of the filtered back-projection to reconstruct the object were established [3] for a 
function supported in the ball in even dimensions. In this paper, we consider implementing this algorithm to reconstruct 
phantoms with no noise. 
 
The algorithm is also implemented to synthetic data obtained by placing the ring of detectors exterior to the object. In 
applications like Radial Reflection Diffraction Tomography (RRDT) [4] that can be used in medical modalities such as 
prostate imaging , the object is external to transducer geometry (fig 2) and the transducers launch a primary field and 
collect the ultrasound waves as backscattered field. In such multimonostatic assemblies (where a single transducer acts 
both as a source and detector at multiple locations) the reconstruction techniques involve different kind of wave 
modeling. We implement the formula obtained in [3] to reconstruct object for this type of modality. With a different 
method, the result appears to be similar to reconstructions in the diffraction tomography technique [4]. 
 
The effect of the algorithm in reconstructing partial data is also analyzed. Reconstruction from incomplete data when the 
detectors are placed along a semi-circle surrounding the object leads to interesting observations which is analytically 
accounted for in [5]. 
 
Finally, we naively implement the same algorithm by slightly changing the filter to reconstruct data obtained in a bistatic 
setup (one transducer acts as a source and another acts as the detector). This method uses elliptical Radon transform to 
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model the data. There is no filtered back-projection kind of algorithm found in literature that reconstructs elliptical 
Radon transformed data.  
 
 

                                         
    

                           Fig.1 Object placed inside                                          Fig.2. Object placed outside 
                                     the ring of detectors                                                     the ring of detectors 
 

  

2. GEOMETRICAL SETUP 
In near-field ultrasound tomography, where the waves are spherical and the sensors are point sources/receivers, various 
tomographic geometries are possible. Here, we discuss three possible 2-D geometrical setups in the case where the 
transducers are placed along a circle. An equivalent would be a transmitter/receiver being rotated about a fixed center 
like shown in fig 3.a. At each point on the circle the transducer emits a wave and receives the scattered wave back, an 
operation called as “pitch/catch” in the monostatic case [4]. In the 2-D case, the object to be reconstructed is in the plane 
perpendicular to the axis of rotation of the transducer. In Radial Reflection Diffraction Tomography (RRDT) algorithm, 
the data are collected as backscattered waves at various angular locations and the inversion is performed based upon a 
linear scattering model [6]. 
 
In this paper we implement an algorithm which inverts data obtained at various angular locations on a circle as 
projections which are spherical means (circle in 2-D with the transducer location as the center) of the function (object) to 
be reconstructed.  
 
2.1 Monostatic setup 

 
As discussed above, in the monostatic setup (fig. 4.a), the same transducer acts as both the transmitter and receiver. 
Assuming the speed of sound, c, constant inside the object, we can say that the time, t, for the pulse to reach the medium 
and time the echo takes to reach the receiver are equal. The loci of all points in the medium which satisfy the 
aforementioned condition will lie on a circle with ‘radius’ t. Therefore if the resultant echoes are recorded as function of 
time, we will obtain a family of line integrals of the function along concentric circles centered at the source at a 
particular angle. We obtain such circular integrals at multiple angular locations along a circle. Our aim is to reconstruct 
the function from these projections.  
 
Form the setup explained above, we can parameterize a spherical Radon transform with two parameters, angle θ and 
radius r. A symbolic statement of the forward equation would be the following: 
 
G(ρ,φ ) = ∫|R-r| f (r,θ) ds  
 
where G(ρ,φ ) is the line integral of  f (r,θ) along the circle  of radius ρ, whose center (the source transducer) lies on the 
circumference of the enclosing circle at angle φ . 
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Fig.4. Various geometrical setups for a 
2-D ultrasound tomography system 
where the transducers are placed along 
a circle –a. Monostatic – a single 
transducer acts both as transmitter and 
receiver. b. Bistatic – One transducer 
acts as a transmitter and other acts as 
receiver. c. Multistatic – One 
transducer transmits ultrasonic waves 
and many transducers act as receivers 

 
 
 
Fig.3. The circular integral of the 
function is obtained over a circle 
centered at the source transducer.r 
is the distance from the origin to 
the scatterer and R is the radius of 
the circle along which the 
transducer rotates. 
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2.2 Bistatic setup 

 

As shown in fig. 4.b, in a bistatic setup, a pair of transducers moves along the circle. One transducer acts as a transmitter 
and the other acts as the receiver. If we consider the time from the emitter to the scatterer is t1 and from the scatterer to 
the receiver, t2, and assume t1+t2 is a constant, then the loci of all scatterers which satisfy this condition will lie on an 
ellipse. In this case the recorded resultant echoes at the receiver as a function of time will be line integrals of the function 
to be recovered over a family of ellipses. 

 

.  

 
There is no filtered backprojection (FBP) kind of algorithm in literature to invert an elliptical Radon transformed data. A 
Fourier transform based reconstruction is attempted in [7]. However, we implement the same filter suggested in [3] with 
a slight modification to invert elliptical Radon transformed data in a FBP fashion for a bistatic model. 
 
To remark on the parameterization of the ellipse, there are five degrees of freedom. But to make the model practical and 
physical we can have constraints on two of the parameters and reduce the degrees of freedom to three. The problem still 
remains overdetermined. 
 
2.3 Multistatic setup 

 

Multistatic setup, as shown in fig.4.c, has one source and more than one receiver and this setup is rotated along a circle. 
Again a wave based tomographic image reconstruction is attempted in [4]. 

 

3. FILTERED BACKPROJECTION ALGORITHM 
 
The problem of reconstructing the function from the circular integrals is similar to the classical problem of 
reconstructing the function from the projections in x-ray tomography. In fact, the circular Radon reconstruction reduces 
to classical Radon solution in the limit as the radius of the as the radius of the enclosing circle approaches infinity. 
 

 
 
 
 
Fig.5. The line integral of  f 
in the case of bistatic setup 
is obtained over an 
elliptical path. An ellipse is 
defined by five parameters. 
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We were primarily inspired by the FBP algorithm suggested in [3] for inverting spherical Radon transformed data. The 
paper suggests an FBP algorithm with linear interpolation in two dimensions. The logarithmic filter suggested was 
dependent on the radial samples of the acquired data.  

 

The algorithm was implemented in Matlab and for all (N+1)2 reconstruction points, Nφ+1 centers on S were summed up. 
If there are N2 pixels and if N is approximately equal to both the radial and angular samples, the algorithm requires ο(N3) 
operations. 

 

4. METHODS AND RESULTS 
 
4.1 Case 1: The object being placed inside the ring of detectors 

 
The filtered-backprojection algorithm suggested in [3] was applied to 2-D synthetic data obtained from performing 
forward spherical Radon transform on a 100 by 100 Shepp-Logan phantom. In the first case, where the forward Radon 
was performed with the object inside the ring of detectors with a number of radial samples Nr=100 and number of 
angular samples Nphi=100. The sinogram obtained is depicted in figure 6b and the reconstructed image is shown in 6a. 
 
 

      
                  Fig.6a. Reconstructed image when                           Fig.6b. Corresponding sinogram 
                              the object is placed inside 
                              ring of detectors 
 
 
4.2 Case 2: The object being placed outside the ring of detectors 

 

The same algorithm was applied to the object when it was placed outside the ring of detectors with the same Nr and 
Nphi. The sinogram obtained is depicted in figure 7b and the reconstructed image is shown in 7a. 
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                  Fig.7a. Reconstructed image when                          Fig.7b. Corresponding sinogram 
                              the object is placed outside 
                              ring of detectors 
 
4.3 Case 3: Effect of incomplete data 

 

We tried reconstructing the object by placing the transducers along a semi-circular arc at the bottom of the object. We 
used a different phantom to understand the effect of algorithm on incomplete data. The phantom is depicted in fig 8.a 
with the detector locations shown. 

 

 

 

 

   

 
 

 

 

 

 

 
Fig.8.a. Phantom used for 
reconstruction from partial 
data. The detectors are placed 
along a semicircular arc at the 
bottom of the phantom. 
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The following images depict the sinogram and the reconstructed object: 

 

         
         Fig. 8.b Sinogram obtained for incomplete data             Fig.8.b Reconstructed image 

 

     

 
 
4.4 Case 4: Applying a modified filter to reconstruct elliptical Radon transformed data 

 

We finally implement the same algorithm with a slightly modified filter to reconstruct elliptical Radon transformed data. 
As explained in section 2.2, an ellipse has five degrees of freedom. We keep the distance between the foci constant 
(transmitter and receiver) and make it twice the dimension of the Shepp-Logan phantom we used previously. We also 
make the center of the foci lie on a circle. We also have an additional constraint on the rotation of the axis of the line 
connecting the foci. We keep this axis perpendicular to the radius of the enclosing circle. 

The filter was modified by replacing the radial factor by minor axis of the ellipse. Projections contained samples of 
minor axes at every angular location. We used the Shepp-Logan phantom used previously. Fig 9.a shows the sinogram 
obtained and 9.b shows the reconstructed image. 

 

    
         Fig.9.a. Sinogram of the elliptical Radon                  Fig.9.b The reconstructed image with  

                       transformed data                                                       the modified filter 
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5. CONCLUSIONS 
 
To conclude, we set out to implement the same reconstruction algorithm for the same mode of data acquisition with 
different modeling techniques. In the scheme of photo-acoustic tomography, as is the first case described above, the 
reconstruction works very well, whereas, in the model where the object is placed outside the ring of detectors, the 
algorithm seems to reconstruct only the artifacts.  
 
With incomplete data, where the transducers are placed in a semicircular arc around the object, the reconstruction show 
similar results as explained in [5]. We observe the boundaries disappear in the case of incomplete data. Reconstruction 
from elliptical Radon transform data gives a low intensity image with a modified filter.  
 
There is no existing FBP kind of algorithm for elliptical Radon transformed data. That can be considered for a future 
research work. The problem of exterior reconstruction can also be addressed as they have potential impact in medical 
imaging of breast and prostate cancer.  
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Abstract

Photo- and thermo-acoustic tomography are non-
ionizing imaging techniques that reconstruct internal 
photo (thermo) -acoustic source distributions from data 
acquired as projections by ultrasound detectors placed 
over a surface that encloses the object under study. 
They combine the high contrast in electromagnetic 
(EM) absorption between healthy and cancerous tissue 
with the high resolution of ultrasound. This mode of 
tomographic imaging has recently provoked an interest 
in researchers working on theoretical aspects of image 
reconstruction. Diffraction tomography methods for the 
same geometry exist and use the Born approximation 
for the reconstruction techniques. 

We investigate a Spherical Radon transform-based 
algorithm developed to recover a function from its 
spherical means over spheres centered on a circle. The 
algorithm is numerically implemented and 
experimentally verified using numerical phantoms. We 
implement the same algorithm to reconstruct data from 
projections obtained by placing the object inside the 
ring of detectors and placing it exterior to it. Both these 
arrangements are significant as they represent imaging 
techniques like Photo-Acoustic tomography and Radial 
Reflection Diffraction Tomography for endo-rectal 
prostate imaging.

Rationale

Anticipating the introduction of clinical breast 
acoustic tomography systems where attempts are being 
made to solve the complete non-linear inverse scattering 
problem, we are considering a mathematical model that 
expresses data acquired as spherical Radon transformed 
projections. The idea behind this monostatic modality 
(the same sensor is used as both transmitter and 
receiver) is to illuminate an object by a short burst of 
radiofrequency waves which cause thermal expansion 
and subsequently generates an acoustic wave. The 
existing algorithms in both photo-acoustic and 
diffraction tomography successfully reconstruct the 
object if the acoustic waves are measured on the 
periphery or in the exterior of the object. Does the same 
algorithm work if the ring of detectors is placed exterior 
to the object? This is of interest because some 
anatomical constraints like in the case of prostate 
imaging require us to use an “exterior” geometry.

Image Reconstructions for Various Geometrical Configurations

The upper half of the quadrant
shows the reconstruction of a 
101X101 grayscale ‘Shepp-
Logan Phantom when the 
phantom is placed inside the 
ring of detectors.

The bottom half shows the 
reconstruction of
The same phantom when the 
phantom is placed outside the 
ring of detectors

Background

Acoustic imaging 
geometry

Complex amplitude data 
for each receiver Rj and 
transmitter Ti is organized 
in multistatic response 
matrix Kij.

Ti

Rj

• Far field – plane wave insonification, asymptotic 
scattering

• Near field – spherical waves, point sensors

• Monostatic – each sensor used as transmitter/receiver

• Bistatic – separate transmitter/receiver pairs

• Multistatic – many receivers per transmitter

Discrete FBP Algorithm

We are inspired by the derivation of a discrete 
filtered back-projection (FBP) algorithm (Finch, 
Haltmeier, Rakesh, SIAM J. Appl. Math. 68(2007) 
no.2, 392-412) with linear interpolation in two-
dimensions to recover a function from its spherical 
means.  Explicit inversion formulae for the 
spherical radon transform is proposed by 
Kunyansky, (Inverse Problems, 23 (2007), no.1, 
373-383). 

A discrete FBP for bistatic modeling involving 
elliptical radon transform which is of interest to 
tomographic imaging is not yet found in the 
literature.

For further information:  
Ravi.Vaidyanathan@UTSouthwestern.edu

This work is supported by supported by the U.S. Army Medical 
Research and Materiel Command under W81XWH-07-1-0640 
(PIs: MA Lewis & T Aktosun).

Effect of Incomplete data

The algorithm proposed by 
Finch et al., shows good 
reconstruction results when 
the object is placed inside the 
ring of detectors

The algorithm seems 
to reconstruct only 
the artefacts when 
the object is placed 
outside the ring of 
detectors

We tried reconstructing the object by placing the 
transducers along a semi-circular arc at the bottom of 
the object. We used a different phantom to understand 
the effect of algorithm on incomplete data. The 
phantom and the reconstructed image are depicted in 
figures below with the detector locations shown.

Potential Impact

Ultrasound is not currently used for screening of 
breasts for non-palpable lesions; but with proven 
sensitivity and specificity, a non-ionizing 
ultrasonic method has the potential to allow 
earlier and more frequent breast screenings in at-
risk patients. If breast compression can be 
avoided by the imaging technique, then 
ultrasound also represents a less stressful 
procedure for the patient. Breast ultrasound may 
be the only available technique for screening in 
the radiologically dense breasts of women under 
40. Advances in early detection have already 
increased survivability, and there is reason to 
believe that improvements in breast screening 
with microcalcification-sensitive ultrasonic 
imaging will continue this trend. 

There are no existing mathematical model in 
ultrasound tomography to image exterior objects 
which will be helpful in imaging diseases like 
prostate cancer.

Forward Problem

The Spherical mean transform is defined by 
the above equation (Finch, et al., SIAM J. 
Appl. Math. 68(2007) no.2, 392-412). Sn-1

denotes the area of the unit sphere and ds(θ) 
denote the area measure on the sphere. The 
algorithm was performed for a 2-D case where 
n=2.

Reconstruction of Elliptical Radon
Transformed data using the same algorithm

In a bistatic setup the acquired data are modeled as elliptical 
Radon transform projections. If we assume the total time taken 
by the pulse to reach the scatterer and the echo to reach the 
receiver a constant, then the loci of all the scatterers which 
satisfy this condition will be an ellipse.
We changed the ‘radial’ factor in the filter in the original FBP
algorithm to use the minor axis of the ellipse rather than the 
radius of the projection.
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6.1 INTRODUCTION

Thermoacoustic tomography (TAT) employs the well-known 
[1–4] correlation between electromagnetic (EM) absorption of 
biological tissue and its physiological and pathological proper-
ties. To employ this contrast mechanism, a biological object 
is irradiated by a brief EM pulse, and the resulting thermoa-
coustic signals from the tissue are collected by ultrasound 
transducers to map the distribution of the radiation absorption 
within the sample (e.g., Refs. [5–9]). TAT thus combines the 
good spatial resolution of ultrasound imaging with the good 
contrast in EM absorption.
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The problem we address in this chapter is of limited data 
(limited view), when transducers cannot be placed around 
the complete object. This situation is very common in TAT, 
for instance in its applications to breast imaging, where only 
a half sphere, rather than a sphere is available for placement. 
The question that arises is the theoretical and practical pos-
sibility of reconstruction from limited view data. Although, 
as we will see, mathematically rigorous uniqueness results 
exist that guarantee the theoretical possibility of recon-
struction from limited view data, the practical situation is 
somewhat different. Namely, some features of the object 
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to be imaged (which we dub “invisible”) are practically 
impossible to reconstruct, because they suffer from a man-
datory blurring. Any attempts to overcome this difficulty 
are futile, unless some prior information about the object or 
missing data is incorporated, or the very physical set up of 
the measurement is altered. On the contrary, the “visible” 
details are easy to reconstruct stably. It is thus important to 
understand these limitations due to limited data. Limited 
view problems have been studied extensively in other, more 
traditional, types of tomography, such as x-ray, SPECT, 
diffraction tomography, and reflectivity tomography (e.g., 
Refs. [10,11,13–18]). The TAT situation is similar and has 
been discussed in various ways in Refs. [19–27]. Although 
the underlying mathematical technique is rather involved, 
the final results are easy to understand and use. The goal 
of this chapter is to review these results and to provide the 
relevant references. We will not attempt to go through the 
rigorous mathematical technicalities, but rather explain the 
basic ideas. Correspondingly, the results will sometimes be 
stated, when the authors feel no danger of misuse, without 
some necessary technical conditions under which they are 
proven. References, however, will be given where the rigor-
ous details can be found.

A significant limitation of what is described in this chap-
ter is that the speed of ultrasound in the imaged tissue is 
assumed to be constant. The case of a variable speed could 
also be treated, but this would require a somewhat different 
and more complex consideration, which apparently has never 
been completely implemented.

The paper is structured as follows: In the next section, 
we state the model and briefly review the existing unique-
ness results, reconstruction formulas, and procedures for the 
full data view problem. The section that follows contains the 
description of how the limits of view influence the unique-
ness and reconstructions. It is explained how one can deter-
mine which interfaces in the object will be blurred in the 
reconstructed image due to the limited view. We also intro-
duce in this section necessary simple mathematical notions. 
Then the next section presents numerical examples (both 
from synthetic and experimental data) that illustrate the con-
cepts. All mathematical conclusions are equally applicable to 
photoacoustic tomography.

6.2  MATHEMATICAL MODEL AND
RECONSTRUCTION IN TAT

The accepted mathematical model of TAT involves quite a 
few physical constants. As it happens, their presence is irrel-
evant for understanding the concepts and using the limited 
view results. We thus present here a simplified model, where 
all constants are assumed to be equal to one. The full-blown 
models with all the complications (which do not influence the 
issue we discuss here), as well as more details and references, 
can be found in surveys [28–30] and in chapters [31,32] in 
this volume.

With this simplification, the model of TAT is described by 
the following wave equation problem:
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Here p(x,t) is the pressure at the point x and time t, vs(x) is 
the speed of the ultrasound propagation in the tissue, S is the 
observation surface where the transducers are placed, g(y,t)
is the measured data, i.e., the value of the pressure at time 
t measured at the transducer’s location y S, and f(x) is the 
object to be reconstructed. As we have already mentioned, 
the results described here apply to the case of a constant 
sound speed only. We can also assume that vs 1, thus arriv-
ing at the simpler equations
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In this (constant speed) case, the well-known Kirchhoff–
Poisson formulas (see, e.g., Refs. [33,34]) allow one to rep-
resent the solution p(x,t) in terms of the spherical means of 
the function f(x)

( )( ) ( )Rf y t f y t d y S
1

4 1

for (6.3)

Thus, knowledge of the data g(y,t) is equivalent to knowing 
the integrals of the unknown function f over all spheres cen-
tered at transducers’ locations y S. One immediately notices 
a similarity with the standard Radon transforms for x-ray 
tomography or MRI, where the integration is done over lines 
or planes rather than spheres. And indeed, most of the stan-
dard tomographic results and techniques find their analogs in 
TAT, albeit many aspects become much more involved (see, 
e.g., Refs. [28–32,35–43]). We now address the uniqueness of 
reconstruction and reconstruction procedures in TAT.

The reader can notice that in all feasible applications, func-
tion f(x) to be reconstructed does not have “infinite tails”, i.e., 
vanishes outside of a bounded domain. Moreover, in most 
practical applications, it is true that its support is completely 
surrounded by the observation surface S. In what follows, 
this will be assumed (some results and inversion formulas 
might fail unless this is satisfied [30,31]).

We first assume the knowledge of the full data g(y,t) for 
an observation surface S, which is a sphere surrounding the 
support of the image f(x). The case of limited-angle data will 
be considered in the next section.

A similar problem to the one we have just described in 3D 
can also be considered in other dimensions. For TAT, only 
dimensions 2 and 3 are relevant (the need to use a 2D prob-
lem arises, for instance, when one uses linear, rather than 
point-like, detectors [24,25]).
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6.2.1 UNIQUENESS OF RECONSTRUCTION

The first question to answer is whether the data determines 
function f uniquely, i.e., which observation surfaces S pro-
vide uniqueness of reconstruction. In 2D, this was resolved in 
Ref. [35]. There is still no complete solution in 3D (see Refs. 
[15,28–32,35,38–41] for surveys and references). However, 
from the practical point of view, there is no problem. Indeed, 
it has been known at least since Ref. [44] (see also the ref-
erences just mentioned and Ref. [45]) that if the surface S
is closed, e.g., a sphere, and if f has a bounded support (not 
necessarily surrounded by S), then there is uniqueness.*

When S is a cylinder, uniqueness also holds, and if S is a 
plane, uniqueness holds if f vanishes on one side of the plane 
(otherwise an odd function f with respect to the plane pro-
vides a counterexample). This essentially covers any feasible 
full-view TAT situation.

Now, when uniqueness is established, one wonders how to 
actually reconstruct the image f.

6.2.2 RECONSTRUCTION FORMULAS AND ALGORITHMS

Although the area had experienced a slow start, there has 
been a large variety of inversion formulas and algorithms 
developed lately (at least for the case of a constant sound 
speed that we consider here). One can find a thorough discus-
sion of inversion formulas and reconstruction algorithms in 
the surveys [31,32] in this volume, as well as in Refs. [29 32]. 
We will just say a few general words about these, since the 
details of a particular algorithm do not seem to affect the 
general conclusion that we will make later about the limited 
view problems in TAT.

Explicit inversions based on Fourier transform techniques 
have been developed in the case of a planar observation sur-
face S (see, e.g., Refs. [16,46–50]).

The most interesting case of a spherical surface S was 
first rigorously treated in Refs. [51,52], where the rotational 
invariance of the problem was used to expand the data and 
the image into Fourier series with respect to the angle. This 
resulted in explicitly solvable Abel-type integral equations 
for each Fourier coefficient (a la A. Cormack’s work on x-ray 
CT). While the 2D formulas of Ref. [51] involved numeri-
cal instabilities, this was fixed in the 3D reconstructions of 
Ref. [52].

For quite some time, there had been no explicit filtered 
backprojection-type formula obtained for any closed obser-
vation surface S, and even the possibility of such a formula 
was questioned. Finally, in Ref. [38], such formulas were 
found for all odd dimensions when S is a sphere, and then 
extended to even dimensions in Ref. [53]. A different 3D 
backprojection-type formula was obtained in Ref. [54]. A 
backprojection formula for arbitrary dimension was found in 
Ref. [55], which in 3D coincided with the one in Ref. [54]. It is 
interesting to note that the series of formulas in Refs. [38,53] 

* For the uniqueness result to hold, it is not necessary to require that f
vanishes at infinity, sufficiently fast decay at infinity also suffices [45]. 
However, in practical situations, f does vanish at large distances.

and in Refs. [54,55] are not equivalent on nonperfect data, 
albeit they seem to work numerically equally well [30,31]. A 
different derivation of formulas in Ref. [38] has recently been 
proposed [56]. No closed form analytic formulas are known 
for surfaces S that are not spheres, cylinders, or planes.

An interesting series expansion inversion procedure that 
theoretically works for any closed observation surface S was 
suggested in Ref. [57]. The expansion of the image f(x) into 
the eigenfunctions of the Laplace operator  inside S with 
zero Dirichlet conditions on S is obtained in terms of the cor-
responding expansion of the measured data. It was shown in 
Ref. [57] that a cubic surface used as S rather than a sphere 
works much better, leading to very fast, accurate, and effi-
cient reconstructions. This series expansion procedure was 
generalized to variable sound speeds in Ref. [43], albeit it is 
doubtful that this can lead to efficient computations.

Although having analytic inversion formulas always helps 
in tomography, it is also known that reconstructions can often 
be efficiently done without having explicit formulas, by either 
algebraic techniques, or their combination with analytic pre-
conditioning. This is true in TAT as well. Namely, it is not 
hard to write a good approximate inversion operator (tech-
nically called a parametrics) that gives a sufficiently good 
approximate reconstruction and preserves the locations and 
strengths of all singularities of f (e.g., sharp boundaries). Then 
one can bootstrap the quality of reconstruction by a standard 
iterative numerical procedure (e.g., Refs. [23,58,59]).

Another option is the so-called time reversal. Here one 
solves the wave equation backward in time, starting with a 
sufficiently large time, when the signal essentially disappears. 
Then when time t 0 is reached, the image f(x) is recovered 
(e.g., Refs. [36–38,43,60,61] and references therein).

Various other discussions of inversion procedures and rel-
evant references can be found in Refs. [29–31,36,37,62–71].

6.3 LIMITED VIEW PROBLEM

We now switch to the situation of our main interest in this 
paper—limited view TAT. Suppose that S is a sphere (or 
some other closed surface) surrounding the image f, and the 
only possible locations of transducers belong to a 2D piece 

 of S. In this case, we only have the data g(y,t) collected at 
the locations y in , rather than from the whole sphere. In this 
case, we face a limited angle (limited view) problem.

6.3.1  UNIQUENESS OF RECONSTRUCTION

FROM LIMITED VIEW DATA

Let us first discuss the uniqueness of recovering the image 
from the data. The dimension count shows that one should 
use a two-dimensional piece  of S in order to expect unique-
ness. Suppose that S is an analytic surface (say, a sphere) and 

 its two-dimensional piece. It follows from the results of Ref. 
[35] that if uniqueness of recovery from the data collected on 
the whole S is known, then there is also uniqueness of recov-
ery with data collected on . For instance, since the sphere is 
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analytic and since for the whole sphere uniqueness of recon-
struction is known (see the preceding section), we conclude 
that with the data on any full-dimensional piece  of the 
sphere, no matter how tiny, solution of the TAT problem is 
unique. The same holds for a 2D piece of any closed analytic 
surface.†

Although this says that the limited view data is theoreti-
cally sufficient, anyone trying to do reconstructions faces 
problems, mostly related to blurring of some parts of the 
image. This effect is no accident and can be predicted, as 
explained in the rest of the chapter. Let us look first at how 
one can try to reconstruct the image from limited view data.

6.3.2 LIMITED VIEW RECONSTRUCTIONS

The simplest thing one can try is just to replace the missing 
data with zero values‡ (the procedure often called zero-filling 
or zero-padding) and then reconstruct the image as if the data 
were complete. In advance, one might not expect any reason-
able outcome from this, however the following observations 
appear, independently of the exact procedure involved:

1. Some (we will call them “visible”§) parts of the tis-
sue interfaces and other singularities contained in the 
true image are seen clearly and at the right locations. 
These parts do not depend upon the exact technique 
used, but do depend on the view angle available.

2. Other parts of interfaces blur away.
3. “Smooth” details of the object, i.e., exact values of 

f(x) get distorted, in some areas significantly.

In most cases in tomography, limited data problems allow no 
exact reconstruction formulas. In the rare cases when these 
do exist, this does not change the effects listed above. As we 
explain below, there is a good reason for this, and, in fact, the 
“invisible” and “visible” parts of singularities can be easily 
predicted by a simple geometric consideration. In order to do 
so, we need to introduce some technical notions from the so-
called microlocal analysis first (see, e.g., Ref. [72] for simple 
introduction and Refs. [15,18,23,35,39,73,74] for applications 
in integral geometry and tomography).

6.3.3 WAVEFRONT SETS OF FUNCTIONS

Our goal is to apply known results of integral geometry 
concerning singularity reconstruction [11,12,15,39] to TAT 
[19,23]. The exact description of these would require some 
notions of microlocal analysis, in particular the notion of a 
wavefront set of a function [72]. In tomographic problems, 
in particular in TAT, one is most interested in only one type 

† A similar result holds also in x-ray CT, where limited view data uniquely 
determine the image. This immediately follows from the projection-slice 
theorem and analyticity of the Fourier transform of a compactly sup-
ported function.

‡ It is advisable sometimes to smooth out the jump between zeros and 
actual data.

§ Another name sometimes used is “audible” [39].

of singularity: the jump of f(x) across an interface (a curve in 
2D or a surface in 3D). So, we will describe the wavefront set 
in this case first. Let f(x) be smooth except for a jump across 
a smooth surface L (in 2D case, L is a curve), then the wave-
front set WF( f) of f(x) consists of pairs (x, ), where point x
belongs to L and 0 is a nonzero vector normal to L at x, as 
shown in Figure 6.1.

Before introducing the wavefront set in the general case, let 
us recall that smoothness is reflected as decay in the Fourier 
domain. Indeed, if f(x) is smooth and has compact support (or 
decays sufficiently fast with its derivatives), then its Fourier 
transform f ( )  decays faster than any power of | | in all 
directions of the -space. If we are interested in detecting 
the smoothness of f only locally, near a point x0, we cut other 
parts off by multiplying f by a smooth function  that is non-
zero only near x0. Then, again, the Fourier transform f ( )
of the product decays faster than any power of | | in all direc-
tions of the -space. Well, what does it mean now that f is not 
smooth near x0? This means that f ( ) will not be decaying, 
unless  vanishes at x0, which we will prohibit. However, it 
might still decay in some directions. This now leads to the 
general definition (e.g., Refs. [39,72]) of the wavefront set, 
which picks up for each point x0 the bad directions 0 only. It 
thus consists of pairs (x, 0), where 0 must be a nonzero vec-
tor (in order to determine a direction). It is easier to describe 
which pairs (x0, 0) (where 0 0) do not belong to the wave-
front set WF( f) of a function f. Namely, this happens if there 
is a neighborhood u of x0 and a conic neighborhood

V 0 0

0

such that

of the direction 0, such that for any smooth function  sup-
ported inside u, the Fourier transform f ( ) of the function 
f decays to zero faster than any power of | | when 

in V . The role of the function  is to eliminate the possi-
ble bad behavior of f away from x0 and keep only the local 

L

x

FIGURE 6.1 If f(x) is smooth, except a jump singularity across L,
then its wavefront set WF( f) consists of pairs (x, ), where x belongs 
to the jump interface L, and  is a nonzero vector normal to L, at 
x. (Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and  
P. Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)
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information about properties of f at x0. Thus, the wavefront 
set of f carries the information about singularities of f, which 
is localized both in spatial variable x and frequency variable 
 (the word used is “microlocalization”, and thus “microlocal 

analysis”). Projecting the wavefront set onto the space com-
ponent x (by forgetting the frequency variable ), one obtains 
the so-called singular support of f, i.e., the set of all singulari-
ties of f—points near which f is not smooth. For instance, it 
is easy to check that the wavefront set of the delta function 
consists of (0, ) for any 0.

6.3.4  “VISIBLE” SINGULARITIES AND THEIR

RECONSTRUCTION

The general idea of the microlocal approach to limited view 
problems is the following [11] (see a somewhat different, more 
limited approach in Ref. [12]). One tries to determine which 
wavefront set elements (x, ) of the object f lead to singulari-
ties, i.e., wavefront set elements in the measured data g. This 
can be done by the technique of the so-called Fourier integral 
operators (FIOs) [73,74], which is beyond the scope of the 
current consideration. If such a pair (x, ) does lead to a singu-
larity in g, it is called “visible” or “audible”. Such wavefront 
set points of the object can be stably reconstructed from the 
data g, and thus the singularity will show up in the recon-
struction. If a particular wavefront set point does not influ-
ence the singularities of the data g (i.e., it is smoothed out), it 
becomes “invisible” and thus will be blurred away. This blur-
ring effect is intrinsic to the problem and cannot be overcome 
by changing analytic or numerical techniques, unless some 
extra information is incorporated into the problem.

This concept is not hard to understand. Imagine, for 
instance, that the operator that maps the unknown f into 
the data set g, turns all images even the ones with singu-
larities, into smooth functions g. In the Fourier domain, this 
can be interpreted as an operation that turns slowly decaying 
Fourier transforms into the ones that decay faster than any 
power. For instance, one can imagine that this is done by 
applying a filter that decays extremely fast, and essentially 
acts as a low-pass filter. Trying to invert the procedure and 
reconstruct the object f from the data g, one runs into trouble, 
since the required filters will grow faster than any power 
(often exponentially). This clearly indicates impossibility 
of stable reconstruction of high-frequency components, and 
thus of any sharp details.¶ A “microlocal” extension of this 
consideration shows that if some part of the wavefront set 
(i.e., a singularity) of the image f does not contribute to the 
wavefront set of the data, then this singularity cannot be sta-
bly recovered from the data.

It is thus important to be able to understand in advance 
which wavefront set elements (x, ) of the (unknown) f would 
lead to some wavefront set elements in g. This would deter-
mine which singularities are “visible” from the data g.

¶ One faces such instabilities, for instance, trying to solve the heat equation 
back in time, or dealing with electrical impedance imaging or optical 
tomography.

Fortunately, there is a very simple answer to this question 
in the cases of x-ray tomography, SPECT, TAT, and some 
other imaging methods [11,15,18,19,39] (while its justification 
is very nontrivial). We will describe it following Ref. [19] (see 
also Ref. [23]), as applied to TAT:

The “visibility” condition
An element (x, ) of the wavefront set of f cannot be recov-
ered looking at the singularities of the spherical integrals 
data, unless there is a detector location and a sphere cen-
tered at this location that passes through the point x and is 
normal to  at this point. In other words, in TAT one can see 
without blurring only those parts of the interfaces that can 
be touched tangentially by spheres centered at detector posi-
tions. This means that in order to recover stably (i.e., without 
blurring) the interface L, one needs to have for each point of 
L a detector located along the normal line to L at this point. 
If for some part of L, the normals do not pass through the 
detectors, this part will be “invisible” and will be mandato-
rily blurred away.

Remark 1 This principle does not depend upon a particular 
reconstruction method. So, a bad method can increase blur-
ring, but even the best methods cannot recover sharply the 
“invisible” interfaces. This is why in this text we do not go 
into any details of reconstructions. Certainly, incorporation 
of additional a priori information about the image (e.g., that 
it consists of a few simple “blocks”) could potentially lead 
to improvements.

The visibility condition described above is not hard to 
understand. Indeed, assume for simplicity that the integration 
that produces the measured data is done along planes rather 
than spheres, and that the interface is also planar. Then, if 
one integrates along a stack of parallel planes x s that is 
not parallel to the interface L (i.e., the normal vector  to the 
plane of integration is not normal to L), the singularity of f
along the interface is smoothed out, and the resulting value 
depends on s smoothly. Only if one has at one’s disposal a set 
of planes parallel to the interface (i.e.,  is normal to L), then 
the integration of f will result in a singularity with respect to 
s. This indicates that invisible parts of the wavefront set do 
not show up as singularities in the measured data, and thus 
cannot be stably reconstructed. This hand-waving explana-
tion can be made precise, with substantial technical effort.

Notice that if at some location x, any line passing through 
x crosses a detector position, then for any image, we expect 
its details near x to be reconstructed sharply. This leads us to 
the following notion:

Definition 2 Suppose that detectors can be located along a 
2D (1D in the planar case) piece  of the observation surface 
S only. The detectable region consists of such points x inside 
S that every line passing through x crosses .

According to the visibility condition, any object supported 
inside the detectable region will be sharply reconstructed, 
while the objects reaching outside the detectable region will 
have some parts of their interfaces blurred away.
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Figure 6.2 illustrates the detectable regions. Figure 6.3 
shows the expected behavior of the reconstructed interfaces 
of simple square and disk phantoms with limited view data.

Results of reconstructions from synthetic and experi-
mental data, which confirm this conclusion, are shown in 
Section 6.4.

6.3.5 HALF-SPHERE PROBLEM

A particular case of interest, which has attracted the attention 
of several researchers, is when the detectors can be placed 
along half of the observation sphere S, and thus the detec-
tion region is the corresponding half-ball. It is assumed that 
the object is located inside the detection region. Then, the 
principle discussed in the previous section predicts that all 
singularities of the object are “visible” and thus reconstruc-
tions should be sharp. If one attempts to zero-fill the data 
from the other half sphere and use any of the standard recon-
struction methods, the interfaces truly remain sharp, but the 
intensities deteriorate towards the missing equator. Having an 
exact reconstruction formula for half-sphere data would fix 
this problem, but such a formula has not been found so far.**

So, different partial remedies for this ailment have been sug-

** In SPECT, a similar problem waited quite a long time before its satisfac-
tory resolution [75,76].

gested: better approximate inverses, corrective coefficients, 
numerical minimization, using range conditions for recover-
ing the missing data, etc. (e.g., Refs. [22,26,27]). A very recent 
work [77] shows great promise for the final resolution, albeit 
at the moment of writing this chapter, not all necessary details 
have been filled in.

6.3.6  LOCAL TOMOGRAPHY AND

SINGULARITY SHARPENING

We would like to mention briefly the principle of the so-
called local tomography [18,78 80]. In this method, before 
backprojection, an additional growing filter in the frequency 
domain is applied in order to sharpen singularities. The result-
ing reconstruction has incorrect numerical values of f(x), but 
significantly emphasized interfaces and other singularities, 
which, for instance, can be useful when small blood vessels 
or region of interest tomography are of interest. Local tomog-
raphy applies to TAT as well [19,23]. In the case of limited 
view data, it also recovers the “visible” parts of the interfaces 
only. Some of the reconstructions shown in the next section 
include their local tomography counterparts.

It is interesting to notice (see more about this in the fol-
lowing section), that transducers’ responses often act as that 
extra filter needed for local tomography, and thus boundaries 
are emphasized without any extra effort.

(a) (b) (c)

FIGURE 6.2 (a) Illustration of the “detectable regions” (shaded areas) of circular Radon transformation, when the detector moves along a 
single arc (solid) of a circle. (b) Two arcs. (c) Three arcs. (Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. 
Phys. 31(4):724–33, 2005. With permission.)

(a) (b) (c)

A B

FIGURE 6.3 (a) “Visible” (solid line) and “invisible” (dashed) boundaries of a square object, and the “detectable regions” (shaded areas) 
when the detector moves along an arc (solid). (b) Same as (a) for a disk phantom. (c) Same as (a) except that the detector moves along the line 
segment AB and the objects are a square and a disk. The “visible” boundaries are expected to be recoverable stably, while the “invisible” 
boundaries should be blurred away. (Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31(4):724–33, 
2005. With permission.)
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6.4  NUMERICAL AND EXPERIMENTAL 
VERIFICATION

In this section, we will illustrate our theoretical analysis and 
conclusions with reconstructions [23] from both synthetic and 
experimental (i.e., collected from a physical phantom) TAT 
data. We do not mention details of specific reconstruction 
methods used because, as explained earlier, the “visibility–
invisibility” effect does not depend on the method used.

6.4.1  RECONSTRUCTION FROM SYNTHETIC LIMITED

VIEW THERMOACOUSTIC TOMOGRAPHY DATA

A numerical phantom that contains four sharp and one soft 
inclusion is shown in Figure 6.4. Among the sharp inclusions, 
we have one large and two small squares and one disk. The 
object value is set to be 0.5 within the largest square, unity 
within other sharp inclusions, and zero elsewhere. Inside the 
“soft” circular inclusion, this value drops linearly with the 
radius from unity at the center to zero at the interface, in order 
to simulate a gradual interface. The imaged field of 154 mm by 
154 mm is mapped with a 128 128 mesh. The detection circle 
has a radius of 133 mm and is centered at the center of the pic-
ture. We scan 200 steps in all the simulations. The gray scale 
and the scale bar of the images are shown below the images in 
Figure 6.5. The top row of reconstructions employs the local 
tomography formula that emphasizes the boundaries. The next 
one uses the approximate filtered-backprojection (FBP) for-
mula in Ref. [23], and the lowest one shows the improvements 

achieved by running the algebraic reconstruction method 
(TCG), starting with the FBP as an initial guess [23].

The left column uses only the data collected from the 
/2 detection arc in the first quadrant. None of the phantom 

inclusions fit into the “detectable region”. One can see that 
all parts of the inclusion boundaries the normals to which do 
not intersect the detection arc are blurred (even in the local 
tomography reconstruction). Other parts of the boundaries 
are sharp. This is in perfect agreement with our theoretical 
prediction. The soft inclusion is not significantly affected by 
the artifacts.

The middle column employs the data collected from the 
detection arc of approximately 217 degrees (the angle  in 
Figure 6.4), whose chord coincides with the bottom side 
of the large square inclusion. In this case, all inclusions 
are in the “detectable region”, and hence all the boundar-
ies are reconstructed sharply. The third column represents 
the full data reconstruction. Notice that the quality of the 
final reconstructions in the last two columns is the same. 
Figure 6.6a and b show the reconstructed image f(x) along 
the dashed-dotted line in Figure 6.4, using the FBP (Figures 
6.5d through f) and TCG reconstructions (Figure 6.5g  
through i), respectively. The exact value is also shown for 
comparison. It can be found in Figure 6.6a that the results 
of FBP are in good agreement with the real value for the 
case of 217-degree and 360-degree detection, where all 
objects are in the “detectable region”. Iteration improves the 
results further, as shown in Figure 6.6b. Even for the case 
of a 90-degree detection curve, the profile of the objects is 
reconstructed. Comparing Figure 6.6a and b, one finds that 
the significant overshoot and undershoot in FBP can be con-
siderably reduced by TCG iterations (we remind the reader 
that FBP is only an approximation rather than the implemen-
tation of an exact formula).

Figure 6.7 shows the relative error of each reconstruc-
tion as a function of the scanned angular range with respect 
to the center of the scan. We study the mean reconstruction 
values in the hard sphere, the central square, and the back-
ground. The errors of reconstruction are normalized to the 
corresponding real values in the cases of the hard sphere 
and the central square, and to the real value of the hard 
sphere in the case of the background (because its real value 
is zero). When the scanned angular range is less than ,
the errors decrease sharply with increasing scanned angu-
lar range. By contrast, when the scanned angular range is 
larger than , the errors change much more slowly as the 
scanned angular range increases. The results agree with 
our theoretical conclusions. However, there are some fluc-
tuations added to the trends of the curves. By comparing 
the three curves in Figure 6.7, we find that these fluctua-
tions depend strongly on the location of the object with 
respect to the detection curve. More extensive study is 
needed to understand these fluctuations. There are some 
residual errors even in the full-view detection in Figure 6.7. 
This is because we used an approximate backprojection 
algorithm, rather than an exact inversion (which was not 
available at that time).

0°°

90°

FIGURE 6.4 Diagram of inclusions in TAT (used in Figure 6.5). 
The value of the image f(x) is set to be 0.5 in the largest square, and 
unity within other sharp inclusions, and zero elsewhere. Inside the 
“soft” circular inclusion, this value drops linearly with the radius 
from unity at the center to zero at the interface. (Reproduced from 
Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. 
Phys. 31(4):724–33, 2005. With permission.)
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6.4.2  RECONSTRUCTION FROM EXPERIMENTAL LIMITED

VIEW THERMOACOUSTIC TOMOGRAPHY DATA

The experimental setup is described in [23,67] and will 
not be repeated here. The sample and the polar coordinate 
system describing the scanning orbit are shown in Figure 
6.8a. The sample consists of a muscle cylinder of 4 mm in 
diameter and 5 mm in length, embedded in a chunk of pork 

fat of 1.2 cm in radius, rf. There is a 10-mm fat layer below 
the muscle and another 7-mm one above it. An EM pulse 
is delivered to the sample from below (i.e., from behind 
the picture plane). With a scanning radius of rd 7.1 cm, 
thermoacoustic data are collected around the sample over 
a 2  angular span with 161 steps. The EM pulse profile 
and the impulse response function of the ultrasonic trans-
ducer impose a filter on the thermoacoustic signals. We 

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

20 mm

FIGURE 6.5 Images reconstructed from simulated TAT data corresponding to the phantom in Figure 6.4. The three columns correspond 
from left to right to detection angles of 90 degrees (from 0º to 90º), 217 degrees (from –19º to 198º as shown by the angle  in Figure 6.4), 
and 360 degrees, respectively. The three rows correspond from top to bottom to the local tomographic reconstruction, FBP, and FBP with 
the consecutive TCG, respectively. The values (minimum, maximum) of the gray scale for (a–i) are (–0.8081, 1.0000), (–0.8302, 1.0000), 
(–0.7515, 1.0000), (–2.0745, 1.7899), (–0.6385, 1.0723), (–0.1030, 1.0349), (–0.9284, 1.2859), (–0.0326, 1.0030), and (–0.0149, 1.0021), 
respectively. The maxima of the local reconstructions are normalized to unity. (Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, 
and P. Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)
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attempted to correct this effect using deconvolution, but 
found that the resulting images were distorted, due to the 
lack of precise knowledge of the filter. Therefore, we do 
not use deconvolution in the reconstruction. This leads, 
as explained earlier, to somewhat emphasized interfaces. 
Figure 6.8b through d show the reconstructed images using 
FBP with three sets of data. In Figure 6.8b, we choose the 
data collected along a circular detection arc of 92 degrees, 
located at the top of the picture and almost symmetric with 
respect to its vertical axes. One sees that the left and right 

boundaries of the muscle cylinder and of the pork chunk 
are blurred away, since their normal lines do not touch the 
detection arc, while the rest of the boundary is sharp. The 
next figure shows the reconstructed image obtained with 
the data collected from a 202-degree arc, where the whole 
phantom fits into the detectable region. All boundaries are 
sharp now. Finally, the last figure shows the image recon-
structed with the full-view data.

Notice that although no local reconstruction algorithms 
are applied, the boundaries are somewhat emphasized. The 
reason for this is the presence in the data of the impulse 
response function of the ultrasonic transducer, which has an 
effect similar to the application of an additional derivative 
with respect to the radius of the circle of integration. The 
presence of such a derivative emphasizes high frequencies 
and makes the reconstruction similar to a version of a local 
tomography algorithm.

6.4.3 DISCUSSION ON EXPERIMENTAL RESULTS

As mentioned earlier, although circular scanning is used in 
both our numerical and experimental studies, our conclusions 
can be applied to other configurations as well. In TAT with a 
planar configuration [62,64–66], detections are implemented 
on a part of a line or a plane where the scanning view is quite 
limited; consequently, artifacts and interface blurring appear 
in the reconstructed images. In fact, in planar and linear 
scanning geometries, one can never have an object immersed 
entirely into the “detectable region” because the normal lines 
to any interfaces that are orthogonal to the detection plane 
(line) never pass through a detector. As a consequence, those 
parts of the interfaces will be blurred in any kind of recon-
struction. For a sufficiently large view, these parts will be 
small, but theoretically will never disappear. For example, 2D 
planar detection is utilized to image artificial blood vessels 
[64]; the scanning view is about 2.18 steradians. Therefore, it 
is not surprising that only the interfaces more-or-less parallel 
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FIGURE 6.6 (a) The graphs of FBP reconstructions shown in Figure 6.5d through f, and the corresponding exact value along the dashed-
dotted line in Figure 6.4. (b) The graphs corresponding to TCG reconstructions, Figure 6.5d through f, along the same line as in (a). 
(Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)

FIGURE 6.7 Dependence of the relative errors of the mean values 
in the hard sphere (circle markers), the central square (square mark-
ers), and the background (asterisks) on the scanned angular range. 
(Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. 
Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)
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to the plane of detection are well imaged. Linear scanning 
detection was used in Ref. [66] to image a 2D phantom. 
Because the view of the linear scanning in Ref. [66] is much 
larger than that of planar scanning in Ref. [64], the inter-
faces are recovered much more completely. However, due to a 
limited view, artifacts and interface blurring similar to those 
demonstrated in our numerical and experimental studies still 
appear in the images [66].

By comparing Figures 6.5 and 6.8, we observe that the 
images reconstructed from incomplete data when an object 
is in the detectable region, have comparable quality with 
those from the full-view data. Scanning a smaller range has 
the advantages of reducing the scanning time or the size of 
the acoustic transducer array. It should be pointed out that 
this advantage usually exists when both the sample and 
medium are relatively acoustically homogeneous. When 

strong wavefront distortion caused by acoustic heterogene-
ities occurs, it might be beneficial to collect signals from all 
directions.

6.5  ADDITIONAL REMARKS AND  
CONCLUSIONS

As mentioned before, one may incorporate some additional 
information about the image, or change the physical set-up 
of the problem to stabilize the inverse problem and make all 
or some formerly invisible interfaces visible. Recently, it was 
shown [70] that taking into account some a priori knowledge 
about the interfaces leads to reconstruction of previously 
invisible parts. In another direction, acoustic reflectors were 
proposed as a means of reflecting the acoustic waves, which 
would otherwise not be measured, back onto the sensor. It was 

90°

0°180°

CM

Fat
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Minimum Maximum

Energy deposition

(a) (b)

(d)(c)

FIGURE 6.8 (a) Photograph of the experimental sample. (b–d) TAT images reconstructed using detection arcs of 92 degrees (from 50º to 
142º in (a)), 202 degrees (from –18º to 184º), and 360 degrees, respectively. The blurred parts of the boundaries in (b) due to the limited view 
agree with the theoretical predictions. In (c) all the boundaries are resolved, since the object fits into the “detectable region”. (Reproduced 
from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)
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shown in that case an existing FFT-based image reconstruc-
tion algorithm can be used to reconstruct the image without 
the limited view-induced blurring [71,81].

The main points of this survey can be summarized as 
follows:

A geometric principle is described that allows a sim-
ple determination of which sharp parts of the object 
are expected to be blurred when reconstructed from 
limited view thermoacoustic data.
This blurring is independent of the particular recon-
struction method and cannot be overcome, unless 
some extra information about the object is known.
Numerical results using synthetic and experimental 
data are shown that support the conclusions.
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