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Abstract. A nonlocal variational formulation for interpolating a sparsely
sampled image is introduced in this paper. The proposed variational for-
mulation, originally motivated by image inpainting problems, encourages
the transfer of information between similar image patches, following the
paradigm of exemplar-based methods. Contrary to the classical inpaint-
ing problem, no complete patches are available from the sparse image
samples, and the patch similarity criterion has to be redefined as here
proposed. Initial experimental results with the proposed framework, at
very low sampling densities, are very encouraging. We also explore some
departures from the variational setting, showing a remarkable

1 Introduction

The terms image inpainting and interpolation refer to the problem of recovering
missing information in an image, in a visually plausible manner exploiting avail-
able image information. This is an ill-posed inverse problem, and as such, some
sort of prior knowledge is needed for its solution. The literature on this topic is
vast, since it lies in the heart of many relevant applications, such as zooming,
demosaicing, super-resolution and image editing, among others.

For the purpose of this paper we distinguish two interpolation cases: when
the available data consists of a set of isolated samples (be regular or irregular)
and when it is given on a (not necessarily connected) region of the image. For
the former we will use the term interpolation, reserving inpainting to denote the
dense case.

In the case of inpaiting the available information usually allows to determine
the image derivatives on the region with known data. First approaches to in-
painting took advantage of this, completing the image by means of PDEs [1, 2]
or variational methods [3] that continued the image gradients or the level lines
inside the inpainting domain. These schemes involving only interactions between
local pixels, fail with textured images or large inpainting domains. Advances in
the field of texture synthesis [4] served as inspiration for new inpainting strate-
gies, based on the hypothesis that natural images are redundant, and self similar:
The value of a pixel is synthesized from known pixels with similar neighborhoods
(patches). These methods are often refereed to as non-local or exemplar-based

(see for instance [5–7] and references therein). A current trend in research is the
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combination of both, local and non-local strategies e.g. [8, 9]. We refer to [9] for
an account of this active area of research.

If the only available data consists of a nonuniform and sparse (as opposed to
dense) set of samples then: 1. The gradients as well as the directions of the level
lines are unknown, 2. There are no complete patches available on the image. In
this setting PDE based methods cannot be directly applied and exemplar-based
inpainting methods need to be adapted. This scenario appears in image super
resolution, since after registering the low resolution images the overlapped grids
may be seen as a non regular one.

Existing interpolation approaches consider priors based on smoothness or
regularity assumptions, which can be imposed by restricting the solution to be,
for instance, band limited [10], of bounded variation [11], expanded over a base
of functions (e.g. splines [12], radial basis functions [13]), among others.

A recent front of activity is given by the techniques based on the sparseland

model [14, 15], in which the image is restricted to have a sparse representation
over an overcomplete basis or dictionary [16, 15, 17]. The main difference between
dictionary-based and exemplar-based methods lies in where the missing infor-
mation is obtained from. Dictionary based methods look for the missing data in
the dictionary (as a linear combination of a few atoms), whereas exemplar-based
methods assume that the information needed lies elsewhere in the image itself
(or in a database of images [18]).

A non-local prior is used in [19]. In this work the set of image patches with
their similarity relations is modeled as a weighted graph and the interpolation is
done by imposing regularity in this graph [20, 21]. This corresponds to a non-local
regularization on the image. A successful PDE approach using an anisotropic
diffusion process was proposed in [22].

Our contribution. We address the problem of image interpolation from non-
uniformly sparsely sampled data via a non-local exemplar-based variational ap-
proach that exploits the self-similarity of the image. In this approach, and just
to prove the applicability of the self-similarity principle, we consider the simple
case where the samples are arranged on a discrete (but non regular) grid, and
leave the sub-pixel case for future development. The proposed variational for-
mulation is a generalization of the inpainting framework presented in [23], which
exhibits a good performance, but only for dense inpainting domains. As in [23],
we set up a functional to model the nonlocal means iterations both for the image
and the weights. Thus, besides the data attachment term, we include a regular-
ization term for the weights given in terms of its entropy. The functional is then
minimized with respect to both variables, the unknown image and the weights.
The data attachment term is tailored to compare only the known pixel positions
in one or both patches under comparison. Finally, both terms are balanced by a
temperature parameter h and letting h → 0+ (as in [24]) permits to iteratively
improve the results. Let us mention that we have also explored a non variational
model suggested by our approach that exhibits a faster convergence. The pre-
liminary experiments suggest that exemplar-based methods can be successfully
applied to sparse data interpolation.
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Related work. Our work is related to the nonlocal techniques applied to demo-
saicing in [24, 25] and super-resolution in [26], problems that can be cast as
image interpolation from a regular sampling set. These methods work by av-
eraging known pixels according to the similarity of their neighborhoods, and
are closely related with our approach. More detailed comments on them will be
given in subsequent Sections. Similar ideas can be also found in the field of 3D
tomographic imaging [27], where incomplete 3D volumes are reconstructed via
grouping them by similarity and averaging the exemplars in each cluster.

Let us mention that the problem of interpolation from a set of sparsely sam-
pled images could be approached with the techniques of compressed sensing [14,
28]. Even if the standard approach uses a set of random measurements (e.g.
projections on a random basis, or noiselets) one could apply the corresponding
reconstruction schemes with a random sampling of the image, as in our case. As
far as we know, there is no detailed comparison between exemplar-based meth-
ods and compressed sensing in the context of image interpolation. On the other
hand, as shown in this paper, exemplar-based methods can address the problem
of interpolating non uniformly sampled images with large unsampled regions.

Finally, the work [25] combines sparsity and non-local techniques. There, the
image self-similarity is used to obtain more robust sparse representations over a
given dictionary, by assigning a common representation to similar patches.

Notation. Images are denoted as functions u : Ω → R, where Ω denotes the
image domain, usually a rectangle in R

2. Pixel positions are denoted by x, x′, z,
z′ or y, the latter for positions inside the patch. A patch of u centered at x, is
denoted by pu(x) = pu(x, ·) : Ωp → R, where Ωp is a disk (or a square) centered
at (0, 0). The patch is defined by pu(x, y) = u(x+ y), with y ∈ Ωp. O ⊂ Ω is the
set of unknown image pixels or the domain to be interpolated, and Oc = Ω \O is
the known portion of the domain. For simplicity we will assume that the image
is defined on an extended domain Ω̃ = Ω+Ωp (i.e. tildeΩ is a dilation of Ω) and
we work in Ω, hence a patch can be centered at any pixel in Ω without escaping
the image domain. Additional notation will be introduced in the text.

2 From inpainting to interpolation

The framework we present here is an adaptation of the non-local inpainting
functional recently introduced in [23]. In this section we briefly review this work
and discuss the modifications that have to be done to allow its application to
the problem of image interpolation from sparse samples addressed in this paper.

2.1 Review: Non-local functional for image inpainting.

In [23] we proposed the functional

Ẽ(u, w) =
1

h
F̃w(u) −

∑

x∈ eO

H̃w(x) (1)
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whose minimization yields a non-local exemplar-based inpainting method. The
first term is given by

F̃w(u) =
∑

x∈ eO

∑

x′∈ eOc

w(x, x′)‖pu(x) − pu(x′)‖Ωp
, (2)

and it is inspired by a functional presented in [21] in the context of non-local

image denoising/regularization. F̃w measures the coherence between the patches

in Õ and those in Õc, given the similarity weight function w and a patch norm-
like function ‖ · ‖Ωp

. Õ is an extension of O containing the centers of all patches

intersecting O. In doing so, patches pu(x′) centered in x′ ∈ Õc consist entirely of
known pixels. The term (2) promotes the similarity between the image patches

centered at x ∈ Õ and x′ ∈ Õc. Indeed, minimizing F̃w w.r.t. the image u, for a
given fixed weight function w, forces pairs of patches for which w(x, x′) is high
to be similar. Since pu(x′) lies outside the inpainting domain, it is fixed and the
similarity can only be enforced by modifying pu(x). Thus, incomplete patches
receive information from outside the inpainting domain.

The weight function w : Õ × Õc → R
+ measures the similarity between

patches centered in the inpainting domain and in its complement. Gaussian

weights are commonly used, i.e. w(x, x′) = exp
(
− 1

h
‖pu(x) − pu(x′)‖2

)
, where

‖ · ‖ is a weighted L2 norm in the space of patches and h is the scale. In the
frameworks described in [21] the weights are known and remain fixed through all
the iterations. While this might be appropriate in case of denoising applications,
where the weights can be estimated from the noisy image, in the image inpaint-
ing/interpolation scenario, weights are not available and have to be inferred
together with the image. This idea has been applied before for super-resolution
[26], denoising [29] and in a more general regularization framework [19]. None of
these works present a variational justification for the weight update.

This issue was addressed in [30, 23]. In [23] we consider the weight func-
tion w as an additional unknown. Instead of prescribing explicitly the Gaussian
functional dependence of w w.r.t. u we do it implicitly, as a component of the
optimization process. This results in a simpler functional, avoiding to deal with
the complex, non-linear dependence between w and u. To this end, w(x, ·) is
constrained to be a probability density function,

∑
x′∈Oc w(x, x′) = 1, and a

second term given by
∑

x∈ eO
H̃w(x) is added (the second term in (1)), where

H̃w(x) = −
∑

x′∈ eOc

w(x, x′) log w(x, x′), (3)

is the entropy of the probability w(x, ·) for x ∈ Õ. Summarizing, the first term
of (1) permits the estimation of the image u from the weights w, whereas the
second one allows us to compute the weights given the image.

2.2 Generalization to interpolation.

We will discuss in this section the modifications needed to adapt the inpainting
formalism to the problem of image interpolation. The mechanism for adapting



5

the similarity weight function remains unchanged, thus we will focus our atten-
tion on the image energy term. Let us assume for the moment that we know
a weight function w which measures the similarity of the pairs of incomplete
patches. We will detail later the issues related with the computation of these
weights.

The main difference between inpainting and interpolation is the available
data and its geometric organization in the image. In a typical inpainting prob-
lem, large regions of the image are known, and transfer occurs between the
available information and the patches inside the interpolation domain. In the in-
terpolation application here addressed the image is known only at some isolated
positions distributed through all the image. We can still have entire continuous
regions of missing information (in contrast with typical approaches addressed in
compressed sensing), but we do not have at all entire patches of available infor-
mation. This does not allow the direct application of the inpainting energy (1)
to the interpolation problem, since every image patch contains unknown pixels,
and thus needs information from other patches. At the same time any patch may
have information to transfer to potentially all other patches. This suggests that
the summation domains in Eq. (2), as well as the patch comparison metric, have
to be modified. We address this next.

For the sake of generality we will use generic summation domains and denote
them by D1 and D2. For instance, the corresponding definitions for the inpainting
functional (2) are D1 = Õ and D2 = Õc, while for all methods implemented
below we used D1 = Ω and D2 = Oc, i.e. D2 the set of known pixels. The
weight function is thus defined over D1 × D2 such that for each x ∈ D1, w(x, ·)
is a probability over D2.

A general description of the image term in the interpolation functional is the
following:

F (u, w) =
∑

x∈D1

∑

x′∈D2

w(x, x′)Vϕ(pu(x), pu(x′)). (4)

We have introduced a general pair-wise patch similarity potential Vϕ, substitut-
ing the patch norm-like function ‖ · ‖Ωp

. Since we deal with sparsely sampled
patches, the pair-wise patch potential Vϕ is based only on the known pixels
around x and x′:

Vϕ(pu(x), pu(x′))=
∑

y∈Ωp

gσ(y)

ρ(x, x′)
(αXOc(x+y)+βXOc (x′+y))ϕ(u(x+y)−u(x′+y))

(5)
where gσ is a Gaussian centered at the origin with standard deviation σ, XS

denotes the characteristic function of the set S and ϕ(r) = |r|p, r ∈ R, 1 ≤ p < ∞
(a more general function could be considered). For instance, taking p = 1 leads
to an algorithm based on medians (see [23]), here due to space limitations we
will restrict us to the case p = 2. The constant parameters α, β ∈ {0, 1} are set
by the user. They control whether known positions around x or x′ are used in
the computation of the similarity potentials (at least one of them has to be 1).

If α = 1 the positions with known data around x are used for the computation
of the similarity potential (5). This happens whether the corresponding locations
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x

known pixel

unknown pixel

x’

z’
y

x’

(a) α = 1, β = 0: Transmit

x

known pixel

unknown pixel

x’

x’y

z’

(b) α = 0, β = 1: Receive

Fig. 1. Visualization of transmission and reception processes due respectively to terms
V α

ϕ and V β
ϕ in the patch similarity potential (see Eq. (6)).

around x′ belong to the data set or not. If β = 1 the similarity potential accounts
for the known pixels around x′. If both of them are 1, in which case Vϕ is
computed from the locations known in both patches. This last case coincides
with the patch comparison criterion defined in [24] in the context of demosaicing.

The normalization factor ρ(x, x′) is such that
∑

y∈Ωp

gσ(y)
ρ(x,x′) (αXOc (x + y) +

βXOc(x′ + y)) = 1 for all x ∈ D1, x′ ∈ D2. Considering the overlap between
known positions in both patches (see for instance [27]) would also make sense
for the comparing patches with missing data. However, this cannot be applied
to the current formulation since this eliminates the dependency of the energy
on the unknown image (recall that the energy depends on the image though the
similarity potential Vϕ).

The proposed functional can be easily understood by splitting the pairwise
patch potential into two terms Vϕ = V α

ϕ + V β
ϕ , with

V α
ϕ (pu(x), pu(x′)) = α

∑

y∈Ωp

gσ(y)

ρ(x, x′)
XOc(x + y)ϕ(u(x + y) − u(x′ + y)), (6)

and analogously for V β
ϕ . The energy F can be split accordingly in two terms.

The first potential measures differences between known pixels in pu(x), with
x ∈ D1, and the corresponding pixels in pu(x′), with x′ ∈ D2. Since known
pixels are fixed, its minimization implies the modification of unknown pixels
around x′, thus transferring information from pu(x) to pu(x′). On the other hand,
V β

ϕ considers differences between known pixels in pu(x′) and the corresponding
locations in pu(x). In this case known information flows from pu(x′) centered at
D2 to pu(x) centered at D1.

Since the weights w(x, ·) are a probability over D2 for each x ∈ D1, we will
adopt subsequently the point of view of the patch pu(x) centered at x ∈ D1.
We refer to these patches as central patches, and to patches centered in D2 as
peripheral patches. From this perspective, the minimization of the term with V α

ϕ

implies the transmission of the information (the pixel values) of known positions
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in the central patch pu(x) towards the unknown positions in peripheral patches
pu(x′) ∈ D2 (see Figure 1(b)). Whereas the minimization of the term with
V β

ϕ implies receiving known pixel values from peripheral patches at D2 (see
Figure 1(b)). We refer to these processes as transmission and reception.

The complete functional for the interpolation problem becomes:

E(u, w) =
1

h
F (u, w) −

∑

x∈D1

Hw(x), (7)

where as before Hw(x) = −
∑

x′∈D2
w(x, x′) log w(x, x′) is again the entropy of

the probability w(x, ·) for x ∈ D2. As in the case of inpainting, this term allows
to model the estimation of the weights together with the image.

A similar functional for image super-resolution was considered in [26] without
explicitly modeling the weight updating step. The functional in [26] is related to
the case where α = 0 and β = 1 (or to the case of a full patch comparison).

2.3 Reinterpretation of the image term F

Let us rewrite the energy term (4) in a different way, in which the image values
appear directly, and not as part of patches. This formulation will be useful for
posterior analysis. After the change of variables z = x+y, z′ = x+y′, the energy
can be rewritten by adding up the pair-wise pixels differences as

F (u, w) =
∑

z∈ eΩ

∑

z′∈ eΩ

m(z, z′)(αXOc (z) + βXOc(z′))ϕ(u(z) − u(z′)), (8)

where Ω̃ = Ω + Ωp (since D1, D2 ⊆ Ω, we have that D1 + y, D2 + y ⊆ Ω̃ for all
y ∈ Ωp), and we have defined the pixel-wise influence weights m(z, z′) as

m(z, z′) =
∑

y∈Ωp

XD1
(z − y)XD2

(z′ − y)w(z − y, z′ − y)
gσ(y)

ρ(z − y, z′ − y)
. (9)

These weights integrate the similarities of patches centered at z − y ∈ D1 con-
taining z and those centered at z′ − y ∈ D2 containing z′ for y ∈ Ωp.

The formulation given by Eq. (4) accumulates the pair-wise potentials for
each pair of patches centered in D1 and D2. The potentials are given by the
addition of pixel value differences. In (8), the energy is rewritten by explicitly
computing the contribution of each pixel value difference. The characteristic
functions XD1

(z−y) and XD2
(z′−y) in (8) are zero if neither z nor z′ are known.

Only those differences involving at least one known pixel are taken into account.
It becomes clear that pixel differences for which we have a large value of m(z, z′)
are penalized. This implies the modification of u(z) or u(z′), depending on which
of them is given and which is unknown. This shows again the difference with
more frequently used patch distances, where only pixels available in both patches
are considered for the computation. Certainly if such approaches are iterated,
as sometimes done [27, 6], pixels with originally only “one side” available start
to influence the computation as well after the first iteration or the first time yet
are “filled”.
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3 Minimization of E

We have formulated the interpolation problem as the constrained optimization

(u∗, w∗) = argmin
u,w

E(u, w) subject to (10)

∑

x′∈D2

w(x, x′) = 1 for all x ∈ D1. (11)

To minimize the energy E, we use an alternate coordinate descent algorithm.
At each iteration, two optimization steps are solved: The constrained minimiza-
tion of E with respect to w while keeping u fixed; and the minimization of E

with respect to u with w fixed. This procedure yields the following iteration

1. [Initial Condition] Given u0(x) with x ∈ O.

2. [Weights Update Step] wk = arg minw E(uk, w), subject to (11).

3. [Image Update Step] uk+1 = arg minu E(u, wk).

4. [Stopping Criterion] If ‖uk+1 − uk‖ > τ , go back to step 2.

In the weights updating step, the minimization of E w.r.t. w yields wk(x, x′) =
1

q(x) exp
[
− 1

h
Vϕ(puk

(x), pu(x′))
]
, where q(x) is a normalization factor such that∑

x′∈D2
w(x, x′) = 1 for each patch puk

(x). The parameter h determines the
selectivity of the similarity. If h is large, maximizing the entropy becomes more
relevant, yielding weights which are less selective. In the limit, when h → ∞,
wk(x, ·) becomes a uniform distribution over D2. On the other hand, a small h

yields weights more concentrated on the patches that are similar to pu(x). In
fact, when h → 0 the weights are given by limh→0 w(x, x′) = 1

#n(x)Xn(x)(x
′),

where n(x) ⊆ Oc is the set of minimizers of Vϕ(pu(x), ·), i.e. n(x) = {x′ ∈
Oc : Vϕ(pu(x), pu(x′)) = Vmin(x)}, where Vmin(x) is the minimum potential
w.r.t. pu(x). In other words, when h → 0+ the weights encode a multivalued
assignment of patches with centers in D2 for each x ∈ D1.

The image updating step deserves more attention and is described next.

3.1 Image updating step

The equilibrium equation for E results in

∑

z′∈Oc

(αm(z′, z) + βm(z, z′))ϕ′(u(z) − u(z′)) = 0 for all z ∈ O. (12)

This equation specifies the information transferred from the datum u(z′) to the
unknown u(z). This information can be transferred in any of the two modes
discussed previously, i.e. reception, by a patch in D1 covering z, of data com-
ing from a patch in D2 covering z′, and/or transmission, of data from a patch
in D1 covering z′, to a patch in D2 covering z. The term m(z, z′) gathers all
contributions by reception, whereas the term m(z′, z) considers all transmissions.
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When ϕ(t) = t2 we call the resulting method patch-wise non-local means. In
this case Eq. (12) can be written as

u(z) =
1

C(z)

∑

z′∈Oc

(αm(z′, z) + βm(z, z′))u(z′), (13)

for each z ∈ O, where the normalization constant C(z) is given by C(z) =∑
z′∈Oc(αm(z′, z)+βm(z, z′)). Let us say in passing that due to our variational

formulation, the image updating step is different from [24], since only the central
pixel of the patch is updated in [24]. Taking ϕ(t) = |t|, we get the patch-wise

non-local medians. In this case, the Euler equation (12) for u, given w, becomes∑
z′∈Oc(αm(z′, z) + βm(z, z′))sign(u(z) − u(z′)) = 0, and its solution u(z) is

obtained as a weighted median of the known values u(z′).

4 A departure from variational model

We have seen that three different schemes can be derived from the proposed
variational model, by changing the values of α and β. We have interpreted them,
by observing the effect over the unknown pixels of u, as transmission (α = 1,
β =0), reception (α=0, β =1) and combined (α=1, β =1). But each scheme also
forces the manner to compute w. Now, if we abandon the variational framework,
we can combine different update schemes of w and u.

We now propose a new scheme by updating the weights w according to
the transmission scheme (α = 1, β = 0), and the image u using the combined
scheme (α = 1, β = 1). The resulting algorithm was experimentally found to be
numerically stable, and for relatively high sampling densities to behave like the
combined scheme (α=1, β =1). However for low sampling densities it exhibits
a remarkable ability to speed up the convergence. An intuitive reason that may
explain this scheme relies on the fact that using the transmission potential (α=1,
β =0), the weights w(x, ·) are always computed using coordinates around x, with
known values. Adding known positions around x′ may provide a poorer estimate
of the weights, specially if the current interpolation around x is bad.

5 Experimental results

We now present experimental results with both synthetic and natural images
randomly sampled with densities from 20% to 5% of the image points. The four
schemes derived from the potential (5) in Section 2, are referred here as A (for
α=1, β =0), B (α=0, β =1), AB (α=1, β =1), and O for the departure from the

variational model (which is a variant of AB). All of them have a computational
cost proportional to A(D1)×A(D2) (where A(Di) is the number of pixels of Di).
Since D2 is a fraction of D1 (the density of the sampling) then the algorithm is
O(T ×A(D1)

2), where T is the number of iterations (usually T < 200). A single
iteration for a 256×256 pixels image takes about 3 min on a 3GHz processor.
However, with the coarse to fine scheme described below, the convergence is
generally attained with less than 40 iterations. This amounts to a computational
time of 120 minutes.
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h → 0

h = 500

Fig. 2. Synthetic. The first column shows the original image, and the random samples
(5% of the image) with the window gσ (see (5)) depicted in the upper left corner. The
second column from left shows a linear interpolation over the Delaunay triangulation
of the samples. Remaining columns (from left to right) correspond to results of the
schemes A, B, AB and O; The rows correspond to two different values of h.

Role of locality in the non-local algorithms. A common strategy to improve the
computational performance of nonlocal methods is to reduce the size of the
search window (subset of D2 around the central pixel x), thereby reducing the
number of comparisons performed for each pixel. As a desirable side effect, this
enforces the ergodicity assumption over the data. In other words, the patches
needed to estimate the current point are assumed to be found in the vicinity
of it, not far away. As a consequence, the size of the search window is a very
important parameter, and it may be itself subject of optimization as in [31].
In our experiments we choose the search windows to have a reasonable size
(containing 100 to 500 samples) with respect to the density of the image.

Choice of Vϕ. The experiments shown in Figure 2 are aimed to compare the
performance of the different schemes. The best results for this data are obtained
with the scheme AB. Therefore, since the experiments are also consistent with
these results, from now on we will mainly show AB and O. Also notice that the
textures are recovered in great detail, while the interface between them, is very
imprecise. This evidences the exemplar-based nature of the algorithms, since
there are plenty of examples of textures, but only few of the interface.

Initial condition and h. If the initial condition has artifacts, then for small h

these methods tend to reinforce them. To reduce the dependence on the initial
condition we adopt the coarse to fine scheme proposed in [24], where a decreasing
sequence of h is used to recover first large scale structures and later refine them
(as h decreases). Figures 3 and 4(b) show the results of applying the algorithms
O and AB to natural images with sampling densities from 20% to 5%. For high
densities the performances of both schemes is similar. For lower densities (5%
for instance) O exhibits less dependence on the initial condition than AB. In
particular, we can obtain with O results similar to those obtained with AB even
without the coarse to fine scheme. Using h > 0 produces smooth results with
blurred details, while using h → 0 introduces a staircase effect; we expect to
improve these results by using h > 0 in the median case (which corresponds
to p = 1 in ϕ (5)). In the first two columns of Figure 3 we display: a set of
random samples, and an optimal dithered set of the same image (optimal for
the Laplacian-based interpolation as described in [22]). Both sets contain 10%
of the image points. The Laplacian interpolation from dithered samples takes
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advantage of the distribution of the samples along the edges and permits to
recover a visually pleasant smooth image with clear edges (see [22]), while our
method is less fitted for this task (second column of Figure 3). However, for
random samplings the results of the Laplacian interpolation are less convincing,
while our method recovers most edges and textures of the image (see Figure 4).

Interpolation of large holes. In Figure 4(a) we show a preliminary result using
method B (only reception process) applied to the interpolation of a hole in a
sampled image, this choice of the potential leads to a functional similar to the
inpainting one shown in [23]. Let us remark that the method was applied “as
it is” to the problem, without making any distinction between the hole and the
sampled areas. Other methods that involve the transmission process (AB or O)
fail to fill the large holes, although all manage to recover the sparsely sampled
area. We attribute the non regularity of the solution to the low frequency of the
texture, which implies less exemplars to copy from, showing the main limitation
of exemplar-based methods. A local regularization term can be used to impose
smoothness on the result [26]. The results shown here are also available at:
http://gpi.upf.edu/static/vnli.

6 Conclusions and future work

A variational formulation for non-local example-based image interpolation was
introduced in this paper. The obtained results show a promising performance. In
subsequent work we will extend the present model to cover the case of samples
located at non-entire positions and we will explore some variants of it.
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Fig. 3. Sparse sampling interpolation. 1st row: original images. 2nd row: input data
with sample densities of 10%, 10% dithered [22], 20% and 9%. 3rd row: linear interpola-
tion over the Delaunay triangulation of the samples; PSNRs: 25.8, 30.6 (not considering
the black frame), 25.0 and 22.74. 4rt row: results of method AB with h = 100; PSNRs:
22.5 ,22.7, 25.5 and 22.79. 5th row: results of AB with h → 0; PSNRs: 22.6, 23.0, 25.5
and 22.56. 6th row: results of the method O with h → 0; PSNRs: 22.6,21.7,25.1 and
22.69. (Details can be better appreciated by zooming on a computer screen)
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(a) Cylinders, 200×113. Inpainting a hole in a subsampled image with algorithm
B. The algorithm makes no distinction between the hole and the sampled regions.
The sampling density is 20% yielding a global sampling density of 14%.

(b) Barbara, 512×512 with 5% of the samples. 2nd line are results of: linear inter-
polation (PSNR 20.1), Laplacian interpolation (PSNR 19.9) and algorithm O with
h=100 (PSNR 22.8).

Fig. 4. Experiments with lower sampling densities. Each figure shows the original image
(top left), the available samples (top right), the result of linear interpolation over the
Delaunay triangulation (bottom left) and the output the algorithm specified in each
figure (bottom right).


